1 /* 2 * sd.c Copyright (C) 1992 Drew Eckhardt 3 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale 4 * 5 * Linux scsi disk driver 6 * Initial versions: Drew Eckhardt 7 * Subsequent revisions: Eric Youngdale 8 * Modification history: 9 * - Drew Eckhardt <drew@colorado.edu> original 10 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 11 * outstanding request, and other enhancements. 12 * Support loadable low-level scsi drivers. 13 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 14 * eight major numbers. 15 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs. 16 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 17 * sd_init and cleanups. 18 * - Alex Davis <letmein@erols.com> Fix problem where partition info 19 * not being read in sd_open. Fix problem where removable media 20 * could be ejected after sd_open. 21 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x 22 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 23 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 24 * Support 32k/1M disks. 25 * 26 * Logging policy (needs CONFIG_SCSI_LOGGING defined): 27 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2 28 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1 29 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1 30 * - entering other commands: SCSI_LOG_HLQUEUE level 3 31 * Note: when the logging level is set by the user, it must be greater 32 * than the level indicated above to trigger output. 33 */ 34 35 #include <linux/module.h> 36 #include <linux/fs.h> 37 #include <linux/kernel.h> 38 #include <linux/mm.h> 39 #include <linux/bio.h> 40 #include <linux/genhd.h> 41 #include <linux/hdreg.h> 42 #include <linux/errno.h> 43 #include <linux/idr.h> 44 #include <linux/interrupt.h> 45 #include <linux/init.h> 46 #include <linux/blkdev.h> 47 #include <linux/blkpg.h> 48 #include <linux/delay.h> 49 #include <linux/mutex.h> 50 #include <linux/string_helpers.h> 51 #include <linux/async.h> 52 #include <linux/slab.h> 53 #include <linux/pm_runtime.h> 54 #include <asm/uaccess.h> 55 #include <asm/unaligned.h> 56 57 #include <scsi/scsi.h> 58 #include <scsi/scsi_cmnd.h> 59 #include <scsi/scsi_dbg.h> 60 #include <scsi/scsi_device.h> 61 #include <scsi/scsi_driver.h> 62 #include <scsi/scsi_eh.h> 63 #include <scsi/scsi_host.h> 64 #include <scsi/scsi_ioctl.h> 65 #include <scsi/scsicam.h> 66 67 #include "sd.h" 68 #include "scsi_priv.h" 69 #include "scsi_logging.h" 70 71 MODULE_AUTHOR("Eric Youngdale"); 72 MODULE_DESCRIPTION("SCSI disk (sd) driver"); 73 MODULE_LICENSE("GPL"); 74 75 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR); 76 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR); 77 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR); 78 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR); 79 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR); 80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR); 81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR); 82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR); 83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR); 84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR); 85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR); 86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR); 87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR); 88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR); 89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR); 90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR); 91 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK); 92 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD); 93 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC); 94 95 #if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT) 96 #define SD_MINORS 16 97 #else 98 #define SD_MINORS 0 99 #endif 100 101 static void sd_config_discard(struct scsi_disk *, unsigned int); 102 static void sd_config_write_same(struct scsi_disk *); 103 static int sd_revalidate_disk(struct gendisk *); 104 static void sd_unlock_native_capacity(struct gendisk *disk); 105 static int sd_probe(struct device *); 106 static int sd_remove(struct device *); 107 static void sd_shutdown(struct device *); 108 static int sd_suspend_system(struct device *); 109 static int sd_suspend_runtime(struct device *); 110 static int sd_resume(struct device *); 111 static void sd_rescan(struct device *); 112 static int sd_done(struct scsi_cmnd *); 113 static int sd_eh_action(struct scsi_cmnd *, unsigned char *, int, int); 114 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer); 115 static void scsi_disk_release(struct device *cdev); 116 static void sd_print_sense_hdr(struct scsi_disk *, struct scsi_sense_hdr *); 117 static void sd_print_result(struct scsi_disk *, int); 118 119 static DEFINE_SPINLOCK(sd_index_lock); 120 static DEFINE_IDA(sd_index_ida); 121 122 /* This semaphore is used to mediate the 0->1 reference get in the 123 * face of object destruction (i.e. we can't allow a get on an 124 * object after last put) */ 125 static DEFINE_MUTEX(sd_ref_mutex); 126 127 static struct kmem_cache *sd_cdb_cache; 128 static mempool_t *sd_cdb_pool; 129 130 static const char *sd_cache_types[] = { 131 "write through", "none", "write back", 132 "write back, no read (daft)" 133 }; 134 135 static ssize_t 136 cache_type_store(struct device *dev, struct device_attribute *attr, 137 const char *buf, size_t count) 138 { 139 int i, ct = -1, rcd, wce, sp; 140 struct scsi_disk *sdkp = to_scsi_disk(dev); 141 struct scsi_device *sdp = sdkp->device; 142 char buffer[64]; 143 char *buffer_data; 144 struct scsi_mode_data data; 145 struct scsi_sense_hdr sshdr; 146 static const char temp[] = "temporary "; 147 int len; 148 149 if (sdp->type != TYPE_DISK) 150 /* no cache control on RBC devices; theoretically they 151 * can do it, but there's probably so many exceptions 152 * it's not worth the risk */ 153 return -EINVAL; 154 155 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) { 156 buf += sizeof(temp) - 1; 157 sdkp->cache_override = 1; 158 } else { 159 sdkp->cache_override = 0; 160 } 161 162 for (i = 0; i < ARRAY_SIZE(sd_cache_types); i++) { 163 len = strlen(sd_cache_types[i]); 164 if (strncmp(sd_cache_types[i], buf, len) == 0 && 165 buf[len] == '\n') { 166 ct = i; 167 break; 168 } 169 } 170 if (ct < 0) 171 return -EINVAL; 172 rcd = ct & 0x01 ? 1 : 0; 173 wce = ct & 0x02 ? 1 : 0; 174 175 if (sdkp->cache_override) { 176 sdkp->WCE = wce; 177 sdkp->RCD = rcd; 178 return count; 179 } 180 181 if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT, 182 SD_MAX_RETRIES, &data, NULL)) 183 return -EINVAL; 184 len = min_t(size_t, sizeof(buffer), data.length - data.header_length - 185 data.block_descriptor_length); 186 buffer_data = buffer + data.header_length + 187 data.block_descriptor_length; 188 buffer_data[2] &= ~0x05; 189 buffer_data[2] |= wce << 2 | rcd; 190 sp = buffer_data[0] & 0x80 ? 1 : 0; 191 192 if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT, 193 SD_MAX_RETRIES, &data, &sshdr)) { 194 if (scsi_sense_valid(&sshdr)) 195 sd_print_sense_hdr(sdkp, &sshdr); 196 return -EINVAL; 197 } 198 revalidate_disk(sdkp->disk); 199 return count; 200 } 201 202 static ssize_t 203 manage_start_stop_show(struct device *dev, struct device_attribute *attr, 204 char *buf) 205 { 206 struct scsi_disk *sdkp = to_scsi_disk(dev); 207 struct scsi_device *sdp = sdkp->device; 208 209 return snprintf(buf, 20, "%u\n", sdp->manage_start_stop); 210 } 211 212 static ssize_t 213 manage_start_stop_store(struct device *dev, struct device_attribute *attr, 214 const char *buf, size_t count) 215 { 216 struct scsi_disk *sdkp = to_scsi_disk(dev); 217 struct scsi_device *sdp = sdkp->device; 218 219 if (!capable(CAP_SYS_ADMIN)) 220 return -EACCES; 221 222 sdp->manage_start_stop = simple_strtoul(buf, NULL, 10); 223 224 return count; 225 } 226 static DEVICE_ATTR_RW(manage_start_stop); 227 228 static ssize_t 229 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf) 230 { 231 struct scsi_disk *sdkp = to_scsi_disk(dev); 232 233 return snprintf(buf, 40, "%d\n", sdkp->device->allow_restart); 234 } 235 236 static ssize_t 237 allow_restart_store(struct device *dev, struct device_attribute *attr, 238 const char *buf, size_t count) 239 { 240 struct scsi_disk *sdkp = to_scsi_disk(dev); 241 struct scsi_device *sdp = sdkp->device; 242 243 if (!capable(CAP_SYS_ADMIN)) 244 return -EACCES; 245 246 if (sdp->type != TYPE_DISK) 247 return -EINVAL; 248 249 sdp->allow_restart = simple_strtoul(buf, NULL, 10); 250 251 return count; 252 } 253 static DEVICE_ATTR_RW(allow_restart); 254 255 static ssize_t 256 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf) 257 { 258 struct scsi_disk *sdkp = to_scsi_disk(dev); 259 int ct = sdkp->RCD + 2*sdkp->WCE; 260 261 return snprintf(buf, 40, "%s\n", sd_cache_types[ct]); 262 } 263 static DEVICE_ATTR_RW(cache_type); 264 265 static ssize_t 266 FUA_show(struct device *dev, struct device_attribute *attr, char *buf) 267 { 268 struct scsi_disk *sdkp = to_scsi_disk(dev); 269 270 return snprintf(buf, 20, "%u\n", sdkp->DPOFUA); 271 } 272 static DEVICE_ATTR_RO(FUA); 273 274 static ssize_t 275 protection_type_show(struct device *dev, struct device_attribute *attr, 276 char *buf) 277 { 278 struct scsi_disk *sdkp = to_scsi_disk(dev); 279 280 return snprintf(buf, 20, "%u\n", sdkp->protection_type); 281 } 282 283 static