xref: /linux/drivers/scsi/sd.c (revision f7543209ce5dc09e3f5a27a7d4ee53e226283719)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *      sd.c Copyright (C) 1992 Drew Eckhardt
4  *           Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
5  *
6  *      Linux scsi disk driver
7  *              Initial versions: Drew Eckhardt
8  *              Subsequent revisions: Eric Youngdale
9  *	Modification history:
10  *       - Drew Eckhardt <drew@colorado.edu> original
11  *       - Eric Youngdale <eric@andante.org> add scatter-gather, multiple
12  *         outstanding request, and other enhancements.
13  *         Support loadable low-level scsi drivers.
14  *       - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using
15  *         eight major numbers.
16  *       - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
17  *	 - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in
18  *	   sd_init and cleanups.
19  *	 - Alex Davis <letmein@erols.com> Fix problem where partition info
20  *	   not being read in sd_open. Fix problem where removable media
21  *	   could be ejected after sd_open.
22  *	 - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
23  *	 - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox
24  *	   <willy@debian.org>, Kurt Garloff <garloff@suse.de>:
25  *	   Support 32k/1M disks.
26  *
27  *	Logging policy (needs CONFIG_SCSI_LOGGING defined):
28  *	 - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
29  *	 - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
30  *	 - entering sd_ioctl: SCSI_LOG_IOCTL level 1
31  *	 - entering other commands: SCSI_LOG_HLQUEUE level 3
32  *	Note: when the logging level is set by the user, it must be greater
33  *	than the level indicated above to trigger output.
34  */
35 
36 #include <linux/module.h>
37 #include <linux/fs.h>
38 #include <linux/kernel.h>
39 #include <linux/mm.h>
40 #include <linux/bio.h>
41 #include <linux/hdreg.h>
42 #include <linux/errno.h>
43 #include <linux/idr.h>
44 #include <linux/interrupt.h>
45 #include <linux/init.h>
46 #include <linux/blkdev.h>
47 #include <linux/blkpg.h>
48 #include <linux/blk-pm.h>
49 #include <linux/delay.h>
50 #include <linux/rw_hint.h>
51 #include <linux/major.h>
52 #include <linux/mutex.h>
53 #include <linux/string_helpers.h>
54 #include <linux/slab.h>
55 #include <linux/sed-opal.h>
56 #include <linux/pm_runtime.h>
57 #include <linux/pr.h>
58 #include <linux/t10-pi.h>
59 #include <linux/uaccess.h>
60 #include <asm/unaligned.h>
61 
62 #include <scsi/scsi.h>
63 #include <scsi/scsi_cmnd.h>
64 #include <scsi/scsi_dbg.h>
65 #include <scsi/scsi_device.h>
66 #include <scsi/scsi_devinfo.h>
67 #include <scsi/scsi_driver.h>
68 #include <scsi/scsi_eh.h>
69 #include <scsi/scsi_host.h>
70 #include <scsi/scsi_ioctl.h>
71 #include <scsi/scsicam.h>
72 #include <scsi/scsi_common.h>
73 
74 #include "sd.h"
75 #include "scsi_priv.h"
76 #include "scsi_logging.h"
77 
78 MODULE_AUTHOR("Eric Youngdale");
79 MODULE_DESCRIPTION("SCSI disk (sd) driver");
80 MODULE_LICENSE("GPL");
81 
82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
95 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
96 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
97 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
98 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
99 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
100 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
101 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
102 
103 #define SD_MINORS	16
104 
105 static void sd_config_discard(struct scsi_disk *, unsigned int);
106 static void sd_config_write_same(struct scsi_disk *);
107 static int  sd_revalidate_disk(struct gendisk *);
108 static void sd_unlock_native_capacity(struct gendisk *disk);
109 static void sd_shutdown(struct device *);
110 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
111 static void scsi_disk_release(struct device *cdev);
112 
113 static DEFINE_IDA(sd_index_ida);
114 
115 static mempool_t *sd_page_pool;
116 static struct lock_class_key sd_bio_compl_lkclass;
117 
118 static const char *sd_cache_types[] = {
119 	"write through", "none", "write back",
120 	"write back, no read (daft)"
121 };
122 
123 static void sd_set_flush_flag(struct scsi_disk *sdkp)
124 {
125 	bool wc = false, fua = false;
126 
127 	if (sdkp->WCE) {
128 		wc = true;
129 		if (sdkp->DPOFUA)
130 			fua = true;
131 	}
132 
133 	blk_queue_write_cache(sdkp->disk->queue, wc, fua);
134 }
135 
136 static ssize_t
137 cache_type_store(struct device *dev, struct device_attribute *attr,
138 		 const char *buf, size_t count)
139 {
140 	int ct, rcd, wce, sp;
141 	struct scsi_disk *sdkp = to_scsi_disk(dev);
142 	struct scsi_device *sdp = sdkp->device;
143 	char buffer[64];
144 	char *buffer_data;
145 	struct scsi_mode_data data;
146 	struct scsi_sense_hdr sshdr;
147 	static const char temp[] = "temporary ";
148 	int len, ret;
149 
150 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
151 		/* no cache control on RBC devices; theoretically they
152 		 * can do it, but there's probably so many exceptions
153 		 * it's not worth the risk */
154 		return -EINVAL;
155 
156 	if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
157 		buf += sizeof(temp) - 1;
158 		sdkp->cache_override = 1;
159 	} else {
160 		sdkp->cache_override = 0;
161 	}
162 
163 	ct = sysfs_match_string(sd_cache_types, buf);
164 	if (ct < 0)
165 		return -EINVAL;
166 
167 	rcd = ct & 0x01 ? 1 : 0;
168 	wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
169 
170 	if (sdkp->cache_override) {
171 		sdkp->WCE = wce;
172 		sdkp->RCD = rcd;
173 		sd_set_flush_flag(sdkp);
174 		return count;
175 	}
176 
177 	if (scsi_mode_sense(sdp, 0x08, 8, 0, buffer, sizeof(buffer), SD_TIMEOUT,
178 			    sdkp->max_retries, &data, NULL))
179 		return -EINVAL;
180 	len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
181 		  data.block_descriptor_length);
182 	buffer_data = buffer + data.header_length +
183 		data.block_descriptor_length;
184 	buffer_data[2] &= ~0x05;
185 	buffer_data[2] |= wce << 2 | rcd;
186 	sp = buffer_data[0] & 0x80 ? 1 : 0;
187 	buffer_data[0] &= ~0x80;
188 
189 	/*
190 	 * Ensure WP, DPOFUA, and RESERVED fields are cleared in
191 	 * received mode parameter buffer before doing MODE SELECT.
192 	 */
193 	data.device_specific = 0;
194 
195 	ret = scsi_mode_select(sdp, 1, sp, buffer_data, len, SD_TIMEOUT,
196 			       sdkp->max_retries, &data, &sshdr);
197 	if (ret) {
198 		if (ret > 0 && scsi_sense_valid(&sshdr))
199 			sd_print_sense_hdr(sdkp, &sshdr);
200 		return -EINVAL;
201 	}
202 	sd_revalidate_disk(sdkp->disk);
203 	return count;
204 }
205 
206 static ssize_t
207 manage_start_stop_show(struct device *dev,
208 		       struct device_attribute *attr, char *buf)
209 {
210 	struct scsi_disk *sdkp = to_scsi_disk(dev);
211 	struct scsi_device *sdp = sdkp->device;
212 
213 	return sysfs_emit(buf, "%u\n",
214 			  sdp->manage_system_start_stop &&
215 			  sdp->manage_runtime_start_stop &&
216 			  sdp->manage_shutdown);
217 }
218 static DEVICE_ATTR_RO(manage_start_stop);
219 
220 static ssize_t
221 manage_system_start_stop_show(struct device *dev,
222 			      struct device_attribute *attr, char *buf)
223 {
224 	struct scsi_disk *sdkp = to_scsi_disk(dev);
225 	struct scsi_device *sdp = sdkp->device;
226 
227 	return sysfs_emit(buf, "%u\n", sdp->manage_system_start_stop);
228 }
229 
230 static ssize_t
231 manage_system_start_stop_store(struct device *dev,
232 			       struct device_attribute *attr,
233 			       const char *buf, size_t count)
234 {
235 	struct scsi_disk *sdkp = to_scsi_disk(dev);
236 	struct scsi_device *sdp = sdkp->device;
237 	bool v;
238 
239 	if (!capable(CAP_SYS_ADMIN))
240 		return -EACCES;
241 
242 	if (kstrtobool(buf, &v))
243 		return -EINVAL;
244 
245 	sdp->manage_system_start_stop = v;
246 
247 	return count;
248 }
249 static DEVICE_ATTR_RW(manage_system_start_stop);
250 
251 static ssize_t
252 manage_runtime_start_stop_show(struct device *dev,
253 			       struct device_attribute *attr, char *buf)
254 {
255 	struct scsi_disk *sdkp = to_scsi_disk(dev);
256 	struct scsi_device *sdp = sdkp->device;
257 
258 	return sysfs_emit(buf, "%u\n", sdp->manage_runtime_start_stop);
259 }
260 
261 static ssize_t
262 manage_runtime_start_stop_store(struct device *dev,
263 				struct device_attribute *attr,
264 				const char *buf, size_t count)
265 {
266 	struct scsi_disk *sdkp = to_scsi_disk(dev);
267 	struct scsi_device *sdp = sdkp->device;
268 	bool v;
269 
270 	if (!capable(CAP_SYS_ADMIN))
271 		return -EACCES;
272 
273 	if (kstrtobool(buf, &v))
274 		return -EINVAL;
275 
276 	sdp->manage_runtime_start_stop = v;
277 
278 	return count;
279 }
280 static DEVICE_ATTR_RW(manage_runtime_start_stop);
281 
282 static ssize_t manage_shutdown_show(struct device *dev,
283 				    struct device_attribute *attr, char *buf)
284 {
285 	struct scsi_disk *sdkp = to_scsi_disk(dev);
286 	struct scsi_device *sdp = sdkp->device;
287 
288 	return sysfs_emit(buf, "%u\n", sdp->manage_shutdown);
289 }
290 
291 static ssize_t manage_shutdown_store(struct device *dev,
292 				     struct device_attribute *attr,
293 				     const char *buf, size_t count)
294 {
295 	struct scsi_disk *sdkp = to_scsi_disk(dev);
296 	struct scsi_device *sdp = sdkp->device;
297 	bool v;
298 
299 	if (!capable(CAP_SYS_ADMIN))
300 		return -EACCES;
301 
302 	if (kstrtobool(buf, &v))
303 		return -EINVAL;
304 
305 	sdp->manage_shutdown = v;
306 
307 	return count;
308 }
309 static DEVICE_ATTR_RW(manage_shutdown);
310 
311 static ssize_t
312 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
313 {
314 	struct scsi_disk *sdkp = to_scsi_disk(dev);
315 
316 	return sprintf(buf, "%u\n", sdkp->device->allow_restart);
317 }
318 
319 static ssize_t
320 allow_restart_store(struct device *dev, struct device_attribute *attr,
321 		    const char *buf, size_t count)
322 {
323 	bool v;
324 	struct scsi_disk *sdkp = to_scsi_disk(dev);
325 	struct scsi_device *sdp = sdkp->device;
326 
327 	if (!capable(CAP_SYS_ADMIN))
328 		return -EACCES;
329 
330 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
331 		return -EINVAL;
332 
333 	if (kstrtobool(buf, &v))
334 		return -EINVAL;
335 
336 	sdp->allow_restart = v;
337 
338 	return count;
339 }
340 static DEVICE_ATTR_RW(allow_restart);
341 
342 static ssize_t
343 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
344 {
345 	struct scsi_disk *sdkp = to_scsi_disk(dev);
346 	int ct = sdkp->RCD + 2*sdkp->WCE;
347 
348 	return sprintf(buf, "%s\n", sd_cache_types[ct]);
349 }
350 static DEVICE_ATTR_RW(cache_type);
351 
352 static ssize_t
353 FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
354 {
355 	struct scsi_disk *sdkp = to_scsi_disk(dev);
356 
357 	return sprintf(buf, "%u\n", sdkp->DPOFUA);
358 }
359 static DEVICE_ATTR_RO(FUA);
360 
361 static ssize_t
362 protection_type_show(struct device *dev, struct device_attribute *attr,
363 		     char *buf)
364 {
365 	struct scsi_disk *sdkp = to_scsi_disk(dev);
366 
367 	return sprintf(buf, "%u\n", sdkp->protection_type);
368 }
369 
370 static ssize_t
371 protection_type_store(struct device *dev, struct device_attribute *attr,
372 		      const char *buf, size_t count)
373 {
374 	struct scsi_disk *sdkp = to_scsi_disk(dev);
375 	unsigned int val;
376 	int err;
377 
378 	if (!capable(CAP_SYS_ADMIN))
379 		return -EACCES;
380 
381 	err = kstrtouint(buf, 10, &val);
382 
383 	if (err)
384 		return err;
385 
386 	if (val <= T10_PI_TYPE3_PROTECTION)
387 		sdkp->protection_type = val;
388 
389 	return count;
390 }
391 static DEVICE_ATTR_RW(protection_type);
392 
393 static ssize_t
394 protection_mode_show(struct device *dev, struct device_attribute *attr,
395 		     char *buf)
396 {
397 	struct scsi_disk *sdkp = to_scsi_disk(dev);
398 	struct scsi_device *sdp = sdkp->device;
399 	unsigned int dif, dix;
400 
401 	dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
402 	dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
403 
404 	if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
405 		dif = 0;
406 		dix = 1;
407 	}
408 
409 	if (!dif && !dix)
410 		return sprintf(buf, "none\n");
411 
412 	return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
413 }
414 static DEVICE_ATTR_RO(protection_mode);
415 
416 static ssize_t
417 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
418 {
419 	struct scsi_disk *sdkp = to_scsi_disk(dev);
420 
421 	return sprintf(buf, "%u\n", sdkp->ATO);
422 }
423 static DEVICE_ATTR_RO(app_tag_own);
424 
425 static ssize_t
426 thin_provisioning_show(struct device *dev, struct device_attribute *attr,
427 		       char *buf)
428 {
429 	struct scsi_disk *sdkp = to_scsi_disk(dev);
430 
431 	return sprintf(buf, "%u\n", sdkp->lbpme);
432 }
433 static DEVICE_ATTR_RO(thin_provisioning);
434 
435 /* sysfs_match_string() requires dense arrays */
436 static const char *lbp_mode[] = {
437 	[SD_LBP_FULL]		= "full",
438 	[SD_LBP_UNMAP]		= "unmap",
439 	[SD_LBP_WS16]		= "writesame_16",
440 	[SD_LBP_WS10]		= "writesame_10",
441 	[SD_LBP_ZERO]		= "writesame_zero",
442 	[SD_LBP_DISABLE]	= "disabled",
443 };
444 
445 static ssize_t
446 provisioning_mode_show(struct device *dev, struct device_attribute *attr,
447 		       char *buf)
448 {
449 	struct scsi_disk *sdkp = to_scsi_disk(dev);
450 
451 	return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
452 }
453 
454 static ssize_t
455 provisioning_mode_store(struct device *dev, struct device_attribute *attr,
456 			const char *buf, size_t count)
457 {
458 	struct scsi_disk *sdkp = to_scsi_disk(dev);
459 	struct scsi_device *sdp = sdkp->device;
460 	int mode;
461 
462 	if (!capable(CAP_SYS_ADMIN))
463 		return -EACCES;
464 
465 	if (sd_is_zoned(sdkp)) {
466 		sd_config_discard(sdkp, SD_LBP_DISABLE);
467 		return count;
468 	}
469 
470 	if (sdp->type != TYPE_DISK)
471 		return -EINVAL;
472 
473 	mode = sysfs_match_string(lbp_mode, buf);
474 	if (mode < 0)
475 		return -EINVAL;
476 
477 	sd_config_discard(sdkp, mode);
478 
479 	return count;
480 }
481 static DEVICE_ATTR_RW(provisioning_mode);
482 
483 /* sysfs_match_string() requires dense arrays */
484 static const char *zeroing_mode[] = {
485 	[SD_ZERO_WRITE]		= "write",
486 	[SD_ZERO_WS]		= "writesame",
487 	[SD_ZERO_WS16_UNMAP]	= "writesame_16_unmap",
488 	[SD_ZERO_WS10_UNMAP]	= "writesame_10_unmap",
489 };
490 
491 static ssize_t
492 zeroing_mode_show(struct device *dev, struct device_attribute *attr,
493 		  char *buf)
494 {
495 	struct scsi_disk *sdkp = to_scsi_disk(dev);
496 
497 	return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
498 }
499 
500 static ssize_t
501 zeroing_mode_store(struct device *dev, struct device_attribute *attr,
502 		   const char *buf, size_t count)
503 {
504 	struct scsi_disk *sdkp = to_scsi_disk(dev);
505 	int mode;
506 
507 	if (!capable(CAP_SYS_ADMIN))
508 		return -EACCES;
509 
510 	mode = sysfs_match_string(zeroing_mode, buf);
511 	if (mode < 0)
512 		return -EINVAL;
513 
514 	sdkp->zeroing_mode = mode;
515 
516 	return count;
517 }
518 static DEVICE_ATTR_RW(zeroing_mode);
519 
520 static ssize_t
521 max_medium_access_timeouts_show(struct device *dev,
522 				struct device_attribute *attr, char *buf)
523 {
524 	struct scsi_disk *sdkp = to_scsi_disk(dev);
525 
526 	return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
527 }
528 
529 static ssize_t
530 max_medium_access_timeouts_store(struct device *dev,
531 				 struct device_attribute *attr, const char *buf,
532 				 size_t count)
533 {
534 	struct scsi_disk *sdkp = to_scsi_disk(dev);
535 	int err;
536 
537 	if (!capable(CAP_SYS_ADMIN))
538 		return -EACCES;
539 
540 	err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
541 
542 	return err ? err : count;
543 }
544 static DEVICE_ATTR_RW(max_medium_access_timeouts);
545 
546 static ssize_t
547 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
548 			   char *buf)
549 {
550 	struct scsi_disk *sdkp = to_scsi_disk(dev);
551 
552 	return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
553 }
554 
555 static ssize_t
556 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
557 			    const char *buf, size_t count)
558 {
559 	struct scsi_disk *sdkp = to_scsi_disk(dev);
560 	struct scsi_device *sdp = sdkp->device;
561 	unsigned long max;
562 	int err;
563 
564 	if (!capable(CAP_SYS_ADMIN))
565 		return -EACCES;
566 
567 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
568 		return -EINVAL;
569 
570 	err = kstrtoul(buf, 10, &max);
571 
572 	if (err)
573 		return err;
574 
575 	if (max == 0)
576 		sdp->no_write_same = 1;
577 	else if (max <= SD_MAX_WS16_BLOCKS) {
578 		sdp->no_write_same = 0;
579 		sdkp->max_ws_blocks = max;
580 	}
581 
582 	sd_config_write_same(sdkp);
583 
584 	return count;
585 }
586 static DEVICE_ATTR_RW(max_write_same_blocks);
587 
588 static ssize_t
589 zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf)
590 {
591 	struct scsi_disk *sdkp = to_scsi_disk(dev);
592 
593 	if (sdkp->device->type == TYPE_ZBC)
594 		return sprintf(buf, "host-managed\n");
595 	if (sdkp->zoned == 1)
596 		return sprintf(buf, "host-aware\n");
597 	if (sdkp->zoned == 2)
598 		return sprintf(buf, "drive-managed\n");
599 	return sprintf(buf, "none\n");
600 }
601 static DEVICE_ATTR_RO(zoned_cap);
602 
603 static ssize_t
604 max_retries_store(struct device *dev, struct device_attribute *attr,
605 		  const char *buf, size_t count)
606 {
607 	struct scsi_disk *sdkp = to_scsi_disk(dev);
608 	struct scsi_device *sdev = sdkp->device;
609 	int retries, err;
610 
611 	err = kstrtoint(buf, 10, &retries);
612 	if (err)
613 		return err;
614 
615 	if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) {
616 		sdkp->max_retries = retries;
617 		return count;
618 	}
619 
620 	sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n",
621 		    SD_MAX_RETRIES);
622 	return -EINVAL;
623 }
624 
625 static ssize_t
626 max_retries_show(struct device *dev, struct device_attribute *attr,
627 		 char *buf)
628 {
629 	struct scsi_disk *sdkp = to_scsi_disk(dev);
630 
631 	return sprintf(buf, "%d\n", sdkp->max_retries);
632 }
633 
634 static DEVICE_ATTR_RW(max_retries);
635 
636 static struct attribute *sd_disk_attrs[] = {
637 	&dev_attr_cache_type.attr,
638 	&dev_attr_FUA.attr,
639 	&dev_attr_allow_restart.attr,
640 	&dev_attr_manage_start_stop.attr,
641 	&dev_attr_manage_system_start_stop.attr,
642 	&dev_attr_manage_runtime_start_stop.attr,
643 	&dev_attr_manage_shutdown.attr,
644 	&dev_attr_protection_type.attr,
645 	&dev_attr_protection_mode.attr,
646 	&dev_attr_app_tag_own.attr,
647 	&dev_attr_thin_provisioning.attr,
648 	&dev_attr_provisioning_mode.attr,
649 	&dev_attr_zeroing_mode.attr,
650 	&dev_attr_max_write_same_blocks.attr,
651 	&dev_attr_max_medium_access_timeouts.attr,
652 	&dev_attr_zoned_cap.attr,
653 	&dev_attr_max_retries.attr,
654 	NULL,
655 };
656 ATTRIBUTE_GROUPS(sd_disk);
657 
658 static struct class sd_disk_class = {
659 	.name		= "scsi_disk",
660 	.dev_release	= scsi_disk_release,
661 	.dev_groups	= sd_disk_groups,
662 };
663 
664 /*
665  * Don't request a new module, as that could deadlock in multipath
666  * environment.
