xref: /linux/drivers/scsi/sd.c (revision faabed295cccc2aba2b67f2e7b309f2892d55004)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *      sd.c Copyright (C) 1992 Drew Eckhardt
4  *           Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
5  *
6  *      Linux scsi disk driver
7  *              Initial versions: Drew Eckhardt
8  *              Subsequent revisions: Eric Youngdale
9  *	Modification history:
10  *       - Drew Eckhardt <drew@colorado.edu> original
11  *       - Eric Youngdale <eric@andante.org> add scatter-gather, multiple
12  *         outstanding request, and other enhancements.
13  *         Support loadable low-level scsi drivers.
14  *       - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using
15  *         eight major numbers.
16  *       - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
17  *	 - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in
18  *	   sd_init and cleanups.
19  *	 - Alex Davis <letmein@erols.com> Fix problem where partition info
20  *	   not being read in sd_open. Fix problem where removable media
21  *	   could be ejected after sd_open.
22  *	 - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
23  *	 - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox
24  *	   <willy@debian.org>, Kurt Garloff <garloff@suse.de>:
25  *	   Support 32k/1M disks.
26  *
27  *	Logging policy (needs CONFIG_SCSI_LOGGING defined):
28  *	 - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
29  *	 - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
30  *	 - entering sd_ioctl: SCSI_LOG_IOCTL level 1
31  *	 - entering other commands: SCSI_LOG_HLQUEUE level 3
32  *	Note: when the logging level is set by the user, it must be greater
33  *	than the level indicated above to trigger output.
34  */
35 
36 #include <linux/module.h>
37 #include <linux/fs.h>
38 #include <linux/kernel.h>
39 #include <linux/mm.h>
40 #include <linux/bio.h>
41 #include <linux/genhd.h>
42 #include <linux/hdreg.h>
43 #include <linux/errno.h>
44 #include <linux/idr.h>
45 #include <linux/interrupt.h>
46 #include <linux/init.h>
47 #include <linux/blkdev.h>
48 #include <linux/blkpg.h>
49 #include <linux/blk-pm.h>
50 #include <linux/delay.h>
51 #include <linux/mutex.h>
52 #include <linux/string_helpers.h>
53 #include <linux/async.h>
54 #include <linux/slab.h>
55 #include <linux/sed-opal.h>
56 #include <linux/pm_runtime.h>
57 #include <linux/pr.h>
58 #include <linux/t10-pi.h>
59 #include <linux/uaccess.h>
60 #include <asm/unaligned.h>
61 
62 #include <scsi/scsi.h>
63 #include <scsi/scsi_cmnd.h>
64 #include <scsi/scsi_dbg.h>
65 #include <scsi/scsi_device.h>
66 #include <scsi/scsi_driver.h>
67 #include <scsi/scsi_eh.h>
68 #include <scsi/scsi_host.h>
69 #include <scsi/scsi_ioctl.h>
70 #include <scsi/scsicam.h>
71 
72 #include "sd.h"
73 #include "scsi_priv.h"
74 #include "scsi_logging.h"
75 
76 MODULE_AUTHOR("Eric Youngdale");
77 MODULE_DESCRIPTION("SCSI disk (sd) driver");
78 MODULE_LICENSE("GPL");
79 
80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
95 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
96 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
97 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
98 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
99 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
100 
101 #if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT)
102 #define SD_MINORS	16
103 #else
104 #define SD_MINORS	0
105 #endif
106 
107 static void sd_config_discard(struct scsi_disk *, unsigned int);
108 static void sd_config_write_same(struct scsi_disk *);
109 static int  sd_revalidate_disk(struct gendisk *);
110 static void sd_unlock_native_capacity(struct gendisk *disk);
111 static int  sd_probe(struct device *);
112 static int  sd_remove(struct device *);
113 static void sd_shutdown(struct device *);
114 static int sd_suspend_system(struct device *);
115 static int sd_suspend_runtime(struct device *);
116 static int sd_resume(struct device *);
117 static void sd_rescan(struct device *);
118 static blk_status_t sd_init_command(struct scsi_cmnd *SCpnt);
119 static void sd_uninit_command(struct scsi_cmnd *SCpnt);
120 static int sd_done(struct scsi_cmnd *);
121 static void sd_eh_reset(struct scsi_cmnd *);
122 static int sd_eh_action(struct scsi_cmnd *, int);
123 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
124 static void scsi_disk_release(struct device *cdev);
125 
126 static DEFINE_IDA(sd_index_ida);
127 
128 /* This semaphore is used to mediate the 0->1 reference get in the
129  * face of object destruction (i.e. we can't allow a get on an
130  * object after last put) */
131 static DEFINE_MUTEX(sd_ref_mutex);
132 
133 static struct kmem_cache *sd_cdb_cache;
134 static mempool_t *sd_cdb_pool;
135 static mempool_t *sd_page_pool;
136 
137 static const char *sd_cache_types[] = {
138 	"write through", "none", "write back",
139 	"write back, no read (daft)"
140 };
141 
142 static void sd_set_flush_flag(struct scsi_disk *sdkp)
143 {
144 	bool wc = false, fua = false;
145 
146 	if (sdkp->WCE) {
147 		wc = true;
148 		if (sdkp->DPOFUA)
149 			fua = true;
150 	}
151 
152 	blk_queue_write_cache(sdkp->disk->queue, wc, fua);
153 }
154 
155 static ssize_t
156 cache_type_store(struct device *dev, struct device_attribute *attr,
157 		 const char *buf, size_t count)
158 {
159 	int ct, rcd, wce, sp;
160 	struct scsi_disk *sdkp = to_scsi_disk(dev);
161 	struct scsi_device *sdp = sdkp->device;
162 	char buffer[64];
163 	char *buffer_data;
164 	struct scsi_mode_data data;
165 	struct scsi_sense_hdr sshdr;
166 	static const char temp[] = "temporary ";
167 	int len;
168 
169 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
170 		/* no cache control on RBC devices; theoretically they
171 		 * can do it, but there's probably so many exceptions
172 		 * it's not worth the risk */
173 		return -EINVAL;
174 
175 	if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
176 		buf += sizeof(temp) - 1;
177 		sdkp->cache_override = 1;
178 	} else {
179 		sdkp->cache_override = 0;
180 	}
181 
182 	ct = sysfs_match_string(sd_cache_types, buf);
183 	if (ct < 0)
184 		return -EINVAL;
185 
186 	rcd = ct & 0x01 ? 1 : 0;
187 	wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
188 
189 	if (sdkp->cache_override) {
190 		sdkp->WCE = wce;
191 		sdkp->RCD = rcd;
192 		sd_set_flush_flag(sdkp);
193 		return count;
194 	}
195 
196 	if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT,
197 			    SD_MAX_RETRIES, &data, NULL))
198 		return -EINVAL;
199 	len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
200 		  data.block_descriptor_length);
201 	buffer_data = buffer + data.header_length +
202 		data.block_descriptor_length;
203 	buffer_data[2] &= ~0x05;
204 	buffer_data[2] |= wce << 2 | rcd;
205 	sp = buffer_data[0] & 0x80 ? 1 : 0;
206 	buffer_data[0] &= ~0x80;
207 
208 	/*
209 	 * Ensure WP, DPOFUA, and RESERVED fields are cleared in
210 	 * received mode parameter buffer before doing MODE SELECT.
211 	 */
212 	data.device_specific = 0;
213 
214 	if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT,
215 			     SD_MAX_RETRIES, &data, &sshdr)) {
216 		if (scsi_sense_valid(&sshdr))
217 			sd_print_sense_hdr(sdkp, &sshdr);
218 		return -EINVAL;
219 	}
220 	revalidate_disk(sdkp->disk);
221 	return count;
222 }
223 
224 static ssize_t
225 manage_start_stop_show(struct device *dev, struct device_attribute *attr,
226 		       char *buf)
227 {
228 	struct scsi_disk *sdkp = to_scsi_disk(dev);
229 	struct scsi_device *sdp = sdkp->device;
230 
231 	return sprintf(buf, "%u\n", sdp->manage_start_stop);
232 }
233 
234 static ssize_t
235 manage_start_stop_store(struct device *dev, struct device_attribute *attr,
236 			const char *buf, size_t count)
237 {
238 	struct scsi_disk *sdkp = to_scsi_disk(dev);
239 	struct scsi_device *sdp = sdkp->device;
240 	bool v;
241 
242 	if (!capable(CAP_SYS_ADMIN))
243 		return -EACCES;
244 
245 	if (kstrtobool(buf, &v))
246 		return -EINVAL;
247 
248 	sdp->manage_start_stop = v;
249 
250 	return count;
251 }
252 static DEVICE_ATTR_RW(manage_start_stop);
253 
254 static ssize_t
255 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
256 {
257 	struct scsi_disk *sdkp = to_scsi_disk(dev);
258 
259 	return sprintf(buf, "%u\n", sdkp->device->allow_restart);
260 }
261 
262 static ssize_t
263 allow_restart_store(struct device *dev, struct device_attribute *attr,
264 		    const char *buf, size_t count)
265 {
266 	bool v;
267 	struct scsi_disk *sdkp = to_scsi_disk(dev);
268 	struct scsi_device *sdp = sdkp->device;
269 
270 	if (!capable(CAP_SYS_ADMIN))
271 		return -EACCES;
272 
273 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
274 		return -EINVAL;
275 
276 	if (kstrtobool(buf, &v))
277 		return -EINVAL;
278 
279 	sdp->allow_restart = v;
280 
281 	return count;
282 }
283 static DEVICE_ATTR_RW(allow_restart);
284 
285 static ssize_t
286 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
287 {
288 	struct scsi_disk *sdkp = to_scsi_disk(dev);
289 	int ct = sdkp->RCD + 2*sdkp->WCE;
290 
291 	return sprintf(buf, "%s\n", sd_cache_types[ct]);
292 }
293 static DEVICE_ATTR_RW(cache_type);
294 
295 static ssize_t
296 FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
297 {
298 	struct scsi_disk *sdkp = to_scsi_disk(dev);
299 
300 	return sprintf(buf, "%u\n", sdkp->DPOFUA);
301 }
302 static DEVICE_ATTR_RO(FUA);
303 
304 static ssize_t
305 protection_type_show(struct device *dev, struct device_attribute *attr,
306 		     char *buf)
307 {
308 	struct scsi_disk *sdkp = to_scsi_disk(dev);
309 
310 	return sprintf(buf, "%u\n", sdkp->protection_type);
311 }
312 
313 static ssize_t
314 protection_type_store(struct device *dev, struct device_attribute *attr,
315 		      const char *buf, size_t count)
316 {
317 	struct scsi_disk *sdkp = to_scsi_disk(dev);
318 	unsigned int val;
319 	int err;
320 
321 	if (!capable(CAP_SYS_ADMIN))
322 		return -EACCES;
323 
324 	err = kstrtouint(buf, 10, &val);
325 
326 	if (err)
327 		return err;
328 
329 	if (val <= T10_PI_TYPE3_PROTECTION)
330 		sdkp->protection_type = val;
331 
332 	return count;
333 }
334 static DEVICE_ATTR_RW(protection_type);
335 
336 static ssize_t
337 protection_mode_show(struct device *dev, struct device_attribute *attr,
338 		     char *buf)
339 {
340 	struct scsi_disk *sdkp = to_scsi_disk(dev);
341 	struct scsi_device *sdp = sdkp->device;
342 	unsigned int dif, dix;
343 
344 	dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
345 	dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
346 
347 	if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
348 		dif = 0;
349 		dix = 1;
350 	}
351 
352 	if (!dif && !dix)
353 		return sprintf(buf, "none\n");
354 
355 	return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
356 }
357 static DEVICE_ATTR_RO(protection_mode);
358 
359 static ssize_t
360 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
361 {
362 	struct scsi_disk *sdkp = to_scsi_disk(dev);
363 
364 	return sprintf(buf, "%u\n", sdkp->ATO);
365 }
366 static DEVICE_ATTR_RO(app_tag_own);
367 
368 static ssize_t
369 thin_provisioning_show(struct device *dev, struct device_attribute *attr,
370 		       char *buf)
371 {
372 	struct scsi_disk *sdkp = to_scsi_disk(dev);
373 
374 	return sprintf(buf, "%u\n", sdkp->lbpme);
375 }
376 static DEVICE_ATTR_RO(thin_provisioning);
377 
378 /* sysfs_match_string() requires dense arrays */
379 static const char *lbp_mode[] = {
380 	[SD_LBP_FULL]		= "full",
381 	[SD_LBP_UNMAP]		= "unmap",
382 	[SD_LBP_WS16]		= "writesame_16",
383 	[SD_LBP_WS10]		= "writesame_10",
384 	[SD_LBP_ZERO]		= "writesame_zero",
385 	[SD_LBP_DISABLE]	= "disabled",
386 };
387 
388 static ssize_t
389 provisioning_mode_show(struct device *dev, struct device_attribute *attr,
390 		       char *buf)
391 {
392 	struct scsi_disk *sdkp = to_scsi_disk(dev);
393 
394 	return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
395 }
396 
397 static ssize_t
398 provisioning_mode_store(struct device *dev, struct device_attribute *attr,
399 			const char *buf, size_t count)
400 {
401 	struct scsi_disk *sdkp = to_scsi_disk(dev);
402 	struct scsi_device *sdp = sdkp->device;
403 	int mode;
404 
405 	if (!capable(CAP_SYS_ADMIN))
406 		return -EACCES;
407 
408 	if (sd_is_zoned(sdkp)) {
409 		sd_config_discard(sdkp, SD_LBP_DISABLE);
410 		return count;
411 	}
412 
413 	if (sdp->type != TYPE_DISK)
414 		return -EINVAL;
415 
416 	mode = sysfs_match_string(lbp_mode, buf);
417 	if (mode < 0)
418 		return -EINVAL;
419 
420 	sd_config_discard(sdkp, mode);
421 
422 	return count;
423 }
424 static DEVICE_ATTR_RW(provisioning_mode);
425 
426 /* sysfs_match_string() requires dense arrays */
427 static const char *zeroing_mode[] = {
428 	[SD_ZERO_WRITE]		= "write",
429 	[SD_ZERO_WS]		= "writesame",
430 	[SD_ZERO_WS16_UNMAP]	= "writesame_16_unmap",
431 	[SD_ZERO_WS10_UNMAP]	= "writesame_10_unmap",
432 };
433 
434 static ssize_t
435 zeroing_mode_show(struct device *dev, struct device_attribute *attr,
436 		  char *buf)
437 {
438 	struct scsi_disk *sdkp = to_scsi_disk(dev);
439 
440 	return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
441 }
442 
443 static ssize_t
444 zeroing_mode_store(struct device *dev, struct device_attribute *attr,
445 		   const char *buf, size_t count)
446 {
447 	struct scsi_disk *sdkp = to_scsi_disk(dev);
448 	int mode;
449 
450 	if (!capable(CAP_SYS_ADMIN))
451 		return -EACCES;
452 
453 	mode = sysfs_match_string(zeroing_mode, buf);
454 	if (mode < 0)
455 		return -EINVAL;
456 
457 	sdkp->zeroing_mode = mode;
458 
459 	return count;
460 }
461 static DEVICE_ATTR_RW(zeroing_mode);
462 
463 static ssize_t
464 max_medium_access_timeouts_show(struct device *dev,
465 				struct device_attribute *attr, char *buf)
466 {
467 	struct scsi_disk *sdkp = to_scsi_disk(dev);
468 
469 	return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
470 }
471 
472 static ssize_t
473 max_medium_access_timeouts_store(struct device *dev,
474 				 struct device_attribute *attr, const char *buf,
475 				 size_t count)
476 {
477 	struct scsi_disk *sdkp = to_scsi_disk(dev);
478 	int err;
479 
480 	if (!capable(CAP_SYS_ADMIN))
481 		return -EACCES;
482 
483 	err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
484 
485 	return err ? err : count;
486 }
487 static DEVICE_ATTR_RW(max_medium_access_timeouts);
488 
489 static ssize_t
490 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
491 			   char *buf)
492 {
493 	struct scsi_disk *sdkp = to_scsi_disk(dev);
494 
495 	return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
496 }
497 
498 static ssize_t
499 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
500 			    const char *buf, size_t count)
501 {
502 	struct scsi_disk *sdkp = to_scsi_disk(dev);
503 	struct scsi_device *sdp = sdkp->device;
504 	unsigned long max;
505 	int err;
506 
507 	if (!capable(CAP_SYS_ADMIN))
508 		return -EACCES;
509 
510 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
511 		return -EINVAL;
512 
513 	err = kstrtoul(buf, 10, &max);
514 
515 	if (err)
516 		return err;
517 
518 	if (max == 0)
519 		sdp->no_write_same = 1;
520 	else if (max <= SD_MAX_WS16_BLOCKS) {
521 		sdp->no_write_same = 0;
522 		sdkp->max_ws_blocks = max;
523 	}
524 
525 	sd_config_write_same(sdkp);
526 
527 	return count;
528 }
529 static DEVICE_ATTR_RW(max_write_same_blocks);
530 
531 static ssize_t
532 zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf)
533 {
534 	struct scsi_disk *sdkp = to_scsi_disk(dev);
535 
536 	if (sdkp->device->type == TYPE_ZBC)
537 		return sprintf(buf, "host-managed\n");
538 	if (sdkp->zoned == 1)
539 		return sprintf(buf, "host-aware\n");
540 	if (sdkp->zoned == 2)
541 		return sprintf(buf, "drive-managed\n");
542 	return sprintf(buf, "none\n");
543 }
544 static DEVICE_ATTR_RO(zoned_cap);
545 
546 static struct attribute *sd_disk_attrs[] = {
547 	&dev_attr_cache_type.attr,
548 	&dev_attr_FUA.attr,
549 	&dev_attr_allow_restart.attr,
550 	&dev_attr_manage_start_stop.attr,
551 	&dev_attr_protection_type.attr,
552 	&dev_attr_protection_mode.attr,
553 	&dev_attr_app_tag_own.attr,
554 	&dev_attr_thin_provisioning.attr,
555 	&dev_attr_provisioning_mode.attr,
556 	&dev_attr_zeroing_mode.attr,
557 	&dev_attr_max_write_same_blocks.attr,
558 	&dev_attr_max_medium_access_timeouts.attr,
559 	&dev_attr_zoned_cap.attr,
560 	NULL,
561 };
562 ATTRIBUTE_GROUPS(sd_disk);
563 
564 static struct class sd_disk_class = {
565 	.name		= "scsi_disk",
566 	.owner		= THIS_MODULE,
567 	.dev_release	= scsi_disk_release,
568 	.dev_groups	= sd_disk_groups,
569 };
570 
571 static const struct dev_pm_ops sd_pm_ops = {
572 	.suspend		= sd_suspend_system,
573 	.resume			= sd_resume,
574 	.poweroff		= sd_suspend_system,
575 	.restore		= sd_resume,
576 	.runtime_suspend	= sd_suspend_runtime,
577 	.runtime_resume		= sd_resume,
578 };
579 
580 static struct scsi_driver sd_template = {
581 	.gendrv = {
582 		.name		= "sd",
583 		.owner		= THIS_MODULE,
584 		.probe		= sd_probe,
585 		.probe_type	= PROBE_PREFER_ASYNCHRONOUS,
586 		.remove		= sd_remove,
587 		.shutdown	= sd_shutdown,
588 		.pm		= &sd_pm_ops,
589 	},
590 	.rescan			= sd_rescan,
591 	.init_command		= sd_init_command,
592 	.uninit_command		= sd_uninit_command,
593 	.done			= sd_done,
594 	.eh_action		= sd_eh_action,
595 	.eh_reset		= sd_eh_reset,
596 };
597 
598 /*
599  * Dummy kobj_map->probe function.