ssize_t 284 protection_type_store(struct device *dev, struct device_attribute *attr, 285 const char *buf, size_t count) 286 { 287 struct scsi_disk *sdkp = to_scsi_disk(dev); 288 unsigned int val; 289 int err; 290 291 if (!capable(CAP_SYS_ADMIN)) 292 return -EACCES; 293 294 err = kstrtouint(buf, 10, &val); 295 296 if (err) 297 return err; 298 299 if (val >= 0 && val <= SD_DIF_TYPE3_PROTECTION) 300 sdkp->protection_type = val; 301 302 return count; 303 } 304 static DEVICE_ATTR_RW(protection_type); 305 306 static ssize_t 307 protection_mode_show(struct device *dev, struct device_attribute *attr, 308 char *buf) 309 { 310 struct scsi_disk *sdkp = to_scsi_disk(dev); 311 struct scsi_device *sdp = sdkp->device; 312 unsigned int dif, dix; 313 314 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type); 315 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type); 316 317 if (!dix && scsi_host_dix_capable(sdp->host, SD_DIF_TYPE0_PROTECTION)) { 318 dif = 0; 319 dix = 1; 320 } 321 322 if (!dif && !dix) 323 return snprintf(buf, 20, "none\n"); 324 325 return snprintf(buf, 20, "%s%u\n", dix ? "dix" : "dif", dif); 326 } 327 static DEVICE_ATTR_RO(protection_mode); 328 329 static ssize_t 330 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf) 331 { 332 struct scsi_disk *sdkp = to_scsi_disk(dev); 333 334 return snprintf(buf, 20, "%u\n", sdkp->ATO); 335 } 336 static DEVICE_ATTR_RO(app_tag_own); 337 338 static ssize_t 339 thin_provisioning_show(struct device *dev, struct device_attribute *attr, 340 char *buf) 341 { 342 struct scsi_disk *sdkp = to_scsi_disk(dev); 343 344 return snprintf(buf, 20, "%u\n", sdkp->lbpme); 345 } 346 static DEVICE_ATTR_RO(thin_provisioning); 347 348 static const char *lbp_mode[] = { 349 [SD_LBP_FULL] = "full", 350 [SD_LBP_UNMAP] = "unmap", 351 [SD_LBP_WS16] = "writesame_16", 352 [SD_LBP_WS10] = "writesame_10", 353 [SD_LBP_ZERO] = "writesame_zero", 354 [SD_LBP_DISABLE] = "disabled", 355 }; 356 357 static ssize_t 358 provisioning_mode_show(struct device *dev, struct device_attribute *attr, 359 char *buf) 360 { 361 struct scsi_disk *sdkp = to_scsi_disk(dev); 362 363 return snprintf(buf, 20, "%s\n", lbp_mode[sdkp->provisioning_mode]); 364 } 365 366 static ssize_t 367 provisioning_mode_store(struct device *dev, struct device_attribute *attr, 368 const char *buf, size_t count) 369 { 370 struct scsi_disk *sdkp = to_scsi_disk(dev); 371 struct scsi_device *sdp = sdkp->device; 372 373 if (!capable(CAP_SYS_ADMIN)) 374 return -EACCES; 375 376 if (sdp->type != TYPE_DISK) 377 return -EINVAL; 378 379 if (!strncmp(buf, lbp_mode[SD_LBP_UNMAP], 20)) 380 sd_config_discard(sdkp, SD_LBP_UNMAP); 381 else if (!strncmp(buf, lbp_mode[SD_LBP_WS16], 20)) 382 sd_config_discard(sdkp, SD_LBP_WS16); 383 else if (!strncmp(buf, lbp_mode[SD_LBP_WS10], 20)) 384 sd_config_discard(sdkp, SD_LBP_WS10); 385 else if (!strncmp(buf, lbp_mode[SD_LBP_ZERO], 20)) 386 sd_config_discard(sdkp, SD_LBP_ZERO); 387 else if (!strncmp(buf, lbp_mode[SD_LBP_DISABLE], 20)) 388 sd_config_discard(sdkp, SD_LBP_DISABLE); 389 else 390 return -EINVAL; 391 392 return count; 393 } 394 static DEVICE_ATTR_RW(provisioning_mode); 395 396 static ssize_t 397 max_medium_access_timeouts_show(struct device *dev, 398 struct device_attribute *attr, char *buf) 399 { 400 struct scsi_disk *sdkp = to_scsi_disk(dev); 401 402 return snprintf(buf, 20, "%u\n", sdkp->max_medium_access_timeouts); 403 } 404 405 static ssize_t 406 max_medium_access_timeouts_store(struct device *dev, 407 struct device_attribute *attr, const char *buf, 408 size_t count) 409 { 410 struct scsi_disk *sdkp = to_scsi_disk(dev); 411 int err; 412 413 if (!capable(CAP_SYS_ADMIN)) 414 return -EACCES; 415 416 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts); 417 418 return err ? err : count; 419 } 420 static DEVICE_ATTR_RW(max_medium_access_timeouts); 421 422 static ssize_t 423 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr, 424 char *buf) 425 { 426 struct scsi_disk *sdkp = to_scsi_disk(dev); 427 428 return snprintf(buf, 20, "%u\n", sdkp->max_ws_blocks); 429 } 430 431 static ssize_t 432 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr, 433 const char *buf, size_t count) 434 { 435 struct scsi_disk *sdkp = to_scsi_disk(dev); 436 struct scsi_device *sdp = sdkp->device; 437 unsigned long max; 438 int err; 439 440 if (!capable(CAP_SYS_ADMIN)) 441 return -EACCES; 442 443 if (sdp->type != TYPE_DISK) 444 return -EINVAL; 445 446 err = kstrtoul(buf, 10, &max); 447 448 if (err) 449 return err; 450 451 if (max == 0) 452 sdp->no_write_same = 1; 453 else if (max <= SD_MAX_WS16_BLOCKS) { 454 sdp->no_write_same = 0; 455 sdkp->max_ws_blocks = max; 456 } 457 458 sd_config_write_same(sdkp); 459 460 return count; 461 } 462 static DEVICE_ATTR_RW(max_write_same_blocks); 463 464 static struct attribute *sd_disk_attrs[] = { 465 &dev_attr_cache_type.attr, 466 &dev_attr_FUA.attr, 467 &dev_attr_allow_restart.attr, 468 &dev_attr_manage_start_stop.attr, 469 &dev_attr_protection_type.attr, 470 &dev_attr_protection_mode.attr, 471 &dev_attr_app_tag_own.attr, 472 &dev_attr_thin_provisioning.attr, 473 &dev_attr_provisioning_mode.attr, 474 &dev_attr_max_write_same_blocks.attr, 475 &dev_attr_max_medium_access_timeouts.attr, 476 NULL, 477 }; 478 ATTRIBUTE_GROUPS(sd_disk); 479 480 static struct class sd_disk_class = { 481 .name = "scsi_disk", 482 .owner = THIS_MODULE, 483 .dev_release = scsi_disk_release, 484 .dev_groups = sd_disk_groups, 485 }; 486 487 static const struct dev_pm_ops sd_pm_ops = { 488 .suspend = sd_suspend_system, 489 .resume = sd_resume, 490 .poweroff = sd_suspend_system, 491 .restore = sd_resume, 492 .runtime_suspend = sd_suspend_runtime, 493 .runtime_resume = sd_resume, 494 }; 495 496 static struct scsi_driver sd_template = { 497 .owner = THIS_MODULE, 498 .gendrv = { 499 .name = "sd", 500 .probe = sd_probe, 501 .remove = sd_remove, 502 .shutdown = sd_shutdown, 503 .pm = &sd_pm_ops, 504 }, 505 .rescan = sd_rescan, 506 .done = sd_done, 507 .eh_action = sd_eh_action, 508 }; 509 510 /* 511 * Dummy kobj_map->probe function. 512 * The default ->probe function will call modprobe, which is 513 * pointless as this module is already loaded. 514 */ 515 static struct kobject *sd_default_probe(dev_t devt, int *partno, void *data) 516 { 517 return NULL; 518 } 519 520 /* 521 * Device no to disk mapping: 522 * 523 * major disc2 disc p1 524 * |............|.............|....|....| <- dev_t 525 * 31 20 19 8 7 4 3 0 526 * 527 * Inside a major, we have 16k disks, however mapped non- 528 * contiguously. The first 16 disks are for major0, the next 529 * ones with major1, ... Disk 256 is for major0 again, disk 272 530 * for major1, ... 531 * As we stay compatible with our numbering scheme, we can reuse 532 * the well-know SCSI majors 8, 65--71, 136--143. 533 */ 534 static int sd_major(int major_idx) 535 { 536 switch (major_idx) { 537 case 0: 538 return SCSI_DISK0_MAJOR; 539 case 1 ... 7: 540 return SCSI_DISK1_MAJOR + major_idx - 1; 541 case 8 ... 15: 542 return SCSI_DISK8_MAJOR + major_idx - 8; 543 default: 544 BUG(); 545 return 0; /* shut up gcc */ 546 } 547 } 548 549 static struct scsi_disk *__scsi_disk_get(struct gendisk *disk) 550 { 551 struct scsi_disk *sdkp = NULL; 552 553 if (disk->private_data) { 554 sdkp = scsi_disk(disk); 555 if (scsi_device_get(sdkp->device) == 0) 556 get_device(&sdkp->dev); 557 else 558 sdkp = NULL; 559 } 560 return sdkp; 561 } 562 563 static struct scsi_disk *scsi_disk_get(struct gendisk *disk) 564 { 565 struct scsi_disk *sdkp; 566 567 mutex_lock(&sd_ref_mutex); 568 sdkp = __scsi_disk_get(disk); 569 mutex_unlock(&sd_ref_mutex); 570 return sdkp; 571 } 572 573 static struct scsi_disk *scsi_disk_get_from_dev(struct device *dev) 574 { 575 struct scsi_disk *sdkp; 576 577 mutex_lock(&sd_ref_mutex); 578 sdkp = dev_get_drvdata(dev); 579 if (sdkp) 580 sdkp = __scsi_disk_get(sdkp->disk); 581 mutex_unlock(&sd_ref_mutex); 582 return sdkp; 583 } 584 585 static void scsi_disk_put(struct scsi_disk *sdkp) 586 { 587 struct scsi_device *sdev = sdkp->device; 588 589 mutex_lock(&sd_ref_mutex); 590 put_device(&sdkp->dev); 591 scsi_device_put(sdev); 592 mutex_unlock(&sd_ref_mutex); 593 } 594 595 static void sd_prot_op(struct scsi_cmnd *scmd, unsigned int dif) 596 { 597 unsigned int prot_op = SCSI_PROT_NORMAL; 598 unsigned int dix = scsi_prot_sg_count(scmd); 599 600 if (scmd->sc_data_direction == DMA_FROM_DEVICE) { 601 if (dif && dix) 602 prot_op = SCSI_PROT_READ_PASS; 603 else if (dif && !dix) 604 prot_op = SCSI_PROT_READ_STRIP; 605 else if (!dif && dix) 606 prot_op = SCSI_PROT_READ_INSERT; 607 } else { 608 if (dif && dix) 609 prot_op = SCSI_PROT_WRITE_PASS; 610 else if (dif && !dix) 611 prot_op = SCSI_PROT_WRITE_INSERT; 612 else if (!dif && dix) 613 prot_op = SCSI_PROT_WRITE_STRIP; 614 } 615 616 scsi_set_prot_op(scmd, prot_op); 617 scsi_set_prot_type(scmd, dif); 618 } 619 620 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode) 621 { 622 struct request_queue *q = sdkp->disk->queue; 623 unsigned int logical_block_size = sdkp->device->sector_size; 624 unsigned int max_blocks = 0; 625 626 q->limits.discard_zeroes_data = sdkp->lbprz; 627 q->limits.discard_alignment = sdkp->unmap_alignment * 628 logical_block_size; 629 q->limits.discard_granularity = 630 max(sdkp->physical_block_size, 631 sdkp->unmap_granularity * logical_block_size); 632 633 sdkp->provisioning_mode = mode; 634 635 switch (mode) { 636 637 case SD_LBP_DISABLE: 638 q->limits.max_discard_sectors = 0; 639 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q); 640 return; 641 642 case SD_LBP_UNMAP: 643 max_blocks = min_not_zero(sdkp->max_unmap_blocks, 644 (u32)SD_MAX_WS16_BLOCKS); 645 break; 646 647 case SD_LBP_WS16: 648 max_blocks = min_not_zero(sdkp->max_ws_blocks, 649 (u32)SD_MAX_WS16_BLOCKS); 650 break; 651 652 case SD_LBP_WS10: 653 max_blocks = min_not_zero(sdkp->max_ws_blocks, 654 (u32)SD_MAX_WS10_BLOCKS); 655 break; 656 657 case SD_LBP_ZERO: 658 max_blocks = min_not_zero(sdkp->max_ws_blocks, 659 (u32)SD_MAX_WS10_BLOCKS); 660 q->limits.discard_zeroes_data = 1; 661 break; 662 } 663 664 q->limits.max_discard_sectors = max_blocks * (logical_block_size >> 9); 665 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q); 666 } 667 668 /** 669 * sd_setup_discard_cmnd - unmap blocks on thinly provisioned device 670 * @sdp: scsi device to operate one 671 * @rq: Request to prepare 672 * 673 * Will issue either UNMAP or WRITE SAME(16) depending on preference 674 * indicated by target device. 