667  */
668 static void sd_default_probe(dev_t devt)
669 {
670 }
671 
672 /*
673  * Device no to disk mapping:
674  *
675  *       major         disc2     disc  p1
676  *   |............|.............|....|....| <- dev_t
677  *    31        20 19          8 7  4 3  0
678  *
679  * Inside a major, we have 16k disks, however mapped non-
680  * contiguously. The first 16 disks are for major0, the next
681  * ones with major1, ... Disk 256 is for major0 again, disk 272
682  * for major1, ...
683  * As we stay compatible with our numbering scheme, we can reuse
684  * the well-know SCSI majors 8, 65--71, 136--143.
685  */
686 static int sd_major(int major_idx)
687 {
688 	switch (major_idx) {
689 	case 0:
690 		return SCSI_DISK0_MAJOR;
691 	case 1 ... 7:
692 		return SCSI_DISK1_MAJOR + major_idx - 1;
693 	case 8 ... 15:
694 		return SCSI_DISK8_MAJOR + major_idx - 8;
695 	default:
696 		BUG();
697 		return 0;	/* shut up gcc */
698 	}
699 }
700 
701 #ifdef CONFIG_BLK_SED_OPAL
702 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
703 		size_t len, bool send)
704 {
705 	struct scsi_disk *sdkp = data;
706 	struct scsi_device *sdev = sdkp->device;
707 	u8 cdb[12] = { 0, };
708 	const struct scsi_exec_args exec_args = {
709 		.req_flags = BLK_MQ_REQ_PM,
710 	};
711 	int ret;
712 
713 	cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
714 	cdb[1] = secp;
715 	put_unaligned_be16(spsp, &cdb[2]);
716 	put_unaligned_be32(len, &cdb[6]);
717 
718 	ret = scsi_execute_cmd(sdev, cdb, send ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN,
719 			       buffer, len, SD_TIMEOUT, sdkp->max_retries,
720 			       &exec_args);
721 	return ret <= 0 ? ret : -EIO;
722 }
723 #endif /* CONFIG_BLK_SED_OPAL */
724 
725 /*
726  * Look up the DIX operation based on whether the command is read or
727  * write and whether dix and dif are enabled.
728  */
729 static unsigned int sd_prot_op(bool write, bool dix, bool dif)
730 {
731 	/* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */
732 	static const unsigned int ops[] = {	/* wrt dix dif */
733 		SCSI_PROT_NORMAL,		/*  0	0   0  */
734 		SCSI_PROT_READ_STRIP,		/*  0	0   1  */
735 		SCSI_PROT_READ_INSERT,		/*  0	1   0  */
736 		SCSI_PROT_READ_PASS,		/*  0	1   1  */
737 		SCSI_PROT_NORMAL,		/*  1	0   0  */
738 		SCSI_PROT_WRITE_INSERT,		/*  1	0   1  */
739 		SCSI_PROT_WRITE_STRIP,		/*  1	1   0  */
740 		SCSI_PROT_WRITE_PASS,		/*  1	1   1  */
741 	};
742 
743 	return ops[write << 2 | dix << 1 | dif];
744 }
745 
746 /*
747  * Returns a mask of the protection flags that are valid for a given DIX
748  * operation.
749  */
750 static unsigned int sd_prot_flag_mask(unsigned int prot_op)
751 {
752 	static const unsigned int flag_mask[] = {
753 		[SCSI_PROT_NORMAL]		= 0,
754 
755 		[SCSI_PROT_READ_STRIP]		= SCSI_PROT_TRANSFER_PI |
756 						  SCSI_PROT_GUARD_CHECK |
757 						  SCSI_PROT_REF_CHECK |
758 						  SCSI_PROT_REF_INCREMENT,
759 
760 		[SCSI_PROT_READ_INSERT]		= SCSI_PROT_REF_INCREMENT |
761 						  SCSI_PROT_IP_CHECKSUM,
762 
763 		[SCSI_PROT_READ_PASS]		= SCSI_PROT_TRANSFER_PI |
764 						  SCSI_PROT_GUARD_CHECK |
765 						  SCSI_PROT_REF_CHECK |
766 						  SCSI_PROT_REF_INCREMENT |
767 						  SCSI_PROT_IP_CHECKSUM,
768 
769 		[SCSI_PROT_WRITE_INSERT]	= SCSI_PROT_TRANSFER_PI |
770 						  SCSI_PROT_REF_INCREMENT,
771 
772 		[SCSI_PROT_WRITE_STRIP]		= SCSI_PROT_GUARD_CHECK |
773 						  SCSI_PROT_REF_CHECK |
774 						  SCSI_PROT_REF_INCREMENT |
775 						  SCSI_PROT_IP_CHECKSUM,
776 
777 		[SCSI_PROT_WRITE_PASS]		= SCSI_PROT_TRANSFER_PI |
778 						  SCSI_PROT_GUARD_CHECK |
779 						  SCSI_PROT_REF_CHECK |
780 						  SCSI_PROT_REF_INCREMENT |
781 						  SCSI_PROT_IP_CHECKSUM,
782 	};
783 
784 	return flag_mask[prot_op];
785 }
786 
787 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
788 					   unsigned int dix, unsigned int dif)
789 {
790 	struct request *rq = scsi_cmd_to_rq(scmd);
791 	struct bio *bio = rq->bio;
792 	unsigned int prot_op = sd_prot_op(rq_data_dir(rq), dix, dif);
793 	unsigned int protect = 0;
794 
795 	if (dix) {				/* DIX Type 0, 1, 2, 3 */
796 		if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
797 			scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
798 
799 		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
800 			scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
801 	}
802 
803 	if (dif != T10_PI_TYPE3_PROTECTION) {	/* DIX/DIF Type 0, 1, 2 */
804 		scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
805 
806 		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
807 			scmd->prot_flags |= SCSI_PROT_REF_CHECK;
808 	}
809 
810 	if (dif) {				/* DIX/DIF Type 1, 2, 3 */
811 		scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
812 
813 		if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
814 			protect = 3 << 5;	/* Disable target PI checking */
815 		else
816 			protect = 1 << 5;	/* Enable target PI checking */
817 	}
818 
819 	scsi_set_prot_op(scmd, prot_op);
820 	scsi_set_prot_type(scmd, dif);
821 	scmd->prot_flags &= sd_prot_flag_mask(prot_op);
822 
823 	return protect;
824 }
825 
826 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
827 {
828 	struct request_queue *q = sdkp->disk->queue;
829 	unsigned int logical_block_size = sdkp->device->sector_size;
830 	unsigned int max_blocks = 0;
831 
832 	q->limits.discard_alignment =
833 		sdkp->unmap_alignment * logical_block_size;
834 	q->limits.discard_granularity =
835 		max(sdkp->physical_block_size,
836 		    sdkp->unmap_granularity * logical_block_size);
837 	sdkp->provisioning_mode = mode;
838 
839 	switch (mode) {
840 
841 	case SD_LBP_FULL:
842 	case SD_LBP_DISABLE:
843 		blk_queue_max_discard_sectors(q, 0);
844 		return;
845 
846 	case SD_LBP_UNMAP:
847 		max_blocks = min_not_zero(sdkp->max_unmap_blocks,
848 					  (u32)SD_MAX_WS16_BLOCKS);
849 		break;
850 
851 	case SD_LBP_WS16:
852 		if (sdkp->device->unmap_limit_for_ws)
853 			max_blocks = sdkp->max_unmap_blocks;
854 		else
855 			max_blocks = sdkp->max_ws_blocks;
856 
857 		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
858 		break;
859 
860 	case SD_LBP_WS10:
861 		if (sdkp->device->unmap_limit_for_ws)
862 			max_blocks = sdkp->max_unmap_blocks;
863 		else
864 			max_blocks = sdkp->max_ws_blocks;
865 
866 		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
867 		break;
868 
869 	case SD_LBP_ZERO:
870 		max_blocks = min_not_zero(sdkp->max_ws_blocks,
871 					  (u32)SD_MAX_WS10_BLOCKS);
872 		break;
873 	}
874 
875 	blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
876 }
877 
878 static void *sd_set_special_bvec(struct request *rq, unsigned int data_len)
879 {
880 	struct page *page;
881 
882 	page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
883 	if (!page)
884 		return NULL;
885 	clear_highpage(page);
886 	bvec_set_page(&rq->special_vec, page, data_len, 0);
887 	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
888 	return bvec_virt(&rq->special_vec);
889 }
890 
891 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
892 {
893 	struct scsi_device *sdp = cmd->device;
894 	struct request *rq = scsi_cmd_to_rq(cmd);
895 	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
896 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
897 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
898 	unsigned int data_len = 24;
899 	char *buf;
900 
901 	buf = sd_set_special_bvec(rq, data_len);
902 	if (!buf)
903 		return BLK_STS_RESOURCE;
904 
905 	cmd->cmd_len = 10;
906 	cmd->cmnd[0] = UNMAP;
907 	cmd->cmnd[8] = 24;
908 
909 	put_unaligned_be16(6 + 16, &buf[0]);
910 	put_unaligned_be16(16, &buf[2]);
911 	put_unaligned_be64(lba, &buf[8]);
912 	put_unaligned_be32(nr_blocks, &buf[16]);
913 
914 	cmd->allowed = sdkp->max_retries;
915 	cmd->transfersize = data_len;
916 	rq->timeout = SD_TIMEOUT;
917 
918 	return scsi_alloc_sgtables(cmd);
919 }
920 
921 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd,
922 		bool unmap)
923 {
924 	struct scsi_device *sdp = cmd->device;
925 	struct request *rq = scsi_cmd_to_rq(cmd);
926 	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
927 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
928 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
929 	u32 data_len = sdp->sector_size;
930 
931 	if (!sd_set_special_bvec(rq, data_len))
932 		return BLK_STS_RESOURCE;
933 
934 	cmd->cmd_len = 16;
935 	cmd->cmnd[0] = WRITE_SAME_16;
936 	if (unmap)
937 		cmd->cmnd[1] = 0x8; /* UNMAP */
938 	put_unaligned_be64(lba, &cmd->cmnd[2]);
939 	put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
940 
941 	cmd->allowed = sdkp->max_retries;
942 	cmd->transfersize = data_len;
943 	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
944 
945 	return scsi_alloc_sgtables(cmd);
946 }
947 
948 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd,
949 		bool unmap)
950 {
951 	struct scsi_device *sdp = cmd->device;
952 	struct request *rq = scsi_cmd_to_rq(cmd);
953 	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
954 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
955 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
956 	u32 data_len = sdp->sector_size;
957 
958 	if (!sd_set_special_bvec(rq, data_len))
959 		return BLK_STS_RESOURCE;
960 
961 	cmd->cmd_len = 10;
962 	cmd->cmnd[0] = WRITE_SAME;
963 	if (unmap)
964 		cmd->cmnd[1] = 0x8; /* UNMAP */
965 	put_unaligned_be32(lba, &cmd->cmnd[2]);
966 	put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
967 
968 	cmd->allowed = sdkp->max_retries;
969 	cmd->transfersize = data_len;
970 	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
971 
972 	return scsi_alloc_sgtables(cmd);
973 }
974 
975 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
976 {
977 	struct request *rq = scsi_cmd_to_rq(cmd);
978 	struct scsi_device *sdp = cmd->device;
979 	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
980 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
981 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
982 
983 	if (!(rq->cmd_flags & REQ_NOUNMAP)) {
984 		switch (sdkp->zeroing_mode) {
985 		case SD_ZERO_WS16_UNMAP:
986 			return sd_setup_write_same16_cmnd(cmd, true);
987 		case SD_ZERO_WS10_UNMAP:
988 			return sd_setup_write_same10_cmnd(cmd, true);
989 		}
990 	}
991 
992 	if (sdp->no_write_same) {
993 		rq->rq_flags |= RQF_QUIET;
994 		return BLK_STS_TARGET;
995 	}
996 
997 	if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff)
998 		return sd_setup_write_same16_cmnd(cmd, false);
999 
1000 	return sd_setup_write_same10_cmnd(cmd, false);
1001 }
1002 
1003 static void sd_config_write_same(struct scsi_disk *sdkp)
1004 {
1005 	struct request_queue *q = sdkp->disk->queue;
1006 	unsigned int logical_block_size = sdkp->device->sector_size;
1007 
1008 	if (sdkp->device->no_write_same) {
1009 		sdkp->max_ws_blocks = 0;
1010 		goto out;
1011 	}
1012 
1013 	/* Some devices can not handle block counts above 0xffff despite
1014 	 * supporting WRITE SAME(16). Consequently we default to 64k
1015 	 * blocks per I/O unless the device explicitly advertises a
1016 	 * bigger limit.
1017 	 */
1018 	if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
1019 		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
1020 						   (u32)SD_MAX_WS16_BLOCKS);
1021 	else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
1022 		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
1023 						   (u32)SD_MAX_WS10_BLOCKS);
1024 	else {
1025 		sdkp->device->no_write_same = 1;
1026 		sdkp->max_ws_blocks = 0;
1027 	}
1028 
1029 	if (sdkp->lbprz && sdkp->lbpws)
1030 		sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
1031 	else if (sdkp->lbprz && sdkp->lbpws10)
1032 		sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
1033 	else if (sdkp->max_ws_blocks)
1034 		sdkp->zeroing_mode = SD_ZERO_WS;
1035 	else
1036 		sdkp->zeroing_mode = SD_ZERO_WRITE;
1037 
1038 	if (sdkp->max_ws_blocks &&
1039 	    sdkp->physical_block_size > logical_block_size) {
1040 		/*
1041 		 * Reporting a maximum number of blocks that is not aligned
1042 		 * on the device physical size would cause a large write same
1043 		 * request to be split into physically unaligned chunks by
1044 		 * __blkdev_issue_write_zeroes() even if the caller of this
1045 		 * functions took care to align the large request. So make sure
1046 		 * the maximum reported is aligned to the device physical block
1047 		 * size. This is only an optional optimization for regular
1048 		 * disks, but this is mandatory to avoid failure of large write
1049 		 * same requests directed at sequential write required zones of
1050 		 * host-managed ZBC disks.
1051 		 */
1052 		sdkp->max_ws_blocks =
1053 			round_down(sdkp->max_ws_blocks,
1054 				   bytes_to_logical(sdkp->device,
1055 						    sdkp->physical_block_size));
1056 	}
1057 
1058 out:
1059 	blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks *
1060 					 (logical_block_size >> 9));
1061 }
1062 
1063 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
1064 {
1065 	struct request *rq = scsi_cmd_to_rq(cmd);
1066 	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1067 
1068 	/* flush requests don't perform I/O, zero the S/G table */
1069 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1070 
1071 	if (cmd->device->use_16_for_sync) {
1072 		cmd->cmnd[0] = SYNCHRONIZE_CACHE_16;
1073 		cmd->cmd_len = 16;
1074 	} else {
1075 		cmd->cmnd[0] = SYNCHRONIZE_CACHE;
1076 		cmd->cmd_len = 10;
1077 	}
1078 	cmd->transfersize = 0;
1079 	cmd->allowed = sdkp->max_retries;
1080 
1081 	rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
1082 	return BLK_STS_OK;
1083 }
1084 
1085 /**
1086  * sd_group_number() - Compute the GROUP NUMBER field
1087  * @cmd: SCSI command for which to compute the value of the six-bit GROUP NUMBER
1088  *	field.
1089  *
1090  * From SBC-5 r05 (https://www.t10.org/cgi-bin/ac.pl?t=f&f=sbc5r05.pdf):
1091  * 0: no relative lifetime.
1092  * 1: shortest relative lifetime.
1093  * 2: second shortest relative lifetime.
1094  * 3 - 0x3d: intermediate relative lifetimes.
1095  * 0x3e: second longest relative lifetime.
1096  * 0x3f: longest relative lifetime.