600  * The default ->probe function will call modprobe, which is
601  * pointless as this module is already loaded.
602  */
603 static struct kobject *sd_default_probe(dev_t devt, int *partno, void *data)
604 {
605 	return NULL;
606 }
607 
608 /*
609  * Device no to disk mapping:
610  *
611  *       major         disc2     disc  p1
612  *   |............|.............|....|....| <- dev_t
613  *    31        20 19          8 7  4 3  0
614  *
615  * Inside a major, we have 16k disks, however mapped non-
616  * contiguously. The first 16 disks are for major0, the next
617  * ones with major1, ... Disk 256 is for major0 again, disk 272
618  * for major1, ...
619  * As we stay compatible with our numbering scheme, we can reuse
620  * the well-know SCSI majors 8, 65--71, 136--143.
621  */
622 static int sd_major(int major_idx)
623 {
624 	switch (major_idx) {
625 	case 0:
626 		return SCSI_DISK0_MAJOR;
627 	case 1 ... 7:
628 		return SCSI_DISK1_MAJOR + major_idx - 1;
629 	case 8 ... 15:
630 		return SCSI_DISK8_MAJOR + major_idx - 8;
631 	default:
632 		BUG();
633 		return 0;	/* shut up gcc */
634 	}
635 }
636 
637 static struct scsi_disk *scsi_disk_get(struct gendisk *disk)
638 {
639 	struct scsi_disk *sdkp = NULL;
640 
641 	mutex_lock(&sd_ref_mutex);
642 
643 	if (disk->private_data) {
644 		sdkp = scsi_disk(disk);
645 		if (scsi_device_get(sdkp->device) == 0)
646 			get_device(&sdkp->dev);
647 		else
648 			sdkp = NULL;
649 	}
650 	mutex_unlock(&sd_ref_mutex);
651 	return sdkp;
652 }
653 
654 static void scsi_disk_put(struct scsi_disk *sdkp)
655 {
656 	struct scsi_device *sdev = sdkp->device;
657 
658 	mutex_lock(&sd_ref_mutex);
659 	put_device(&sdkp->dev);
660 	scsi_device_put(sdev);
661 	mutex_unlock(&sd_ref_mutex);
662 }
663 
664 #ifdef CONFIG_BLK_SED_OPAL
665 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
666 		size_t len, bool send)
667 {
668 	struct scsi_device *sdev = data;
669 	u8 cdb[12] = { 0, };
670 	int ret;
671 
672 	cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
673 	cdb[1] = secp;
674 	put_unaligned_be16(spsp, &cdb[2]);
675 	put_unaligned_be32(len, &cdb[6]);
676 
677 	ret = scsi_execute_req(sdev, cdb,
678 			send ? DMA_TO_DEVICE : DMA_FROM_DEVICE,
679 			buffer, len, NULL, SD_TIMEOUT, SD_MAX_RETRIES, NULL);
680 	return ret <= 0 ? ret : -EIO;
681 }
682 #endif /* CONFIG_BLK_SED_OPAL */
683 
684 /*
685  * Look up the DIX operation based on whether the command is read or
686  * write and whether dix and dif are enabled.
687  */
688 static unsigned int sd_prot_op(bool write, bool dix, bool dif)
689 {
690 	/* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */
691 	static const unsigned int ops[] = {	/* wrt dix dif */
692 		SCSI_PROT_NORMAL,		/*  0	0   0  */
693 		SCSI_PROT_READ_STRIP,		/*  0	0   1  */
694 		SCSI_PROT_READ_INSERT,		/*  0	1   0  */
695 		SCSI_PROT_READ_PASS,		/*  0	1   1  */
696 		SCSI_PROT_NORMAL,		/*  1	0   0  */
697 		SCSI_PROT_WRITE_INSERT,		/*  1	0   1  */
698 		SCSI_PROT_WRITE_STRIP,		/*  1	1   0  */
699 		SCSI_PROT_WRITE_PASS,		/*  1	1   1  */
700 	};
701 
702 	return ops[write << 2 | dix << 1 | dif];
703 }
704 
705 /*
706  * Returns a mask of the protection flags that are valid for a given DIX
707  * operation.
708  */
709 static unsigned int sd_prot_flag_mask(unsigned int prot_op)
710 {
711 	static const unsigned int flag_mask[] = {
712 		[SCSI_PROT_NORMAL]		= 0,
713 
714 		[SCSI_PROT_READ_STRIP]		= SCSI_PROT_TRANSFER_PI |
715 						  SCSI_PROT_GUARD_CHECK |
716 						  SCSI_PROT_REF_CHECK |
717 						  SCSI_PROT_REF_INCREMENT,
718 
719 		[SCSI_PROT_READ_INSERT]		= SCSI_PROT_REF_INCREMENT |
720 						  SCSI_PROT_IP_CHECKSUM,
721 
722 		[SCSI_PROT_READ_PASS]		= SCSI_PROT_TRANSFER_PI |
723 						  SCSI_PROT_GUARD_CHECK |
724 						  SCSI_PROT_REF_CHECK |
725 						  SCSI_PROT_REF_INCREMENT |
726 						  SCSI_PROT_IP_CHECKSUM,
727 
728 		[SCSI_PROT_WRITE_INSERT]	= SCSI_PROT_TRANSFER_PI |
729 						  SCSI_PROT_REF_INCREMENT,
730 
731 		[SCSI_PROT_WRITE_STRIP]		= SCSI_PROT_GUARD_CHECK |
732 						  SCSI_PROT_REF_CHECK |
733 						  SCSI_PROT_REF_INCREMENT |
734 						  SCSI_PROT_IP_CHECKSUM,
735 
736 		[SCSI_PROT_WRITE_PASS]		= SCSI_PROT_TRANSFER_PI |
737 						  SCSI_PROT_GUARD_CHECK |
738 						  SCSI_PROT_REF_CHECK |
739 						  SCSI_PROT_REF_INCREMENT |
740 						  SCSI_PROT_IP_CHECKSUM,
741 	};
742 
743 	return flag_mask[prot_op];
744 }
745 
746 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
747 					   unsigned int dix, unsigned int dif)
748 {
749 	struct bio *bio = scmd->request->bio;
750 	unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif);
751 	unsigned int protect = 0;
752 
753 	if (dix) {				/* DIX Type 0, 1, 2, 3 */
754 		if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
755 			scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
756 
757 		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
758 			scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
759 	}
760 
761 	if (dif != T10_PI_TYPE3_PROTECTION) {	/* DIX/DIF Type 0, 1, 2 */
762 		scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
763 
764 		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
765 			scmd->prot_flags |= SCSI_PROT_REF_CHECK;
766 	}
767 
768 	if (dif) {				/* DIX/DIF Type 1, 2, 3 */
769 		scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
770 
771 		if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
772 			protect = 3 << 5;	/* Disable target PI checking */
773 		else
774 			protect = 1 << 5;	/* Enable target PI checking */
775 	}
776 
777 	scsi_set_prot_op(scmd, prot_op);
778 	scsi_set_prot_type(scmd, dif);
779 	scmd->prot_flags &= sd_prot_flag_mask(prot_op);
780 
781 	return protect;
782 }
783 
784 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
785 {
786 	struct request_queue *q = sdkp->disk->queue;
787 	unsigned int logical_block_size = sdkp->device->sector_size;
788 	unsigned int max_blocks = 0;
789 
790 	q->limits.discard_alignment =
791 		sdkp->unmap_alignment * logical_block_size;
792 	q->limits.discard_granularity =
793 		max(sdkp->physical_block_size,
794 		    sdkp->unmap_granularity * logical_block_size);
795 	sdkp->provisioning_mode = mode;
796 
797 	switch (mode) {
798 
799 	case SD_LBP_FULL:
800 	case SD_LBP_DISABLE:
801 		blk_queue_max_discard_sectors(q, 0);
802 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
803 		return;
804 
805 	case SD_LBP_UNMAP:
806 		max_blocks = min_not_zero(sdkp->max_unmap_blocks,
807 					  (u32)SD_MAX_WS16_BLOCKS);
808 		break;
809 
810 	case SD_LBP_WS16:
811 		if (sdkp->device->unmap_limit_for_ws)
812 			max_blocks = sdkp->max_unmap_blocks;
813 		else
814 			max_blocks = sdkp->max_ws_blocks;
815 
816 		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
817 		break;
818 
819 	case SD_LBP_WS10:
820 		if (sdkp->device->unmap_limit_for_ws)
821 			max_blocks = sdkp->max_unmap_blocks;
822 		else
823 			max_blocks = sdkp->max_ws_blocks;
824 
825 		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
826 		break;
827 
828 	case SD_LBP_ZERO:
829 		max_blocks = min_not_zero(sdkp->max_ws_blocks,
830 					  (u32)SD_MAX_WS10_BLOCKS);
831 		break;
832 	}
833 
834 	blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
835 	blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
836 }
837 
838 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
839 {
840 	struct scsi_device *sdp = cmd->device;
841 	struct request *rq = cmd->request;
842 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
843 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
844 	unsigned int data_len = 24;
845 	char *buf;
846 
847 	rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
848 	if (!rq->special_vec.bv_page)
849 		return BLK_STS_RESOURCE;
850 	clear_highpage(rq->special_vec.bv_page);
851 	rq->special_vec.bv_offset = 0;
852 	rq->special_vec.bv_len = data_len;
853 	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
854 
855 	cmd->cmd_len = 10;
856 	cmd->cmnd[0] = UNMAP;
857 	cmd->cmnd[8] = 24;
858 
859 	buf = page_address(rq->special_vec.bv_page);
860 	put_unaligned_be16(6 + 16, &buf[0]);
861 	put_unaligned_be16(16, &buf[2]);
862 	put_unaligned_be64(lba, &buf[8]);
863 	put_unaligned_be32(nr_blocks, &buf[16]);
864 
865 	cmd->allowed = SD_MAX_RETRIES;
866 	cmd->transfersize = data_len;
867 	rq->timeout = SD_TIMEOUT;
868 
869 	return scsi_init_io(cmd);
870 }
871 
872 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd,
873 		bool unmap)
874 {
875 	struct scsi_device *sdp = cmd->device;
876 	struct request *rq = cmd->request;
877 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
878 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
879 	u32 data_len = sdp->sector_size;
880 
881 	rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
882 	if (!rq->special_vec.bv_page)
883 		return BLK_STS_RESOURCE;
884 	clear_highpage(rq->special_vec.bv_page);
885 	rq->special_vec.bv_offset = 0;
886 	rq->special_vec.bv_len = data_len;
887 	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
888 
889 	cmd->cmd_len = 16;
890 	cmd->cmnd[0] = WRITE_SAME_16;
891 	if (unmap)
892 		cmd->cmnd[1] = 0x8; /* UNMAP */
893 	put_unaligned_be64(lba, &cmd->cmnd[2]);
894 	put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
895 
896 	cmd->allowed = SD_MAX_RETRIES;
897 	cmd->transfersize = data_len;
898 	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
899 
900 	return scsi_init_io(cmd);
901 }
902 
903 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd,
904 		bool unmap)
905 {
906 	struct scsi_device *sdp = cmd->device;
907 	struct request *rq = cmd->request;
908 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
909 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
910 	u32 data_len = sdp->sector_size;
911 
912 	rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
913 	if (!rq->special_vec.bv_page)
914 		return BLK_STS_RESOURCE;
915 	clear_highpage(rq->special_vec.bv_page);
916 	rq->special_vec.bv_offset = 0;
917 	rq->special_vec.bv_len = data_len;
918 	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
919 
920 	cmd->cmd_len = 10;
921 	cmd->cmnd[0] = WRITE_SAME;
922 	if (unmap)
923 		cmd->cmnd[1] = 0x8; /* UNMAP */
924 	put_unaligned_be32(lba, &cmd->cmnd[2]);
925 	put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
926 
927 	cmd->allowed = SD_MAX_RETRIES;
928 	cmd->transfersize = data_len;
929 	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
930 
931 	return scsi_init_io(cmd);
932 }
933 
934 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
935 {
936 	struct request *rq = cmd->request;
937 	struct scsi_device *sdp = cmd->device;
938 	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
939 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
940 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
941 
942 	if (!(rq->cmd_flags & REQ_NOUNMAP)) {
943 		switch (sdkp->zeroing_mode) {
944 		case SD_ZERO_WS16_UNMAP:
945 			return sd_setup_write_same16_cmnd(cmd, true);
946 		case SD_ZERO_WS10_UNMAP:
947 			return sd_setup_write_same10_cmnd(cmd, true);
948 		}
949 	}
950 
951 	if (sdp->no_write_same)
952 		return BLK_STS_TARGET;
953 
954 	if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff)
955 		return sd_setup_write_same16_cmnd(cmd, false);
956 
957 	return sd_setup_write_same10_cmnd(cmd, false);
958 }
959 
960 static void sd_config_write_same(struct scsi_disk *sdkp)
961 {
962 	struct request_queue *q = sdkp->disk->queue;
963 	unsigned int logical_block_size = sdkp->device->sector_size;
964 
965 	if (sdkp->device->no_write_same) {
966 		sdkp->max_ws_blocks = 0;
967 		goto out;
968 	}
969 
970 	/* Some devices can not handle block counts above 0xffff despite
971 	 * supporting WRITE SAME(16). Consequently we default to 64k
972 	 * blocks per I/O unless the device explicitly advertises a
973 	 * bigger limit.