675 **/ 676 static int sd_setup_discard_cmnd(struct scsi_device *sdp, struct request *rq) 677 { 678 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 679 sector_t sector = blk_rq_pos(rq); 680 unsigned int nr_sectors = blk_rq_sectors(rq); 681 unsigned int nr_bytes = blk_rq_bytes(rq); 682 unsigned int len; 683 int ret; 684 char *buf; 685 struct page *page; 686 687 sector >>= ilog2(sdp->sector_size) - 9; 688 nr_sectors >>= ilog2(sdp->sector_size) - 9; 689 rq->timeout = SD_TIMEOUT; 690 691 memset(rq->cmd, 0, rq->cmd_len); 692 693 page = alloc_page(GFP_ATOMIC | __GFP_ZERO); 694 if (!page) 695 return BLKPREP_DEFER; 696 697 switch (sdkp->provisioning_mode) { 698 case SD_LBP_UNMAP: 699 buf = page_address(page); 700 701 rq->cmd_len = 10; 702 rq->cmd[0] = UNMAP; 703 rq->cmd[8] = 24; 704 705 put_unaligned_be16(6 + 16, &buf[0]); 706 put_unaligned_be16(16, &buf[2]); 707 put_unaligned_be64(sector, &buf[8]); 708 put_unaligned_be32(nr_sectors, &buf[16]); 709 710 len = 24; 711 break; 712 713 case SD_LBP_WS16: 714 rq->cmd_len = 16; 715 rq->cmd[0] = WRITE_SAME_16; 716 rq->cmd[1] = 0x8; /* UNMAP */ 717 put_unaligned_be64(sector, &rq->cmd[2]); 718 put_unaligned_be32(nr_sectors, &rq->cmd[10]); 719 720 len = sdkp->device->sector_size; 721 break; 722 723 case SD_LBP_WS10: 724 case SD_LBP_ZERO: 725 rq->cmd_len = 10; 726 rq->cmd[0] = WRITE_SAME; 727 if (sdkp->provisioning_mode == SD_LBP_WS10) 728 rq->cmd[1] = 0x8; /* UNMAP */ 729 put_unaligned_be32(sector, &rq->cmd[2]); 730 put_unaligned_be16(nr_sectors, &rq->cmd[7]); 731 732 len = sdkp->device->sector_size; 733 break; 734 735 default: 736 ret = BLKPREP_KILL; 737 goto out; 738 } 739 740 blk_add_request_payload(rq, page, len); 741 ret = scsi_setup_blk_pc_cmnd(sdp, rq); 742 rq->buffer = page_address(page); 743 rq->__data_len = nr_bytes; 744 745 out: 746 if (ret != BLKPREP_OK) { 747 __free_page(page); 748 rq->buffer = NULL; 749 } 750 return ret; 751 } 752 753 static void sd_config_write_same(struct scsi_disk *sdkp) 754 { 755 struct request_queue *q = sdkp->disk->queue; 756 unsigned int logical_block_size = sdkp->device->sector_size; 757 758 if (sdkp->device->no_write_same) { 759 sdkp->max_ws_blocks = 0; 760 goto out; 761 } 762 763 /* Some devices can not handle block counts above 0xffff despite 764 * supporting WRITE SAME(16). Consequently we default to 64k 765 * blocks per I/O unless the device explicitly advertises a 766 * bigger limit. 767 */ 768 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS) 769 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 770 (u32)SD_MAX_WS16_BLOCKS); 771 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes) 772 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 773 (u32)SD_MAX_WS10_BLOCKS); 774 else { 775 sdkp->device->no_write_same = 1; 776 sdkp->max_ws_blocks = 0; 777 } 778 779 out: 780 blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks * 781 (logical_block_size >> 9)); 782 } 783 784 /** 785 * sd_setup_write_same_cmnd - write the same data to multiple blocks 786 * @sdp: scsi device to operate one 787 * @rq: Request to prepare 788 * 789 * Will issue either WRITE SAME(10) or WRITE SAME(16) depending on 790 * preference indicated by target device. 791 **/ 792 static int sd_setup_write_same_cmnd(struct scsi_device *sdp, struct request *rq) 793 { 794 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 795 struct bio *bio = rq->bio; 796 sector_t sector = blk_rq_pos(rq); 797 unsigned int nr_sectors = blk_rq_sectors(rq); 798 unsigned int nr_bytes = blk_rq_bytes(rq); 799 int ret; 800 801 if (sdkp->device->no_write_same) 802 return BLKPREP_KILL; 803 804 BUG_ON(bio_offset(bio) || bio_iovec(bio)->bv_len != sdp->sector_size); 805 806 sector >>= ilog2(sdp->sector_size) - 9; 807 nr_sectors >>= ilog2(sdp->sector_size) - 9; 808 809 rq->__data_len = sdp->sector_size; 810 rq->timeout = SD_WRITE_SAME_TIMEOUT; 811 memset(rq->cmd, 0, rq->cmd_len); 812 813 if (sdkp->ws16 || sector > 0xffffffff || nr_sectors > 0xffff) { 814 rq->cmd_len = 16; 815 rq->cmd[0] = WRITE_SAME_16; 816 put_unaligned_be64(sector, &rq->cmd[2]); 817 put_unaligned_be32(nr_sectors, &rq->cmd[10]); 818 } else { 819 rq->cmd_len = 10; 820 rq->cmd[0] = WRITE_SAME; 821 put_unaligned_be32(sector, &rq->cmd[2]); 822 put_unaligned_be16(nr_sectors, &rq->cmd[7]); 823 } 824 825 ret = scsi_setup_blk_pc_cmnd(sdp, rq); 826 rq->__data_len = nr_bytes; 827 828 return ret; 829 } 830 831 static int scsi_setup_flush_cmnd(struct scsi_device *sdp, struct request *rq) 832 { 833 rq->timeout *= SD_FLUSH_TIMEOUT_MULTIPLIER; 834 rq->retries = SD_MAX_RETRIES; 835 rq->cmd[0] = SYNCHRONIZE_CACHE; 836 rq->cmd_len = 10; 837 838 return scsi_setup_blk_pc_cmnd(sdp, rq); 839 } 840 841 static void sd_unprep_fn(struct request_queue *q, struct request *rq) 842 { 843 struct scsi_cmnd *SCpnt = rq->special; 844 845 if (rq->cmd_flags & REQ_DISCARD) { 846 free_page((unsigned long)rq->buffer); 847 rq->buffer = NULL; 848 } 849 if (SCpnt->cmnd != rq->cmd) { 850 mempool_free(SCpnt->cmnd, sd_cdb_pool); 851 SCpnt->cmnd = NULL; 852 SCpnt->cmd_len = 0; 853 } 854 } 855 856 /** 857 * sd_prep_fn - build a scsi (read or write) command from 858 * information in the request structure. 859 * @SCpnt: pointer to mid-level's per scsi command structure that 860 * contains request and into which the scsi command is written 861 * 862 * Returns 1 if successful and 0 if error (or cannot be done now). 863 **/ 864 static int sd_prep_fn(struct request_queue *q, struct request *rq) 865 { 866 struct scsi_cmnd *SCpnt; 867 struct scsi_device *sdp = q->queuedata; 868 struct gendisk *disk = rq->rq_disk; 869 struct scsi_disk *sdkp; 870 sector_t block = blk_rq_pos(rq); 871 sector_t threshold; 872 unsigned int this_count = blk_rq_sectors(rq); 873 int ret, host_dif; 874 unsigned char protect; 875 876 /* 877 * Discard request come in as REQ_TYPE_FS but we turn them into 878 * block PC requests to make life easier. 879 */ 880 if (rq->cmd_flags & REQ_DISCARD) { 881 ret = sd_setup_discard_cmnd(sdp, rq); 882 goto out; 883 } else if (rq->cmd_flags & REQ_WRITE_SAME) { 884 ret = sd_setup_write_same_cmnd(sdp, rq); 885 goto out; 886 } else if (rq->cmd_flags & REQ_FLUSH) { 887 ret = scsi_setup_flush_cmnd(sdp, rq); 888 goto out; 889 } else if (rq->cmd_type == REQ_TYPE_BLOCK_PC) { 890 ret = scsi_setup_blk_pc_cmnd(sdp, rq); 891 goto out; 892 } else if (rq->cmd_type != REQ_TYPE_FS) { 893 ret = BLKPREP_KILL; 894 goto out; 895 } 896 ret = scsi_setup_fs_cmnd(sdp, rq); 897 if (ret != BLKPREP_OK) 898 goto out; 899 SCpnt = rq->special; 900 sdkp = scsi_disk(disk); 901 902 /* from here on until we're complete, any goto out 903 * is used for a killable error condition */ 904 ret = BLKPREP_KILL; 905 906 SCSI_LOG_HLQUEUE(1, scmd_printk(KERN_INFO, SCpnt, 907 "sd_prep_fn: block=%llu, " 908 "count=%d\n", 909 (unsigned long long)block, 910 this_count)); 911 912 if (!sdp || !scsi_device_online(sdp) || 913 block + blk_rq_sectors(rq) > get_capacity(disk)) { 914 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, 915 "Finishing %u sectors\n", 916 blk_rq_sectors(rq))); 917 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, 918 "Retry with 0x%p\n", SCpnt)); 919 goto out; 920 } 921 922 if (sdp->changed) { 923 /* 924 * quietly refuse to do anything to a changed disc until 925 * the changed bit has been reset 926 */ 927 /* printk("SCSI disk has been changed or is not present. Prohibiting further I/O.\n"); */ 928 goto out; 929 } 930 931 /* 932 * Some SD card readers can't handle multi-sector accesses which touch 933 * the last one or two hardware sectors. Split accesses as needed. 