1097  */
1098 static u8 sd_group_number(struct scsi_cmnd *cmd)
1099 {
1100 	const struct request *rq = scsi_cmd_to_rq(cmd);
1101 	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1102 
1103 	if (!sdkp->rscs)
1104 		return 0;
1105 
1106 	return min3((u32)rq->write_hint, (u32)sdkp->permanent_stream_count,
1107 		    0x3fu);
1108 }
1109 
1110 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write,
1111 				       sector_t lba, unsigned int nr_blocks,
1112 				       unsigned char flags, unsigned int dld)
1113 {
1114 	cmd->cmd_len = SD_EXT_CDB_SIZE;
1115 	cmd->cmnd[0]  = VARIABLE_LENGTH_CMD;
1116 	cmd->cmnd[6]  = sd_group_number(cmd);
1117 	cmd->cmnd[7]  = 0x18; /* Additional CDB len */
1118 	cmd->cmnd[9]  = write ? WRITE_32 : READ_32;
1119 	cmd->cmnd[10] = flags;
1120 	cmd->cmnd[11] = dld & 0x07;
1121 	put_unaligned_be64(lba, &cmd->cmnd[12]);
1122 	put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */
1123 	put_unaligned_be32(nr_blocks, &cmd->cmnd[28]);
1124 
1125 	return BLK_STS_OK;
1126 }
1127 
1128 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write,
1129 				       sector_t lba, unsigned int nr_blocks,
1130 				       unsigned char flags, unsigned int dld)
1131 {
1132 	cmd->cmd_len  = 16;
1133 	cmd->cmnd[0]  = write ? WRITE_16 : READ_16;
1134 	cmd->cmnd[1]  = flags | ((dld >> 2) & 0x01);
1135 	cmd->cmnd[14] = ((dld & 0x03) << 6) | sd_group_number(cmd);
1136 	cmd->cmnd[15] = 0;
1137 	put_unaligned_be64(lba, &cmd->cmnd[2]);
1138 	put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1139 
1140 	return BLK_STS_OK;
1141 }
1142 
1143 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write,
1144 				       sector_t lba, unsigned int nr_blocks,
1145 				       unsigned char flags)
1146 {
1147 	cmd->cmd_len = 10;
1148 	cmd->cmnd[0] = write ? WRITE_10 : READ_10;
1149 	cmd->cmnd[1] = flags;
1150 	cmd->cmnd[6] = sd_group_number(cmd);
1151 	cmd->cmnd[9] = 0;
1152 	put_unaligned_be32(lba, &cmd->cmnd[2]);
1153 	put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1154 
1155 	return BLK_STS_OK;
1156 }
1157 
1158 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write,
1159 				      sector_t lba, unsigned int nr_blocks,
1160 				      unsigned char flags)
1161 {
1162 	/* Avoid that 0 blocks gets translated into 256 blocks. */
1163 	if (WARN_ON_ONCE(nr_blocks == 0))
1164 		return BLK_STS_IOERR;
1165 
1166 	if (unlikely(flags & 0x8)) {
1167 		/*
1168 		 * This happens only if this drive failed 10byte rw
1169 		 * command with ILLEGAL_REQUEST during operation and
1170 		 * thus turned off use_10_for_rw.
1171 		 */
1172 		scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n");
1173 		return BLK_STS_IOERR;
1174 	}
1175 
1176 	cmd->cmd_len = 6;
1177 	cmd->cmnd[0] = write ? WRITE_6 : READ_6;
1178 	cmd->cmnd[1] = (lba >> 16) & 0x1f;
1179 	cmd->cmnd[2] = (lba >> 8) & 0xff;
1180 	cmd->cmnd[3] = lba & 0xff;
1181 	cmd->cmnd[4] = nr_blocks;
1182 	cmd->cmnd[5] = 0;
1183 
1184 	return BLK_STS_OK;
1185 }
1186 
1187 /*
1188  * Check if a command has a duration limit set. If it does, and the target
1189  * device supports CDL and the feature is enabled, return the limit
1190  * descriptor index to use. Return 0 (no limit) otherwise.
1191  */
1192 static int sd_cdl_dld(struct scsi_disk *sdkp, struct scsi_cmnd *scmd)
1193 {
1194 	struct scsi_device *sdp = sdkp->device;
1195 	int hint;
1196 
1197 	if (!sdp->cdl_supported || !sdp->cdl_enable)
1198 		return 0;
1199 
1200 	/*
1201 	 * Use "no limit" if the request ioprio does not specify a duration
1202 	 * limit hint.
1203 	 */
1204 	hint = IOPRIO_PRIO_HINT(req_get_ioprio(scsi_cmd_to_rq(scmd)));
1205 	if (hint < IOPRIO_HINT_DEV_DURATION_LIMIT_1 ||
1206 	    hint > IOPRIO_HINT_DEV_DURATION_LIMIT_7)
1207 		return 0;
1208 
1209 	return (hint - IOPRIO_HINT_DEV_DURATION_LIMIT_1) + 1;
1210 }
1211 
1212 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd)
1213 {
1214 	struct request *rq = scsi_cmd_to_rq(cmd);
1215 	struct scsi_device *sdp = cmd->device;
1216 	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1217 	sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1218 	sector_t threshold;
1219 	unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1220 	unsigned int mask = logical_to_sectors(sdp, 1) - 1;
1221 	bool write = rq_data_dir(rq) == WRITE;
1222 	unsigned char protect, fua;
1223 	unsigned int dld;
1224 	blk_status_t ret;
1225 	unsigned int dif;
1226 	bool dix;
1227 
1228 	ret = scsi_alloc_sgtables(cmd);
1229 	if (ret != BLK_STS_OK)
1230 		return ret;
1231 
1232 	ret = BLK_STS_IOERR;
1233 	if (!scsi_device_online(sdp) || sdp->changed) {
1234 		scmd_printk(KERN_ERR, cmd, "device offline or changed\n");
1235 		goto fail;
1236 	}
1237 
1238 	if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->q->disk)) {
1239 		scmd_printk(KERN_ERR, cmd, "access beyond end of device\n");
1240 		goto fail;
1241 	}
1242 
1243 	if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) {
1244 		scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n");
1245 		goto fail;
1246 	}
1247 
1248 	/*
1249 	 * Some SD card readers can't handle accesses which touch the
1250 	 * last one or two logical blocks. Split accesses as needed.
1251 	 */
1252 	threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS;
1253 
1254 	if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) {
1255 		if (lba < threshold) {
1256 			/* Access up to the threshold but not beyond */
1257 			nr_blocks = threshold - lba;
1258 		} else {
1259 			/* Access only a single logical block */
1260 			nr_blocks = 1;
1261 		}
1262 	}
1263 
1264 	fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0;
1265 	dix = scsi_prot_sg_count(cmd);
1266 	dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type);
1267 	dld = sd_cdl_dld(sdkp, cmd);
1268 
1269 	if (dif || dix)
1270 		protect = sd_setup_protect_cmnd(cmd, dix, dif);
1271 	else
1272 		protect = 0;
1273 
1274 	if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1275 		ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks,
1276 					 protect | fua, dld);
1277 	} else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) {
1278 		ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks,
1279 					 protect | fua, dld);
1280 	} else if ((nr_blocks > 0xff) || (lba > 0x1fffff) ||
1281 		   sdp->use_10_for_rw || protect || rq->write_hint) {
1282 		ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks,
1283 					 protect | fua);
1284 	} else {
1285 		ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks,
1286 					protect | fua);
1287 	}
1288 
1289 	if (unlikely(ret != BLK_STS_OK))
1290 		goto fail;
1291 
1292 	/*
1293 	 * We shouldn't disconnect in the middle of a sector, so with a dumb
1294 	 * host adapter, it's safe to assume that we can at least transfer
1295 	 * this many bytes between each connect / disconnect.
1296 	 */
1297 	cmd->transfersize = sdp->sector_size;
1298 	cmd->underflow = nr_blocks << 9;
1299 	cmd->allowed = sdkp->max_retries;
1300 	cmd->sdb.length = nr_blocks * sdp->sector_size;
1301 
1302 	SCSI_LOG_HLQUEUE(1,
1303 			 scmd_printk(KERN_INFO, cmd,
1304 				     "%s: block=%llu, count=%d\n", __func__,
1305 				     (unsigned long long)blk_rq_pos(rq),
1306 				     blk_rq_sectors(rq)));
1307 	SCSI_LOG_HLQUEUE(2,
1308 			 scmd_printk(KERN_INFO, cmd,
1309 				     "%s %d/%u 512 byte blocks.\n",
1310 				     write ? "writing" : "reading", nr_blocks,
1311 				     blk_rq_sectors(rq)));
1312 
1313 	/*
1314 	 * This indicates that the command is ready from our end to be queued.
1315 	 */
1316 	return BLK_STS_OK;
1317 fail:
1318 	scsi_free_sgtables(cmd);
1319 	return ret;
1320 }
1321 
1322 static blk_status_t sd_init_command(struct scsi_cmnd *cmd)
1323 {
1324 	struct request *rq = scsi_cmd_to_rq(cmd);
1325 
1326 	switch (req_op(rq)) {
1327 	case REQ_OP_DISCARD:
1328 		switch (scsi_disk(rq->q->disk)->provisioning_mode) {
1329 		case SD_LBP_UNMAP:
1330 			return sd_setup_unmap_cmnd(cmd);
1331 		case SD_LBP_WS16:
1332 			return sd_setup_write_same16_cmnd(cmd, true);
1333 		case SD_LBP_WS10:
1334 			return sd_setup_write_same10_cmnd(cmd, true);
1335 		case SD_LBP_ZERO:
1336 			return sd_setup_write_same10_cmnd(cmd, false);
1337 		default:
1338 			return BLK_STS_TARGET;
1339 		}
1340 	case REQ_OP_WRITE_ZEROES:
1341 		return sd_setup_write_zeroes_cmnd(cmd);
1342 	case REQ_OP_FLUSH:
1343 		return sd_setup_flush_cmnd(cmd);
1344 	case REQ_OP_READ:
1345 	case REQ_OP_WRITE:
1346 		return sd_setup_read_write_cmnd(cmd);
1347 	case REQ_OP_ZONE_RESET:
1348 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1349 						   false);
1350 	case REQ_OP_ZONE_RESET_ALL:
1351 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1352 						   true);
1353 	case REQ_OP_ZONE_OPEN:
1354 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false);
1355 	case REQ_OP_ZONE_CLOSE:
1356 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false);
1357 	case REQ_OP_ZONE_FINISH:
1358 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false);
1359 	default:
1360 		WARN_ON_ONCE(1);
1361 		return BLK_STS_NOTSUPP;
1362 	}
1363 }
1364 
1365 static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1366 {
1367 	struct request *rq = scsi_cmd_to_rq(SCpnt);
1368 
1369 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1370 		mempool_free(rq->special_vec.bv_page, sd_page_pool);
1371 }
1372 
1373 static bool sd_need_revalidate(struct gendisk *disk, struct scsi_disk *sdkp)
1374 {
1375 	if (sdkp->device->removable || sdkp->write_prot) {
1376 		if (disk_check_media_change(disk))
1377 			return true;
1378 	}
1379 
1380 	/*
1381 	 * Force a full rescan after ioctl(BLKRRPART).  While the disk state has
1382 	 * nothing to do with partitions, BLKRRPART is used to force a full
1383 	 * revalidate after things like a format for historical reasons.
1384 	 */
1385 	return test_bit(GD_NEED_PART_SCAN, &disk->state);
1386 }
1387 
1388 /**
1389  *	sd_open - open a scsi disk device
1390  *	@disk: disk to open
1391  *	@mode: open mode
1392  *
1393  *	Returns 0 if successful. Returns a negated errno value in case
1394  *	of error.
1395  *
1396  *	Note: This can be called from a user context (e.g. fsck(1) )
1397  *	or from within the kernel (e.g. as a result of a mount(1) ).
1398  *	In the latter case @inode and @filp carry an abridged amount
1399  *	of information as noted above.
1400  *
1401  *	Locking: called with disk->open_mutex held.
1402  **/
1403 static int sd_open(struct gendisk *disk, blk_mode_t mode)
1404 {
1405 	struct scsi_disk *sdkp = scsi_disk(disk);
1406 	struct scsi_device *sdev = sdkp->device;
1407 	int retval;
1408 
1409 	if (scsi_device_get(sdev))
1410 		return -ENXIO;
1411 
1412 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1413 
1414 	/*
1415 	 * If the device is in error recovery, wait until it is done.
1416 	 * If the device is offline, then disallow any access to it.
1417 	 */
1418 	retval = -ENXIO;
1419 	if (!scsi_block_when_processing_errors(sdev))
1420 		goto error_out;
1421 
1422 	if (sd_need_revalidate(disk, sdkp))
1423 		sd_revalidate_disk(disk);
1424 
1425 	/*
1426 	 * If the drive is empty, just let the open fail.
1427 	 */
1428 	retval = -ENOMEDIUM;
1429 	if (sdev->removable && !sdkp->media_present &&
1430 	    !(mode & BLK_OPEN_NDELAY))
1431 		goto error_out;
1432 
1433 	/*
1434 	 * If the device has the write protect tab set, have the open fail
1435 	 * if the user expects to be able to write to the thing.
1436 	 */
1437 	retval = -EROFS;
1438 	if (sdkp->write_prot && (mode & BLK_OPEN_WRITE))
1439 		goto error_out;
1440 
1441 	/*
1442 	 * It is possible that the disk changing stuff resulted in
1443 	 * the device being taken offline.  If this is the case,
1444 	 * report this to the user, and don't pretend that the
1445 	 * open actually succeeded.
1446 	 */
1447 	retval = -ENXIO;
1448 	if (!scsi_device_online(sdev))
1449 		goto error_out;
1450 
1451 	if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1452 		if (scsi_block_when_processing_errors(sdev))
1453 			scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1454 	}
1455 
1456 	return 0;
1457 
1458 error_out:
1459 	scsi_device_put(sdev);
1460 	return retval;
1461 }
1462 
1463 /**
1464  *	sd_release - invoked when the (last) close(2) is called on this
1465  *	scsi disk.
1466  *	@disk: disk to release
1467  *
1468  *	Returns 0.
1469  *
1470  *	Note: may block (uninterruptible) if error recovery is underway
1471  *	on this disk.
1472  *
1473  *	Locking: called with disk->open_mutex held.
1474  **/
1475 static void sd_release(struct gendisk *disk)
1476 {
1477 	struct scsi_disk *sdkp = scsi_disk(disk);
1478 	struct scsi_device *sdev = sdkp->device;
1479 
1480 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1481 
1482 	if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1483 		if (scsi_block_when_processing_errors(sdev))
1484 			scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1485 	}
1486 
1487 	scsi_device_put(sdev);
1488 }
1489 
1490 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1491 {
1492 	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1493 	struct scsi_device *sdp = sdkp->device;
1494 	struct Scsi_Host *host = sdp->host;
1495 	sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1496 	int diskinfo[4];
1497 
1498 	/* default to most commonly used values */
1499 	diskinfo[0] = 0x40;	/* 1 << 6 */
1500 	diskinfo[1] = 0x20;	/* 1 << 5 */
1501 	diskinfo[2] = capacity >> 11;
1502 
1503 	/* override with calculated, extended default, or driver values */
1504 	if (host->hostt->bios_param)
1505 		host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1506 	else
1507 		scsicam_bios_param(bdev, capacity, diskinfo);
1508 
1509 	geo->heads = diskinfo[0];
1510 	geo->sectors = diskinfo[1];
1511 	geo->cylinders = diskinfo[2];
1512 	return 0;
1513 }
1514 
1515 /**
1516  *	sd_ioctl - process an ioctl
1517  *	@bdev: target block device
1518  *	@mode: open mode
1519  *	@cmd: ioctl command number
1520  *	@arg: this is third argument given to ioctl(2) system call.
1521  *	Often contains a pointer.
1522  *
1523  *	Returns 0 if successful (some ioctls return positive numbers on
1524  *	success as well). Returns a negated errno value in case of error.
1525  *
1526  *	Note: most ioctls are forward onto the block subsystem or further
1527  *	down in the scsi subsystem.
1528  **/
1529 static int sd_ioctl(struct block_device *bdev, blk_mode_t mode,
1530 		    unsigned int cmd, unsigned long arg)
1531 {
1532 	struct gendisk *disk = bdev->bd_disk;
1533 	struct scsi_disk *sdkp = scsi_disk(disk);
1534 	struct scsi_device *sdp = sdkp->device;
1535 	void __user *p = (void __user *)arg;
1536 	int error;
1537 
1538 	SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1539 				    "cmd=0x%x\n", disk->disk_name, cmd));
1540 
1541 	if (bdev_is_partition(bdev) && !capable(CAP_SYS_RAWIO))
1542 		return -ENOIOCTLCMD;
1543 
1544 	/*
1545 	 * If we are in the middle of error recovery, don't let anyone
1546 	 * else try and use this device.  Also, if error recovery fails, it
1547 	 * may try and take the device offline, in which case all further
1548 	 * access to the device is prohibited.
1549 	 */
1550 	error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1551 			(mode & BLK_OPEN_NDELAY));
1552 	if (error)
1553 		return error;
1554 
1555 	if (is_sed_ioctl(cmd))
1556 		return sed_ioctl(sdkp->opal_dev, cmd, p);
1557 	return scsi_ioctl(sdp, mode & BLK_OPEN_WRITE, cmd, p);
1558 }
1559 
1560 static void set_media_not_present(struct scsi_disk *sdkp)
1561 {
1562 	if (sdkp->media_present)
1563 		sdkp->device->changed = 1;
1564 
1565 	if (sdkp->device->removable) {
1566 		sdkp->media_present = 0;
1567 		sdkp->capacity = 0;
1568 	}
1569 }
1570 
1571 static int media_not_present(struct scsi_disk *sdkp,
1572 			     struct scsi_sense_hdr *sshdr)
1573 {
1574 	if (!scsi_sense_valid(sshdr))
1575 		return 0;
1576 
1577 	/* not invoked for commands that could return deferred errors */
1578 	switch (sshdr->sense_key) {
1579 	case UNIT_ATTENTION:
1580 	case NOT_READY:
1581 		/* medium not present */
1582 		if (sshdr->asc == 0x3A) {
1583 			set_media_not_present(sdkp);
1584 			return 1;
1585 		}
1586 	}
1587 	return 0;
1588 }
1589 
1590 /**
1591  *	sd_check_events - check media events
1592  *	@disk: kernel device descriptor
1593  *	@clearing: disk events currently being cleared
1594  *
1595  *	Returns mask of DISK_EVENT_*.
1596  *
1597  *	Note: this function is invoked from the block subsystem.
1598  **/
1599 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1600 {
1601 	struct scsi_disk *sdkp = disk->private_data;
1602 	struct scsi_device *sdp;
1603 	int retval;
1604 	bool disk_changed;
1605 
1606 	if (!sdkp)
1607 		return 0;
1608 
1609 	sdp = sdkp->device;
1610 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1611 
1612 	/*
1613 	 * If the device is offline, don't send any commands - just pretend as
1614 	 * if the command failed.  If the device ever comes back online, we
1615 	 * can deal with it then.  It is only because of unrecoverable errors
1616 	 * that we would ever take a device offline in the first place.
1617 	 */
1618 	if (!scsi_device_online(sdp)) {
1619 		set_media_not_present(sdkp);
1620 		goto out;
1621 	}
1622 
1623 	/*
1624 	 * Using TEST_UNIT_READY enables differentiation between drive with
1625 	 * no cartridge loaded - NOT READY, drive with changed cartridge -
1626 	 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1627 	 *
1628 	 * Drives that auto spin down. eg iomega jaz 1G, will be started
1629 	 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1630 	 * sd_revalidate() is called.
1631 	 */
1632 	if (scsi_block_when_processing_errors(sdp)) {
1633 		struct scsi_sense_hdr sshdr = { 0, };
1634 
1635 		retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries,
1636 					      &sshdr);
1637 
1638 		/* failed to execute TUR, assume media not present */
1639 		if (retval < 0 || host_byte(retval)) {
1640 			set_media_not_present(sdkp);
1641 			goto out;
1642 		}
1643 
1644 		if (media_not_present(sdkp, &sshdr))
1645 			goto out;
1646 	}
1647 
1648 	/*
1649 	 * For removable scsi disk we have to recognise the presence
1650 	 * of a disk in the drive.
1651 	 */
1652 	if (!sdkp->media_present)
1653 		sdp->changed = 1;
1654 	sdkp->media_present = 1;
1655 out:
1656 	/*
1657 	 * sdp->changed is set under the following conditions:
1658 	 *
1659 	 *	Medium present state has changed in either direction.
1660 	 *	Device has indicated UNIT_ATTENTION.