974 	 */
975 	if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
976 		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
977 						   (u32)SD_MAX_WS16_BLOCKS);
978 	else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
979 		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
980 						   (u32)SD_MAX_WS10_BLOCKS);
981 	else {
982 		sdkp->device->no_write_same = 1;
983 		sdkp->max_ws_blocks = 0;
984 	}
985 
986 	if (sdkp->lbprz && sdkp->lbpws)
987 		sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
988 	else if (sdkp->lbprz && sdkp->lbpws10)
989 		sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
990 	else if (sdkp->max_ws_blocks)
991 		sdkp->zeroing_mode = SD_ZERO_WS;
992 	else
993 		sdkp->zeroing_mode = SD_ZERO_WRITE;
994 
995 	if (sdkp->max_ws_blocks &&
996 	    sdkp->physical_block_size > logical_block_size) {
997 		/*
998 		 * Reporting a maximum number of blocks that is not aligned
999 		 * on the device physical size would cause a large write same
1000 		 * request to be split into physically unaligned chunks by
1001 		 * __blkdev_issue_write_zeroes() and __blkdev_issue_write_same()
1002 		 * even if the caller of these functions took care to align the
1003 		 * large request. So make sure the maximum reported is aligned
1004 		 * to the device physical block size. This is only an optional
1005 		 * optimization for regular disks, but this is mandatory to
1006 		 * avoid failure of large write same requests directed at
1007 		 * sequential write required zones of host-managed ZBC disks.
1008 		 */
1009 		sdkp->max_ws_blocks =
1010 			round_down(sdkp->max_ws_blocks,
1011 				   bytes_to_logical(sdkp->device,
1012 						    sdkp->physical_block_size));
1013 	}
1014 
1015 out:
1016 	blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks *
1017 					 (logical_block_size >> 9));
1018 	blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks *
1019 					 (logical_block_size >> 9));
1020 }
1021 
1022 /**
1023  * sd_setup_write_same_cmnd - write the same data to multiple blocks
1024  * @cmd: command to prepare
1025  *
1026  * Will set up either WRITE SAME(10) or WRITE SAME(16) depending on
1027  * the preference indicated by the target device.
1028  **/
1029 static blk_status_t sd_setup_write_same_cmnd(struct scsi_cmnd *cmd)
1030 {
1031 	struct request *rq = cmd->request;
1032 	struct scsi_device *sdp = cmd->device;
1033 	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
1034 	struct bio *bio = rq->bio;
1035 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1036 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1037 	blk_status_t ret;
1038 
1039 	if (sdkp->device->no_write_same)
1040 		return BLK_STS_TARGET;
1041 
1042 	BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size);
1043 
1044 	rq->timeout = SD_WRITE_SAME_TIMEOUT;
1045 
1046 	if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) {
1047 		cmd->cmd_len = 16;
1048 		cmd->cmnd[0] = WRITE_SAME_16;
1049 		put_unaligned_be64(lba, &cmd->cmnd[2]);
1050 		put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1051 	} else {
1052 		cmd->cmd_len = 10;
1053 		cmd->cmnd[0] = WRITE_SAME;
1054 		put_unaligned_be32(lba, &cmd->cmnd[2]);
1055 		put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1056 	}
1057 
1058 	cmd->transfersize = sdp->sector_size;
1059 	cmd->allowed = SD_MAX_RETRIES;
1060 
1061 	/*
1062 	 * For WRITE SAME the data transferred via the DATA OUT buffer is
1063 	 * different from the amount of data actually written to the target.
1064 	 *
1065 	 * We set up __data_len to the amount of data transferred via the
1066 	 * DATA OUT buffer so that blk_rq_map_sg sets up the proper S/G list
1067 	 * to transfer a single sector of data first, but then reset it to
1068 	 * the amount of data to be written right after so that the I/O path
1069 	 * knows how much to actually write.
1070 	 */
1071 	rq->__data_len = sdp->sector_size;
1072 	ret = scsi_init_io(cmd);
1073 	rq->__data_len = blk_rq_bytes(rq);
1074 
1075 	return ret;
1076 }
1077 
1078 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
1079 {
1080 	struct request *rq = cmd->request;
1081 
1082 	/* flush requests don't perform I/O, zero the S/G table */
1083 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1084 
1085 	cmd->cmnd[0] = SYNCHRONIZE_CACHE;
1086 	cmd->cmd_len = 10;
1087 	cmd->transfersize = 0;
1088 	cmd->allowed = SD_MAX_RETRIES;
1089 
1090 	rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
1091 	return BLK_STS_OK;
1092 }
1093 
1094 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write,
1095 				       sector_t lba, unsigned int nr_blocks,
1096 				       unsigned char flags)
1097 {
1098 	cmd->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC);
1099 	if (unlikely(cmd->cmnd == NULL))
1100 		return BLK_STS_RESOURCE;
1101 
1102 	cmd->cmd_len = SD_EXT_CDB_SIZE;
1103 	memset(cmd->cmnd, 0, cmd->cmd_len);
1104 
1105 	cmd->cmnd[0]  = VARIABLE_LENGTH_CMD;
1106 	cmd->cmnd[7]  = 0x18; /* Additional CDB len */
1107 	cmd->cmnd[9]  = write ? WRITE_32 : READ_32;
1108 	cmd->cmnd[10] = flags;
1109 	put_unaligned_be64(lba, &cmd->cmnd[12]);
1110 	put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */
1111 	put_unaligned_be32(nr_blocks, &cmd->cmnd[28]);
1112 
1113 	return BLK_STS_OK;
1114 }
1115 
1116 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write,
1117 				       sector_t lba, unsigned int nr_blocks,
1118 				       unsigned char flags)
1119 {
1120 	cmd->cmd_len  = 16;
1121 	cmd->cmnd[0]  = write ? WRITE_16 : READ_16;
1122 	cmd->cmnd[1]  = flags;
1123 	cmd->cmnd[14] = 0;
1124 	cmd->cmnd[15] = 0;
1125 	put_unaligned_be64(lba, &cmd->cmnd[2]);
1126 	put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1127 
1128 	return BLK_STS_OK;
1129 }
1130 
1131 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write,
1132 				       sector_t lba, unsigned int nr_blocks,
1133 				       unsigned char flags)
1134 {
1135 	cmd->cmd_len = 10;
1136 	cmd->cmnd[0] = write ? WRITE_10 : READ_10;
1137 	cmd->cmnd[1] = flags;
1138 	cmd->cmnd[6] = 0;
1139 	cmd->cmnd[9] = 0;
1140 	put_unaligned_be32(lba, &cmd->cmnd[2]);
1141 	put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1142 
1143 	return BLK_STS_OK;
1144 }
1145 
1146 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write,
1147 				      sector_t lba, unsigned int nr_blocks,
1148 				      unsigned char flags)
1149 {
1150 	/* Avoid that 0 blocks gets translated into 256 blocks. */
1151 	if (WARN_ON_ONCE(nr_blocks == 0))
1152 		return BLK_STS_IOERR;
1153 
1154 	if (unlikely(flags & 0x8)) {
1155 		/*
1156 		 * This happens only if this drive failed 10byte rw
1157 		 * command with ILLEGAL_REQUEST during operation and
1158 		 * thus turned off use_10_for_rw.
1159 		 */
1160 		scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n");
1161 		return BLK_STS_IOERR;
1162 	}
1163 
1164 	cmd->cmd_len = 6;
1165 	cmd->cmnd[0] = write ? WRITE_6 : READ_6;
1166 	cmd->cmnd[1] = (lba >> 16) & 0x1f;
1167 	cmd->cmnd[2] = (lba >> 8) & 0xff;
1168 	cmd->cmnd[3] = lba & 0xff;
1169 	cmd->cmnd[4] = nr_blocks;
1170 	cmd->cmnd[5] = 0;
1171 
1172 	return BLK_STS_OK;
1173 }
1174 
1175 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd)
1176 {
1177 	struct request *rq = cmd->request;
1178 	struct scsi_device *sdp = cmd->device;
1179 	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
1180 	sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1181 	sector_t threshold;
1182 	unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1183 	unsigned int mask = logical_to_sectors(sdp, 1) - 1;
1184 	bool write = rq_data_dir(rq) == WRITE;
1185 	unsigned char protect, fua;
1186 	blk_status_t ret;
1187 	unsigned int dif;
1188 	bool dix;
1189 
1190 	ret = scsi_init_io(cmd);
1191 	if (ret != BLK_STS_OK)
1192 		return ret;
1193 
1194 	if (!scsi_device_online(sdp) || sdp->changed) {
1195 		scmd_printk(KERN_ERR, cmd, "device offline or changed\n");
1196 		return BLK_STS_IOERR;
1197 	}
1198 
1199 	if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->rq_disk)) {
1200 		scmd_printk(KERN_ERR, cmd, "access beyond end of device\n");
1201 		return BLK_STS_IOERR;
1202 	}
1203 
1204 	if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) {
1205 		scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n");
1206 		return BLK_STS_IOERR;
1207 	}
1208 
1209 	/*
1210 	 * Some SD card readers can't handle accesses which touch the
1211 	 * last one or two logical blocks. Split accesses as needed.
1212 	 */
1213 	threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS;
1214 
1215 	if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) {
1216 		if (lba < threshold) {
1217 			/* Access up to the threshold but not beyond */
1218 			nr_blocks = threshold - lba;
1219 		} else {
1220 			/* Access only a single logical block */
1221 			nr_blocks = 1;
1222 		}
1223 	}
1224 
1225 	if (req_op(rq) == REQ_OP_ZONE_APPEND) {
1226 		ret = sd_zbc_prepare_zone_append(cmd, &lba, nr_blocks);
1227 		if (ret)
1228 			return ret;
1229 	}
1230 
1231 	fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0;
1232 	dix = scsi_prot_sg_count(cmd);
1233 	dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type);
1234 
1235 	if (dif || dix)
1236 		protect = sd_setup_protect_cmnd(cmd, dix, dif);
1237 	else
1238 		protect = 0;
1239 
1240 	if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1241 		ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks,
1242 					 protect | fua);
1243 	} else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) {
1244 		ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks,
1245 					 protect | fua);
1246 	} else if ((nr_blocks > 0xff) || (lba > 0x1fffff) ||
1247 		   sdp->use_10_for_rw || protect) {
1248 		ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks,
1249 					 protect | fua);
1250 	} else {
1251 		ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks,
1252 					protect | fua);
1253 	}
1254 
1255 	if (unlikely(ret != BLK_STS_OK))
1256 		return ret;
1257 
1258 	/*
1259 	 * We shouldn't disconnect in the middle of a sector, so with a dumb
1260 	 * host adapter, it's safe to assume that we can at least transfer
1261 	 * this many bytes between each connect / disconnect.
1262 	 */
1263 	cmd->transfersize = sdp->sector_size;
1264 	cmd->underflow = nr_blocks << 9;
1265 	cmd->allowed = SD_MAX_RETRIES;
1266 	cmd->sdb.length = nr_blocks * sdp->sector_size;
1267 
1268 	SCSI_LOG_HLQUEUE(1,
1269 			 scmd_printk(KERN_INFO, cmd,
1270 				     "%s: block=%llu, count=%d\n", __func__,
1271 				     (unsigned long long)blk_rq_pos(rq),
1272 				     blk_rq_sectors(rq)));
1273 	SCSI_LOG_HLQUEUE(2,
1274 			 scmd_printk(KERN_INFO, cmd,
1275 				     "%s %d/%u 512 byte blocks.\n",
1276 				     write ? "writing" : "reading", nr_blocks,
1277 				     blk_rq_sectors(rq)));
1278 
1279 	/*
1280 	 * This indicates that the command is ready from our end to be
1281 	 * queued.
1282 	 */
1283 	return BLK_STS_OK;
1284 }
1285 
1286 static blk_status_t sd_init_command(struct scsi_cmnd *cmd)
1287 {
1288 	struct request *rq = cmd->request;
1289 
1290 	switch (req_op(rq)) {
1291 	case REQ_OP_DISCARD:
1292 		switch (scsi_disk(rq->rq_disk)->provisioning_mode) {
1293 		case SD_LBP_UNMAP:
1294 			return sd_setup_unmap_cmnd(cmd);
1295 		case SD_LBP_WS16:
1296 			return sd_setup_write_same16_cmnd(cmd, true);
1297 		case SD_LBP_WS10:
1298 			return sd_setup_write_same10_cmnd(cmd, true);
1299 		case SD_LBP_ZERO:
1300 			return sd_setup_write_same10_cmnd(cmd, false);
1301 		default:
1302 			return BLK_STS_TARGET;
1303 		}
1304 	case REQ_OP_WRITE_ZEROES:
1305 		return sd_setup_write_zeroes_cmnd(cmd);
1306 	case REQ_OP_WRITE_SAME:
1307 		return sd_setup_write_same_cmnd(cmd);
1308 	case REQ_OP_FLUSH:
1309 		return sd_setup_flush_cmnd(cmd);
1310 	case REQ_OP_READ:
1311 	case REQ_OP_WRITE:
1312 	case REQ_OP_ZONE_APPEND:
1313 		return sd_setup_read_write_cmnd(cmd);
1314 	case REQ_OP_ZONE_RESET:
1315 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1316 						   false);
1317 	case REQ_OP_ZONE_RESET_ALL:
1318 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1319 						   true);
1320 	case REQ_OP_ZONE_OPEN:
1321 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false);
1322 	case REQ_OP_ZONE_CLOSE:
1323 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false);
1324 	case REQ_OP_ZONE_FINISH:
1325 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false);
1326 	default:
1327 		WARN_ON_ONCE(1);
1328 		return BLK_STS_NOTSUPP;
1329 	}
1330 }
1331 
1332 static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1333 {
1334 	struct request *rq = SCpnt->request;
1335 	u8 *cmnd;
1336 
1337 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1338 		mempool_free(rq->special_vec.bv_page, sd_page_pool);
1339 
1340 	if (SCpnt->cmnd != scsi_req(rq)->cmd) {
1341 		cmnd = SCpnt->cmnd;
1342 		SCpnt->cmnd = NULL;
1343 		SCpnt->cmd_len = 0;
1344 		mempool_free(cmnd, sd_cdb_pool);
1345 	}
1346 }
1347 
1348 /**
1349  *	sd_open - open a scsi disk device
1350  *	@bdev: Block device of the scsi disk to open
1351  *	@mode: FMODE_* mask
1352  *
1353  *	Returns 0 if successful. Returns a negated errno value in case
1354  *	of error.
1355  *
1356  *	Note: This can be called from a user context (e.g. fsck(1) )
1357  *	or from within the kernel (e.g. as a result of a mount(1) ).
1358  *	In the latter case @inode and @filp carry an abridged amount
1359  *	of information as noted above.
1360  *
1361  *	Locking: called with bdev->bd_mutex held.
1362  **/
1363 static int sd_open(struct block_device *bdev, fmode_t mode)
1364 {
1365 	struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk);
1366 	struct scsi_device *sdev;
1367 	int retval;
1368 
1369 	if (!sdkp)
1370 		return -ENXIO;
1371 
1372 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1373 
1374 	sdev = sdkp->device;
1375 
1376 	/*
1377 	 * If the device is in error recovery, wait until it is done.
1378 	 * If the device is offline, then disallow any access to it.
1379 	 */
1380 	retval = -ENXIO;
1381 	if (!scsi_block_when_processing_errors(sdev))
1382 		goto error_out;
1383 
1384 	if (sdev->removable || sdkp->write_prot)
1385 		check_disk_change(bdev);
1386 
1387 	/*
1388 	 * If the drive is empty, just let the open fail.
1389 	 */
1390 	retval = -ENOMEDIUM;
1391 	if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY))
1392 		goto error_out;
1393 
1394 	/*
1395 	 * If the device has the write protect tab set, have the open fail
1396 	 * if the user expects to be able to write to the thing.
1397 	 */
1398 	retval = -EROFS;
1399 	if (sdkp->write_prot && (mode & FMODE_WRITE))
1400 		goto error_out;
1401 
1402 	/*
1403 	 * It is possible that the disk changing stuff resulted in
1404 	 * the device being taken offline.  If this is the case,
1405 	 * report this to the user, and don't pretend that the
1406 	 * open actually succeeded.