934 */ 935 threshold = get_capacity(disk) - SD_LAST_BUGGY_SECTORS * 936 (sdp->sector_size / 512); 937 938 if (unlikely(sdp->last_sector_bug && block + this_count > threshold)) { 939 if (block < threshold) { 940 /* Access up to the threshold but not beyond */ 941 this_count = threshold - block; 942 } else { 943 /* Access only a single hardware sector */ 944 this_count = sdp->sector_size / 512; 945 } 946 } 947 948 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, "block=%llu\n", 949 (unsigned long long)block)); 950 951 /* 952 * If we have a 1K hardware sectorsize, prevent access to single 953 * 512 byte sectors. In theory we could handle this - in fact 954 * the scsi cdrom driver must be able to handle this because 955 * we typically use 1K blocksizes, and cdroms typically have 956 * 2K hardware sectorsizes. Of course, things are simpler 957 * with the cdrom, since it is read-only. For performance 958 * reasons, the filesystems should be able to handle this 959 * and not force the scsi disk driver to use bounce buffers 960 * for this. 961 */ 962 if (sdp->sector_size == 1024) { 963 if ((block & 1) || (blk_rq_sectors(rq) & 1)) { 964 scmd_printk(KERN_ERR, SCpnt, 965 "Bad block number requested\n"); 966 goto out; 967 } else { 968 block = block >> 1; 969 this_count = this_count >> 1; 970 } 971 } 972 if (sdp->sector_size == 2048) { 973 if ((block & 3) || (blk_rq_sectors(rq) & 3)) { 974 scmd_printk(KERN_ERR, SCpnt, 975 "Bad block number requested\n"); 976 goto out; 977 } else { 978 block = block >> 2; 979 this_count = this_count >> 2; 980 } 981 } 982 if (sdp->sector_size == 4096) { 983 if ((block & 7) || (blk_rq_sectors(rq) & 7)) { 984 scmd_printk(KERN_ERR, SCpnt, 985 "Bad block number requested\n"); 986 goto out; 987 } else { 988 block = block >> 3; 989 this_count = this_count >> 3; 990 } 991 } 992 if (rq_data_dir(rq) == WRITE) { 993 if (!sdp->writeable) { 994 goto out; 995 } 996 SCpnt->cmnd[0] = WRITE_6; 997 SCpnt->sc_data_direction = DMA_TO_DEVICE; 998 999 if (blk_integrity_rq(rq)) 1000 sd_dif_prepare(rq, block, sdp->sector_size); 1001 1002 } else if (rq_data_dir(rq) == READ) { 1003 SCpnt->cmnd[0] = READ_6; 1004 SCpnt->sc_data_direction = DMA_FROM_DEVICE; 1005 } else { 1006 scmd_printk(KERN_ERR, SCpnt, "Unknown command %llx\n", (unsigned long long) rq->cmd_flags); 1007 goto out; 1008 } 1009 1010 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, 1011 "%s %d/%u 512 byte blocks.\n", 1012 (rq_data_dir(rq) == WRITE) ? 1013 "writing" : "reading", this_count, 1014 blk_rq_sectors(rq))); 1015 1016 /* Set RDPROTECT/WRPROTECT if disk is formatted with DIF */ 1017 host_dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type); 1018 if (host_dif) 1019 protect = 1 << 5; 1020 else 1021 protect = 0; 1022 1023 if (host_dif == SD_DIF_TYPE2_PROTECTION) { 1024 SCpnt->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC); 1025 1026 if (unlikely(SCpnt->cmnd == NULL)) { 1027 ret = BLKPREP_DEFER; 1028 goto out; 1029 } 1030 1031 SCpnt->cmd_len = SD_EXT_CDB_SIZE; 1032 memset(SCpnt->cmnd, 0, SCpnt->cmd_len); 1033 SCpnt->cmnd[0] = VARIABLE_LENGTH_CMD; 1034 SCpnt->cmnd[7] = 0x18; 1035 SCpnt->cmnd[9] = (rq_data_dir(rq) == READ) ? READ_32 : WRITE_32; 1036 SCpnt->cmnd[10] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0); 1037 1038 /* LBA */ 1039 SCpnt->cmnd[12] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0; 1040 SCpnt->cmnd[13] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0; 1041 SCpnt->cmnd[14] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0; 1042 SCpnt->cmnd[15] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0; 1043 SCpnt->cmnd[16] = (unsigned char) (block >> 24) & 0xff; 1044 SCpnt->cmnd[17] = (unsigned char) (block >> 16) & 0xff; 1045 SCpnt->cmnd[18] = (unsigned char) (block >> 8) & 0xff; 1046 SCpnt->cmnd[19] = (unsigned char) block & 0xff; 1047 1048 /* Expected Indirect LBA */ 1049 SCpnt->cmnd[20] = (unsigned char) (block >> 24) & 0xff; 1050 SCpnt->cmnd[21] = (unsigned char) (block >> 16) & 0xff; 1051 SCpnt->cmnd[22] = (unsigned char) (block >> 8) & 0xff; 1052 SCpnt->cmnd[23] = (unsigned char) block & 0xff; 1053 1054 /* Transfer length */ 1055 SCpnt->cmnd[28] = (unsigned char) (this_count >> 24) & 0xff; 1056 SCpnt->cmnd[29] = (unsigned char) (this_count >> 16) & 0xff; 1057 SCpnt->cmnd[30] = (unsigned char) (this_count >> 8) & 0xff; 1058 SCpnt->cmnd[31] = (unsigned char) this_count & 0xff; 1059 } else if (sdp->use_16_for_rw) { 1060 SCpnt->cmnd[0] += READ_16 - READ_6; 1061 SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0); 1062 SCpnt->cmnd[2] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0; 1063 SCpnt->cmnd[3] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0; 1064 SCpnt->cmnd[4] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0; 1065 SCpnt->cmnd[5] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0; 1066 SCpnt->cmnd[6] = (unsigned char) (block >> 24) & 0xff; 1067 SCpnt->cmnd[7] = (unsigned char) (block >> 16) & 0xff; 1068 SCpnt->cmnd[8] = (unsigned char) (block >> 8) & 0xff; 1069 SCpnt->cmnd[9] = (unsigned char) block & 0xff; 1070 SCpnt->cmnd[10] = (unsigned char) (this_count >> 24) & 0xff; 1071 SCpnt->cmnd[11] = (unsigned char) (this_count >> 16) & 0xff; 1072 SCpnt->cmnd[12] = (unsigned char) (this_count >> 8) & 0xff; 1073 SCpnt->cmnd[13] = (unsigned char) this_count & 0xff; 1074 SCpnt->cmnd[14] = SCpnt->cmnd[15] = 0; 1075 } else if ((this_count > 0xff) || (block > 0x1fffff) || 1076 scsi_device_protection(SCpnt->device) || 1077 SCpnt->device->use_10_for_rw) { 1078 if (this_count > 0xffff) 1079 this_count = 0xffff; 1080 1081 SCpnt->cmnd[0] += READ_10 - READ_6; 1082 SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0); 1083 SCpnt->cmnd[2] = (unsigned char) (block >> 24) & 0xff; 1084 SCpnt->cmnd[3] = (unsigned char) (block >> 16) & 0xff; 1085 SCpnt->cmnd[4] = (unsigned char) (block >> 8) & 0xff; 1086 SCpnt->cmnd[5] = (unsigned char) block & 0xff; 1087 SCpnt->cmnd[6] = SCpnt->cmnd[9] = 0; 1088 SCpnt->cmnd[7] = (unsigned char) (this_count >> 8) & 0xff; 1089 SCpnt->cmnd[8] = (unsigned char) this_count & 0xff; 1090 } else { 1091 if (unlikely(rq->cmd_flags & REQ_FUA)) { 1092 /* 1093 * This happens only if this drive failed 1094 * 10byte rw command with ILLEGAL_REQUEST 1095 * during operation and thus turned off 1096 * use_10_for_rw. 1097 */ 1098 scmd_printk(KERN_ERR, SCpnt, 1099 "FUA write on READ/WRITE(6) drive\n"); 1100 goto out; 1101 } 1102 1103 SCpnt->cmnd[1] |= (unsigned char) ((block >> 16) & 0x1f); 1104 SCpnt->cmnd[2] = (unsigned char) ((block >> 8) & 0xff); 1105 SCpnt->cmnd[3] = (unsigned char) block & 0xff; 1106 SCpnt->cmnd[4] = (unsigned char) this_count; 1107 SCpnt->cmnd[5] = 0; 1108 } 1109 SCpnt->sdb.length = this_count * sdp->sector_size; 1110 1111 /* If DIF or DIX is enabled, tell HBA how to handle request */ 1112 if (host_dif || scsi_prot_sg_count(SCpnt)) 1113 sd_prot_op(SCpnt, host_dif); 1114 1115 /* 1116 * We shouldn't disconnect in the middle of a sector, so with a dumb 1117 * host adapter, it's safe to assume that we can at least transfer 1118 * this many bytes between each connect / disconnect. 1119 */ 1120 SCpnt->transfersize = sdp->sector_size; 1121 SCpnt->underflow = this_count << 9; 1122 SCpnt->allowed = SD_MAX_RETRIES; 1123 1124 /* 1125 * This indicates that the command is ready from our end to be 1126 * queued. 1127 */ 1128 ret = BLKPREP_OK; 1129 out: 1130 return scsi_prep_return(q, rq, ret); 1131 } 1132 1133 /** 1134 * sd_open - open a scsi disk device 1135 * @inode: only i_rdev member may be used 1136 * @filp: only f_mode and f_flags may be used 1137 * 1138 * Returns 0 if successful. Returns a negated errno value in case 1139 * of error. 1140 * 1141 * Note: This can be called from a user context (e.g. fsck(1) ) 1142 * or from within the kernel (e.g. as a result of a mount(1) ). 1143 * In the latter case @inode and @filp carry an abridged amount 1144 * of information as noted above. 1145 * 1146 * Locking: called with bdev->bd_mutex held. 1147 **/ 1148 static int sd_open(struct block_device *bdev, fmode_t mode) 1149 { 1150 struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk); 1151 struct scsi_device *sdev; 1152 int retval; 1153 1154 if (!sdkp) 1155 return -ENXIO; 1156 1157 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n")); 1158 1159 sdev = sdkp->device; 1160 1161 /* 1162 * If the device is in error recovery, wait until it is done. 1163 * If the device is offline, then disallow any access to it. 1164 */ 1165 retval = -ENXIO; 1166 if (!scsi_block_when_processing_errors(sdev)) 1167 goto error_out; 1168 1169 if (sdev->removable || sdkp->write_prot) 1170 check_disk_change(bdev); 1171 1172 /* 1173 * If the drive is empty, just let the open fail. 1174 */ 1175 retval = -ENOMEDIUM; 1176 if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY)) 1177 goto error_out; 1178 1179 /* 1180 * If the device has the write protect tab set, have the open fail 1181 * if the user expects to be able to write to the thing. 1182 */ 1183 retval = -EROFS; 1184 if (sdkp->write_prot && (mode & FMODE_WRITE)) 1185 goto error_out; 1186 1187 /* 1188 * It is possible that the disk changing stuff resulted in 1189 * the device being taken offline. If this is the case, 1190 * report this to the user, and don't pretend that the 1191 * open actually succeeded. 1192 */ 1193 retval = -ENXIO; 1194 if (!scsi_device_online(sdev)) 1195 goto error_out; 1196 1197 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) { 1198 if (scsi_block_when_processing_errors(sdev)) 1199 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT); 1200 } 1201 1202 return 0; 1203 1204 error_out: 1205 scsi_disk_put(sdkp); 1206 return retval; 1207 } 1208 1209 /** 1210 * sd_release - invoked when the (last) close(2) is called on this 1211 * scsi disk. 1212 * @inode: only i_rdev member may be used 1213 * @filp: only f_mode and f_flags may be used 1214 * 1215 * Returns 0. 