1661 	 */
1662 	disk_changed = sdp->changed;
1663 	sdp->changed = 0;
1664 	return disk_changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1665 }
1666 
1667 static int sd_sync_cache(struct scsi_disk *sdkp)
1668 {
1669 	int res;
1670 	struct scsi_device *sdp = sdkp->device;
1671 	const int timeout = sdp->request_queue->rq_timeout
1672 		* SD_FLUSH_TIMEOUT_MULTIPLIER;
1673 	/* Leave the rest of the command zero to indicate flush everything. */
1674 	const unsigned char cmd[16] = { sdp->use_16_for_sync ?
1675 				SYNCHRONIZE_CACHE_16 : SYNCHRONIZE_CACHE };
1676 	struct scsi_sense_hdr sshdr;
1677 	struct scsi_failure failure_defs[] = {
1678 		{
1679 			.allowed = 3,
1680 			.result = SCMD_FAILURE_RESULT_ANY,
1681 		},
1682 		{}
1683 	};
1684 	struct scsi_failures failures = {
1685 		.failure_definitions = failure_defs,
1686 	};
1687 	const struct scsi_exec_args exec_args = {
1688 		.req_flags = BLK_MQ_REQ_PM,
1689 		.sshdr = &sshdr,
1690 		.failures = &failures,
1691 	};
1692 
1693 	if (!scsi_device_online(sdp))
1694 		return -ENODEV;
1695 
1696 	res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, timeout,
1697 			       sdkp->max_retries, &exec_args);
1698 	if (res) {
1699 		sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1700 
1701 		if (res < 0)
1702 			return res;
1703 
1704 		if (scsi_status_is_check_condition(res) &&
1705 		    scsi_sense_valid(&sshdr)) {
1706 			sd_print_sense_hdr(sdkp, &sshdr);
1707 
1708 			/* we need to evaluate the error return  */
1709 			if (sshdr.asc == 0x3a ||	/* medium not present */
1710 			    sshdr.asc == 0x20 ||	/* invalid command */
1711 			    (sshdr.asc == 0x74 && sshdr.ascq == 0x71))	/* drive is password locked */
1712 				/* this is no error here */
1713 				return 0;
1714 			/*
1715 			 * This drive doesn't support sync and there's not much
1716 			 * we can do because this is called during shutdown
1717 			 * or suspend so just return success so those operations
1718 			 * can proceed.
1719 			 */
1720 			if (sshdr.sense_key == ILLEGAL_REQUEST)
1721 				return 0;
1722 		}
1723 
1724 		switch (host_byte(res)) {
1725 		/* ignore errors due to racing a disconnection */
1726 		case DID_BAD_TARGET:
1727 		case DID_NO_CONNECT:
1728 			return 0;
1729 		/* signal the upper layer it might try again */
1730 		case DID_BUS_BUSY:
1731 		case DID_IMM_RETRY:
1732 		case DID_REQUEUE:
1733 		case DID_SOFT_ERROR:
1734 			return -EBUSY;
1735 		default:
1736 			return -EIO;
1737 		}
1738 	}
1739 	return 0;
1740 }
1741 
1742 static void sd_rescan(struct device *dev)
1743 {
1744 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
1745 
1746 	sd_revalidate_disk(sdkp->disk);
1747 }
1748 
1749 static int sd_get_unique_id(struct gendisk *disk, u8 id[16],
1750 		enum blk_unique_id type)
1751 {
1752 	struct scsi_device *sdev = scsi_disk(disk)->device;
1753 	const struct scsi_vpd *vpd;
1754 	const unsigned char *d;
1755 	int ret = -ENXIO, len;
1756 
1757 	rcu_read_lock();
1758 	vpd = rcu_dereference(sdev->vpd_pg83);
1759 	if (!vpd)
1760 		goto out_unlock;
1761 
1762 	ret = -EINVAL;
1763 	for (d = vpd->data + 4; d < vpd->data + vpd->len; d += d[3] + 4) {
1764 		/* we only care about designators with LU association */
1765 		if (((d[1] >> 4) & 0x3) != 0x00)
1766 			continue;
1767 		if ((d[1] & 0xf) != type)
1768 			continue;
1769 
1770 		/*
1771 		 * Only exit early if a 16-byte descriptor was found.  Otherwise
1772 		 * keep looking as one with more entropy might still show up.
1773 		 */
1774 		len = d[3];
1775 		if (len != 8 && len != 12 && len != 16)
1776 			continue;
1777 		ret = len;
1778 		memcpy(id, d + 4, len);
1779 		if (len == 16)
1780 			break;
1781 	}
1782 out_unlock:
1783 	rcu_read_unlock();
1784 	return ret;
1785 }
1786 
1787 static int sd_scsi_to_pr_err(struct scsi_sense_hdr *sshdr, int result)
1788 {
1789 	switch (host_byte(result)) {
1790 	case DID_TRANSPORT_MARGINAL:
1791 	case DID_TRANSPORT_DISRUPTED:
1792 	case DID_BUS_BUSY:
1793 		return PR_STS_RETRY_PATH_FAILURE;
1794 	case DID_NO_CONNECT:
1795 		return PR_STS_PATH_FAILED;
1796 	case DID_TRANSPORT_FAILFAST:
1797 		return PR_STS_PATH_FAST_FAILED;
1798 	}
1799 
1800 	switch (status_byte(result)) {
1801 	case SAM_STAT_RESERVATION_CONFLICT:
1802 		return PR_STS_RESERVATION_CONFLICT;
1803 	case SAM_STAT_CHECK_CONDITION:
1804 		if (!scsi_sense_valid(sshdr))
1805 			return PR_STS_IOERR;
1806 
1807 		if (sshdr->sense_key == ILLEGAL_REQUEST &&
1808 		    (sshdr->asc == 0x26 || sshdr->asc == 0x24))
1809 			return -EINVAL;
1810 
1811 		fallthrough;
1812 	default:
1813 		return PR_STS_IOERR;
1814 	}
1815 }
1816 
1817 static int sd_pr_in_command(struct block_device *bdev, u8 sa,
1818 			    unsigned char *data, int data_len)
1819 {
1820 	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1821 	struct scsi_device *sdev = sdkp->device;
1822 	struct scsi_sense_hdr sshdr;
1823 	u8 cmd[10] = { PERSISTENT_RESERVE_IN, sa };
1824 	struct scsi_failure failure_defs[] = {
1825 		{
1826 			.sense = UNIT_ATTENTION,
1827 			.asc = SCMD_FAILURE_ASC_ANY,
1828 			.ascq = SCMD_FAILURE_ASCQ_ANY,
1829 			.allowed = 5,
1830 			.result = SAM_STAT_CHECK_CONDITION,
1831 		},
1832 		{}
1833 	};
1834 	struct scsi_failures failures = {
1835 		.failure_definitions = failure_defs,
1836 	};
1837 	const struct scsi_exec_args exec_args = {
1838 		.sshdr = &sshdr,
1839 		.failures = &failures,
1840 	};
1841 	int result;
1842 
1843 	put_unaligned_be16(data_len, &cmd[7]);
1844 
1845 	result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, data, data_len,
1846 				  SD_TIMEOUT, sdkp->max_retries, &exec_args);
1847 	if (scsi_status_is_check_condition(result) &&
1848 	    scsi_sense_valid(&sshdr)) {
1849 		sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1850 		scsi_print_sense_hdr(sdev, NULL, &sshdr);
1851 	}
1852 
1853 	if (result <= 0)
1854 		return result;
1855 
1856 	return sd_scsi_to_pr_err(&sshdr, result);
1857 }
1858 
1859 static int sd_pr_read_keys(struct block_device *bdev, struct pr_keys *keys_info)
1860 {
1861 	int result, i, data_offset, num_copy_keys;
1862 	u32 num_keys = keys_info->num_keys;
1863 	int data_len = num_keys * 8 + 8;
1864 	u8 *data;
1865 
1866 	data = kzalloc(data_len, GFP_KERNEL);
1867 	if (!data)
1868 		return -ENOMEM;
1869 
1870 	result = sd_pr_in_command(bdev, READ_KEYS, data, data_len);
1871 	if (result)
1872 		goto free_data;
1873 
1874 	keys_info->generation = get_unaligned_be32(&data[0]);
1875 	keys_info->num_keys = get_unaligned_be32(&data[4]) / 8;
1876 
1877 	data_offset = 8;
1878 	num_copy_keys = min(num_keys, keys_info->num_keys);
1879 
1880 	for (i = 0; i < num_copy_keys; i++) {
1881 		keys_info->keys[i] = get_unaligned_be64(&data[data_offset]);
1882 		data_offset += 8;
1883 	}
1884 
1885 free_data:
1886 	kfree(data);
1887 	return result;
1888 }
1889 
1890 static int sd_pr_read_reservation(struct block_device *bdev,
1891 				  struct pr_held_reservation *rsv)
1892 {
1893 	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1894 	struct scsi_device *sdev = sdkp->device;
1895 	u8 data[24] = { };
1896 	int result, len;
1897 
1898 	result = sd_pr_in_command(bdev, READ_RESERVATION, data, sizeof(data));
1899 	if (result)
1900 		return result;
1901 
1902 	len = get_unaligned_be32(&data[4]);
1903 	if (!len)
1904 		return 0;
1905 
1906 	/* Make sure we have at least the key and type */
1907 	if (len < 14) {
1908 		sdev_printk(KERN_INFO, sdev,
1909 			    "READ RESERVATION failed due to short return buffer of %d bytes\n",
1910 			    len);
1911 		return -EINVAL;
1912 	}
1913 
1914 	rsv->generation = get_unaligned_be32(&data[0]);
1915 	rsv->key = get_unaligned_be64(&data[8]);
1916 	rsv->type = scsi_pr_type_to_block(data[21] & 0x0f);
1917 	return 0;
1918 }
1919 
1920 static int sd_pr_out_command(struct block_device *bdev, u8 sa, u64 key,
1921 			     u64 sa_key, enum scsi_pr_type type, u8 flags)
1922 {
1923 	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1924 	struct scsi_device *sdev = sdkp->device;
1925 	struct scsi_sense_hdr sshdr;
1926 	struct scsi_failure failure_defs[] = {
1927 		{
1928 			.sense = UNIT_ATTENTION,
1929 			.asc = SCMD_FAILURE_ASC_ANY,
1930 			.ascq = SCMD_FAILURE_ASCQ_ANY,
1931 			.allowed = 5,
1932 			.result = SAM_STAT_CHECK_CONDITION,
1933 		},
1934 		{}
1935 	};
1936 	struct scsi_failures failures = {
1937 		.failure_definitions = failure_defs,
1938 	};
1939 	const struct scsi_exec_args exec_args = {
1940 		.sshdr = &sshdr,
1941 		.failures = &failures,
1942 	};
1943 	int result;
1944 	u8 cmd[16] = { 0, };
1945 	u8 data[24] = { 0, };
1946 
1947 	cmd[0] = PERSISTENT_RESERVE_OUT;
1948 	cmd[1] = sa;
1949 	cmd[2] = type;
1950 	put_unaligned_be32(sizeof(data), &cmd[5]);
1951 
1952 	put_unaligned_be64(key, &data[0]);
1953 	put_unaligned_be64(sa_key, &data[8]);
1954 	data[20] = flags;
1955 
1956 	result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, &data,
1957 				  sizeof(data), SD_TIMEOUT, sdkp->max_retries,
1958 				  &exec_args);
1959 
1960 	if (scsi_status_is_check_condition(result) &&
1961 	    scsi_sense_valid(&sshdr)) {
1962 		sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1963 		scsi_print_sense_hdr(sdev, NULL, &sshdr);
1964 	}
1965 
1966 	if (result <= 0)
1967 		return result;
1968 
1969 	return sd_scsi_to_pr_err(&sshdr, result);
1970 }
1971 
1972 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1973 		u32 flags)
1974 {
1975 	if (flags & ~PR_FL_IGNORE_KEY)
1976 		return -EOPNOTSUPP;
1977 	return sd_pr_out_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1978 			old_key, new_key, 0,
1979 			(1 << 0) /* APTPL */);
1980 }
1981 
1982 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1983 		u32 flags)
1984 {
1985 	if (flags)
1986 		return -EOPNOTSUPP;
1987 	return sd_pr_out_command(bdev, 0x01, key, 0,
1988 				 block_pr_type_to_scsi(type), 0);
1989 }
1990 
1991 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1992 {
1993 	return sd_pr_out_command(bdev, 0x02, key, 0,
1994 				 block_pr_type_to_scsi(type), 0);
1995 }
1996 
1997 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1998 		enum pr_type type, bool abort)
1999 {
2000 	return sd_pr_out_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
2001 				 block_pr_type_to_scsi(type), 0);
2002 }
2003 
2004 static int sd_pr_clear(struct block_device *bdev, u64 key)
2005 {
2006 	return sd_pr_out_command(bdev, 0x03, key, 0, 0, 0);
2007 }
2008 
2009 static const struct pr_ops sd_pr_ops = {
2010 	.pr_register	= sd_pr_register,
2011 	.pr_reserve	= sd_pr_reserve,
2012 	.pr_release	= sd_pr_release,
2013 	.pr_preempt	= sd_pr_preempt,
2014 	.pr_clear	= sd_pr_clear,
2015 	.pr_read_keys	= sd_pr_read_keys,
2016 	.pr_read_reservation = sd_pr_read_reservation,
2017 };
2018 
2019 static void scsi_disk_free_disk(struct gendisk *disk)
2020 {
2021 	struct scsi_disk *sdkp = scsi_disk(disk);
2022 
2023 	put_device(&sdkp->disk_dev);
2024 }
2025 
2026 static const struct block_device_operations sd_fops = {
2027 	.owner			= THIS_MODULE,
2028 	.open			= sd_open,
2029 	.release		= sd_release,
2030 	.ioctl			= sd_ioctl,
2031 	.getgeo			= sd_getgeo,
2032 	.compat_ioctl		= blkdev_compat_ptr_ioctl,
2033 	.check_events		= sd_check_events,
2034 	.unlock_native_capacity	= sd_unlock_native_capacity,
2035 	.report_zones		= sd_zbc_report_zones,
2036 	.get_unique_id		= sd_get_unique_id,
2037 	.free_disk		= scsi_disk_free_disk,
2038 	.pr_ops			= &sd_pr_ops,
2039 };
2040 
2041 /**
2042  *	sd_eh_reset - reset error handling callback
2043  *	@scmd:		sd-issued command that has failed
2044  *
2045  *	This function is called by the SCSI midlayer before starting
2046  *	SCSI EH. When counting medium access failures we have to be
2047  *	careful to register it only only once per device and SCSI EH run;
2048  *	there might be several timed out commands which will cause the
2049  *	'max_medium_access_timeouts' counter to trigger after the first
2050  *	SCSI EH run already and set the device to offline.
2051  *	So this function resets the internal counter before starting SCSI EH.
2052  **/
2053 static void sd_eh_reset(struct scsi_cmnd *scmd)
2054 {
2055 	struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk);
2056 
2057 	/* New SCSI EH run, reset gate variable */
2058 	sdkp->ignore_medium_access_errors = false;
2059 }
2060 
2061 /**
2062  *	sd_eh_action - error handling callback
2063  *	@scmd:		sd-issued command that has failed
2064  *	@eh_disp:	The recovery disposition suggested by the midlayer
2065  *
2066  *	This function is called by the SCSI midlayer upon completion of an
2067  *	error test command (currently TEST UNIT READY). The result of sending
2068  *	the eh command is passed in eh_disp.  We're looking for devices that
2069  *	fail medium access commands but are OK with non access commands like
2070  *	test unit ready (so wrongly see the device as having a successful
2071  *	recovery)
2072  **/
2073 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
2074 {
2075 	struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk);
2076 	struct scsi_device *sdev = scmd->device;
2077 
2078 	if (!scsi_device_online(sdev) ||
2079 	    !scsi_medium_access_command(scmd) ||
2080 	    host_byte(scmd->result) != DID_TIME_OUT ||
2081 	    eh_disp != SUCCESS)
2082 		return eh_disp;
2083 
2084 	/*
2085 	 * The device has timed out executing a medium access command.
2086 	 * However, the TEST UNIT READY command sent during error
2087 	 * handling completed successfully. Either the device is in the
2088 	 * process of recovering or has it suffered an internal failure
2089 	 * that prevents access to the storage medium.
2090 	 */
2091 	if (!sdkp->ignore_medium_access_errors) {
2092 		sdkp->medium_access_timed_out++;
2093 		sdkp->ignore_medium_access_errors = true;
2094 	}
2095 
2096 	/*
2097 	 * If the device keeps failing read/write commands but TEST UNIT
2098 	 * READY always completes successfully we assume that medium
2099 	 * access is no longer possible and take the device offline.
2100 	 */
2101 	if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
2102 		scmd_printk(KERN_ERR, scmd,
2103 			    "Medium access timeout failure. Offlining disk!\n");
2104 		mutex_lock(&sdev->state_mutex);
2105 		scsi_device_set_state(sdev, SDEV_OFFLINE);
2106 		mutex_unlock(&sdev->state_mutex);
2107 
2108 		return SUCCESS;
2109 	}
2110 
2111 	return eh_disp;
2112 }
2113 
2114 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
2115 {
2116 	struct request *req = scsi_cmd_to_rq(scmd);
2117 	struct scsi_device *sdev = scmd->device;
2118 	unsigned int transferred, good_bytes;
2119 	u64 start_lba, end_lba, bad_lba;
2120 
2121 	/*
2122 	 * Some commands have a payload smaller than the device logical
2123 	 * block size (e.g. INQUIRY on a 4K disk).
2124 	 */
2125 	if (scsi_bufflen(scmd) <= sdev->sector_size)
2126 		return 0;
2127 
2128 	/* Check if we have a 'bad_lba' information */
2129 	if (!scsi_get_sense_info_fld(scmd->sense_buffer,
2130 				     SCSI_SENSE_BUFFERSIZE,
2131 				     &bad_lba))
2132 		return 0;
2133 
2134 	/*
2135 	 * If the bad lba was reported incorrectly, we have no idea where
2136 	 * the error is.
2137 	 */
2138 	start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
2139 	end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
2140 	if (bad_lba < start_lba || bad_lba >= end_lba)
2141 		return 0;
2142 
2143 	/*
2144 	 * resid is optional but mostly filled in.  When it's unused,
2145 	 * its value is zero, so we assume the whole buffer transferred
2146 	 */
2147 	transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
2148 
2149 	/* This computation should always be done in terms of the
2150 	 * resolution of the device's medium.
2151 	 */
2152 	good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
2153 
2154 	return min(good_bytes, transferred);
2155 }
2156 
2157 /**
2158  *	sd_done - bottom half handler: called when the lower level
2159  *	driver has completed (successfully or otherwise) a scsi command.
2160  *	@SCpnt: mid-level's per command structure.
2161  *
2162  *	Note: potentially run from within an ISR. Must not block.