1407 	 */
1408 	retval = -ENXIO;
1409 	if (!scsi_device_online(sdev))
1410 		goto error_out;
1411 
1412 	if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1413 		if (scsi_block_when_processing_errors(sdev))
1414 			scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1415 	}
1416 
1417 	return 0;
1418 
1419 error_out:
1420 	scsi_disk_put(sdkp);
1421 	return retval;
1422 }
1423 
1424 /**
1425  *	sd_release - invoked when the (last) close(2) is called on this
1426  *	scsi disk.
1427  *	@disk: disk to release
1428  *	@mode: FMODE_* mask
1429  *
1430  *	Returns 0.
1431  *
1432  *	Note: may block (uninterruptible) if error recovery is underway
1433  *	on this disk.
1434  *
1435  *	Locking: called with bdev->bd_mutex held.
1436  **/
1437 static void sd_release(struct gendisk *disk, fmode_t mode)
1438 {
1439 	struct scsi_disk *sdkp = scsi_disk(disk);
1440 	struct scsi_device *sdev = sdkp->device;
1441 
1442 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1443 
1444 	if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1445 		if (scsi_block_when_processing_errors(sdev))
1446 			scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1447 	}
1448 
1449 	scsi_disk_put(sdkp);
1450 }
1451 
1452 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1453 {
1454 	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1455 	struct scsi_device *sdp = sdkp->device;
1456 	struct Scsi_Host *host = sdp->host;
1457 	sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1458 	int diskinfo[4];
1459 
1460 	/* default to most commonly used values */
1461 	diskinfo[0] = 0x40;	/* 1 << 6 */
1462 	diskinfo[1] = 0x20;	/* 1 << 5 */
1463 	diskinfo[2] = capacity >> 11;
1464 
1465 	/* override with calculated, extended default, or driver values */
1466 	if (host->hostt->bios_param)
1467 		host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1468 	else
1469 		scsicam_bios_param(bdev, capacity, diskinfo);
1470 
1471 	geo->heads = diskinfo[0];
1472 	geo->sectors = diskinfo[1];
1473 	geo->cylinders = diskinfo[2];
1474 	return 0;
1475 }
1476 
1477 /**
1478  *	sd_ioctl - process an ioctl
1479  *	@bdev: target block device
1480  *	@mode: FMODE_* mask
1481  *	@cmd: ioctl command number
1482  *	@arg: this is third argument given to ioctl(2) system call.
1483  *	Often contains a pointer.
1484  *
1485  *	Returns 0 if successful (some ioctls return positive numbers on
1486  *	success as well). Returns a negated errno value in case of error.
1487  *
1488  *	Note: most ioctls are forward onto the block subsystem or further
1489  *	down in the scsi subsystem.
1490  **/
1491 static int sd_ioctl_common(struct block_device *bdev, fmode_t mode,
1492 			   unsigned int cmd, void __user *p)
1493 {
1494 	struct gendisk *disk = bdev->bd_disk;
1495 	struct scsi_disk *sdkp = scsi_disk(disk);
1496 	struct scsi_device *sdp = sdkp->device;
1497 	int error;
1498 
1499 	SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1500 				    "cmd=0x%x\n", disk->disk_name, cmd));
1501 
1502 	error = scsi_verify_blk_ioctl(bdev, cmd);
1503 	if (error < 0)
1504 		return error;
1505 
1506 	/*
1507 	 * If we are in the middle of error recovery, don't let anyone
1508 	 * else try and use this device.  Also, if error recovery fails, it
1509 	 * may try and take the device offline, in which case all further
1510 	 * access to the device is prohibited.
1511 	 */
1512 	error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1513 			(mode & FMODE_NDELAY) != 0);
1514 	if (error)
1515 		goto out;
1516 
1517 	if (is_sed_ioctl(cmd))
1518 		return sed_ioctl(sdkp->opal_dev, cmd, p);
1519 
1520 	/*
1521 	 * Send SCSI addressing ioctls directly to mid level, send other
1522 	 * ioctls to block level and then onto mid level if they can't be
1523 	 * resolved.
1524 	 */
1525 	switch (cmd) {
1526 		case SCSI_IOCTL_GET_IDLUN:
1527 		case SCSI_IOCTL_GET_BUS_NUMBER:
1528 			error = scsi_ioctl(sdp, cmd, p);
1529 			break;
1530 		default:
1531 			error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p);
1532 			break;
1533 	}
1534 out:
1535 	return error;
1536 }
1537 
1538 static void set_media_not_present(struct scsi_disk *sdkp)
1539 {
1540 	if (sdkp->media_present)
1541 		sdkp->device->changed = 1;
1542 
1543 	if (sdkp->device->removable) {
1544 		sdkp->media_present = 0;
1545 		sdkp->capacity = 0;
1546 	}
1547 }
1548 
1549 static int media_not_present(struct scsi_disk *sdkp,
1550 			     struct scsi_sense_hdr *sshdr)
1551 {
1552 	if (!scsi_sense_valid(sshdr))
1553 		return 0;
1554 
1555 	/* not invoked for commands that could return deferred errors */
1556 	switch (sshdr->sense_key) {
1557 	case UNIT_ATTENTION:
1558 	case NOT_READY:
1559 		/* medium not present */
1560 		if (sshdr->asc == 0x3A) {
1561 			set_media_not_present(sdkp);
1562 			return 1;
1563 		}
1564 	}
1565 	return 0;
1566 }
1567 
1568 /**
1569  *	sd_check_events - check media events
1570  *	@disk: kernel device descriptor
1571  *	@clearing: disk events currently being cleared
1572  *
1573  *	Returns mask of DISK_EVENT_*.
1574  *
1575  *	Note: this function is invoked from the block subsystem.
1576  **/
1577 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1578 {
1579 	struct scsi_disk *sdkp = scsi_disk_get(disk);
1580 	struct scsi_device *sdp;
1581 	int retval;
1582 
1583 	if (!sdkp)
1584 		return 0;
1585 
1586 	sdp = sdkp->device;
1587 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1588 
1589 	/*
1590 	 * If the device is offline, don't send any commands - just pretend as
1591 	 * if the command failed.  If the device ever comes back online, we
1592 	 * can deal with it then.  It is only because of unrecoverable errors
1593 	 * that we would ever take a device offline in the first place.
1594 	 */
1595 	if (!scsi_device_online(sdp)) {
1596 		set_media_not_present(sdkp);
1597 		goto out;
1598 	}
1599 
1600 	/*
1601 	 * Using TEST_UNIT_READY enables differentiation between drive with
1602 	 * no cartridge loaded - NOT READY, drive with changed cartridge -
1603 	 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1604 	 *
1605 	 * Drives that auto spin down. eg iomega jaz 1G, will be started
1606 	 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1607 	 * sd_revalidate() is called.
1608 	 */
1609 	if (scsi_block_when_processing_errors(sdp)) {
1610 		struct scsi_sense_hdr sshdr = { 0, };
1611 
1612 		retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, SD_MAX_RETRIES,
1613 					      &sshdr);
1614 
1615 		/* failed to execute TUR, assume media not present */
1616 		if (host_byte(retval)) {
1617 			set_media_not_present(sdkp);
1618 			goto out;
1619 		}
1620 
1621 		if (media_not_present(sdkp, &sshdr))
1622 			goto out;
1623 	}
1624 
1625 	/*
1626 	 * For removable scsi disk we have to recognise the presence
1627 	 * of a disk in the drive.
1628 	 */
1629 	if (!sdkp->media_present)
1630 		sdp->changed = 1;
1631 	sdkp->media_present = 1;
1632 out:
1633 	/*
1634 	 * sdp->changed is set under the following conditions:
1635 	 *
1636 	 *	Medium present state has changed in either direction.
1637 	 *	Device has indicated UNIT_ATTENTION.
1638 	 */
1639 	retval = sdp->changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1640 	sdp->changed = 0;
1641 	scsi_disk_put(sdkp);
1642 	return retval;
1643 }
1644 
1645 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
1646 {
1647 	int retries, res;
1648 	struct scsi_device *sdp = sdkp->device;
1649 	const int timeout = sdp->request_queue->rq_timeout
1650 		* SD_FLUSH_TIMEOUT_MULTIPLIER;
1651 	struct scsi_sense_hdr my_sshdr;
1652 
1653 	if (!scsi_device_online(sdp))
1654 		return -ENODEV;
1655 
1656 	/* caller might not be interested in sense, but we need it */
1657 	if (!sshdr)
1658 		sshdr = &my_sshdr;
1659 
1660 	for (retries = 3; retries > 0; --retries) {
1661 		unsigned char cmd[10] = { 0 };
1662 
1663 		cmd[0] = SYNCHRONIZE_CACHE;
1664 		/*
1665 		 * Leave the rest of the command zero to indicate
1666 		 * flush everything.
1667 		 */
1668 		res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr,
1669 				timeout, SD_MAX_RETRIES, 0, RQF_PM, NULL);
1670 		if (res == 0)
1671 			break;
1672 	}
1673 
1674 	if (res) {
1675 		sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1676 
1677 		if (driver_byte(res) == DRIVER_SENSE)
1678 			sd_print_sense_hdr(sdkp, sshdr);
1679 
1680 		/* we need to evaluate the error return  */
1681 		if (scsi_sense_valid(sshdr) &&
1682 			(sshdr->asc == 0x3a ||	/* medium not present */
1683 			 sshdr->asc == 0x20 ||	/* invalid command */
1684 			 (sshdr->asc == 0x74 && sshdr->ascq == 0x71)))	/* drive is password locked */
1685 				/* this is no error here */
1686 				return 0;
1687 
1688 		switch (host_byte(res)) {
1689 		/* ignore errors due to racing a disconnection */
1690 		case DID_BAD_TARGET:
1691 		case DID_NO_CONNECT:
1692 			return 0;
1693 		/* signal the upper layer it might try again */
1694 		case DID_BUS_BUSY:
1695 		case DID_IMM_RETRY:
1696 		case DID_REQUEUE:
1697 		case DID_SOFT_ERROR:
1698 			return -EBUSY;
1699 		default:
1700 			return -EIO;
1701 		}
1702 	}
1703 	return 0;
1704 }
1705 
1706 static void sd_rescan(struct device *dev)
1707 {
1708 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
1709 
1710 	revalidate_disk(sdkp->disk);
1711 }
1712 
1713 static int sd_ioctl(struct block_device *bdev, fmode_t mode,
1714 		    unsigned int cmd, unsigned long arg)
1715 {
1716 	void __user *p = (void __user *)arg;
1717 	int ret;
1718 
1719 	ret = sd_ioctl_common(bdev, mode, cmd, p);
1720 	if (ret != -ENOTTY)
1721 		return ret;
1722 
1723 	return scsi_ioctl(scsi_disk(bdev->bd_disk)->device, cmd, p);
1724 }
1725 
1726 #ifdef CONFIG_COMPAT
1727 static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode,
1728 			   unsigned int cmd, unsigned long arg)
1729 {
1730 	void __user *p = compat_ptr(arg);
1731 	int ret;
1732 
1733 	ret = sd_ioctl_common(bdev, mode, cmd, p);
1734 	if (ret != -ENOTTY)
1735 		return ret;
1736 
1737 	return scsi_compat_ioctl(scsi_disk(bdev->bd_disk)->device, cmd, p);
1738 }
1739 #endif
1740 
1741 static char sd_pr_type(enum pr_type type)
1742 {
1743 	switch (type) {
1744 	case PR_WRITE_EXCLUSIVE:
1745 		return 0x01;
1746 	case PR_EXCLUSIVE_ACCESS:
1747 		return 0x03;
1748 	case PR_WRITE_EXCLUSIVE_REG_ONLY:
1749 		return 0x05;
1750 	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1751 		return 0x06;
1752 	case PR_WRITE_EXCLUSIVE_ALL_REGS:
1753 		return 0x07;
1754 	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1755 		return 0x08;
1756 	default:
1757 		return 0;
1758 	}
1759 };
1760 
1761 static int sd_pr_command(struct block_device *bdev, u8 sa,
1762 		u64 key, u64 sa_key, u8 type, u8 flags)
1763 {
1764 	struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
1765 	struct scsi_sense_hdr sshdr;
1766 	int result;
1767 	u8 cmd[16] = { 0, };
1768 	u8 data[24] = { 0, };
1769 
1770 	cmd[0] = PERSISTENT_RESERVE_OUT;
1771 	cmd[1] = sa;
1772 	cmd[2] = type;
1773 	put_unaligned_be32(sizeof(data), &cmd[5]);
1774 
1775 	put_unaligned_be64(key, &data[0]);
1776 	put_unaligned_be64(sa_key, &data[8]);
1777 	data[20] = flags;
1778 
1779 	result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data),
1780 			&sshdr, SD_TIMEOUT, SD_MAX_RETRIES, NULL);
1781 
1782 	if (driver_byte(result) == DRIVER_SENSE &&
1783 	    scsi_sense_valid(&sshdr)) {
1784 		sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1785 		scsi_print_sense_hdr(sdev, NULL, &sshdr);
1786 	}
1787 
1788 	return result;
1789 }
1790 
1791 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1792 		u32 flags)
1793 {
1794 	if (flags & ~PR_FL_IGNORE_KEY)
1795 		return -EOPNOTSUPP;
1796 	return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1797 			old_key, new_key, 0,
1798 			(1 << 0) /* APTPL */);
1799 }
1800 
1801 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1802 		u32 flags)
1803 {
1804 	if (flags)
1805 		return -EOPNOTSUPP;
1806 	return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0);
1807 }
1808 
1809 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1810 {
1811 	return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0);
1812 }
1813 
1814 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1815 		enum pr_type type, bool abort)
1816 {
1817 	return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
1818 			     sd_pr_type(type), 0);
1819 }
1820 
1821 static int sd_pr_clear(struct block_device *bdev, u64 key)
1822 {
1823 	return sd_pr_command(bdev, 0x03, key, 0, 0, 0);
1824 }
1825 
1826 static const struct pr_ops sd_pr_ops = {
1827 	.pr_register	= sd_pr_register,
1828 	.pr_reserve	= sd_pr_reserve,
1829 	.pr_release	= sd_pr_release,
1830 	.pr_preempt	= sd_pr_preempt,
1831 	.pr_clear	= sd_pr_clear,
1832 };
1833 
1834 static const struct block_device_operations sd_fops = {
1835 	.owner			= THIS_MODULE,
1836 	.open			= sd_open,
1837 	.release		= sd_release,
1838 	.ioctl			= sd_ioctl,
1839 	.getgeo			= sd_getgeo,
1840 #ifdef CONFIG_COMPAT
1841 	.compat_ioctl		= sd_compat_ioctl,
1842 #endif
1843 	.check_events		= sd_check_events,
1844 	.revalidate_disk	= sd_revalidate_disk,
1845 	.unlock_native_capacity	= sd_unlock_native_capacity,
1846 	.report_zones		= sd_zbc_report_zones,
1847 	.pr_ops			= &sd_pr_ops,
1848 };
1849 
1850 /**
1851  *	sd_eh_reset - reset error handling callback
1852  *	@scmd:		sd-issued command that has failed
1853  *
1854  *	This function is called by the SCSI midlayer before starting
1855  *	SCSI EH. When counting medium access failures we have to be
1856  *	careful to register it only only once per device and SCSI EH run;
1857  *	there might be several timed out commands which will cause the
1858  *	'max_medium_access_timeouts' counter to trigger after the first
1859  *	SCSI EH run already and set the device to offline.
1860  *	So this function resets the internal counter before starting SCSI EH.
1861  **/
1862 static void sd_eh_reset(struct scsi_cmnd *scmd)
1863 {
1864 	struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1865 
1866 	/* New SCSI EH run, reset gate variable */
1867 	sdkp->ignore_medium_access_errors = false;
1868 }
1869 
1870 /**
1871  *	sd_eh_action - error handling callback
1872  *	@scmd:		sd-issued command that has failed
1873  *	@eh_disp:	The recovery disposition suggested by the midlayer
1874  *
1875  *	This function is called by the SCSI midlayer upon completion of an
1876  *	error test command (currently TEST UNIT READY). The result of sending
1877  *	the eh command is passed in eh_disp.  We're looking for devices that
1878  *	fail medium access commands but are OK with non access commands like
1879  *	test unit ready (so wrongly see the device as having a successful
1880  *	recovery)
1881  **/
1882 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
1883 {
1884 	struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1885 	struct scsi_device *sdev = scmd->device;
1886 
1887 	if (!scsi_device_online(sdev) ||
1888 	    !scsi_medium_access_command(scmd) ||
1889 	    host_byte(scmd->result) != DID_TIME_OUT ||
1890 	    eh_disp != SUCCESS)
1891 		return eh_disp;
1892 
1893 	/*
1894 	 * The device has timed out executing a medium access command.