1216 * 1217 * Note: may block (uninterruptible) if error recovery is underway 1218 * on this disk. 1219 * 1220 * Locking: called with bdev->bd_mutex held. 1221 **/ 1222 static void sd_release(struct gendisk *disk, fmode_t mode) 1223 { 1224 struct scsi_disk *sdkp = scsi_disk(disk); 1225 struct scsi_device *sdev = sdkp->device; 1226 1227 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n")); 1228 1229 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) { 1230 if (scsi_block_when_processing_errors(sdev)) 1231 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW); 1232 } 1233 1234 /* 1235 * XXX and what if there are packets in flight and this close() 1236 * XXX is followed by a "rmmod sd_mod"? 1237 */ 1238 1239 scsi_disk_put(sdkp); 1240 } 1241 1242 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1243 { 1244 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1245 struct scsi_device *sdp = sdkp->device; 1246 struct Scsi_Host *host = sdp->host; 1247 int diskinfo[4]; 1248 1249 /* default to most commonly used values */ 1250 diskinfo[0] = 0x40; /* 1 << 6 */ 1251 diskinfo[1] = 0x20; /* 1 << 5 */ 1252 diskinfo[2] = sdkp->capacity >> 11; 1253 1254 /* override with calculated, extended default, or driver values */ 1255 if (host->hostt->bios_param) 1256 host->hostt->bios_param(sdp, bdev, sdkp->capacity, diskinfo); 1257 else 1258 scsicam_bios_param(bdev, sdkp->capacity, diskinfo); 1259 1260 geo->heads = diskinfo[0]; 1261 geo->sectors = diskinfo[1]; 1262 geo->cylinders = diskinfo[2]; 1263 return 0; 1264 } 1265 1266 /** 1267 * sd_ioctl - process an ioctl 1268 * @inode: only i_rdev/i_bdev members may be used 1269 * @filp: only f_mode and f_flags may be used 1270 * @cmd: ioctl command number 1271 * @arg: this is third argument given to ioctl(2) system call. 1272 * Often contains a pointer. 1273 * 1274 * Returns 0 if successful (some ioctls return positive numbers on 1275 * success as well). Returns a negated errno value in case of error. 1276 * 1277 * Note: most ioctls are forward onto the block subsystem or further 1278 * down in the scsi subsystem. 1279 **/ 1280 static int sd_ioctl(struct block_device *bdev, fmode_t mode, 1281 unsigned int cmd, unsigned long arg) 1282 { 1283 struct gendisk *disk = bdev->bd_disk; 1284 struct scsi_disk *sdkp = scsi_disk(disk); 1285 struct scsi_device *sdp = sdkp->device; 1286 void __user *p = (void __user *)arg; 1287 int error; 1288 1289 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, " 1290 "cmd=0x%x\n", disk->disk_name, cmd)); 1291 1292 error = scsi_verify_blk_ioctl(bdev, cmd); 1293 if (error < 0) 1294 return error; 1295 1296 /* 1297 * If we are in the middle of error recovery, don't let anyone 1298 * else try and use this device. Also, if error recovery fails, it 1299 * may try and take the device offline, in which case all further 1300 * access to the device is prohibited. 1301 */ 1302 error = scsi_nonblockable_ioctl(sdp, cmd, p, 1303 (mode & FMODE_NDELAY) != 0); 1304 if (!scsi_block_when_processing_errors(sdp) || !error) 1305 goto out; 1306 1307 /* 1308 * Send SCSI addressing ioctls directly to mid level, send other 1309 * ioctls to block level and then onto mid level if they can't be 1310 * resolved. 1311 */ 1312 switch (cmd) { 1313 case SCSI_IOCTL_GET_IDLUN: 1314 case SCSI_IOCTL_GET_BUS_NUMBER: 1315 error = scsi_ioctl(sdp, cmd, p); 1316 break; 1317 default: 1318 error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p); 1319 if (error != -ENOTTY) 1320 break; 1321 error = scsi_ioctl(sdp, cmd, p); 1322 break; 1323 } 1324 out: 1325 return error; 1326 } 1327 1328 static void set_media_not_present(struct scsi_disk *sdkp) 1329 { 1330 if (sdkp->media_present) 1331 sdkp->device->changed = 1; 1332 1333 if (sdkp->device->removable) { 1334 sdkp->media_present = 0; 1335 sdkp->capacity = 0; 1336 } 1337 } 1338 1339 static int media_not_present(struct scsi_disk *sdkp, 1340 struct scsi_sense_hdr *sshdr) 1341 { 1342 if (!scsi_sense_valid(sshdr)) 1343 return 0; 1344 1345 /* not invoked for commands that could return deferred errors */ 1346 switch (sshdr->sense_key) { 1347 case UNIT_ATTENTION: 1348 case NOT_READY: 1349 /* medium not present */ 1350 if (sshdr->asc == 0x3A) { 1351 set_media_not_present(sdkp); 1352 return 1; 1353 } 1354 } 1355 return 0; 1356 } 1357 1358 /** 1359 * sd_check_events - check media events 1360 * @disk: kernel device descriptor 1361 * @clearing: disk events currently being cleared 1362 * 1363 * Returns mask of DISK_EVENT_*. 1364 * 1365 * Note: this function is invoked from the block subsystem. 1366 **/ 1367 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing) 1368 { 1369 struct scsi_disk *sdkp = scsi_disk(disk); 1370 struct scsi_device *sdp = sdkp->device; 1371 struct scsi_sense_hdr *sshdr = NULL; 1372 int retval; 1373 1374 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n")); 1375 1376 /* 1377 * If the device is offline, don't send any commands - just pretend as 1378 * if the command failed. If the device ever comes back online, we 1379 * can deal with it then. It is only because of unrecoverable errors 1380 * that we would ever take a device offline in the first place. 1381 */ 1382 if (!scsi_device_online(sdp)) { 1383 set_media_not_present(sdkp); 1384 goto out; 1385 } 1386 1387 /* 1388 * Using TEST_UNIT_READY enables differentiation between drive with 1389 * no cartridge loaded - NOT READY, drive with changed cartridge - 1390 * UNIT ATTENTION, or with same cartridge - GOOD STATUS. 1391 * 1392 * Drives that auto spin down. eg iomega jaz 1G, will be started 1393 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever 1394 * sd_revalidate() is called. 1395 */ 1396 retval = -ENODEV; 1397 1398 if (scsi_block_when_processing_errors(sdp)) { 1399 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL); 1400 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, SD_MAX_RETRIES, 1401 sshdr); 1402 } 1403 1404 /* failed to execute TUR, assume media not present */ 1405 if (host_byte(retval)) { 1406 set_media_not_present(sdkp); 1407 goto out; 1408 } 1409 1410 if (media_not_present(sdkp, sshdr)) 1411 goto out; 1412 1413 /* 1414 * For removable scsi disk we have to recognise the presence 1415 * of a disk in the drive. 1416 */ 1417 if (!sdkp->media_present) 1418 sdp->changed = 1; 1419 sdkp->media_present = 1; 1420 out: 1421 /* 1422 * sdp->changed is set under the following conditions: 1423 * 1424 * Medium present state has changed in either direction. 1425 * Device has indicated UNIT_ATTENTION. 1426 */ 1427 kfree(sshdr); 1428 retval = sdp->changed ? DISK_EVENT_MEDIA_CHANGE : 0; 1429 sdp->changed = 0; 1430 return retval; 1431 } 1432 1433 static int sd_sync_cache(struct scsi_disk *sdkp) 1434 { 1435 int retries, res; 1436 struct scsi_device *sdp = sdkp->device; 1437 const int timeout = sdp->request_queue->rq_timeout 1438 * SD_FLUSH_TIMEOUT_MULTIPLIER; 1439 struct scsi_sense_hdr sshdr; 1440 1441 if (!scsi_device_online(sdp)) 1442 return -ENODEV; 1443 1444 for (retries = 3; retries > 0; --retries) { 1445 unsigned char cmd[10] = { 0 }; 1446 1447 cmd[0] = SYNCHRONIZE_CACHE; 1448 /* 1449 * Leave the rest of the command zero to indicate 1450 * flush everything. 1451 */ 1452 res = scsi_execute_req_flags(sdp, cmd, DMA_NONE, NULL, 0, 1453 &sshdr, timeout, SD_MAX_RETRIES, 1454 NULL, REQ_PM); 1455 if (res == 0) 1456 break; 1457 } 1458 1459 if (res) { 1460 sd_print_result(sdkp, res); 1461 1462 if (driver_byte(res) & DRIVER_SENSE) 1463 sd_print_sense_hdr(sdkp, &sshdr); 1464 /* we need to evaluate the error return */ 1465 if (scsi_sense_valid(&sshdr) && 1466 /* 0x3a is medium not present */ 1467 sshdr.asc == 0x3a) 1468 /* this is no error here */ 1469 return 0; 1470 1471 switch (host_byte(res)) { 1472 /* ignore errors due to racing a disconnection */ 1473 case DID_BAD_TARGET: 1474 case DID_NO_CONNECT: 1475 return 0; 1476 /* signal the upper layer it might try again */ 1477 case DID_BUS_BUSY: 1478 case DID_IMM_RETRY: 1479 case DID_REQUEUE: 1480 case DID_SOFT_ERROR: 1481 return -EBUSY; 1482 default: 1483 return -EIO; 1484 } 1485 } 1486 return 0; 1487 } 1488 1489 static void sd_rescan(struct device *dev) 1490 { 1491 struct scsi_disk *sdkp = scsi_disk_get_from_dev(dev); 1492 1493 if (sdkp) { 1494 revalidate_disk(sdkp->disk); 1495 scsi_disk_put(sdkp); 1496 } 1497 } 1498 1499 1500 #ifdef CONFIG_COMPAT 1501 /* 1502 * This gets directly called from VFS. When the ioctl 1503 * is not recognized we go back to the other translation paths. 1504 */ 1505 static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode, 1506 unsigned int cmd, unsigned long arg) 1507 { 1508 struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device; 1509 int ret; 1510 1511 ret = scsi_verify_blk_ioctl(bdev, cmd); 1512 if (ret < 0) 1513 return ret; 1514 1515 /* 1516 * If we are in the middle of error recovery, don't let anyone 1517 * else try and use this device. Also, if error recovery fails, it 1518 * may try and take the device offline, in which case all further 1519 * access to the device is prohibited. 