2163  **/
2164 static int sd_done(struct scsi_cmnd *SCpnt)
2165 {
2166 	int result = SCpnt->result;
2167 	unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
2168 	unsigned int sector_size = SCpnt->device->sector_size;
2169 	unsigned int resid;
2170 	struct scsi_sense_hdr sshdr;
2171 	struct request *req = scsi_cmd_to_rq(SCpnt);
2172 	struct scsi_disk *sdkp = scsi_disk(req->q->disk);
2173 	int sense_valid = 0;
2174 	int sense_deferred = 0;
2175 
2176 	switch (req_op(req)) {
2177 	case REQ_OP_DISCARD:
2178 	case REQ_OP_WRITE_ZEROES:
2179 	case REQ_OP_ZONE_RESET:
2180 	case REQ_OP_ZONE_RESET_ALL:
2181 	case REQ_OP_ZONE_OPEN:
2182 	case REQ_OP_ZONE_CLOSE:
2183 	case REQ_OP_ZONE_FINISH:
2184 		if (!result) {
2185 			good_bytes = blk_rq_bytes(req);
2186 			scsi_set_resid(SCpnt, 0);
2187 		} else {
2188 			good_bytes = 0;
2189 			scsi_set_resid(SCpnt, blk_rq_bytes(req));
2190 		}
2191 		break;
2192 	default:
2193 		/*
2194 		 * In case of bogus fw or device, we could end up having
2195 		 * an unaligned partial completion. Check this here and force
2196 		 * alignment.
2197 		 */
2198 		resid = scsi_get_resid(SCpnt);
2199 		if (resid & (sector_size - 1)) {
2200 			sd_printk(KERN_INFO, sdkp,
2201 				"Unaligned partial completion (resid=%u, sector_sz=%u)\n",
2202 				resid, sector_size);
2203 			scsi_print_command(SCpnt);
2204 			resid = min(scsi_bufflen(SCpnt),
2205 				    round_up(resid, sector_size));
2206 			scsi_set_resid(SCpnt, resid);
2207 		}
2208 	}
2209 
2210 	if (result) {
2211 		sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
2212 		if (sense_valid)
2213 			sense_deferred = scsi_sense_is_deferred(&sshdr);
2214 	}
2215 	sdkp->medium_access_timed_out = 0;
2216 
2217 	if (!scsi_status_is_check_condition(result) &&
2218 	    (!sense_valid || sense_deferred))
2219 		goto out;
2220 
2221 	switch (sshdr.sense_key) {
2222 	case HARDWARE_ERROR:
2223 	case MEDIUM_ERROR:
2224 		good_bytes = sd_completed_bytes(SCpnt);
2225 		break;
2226 	case RECOVERED_ERROR:
2227 		good_bytes = scsi_bufflen(SCpnt);
2228 		break;
2229 	case NO_SENSE:
2230 		/* This indicates a false check condition, so ignore it.  An
2231 		 * unknown amount of data was transferred so treat it as an
2232 		 * error.
2233 		 */
2234 		SCpnt->result = 0;
2235 		memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
2236 		break;
2237 	case ABORTED_COMMAND:
2238 		if (sshdr.asc == 0x10)  /* DIF: Target detected corruption */
2239 			good_bytes = sd_completed_bytes(SCpnt);
2240 		break;
2241 	case ILLEGAL_REQUEST:
2242 		switch (sshdr.asc) {
2243 		case 0x10:	/* DIX: Host detected corruption */
2244 			good_bytes = sd_completed_bytes(SCpnt);
2245 			break;
2246 		case 0x20:	/* INVALID COMMAND OPCODE */
2247 		case 0x24:	/* INVALID FIELD IN CDB */
2248 			switch (SCpnt->cmnd[0]) {
2249 			case UNMAP:
2250 				sd_config_discard(sdkp, SD_LBP_DISABLE);
2251 				break;
2252 			case WRITE_SAME_16:
2253 			case WRITE_SAME:
2254 				if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2255 					sd_config_discard(sdkp, SD_LBP_DISABLE);
2256 				} else {
2257 					sdkp->device->no_write_same = 1;
2258 					sd_config_write_same(sdkp);
2259 					req->rq_flags |= RQF_QUIET;
2260 				}
2261 				break;
2262 			}
2263 		}
2264 		break;
2265 	default:
2266 		break;
2267 	}
2268 
2269  out:
2270 	if (sd_is_zoned(sdkp))
2271 		good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2272 
2273 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2274 					   "sd_done: completed %d of %d bytes\n",
2275 					   good_bytes, scsi_bufflen(SCpnt)));
2276 
2277 	return good_bytes;
2278 }
2279 
2280 /*
2281  * spinup disk - called only in sd_revalidate_disk()
2282  */
2283 static void
2284 sd_spinup_disk(struct scsi_disk *sdkp)
2285 {
2286 	static const u8 cmd[10] = { TEST_UNIT_READY };
2287 	unsigned long spintime_expire = 0;
2288 	int spintime, sense_valid = 0;
2289 	unsigned int the_result;
2290 	struct scsi_sense_hdr sshdr;
2291 	struct scsi_failure failure_defs[] = {
2292 		/* Do not retry Medium Not Present */
2293 		{
2294 			.sense = UNIT_ATTENTION,
2295 			.asc = 0x3A,
2296 			.ascq = SCMD_FAILURE_ASCQ_ANY,
2297 			.result = SAM_STAT_CHECK_CONDITION,
2298 		},
2299 		{
2300 			.sense = NOT_READY,
2301 			.asc = 0x3A,
2302 			.ascq = SCMD_FAILURE_ASCQ_ANY,
2303 			.result = SAM_STAT_CHECK_CONDITION,
2304 		},
2305 		/* Retry when scsi_status_is_good would return false 3 times */
2306 		{
2307 			.result = SCMD_FAILURE_STAT_ANY,
2308 			.allowed = 3,
2309 		},
2310 		{}
2311 	};
2312 	struct scsi_failures failures = {
2313 		.failure_definitions = failure_defs,
2314 	};
2315 	const struct scsi_exec_args exec_args = {
2316 		.sshdr = &sshdr,
2317 		.failures = &failures,
2318 	};
2319 
2320 	spintime = 0;
2321 
2322 	/* Spin up drives, as required.  Only do this at boot time */
2323 	/* Spinup needs to be done for module loads too. */
2324 	do {
2325 		bool media_was_present = sdkp->media_present;
2326 
2327 		scsi_failures_reset_retries(&failures);
2328 
2329 		the_result = scsi_execute_cmd(sdkp->device, cmd, REQ_OP_DRV_IN,
2330 					      NULL, 0, SD_TIMEOUT,
2331 					      sdkp->max_retries, &exec_args);
2332 
2333 
2334 		if (the_result > 0) {
2335 			/*
2336 			 * If the drive has indicated to us that it doesn't
2337 			 * have any media in it, don't bother with any more
2338 			 * polling.
2339 			 */
2340 			if (media_not_present(sdkp, &sshdr)) {
2341 				if (media_was_present)
2342 					sd_printk(KERN_NOTICE, sdkp,
2343 						  "Media removed, stopped polling\n");
2344 				return;
2345 			}
2346 			sense_valid = scsi_sense_valid(&sshdr);
2347 		}
2348 
2349 		if (!scsi_status_is_check_condition(the_result)) {
2350 			/* no sense, TUR either succeeded or failed
2351 			 * with a status error */
2352 			if(!spintime && !scsi_status_is_good(the_result)) {
2353 				sd_print_result(sdkp, "Test Unit Ready failed",
2354 						the_result);
2355 			}
2356 			break;
2357 		}
2358 
2359 		/*
2360 		 * The device does not want the automatic start to be issued.
2361 		 */
2362 		if (sdkp->device->no_start_on_add)
2363 			break;
2364 
2365 		if (sense_valid && sshdr.sense_key == NOT_READY) {
2366 			if (sshdr.asc == 4 && sshdr.ascq == 3)
2367 				break;	/* manual intervention required */
2368 			if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2369 				break;	/* standby */
2370 			if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2371 				break;	/* unavailable */
2372 			if (sshdr.asc == 4 && sshdr.ascq == 0x1b)
2373 				break;	/* sanitize in progress */
2374 			if (sshdr.asc == 4 && sshdr.ascq == 0x24)
2375 				break;	/* depopulation in progress */
2376 			if (sshdr.asc == 4 && sshdr.ascq == 0x25)
2377 				break;	/* depopulation restoration in progress */
2378 			/*
2379 			 * Issue command to spin up drive when not ready
2380 			 */
2381 			if (!spintime) {
2382 				/* Return immediately and start spin cycle */
2383 				const u8 start_cmd[10] = {
2384 					[0] = START_STOP,
2385 					[1] = 1,
2386 					[4] = sdkp->device->start_stop_pwr_cond ?
2387 						0x11 : 1,
2388 				};
2389 
2390 				sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2391 				scsi_execute_cmd(sdkp->device, start_cmd,
2392 						 REQ_OP_DRV_IN, NULL, 0,
2393 						 SD_TIMEOUT, sdkp->max_retries,
2394 						 &exec_args);
2395 				spintime_expire = jiffies + 100 * HZ;
2396 				spintime = 1;
2397 			}
2398 			/* Wait 1 second for next try */
2399 			msleep(1000);
2400 			printk(KERN_CONT ".");
2401 
2402 		/*
2403 		 * Wait for USB flash devices with slow firmware.
2404 		 * Yes, this sense key/ASC combination shouldn't
2405 		 * occur here.  It's characteristic of these devices.
2406 		 */
2407 		} else if (sense_valid &&
2408 				sshdr.sense_key == UNIT_ATTENTION &&
2409 				sshdr.asc == 0x28) {
2410 			if (!spintime) {
2411 				spintime_expire = jiffies + 5 * HZ;
2412 				spintime = 1;
2413 			}
2414 			/* Wait 1 second for next try */
2415 			msleep(1000);
2416 		} else {
2417 			/* we don't understand the sense code, so it's
2418 			 * probably pointless to loop */
2419 			if(!spintime) {
2420 				sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2421 				sd_print_sense_hdr(sdkp, &sshdr);
2422 			}
2423 			break;
2424 		}
2425 
2426 	} while (spintime && time_before_eq(jiffies, spintime_expire));
2427 
2428 	if (spintime) {
2429 		if (scsi_status_is_good(the_result))
2430 			printk(KERN_CONT "ready\n");
2431 		else
2432 			printk(KERN_CONT "not responding...\n");
2433 	}
2434 }
2435 
2436 /*
2437  * Determine whether disk supports Data Integrity Field.
2438  */
2439 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2440 {
2441 	struct scsi_device *sdp = sdkp->device;
2442 	u8 type;
2443 
2444 	if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) {
2445 		sdkp->protection_type = 0;
2446 		return 0;
2447 	}
2448 
2449 	type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2450 
2451 	if (type > T10_PI_TYPE3_PROTECTION) {
2452 		sd_printk(KERN_ERR, sdkp, "formatted with unsupported"	\
2453 			  " protection type %u. Disabling disk!\n",
2454 			  type);
2455 		sdkp->protection_type = 0;
2456 		return -ENODEV;
2457 	}
2458 
2459 	sdkp->protection_type = type;
2460 
2461 	return 0;
2462 }
2463 
2464 static void sd_config_protection(struct scsi_disk *sdkp)
2465 {
2466 	struct scsi_device *sdp = sdkp->device;
2467 
2468 	sd_dif_config_host(sdkp);
2469 
2470 	if (!sdkp->protection_type)
2471 		return;
2472 
2473 	if (!scsi_host_dif_capable(sdp->host, sdkp->protection_type)) {
2474 		sd_first_printk(KERN_NOTICE, sdkp,
2475 				"Disabling DIF Type %u protection\n",
2476 				sdkp->protection_type);
2477 		sdkp->protection_type = 0;
2478 	}
2479 
2480 	sd_first_printk(KERN_NOTICE, sdkp, "Enabling DIF Type %u protection\n",
2481 			sdkp->protection_type);
2482 }
2483 
2484 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2485 			struct scsi_sense_hdr *sshdr, int sense_valid,
2486 			int the_result)
2487 {
2488 	if (sense_valid)
2489 		sd_print_sense_hdr(sdkp, sshdr);
2490 	else
2491 		sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2492 
2493 	/*
2494 	 * Set dirty bit for removable devices if not ready -
2495 	 * sometimes drives will not report this properly.
2496 	 */
2497 	if (sdp->removable &&
2498 	    sense_valid && sshdr->sense_key == NOT_READY)
2499 		set_media_not_present(sdkp);
2500 
2501 	/*
2502 	 * We used to set media_present to 0 here to indicate no media
2503 	 * in the drive, but some drives fail read capacity even with
2504 	 * media present, so we can't do that.
2505 	 */
2506 	sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2507 }
2508 
2509 #define RC16_LEN 32
2510 #if RC16_LEN > SD_BUF_SIZE
2511 #error RC16_LEN must not be more than SD_BUF_SIZE
2512 #endif
2513 
2514 #define READ_CAPACITY_RETRIES_ON_RESET	10
2515 
2516 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2517 						unsigned char *buffer)
2518 {
2519 	unsigned char cmd[16];
2520 	struct scsi_sense_hdr sshdr;
2521 	const struct scsi_exec_args exec_args = {
2522 		.sshdr = &sshdr,
2523 	};
2524 	int sense_valid = 0;
2525 	int the_result;
2526 	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2527 	unsigned int alignment;
2528 	unsigned long long lba;
2529 	unsigned sector_size;
2530 
2531 	if (sdp->no_read_capacity_16)
2532 		return -EINVAL;
2533 
2534 	do {
2535 		memset(cmd, 0, 16);
2536 		cmd[0] = SERVICE_ACTION_IN_16;
2537 		cmd[1] = SAI_READ_CAPACITY_16;
2538 		cmd[13] = RC16_LEN;
2539 		memset(buffer, 0, RC16_LEN);
2540 
2541 		the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN,
2542 					      buffer, RC16_LEN, SD_TIMEOUT,
2543 					      sdkp->max_retries, &exec_args);
2544 		if (the_result > 0) {
2545 			if (media_not_present(sdkp, &sshdr))
2546 				return -ENODEV;
2547 
2548 			sense_valid = scsi_sense_valid(&sshdr);
2549 			if (sense_valid &&
2550 			    sshdr.sense_key == ILLEGAL_REQUEST &&
2551 			    (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2552 			    sshdr.ascq == 0x00)
2553 				/* Invalid Command Operation Code or
2554 				 * Invalid Field in CDB, just retry
2555 				 * silently with RC10 */
2556 				return -EINVAL;
2557 			if (sense_valid &&
2558 			    sshdr.sense_key == UNIT_ATTENTION &&
2559 			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2560 				/* Device reset might occur several times,
2561 				 * give it one more chance */
2562 				if (--reset_retries > 0)
2563 					continue;
2564 		}
2565 		retries--;
2566 
2567 	} while (the_result && retries);
2568 
2569 	if (the_result) {
2570 		sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2571 		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2572 		return -EINVAL;
2573 	}
2574 
2575 	sector_size = get_unaligned_be32(&buffer[8]);
2576 	lba = get_unaligned_be64(&buffer[0]);
2577 
2578 	if (sd_read_protection_type(sdkp, buffer) < 0) {
2579 		sdkp->capacity = 0;
2580 		return -ENODEV;
2581 	}
2582 
2583 	/* Logical blocks per physical block exponent */
2584 	sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2585 
2586 	/* RC basis */
2587 	sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2588 
2589 	/* Lowest aligned logical block */
2590 	alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2591 	blk_queue_alignment_offset(sdp->request_queue, alignment);
2592 	if (alignment && sdkp->first_scan)
2593 		sd_printk(KERN_NOTICE, sdkp,
2594 			  "physical block alignment offset: %u\n", alignment);
2595 
2596 	if (buffer[14] & 0x80) { /* LBPME */
2597 		sdkp->lbpme = 1;
2598 
2599 		if (buffer[14] & 0x40) /* LBPRZ */
2600 			sdkp->lbprz = 1;
2601 
2602 		sd_config_discard(sdkp, SD_LBP_WS16);
2603 	}
2604 
2605 	sdkp->capacity = lba + 1;
2606 	return sector_size;
2607 }
2608 
2609 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2610 						unsigned char *buffer)
2611 {
2612 	static const u8 cmd[10] = { READ_CAPACITY };
2613 	struct scsi_sense_hdr sshdr;
2614 	struct scsi_failure failure_defs[] = {
2615 		/* Do not retry Medium Not Present */
2616 		{
2617 			.sense = UNIT_ATTENTION,
2618 			.asc = 0x3A,
2619 			.result = SAM_STAT_CHECK_CONDITION,
2620 		},
2621 		{
2622 			.sense = NOT_READY,
2623 			.asc = 0x3A,
2624 			.result = SAM_STAT_CHECK_CONDITION,
2625 		},
2626 		 /* Device reset might occur several times so retry a lot */
2627 		{
2628 			.sense = UNIT_ATTENTION,
2629 			.asc = 0x29,
2630 			.allowed = READ_CAPACITY_RETRIES_ON_RESET,
2631 			.result = SAM_STAT_CHECK_CONDITION,
2632 		},
2633 		/* Any other error not listed above retry 3 times */
2634 		{
2635 			.result = SCMD_FAILURE_RESULT_ANY,
2636 			.allowed = 3,
2637 		},
2638 		{}
2639 	};
2640 	struct scsi_failures failures = {
2641 		.failure_definitions = failure_defs,
2642 	};
2643 	const struct scsi_exec_args exec_args = {
2644 		.sshdr = &sshdr,
2645 		.failures = &failures,
2646 	};
2647 	int sense_valid = 0;
2648 	int the_result;
2649 	sector_t lba;
2650 	unsigned sector_size;
2651 
2652 	memset(buffer, 0, 8);
2653 
2654 	the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, buffer,
2655 				      8, SD_TIMEOUT, sdkp->max_retries,
2656 				      &exec_args);
2657 
2658 	if (the_result > 0) {
2659 		sense_valid = scsi_sense_valid(&sshdr);
2660 
2661 		if (media_not_present(sdkp, &sshdr))
2662 			return -ENODEV;
2663 	}
2664 
2665 	if (the_result) {
2666 		sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2667 		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2668 		return -EINVAL;
2669 	}
2670 
2671 	sector_size = get_unaligned_be32(&buffer[4]);
2672 	lba = get_unaligned_be32(&buffer[0]);
2673 
2674 	if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2675 		/* Some buggy (usb cardreader) devices return an lba of
2676 		   0xffffffff when the want to report a size of 0 (with
2677 		   which they really mean no media is present) */
2678 		sdkp->capacity = 0;
2679 		sdkp->physical_block_size = sector_size;
2680 		return sector_size;
2681 	}
2682 
2683 	sdkp->capacity = lba + 1;
2684 	sdkp->physical_block_size = sector_size;
2685 	return sector_size;
2686 }
2687 
2688 static int sd_try_rc16_first(struct scsi_device *sdp)
2689 {
2690 	if (sdp->host->max_cmd_len < 16)
2691 		return 0;
2692 	if (sdp->try_rc_10_first)
2693 		return 0;
2694 	if (sdp->scsi_level > SCSI_SPC_2)
2695 		return 1;
2696 	if (scsi_device_protection(sdp))
2697 		return 1;
2698 	return 0;
2699 }
2700 
2701 /*
2702  * read disk capacity
2703  */
2704 static void
2705 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2706 {
2707 	int sector_size;
2708 	struct scsi_device *sdp = sdkp->device;
2709 
2710 	if (sd_try_rc16_first(sdp)) {
2711 		sector_size = read_capacity_16(sdkp, sdp, buffer);
2712 		if (sector_size == -EOVERFLOW)
2713 			goto got_data;
2714 		if (sector_size == -ENODEV)
2715 			return;
2716 		if (sector_size < 0)
2717 			sector_size = read_capacity_10(sdkp, sdp, buffer);
2718 		if (sector_size < 0)
2719 			return;
2720 	} else {
2721 		sector_size = read_capacity_10(sdkp, sdp, buffer);
2722 		if (sector_size == -EOVERFLOW)
2723 			goto got_data;
2724 		if (sector_size < 0)
2725 			return;
2726 		if ((sizeof(sdkp->capacity) > 4) &&
2727 		    (sdkp->capacity > 0xffffffffULL)) {
2728 			int old_sector_size = sector_size;
2729 			sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2730 					"Trying to use READ CAPACITY(16).\n");
2731 			sector_size = read_capacity_16(sdkp, sdp, buffer);
2732 			if (sector_size < 0) {
2733 				sd_printk(KERN_NOTICE, sdkp,
2734 					"Using 0xffffffff as device size\n");
2735 				sdkp->capacity = 1 + (sector_t) 0xffffffff;
2736 				sector_size = old_sector_size;
2737 				goto got_data;
2738 			}
2739 			/* Remember that READ CAPACITY(16) succeeded */
2740 			sdp->try_rc_10_first = 0;
2741 		}
2742 	}
2743 
2744 	/* Some devices are known to return the total number of blocks,
2745 	 * not the highest block number.  Some devices have versions
2746 	 * which do this and others which do not.  Some devices we might
2747 	 * suspect of doing this but we don't know for certain.