1895 	 * However, the TEST UNIT READY command sent during error
1896 	 * handling completed successfully. Either the device is in the
1897 	 * process of recovering or has it suffered an internal failure
1898 	 * that prevents access to the storage medium.
1899 	 */
1900 	if (!sdkp->ignore_medium_access_errors) {
1901 		sdkp->medium_access_timed_out++;
1902 		sdkp->ignore_medium_access_errors = true;
1903 	}
1904 
1905 	/*
1906 	 * If the device keeps failing read/write commands but TEST UNIT
1907 	 * READY always completes successfully we assume that medium
1908 	 * access is no longer possible and take the device offline.
1909 	 */
1910 	if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
1911 		scmd_printk(KERN_ERR, scmd,
1912 			    "Medium access timeout failure. Offlining disk!\n");
1913 		mutex_lock(&sdev->state_mutex);
1914 		scsi_device_set_state(sdev, SDEV_OFFLINE);
1915 		mutex_unlock(&sdev->state_mutex);
1916 
1917 		return SUCCESS;
1918 	}
1919 
1920 	return eh_disp;
1921 }
1922 
1923 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
1924 {
1925 	struct request *req = scmd->request;
1926 	struct scsi_device *sdev = scmd->device;
1927 	unsigned int transferred, good_bytes;
1928 	u64 start_lba, end_lba, bad_lba;
1929 
1930 	/*
1931 	 * Some commands have a payload smaller than the device logical
1932 	 * block size (e.g. INQUIRY on a 4K disk).
1933 	 */
1934 	if (scsi_bufflen(scmd) <= sdev->sector_size)
1935 		return 0;
1936 
1937 	/* Check if we have a 'bad_lba' information */
1938 	if (!scsi_get_sense_info_fld(scmd->sense_buffer,
1939 				     SCSI_SENSE_BUFFERSIZE,
1940 				     &bad_lba))
1941 		return 0;
1942 
1943 	/*
1944 	 * If the bad lba was reported incorrectly, we have no idea where
1945 	 * the error is.
1946 	 */
1947 	start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
1948 	end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
1949 	if (bad_lba < start_lba || bad_lba >= end_lba)
1950 		return 0;
1951 
1952 	/*
1953 	 * resid is optional but mostly filled in.  When it's unused,
1954 	 * its value is zero, so we assume the whole buffer transferred
1955 	 */
1956 	transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
1957 
1958 	/* This computation should always be done in terms of the
1959 	 * resolution of the device's medium.
1960 	 */
1961 	good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
1962 
1963 	return min(good_bytes, transferred);
1964 }
1965 
1966 /**
1967  *	sd_done - bottom half handler: called when the lower level
1968  *	driver has completed (successfully or otherwise) a scsi command.
1969  *	@SCpnt: mid-level's per command structure.
1970  *
1971  *	Note: potentially run from within an ISR. Must not block.
1972  **/
1973 static int sd_done(struct scsi_cmnd *SCpnt)
1974 {
1975 	int result = SCpnt->result;
1976 	unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
1977 	unsigned int sector_size = SCpnt->device->sector_size;
1978 	unsigned int resid;
1979 	struct scsi_sense_hdr sshdr;
1980 	struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk);
1981 	struct request *req = SCpnt->request;
1982 	int sense_valid = 0;
1983 	int sense_deferred = 0;
1984 
1985 	switch (req_op(req)) {
1986 	case REQ_OP_DISCARD:
1987 	case REQ_OP_WRITE_ZEROES:
1988 	case REQ_OP_WRITE_SAME:
1989 	case REQ_OP_ZONE_RESET:
1990 	case REQ_OP_ZONE_RESET_ALL:
1991 	case REQ_OP_ZONE_OPEN:
1992 	case REQ_OP_ZONE_CLOSE:
1993 	case REQ_OP_ZONE_FINISH:
1994 		if (!result) {
1995 			good_bytes = blk_rq_bytes(req);
1996 			scsi_set_resid(SCpnt, 0);
1997 		} else {
1998 			good_bytes = 0;
1999 			scsi_set_resid(SCpnt, blk_rq_bytes(req));
2000 		}
2001 		break;
2002 	default:
2003 		/*
2004 		 * In case of bogus fw or device, we could end up having
2005 		 * an unaligned partial completion. Check this here and force
2006 		 * alignment.
2007 		 */
2008 		resid = scsi_get_resid(SCpnt);
2009 		if (resid & (sector_size - 1)) {
2010 			sd_printk(KERN_INFO, sdkp,
2011 				"Unaligned partial completion (resid=%u, sector_sz=%u)\n",
2012 				resid, sector_size);
2013 			scsi_print_command(SCpnt);
2014 			resid = min(scsi_bufflen(SCpnt),
2015 				    round_up(resid, sector_size));
2016 			scsi_set_resid(SCpnt, resid);
2017 		}
2018 	}
2019 
2020 	if (result) {
2021 		sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
2022 		if (sense_valid)
2023 			sense_deferred = scsi_sense_is_deferred(&sshdr);
2024 	}
2025 	sdkp->medium_access_timed_out = 0;
2026 
2027 	if (driver_byte(result) != DRIVER_SENSE &&
2028 	    (!sense_valid || sense_deferred))
2029 		goto out;
2030 
2031 	switch (sshdr.sense_key) {
2032 	case HARDWARE_ERROR:
2033 	case MEDIUM_ERROR:
2034 		good_bytes = sd_completed_bytes(SCpnt);
2035 		break;
2036 	case RECOVERED_ERROR:
2037 		good_bytes = scsi_bufflen(SCpnt);
2038 		break;
2039 	case NO_SENSE:
2040 		/* This indicates a false check condition, so ignore it.  An
2041 		 * unknown amount of data was transferred so treat it as an
2042 		 * error.
2043 		 */
2044 		SCpnt->result = 0;
2045 		memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
2046 		break;
2047 	case ABORTED_COMMAND:
2048 		if (sshdr.asc == 0x10)  /* DIF: Target detected corruption */
2049 			good_bytes = sd_completed_bytes(SCpnt);
2050 		break;
2051 	case ILLEGAL_REQUEST:
2052 		switch (sshdr.asc) {
2053 		case 0x10:	/* DIX: Host detected corruption */
2054 			good_bytes = sd_completed_bytes(SCpnt);
2055 			break;
2056 		case 0x20:	/* INVALID COMMAND OPCODE */
2057 		case 0x24:	/* INVALID FIELD IN CDB */
2058 			switch (SCpnt->cmnd[0]) {
2059 			case UNMAP:
2060 				sd_config_discard(sdkp, SD_LBP_DISABLE);
2061 				break;
2062 			case WRITE_SAME_16:
2063 			case WRITE_SAME:
2064 				if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2065 					sd_config_discard(sdkp, SD_LBP_DISABLE);
2066 				} else {
2067 					sdkp->device->no_write_same = 1;
2068 					sd_config_write_same(sdkp);
2069 					req->rq_flags |= RQF_QUIET;
2070 				}
2071 				break;
2072 			}
2073 		}
2074 		break;
2075 	default:
2076 		break;
2077 	}
2078 
2079  out:
2080 	if (sd_is_zoned(sdkp))
2081 		good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2082 
2083 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2084 					   "sd_done: completed %d of %d bytes\n",
2085 					   good_bytes, scsi_bufflen(SCpnt)));
2086 
2087 	return good_bytes;
2088 }
2089 
2090 /*
2091  * spinup disk - called only in sd_revalidate_disk()
2092  */
2093 static void
2094 sd_spinup_disk(struct scsi_disk *sdkp)
2095 {
2096 	unsigned char cmd[10];
2097 	unsigned long spintime_expire = 0;
2098 	int retries, spintime;
2099 	unsigned int the_result;
2100 	struct scsi_sense_hdr sshdr;
2101 	int sense_valid = 0;
2102 
2103 	spintime = 0;
2104 
2105 	/* Spin up drives, as required.  Only do this at boot time */
2106 	/* Spinup needs to be done for module loads too. */
2107 	do {
2108 		retries = 0;
2109 
2110 		do {
2111 			cmd[0] = TEST_UNIT_READY;
2112 			memset((void *) &cmd[1], 0, 9);
2113 
2114 			the_result = scsi_execute_req(sdkp->device, cmd,
2115 						      DMA_NONE, NULL, 0,
2116 						      &sshdr, SD_TIMEOUT,
2117 						      SD_MAX_RETRIES, NULL);
2118 
2119 			/*
2120 			 * If the drive has indicated to us that it
2121 			 * doesn't have any media in it, don't bother
2122 			 * with any more polling.
2123 			 */
2124 			if (media_not_present(sdkp, &sshdr))
2125 				return;
2126 
2127 			if (the_result)
2128 				sense_valid = scsi_sense_valid(&sshdr);
2129 			retries++;
2130 		} while (retries < 3 &&
2131 			 (!scsi_status_is_good(the_result) ||
2132 			  ((driver_byte(the_result) == DRIVER_SENSE) &&
2133 			  sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
2134 
2135 		if (driver_byte(the_result) != DRIVER_SENSE) {
2136 			/* no sense, TUR either succeeded or failed
2137 			 * with a status error */
2138 			if(!spintime && !scsi_status_is_good(the_result)) {
2139 				sd_print_result(sdkp, "Test Unit Ready failed",
2140 						the_result);
2141 			}
2142 			break;
2143 		}
2144 
2145 		/*
2146 		 * The device does not want the automatic start to be issued.
2147 		 */
2148 		if (sdkp->device->no_start_on_add)
2149 			break;
2150 
2151 		if (sense_valid && sshdr.sense_key == NOT_READY) {
2152 			if (sshdr.asc == 4 && sshdr.ascq == 3)
2153 				break;	/* manual intervention required */
2154 			if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2155 				break;	/* standby */
2156 			if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2157 				break;	/* unavailable */
2158 			if (sshdr.asc == 4 && sshdr.ascq == 0x1b)
2159 				break;	/* sanitize in progress */
2160 			/*
2161 			 * Issue command to spin up drive when not ready
2162 			 */
2163 			if (!spintime) {
2164 				sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2165 				cmd[0] = START_STOP;
2166 				cmd[1] = 1;	/* Return immediately */
2167 				memset((void *) &cmd[2], 0, 8);
2168 				cmd[4] = 1;	/* Start spin cycle */
2169 				if (sdkp->device->start_stop_pwr_cond)
2170 					cmd[4] |= 1 << 4;
2171 				scsi_execute_req(sdkp->device, cmd, DMA_NONE,
2172 						 NULL, 0, &sshdr,
2173 						 SD_TIMEOUT, SD_MAX_RETRIES,
2174 						 NULL);
2175 				spintime_expire = jiffies + 100 * HZ;
2176 				spintime = 1;
2177 			}
2178 			/* Wait 1 second for next try */
2179 			msleep(1000);
2180 			printk(KERN_CONT ".");
2181 
2182 		/*
2183 		 * Wait for USB flash devices with slow firmware.
2184 		 * Yes, this sense key/ASC combination shouldn't
2185 		 * occur here.  It's characteristic of these devices.
2186 		 */
2187 		} else if (sense_valid &&
2188 				sshdr.sense_key == UNIT_ATTENTION &&
2189 				sshdr.asc == 0x28) {
2190 			if (!spintime) {
2191 				spintime_expire = jiffies + 5 * HZ;
2192 				spintime = 1;
2193 			}
2194 			/* Wait 1 second for next try */
2195 			msleep(1000);
2196 		} else {
2197 			/* we don't understand the sense code, so it's
2198 			 * probably pointless to loop */
2199 			if(!spintime) {
2200 				sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2201 				sd_print_sense_hdr(sdkp, &sshdr);
2202 			}
2203 			break;
2204 		}
2205 
2206 	} while (spintime && time_before_eq(jiffies, spintime_expire));
2207 
2208 	if (spintime) {
2209 		if (scsi_status_is_good(the_result))
2210 			printk(KERN_CONT "ready\n");
2211 		else
2212 			printk(KERN_CONT "not responding...\n");
2213 	}
2214 }
2215 
2216 /*
2217  * Determine whether disk supports Data Integrity Field.
2218  */
2219 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2220 {
2221 	struct scsi_device *sdp = sdkp->device;
2222 	u8 type;
2223 	int ret = 0;
2224 
2225 	if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) {
2226 		sdkp->protection_type = 0;
2227 		return ret;
2228 	}
2229 
2230 	type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2231 
2232 	if (type > T10_PI_TYPE3_PROTECTION)
2233 		ret = -ENODEV;
2234 	else if (scsi_host_dif_capable(sdp->host, type))
2235 		ret = 1;
2236 
2237 	if (sdkp->first_scan || type != sdkp->protection_type)
2238 		switch (ret) {
2239 		case -ENODEV:
2240 			sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \
2241 				  " protection type %u. Disabling disk!\n",
2242 				  type);
2243 			break;
2244 		case 1:
2245 			sd_printk(KERN_NOTICE, sdkp,
2246 				  "Enabling DIF Type %u protection\n", type);
2247 			break;
2248 		case 0:
2249 			sd_printk(KERN_NOTICE, sdkp,
2250 				  "Disabling DIF Type %u protection\n", type);
2251 			break;
2252 		}
2253 
2254 	sdkp->protection_type = type;
2255 
2256 	return ret;
2257 }
2258 
2259 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2260 			struct scsi_sense_hdr *sshdr, int sense_valid,
2261 			int the_result)
2262 {
2263 	if (driver_byte(the_result) == DRIVER_SENSE)
2264 		sd_print_sense_hdr(sdkp, sshdr);
2265 	else
2266 		sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2267 
2268 	/*
2269 	 * Set dirty bit for removable devices if not ready -
2270 	 * sometimes drives will not report this properly.
2271 	 */
2272 	if (sdp->removable &&
2273 	    sense_valid && sshdr->sense_key == NOT_READY)
2274 		set_media_not_present(sdkp);
2275 
2276 	/*
2277 	 * We used to set media_present to 0 here to indicate no media
2278 	 * in the drive, but some drives fail read capacity even with
2279 	 * media present, so we can't do that.