1520 */ 1521 if (!scsi_block_when_processing_errors(sdev)) 1522 return -ENODEV; 1523 1524 if (sdev->host->hostt->compat_ioctl) { 1525 ret = sdev->host->hostt->compat_ioctl(sdev, cmd, (void __user *)arg); 1526 1527 return ret; 1528 } 1529 1530 /* 1531 * Let the static ioctl translation table take care of it. 1532 */ 1533 return -ENOIOCTLCMD; 1534 } 1535 #endif 1536 1537 static const struct block_device_operations sd_fops = { 1538 .owner = THIS_MODULE, 1539 .open = sd_open, 1540 .release = sd_release, 1541 .ioctl = sd_ioctl, 1542 .getgeo = sd_getgeo, 1543 #ifdef CONFIG_COMPAT 1544 .compat_ioctl = sd_compat_ioctl, 1545 #endif 1546 .check_events = sd_check_events, 1547 .revalidate_disk = sd_revalidate_disk, 1548 .unlock_native_capacity = sd_unlock_native_capacity, 1549 }; 1550 1551 /** 1552 * sd_eh_action - error handling callback 1553 * @scmd: sd-issued command that has failed 1554 * @eh_cmnd: The command that was sent during error handling 1555 * @eh_cmnd_len: Length of eh_cmnd in bytes 1556 * @eh_disp: The recovery disposition suggested by the midlayer 1557 * 1558 * This function is called by the SCSI midlayer upon completion of 1559 * an error handling command (TEST UNIT READY, START STOP UNIT, 1560 * etc.) The command sent to the device by the error handler is 1561 * stored in eh_cmnd. The result of sending the eh command is 1562 * passed in eh_disp. 1563 **/ 1564 static int sd_eh_action(struct scsi_cmnd *scmd, unsigned char *eh_cmnd, 1565 int eh_cmnd_len, int eh_disp) 1566 { 1567 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk); 1568 1569 if (!scsi_device_online(scmd->device) || 1570 !scsi_medium_access_command(scmd)) 1571 return eh_disp; 1572 1573 /* 1574 * The device has timed out executing a medium access command. 1575 * However, the TEST UNIT READY command sent during error 1576 * handling completed successfully. Either the device is in the 1577 * process of recovering or has it suffered an internal failure 1578 * that prevents access to the storage medium. 1579 */ 1580 if (host_byte(scmd->result) == DID_TIME_OUT && eh_disp == SUCCESS && 1581 eh_cmnd_len && eh_cmnd[0] == TEST_UNIT_READY) 1582 sdkp->medium_access_timed_out++; 1583 1584 /* 1585 * If the device keeps failing read/write commands but TEST UNIT 1586 * READY always completes successfully we assume that medium 1587 * access is no longer possible and take the device offline. 1588 */ 1589 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) { 1590 scmd_printk(KERN_ERR, scmd, 1591 "Medium access timeout failure. Offlining disk!\n"); 1592 scsi_device_set_state(scmd->device, SDEV_OFFLINE); 1593 1594 return FAILED; 1595 } 1596 1597 return eh_disp; 1598 } 1599 1600 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd) 1601 { 1602 u64 start_lba = blk_rq_pos(scmd->request); 1603 u64 end_lba = blk_rq_pos(scmd->request) + (scsi_bufflen(scmd) / 512); 1604 u64 bad_lba; 1605 int info_valid; 1606 /* 1607 * resid is optional but mostly filled in. When it's unused, 1608 * its value is zero, so we assume the whole buffer transferred 1609 */ 1610 unsigned int transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd); 1611 unsigned int good_bytes; 1612 1613 if (scmd->request->cmd_type != REQ_TYPE_FS) 1614 return 0; 1615 1616 info_valid = scsi_get_sense_info_fld(scmd->sense_buffer, 1617 SCSI_SENSE_BUFFERSIZE, 1618 &bad_lba); 1619 if (!info_valid) 1620 return 0; 1621 1622 if (scsi_bufflen(scmd) <= scmd->device->sector_size) 1623 return 0; 1624 1625 if (scmd->device->sector_size < 512) { 1626 /* only legitimate sector_size here is 256 */ 1627 start_lba <<= 1; 1628 end_lba <<= 1; 1629 } else { 1630 /* be careful ... don't want any overflows */ 1631 u64 factor = scmd->device->sector_size / 512; 1632 do_div(start_lba, factor); 1633 do_div(end_lba, factor); 1634 } 1635 1636 /* The bad lba was reported incorrectly, we have no idea where 1637 * the error is. 1638 */ 1639 if (bad_lba < start_lba || bad_lba >= end_lba) 1640 return 0; 1641 1642 /* This computation should always be done in terms of 1643 * the resolution of the device's medium. 1644 */ 1645 good_bytes = (bad_lba - start_lba) * scmd->device->sector_size; 1646 return min(good_bytes, transferred); 1647 } 1648 1649 /** 1650 * sd_done - bottom half handler: called when the lower level 1651 * driver has completed (successfully or otherwise) a scsi command. 1652 * @SCpnt: mid-level's per command structure. 1653 * 1654 * Note: potentially run from within an ISR. Must not block. 1655 **/ 1656 static int sd_done(struct scsi_cmnd *SCpnt) 1657 { 1658 int result = SCpnt->result; 1659 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt); 1660 struct scsi_sense_hdr sshdr; 1661 struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk); 1662 struct request *req = SCpnt->request; 1663 int sense_valid = 0; 1664 int sense_deferred = 0; 1665 unsigned char op = SCpnt->cmnd[0]; 1666 unsigned char unmap = SCpnt->cmnd[1] & 8; 1667 1668 if (req->cmd_flags & REQ_DISCARD || req->cmd_flags & REQ_WRITE_SAME) { 1669 if (!result) { 1670 good_bytes = blk_rq_bytes(req); 1671 scsi_set_resid(SCpnt, 0); 1672 } else { 1673 good_bytes = 0; 1674 scsi_set_resid(SCpnt, blk_rq_bytes(req)); 1675 } 1676 } 1677 1678 if (result) { 1679 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr); 1680 if (sense_valid) 1681 sense_deferred = scsi_sense_is_deferred(&sshdr); 1682 } 1683 #ifdef CONFIG_SCSI_LOGGING 1684 SCSI_LOG_HLCOMPLETE(1, scsi_print_result(SCpnt)); 1685 if (sense_valid) { 1686 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt, 1687 "sd_done: sb[respc,sk,asc," 1688 "ascq]=%x,%x,%x,%x\n", 1689 sshdr.response_code, 1690 sshdr.sense_key, sshdr.asc, 1691 sshdr.ascq)); 1692 } 1693 #endif 1694 if (driver_byte(result) != DRIVER_SENSE && 1695 (!sense_valid || sense_deferred)) 1696 goto out; 1697 1698 sdkp->medium_access_timed_out = 0; 1699 1700 switch (sshdr.sense_key) { 1701 case HARDWARE_ERROR: 1702 case MEDIUM_ERROR: 1703 good_bytes = sd_completed_bytes(SCpnt); 1704 break; 1705 case RECOVERED_ERROR: 1706 good_bytes = scsi_bufflen(SCpnt); 1707 break; 1708 case NO_SENSE: 1709 /* This indicates a false check condition, so ignore it. An 1710 * unknown amount of data was transferred so treat it as an 1711 * error. 1712 */ 1713 scsi_print_sense("sd", SCpnt); 1714 SCpnt->result = 0; 1715 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 1716 break; 1717 case ABORTED_COMMAND: 1718 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */ 1719 good_bytes = sd_completed_bytes(SCpnt); 1720 break; 1721 case ILLEGAL_REQUEST: 1722 if (sshdr.asc == 0x10) /* DIX: Host detected corruption */ 1723 good_bytes = sd_completed_bytes(SCpnt); 1724 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */ 1725 if (sshdr.asc == 0x20 || sshdr.asc == 0x24) { 1726 switch (op) { 1727 case UNMAP: 1728 sd_config_discard(sdkp, SD_LBP_DISABLE); 1729 break; 1730 case WRITE_SAME_16: 1731 case WRITE_SAME: 1732 if (unmap) 1733 sd_config_discard(sdkp, SD_LBP_DISABLE); 1734 else { 1735 sdkp->device->no_write_same = 1; 1736 sd_config_write_same(sdkp); 1737 1738 good_bytes = 0; 1739 req->__data_len = blk_rq_bytes(req); 1740 req->cmd_flags |= REQ_QUIET; 1741 } 1742 } 1743 } 1744 break; 1745 default: 1746 break; 1747 } 1748 out: 1749 if (rq_data_dir(SCpnt->request) == READ && scsi_prot_sg_count(SCpnt)) 1750 sd_dif_complete(SCpnt, good_bytes); 1751 1752 return good_bytes; 1753 } 1754 1755 /* 1756 * spinup disk - called only in sd_revalidate_disk() 1757 */ 1758 static void 1759 sd_spinup_disk(struct scsi_disk *sdkp) 1760 { 1761 unsigned char cmd[10]; 1762 unsigned long spintime_expire = 0; 1763 int retries, spintime; 1764 unsigned int the_result; 1765 struct scsi_sense_hdr sshdr; 1766 int sense_valid = 0; 1767 1768 spintime = 0; 1769 1770 /* Spin up drives, as required. Only do this at boot time */ 1771 /* Spinup needs to be done for module loads too. */ 1772 do { 1773 retries = 0; 1774 1775 do { 1776 cmd[0] = TEST_UNIT_READY; 1777 memset((void *) &cmd[1], 0, 9); 1778 1779 the_result = scsi_execute_req(sdkp->device, cmd, 1780 DMA_NONE, NULL, 0, 1781 &sshdr, SD_TIMEOUT, 1782 SD_MAX_RETRIES, NULL); 1783 1784 /* 1785 * If the drive has indicated to us that it 1786 * doesn't have any media in it, don't bother 1787 * with any more polling. 1788 */ 1789 if (media_not_present(sdkp, &sshdr)) 1790 return; 1791 1792 if (the_result) 1793 sense_valid = scsi_sense_valid(&sshdr); 1794 retries++; 1795 } while (retries < 3 && 1796 (!scsi_status_is_good(the_result) || 1797 ((driver_byte(the_result) & DRIVER_SENSE) && 1798 sense_valid && sshdr.sense_key == UNIT_ATTENTION))); 1799 1800 if ((driver_byte(the_result) & DRIVER_SENSE) == 0) { 1801 /* no sense, TUR either succeeded or failed 1802 * with a status error */ 1803 if(!spintime && !scsi_status_is_good(the_result)) { 1804 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n"); 1805 sd_print_result(sdkp, the_result); 1806 } 1807 break; 1808 } 1809 1810 /* 1811 * The device does not want the automatic start to be issued. 1812 */ 1813 if (sdkp->device->no_start_on_add) 1814 break; 1815 1816 if (sense_valid && sshdr.sense_key == NOT_READY) { 1817 if (sshdr.asc == 4 && sshdr.ascq == 3) 1818 break; /* manual intervention required */ 1819 if (sshdr.asc == 4 && sshdr.ascq == 0xb) 1820 break; /* standby */ 1821 if (sshdr.asc == 4 && sshdr.ascq == 0xc) 1822 break; /* unavailable */ 1823 /* 1824 * Issue command to spin up drive when not ready 1825 */ 1826 if (!spintime) { 1827 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk..."); 1828 cmd[0] = START_STOP; 1829 cmd[1] = 1; /* Return immediately */ 1830 memset((void *) &cmd[2], 0, 8); 1831 cmd[4] = 1; /* Start spin cycle */ 1832 if (sdkp->device->start_stop_pwr_cond) 1833 cmd[4] |= 1 << 4; 1834 scsi_execute_req(sdkp->device, cmd, DMA_NONE, 1835 NULL, 0, &sshdr, 1836 SD_TIMEOUT, SD_MAX_RETRIES, 1837 NULL); 1838 spintime_expire = jiffies + 100 * HZ; 1839 spintime = 1; 1840 } 1841 /* Wait 1 second for next try */ 1842 msleep(1000); 1843 printk("."); 1844 1845 /* 1846 * Wait for USB flash devices with slow firmware. 