2748 	 *
2749 	 * If we know the reported capacity is wrong, decrement it.  If
2750 	 * we can only guess, then assume the number of blocks is even
2751 	 * (usually true but not always) and err on the side of lowering
2752 	 * the capacity.
2753 	 */
2754 	if (sdp->fix_capacity ||
2755 	    (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2756 		sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2757 				"from its reported value: %llu\n",
2758 				(unsigned long long) sdkp->capacity);
2759 		--sdkp->capacity;
2760 	}
2761 
2762 got_data:
2763 	if (sector_size == 0) {
2764 		sector_size = 512;
2765 		sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2766 			  "assuming 512.\n");
2767 	}
2768 
2769 	if (sector_size != 512 &&
2770 	    sector_size != 1024 &&
2771 	    sector_size != 2048 &&
2772 	    sector_size != 4096) {
2773 		sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2774 			  sector_size);
2775 		/*
2776 		 * The user might want to re-format the drive with
2777 		 * a supported sectorsize.  Once this happens, it
2778 		 * would be relatively trivial to set the thing up.
2779 		 * For this reason, we leave the thing in the table.
2780 		 */
2781 		sdkp->capacity = 0;
2782 		/*
2783 		 * set a bogus sector size so the normal read/write
2784 		 * logic in the block layer will eventually refuse any
2785 		 * request on this device without tripping over power
2786 		 * of two sector size assumptions
2787 		 */
2788 		sector_size = 512;
2789 	}
2790 	blk_queue_logical_block_size(sdp->request_queue, sector_size);
2791 	blk_queue_physical_block_size(sdp->request_queue,
2792 				      sdkp->physical_block_size);
2793 	sdkp->device->sector_size = sector_size;
2794 
2795 	if (sdkp->capacity > 0xffffffff)
2796 		sdp->use_16_for_rw = 1;
2797 
2798 }
2799 
2800 /*
2801  * Print disk capacity
2802  */
2803 static void
2804 sd_print_capacity(struct scsi_disk *sdkp,
2805 		  sector_t old_capacity)
2806 {
2807 	int sector_size = sdkp->device->sector_size;
2808 	char cap_str_2[10], cap_str_10[10];
2809 
2810 	if (!sdkp->first_scan && old_capacity == sdkp->capacity)
2811 		return;
2812 
2813 	string_get_size(sdkp->capacity, sector_size,
2814 			STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2815 	string_get_size(sdkp->capacity, sector_size,
2816 			STRING_UNITS_10, cap_str_10, sizeof(cap_str_10));
2817 
2818 	sd_printk(KERN_NOTICE, sdkp,
2819 		  "%llu %d-byte logical blocks: (%s/%s)\n",
2820 		  (unsigned long long)sdkp->capacity,
2821 		  sector_size, cap_str_10, cap_str_2);
2822 
2823 	if (sdkp->physical_block_size != sector_size)
2824 		sd_printk(KERN_NOTICE, sdkp,
2825 			  "%u-byte physical blocks\n",
2826 			  sdkp->physical_block_size);
2827 }
2828 
2829 /* called with buffer of length 512 */
2830 static inline int
2831 sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage,
2832 		 unsigned char *buffer, int len, struct scsi_mode_data *data,
2833 		 struct scsi_sense_hdr *sshdr)
2834 {
2835 	/*
2836 	 * If we must use MODE SENSE(10), make sure that the buffer length
2837 	 * is at least 8 bytes so that the mode sense header fits.
2838 	 */
2839 	if (sdkp->device->use_10_for_ms && len < 8)
2840 		len = 8;
2841 
2842 	return scsi_mode_sense(sdkp->device, dbd, modepage, 0, buffer, len,
2843 			       SD_TIMEOUT, sdkp->max_retries, data, sshdr);
2844 }
2845 
2846 /*
2847  * read write protect setting, if possible - called only in sd_revalidate_disk()
2848  * called with buffer of length SD_BUF_SIZE
2849  */
2850 static void
2851 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2852 {
2853 	int res;
2854 	struct scsi_device *sdp = sdkp->device;
2855 	struct scsi_mode_data data;
2856 	int old_wp = sdkp->write_prot;
2857 
2858 	set_disk_ro(sdkp->disk, 0);
2859 	if (sdp->skip_ms_page_3f) {
2860 		sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2861 		return;
2862 	}
2863 
2864 	if (sdp->use_192_bytes_for_3f) {
2865 		res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL);
2866 	} else {
2867 		/*
2868 		 * First attempt: ask for all pages (0x3F), but only 4 bytes.
2869 		 * We have to start carefully: some devices hang if we ask
2870 		 * for more than is available.
2871 		 */
2872 		res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL);
2873 
2874 		/*
2875 		 * Second attempt: ask for page 0 When only page 0 is
2876 		 * implemented, a request for page 3F may return Sense Key
2877 		 * 5: Illegal Request, Sense Code 24: Invalid field in
2878 		 * CDB.
2879 		 */
2880 		if (res < 0)
2881 			res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL);
2882 
2883 		/*
2884 		 * Third attempt: ask 255 bytes, as we did earlier.
2885 		 */
2886 		if (res < 0)
2887 			res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255,
2888 					       &data, NULL);
2889 	}
2890 
2891 	if (res < 0) {
2892 		sd_first_printk(KERN_WARNING, sdkp,
2893 			  "Test WP failed, assume Write Enabled\n");
2894 	} else {
2895 		sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2896 		set_disk_ro(sdkp->disk, sdkp->write_prot);
2897 		if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2898 			sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2899 				  sdkp->write_prot ? "on" : "off");
2900 			sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
2901 		}
2902 	}
2903 }
2904 
2905 /*
2906  * sd_read_cache_type - called only from sd_revalidate_disk()
2907  * called with buffer of length SD_BUF_SIZE
2908  */
2909 static void
2910 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2911 {
2912 	int len = 0, res;
2913 	struct scsi_device *sdp = sdkp->device;
2914 
2915 	int dbd;
2916 	int modepage;
2917 	int first_len;
2918 	struct scsi_mode_data data;
2919 	struct scsi_sense_hdr sshdr;
2920 	int old_wce = sdkp->WCE;
2921 	int old_rcd = sdkp->RCD;
2922 	int old_dpofua = sdkp->DPOFUA;
2923 
2924 
2925 	if (sdkp->cache_override)
2926 		return;
2927 
2928 	first_len = 4;
2929 	if (sdp->skip_ms_page_8) {
2930 		if (sdp->type == TYPE_RBC)
2931 			goto defaults;
2932 		else {
2933 			if (sdp->skip_ms_page_3f)
2934 				goto defaults;
2935 			modepage = 0x3F;
2936 			if (sdp->use_192_bytes_for_3f)
2937 				first_len = 192;
2938 			dbd = 0;
2939 		}
2940 	} else if (sdp->type == TYPE_RBC) {
2941 		modepage = 6;
2942 		dbd = 8;
2943 	} else {
2944 		modepage = 8;
2945 		dbd = 0;
2946 	}
2947 
2948 	/* cautiously ask */
2949 	res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len,
2950 			&data, &sshdr);
2951 
2952 	if (res < 0)
2953 		goto bad_sense;
2954 
2955 	if (!data.header_length) {
2956 		modepage = 6;
2957 		first_len = 0;
2958 		sd_first_printk(KERN_ERR, sdkp,
2959 				"Missing header in MODE_SENSE response\n");
2960 	}
2961 
2962 	/* that went OK, now ask for the proper length */
2963 	len = data.length;
2964 
2965 	/*
2966 	 * We're only interested in the first three bytes, actually.
2967 	 * But the data cache page is defined for the first 20.
2968 	 */
2969 	if (len < 3)
2970 		goto bad_sense;
2971 	else if (len > SD_BUF_SIZE) {
2972 		sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2973 			  "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2974 		len = SD_BUF_SIZE;
2975 	}
2976 	if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2977 		len = 192;
2978 
2979 	/* Get the data */
2980 	if (len > first_len)
2981 		res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len,
2982 				&data, &sshdr);
2983 
2984 	if (!res) {
2985 		int offset = data.header_length + data.block_descriptor_length;
2986 
2987 		while (offset < len) {
2988 			u8 page_code = buffer[offset] & 0x3F;
2989 			u8 spf       = buffer[offset] & 0x40;
2990 
2991 			if (page_code == 8 || page_code == 6) {
2992 				/* We're interested only in the first 3 bytes.
2993 				 */
2994 				if (len - offset <= 2) {
2995 					sd_first_printk(KERN_ERR, sdkp,
2996 						"Incomplete mode parameter "
2997 							"data\n");
2998 					goto defaults;
2999 				} else {
3000 					modepage = page_code;
3001 					goto Page_found;
3002 				}
3003 			} else {
3004 				/* Go to the next page */
3005 				if (spf && len - offset > 3)
3006 					offset += 4 + (buffer[offset+2] << 8) +
3007 						buffer[offset+3];
3008 				else if (!spf && len - offset > 1)
3009 					offset += 2 + buffer[offset+1];
3010 				else {
3011 					sd_first_printk(KERN_ERR, sdkp,
3012 							"Incomplete mode "
3013 							"parameter data\n");
3014 					goto defaults;
3015 				}
3016 			}
3017 		}
3018 
3019 		sd_first_printk(KERN_WARNING, sdkp,
3020 				"No Caching mode page found\n");
3021 		goto defaults;
3022 
3023 	Page_found:
3024 		if (modepage == 8) {
3025 			sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
3026 			sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
3027 		} else {
3028 			sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
3029 			sdkp->RCD = 0;
3030 		}
3031 
3032 		sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
3033 		if (sdp->broken_fua) {
3034 			sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
3035 			sdkp->DPOFUA = 0;
3036 		} else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
3037 			   !sdkp->device->use_16_for_rw) {
3038 			sd_first_printk(KERN_NOTICE, sdkp,
3039 				  "Uses READ/WRITE(6), disabling FUA\n");
3040 			sdkp->DPOFUA = 0;
3041 		}
3042 
3043 		/* No cache flush allowed for write protected devices */
3044 		if (sdkp->WCE && sdkp->write_prot)
3045 			sdkp->WCE = 0;
3046 
3047 		if (sdkp->first_scan || old_wce != sdkp->WCE ||
3048 		    old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
3049 			sd_printk(KERN_NOTICE, sdkp,
3050 				  "Write cache: %s, read cache: %s, %s\n",
3051 				  sdkp->WCE ? "enabled" : "disabled",
3052 				  sdkp->RCD ? "disabled" : "enabled",
3053 				  sdkp->DPOFUA ? "supports DPO and FUA"
3054 				  : "doesn't support DPO or FUA");
3055 
3056 		return;
3057 	}
3058 
3059 bad_sense:
3060 	if (res == -EIO && scsi_sense_valid(&sshdr) &&
3061 	    sshdr.sense_key == ILLEGAL_REQUEST &&
3062 	    sshdr.asc == 0x24 && sshdr.ascq == 0x0)
3063 		/* Invalid field in CDB */
3064 		sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
3065 	else
3066 		sd_first_printk(KERN_ERR, sdkp,
3067 				"Asking for cache data failed\n");
3068 
3069 defaults:
3070 	if (sdp->wce_default_on) {
3071 		sd_first_printk(KERN_NOTICE, sdkp,
3072 				"Assuming drive cache: write back\n");
3073 		sdkp->WCE = 1;
3074 	} else {
3075 		sd_first_printk(KERN_WARNING, sdkp,
3076 				"Assuming drive cache: write through\n");
3077 		sdkp->WCE = 0;
3078 	}
3079 	sdkp->RCD = 0;
3080 	sdkp->DPOFUA = 0;
3081 }
3082 
3083 static bool sd_is_perm_stream(struct scsi_disk *sdkp, unsigned int stream_id)
3084 {
3085 	u8 cdb[16] = { SERVICE_ACTION_IN_16, SAI_GET_STREAM_STATUS };
3086 	struct {
3087 		struct scsi_stream_status_header h;
3088 		struct scsi_stream_status s;
3089 	} buf;
3090 	struct scsi_device *sdev = sdkp->device;
3091 	struct scsi_sense_hdr sshdr;
3092 	const struct scsi_exec_args exec_args = {
3093 		.sshdr = &sshdr,
3094 	};
3095 	int res;
3096 
3097 	put_unaligned_be16(stream_id, &cdb[4]);
3098 	put_unaligned_be32(sizeof(buf), &cdb[10]);
3099 
3100 	res = scsi_execute_cmd(sdev, cdb, REQ_OP_DRV_IN, &buf, sizeof(buf),
3101 			       SD_TIMEOUT, sdkp->max_retries, &exec_args);
3102 	if (res < 0)
3103 		return false;
3104 	if (scsi_status_is_check_condition(res) && scsi_sense_valid(&sshdr))
3105 		sd_print_sense_hdr(sdkp, &sshdr);
3106 	if (res)
3107 		return false;
3108 	if (get_unaligned_be32(&buf.h.len) < sizeof(struct scsi_stream_status))
3109 		return false;
3110 	return buf.h.stream_status[0].perm;
3111 }
3112 
3113 static void sd_read_io_hints(struct scsi_disk *sdkp, unsigned char *buffer)
3114 {
3115 	struct scsi_device *sdp = sdkp->device;
3116 	const struct scsi_io_group_descriptor *desc, *start, *end;
3117 	u16 permanent_stream_count_old;
3118 	struct scsi_sense_hdr sshdr;
3119 	struct scsi_mode_data data;
3120 	int res;
3121 
3122 	if (sdp->sdev_bflags & BLIST_SKIP_IO_HINTS)
3123 		return;
3124 
3125 	res = scsi_mode_sense(sdp, /*dbd=*/0x8, /*modepage=*/0x0a,
3126 			      /*subpage=*/0x05, buffer, SD_BUF_SIZE, SD_TIMEOUT,
3127 			      sdkp->max_retries, &data, &sshdr);
3128 	if (res < 0)
3129 		return;
3130 	start = (void *)buffer + data.header_length + 16;
3131 	end = (void *)buffer + ALIGN_DOWN(data.header_length + data.length,
3132 					  sizeof(*end));
3133 	/*
3134 	 * From "SBC-5 Constrained Streams with Data Lifetimes": Device severs
3135 	 * should assign the lowest numbered stream identifiers to permanent
3136 	 * streams.
3137 	 */
3138 	for (desc = start; desc < end; desc++)
3139 		if (!desc->st_enble || !sd_is_perm_stream(sdkp, desc - start))
3140 			break;
3141 	permanent_stream_count_old = sdkp->permanent_stream_count;
3142 	sdkp->permanent_stream_count = desc - start;
3143 	if (sdkp->rscs && sdkp->permanent_stream_count < 2)
3144 		sd_printk(KERN_INFO, sdkp,
3145 			  "Unexpected: RSCS has been set and the permanent stream count is %u\n",
3146 			  sdkp->permanent_stream_count);
3147 	else if (sdkp->permanent_stream_count != permanent_stream_count_old)
3148 		sd_printk(KERN_INFO, sdkp, "permanent stream count = %d\n",
3149 			  sdkp->permanent_stream_count);
3150 }
3151 
3152 /*
3153  * The ATO bit indicates whether the DIF application tag is available
3154  * for use by the operating system.
3155  */
3156 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
3157 {
3158 	int res, offset;
3159 	struct scsi_device *sdp = sdkp->device;
3160 	struct scsi_mode_data data;
3161 	struct scsi_sense_hdr sshdr;
3162 
3163 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
3164 		return;
3165 
3166 	if (sdkp->protection_type == 0)
3167 		return;
3168 
3169 	res = scsi_mode_sense(sdp, 1, 0x0a, 0, buffer, 36, SD_TIMEOUT,
3170 			      sdkp->max_retries, &data, &sshdr);
3171 
3172 	if (res < 0 || !data.header_length ||
3173 	    data.length < 6) {
3174 		sd_first_printk(KERN_WARNING, sdkp,
3175 			  "getting Control mode page failed, assume no ATO\n");
3176 
3177 		if (res == -EIO && scsi_sense_valid(&sshdr))
3178 			sd_print_sense_hdr(sdkp, &sshdr);
3179 
3180 		return;
3181 	}
3182 
3183 	offset = data.header_length + data.block_descriptor_length;
3184 
3185 	if ((buffer[offset] & 0x3f) != 0x0a) {
3186 		sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
3187 		return;
3188 	}
3189 
3190 	if ((buffer[offset + 5] & 0x80) == 0)
3191 		return;
3192 
3193 	sdkp->ATO = 1;
3194 
3195 	return;
3196 }
3197 
3198 /**
3199  * sd_read_block_limits - Query disk device for preferred I/O sizes.