2280 	 */
2281 	sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2282 }
2283 
2284 #define RC16_LEN 32
2285 #if RC16_LEN > SD_BUF_SIZE
2286 #error RC16_LEN must not be more than SD_BUF_SIZE
2287 #endif
2288 
2289 #define READ_CAPACITY_RETRIES_ON_RESET	10
2290 
2291 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2292 						unsigned char *buffer)
2293 {
2294 	unsigned char cmd[16];
2295 	struct scsi_sense_hdr sshdr;
2296 	int sense_valid = 0;
2297 	int the_result;
2298 	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2299 	unsigned int alignment;
2300 	unsigned long long lba;
2301 	unsigned sector_size;
2302 
2303 	if (sdp->no_read_capacity_16)
2304 		return -EINVAL;
2305 
2306 	do {
2307 		memset(cmd, 0, 16);
2308 		cmd[0] = SERVICE_ACTION_IN_16;
2309 		cmd[1] = SAI_READ_CAPACITY_16;
2310 		cmd[13] = RC16_LEN;
2311 		memset(buffer, 0, RC16_LEN);
2312 
2313 		the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2314 					buffer, RC16_LEN, &sshdr,
2315 					SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2316 
2317 		if (media_not_present(sdkp, &sshdr))
2318 			return -ENODEV;
2319 
2320 		if (the_result) {
2321 			sense_valid = scsi_sense_valid(&sshdr);
2322 			if (sense_valid &&
2323 			    sshdr.sense_key == ILLEGAL_REQUEST &&
2324 			    (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2325 			    sshdr.ascq == 0x00)
2326 				/* Invalid Command Operation Code or
2327 				 * Invalid Field in CDB, just retry
2328 				 * silently with RC10 */
2329 				return -EINVAL;
2330 			if (sense_valid &&
2331 			    sshdr.sense_key == UNIT_ATTENTION &&
2332 			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2333 				/* Device reset might occur several times,
2334 				 * give it one more chance */
2335 				if (--reset_retries > 0)
2336 					continue;
2337 		}
2338 		retries--;
2339 
2340 	} while (the_result && retries);
2341 
2342 	if (the_result) {
2343 		sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2344 		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2345 		return -EINVAL;
2346 	}
2347 
2348 	sector_size = get_unaligned_be32(&buffer[8]);
2349 	lba = get_unaligned_be64(&buffer[0]);
2350 
2351 	if (sd_read_protection_type(sdkp, buffer) < 0) {
2352 		sdkp->capacity = 0;
2353 		return -ENODEV;
2354 	}
2355 
2356 	/* Logical blocks per physical block exponent */
2357 	sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2358 
2359 	/* RC basis */
2360 	sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2361 
2362 	/* Lowest aligned logical block */
2363 	alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2364 	blk_queue_alignment_offset(sdp->request_queue, alignment);
2365 	if (alignment && sdkp->first_scan)
2366 		sd_printk(KERN_NOTICE, sdkp,
2367 			  "physical block alignment offset: %u\n", alignment);
2368 
2369 	if (buffer[14] & 0x80) { /* LBPME */
2370 		sdkp->lbpme = 1;
2371 
2372 		if (buffer[14] & 0x40) /* LBPRZ */
2373 			sdkp->lbprz = 1;
2374 
2375 		sd_config_discard(sdkp, SD_LBP_WS16);
2376 	}
2377 
2378 	sdkp->capacity = lba + 1;
2379 	return sector_size;
2380 }
2381 
2382 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2383 						unsigned char *buffer)
2384 {
2385 	unsigned char cmd[16];
2386 	struct scsi_sense_hdr sshdr;
2387 	int sense_valid = 0;
2388 	int the_result;
2389 	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2390 	sector_t lba;
2391 	unsigned sector_size;
2392 
2393 	do {
2394 		cmd[0] = READ_CAPACITY;
2395 		memset(&cmd[1], 0, 9);
2396 		memset(buffer, 0, 8);
2397 
2398 		the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2399 					buffer, 8, &sshdr,
2400 					SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2401 
2402 		if (media_not_present(sdkp, &sshdr))
2403 			return -ENODEV;
2404 
2405 		if (the_result) {
2406 			sense_valid = scsi_sense_valid(&sshdr);
2407 			if (sense_valid &&
2408 			    sshdr.sense_key == UNIT_ATTENTION &&
2409 			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2410 				/* Device reset might occur several times,
2411 				 * give it one more chance */
2412 				if (--reset_retries > 0)
2413 					continue;
2414 		}
2415 		retries--;
2416 
2417 	} while (the_result && retries);
2418 
2419 	if (the_result) {
2420 		sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2421 		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2422 		return -EINVAL;
2423 	}
2424 
2425 	sector_size = get_unaligned_be32(&buffer[4]);
2426 	lba = get_unaligned_be32(&buffer[0]);
2427 
2428 	if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2429 		/* Some buggy (usb cardreader) devices return an lba of
2430 		   0xffffffff when the want to report a size of 0 (with
2431 		   which they really mean no media is present) */
2432 		sdkp->capacity = 0;
2433 		sdkp->physical_block_size = sector_size;
2434 		return sector_size;
2435 	}
2436 
2437 	sdkp->capacity = lba + 1;
2438 	sdkp->physical_block_size = sector_size;
2439 	return sector_size;
2440 }
2441 
2442 static int sd_try_rc16_first(struct scsi_device *sdp)
2443 {
2444 	if (sdp->host->max_cmd_len < 16)
2445 		return 0;
2446 	if (sdp->try_rc_10_first)
2447 		return 0;
2448 	if (sdp->scsi_level > SCSI_SPC_2)
2449 		return 1;
2450 	if (scsi_device_protection(sdp))
2451 		return 1;
2452 	return 0;
2453 }
2454 
2455 /*
2456  * read disk capacity
2457  */
2458 static void
2459 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2460 {
2461 	int sector_size;
2462 	struct scsi_device *sdp = sdkp->device;
2463 
2464 	if (sd_try_rc16_first(sdp)) {
2465 		sector_size = read_capacity_16(sdkp, sdp, buffer);
2466 		if (sector_size == -EOVERFLOW)
2467 			goto got_data;
2468 		if (sector_size == -ENODEV)
2469 			return;
2470 		if (sector_size < 0)
2471 			sector_size = read_capacity_10(sdkp, sdp, buffer);
2472 		if (sector_size < 0)
2473 			return;
2474 	} else {
2475 		sector_size = read_capacity_10(sdkp, sdp, buffer);
2476 		if (sector_size == -EOVERFLOW)
2477 			goto got_data;
2478 		if (sector_size < 0)
2479 			return;
2480 		if ((sizeof(sdkp->capacity) > 4) &&
2481 		    (sdkp->capacity > 0xffffffffULL)) {
2482 			int old_sector_size = sector_size;
2483 			sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2484 					"Trying to use READ CAPACITY(16).\n");
2485 			sector_size = read_capacity_16(sdkp, sdp, buffer);
2486 			if (sector_size < 0) {
2487 				sd_printk(KERN_NOTICE, sdkp,
2488 					"Using 0xffffffff as device size\n");
2489 				sdkp->capacity = 1 + (sector_t) 0xffffffff;
2490 				sector_size = old_sector_size;
2491 				goto got_data;
2492 			}
2493 			/* Remember that READ CAPACITY(16) succeeded */
2494 			sdp->try_rc_10_first = 0;
2495 		}
2496 	}
2497 
2498 	/* Some devices are known to return the total number of blocks,
2499 	 * not the highest block number.  Some devices have versions
2500 	 * which do this and others which do not.  Some devices we might
2501 	 * suspect of doing this but we don't know for certain.
2502 	 *
2503 	 * If we know the reported capacity is wrong, decrement it.  If
2504 	 * we can only guess, then assume the number of blocks is even
2505 	 * (usually true but not always) and err on the side of lowering
2506 	 * the capacity.
2507 	 */
2508 	if (sdp->fix_capacity ||
2509 	    (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2510 		sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2511 				"from its reported value: %llu\n",
2512 				(unsigned long long) sdkp->capacity);
2513 		--sdkp->capacity;
2514 	}
2515 
2516 got_data:
2517 	if (sector_size == 0) {
2518 		sector_size = 512;
2519 		sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2520 			  "assuming 512.\n");
2521 	}
2522 
2523 	if (sector_size != 512 &&
2524 	    sector_size != 1024 &&
2525 	    sector_size != 2048 &&
2526 	    sector_size != 4096) {
2527 		sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2528 			  sector_size);
2529 		/*
2530 		 * The user might want to re-format the drive with
2531 		 * a supported sectorsize.  Once this happens, it
2532 		 * would be relatively trivial to set the thing up.
2533 		 * For this reason, we leave the thing in the table.
2534 		 */
2535 		sdkp->capacity = 0;
2536 		/*
2537 		 * set a bogus sector size so the normal read/write
2538 		 * logic in the block layer will eventually refuse any
2539 		 * request on this device without tripping over power
2540 		 * of two sector size assumptions
2541 		 */
2542 		sector_size = 512;
2543 	}
2544 	blk_queue_logical_block_size(sdp->request_queue, sector_size);
2545 	blk_queue_physical_block_size(sdp->request_queue,
2546 				      sdkp->physical_block_size);
2547 	sdkp->device->sector_size = sector_size;
2548 
2549 	if (sdkp->capacity > 0xffffffff)
2550 		sdp->use_16_for_rw = 1;
2551 
2552 }
2553 
2554 /*
2555  * Print disk capacity
2556  */
2557 static void
2558 sd_print_capacity(struct scsi_disk *sdkp,
2559 		  sector_t old_capacity)
2560 {
2561 	int sector_size = sdkp->device->sector_size;
2562 	char cap_str_2[10], cap_str_10[10];
2563 
2564 	if (!sdkp->first_scan && old_capacity == sdkp->capacity)
2565 		return;
2566 
2567 	string_get_size(sdkp->capacity, sector_size,
2568 			STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2569 	string_get_size(sdkp->capacity, sector_size,
2570 			STRING_UNITS_10, cap_str_10, sizeof(cap_str_10));
2571 
2572 	sd_printk(KERN_NOTICE, sdkp,
2573 		  "%llu %d-byte logical blocks: (%s/%s)\n",
2574 		  (unsigned long long)sdkp->capacity,
2575 		  sector_size, cap_str_10, cap_str_2);
2576 
2577 	if (sdkp->physical_block_size != sector_size)
2578 		sd_printk(KERN_NOTICE, sdkp,
2579 			  "%u-byte physical blocks\n",
2580 			  sdkp->physical_block_size);
2581 
2582 	sd_zbc_print_zones(sdkp);
2583 }
2584 
2585 /* called with buffer of length 512 */
2586 static inline int
2587 sd_do_mode_sense(struct scsi_device *sdp, int dbd, int modepage,
2588 		 unsigned char *buffer, int len, struct scsi_mode_data *data,
2589 		 struct scsi_sense_hdr *sshdr)
2590 {
2591 	return scsi_mode_sense(sdp, dbd, modepage, buffer, len,
2592 			       SD_TIMEOUT, SD_MAX_RETRIES, data,
2593 			       sshdr);
2594 }
2595 
2596 /*
2597  * read write protect setting, if possible - called only in sd_revalidate_disk()
2598  * called with buffer of length SD_BUF_SIZE
2599  */
2600 static void
2601 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2602 {
2603 	int res;
2604 	struct scsi_device *sdp = sdkp->device;
2605 	struct scsi_mode_data data;
2606 	int old_wp = sdkp->write_prot;
2607 
2608 	set_disk_ro(sdkp->disk, 0);
2609 	if (sdp->skip_ms_page_3f) {
2610 		sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2611 		return;
2612 	}
2613 
2614 	if (sdp->use_192_bytes_for_3f) {
2615 		res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 192, &data, NULL);
2616 	} else {
2617 		/*
2618 		 * First attempt: ask for all pages (0x3F), but only 4 bytes.
2619 		 * We have to start carefully: some devices hang if we ask
2620 		 * for more than is available.
2621 		 */
2622 		res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 4, &data, NULL);
2623 
2624 		/*
2625 		 * Second attempt: ask for page 0 When only page 0 is
2626 		 * implemented, a request for page 3F may return Sense Key
2627 		 * 5: Illegal Request, Sense Code 24: Invalid field in
2628 		 * CDB.
2629 		 */
2630 		if (!scsi_status_is_good(res))
2631 			res = sd_do_mode_sense(sdp, 0, 0, buffer, 4, &data, NULL);
2632 
2633 		/*
2634 		 * Third attempt: ask 255 bytes, as we did earlier.
2635 		 */
2636 		if (!scsi_status_is_good(res))
2637 			res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 255,
2638 					       &data, NULL);
2639 	}
2640 
2641 	if (!scsi_status_is_good(res)) {
2642 		sd_first_printk(KERN_WARNING, sdkp,
2643 			  "Test WP failed, assume Write Enabled\n");
2644 	} else {
2645 		sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2646 		set_disk_ro(sdkp->disk, sdkp->write_prot);
2647 		if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2648 			sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2649 				  sdkp->write_prot ? "on" : "off");
2650 			sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
2651 		}
2652 	}
2653 }
2654 
2655 /*
2656  * sd_read_cache_type - called only from sd_revalidate_disk()
2657  * called with buffer of length SD_BUF_SIZE
2658  */
2659 static void
2660 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2661 {
2662 	int len = 0, res;
2663 	struct scsi_device *sdp = sdkp->device;
2664 
2665 	int dbd;
2666 	int modepage;
2667 	int first_len;
2668 	struct scsi_mode_data data;
2669 	struct scsi_sense_hdr sshdr;
2670 	int old_wce = sdkp->WCE;
2671 	int old_rcd = sdkp->RCD;
2672 	int old_dpofua = sdkp->DPOFUA;
2673 
2674 
2675 	if (sdkp->cache_override)
2676 		return;
2677 
2678 	first_len = 4;
2679 	if (sdp->skip_ms_page_8) {
2680 		if (sdp->type == TYPE_RBC)
2681 			goto defaults;
2682 		else {
2683 			if (sdp->skip_ms_page_3f)
2684 				goto defaults;
2685 			modepage = 0x3F;
2686 			if (sdp->use_192_bytes_for_3f)
2687 				first_len = 192;
2688 			dbd = 0;
2689 		}
2690 	} else if (sdp->type == TYPE_RBC) {
2691 		modepage = 6;
2692 		dbd = 8;
2693 	} else {
2694 		modepage = 8;
2695 		dbd = 0;
2696 	}
2697 
2698 	/* cautiously ask */
2699 	res = sd_do_mode_sense(sdp, dbd, modepage, buffer, first_len,
2700 			&data, &sshdr);
2701 
2702 	if (!scsi_status_is_good(res))
2703 		goto bad_sense;
2704 
2705 	if (!data.header_length) {
2706 		modepage = 6;
2707 		first_len = 0;
2708 		sd_first_printk(KERN_ERR, sdkp,
2709 				"Missing header in MODE_SENSE response\n");
2710 	}
2711 
2712 	/* that went OK, now ask for the proper length */
2713 	len = data.length;
2714 
2715 	/*
2716 	 * We're only interested in the first three bytes, actually.
2717 	 * But the data cache page is defined for the first 20.
2718 	 */
2719 	if (len < 3)
2720 		goto bad_sense;
2721 	else if (len > SD_BUF_SIZE) {
2722 		sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2723 			  "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2724 		len = SD_BUF_SIZE;
2725 	}
2726 	if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2727 		len = 192;
2728 
2729 	/* Get the data */
2730 	if (len > first_len)
2731 		res = sd_do_mode_sense(sdp, dbd, modepage, buffer, len,
2732 				&data, &sshdr);
2733 
2734 	if (scsi_status_is_good(res)) {
2735 		int offset = data.header_length + data.block_descriptor_length;
2736 
2737 		while (offset < len) {
2738 			u8 page_code = buffer[offset] & 0x3F;
2739 			u8 spf       = buffer[offset] & 0x40;
2740 
2741 			if (page_code == 8 || page_code == 6) {
2742 				/* We're interested only in the first 3 bytes.
2743 				 */
2744 				if (len - offset <= 2) {
2745 					sd_first_printk(KERN_ERR, sdkp,
2746 						"Incomplete mode parameter "
2747 							"data\n");
2748 					goto defaults;
2749 				} else {
2750 					modepage = page_code;
2751 					goto Page_found;
2752 				}
2753 			} else {
2754 				/* Go to the next page */
2755 				if (spf && len - offset > 3)
2756 					offset += 4 + (buffer[offset+2] << 8) +
2757 						buffer[offset+3];
2758 				else if (!spf && len - offset > 1)
2759 					offset += 2 + buffer[offset+1];
2760 				else {
2761 					sd_first_printk(KERN_ERR, sdkp,
2762 							"Incomplete mode "
2763 							"parameter data\n");
2764 					goto defaults;
2765 				}
2766 			}
2767 		}
2768 
2769 		sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n");
2770 		goto defaults;
2771 
2772 	Page_found:
2773 		if (modepage == 8) {
2774 			sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2775 			sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2776 		} else {
2777 			sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2778 			sdkp->RCD = 0;
2779 		}
2780 
2781 		sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2782 		if (sdp->broken_fua) {
2783 			sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2784 			sdkp->DPOFUA = 0;
2785 		} else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
2786 			   !sdkp->device->use_16_for_rw) {
2787 			sd_first_printk(KERN_NOTICE, sdkp,
2788 				  "Uses READ/WRITE(6), disabling FUA\n");
2789 			sdkp->DPOFUA = 0;
2790 		}
2791 
2792 		/* No cache flush allowed for write protected devices */
2793 		if (sdkp->WCE && sdkp->write_prot)
2794 			sdkp->WCE = 0;
2795 
2796 		if (sdkp->first_scan || old_wce != sdkp->WCE ||
2797 		    old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2798 			sd_printk(KERN_NOTICE, sdkp,
2799 				  "Write cache: %s, read cache: %s, %s\n",
2800 				  sdkp->WCE ? "enabled" : "disabled",
2801 				  sdkp->RCD ? "disabled" : "enabled",
2802 				  sdkp->DPOFUA ? "supports DPO and FUA"
2803 				  : "doesn't support DPO or FUA");
2804 
2805 		return;
2806 	}
2807 
2808 bad_sense:
2809 	if (scsi_sense_valid(&sshdr) &&
2810 	    sshdr.sense_key == ILLEGAL_REQUEST &&
2811 	    sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2812 		/* Invalid field in CDB */
2813 		sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2814 	else
2815 		sd_first_printk(KERN_ERR, sdkp,
2816 				"Asking for cache data failed\n");
2817 
2818 defaults:
2819 	if (sdp->wce_default_on) {
2820 		sd_first_printk(KERN_NOTICE, sdkp,
2821 				"Assuming drive cache: write back\n");
2822 		sdkp->WCE = 1;
2823 	} else {
2824 		sd_first_printk(KERN_ERR, sdkp,
2825 				"Assuming drive cache: write through\n");
2826 		sdkp->WCE = 0;
2827 	}
2828 	sdkp->RCD = 0;
2829 	sdkp->DPOFUA = 0;
2830 }
2831 
2832 /*
2833  * The ATO bit indicates whether the DIF application tag is available
2834  * for use by the operating system.