1847 * Yes, this sense key/ASC combination shouldn't 1848 * occur here. It's characteristic of these devices. 1849 */ 1850 } else if (sense_valid && 1851 sshdr.sense_key == UNIT_ATTENTION && 1852 sshdr.asc == 0x28) { 1853 if (!spintime) { 1854 spintime_expire = jiffies + 5 * HZ; 1855 spintime = 1; 1856 } 1857 /* Wait 1 second for next try */ 1858 msleep(1000); 1859 } else { 1860 /* we don't understand the sense code, so it's 1861 * probably pointless to loop */ 1862 if(!spintime) { 1863 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n"); 1864 sd_print_sense_hdr(sdkp, &sshdr); 1865 } 1866 break; 1867 } 1868 1869 } while (spintime && time_before_eq(jiffies, spintime_expire)); 1870 1871 if (spintime) { 1872 if (scsi_status_is_good(the_result)) 1873 printk("ready\n"); 1874 else 1875 printk("not responding...\n"); 1876 } 1877 } 1878 1879 1880 /* 1881 * Determine whether disk supports Data Integrity Field. 1882 */ 1883 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer) 1884 { 1885 struct scsi_device *sdp = sdkp->device; 1886 u8 type; 1887 int ret = 0; 1888 1889 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) 1890 return ret; 1891 1892 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */ 1893 1894 if (type > SD_DIF_TYPE3_PROTECTION) 1895 ret = -ENODEV; 1896 else if (scsi_host_dif_capable(sdp->host, type)) 1897 ret = 1; 1898 1899 if (sdkp->first_scan || type != sdkp->protection_type) 1900 switch (ret) { 1901 case -ENODEV: 1902 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \ 1903 " protection type %u. Disabling disk!\n", 1904 type); 1905 break; 1906 case 1: 1907 sd_printk(KERN_NOTICE, sdkp, 1908 "Enabling DIF Type %u protection\n", type); 1909 break; 1910 case 0: 1911 sd_printk(KERN_NOTICE, sdkp, 1912 "Disabling DIF Type %u protection\n", type); 1913 break; 1914 } 1915 1916 sdkp->protection_type = type; 1917 1918 return ret; 1919 } 1920 1921 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp, 1922 struct scsi_sense_hdr *sshdr, int sense_valid, 1923 int the_result) 1924 { 1925 sd_print_result(sdkp, the_result); 1926 if (driver_byte(the_result) & DRIVER_SENSE) 1927 sd_print_sense_hdr(sdkp, sshdr); 1928 else 1929 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n"); 1930 1931 /* 1932 * Set dirty bit for removable devices if not ready - 1933 * sometimes drives will not report this properly. 1934 */ 1935 if (sdp->removable && 1936 sense_valid && sshdr->sense_key == NOT_READY) 1937 set_media_not_present(sdkp); 1938 1939 /* 1940 * We used to set media_present to 0 here to indicate no media 1941 * in the drive, but some drives fail read capacity even with 1942 * media present, so we can't do that. 1943 */ 1944 sdkp->capacity = 0; /* unknown mapped to zero - as usual */ 1945 } 1946 1947 #define RC16_LEN 32 1948 #if RC16_LEN > SD_BUF_SIZE 1949 #error RC16_LEN must not be more than SD_BUF_SIZE 1950 #endif 1951 1952 #define READ_CAPACITY_RETRIES_ON_RESET 10 1953 1954 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp, 1955 unsigned char *buffer) 1956 { 1957 unsigned char cmd[16]; 1958 struct scsi_sense_hdr sshdr; 1959 int sense_valid = 0; 1960 int the_result; 1961 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 1962 unsigned int alignment; 1963 unsigned long long lba; 1964 unsigned sector_size; 1965 1966 if (sdp->no_read_capacity_16) 1967 return -EINVAL; 1968 1969 do { 1970 memset(cmd, 0, 16); 1971 cmd[0] = SERVICE_ACTION_IN; 1972 cmd[1] = SAI_READ_CAPACITY_16; 1973 cmd[13] = RC16_LEN; 1974 memset(buffer, 0, RC16_LEN); 1975 1976 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, 1977 buffer, RC16_LEN, &sshdr, 1978 SD_TIMEOUT, SD_MAX_RETRIES, NULL); 1979 1980 if (media_not_present(sdkp, &sshdr)) 1981 return -ENODEV; 1982 1983 if (the_result) { 1984 sense_valid = scsi_sense_valid(&sshdr); 1985 if (sense_valid && 1986 sshdr.sense_key == ILLEGAL_REQUEST && 1987 (sshdr.asc == 0x20 || sshdr.asc == 0x24) && 1988 sshdr.ascq == 0x00) 1989 /* Invalid Command Operation Code or 1990 * Invalid Field in CDB, just retry 1991 * silently with RC10 */ 1992 return -EINVAL; 1993 if (sense_valid && 1994 sshdr.sense_key == UNIT_ATTENTION && 1995 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 1996 /* Device reset might occur several times, 1997 * give it one more chance */ 1998 if (--reset_retries > 0) 1999 continue; 2000 } 2001 retries--; 2002 2003 } while (the_result && retries); 2004 2005 if (the_result) { 2006 sd_printk(KERN_NOTICE, sdkp, "READ CAPACITY(16) failed\n"); 2007 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2008 return -EINVAL; 2009 } 2010 2011 sector_size = get_unaligned_be32(&buffer[8]); 2012 lba = get_unaligned_be64(&buffer[0]); 2013 2014 if (sd_read_protection_type(sdkp, buffer) < 0) { 2015 sdkp->capacity = 0; 2016 return -ENODEV; 2017 } 2018 2019 if ((sizeof(sdkp->capacity) == 4) && (lba >= 0xffffffffULL)) { 2020 sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a " 2021 "kernel compiled with support for large block " 2022 "devices.\n"); 2023 sdkp->capacity = 0; 2024 return -EOVERFLOW; 2025 } 2026 2027 /* Logical blocks per physical block exponent */ 2028 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size; 2029 2030 /* Lowest aligned logical block */ 2031 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size; 2032 blk_queue_alignment_offset(sdp->request_queue, alignment); 2033 if (alignment && sdkp->first_scan) 2034 sd_printk(KERN_NOTICE, sdkp, 2035 "physical block alignment offset: %u\n", alignment); 2036 2037 if (buffer[14] & 0x80) { /* LBPME */ 2038 sdkp->lbpme = 1; 2039 2040 if (buffer[14] & 0x40) /* LBPRZ */ 2041 sdkp->lbprz = 1; 2042 2043 sd_config_discard(sdkp, SD_LBP_WS16); 2044 } 2045 2046 sdkp->capacity = lba + 1; 2047 return sector_size; 2048 } 2049 2050 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp, 2051 unsigned char *buffer) 2052 { 2053 unsigned char cmd[16]; 2054 struct scsi_sense_hdr sshdr; 2055 int sense_valid = 0; 2056 int the_result; 2057 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2058 sector_t lba; 2059 unsigned sector_size; 2060 2061 do { 2062 cmd[0] = READ_CAPACITY; 2063 memset(&cmd[1], 0, 9); 2064 memset(buffer, 0, 8); 2065 2066 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, 2067 buffer, 8, &sshdr, 2068 SD_TIMEOUT, SD_MAX_RETRIES, NULL); 2069 2070 if (media_not_present(sdkp, &sshdr)) 2071 return -ENODEV; 2072 2073 if (the_result) { 2074 sense_valid = scsi_sense_valid(&sshdr); 2075 if (sense_valid && 2076 sshdr.sense_key == UNIT_ATTENTION && 2077 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2078 /* Device reset might occur several times, 2079 * give it one more chance */ 2080 if (--reset_retries > 0) 2081 continue; 2082 } 2083 retries--; 2084 2085 } while (the_result && retries); 2086 2087 if (the_result) { 2088 sd_printk(KERN_NOTICE, sdkp, "READ CAPACITY failed\n"); 2089 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2090 return -EINVAL; 2091 } 2092 2093 sector_size = get_unaligned_be32(&buffer[4]); 2094 lba = get_unaligned_be32(&buffer[0]); 2095 2096 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) { 2097 /* Some buggy (usb cardreader) devices return an lba of 2098 0xffffffff when the want to report a size of 0 (with 2099 which they really mean no media is present) */ 2100 sdkp->capacity = 0; 2101 sdkp->physical_block_size = sector_size; 2102 return sector_size; 2103 } 2104 2105 if ((sizeof(sdkp->capacity) == 4) && (lba == 0xffffffff)) { 2106 sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a " 2107 "kernel compiled with support for large block " 2108 "devices.\n"); 2109 sdkp->capacity = 0; 2110 return -EOVERFLOW; 2111 } 2112 2113 sdkp->capacity = lba + 1; 2114 sdkp->physical_block_size = sector_size; 2115 return sector_size; 2116 } 2117 2118 static int sd_try_rc16_first(struct scsi_device *sdp) 2119 { 2120 if (sdp->host->max_cmd_len < 16) 2121 return 0; 2122 if (sdp->try_rc_10_first) 2123 return 0; 2124 if (sdp->scsi_level > SCSI_SPC_2) 2125 return 1; 2126 if (scsi_device_protection(sdp)) 2127 return 1; 2128 return 0; 2129 } 2130 2131 /* 2132 * read disk capacity 2133 */ 2134 static void 2135 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer) 2136 { 2137 int sector_size; 2138 struct scsi_device *sdp = sdkp->device; 2139 sector_t old_capacity = sdkp->capacity; 2140 2141 if (sd_try_rc16_first(sdp)) { 2142 sector_size = read_capacity_16(sdkp, sdp, buffer); 2143 if (sector_size == -EOVERFLOW) 2144 goto got_data; 2145 if (sector_size == -ENODEV) 2146 return; 2147 if (sector_size < 0) 2148 sector_size = read_capacity_10(sdkp, sdp, buffer); 2149 if (sector_size < 0) 2150 return; 2151 } else { 2152 sector_size = read_capacity_10(sdkp, sdp, buffer); 2153 if (sector_size == -EOVERFLOW) 2154 goto got_data; 2155 if (sector_size < 0) 2156 return; 2157 if ((sizeof(sdkp->capacity) > 4) && 2158 (sdkp->capacity > 0xffffffffULL)) { 2159 int old_sector_size = sector_size; 2160 sd_printk(KERN_NOTICE, sdkp, "Very big device. " 2161 "Trying to use READ CAPACITY(16).