3200  * @sdkp: disk to query
3201  */
3202 static void sd_read_block_limits(struct scsi_disk *sdkp)
3203 {
3204 	struct scsi_vpd *vpd;
3205 
3206 	rcu_read_lock();
3207 
3208 	vpd = rcu_dereference(sdkp->device->vpd_pgb0);
3209 	if (!vpd || vpd->len < 16)
3210 		goto out;
3211 
3212 	sdkp->min_xfer_blocks = get_unaligned_be16(&vpd->data[6]);
3213 	sdkp->max_xfer_blocks = get_unaligned_be32(&vpd->data[8]);
3214 	sdkp->opt_xfer_blocks = get_unaligned_be32(&vpd->data[12]);
3215 
3216 	if (vpd->len >= 64) {
3217 		unsigned int lba_count, desc_count;
3218 
3219 		sdkp->max_ws_blocks = (u32)get_unaligned_be64(&vpd->data[36]);
3220 
3221 		if (!sdkp->lbpme)
3222 			goto out;
3223 
3224 		lba_count = get_unaligned_be32(&vpd->data[20]);
3225 		desc_count = get_unaligned_be32(&vpd->data[24]);
3226 
3227 		if (lba_count && desc_count)
3228 			sdkp->max_unmap_blocks = lba_count;
3229 
3230 		sdkp->unmap_granularity = get_unaligned_be32(&vpd->data[28]);
3231 
3232 		if (vpd->data[32] & 0x80)
3233 			sdkp->unmap_alignment =
3234 				get_unaligned_be32(&vpd->data[32]) & ~(1 << 31);
3235 
3236 		if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
3237 
3238 			if (sdkp->max_unmap_blocks)
3239 				sd_config_discard(sdkp, SD_LBP_UNMAP);
3240 			else
3241 				sd_config_discard(sdkp, SD_LBP_WS16);
3242 
3243 		} else {	/* LBP VPD page tells us what to use */
3244 			if (sdkp->lbpu && sdkp->max_unmap_blocks)
3245 				sd_config_discard(sdkp, SD_LBP_UNMAP);
3246 			else if (sdkp->lbpws)
3247 				sd_config_discard(sdkp, SD_LBP_WS16);
3248 			else if (sdkp->lbpws10)
3249 				sd_config_discard(sdkp, SD_LBP_WS10);
3250 			else
3251 				sd_config_discard(sdkp, SD_LBP_DISABLE);
3252 		}
3253 	}
3254 
3255  out:
3256 	rcu_read_unlock();
3257 }
3258 
3259 /* Parse the Block Limits Extension VPD page (0xb7) */
3260 static void sd_read_block_limits_ext(struct scsi_disk *sdkp)
3261 {
3262 	struct scsi_vpd *vpd;
3263 
3264 	rcu_read_lock();
3265 	vpd = rcu_dereference(sdkp->device->vpd_pgb7);
3266 	if (vpd && vpd->len >= 2)
3267 		sdkp->rscs = vpd->data[5] & 1;
3268 	rcu_read_unlock();
3269 }
3270 
3271 /**
3272  * sd_read_block_characteristics - Query block dev. characteristics
3273  * @sdkp: disk to query
3274  */
3275 static void sd_read_block_characteristics(struct scsi_disk *sdkp)
3276 {
3277 	struct request_queue *q = sdkp->disk->queue;
3278 	struct scsi_vpd *vpd;
3279 	u16 rot;
3280 
3281 	rcu_read_lock();
3282 	vpd = rcu_dereference(sdkp->device->vpd_pgb1);
3283 
3284 	if (!vpd || vpd->len < 8) {
3285 		rcu_read_unlock();
3286 	        return;
3287 	}
3288 
3289 	rot = get_unaligned_be16(&vpd->data[4]);
3290 	sdkp->zoned = (vpd->data[8] >> 4) & 3;
3291 	rcu_read_unlock();
3292 
3293 	if (rot == 1) {
3294 		blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
3295 		blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
3296 	}
3297 
3298 
3299 #ifdef CONFIG_BLK_DEV_ZONED /* sd_probe rejects ZBD devices early otherwise */
3300 	if (sdkp->device->type == TYPE_ZBC) {
3301 		/*
3302 		 * Host-managed.
3303 		 */
3304 		disk_set_zoned(sdkp->disk);
3305 
3306 		/*
3307 		 * Per ZBC and ZAC specifications, writes in sequential write
3308 		 * required zones of host-managed devices must be aligned to
3309 		 * the device physical block size.
3310 		 */
3311 		blk_queue_zone_write_granularity(q, sdkp->physical_block_size);
3312 	} else {
3313 		/*
3314 		 * Host-aware devices are treated as conventional.
3315 		 */
3316 		WARN_ON_ONCE(blk_queue_is_zoned(q));
3317 	}
3318 #endif /* CONFIG_BLK_DEV_ZONED */
3319 
3320 	if (!sdkp->first_scan)
3321 		return;
3322 
3323 	if (blk_queue_is_zoned(q))
3324 		sd_printk(KERN_NOTICE, sdkp, "Host-managed zoned block device\n");
3325 	else if (sdkp->zoned == 1)
3326 		sd_printk(KERN_NOTICE, sdkp, "Host-aware SMR disk used as regular disk\n");
3327 	else if (sdkp->zoned == 2)
3328 		sd_printk(KERN_NOTICE, sdkp, "Drive-managed SMR disk\n");
3329 }
3330 
3331 /**
3332  * sd_read_block_provisioning - Query provisioning VPD page
3333  * @sdkp: disk to query
3334  */
3335 static void sd_read_block_provisioning(struct scsi_disk *sdkp)
3336 {
3337 	struct scsi_vpd *vpd;
3338 
3339 	if (sdkp->lbpme == 0)
3340 		return;
3341 
3342 	rcu_read_lock();
3343 	vpd = rcu_dereference(sdkp->device->vpd_pgb2);
3344 
3345 	if (!vpd || vpd->len < 8) {
3346 		rcu_read_unlock();
3347 		return;
3348 	}
3349 
3350 	sdkp->lbpvpd	= 1;
3351 	sdkp->lbpu	= (vpd->data[5] >> 7) & 1; /* UNMAP */
3352 	sdkp->lbpws	= (vpd->data[5] >> 6) & 1; /* WRITE SAME(16) w/ UNMAP */
3353 	sdkp->lbpws10	= (vpd->data[5] >> 5) & 1; /* WRITE SAME(10) w/ UNMAP */
3354 	rcu_read_unlock();
3355 }
3356 
3357 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
3358 {
3359 	struct scsi_device *sdev = sdkp->device;
3360 
3361 	if (sdev->host->no_write_same) {
3362 		sdev->no_write_same = 1;
3363 
3364 		return;
3365 	}
3366 
3367 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY, 0) < 0) {
3368 		struct scsi_vpd *vpd;
3369 
3370 		sdev->no_report_opcodes = 1;
3371 
3372 		/* Disable WRITE SAME if REPORT SUPPORTED OPERATION
3373 		 * CODES is unsupported and the device has an ATA
3374 		 * Information VPD page (SAT).
3375 		 */
3376 		rcu_read_lock();
3377 		vpd = rcu_dereference(sdev->vpd_pg89);
3378 		if (vpd)
3379 			sdev->no_write_same = 1;
3380 		rcu_read_unlock();
3381 	}
3382 
3383 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16, 0) == 1)
3384 		sdkp->ws16 = 1;
3385 
3386 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME, 0) == 1)
3387 		sdkp->ws10 = 1;
3388 }
3389 
3390 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3391 {
3392 	struct scsi_device *sdev = sdkp->device;
3393 
3394 	if (!sdev->security_supported)
3395 		return;
3396 
3397 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3398 			SECURITY_PROTOCOL_IN, 0) == 1 &&
3399 	    scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3400 			SECURITY_PROTOCOL_OUT, 0) == 1)
3401 		sdkp->security = 1;
3402 }
3403 
3404 static inline sector_t sd64_to_sectors(struct scsi_disk *sdkp, u8 *buf)
3405 {
3406 	return logical_to_sectors(sdkp->device, get_unaligned_be64(buf));
3407 }
3408 
3409 /**
3410  * sd_read_cpr - Query concurrent positioning ranges
3411  * @sdkp:	disk to query
3412  */
3413 static void sd_read_cpr(struct scsi_disk *sdkp)
3414 {
3415 	struct blk_independent_access_ranges *iars = NULL;
3416 	unsigned char *buffer = NULL;
3417 	unsigned int nr_cpr = 0;
3418 	int i, vpd_len, buf_len = SD_BUF_SIZE;
3419 	u8 *desc;
3420 
3421 	/*
3422 	 * We need to have the capacity set first for the block layer to be
3423 	 * able to check the ranges.
3424 	 */
3425 	if (sdkp->first_scan)
3426 		return;
3427 
3428 	if (!sdkp->capacity)
3429 		goto out;
3430 
3431 	/*
3432 	 * Concurrent Positioning Ranges VPD: there can be at most 256 ranges,
3433 	 * leading to a maximum page size of 64 + 256*32 bytes.
3434 	 */
3435 	buf_len = 64 + 256*32;
3436 	buffer = kmalloc(buf_len, GFP_KERNEL);
3437 	if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb9, buffer, buf_len))
3438 		goto out;
3439 
3440 	/* We must have at least a 64B header and one 32B range descriptor */
3441 	vpd_len = get_unaligned_be16(&buffer[2]) + 4;
3442 	if (vpd_len > buf_len || vpd_len < 64 + 32 || (vpd_len & 31)) {
3443 		sd_printk(KERN_ERR, sdkp,
3444 			  "Invalid Concurrent Positioning Ranges VPD page\n");
3445 		goto out;
3446 	}
3447 
3448 	nr_cpr = (vpd_len - 64) / 32;
3449 	if (nr_cpr == 1) {
3450 		nr_cpr = 0;
3451 		goto out;
3452 	}
3453 
3454 	iars = disk_alloc_independent_access_ranges(sdkp->disk, nr_cpr);
3455 	if (!iars) {
3456 		nr_cpr = 0;
3457 		goto out;
3458 	}
3459 
3460 	desc = &buffer[64];
3461 	for (i = 0; i < nr_cpr; i++, desc += 32) {
3462 		if (desc[0] != i) {
3463 			sd_printk(KERN_ERR, sdkp,
3464 				"Invalid Concurrent Positioning Range number\n");
3465 			nr_cpr = 0;
3466 			break;
3467 		}
3468 
3469 		iars->ia_range[i].sector = sd64_to_sectors(sdkp, desc + 8);
3470 		iars->ia_range[i].nr_sectors = sd64_to_sectors(sdkp, desc + 16);
3471 	}
3472 
3473 out:
3474 	disk_set_independent_access_ranges(sdkp->disk, iars);
3475 	if (nr_cpr && sdkp->nr_actuators != nr_cpr) {
3476 		sd_printk(KERN_NOTICE, sdkp,
3477 			  "%u concurrent positioning ranges\n", nr_cpr);
3478 		sdkp->nr_actuators = nr_cpr;
3479 	}
3480 
3481 	kfree(buffer);
3482 }
3483 
3484 static bool sd_validate_min_xfer_size(struct scsi_disk *sdkp)
3485 {
3486 	struct scsi_device *sdp = sdkp->device;
3487 	unsigned int min_xfer_bytes =
3488 		logical_to_bytes(sdp, sdkp->min_xfer_blocks);
3489 
3490 	if (sdkp->min_xfer_blocks == 0)
3491 		return false;
3492 
3493 	if (min_xfer_bytes & (sdkp->physical_block_size - 1)) {
3494 		sd_first_printk(KERN_WARNING, sdkp,
3495 				"Preferred minimum I/O size %u bytes not a " \
3496 				"multiple of physical block size (%u bytes)\n",
3497 				min_xfer_bytes, sdkp->physical_block_size);
3498 		sdkp->min_xfer_blocks = 0;
3499 		return false;
3500 	}
3501 
3502 	sd_first_printk(KERN_INFO, sdkp, "Preferred minimum I/O size %u bytes\n",
3503 			min_xfer_bytes);
3504 	return true;
3505 }
3506 
3507 /*
3508  * Determine the device's preferred I/O size for reads and writes
3509  * unless the reported value is unreasonably small, large, not a
3510  * multiple of the physical block size, or simply garbage.
3511  */
3512 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp,
3513 				      unsigned int dev_max)
3514 {
3515 	struct scsi_device *sdp = sdkp->device;
3516 	unsigned int opt_xfer_bytes =
3517 		logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3518 	unsigned int min_xfer_bytes =
3519 		logical_to_bytes(sdp, sdkp->min_xfer_blocks);
3520 
3521 	if (sdkp->opt_xfer_blocks == 0)
3522 		return false;
3523 
3524 	if (sdkp->opt_xfer_blocks > dev_max) {
3525 		sd_first_printk(KERN_WARNING, sdkp,
3526 				"Optimal transfer size %u logical blocks " \
3527 				"> dev_max (%u logical blocks)\n",
3528 				sdkp->opt_xfer_blocks, dev_max);
3529 		return false;
3530 	}
3531 
3532 	if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) {
3533 		sd_first_printk(KERN_WARNING, sdkp,
3534 				"Optimal transfer size %u logical blocks " \
3535 				"> sd driver limit (%u logical blocks)\n",
3536 				sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS);
3537 		return false;
3538 	}
3539 
3540 	if (opt_xfer_bytes < PAGE_SIZE) {
3541 		sd_first_printk(KERN_WARNING, sdkp,
3542 				"Optimal transfer size %u bytes < " \
3543 				"PAGE_SIZE (%u bytes)\n",
3544 				opt_xfer_bytes, (unsigned int)PAGE_SIZE);
3545 		return false;
3546 	}
3547 
3548 	if (min_xfer_bytes && opt_xfer_bytes % min_xfer_bytes) {
3549 		sd_first_printk(KERN_WARNING, sdkp,
3550 				"Optimal transfer size %u bytes not a " \
3551 				"multiple of preferred minimum block " \
3552 				"size (%u bytes)\n",
3553 				opt_xfer_bytes, min_xfer_bytes);
3554 		return false;
3555 	}
3556 
3557 	if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) {
3558 		sd_first_printk(KERN_WARNING, sdkp,
3559 				"Optimal transfer size %u bytes not a " \
3560 				"multiple of physical block size (%u bytes)\n",
3561 				opt_xfer_bytes, sdkp->physical_block_size);
3562 		return false;
3563 	}
3564 
3565 	sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n",
3566 			opt_xfer_bytes);
3567 	return true;
3568 }
3569 
3570 static void sd_read_block_zero(struct scsi_disk *sdkp)
3571 {
3572 	struct scsi_device *sdev = sdkp->device;
3573 	unsigned int buf_len = sdev->sector_size;
3574 	u8 *buffer, cmd[16] = { };
3575 
3576 	buffer = kmalloc(buf_len, GFP_KERNEL);
3577 	if (!buffer)
3578 		return;
3579 
3580 	if (sdev->use_16_for_rw) {
3581 		cmd[0] = READ_16;
3582 		put_unaligned_be64(0, &cmd[2]); /* Logical block address 0 */
3583 		put_unaligned_be32(1, &cmd[10]);/* Transfer 1 logical block */
3584 	} else {
3585 		cmd[0] = READ_10;
3586 		put_unaligned_be32(0, &cmd[2]); /* Logical block address 0 */
3587 		put_unaligned_be16(1, &cmd[7]);	/* Transfer 1 logical block */
3588 	}
3589 
3590 	scsi_execute_cmd(sdkp->device, cmd, REQ_OP_DRV_IN, buffer, buf_len,
3591 			 SD_TIMEOUT, sdkp->max_retries, NULL);
3592 	kfree(buffer);
3593 }
3594 
3595 /**
3596  *	sd_revalidate_disk - called the first time a new disk is seen,
3597  *	performs disk spin up, read_capacity, etc.
3598  *	@disk: struct gendisk we care about
3599  **/
3600 static int sd_revalidate_disk(struct gendisk *disk)
3601 {
3602 	struct scsi_disk *sdkp = scsi_disk(disk);
3603 	struct scsi_device *sdp = sdkp->device;
3604 	struct request_queue *q = sdkp->disk->queue;
3605 	sector_t old_capacity = sdkp->capacity;
3606 	unsigned char *buffer;
3607 	unsigned int dev_max, rw_max;
3608 
3609 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3610 				      "sd_revalidate_disk\n"));
3611 
3612 	/*
3613 	 * If the device is offline, don't try and read capacity or any
3614 	 * of the other niceties.
3615 	 */
3616 	if (!scsi_device_online(sdp))
3617 		goto out;
3618 
3619 	buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3620 	if (!buffer) {
3621 		sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3622 			  "allocation failure.\n");
3623 		goto out;
3624 	}
3625 
3626 	sd_spinup_disk(sdkp);
3627 
3628 	/*
3629 	 * Without media there is no reason to ask; moreover, some devices
3630 	 * react badly if we do.
3631 	 */
3632 	if (sdkp->media_present) {
3633 		sd_read_capacity(sdkp, buffer);
3634 		/*
3635 		 * Some USB/UAS devices return generic values for mode pages
3636 		 * until the media has been accessed. Trigger a READ operation
3637 		 * to force the device to populate mode pages.
3638 		 */
3639 		if (sdp->read_before_ms)
3640 			sd_read_block_zero(sdkp);
3641 		/*
3642 		 * set the default to rotational.  All non-rotational devices
3643 		 * support the block characteristics VPD page, which will
3644 		 * cause this to be updated correctly and any device which
3645 		 * doesn't support it should be treated as rotational.
3646 		 */
3647 		blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
3648 		blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q);
3649 
3650 		if (scsi_device_supports_vpd(sdp)) {
3651 			sd_read_block_provisioning(sdkp);
3652 			sd_read_block_limits(sdkp);
3653 			sd_read_block_limits_ext(sdkp);
3654 			sd_read_block_characteristics(sdkp);
3655 			sd_zbc_read_zones(sdkp, buffer);
3656 			sd_read_cpr(sdkp);
3657 		}
3658 
3659 		sd_print_capacity(sdkp, old_capacity);
3660 
3661 		sd_read_write_protect_flag(sdkp, buffer);
3662 		sd_read_cache_type(sdkp, buffer);
3663 		sd_read_io_hints(sdkp, buffer);
3664 		sd_read_app_tag_own(sdkp, buffer);
3665 		sd_read_write_same(sdkp, buffer);
3666 		sd_read_security(sdkp, buffer);
3667 		sd_config_protection(sdkp);
3668 	}
3669 
3670 	/*
3671 	 * We now have all cache related info, determine how we deal
3672 	 * with flush requests.
3673 	 */
3674 	sd_set_flush_flag(sdkp);
3675 
3676 	/* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3677 	dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3678 
3679 	/* Some devices report a maximum block count for READ/WRITE requests. */
3680 	dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3681 	q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3682 
3683 	if (sd_validate_min_xfer_size(sdkp))
3684 		blk_queue_io_min(sdkp->disk->queue,
3685 				 logical_to_bytes(sdp, sdkp->min_xfer_blocks));
3686 	else
3687 		blk_queue_io_min(sdkp->disk->queue, 0);
3688 
3689 	if (sd_validate_opt_xfer_size(sdkp, dev_max)) {
3690 		q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3691 		rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
3692 	} else {
3693 		q->limits.io_opt = 0;
3694 		rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
3695 				      (sector_t)BLK_DEF_MAX_SECTORS_CAP);
3696 	}
3697 
3698 	/*
3699 	 * Limit default to SCSI host optimal sector limit if set. There may be
3700 	 * an impact on performance for when the size of a request exceeds this
3701 	 * host limit.
3702 	 */
3703 	rw_max = min_not_zero(rw_max, sdp->host->opt_sectors);
3704 
3705 	/* Do not exceed controller limit */
3706 	rw_max = min(rw_max, queue_max_hw_sectors(q));
3707 
3708 	/*
3709 	 * Only update max_sectors if previously unset or if the current value
3710 	 * exceeds the capabilities of the hardware.
3711 	 */
3712 	if (sdkp->first_scan ||
3713 	    q->limits.max_sectors > q->limits.max_dev_sectors ||
3714 	    q->limits.max_sectors > q->limits.max_hw_sectors) {
3715 		q->limits.max_sectors = rw_max;
3716 		q->limits.max_user_sectors = rw_max;
3717 	}
3718 
3719 	sdkp->first_scan = 0;
3720 
3721 	set_capacity_and_notify(disk, logical_to_sectors(sdp, sdkp->capacity));
3722 	sd_config_write_same(sdkp);
3723 	kfree(buffer);
3724 
3725 	/*
3726 	 * For a zoned drive, revalidating the zones can be done only once
3727 	 * the gendisk capacity is set. So if this fails, set back the gendisk
3728 	 * capacity to 0.
3729 	 */
3730 	if (sd_zbc_revalidate_zones(sdkp))
3731 		set_capacity_and_notify(disk, 0);
3732 
3733  out:
3734 	return 0;
3735 }
3736 
3737 /**
3738  *	sd_unlock_native_capacity - unlock native capacity
3739  *	@disk: struct gendisk to set capacity for
3740  *
3741  *	Block layer calls this function if it detects that partitions
3742  *	on @disk reach beyond the end of the device.  If the SCSI host
3743  *	implements ->unlock_native_capacity() method, it's invoked to
3744  *	give it a chance to adjust the device capacity.