2835  */
2836 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
2837 {
2838 	int res, offset;
2839 	struct scsi_device *sdp = sdkp->device;
2840 	struct scsi_mode_data data;
2841 	struct scsi_sense_hdr sshdr;
2842 
2843 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
2844 		return;
2845 
2846 	if (sdkp->protection_type == 0)
2847 		return;
2848 
2849 	res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT,
2850 			      SD_MAX_RETRIES, &data, &sshdr);
2851 
2852 	if (!scsi_status_is_good(res) || !data.header_length ||
2853 	    data.length < 6) {
2854 		sd_first_printk(KERN_WARNING, sdkp,
2855 			  "getting Control mode page failed, assume no ATO\n");
2856 
2857 		if (scsi_sense_valid(&sshdr))
2858 			sd_print_sense_hdr(sdkp, &sshdr);
2859 
2860 		return;
2861 	}
2862 
2863 	offset = data.header_length + data.block_descriptor_length;
2864 
2865 	if ((buffer[offset] & 0x3f) != 0x0a) {
2866 		sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
2867 		return;
2868 	}
2869 
2870 	if ((buffer[offset + 5] & 0x80) == 0)
2871 		return;
2872 
2873 	sdkp->ATO = 1;
2874 
2875 	return;
2876 }
2877 
2878 /**
2879  * sd_read_block_limits - Query disk device for preferred I/O sizes.
2880  * @sdkp: disk to query
2881  */
2882 static void sd_read_block_limits(struct scsi_disk *sdkp)
2883 {
2884 	unsigned int sector_sz = sdkp->device->sector_size;
2885 	const int vpd_len = 64;
2886 	unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL);
2887 
2888 	if (!buffer ||
2889 	    /* Block Limits VPD */
2890 	    scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len))
2891 		goto out;
2892 
2893 	blk_queue_io_min(sdkp->disk->queue,
2894 			 get_unaligned_be16(&buffer[6]) * sector_sz);
2895 
2896 	sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]);
2897 	sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]);
2898 
2899 	if (buffer[3] == 0x3c) {
2900 		unsigned int lba_count, desc_count;
2901 
2902 		sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]);
2903 
2904 		if (!sdkp->lbpme)
2905 			goto out;
2906 
2907 		lba_count = get_unaligned_be32(&buffer[20]);
2908 		desc_count = get_unaligned_be32(&buffer[24]);
2909 
2910 		if (lba_count && desc_count)
2911 			sdkp->max_unmap_blocks = lba_count;
2912 
2913 		sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]);
2914 
2915 		if (buffer[32] & 0x80)
2916 			sdkp->unmap_alignment =
2917 				get_unaligned_be32(&buffer[32]) & ~(1 << 31);
2918 
2919 		if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
2920 
2921 			if (sdkp->max_unmap_blocks)
2922 				sd_config_discard(sdkp, SD_LBP_UNMAP);
2923 			else
2924 				sd_config_discard(sdkp, SD_LBP_WS16);
2925 
2926 		} else {	/* LBP VPD page tells us what to use */
2927 			if (sdkp->lbpu && sdkp->max_unmap_blocks)
2928 				sd_config_discard(sdkp, SD_LBP_UNMAP);
2929 			else if (sdkp->lbpws)
2930 				sd_config_discard(sdkp, SD_LBP_WS16);
2931 			else if (sdkp->lbpws10)
2932 				sd_config_discard(sdkp, SD_LBP_WS10);
2933 			else
2934 				sd_config_discard(sdkp, SD_LBP_DISABLE);
2935 		}
2936 	}
2937 
2938  out:
2939 	kfree(buffer);
2940 }
2941 
2942 /**
2943  * sd_read_block_characteristics - Query block dev. characteristics
2944  * @sdkp: disk to query
2945  */
2946 static void sd_read_block_characteristics(struct scsi_disk *sdkp)
2947 {
2948 	struct request_queue *q = sdkp->disk->queue;
2949 	unsigned char *buffer;
2950 	u16 rot;
2951 	const int vpd_len = 64;
2952 
2953 	buffer = kmalloc(vpd_len, GFP_KERNEL);
2954 
2955 	if (!buffer ||
2956 	    /* Block Device Characteristics VPD */
2957 	    scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len))
2958 		goto out;
2959 
2960 	rot = get_unaligned_be16(&buffer[4]);
2961 
2962 	if (rot == 1) {
2963 		blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
2964 		blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
2965 	}
2966 
2967 	if (sdkp->device->type == TYPE_ZBC) {
2968 		/* Host-managed */
2969 		q->limits.zoned = BLK_ZONED_HM;
2970 	} else {
2971 		sdkp->zoned = (buffer[8] >> 4) & 3;
2972 		if (sdkp->zoned == 1 && !disk_has_partitions(sdkp->disk)) {
2973 			/* Host-aware */
2974 			q->limits.zoned = BLK_ZONED_HA;
2975 		} else {
2976 			/*
2977 			 * Treat drive-managed devices and host-aware devices
2978 			 * with partitions as regular block devices.
2979 			 */
2980 			q->limits.zoned = BLK_ZONED_NONE;
2981 			if (sdkp->zoned == 2 && sdkp->first_scan)
2982 				sd_printk(KERN_NOTICE, sdkp,
2983 					  "Drive-managed SMR disk\n");
2984 		}
2985 	}
2986 	if (blk_queue_is_zoned(q) && sdkp->first_scan)
2987 		sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n",
2988 		      q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware");
2989 
2990  out:
2991 	kfree(buffer);
2992 }
2993 
2994 /**
2995  * sd_read_block_provisioning - Query provisioning VPD page
2996  * @sdkp: disk to query
2997  */
2998 static void sd_read_block_provisioning(struct scsi_disk *sdkp)
2999 {
3000 	unsigned char *buffer;
3001 	const int vpd_len = 8;
3002 
3003 	if (sdkp->lbpme == 0)
3004 		return;
3005 
3006 	buffer = kmalloc(vpd_len, GFP_KERNEL);
3007 
3008 	if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len))
3009 		goto out;
3010 
3011 	sdkp->lbpvpd	= 1;
3012 	sdkp->lbpu	= (buffer[5] >> 7) & 1;	/* UNMAP */
3013 	sdkp->lbpws	= (buffer[5] >> 6) & 1;	/* WRITE SAME(16) with UNMAP */
3014 	sdkp->lbpws10	= (buffer[5] >> 5) & 1;	/* WRITE SAME(10) with UNMAP */
3015 
3016  out:
3017 	kfree(buffer);
3018 }
3019 
3020 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
3021 {
3022 	struct scsi_device *sdev = sdkp->device;
3023 
3024 	if (sdev->host->no_write_same) {
3025 		sdev->no_write_same = 1;
3026 
3027 		return;
3028 	}
3029 
3030 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) {
3031 		/* too large values might cause issues with arcmsr */
3032 		int vpd_buf_len = 64;
3033 
3034 		sdev->no_report_opcodes = 1;
3035 
3036 		/* Disable WRITE SAME if REPORT SUPPORTED OPERATION
3037 		 * CODES is unsupported and the device has an ATA
3038 		 * Information VPD page (SAT).
3039 		 */
3040 		if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len))
3041 			sdev->no_write_same = 1;
3042 	}
3043 
3044 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1)
3045 		sdkp->ws16 = 1;
3046 
3047 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1)
3048 		sdkp->ws10 = 1;
3049 }
3050 
3051 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3052 {
3053 	struct scsi_device *sdev = sdkp->device;
3054 
3055 	if (!sdev->security_supported)
3056 		return;
3057 
3058 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3059 			SECURITY_PROTOCOL_IN) == 1 &&
3060 	    scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3061 			SECURITY_PROTOCOL_OUT) == 1)
3062 		sdkp->security = 1;
3063 }
3064 
3065 /*
3066  * Determine the device's preferred I/O size for reads and writes
3067  * unless the reported value is unreasonably small, large, not a
3068  * multiple of the physical block size, or simply garbage.
3069  */
3070 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp,
3071 				      unsigned int dev_max)
3072 {
3073 	struct scsi_device *sdp = sdkp->device;
3074 	unsigned int opt_xfer_bytes =
3075 		logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3076 
3077 	if (sdkp->opt_xfer_blocks == 0)
3078 		return false;
3079 
3080 	if (sdkp->opt_xfer_blocks > dev_max) {
3081 		sd_first_printk(KERN_WARNING, sdkp,
3082 				"Optimal transfer size %u logical blocks " \
3083 				"> dev_max (%u logical blocks)\n",
3084 				sdkp->opt_xfer_blocks, dev_max);
3085 		return false;
3086 	}
3087 
3088 	if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) {
3089 		sd_first_printk(KERN_WARNING, sdkp,
3090 				"Optimal transfer size %u logical blocks " \
3091 				"> sd driver limit (%u logical blocks)\n",
3092 				sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS);
3093 		return false;
3094 	}
3095 
3096 	if (opt_xfer_bytes < PAGE_SIZE) {
3097 		sd_first_printk(KERN_WARNING, sdkp,
3098 				"Optimal transfer size %u bytes < " \
3099 				"PAGE_SIZE (%u bytes)\n",
3100 				opt_xfer_bytes, (unsigned int)PAGE_SIZE);
3101 		return false;
3102 	}
3103 
3104 	if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) {
3105 		sd_first_printk(KERN_WARNING, sdkp,
3106 				"Optimal transfer size %u bytes not a " \
3107 				"multiple of physical block size (%u bytes)\n",
3108 				opt_xfer_bytes, sdkp->physical_block_size);
3109 		return false;
3110 	}
3111 
3112 	sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n",
3113 			opt_xfer_bytes);
3114 	return true;
3115 }
3116 
3117 /**
3118  *	sd_revalidate_disk - called the first time a new disk is seen,
3119  *	performs disk spin up, read_capacity, etc.
3120  *	@disk: struct gendisk we care about
3121  **/
3122 static int sd_revalidate_disk(struct gendisk *disk)
3123 {
3124 	struct scsi_disk *sdkp = scsi_disk(disk);
3125 	struct scsi_device *sdp = sdkp->device;
3126 	struct request_queue *q = sdkp->disk->queue;
3127 	sector_t old_capacity = sdkp->capacity;
3128 	unsigned char *buffer;
3129 	unsigned int dev_max, rw_max;
3130 
3131 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3132 				      "sd_revalidate_disk\n"));
3133 
3134 	/*
3135 	 * If the device is offline, don't try and read capacity or any
3136 	 * of the other niceties.
3137 	 */
3138 	if (!scsi_device_online(sdp))
3139 		goto out;
3140 
3141 	buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3142 	if (!buffer) {
3143 		sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3144 			  "allocation failure.\n");
3145 		goto out;
3146 	}
3147 
3148 	sd_spinup_disk(sdkp);
3149 
3150 	/*
3151 	 * Without media there is no reason to ask; moreover, some devices
3152 	 * react badly if we do.
3153 	 */
3154 	if (sdkp->media_present) {
3155 		sd_read_capacity(sdkp, buffer);
3156 
3157 		/*
3158 		 * set the default to rotational.  All non-rotational devices
3159 		 * support the block characteristics VPD page, which will
3160 		 * cause this to be updated correctly and any device which
3161 		 * doesn't support it should be treated as rotational.
3162 		 */
3163 		blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
3164 		blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q);
3165 
3166 		if (scsi_device_supports_vpd(sdp)) {
3167 			sd_read_block_provisioning(sdkp);
3168 			sd_read_block_limits(sdkp);
3169 			sd_read_block_characteristics(sdkp);
3170 			sd_zbc_read_zones(sdkp, buffer);
3171 		}
3172 
3173 		sd_print_capacity(sdkp, old_capacity);
3174 
3175 		sd_read_write_protect_flag(sdkp, buffer);
3176 		sd_read_cache_type(sdkp, buffer);
3177 		sd_read_app_tag_own(sdkp, buffer);
3178 		sd_read_write_same(sdkp, buffer);
3179 		sd_read_security(sdkp, buffer);
3180 	}
3181 
3182 	/*
3183 	 * We now have all cache related info, determine how we deal
3184 	 * with flush requests.
3185 	 */
3186 	sd_set_flush_flag(sdkp);
3187 
3188 	/* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3189 	dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3190 
3191 	/* Some devices report a maximum block count for READ/WRITE requests. */
3192 	dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3193 	q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3194 
3195 	if (sd_validate_opt_xfer_size(sdkp, dev_max)) {
3196 		q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3197 		rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
3198 	} else {
3199 		q->limits.io_opt = 0;
3200 		rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
3201 				      (sector_t)BLK_DEF_MAX_SECTORS);
3202 	}
3203 
3204 	/* Do not exceed controller limit */
3205 	rw_max = min(rw_max, queue_max_hw_sectors(q));
3206 
3207 	/*
3208 	 * Only update max_sectors if previously unset or if the current value
3209 	 * exceeds the capabilities of the hardware.
3210 	 */
3211 	if (sdkp->first_scan ||
3212 	    q->limits.max_sectors > q->limits.max_dev_sectors ||
3213 	    q->limits.max_sectors > q->limits.max_hw_sectors)
3214 		q->limits.max_sectors = rw_max;
3215 
3216 	sdkp->first_scan = 0;
3217 
3218 	set_capacity_revalidate_and_notify(disk,
3219 		logical_to_sectors(sdp, sdkp->capacity), false);
3220 	sd_config_write_same(sdkp);
3221 	kfree(buffer);
3222 
3223  out:
3224 	return 0;
3225 }
3226 
3227 /**
3228  *	sd_unlock_native_capacity - unlock native capacity
3229  *	@disk: struct gendisk to set capacity for
3230  *
3231  *	Block layer calls this function if it detects that partitions
3232  *	on @disk reach beyond the end of the device.  If the SCSI host
3233  *	implements ->unlock_native_capacity() method, it's invoked to
3234  *	give it a chance to adjust the device capacity.
3235  *
3236  *	CONTEXT:
3237  *	Defined by block layer.  Might sleep.
3238  */
3239 static void sd_unlock_native_capacity(struct gendisk *disk)
3240 {
3241 	struct scsi_device *sdev = scsi_disk(disk)->device;
3242 
3243 	if (sdev->host->hostt->unlock_native_capacity)
3244 		sdev->host->hostt->unlock_native_capacity(sdev);
3245 }
3246 
3247 /**
3248  *	sd_format_disk_name - format disk name
3249  *	@prefix: name prefix - ie. "sd" for SCSI disks
3250  *	@index: index of the disk to format name for
3251  *	@buf: output buffer
3252  *	@buflen: length of the output buffer
3253  *
3254  *	SCSI disk names starts at sda.  The 26th device is sdz and the
3255  *	27th is sdaa.  The last one for two lettered suffix is sdzz
3256  *	which is followed by sdaaa.
3257  *
3258  *	This is basically 26 base counting with one extra 'nil' entry
3259  *	at the beginning from the second digit on and can be
3260  *	determined using similar method as 26 base conversion with the
3261  *	index shifted -1 after each digit is computed.
3262  *
3263  *	CONTEXT:
3264  *	Don't care.
3265  *
3266  *	RETURNS:
3267  *	0 on success, -errno on failure.
3268  */
3269 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3270 {
3271 	const int base = 'z' - 'a' + 1;
3272 	char *begin = buf + strlen(prefix);
3273 	char *end = buf + buflen;
3274 	char *p;
3275 	int unit;
3276 
3277 	p = end - 1;
3278 	*p = '\0';
3279 	unit = base;
3280 	do {
3281 		if (p == begin)
3282 			return -EINVAL;
3283 		*--p = 'a' + (index % unit);
3284 		index = (index / unit) - 1;
3285 	} while (index >= 0);
3286 
3287 	memmove(begin, p, end - p);
3288 	memcpy(buf, prefix, strlen(prefix));
3289 
3290 	return 0;
3291 }
3292 
3293 /**
3294  *	sd_probe - called during driver initialization and whenever a
3295  *	new scsi device is attached to the system. It is called once
3296  *	for each scsi device (not just disks) present.
3297  *	@dev: pointer to device object
3298  *
3299  *	Returns 0 if successful (or not interested in this scsi device
3300  *	(e.g. scanner)); 1 when there is an error.