3745  *
3746  *	CONTEXT:
3747  *	Defined by block layer.  Might sleep.
3748  */
3749 static void sd_unlock_native_capacity(struct gendisk *disk)
3750 {
3751 	struct scsi_device *sdev = scsi_disk(disk)->device;
3752 
3753 	if (sdev->host->hostt->unlock_native_capacity)
3754 		sdev->host->hostt->unlock_native_capacity(sdev);
3755 }
3756 
3757 /**
3758  *	sd_format_disk_name - format disk name
3759  *	@prefix: name prefix - ie. "sd" for SCSI disks
3760  *	@index: index of the disk to format name for
3761  *	@buf: output buffer
3762  *	@buflen: length of the output buffer
3763  *
3764  *	SCSI disk names starts at sda.  The 26th device is sdz and the
3765  *	27th is sdaa.  The last one for two lettered suffix is sdzz
3766  *	which is followed by sdaaa.
3767  *
3768  *	This is basically 26 base counting with one extra 'nil' entry
3769  *	at the beginning from the second digit on and can be
3770  *	determined using similar method as 26 base conversion with the
3771  *	index shifted -1 after each digit is computed.
3772  *
3773  *	CONTEXT:
3774  *	Don't care.
3775  *
3776  *	RETURNS:
3777  *	0 on success, -errno on failure.
3778  */
3779 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3780 {
3781 	const int base = 'z' - 'a' + 1;
3782 	char *begin = buf + strlen(prefix);
3783 	char *end = buf + buflen;
3784 	char *p;
3785 	int unit;
3786 
3787 	p = end - 1;
3788 	*p = '\0';
3789 	unit = base;
3790 	do {
3791 		if (p == begin)
3792 			return -EINVAL;
3793 		*--p = 'a' + (index % unit);
3794 		index = (index / unit) - 1;
3795 	} while (index >= 0);
3796 
3797 	memmove(begin, p, end - p);
3798 	memcpy(buf, prefix, strlen(prefix));
3799 
3800 	return 0;
3801 }
3802 
3803 /**
3804  *	sd_probe - called during driver initialization and whenever a
3805  *	new scsi device is attached to the system. It is called once
3806  *	for each scsi device (not just disks) present.
3807  *	@dev: pointer to device object
3808  *
3809  *	Returns 0 if successful (or not interested in this scsi device
3810  *	(e.g. scanner)); 1 when there is an error.
3811  *
3812  *	Note: this function is invoked from the scsi mid-level.
3813  *	This function sets up the mapping between a given
3814  *	<host,channel,id,lun> (found in sdp) and new device name
3815  *	(e.g. /dev/sda). More precisely it is the block device major
3816  *	and minor number that is chosen here.
3817  *
3818  *	Assume sd_probe is not re-entrant (for time being)
3819  *	Also think about sd_probe() and sd_remove() running coincidentally.
3820  **/
3821 static int sd_probe(struct device *dev)
3822 {
3823 	struct scsi_device *sdp = to_scsi_device(dev);
3824 	struct scsi_disk *sdkp;
3825 	struct gendisk *gd;
3826 	int index;
3827 	int error;
3828 
3829 	scsi_autopm_get_device(sdp);
3830 	error = -ENODEV;
3831 	if (sdp->type != TYPE_DISK &&
3832 	    sdp->type != TYPE_ZBC &&
3833 	    sdp->type != TYPE_MOD &&
3834 	    sdp->type != TYPE_RBC)
3835 		goto out;
3836 
3837 	if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) && sdp->type == TYPE_ZBC) {
3838 		sdev_printk(KERN_WARNING, sdp,
3839 			    "Unsupported ZBC host-managed device.\n");
3840 		goto out;
3841 	}
3842 
3843 	SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3844 					"sd_probe\n"));
3845 
3846 	error = -ENOMEM;
3847 	sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3848 	if (!sdkp)
3849 		goto out;
3850 
3851 	gd = blk_mq_alloc_disk_for_queue(sdp->request_queue,
3852 					 &sd_bio_compl_lkclass);
3853 	if (!gd)
3854 		goto out_free;
3855 
3856 	index = ida_alloc(&sd_index_ida, GFP_KERNEL);
3857 	if (index < 0) {
3858 		sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3859 		goto out_put;
3860 	}
3861 
3862 	error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3863 	if (error) {
3864 		sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3865 		goto out_free_index;
3866 	}
3867 
3868 	sdkp->device = sdp;
3869 	sdkp->disk = gd;
3870 	sdkp->index = index;
3871 	sdkp->max_retries = SD_MAX_RETRIES;
3872 	atomic_set(&sdkp->openers, 0);
3873 	atomic_set(&sdkp->device->ioerr_cnt, 0);
3874 
3875 	if (!sdp->request_queue->rq_timeout) {
3876 		if (sdp->type != TYPE_MOD)
3877 			blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3878 		else
3879 			blk_queue_rq_timeout(sdp->request_queue,
3880 					     SD_MOD_TIMEOUT);
3881 	}
3882 
3883 	device_initialize(&sdkp->disk_dev);
3884 	sdkp->disk_dev.parent = get_device(dev);
3885 	sdkp->disk_dev.class = &sd_disk_class;
3886 	dev_set_name(&sdkp->disk_dev, "%s", dev_name(dev));
3887 
3888 	error = device_add(&sdkp->disk_dev);
3889 	if (error) {
3890 		put_device(&sdkp->disk_dev);
3891 		goto out;
3892 	}
3893 
3894 	dev_set_drvdata(dev, sdkp);
3895 
3896 	gd->major = sd_major((index & 0xf0) >> 4);
3897 	gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3898 	gd->minors = SD_MINORS;
3899 
3900 	gd->fops = &sd_fops;
3901 	gd->private_data = sdkp;
3902 
3903 	/* defaults, until the device tells us otherwise */
3904 	sdp->sector_size = 512;
3905 	sdkp->capacity = 0;
3906 	sdkp->media_present = 1;
3907 	sdkp->write_prot = 0;
3908 	sdkp->cache_override = 0;
3909 	sdkp->WCE = 0;
3910 	sdkp->RCD = 0;
3911 	sdkp->ATO = 0;
3912 	sdkp->first_scan = 1;
3913 	sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3914 
3915 	sd_revalidate_disk(gd);
3916 
3917 	if (sdp->removable) {
3918 		gd->flags |= GENHD_FL_REMOVABLE;
3919 		gd->events |= DISK_EVENT_MEDIA_CHANGE;
3920 		gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT;
3921 	}
3922 
3923 	blk_pm_runtime_init(sdp->request_queue, dev);
3924 	if (sdp->rpm_autosuspend) {
3925 		pm_runtime_set_autosuspend_delay(dev,
3926 			sdp->host->rpm_autosuspend_delay);
3927 	}
3928 
3929 	error = device_add_disk(dev, gd, NULL);
3930 	if (error) {
3931 		device_unregister(&sdkp->disk_dev);
3932 		put_disk(gd);
3933 		goto out;
3934 	}
3935 
3936 	if (sdkp->security) {
3937 		sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit);
3938 		if (sdkp->opal_dev)
3939 			sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
3940 	}
3941 
3942 	sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3943 		  sdp->removable ? "removable " : "");
3944 	scsi_autopm_put_device(sdp);
3945 
3946 	return 0;
3947 
3948  out_free_index:
3949 	ida_free(&sd_index_ida, index);
3950  out_put:
3951 	put_disk(gd);
3952  out_free:
3953 	kfree(sdkp);
3954  out:
3955 	scsi_autopm_put_device(sdp);
3956 	return error;
3957 }
3958 
3959 /**
3960  *	sd_remove - called whenever a scsi disk (previously recognized by
3961  *	sd_probe) is detached from the system. It is called (potentially
3962  *	multiple times) during sd module unload.
3963  *	@dev: pointer to device object
3964  *
3965  *	Note: this function is invoked from the scsi mid-level.
3966  *	This function potentially frees up a device name (e.g. /dev/sdc)
3967  *	that could be re-used by a subsequent sd_probe().
3968  *	This function is not called when the built-in sd driver is "exit-ed".
3969  **/
3970 static int sd_remove(struct device *dev)
3971 {
3972 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3973 
3974 	scsi_autopm_get_device(sdkp->device);
3975 
3976 	device_del(&sdkp->disk_dev);
3977 	del_gendisk(sdkp->disk);
3978 	if (!sdkp->suspended)
3979 		sd_shutdown(dev);
3980 
3981 	put_disk(sdkp->disk);
3982 	return 0;
3983 }
3984 
3985 static void scsi_disk_release(struct device *dev)
3986 {
3987 	struct scsi_disk *sdkp = to_scsi_disk(dev);
3988 
3989 	ida_free(&sd_index_ida, sdkp->index);
3990 	put_device(&sdkp->device->sdev_gendev);
3991 	free_opal_dev(sdkp->opal_dev);
3992 
3993 	kfree(sdkp);
3994 }
3995 
3996 static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3997 {
3998 	unsigned char cmd[6] = { START_STOP };	/* START_VALID */
3999 	struct scsi_sense_hdr sshdr;
4000 	const struct scsi_exec_args exec_args = {
4001 		.sshdr = &sshdr,
4002 		.req_flags = BLK_MQ_REQ_PM,
4003 	};
4004 	struct scsi_device *sdp = sdkp->device;
4005 	int res;
4006 
4007 	if (start)
4008 		cmd[4] |= 1;	/* START */
4009 
4010 	if (sdp->start_stop_pwr_cond)
4011 		cmd[4] |= start ? 1 << 4 : 3 << 4;	/* Active or Standby */
4012 
4013 	if (!scsi_device_online(sdp))
4014 		return -ENODEV;
4015 
4016 	res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, SD_TIMEOUT,
4017 			       sdkp->max_retries, &exec_args);
4018 	if (res) {
4019 		sd_print_result(sdkp, "Start/Stop Unit failed", res);
4020 		if (res > 0 && scsi_sense_valid(&sshdr)) {
4021 			sd_print_sense_hdr(sdkp, &sshdr);
4022 			/* 0x3a is medium not present */
4023 			if (sshdr.asc == 0x3a)
4024 				res = 0;
4025 		}
4026 	}
4027 
4028 	/* SCSI error codes must not go to the generic layer */
4029 	if (res)
4030 		return -EIO;
4031 
4032 	return 0;
4033 }
4034 
4035 /*
4036  * Send a SYNCHRONIZE CACHE instruction down to the device through
4037  * the normal SCSI command structure.  Wait for the command to
4038  * complete.
4039  */
4040 static void sd_shutdown(struct device *dev)
4041 {
4042 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
4043 
4044 	if (!sdkp)
4045 		return;         /* this can happen */
4046 
4047 	if (pm_runtime_suspended(dev))
4048 		return;
4049 
4050 	if (sdkp->WCE && sdkp->media_present) {
4051 		sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
4052 		sd_sync_cache(sdkp);
4053 	}
4054 
4055 	if ((system_state != SYSTEM_RESTART &&
4056 	     sdkp->device->manage_system_start_stop) ||
4057 	    (system_state == SYSTEM_POWER_OFF &&
4058 	     sdkp->device->manage_shutdown)) {
4059 		sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
4060 		sd_start_stop_device(sdkp, 0);
4061 	}
4062 }
4063 
4064 static inline bool sd_do_start_stop(struct scsi_device *sdev, bool runtime)
4065 {
4066 	return (sdev->manage_system_start_stop && !runtime) ||
4067 		(sdev->manage_runtime_start_stop && runtime);
4068 }
4069 
4070 static int sd_suspend_common(struct device *dev, bool runtime)
4071 {
4072 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
4073 	int ret = 0;
4074 
4075 	if (!sdkp)	/* E.g.: runtime suspend following sd_remove() */
4076 		return 0;
4077 
4078 	if (sdkp->WCE && sdkp->media_present) {
4079 		if (!sdkp->device->silence_suspend)
4080 			sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
4081 		ret = sd_sync_cache(sdkp);
4082 		/* ignore OFFLINE device */
4083 		if (ret == -ENODEV)
4084 			return 0;
4085 
4086 		if (ret)
4087 			return ret;
4088 	}
4089 
4090 	if (sd_do_start_stop(sdkp->device, runtime)) {
4091 		if (!sdkp->device->silence_suspend)
4092 			sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
4093 		/* an error is not worth aborting a system sleep */
4094 		ret = sd_start_stop_device(sdkp, 0);
4095 		if (!runtime)
4096 			ret = 0;
4097 	}
4098 
4099 	if (!ret)
4100 		sdkp->suspended = true;
4101 
4102 	return ret;
4103 }
4104 
4105 static int sd_suspend_system(struct device *dev)
4106 {
4107 	if (pm_runtime_suspended(dev))
4108 		return 0;
4109 
4110 	return sd_suspend_common(dev, false);
4111 }
4112 
4113 static int sd_suspend_runtime(struct device *dev)
4114 {
4115 	return sd_suspend_common(dev, true);
4116 }
4117 
4118 static int sd_resume(struct device *dev)
4119 {
4120 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
4121 
4122 	sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
4123 
4124 	if (opal_unlock_from_suspend(sdkp->opal_dev)) {
4125 		sd_printk(KERN_NOTICE, sdkp, "OPAL unlock failed\n");
4126 		return -EIO;
4127 	}
4128 
4129 	return 0;
4130 }
4131 
4132 static int sd_resume_common(struct device *dev, bool runtime)
4133 {
4134 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
4135 	int ret;
4136 
4137 	if (!sdkp)	/* E.g.: runtime resume at the start of sd_probe() */
4138 		return 0;
4139 
4140 	if (!sd_do_start_stop(sdkp->device, runtime)) {
4141 		sdkp->suspended = false;
4142 		return 0;
4143 	}
4144 
4145 	sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
4146 	ret = sd_start_stop_device(sdkp, 1);
4147 	if (!ret) {
4148 		sd_resume(dev);
4149 		sdkp->suspended = false;
4150 	}
4151 
4152 	return ret;
4153 }
4154 
4155 static int sd_resume_system(struct device *dev)
4156 {
4157 	if (pm_runtime_suspended(dev)) {
4158 		struct scsi_disk *sdkp = dev_get_drvdata(dev);
4159 		struct scsi_device *sdp = sdkp ? sdkp->device : NULL;
4160 
4161 		if (sdp && sdp->force_runtime_start_on_system_start)
4162 			pm_request_resume(dev);
4163 
4164 		return 0;
4165 	}
4166 
4167 	return sd_resume_common(dev, false);
4168 }
4169 
4170 static int sd_resume_runtime(struct device *dev)
4171 {
4172 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
4173 	struct scsi_device *sdp;
4174 
4175 	if (!sdkp)	/* E.g.: runtime resume at the start of sd_probe() */
4176 		return 0;
4177 
4178 	sdp = sdkp->device;
4179 
4180 	if (sdp->ignore_media_change) {
4181 		/* clear the device's sense data */
4182 		static const u8 cmd[10] = { REQUEST_SENSE };
4183 		const struct scsi_exec_args exec_args = {
4184 			.req_flags = BLK_MQ_REQ_PM,
4185 		};
4186 
4187 		if (scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0,
4188 				     sdp->request_queue->rq_timeout, 1,
4189 				     &exec_args))
4190 			sd_printk(KERN_NOTICE, sdkp,
4191 				  "Failed to clear sense data\n");
4192 	}
4193 
4194 	return sd_resume_common(dev, true);
4195 }
4196 
4197 static const struct dev_pm_ops sd_pm_ops = {
4198 	.suspend		= sd_suspend_system,
4199 	.resume			= sd_resume_system,
4200 	.poweroff		= sd_suspend_system,
4201 	.restore		= sd_resume_system,
4202 	.runtime_suspend	= sd_suspend_runtime,
4203 	.runtime_resume		= sd_resume_runtime,
4204 };
4205 
4206 static struct scsi_driver sd_template = {
4207 	.gendrv = {
4208 		.name		= "sd",
4209 		.probe		= sd_probe,
4210 		.probe_type	= PROBE_PREFER_ASYNCHRONOUS,
4211 		.remove		= sd_remove,
4212 		.shutdown	= sd_shutdown,
4213 		.pm		= &sd_pm_ops,
4214 	},
4215 	.rescan			= sd_rescan,
4216 	.resume			= sd_resume,
4217 	.init_command		= sd_init_command,
4218 	.uninit_command		= sd_uninit_command,
4219 	.done			= sd_done,
4220 	.eh_action		= sd_eh_action,
4221 	.eh_reset		= sd_eh_reset,
4222 };
4223 
4224 /**
4225  *	init_sd - entry point for this driver (both when built in or when
4226  *	a module).
4227  *
4228  *	Note: this function registers this driver with the scsi mid-level.
4229  **/
4230 static int __init init_sd(void)
4231 {
4232 	int majors = 0, i, err;
4233 
4234 	SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
4235 
4236 	for (i = 0; i < SD_MAJORS; i++) {
4237 		if (__register_blkdev(sd_major(i), "sd", sd_default_probe))
4238 			continue;
4239 		majors++;
4240 	}
4241 
4242 	if (!majors)
4243 		return -ENODEV;
4244 
4245 	err = class_register(&sd_disk_class);
4246 	if (err)
4247 		goto err_out;
4248 
4249 	sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0);
4250 	if (!sd_page_pool) {
4251 		printk(KERN_ERR "sd: can't init discard page pool\n");
4252 		err = -ENOMEM;
4253 		goto err_out_class;
4254 	}
4255 
4256 	err = scsi_register_driver(&sd_template.gendrv);
4257 	if (err)
4258 		goto err_out_driver;
4259 
4260 	return 0;
4261 
4262 err_out_driver:
4263 	mempool_destroy(sd_page_pool);
4264 err_out_class:
4265 	class_unregister(&sd_disk_class);
4266 err_out:
4267 	for (i = 0; i < SD_MAJORS; i++)
4268 		unregister_blkdev(sd_major(i), "sd");
4269 	return err;
4270 }
4271 
4272 /**
4273  *	exit_sd - exit point for this driver (when it is a module).
4274  *
4275  *	Note: this function unregisters this driver from the scsi mid-level.
4276  **/
4277 static void __exit exit_sd(void)
4278 {
4279 	int i;
4280 
4281 	SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
4282 
4283 	scsi_unregister_driver(&sd_template.gendrv);
4284 	mempool_destroy(sd_page_pool);
4285 
4286 	class_unregister(&sd_disk_class);
4287 
4288 	for (i = 0; i < SD_MAJORS; i++)
4289 		unregister_blkdev(sd_major(i), "sd");
4290 }
4291 
4292 module_init(init_sd);
4293 module_exit(exit_sd);
4294 
4295 void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
4296 {
4297 	scsi_print_sense_hdr(sdkp->device,
4298 			     sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
4299 }
4300 
4301 void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result)
4302 {
4303 	const char *hb_string = scsi_hostbyte_string(result);
4304 
4305 	if (hb_string)
4306 		sd_printk(KERN_INFO, sdkp,
4307 			  "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
4308 			  hb_string ? hb_string : "invalid",
4309 			  "DRIVER_OK");
4310 	else
4311 		sd_printk(KERN_INFO, sdkp,
4312 			  "%s: Result: hostbyte=0x%02x driverbyte=%s\n",
4313 			  msg, host_byte(result), "DRIVER_OK");
4314 }
4315