3301  *
3302  *	Note: this function is invoked from the scsi mid-level.
3303  *	This function sets up the mapping between a given
3304  *	<host,channel,id,lun> (found in sdp) and new device name
3305  *	(e.g. /dev/sda). More precisely it is the block device major
3306  *	and minor number that is chosen here.
3307  *
3308  *	Assume sd_probe is not re-entrant (for time being)
3309  *	Also think about sd_probe() and sd_remove() running coincidentally.
3310  **/
3311 static int sd_probe(struct device *dev)
3312 {
3313 	struct scsi_device *sdp = to_scsi_device(dev);
3314 	struct scsi_disk *sdkp;
3315 	struct gendisk *gd;
3316 	int index;
3317 	int error;
3318 
3319 	scsi_autopm_get_device(sdp);
3320 	error = -ENODEV;
3321 	if (sdp->type != TYPE_DISK &&
3322 	    sdp->type != TYPE_ZBC &&
3323 	    sdp->type != TYPE_MOD &&
3324 	    sdp->type != TYPE_RBC)
3325 		goto out;
3326 
3327 #ifndef CONFIG_BLK_DEV_ZONED
3328 	if (sdp->type == TYPE_ZBC)
3329 		goto out;
3330 #endif
3331 	SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3332 					"sd_probe\n"));
3333 
3334 	error = -ENOMEM;
3335 	sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3336 	if (!sdkp)
3337 		goto out;
3338 
3339 	gd = alloc_disk(SD_MINORS);
3340 	if (!gd)
3341 		goto out_free;
3342 
3343 	index = ida_alloc(&sd_index_ida, GFP_KERNEL);
3344 	if (index < 0) {
3345 		sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3346 		goto out_put;
3347 	}
3348 
3349 	error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3350 	if (error) {
3351 		sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3352 		goto out_free_index;
3353 	}
3354 
3355 	sdkp->device = sdp;
3356 	sdkp->driver = &sd_template;
3357 	sdkp->disk = gd;
3358 	sdkp->index = index;
3359 	atomic_set(&sdkp->openers, 0);
3360 	atomic_set(&sdkp->device->ioerr_cnt, 0);
3361 
3362 	if (!sdp->request_queue->rq_timeout) {
3363 		if (sdp->type != TYPE_MOD)
3364 			blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3365 		else
3366 			blk_queue_rq_timeout(sdp->request_queue,
3367 					     SD_MOD_TIMEOUT);
3368 	}
3369 
3370 	device_initialize(&sdkp->dev);
3371 	sdkp->dev.parent = dev;
3372 	sdkp->dev.class = &sd_disk_class;
3373 	dev_set_name(&sdkp->dev, "%s", dev_name(dev));
3374 
3375 	error = device_add(&sdkp->dev);
3376 	if (error)
3377 		goto out_free_index;
3378 
3379 	get_device(dev);
3380 	dev_set_drvdata(dev, sdkp);
3381 
3382 	gd->major = sd_major((index & 0xf0) >> 4);
3383 	gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3384 
3385 	gd->fops = &sd_fops;
3386 	gd->private_data = &sdkp->driver;
3387 	gd->queue = sdkp->device->request_queue;
3388 
3389 	/* defaults, until the device tells us otherwise */
3390 	sdp->sector_size = 512;
3391 	sdkp->capacity = 0;
3392 	sdkp->media_present = 1;
3393 	sdkp->write_prot = 0;
3394 	sdkp->cache_override = 0;
3395 	sdkp->WCE = 0;
3396 	sdkp->RCD = 0;
3397 	sdkp->ATO = 0;
3398 	sdkp->first_scan = 1;
3399 	sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3400 
3401 	error = sd_zbc_init_disk(sdkp);
3402 	if (error)
3403 		goto out_free_index;
3404 
3405 	sd_revalidate_disk(gd);
3406 
3407 	gd->flags = GENHD_FL_EXT_DEVT;
3408 	if (sdp->removable) {
3409 		gd->flags |= GENHD_FL_REMOVABLE;
3410 		gd->events |= DISK_EVENT_MEDIA_CHANGE;
3411 		gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT;
3412 	}
3413 
3414 	blk_pm_runtime_init(sdp->request_queue, dev);
3415 	if (sdp->rpm_autosuspend) {
3416 		pm_runtime_set_autosuspend_delay(dev,
3417 			sdp->host->hostt->rpm_autosuspend_delay);
3418 	}
3419 	device_add_disk(dev, gd, NULL);
3420 	if (sdkp->capacity)
3421 		sd_dif_config_host(sdkp);
3422 
3423 	sd_revalidate_disk(gd);
3424 
3425 	if (sdkp->security) {
3426 		sdkp->opal_dev = init_opal_dev(sdp, &sd_sec_submit);
3427 		if (sdkp->opal_dev)
3428 			sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
3429 	}
3430 
3431 	sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3432 		  sdp->removable ? "removable " : "");
3433 	scsi_autopm_put_device(sdp);
3434 
3435 	return 0;
3436 
3437  out_free_index:
3438 	ida_free(&sd_index_ida, index);
3439  out_put:
3440 	put_disk(gd);
3441  out_free:
3442 	sd_zbc_release_disk(sdkp);
3443 	kfree(sdkp);
3444  out:
3445 	scsi_autopm_put_device(sdp);
3446 	return error;
3447 }
3448 
3449 /**
3450  *	sd_remove - called whenever a scsi disk (previously recognized by
3451  *	sd_probe) is detached from the system. It is called (potentially
3452  *	multiple times) during sd module unload.
3453  *	@dev: pointer to device object
3454  *
3455  *	Note: this function is invoked from the scsi mid-level.
3456  *	This function potentially frees up a device name (e.g. /dev/sdc)
3457  *	that could be re-used by a subsequent sd_probe().
3458  *	This function is not called when the built-in sd driver is "exit-ed".
3459  **/
3460 static int sd_remove(struct device *dev)
3461 {
3462 	struct scsi_disk *sdkp;
3463 	dev_t devt;
3464 
3465 	sdkp = dev_get_drvdata(dev);
3466 	devt = disk_devt(sdkp->disk);
3467 	scsi_autopm_get_device(sdkp->device);
3468 
3469 	async_synchronize_full_domain(&scsi_sd_pm_domain);
3470 	device_del(&sdkp->dev);
3471 	del_gendisk(sdkp->disk);
3472 	sd_shutdown(dev);
3473 
3474 	free_opal_dev(sdkp->opal_dev);
3475 
3476 	blk_register_region(devt, SD_MINORS, NULL,
3477 			    sd_default_probe, NULL, NULL);
3478 
3479 	mutex_lock(&sd_ref_mutex);
3480 	dev_set_drvdata(dev, NULL);
3481 	put_device(&sdkp->dev);
3482 	mutex_unlock(&sd_ref_mutex);
3483 
3484 	return 0;
3485 }
3486 
3487 /**
3488  *	scsi_disk_release - Called to free the scsi_disk structure
3489  *	@dev: pointer to embedded class device
3490  *
3491  *	sd_ref_mutex must be held entering this routine.  Because it is
3492  *	called on last put, you should always use the scsi_disk_get()
3493  *	scsi_disk_put() helpers which manipulate the semaphore directly
3494  *	and never do a direct put_device.
3495  **/
3496 static void scsi_disk_release(struct device *dev)
3497 {
3498 	struct scsi_disk *sdkp = to_scsi_disk(dev);
3499 	struct gendisk *disk = sdkp->disk;
3500 	struct request_queue *q = disk->queue;
3501 
3502 	ida_free(&sd_index_ida, sdkp->index);
3503 
3504 	/*
3505 	 * Wait until all requests that are in progress have completed.
3506 	 * This is necessary to avoid that e.g. scsi_end_request() crashes
3507 	 * due to clearing the disk->private_data pointer. Wait from inside
3508 	 * scsi_disk_release() instead of from sd_release() to avoid that
3509 	 * freezing and unfreezing the request queue affects user space I/O
3510 	 * in case multiple processes open a /dev/sd... node concurrently.
3511 	 */
3512 	blk_mq_freeze_queue(q);
3513 	blk_mq_unfreeze_queue(q);
3514 
3515 	disk->private_data = NULL;
3516 	put_disk(disk);
3517 	put_device(&sdkp->device->sdev_gendev);
3518 
3519 	sd_zbc_release_disk(sdkp);
3520 
3521 	kfree(sdkp);
3522 }
3523 
3524 static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3525 {
3526 	unsigned char cmd[6] = { START_STOP };	/* START_VALID */
3527 	struct scsi_sense_hdr sshdr;
3528 	struct scsi_device *sdp = sdkp->device;
3529 	int res;
3530 
3531 	if (start)
3532 		cmd[4] |= 1;	/* START */
3533 
3534 	if (sdp->start_stop_pwr_cond)
3535 		cmd[4] |= start ? 1 << 4 : 3 << 4;	/* Active or Standby */
3536 
3537 	if (!scsi_device_online(sdp))
3538 		return -ENODEV;
3539 
3540 	res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr,
3541 			SD_TIMEOUT, SD_MAX_RETRIES, 0, RQF_PM, NULL);
3542 	if (res) {
3543 		sd_print_result(sdkp, "Start/Stop Unit failed", res);
3544 		if (driver_byte(res) == DRIVER_SENSE)
3545 			sd_print_sense_hdr(sdkp, &sshdr);
3546 		if (scsi_sense_valid(&sshdr) &&
3547 			/* 0x3a is medium not present */
3548 			sshdr.asc == 0x3a)
3549 			res = 0;
3550 	}
3551 
3552 	/* SCSI error codes must not go to the generic layer */
3553 	if (res)
3554 		return -EIO;
3555 
3556 	return 0;
3557 }
3558 
3559 /*
3560  * Send a SYNCHRONIZE CACHE instruction down to the device through
3561  * the normal SCSI command structure.  Wait for the command to
3562  * complete.
3563  */
3564 static void sd_shutdown(struct device *dev)
3565 {
3566 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3567 
3568 	if (!sdkp)
3569 		return;         /* this can happen */
3570 
3571 	if (pm_runtime_suspended(dev))
3572 		return;
3573 
3574 	if (sdkp->WCE && sdkp->media_present) {
3575 		sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3576 		sd_sync_cache(sdkp, NULL);
3577 	}
3578 
3579 	if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) {
3580 		sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3581 		sd_start_stop_device(sdkp, 0);
3582 	}
3583 }
3584 
3585 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors)
3586 {
3587 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3588 	struct scsi_sense_hdr sshdr;
3589 	int ret = 0;
3590 
3591 	if (!sdkp)	/* E.g.: runtime suspend following sd_remove() */
3592 		return 0;
3593 
3594 	if (sdkp->WCE && sdkp->media_present) {
3595 		sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3596 		ret = sd_sync_cache(sdkp, &sshdr);
3597 
3598 		if (ret) {
3599 			/* ignore OFFLINE device */
3600 			if (ret == -ENODEV)
3601 				return 0;
3602 
3603 			if (!scsi_sense_valid(&sshdr) ||
3604 			    sshdr.sense_key != ILLEGAL_REQUEST)
3605 				return ret;
3606 
3607 			/*
3608 			 * sshdr.sense_key == ILLEGAL_REQUEST means this drive
3609 			 * doesn't support sync. There's not much to do and
3610 			 * suspend shouldn't fail.
3611 			 */
3612 			ret = 0;
3613 		}
3614 	}
3615 
3616 	if (sdkp->device->manage_start_stop) {
3617 		sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3618 		/* an error is not worth aborting a system sleep */
3619 		ret = sd_start_stop_device(sdkp, 0);
3620 		if (ignore_stop_errors)
3621 			ret = 0;
3622 	}
3623 
3624 	return ret;
3625 }
3626 
3627 static int sd_suspend_system(struct device *dev)
3628 {
3629 	return sd_suspend_common(dev, true);
3630 }
3631 
3632 static int sd_suspend_runtime(struct device *dev)
3633 {
3634 	return sd_suspend_common(dev, false);
3635 }
3636 
3637 static int sd_resume(struct device *dev)
3638 {
3639 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3640 	int ret;
3641 
3642 	if (!sdkp)	/* E.g.: runtime resume at the start of sd_probe() */
3643 		return 0;
3644 
3645 	if (!sdkp->device->manage_start_stop)
3646 		return 0;
3647 
3648 	sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3649 	ret = sd_start_stop_device(sdkp, 1);
3650 	if (!ret)
3651 		opal_unlock_from_suspend(sdkp->opal_dev);
3652 	return ret;
3653 }
3654 
3655 /**
3656  *	init_sd - entry point for this driver (both when built in or when
3657  *	a module).
3658  *
3659  *	Note: this function registers this driver with the scsi mid-level.
3660  **/
3661 static int __init init_sd(void)
3662 {
3663 	int majors = 0, i, err;
3664 
3665 	SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
3666 
3667 	for (i = 0; i < SD_MAJORS; i++) {
3668 		if (register_blkdev(sd_major(i), "sd") != 0)
3669 			continue;
3670 		majors++;
3671 		blk_register_region(sd_major(i), SD_MINORS, NULL,
3672 				    sd_default_probe, NULL, NULL);
3673 	}
3674 
3675 	if (!majors)
3676 		return -ENODEV;
3677 
3678 	err = class_register(&sd_disk_class);
3679 	if (err)
3680 		goto err_out;
3681 
3682 	sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE,
3683 					 0, 0, NULL);
3684 	if (!sd_cdb_cache) {
3685 		printk(KERN_ERR "sd: can't init extended cdb cache\n");
3686 		err = -ENOMEM;
3687 		goto err_out_class;
3688 	}
3689 
3690 	sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache);
3691 	if (!sd_cdb_pool) {
3692 		printk(KERN_ERR "sd: can't init extended cdb pool\n");
3693 		err = -ENOMEM;
3694 		goto err_out_cache;
3695 	}
3696 
3697 	sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0);
3698 	if (!sd_page_pool) {
3699 		printk(KERN_ERR "sd: can't init discard page pool\n");
3700 		err = -ENOMEM;
3701 		goto err_out_ppool;
3702 	}
3703 
3704 	err = scsi_register_driver(&sd_template.gendrv);
3705 	if (err)
3706 		goto err_out_driver;
3707 
3708 	return 0;
3709 
3710 err_out_driver:
3711 	mempool_destroy(sd_page_pool);
3712 
3713 err_out_ppool:
3714 	mempool_destroy(sd_cdb_pool);
3715 
3716 err_out_cache:
3717 	kmem_cache_destroy(sd_cdb_cache);
3718 
3719 err_out_class:
3720 	class_unregister(&sd_disk_class);
3721 err_out:
3722 	for (i = 0; i < SD_MAJORS; i++)
3723 		unregister_blkdev(sd_major(i), "sd");
3724 	return err;
3725 }
3726 
3727 /**
3728  *	exit_sd - exit point for this driver (when it is a module).
3729  *
3730  *	Note: this function unregisters this driver from the scsi mid-level.
3731  **/
3732 static void __exit exit_sd(void)
3733 {
3734 	int i;
3735 
3736 	SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
3737 
3738 	scsi_unregister_driver(&sd_template.gendrv);
3739 	mempool_destroy(sd_cdb_pool);
3740 	mempool_destroy(sd_page_pool);
3741 	kmem_cache_destroy(sd_cdb_cache);
3742 
3743 	class_unregister(&sd_disk_class);
3744 
3745 	for (i = 0; i < SD_MAJORS; i++) {
3746 		blk_unregister_region(sd_major(i), SD_MINORS);
3747 		unregister_blkdev(sd_major(i), "sd");
3748 	}
3749 }
3750 
3751 module_init(init_sd);
3752 module_exit(exit_sd);
3753 
3754 void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
3755 {
3756 	scsi_print_sense_hdr(sdkp->device,
3757 			     sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
3758 }
3759 
3760 void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result)
3761 {
3762 	const char *hb_string = scsi_hostbyte_string(result);
3763 	const char *db_string = scsi_driverbyte_string(result);
3764 
3765 	if (hb_string || db_string)
3766 		sd_printk(KERN_INFO, sdkp,
3767 			  "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
3768 			  hb_string ? hb_string : "invalid",
3769 			  db_string ? db_string : "invalid");
3770 	else
3771 		sd_printk(KERN_INFO, sdkp,
3772 			  "%s: Result: hostbyte=0x%02x driverbyte=0x%02x\n",
3773 			  msg, host_byte(result), driver_byte(result));
3774 }
3775