\n"); 2162 sector_size = read_capacity_16(sdkp, sdp, buffer); 2163 if (sector_size < 0) { 2164 sd_printk(KERN_NOTICE, sdkp, 2165 "Using 0xffffffff as device size\n"); 2166 sdkp->capacity = 1 + (sector_t) 0xffffffff; 2167 sector_size = old_sector_size; 2168 goto got_data; 2169 } 2170 } 2171 } 2172 2173 /* Some devices are known to return the total number of blocks, 2174 * not the highest block number. Some devices have versions 2175 * which do this and others which do not. Some devices we might 2176 * suspect of doing this but we don't know for certain. 2177 * 2178 * If we know the reported capacity is wrong, decrement it. If 2179 * we can only guess, then assume the number of blocks is even 2180 * (usually true but not always) and err on the side of lowering 2181 * the capacity. 2182 */ 2183 if (sdp->fix_capacity || 2184 (sdp->guess_capacity && (sdkp->capacity & 0x01))) { 2185 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count " 2186 "from its reported value: %llu\n", 2187 (unsigned long long) sdkp->capacity); 2188 --sdkp->capacity; 2189 } 2190 2191 got_data: 2192 if (sector_size == 0) { 2193 sector_size = 512; 2194 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, " 2195 "assuming 512.\n"); 2196 } 2197 2198 if (sector_size != 512 && 2199 sector_size != 1024 && 2200 sector_size != 2048 && 2201 sector_size != 4096 && 2202 sector_size != 256) { 2203 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n", 2204 sector_size); 2205 /* 2206 * The user might want to re-format the drive with 2207 * a supported sectorsize. Once this happens, it 2208 * would be relatively trivial to set the thing up. 2209 * For this reason, we leave the thing in the table. 2210 */ 2211 sdkp->capacity = 0; 2212 /* 2213 * set a bogus sector size so the normal read/write 2214 * logic in the block layer will eventually refuse any 2215 * request on this device without tripping over power 2216 * of two sector size assumptions 2217 */ 2218 sector_size = 512; 2219 } 2220 blk_queue_logical_block_size(sdp->request_queue, sector_size); 2221 2222 { 2223 char cap_str_2[10], cap_str_10[10]; 2224 u64 sz = (u64)sdkp->capacity << ilog2(sector_size); 2225 2226 string_get_size(sz, STRING_UNITS_2, cap_str_2, 2227 sizeof(cap_str_2)); 2228 string_get_size(sz, STRING_UNITS_10, cap_str_10, 2229 sizeof(cap_str_10)); 2230 2231 if (sdkp->first_scan || old_capacity != sdkp->capacity) { 2232 sd_printk(KERN_NOTICE, sdkp, 2233 "%llu %d-byte logical blocks: (%s/%s)\n", 2234 (unsigned long long)sdkp->capacity, 2235 sector_size, cap_str_10, cap_str_2); 2236 2237 if (sdkp->physical_block_size != sector_size) 2238 sd_printk(KERN_NOTICE, sdkp, 2239 "%u-byte physical blocks\n", 2240 sdkp->physical_block_size); 2241 } 2242 } 2243 2244 sdp->use_16_for_rw = (sdkp->capacity > 0xffffffff); 2245 2246 /* Rescale capacity to 512-byte units */ 2247 if (sector_size == 4096) 2248 sdkp->capacity <<= 3; 2249 else if (sector_size == 2048) 2250 sdkp->capacity <<= 2; 2251 else if (sector_size == 1024) 2252 sdkp->capacity <<= 1; 2253 else if (sector_size == 256) 2254 sdkp->capacity >>= 1; 2255 2256 blk_queue_physical_block_size(sdp->request_queue, 2257 sdkp->physical_block_size); 2258 sdkp->device->sector_size = sector_size; 2259 } 2260 2261 /* called with buffer of length 512 */ 2262 static inline int 2263 sd_do_mode_sense(struct scsi_device *sdp, int dbd, int modepage, 2264 unsigned char *buffer, int len, struct scsi_mode_data *data, 2265 struct scsi_sense_hdr *sshdr) 2266 { 2267 return scsi_mode_sense(sdp, dbd, modepage, buffer, len, 2268 SD_TIMEOUT, SD_MAX_RETRIES, data, 2269 sshdr); 2270 } 2271 2272 /* 2273 * read write protect setting, if possible - called only in sd_revalidate_disk() 2274 * called with buffer of length SD_BUF_SIZE 2275 */ 2276 static void 2277 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer) 2278 { 2279 int res; 2280 struct scsi_device *sdp = sdkp->device; 2281 struct scsi_mode_data data; 2282 int old_wp = sdkp->write_prot; 2283 2284 set_disk_ro(sdkp->disk, 0); 2285 if (sdp->skip_ms_page_3f) { 2286 sd_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n"); 2287 return; 2288 } 2289 2290 if (sdp->use_192_bytes_for_3f) { 2291 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 192, &data, NULL); 2292 } else { 2293 /* 2294 * First attempt: ask for all pages (0x3F), but only 4 bytes. 2295 * We have to start carefully: some devices hang if we ask 2296 * for more than is available. 2297 */ 2298 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 4, &data, NULL); 2299 2300 /* 2301 * Second attempt: ask for page 0 When only page 0 is 2302 * implemented, a request for page 3F may return Sense Key 2303 * 5: Illegal Request, Sense Code 24: Invalid field in 2304 * CDB. 2305 */ 2306 if (!scsi_status_is_good(res)) 2307 res = sd_do_mode_sense(sdp, 0, 0, buffer, 4, &data, NULL); 2308 2309 /* 2310 * Third attempt: ask 255 bytes, as we did earlier. 2311 */ 2312 if (!scsi_status_is_good(res)) 2313 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 255, 2314 &data, NULL); 2315 } 2316 2317 if (!scsi_status_is_good(res)) { 2318 sd_printk(KERN_WARNING, sdkp, 2319 "Test WP failed, assume Write Enabled\n"); 2320 } else { 2321 sdkp->write_prot = ((data.device_specific & 0x80) != 0); 2322 set_disk_ro(sdkp->disk, sdkp->write_prot); 2323 if (sdkp->first_scan || old_wp != sdkp->write_prot) { 2324 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n", 2325 sdkp->write_prot ? "on" : "off"); 2326 sd_printk(KERN_DEBUG, sdkp, 2327 "Mode Sense: %02x %02x %02x %02x\n", 2328 buffer[0], buffer[1], buffer[2], buffer[3]); 2329 } 2330 } 2331 } 2332 2333 /* 2334 * sd_read_cache_type - called only from sd_revalidate_disk() 2335 * called with buffer of length SD_BUF_SIZE 2336 */ 2337 static void 2338 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer) 2339 { 2340 int len = 0, res; 2341 struct scsi_device *sdp = sdkp->device; 2342 2343 int dbd; 2344 int modepage; 2345 int first_len; 2346 struct scsi_mode_data data; 2347 struct scsi_sense_hdr sshdr; 2348 int old_wce = sdkp->WCE; 2349 int old_rcd = sdkp->RCD; 2350 int old_dpofua = sdkp->DPOFUA; 2351 2352 2353 if (sdkp->cache_override) 2354 return; 2355 2356 first_len = 4; 2357 if (sdp->skip_ms_page_8) { 2358 if (sdp->type == TYPE_RBC) 2359 goto defaults; 2360 else { 2361 if (sdp->skip_ms_page_3f) 2362 goto defaults; 2363 modepage = 0x3F; 2364 if (sdp->use_192_bytes_for_3f) 2365 first_len = 192; 2366 dbd = 0; 2367 } 2368 } else if (sdp->type == TYPE_RBC) { 2369 modepage = 6; 2370 dbd = 8; 2371 } else { 2372 modepage = 8; 2373 dbd = 0; 2374 } 2375 2376 /* cautiously ask */ 2377 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, first_len, 2378 &data, &sshdr); 2379 2380 if (!scsi_status_is_good(res)) 2381 goto bad_sense; 2382 2383 if (!data.header_length) { 2384 modepage = 6; 2385 first_len = 0; 2386 sd_printk(KERN_ERR, sdkp, "Missing header in MODE_SENSE response\n"); 2387 } 2388 2389 /* that went OK, now ask for the proper length */ 2390 len = data.length; 2391 2392 /* 2393 * We're only interested in the first three bytes, actually. 2394 * But the data cache page is defined for the first 20. 2395 */ 2396 if (len < 3) 2397 goto bad_sense; 2398 else if (len > SD_BUF_SIZE) { 2399 sd_printk(KERN_NOTICE, sdkp, "Truncating mode parameter " 2400 "data from %d to %d bytes\n", len, SD_BUF_SIZE); 2401 len = SD_BUF_SIZE; 2402 } 2403 if (modepage == 0x3F && sdp->use_192_bytes_for_3f) 2404 len = 192; 2405 2406 /* Get the data */ 2407 if (len > first_len) 2408 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, len, 2409 &data, &sshdr); 2410 2411 if (scsi_status_is_good(res)) { 2412 int offset = data.header_length + data.block_descriptor_length; 2413 2414 while (offset < len) { 2415 u8 page_code = buffer[offset] & 0x3F; 2416 u8 spf = buffer[offset] & 0x40; 2417 2418 if (page_code == 8 || page_code == 6) { 2419 /* We're interested only in the first 3 bytes. 2420 */ 2421 if (len - offset <= 2) { 2422 sd_printk(KERN_ERR, sdkp, "Incomplete " 2423 "mode parameter data\n"); 2424 goto defaults; 2425 } else { 2426 modepage = page_code; 2427 goto Page_found; 2428 } 2429 } else { 2430 /* Go to the next page */ 2431 if (spf && len - offset > 3) 2432 offset += 4 + (buffer[offset+2] << 8) + 2433 buffer[offset+3]; 2434 else if (!spf && len - offset > 1) 2435 offset += 2 + buffer[offset+1]; 2436 else { 2437 sd_printk(KERN_ERR, sdkp, "Incomplete " 2438 "mode parameter data\n"); 2439 goto defaults; 2440 } 2441 } 2442 } 2443 2444 sd_printk(KERN_ERR, sdkp, "No Caching mode page found\n"); 2445 goto defaults; 2446 2447 Page_found: 2448 if (modepage == 8) { 2449 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0); 2450 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0); 2451 } else { 2452 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0); 2453 sdkp->RCD = 0; 2454 } 2455 2456 sdkp->DPOFUA = (data.device_specific & 0x10) != 0; 2457 if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw) { 2458 sd_printk(KERN_NOTICE, sdkp, 2459 "Uses READ/WRITE(6), disabling FUA\n"); 2460 sdkp->DPOFUA = 0; 2461 } 2462 2463 if (sdkp->first_scan || old_wce != sdkp->WCE || 2464 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA) 2465 sd_printk(KERN_NOTICE, sdkp, 2466 "Write cache: %s, read cache: %s, %s\n", 2467 sdkp->WCE ? "enabled" : "disabled", 2468 sdkp->RCD ? "disabled" : "enabled", 2469 sdkp->DPOFUA ? "supports DPO and FUA" 2470 : "doesn't support DPO or FUA"); 2471 2472 return; 2473 } 2474 2475 bad_sense: 2476 if (scsi_sense_valid(&sshdr) && 2477 sshdr.sense_key == ILLEGAL_REQUEST && 2478 sshdr.asc == 0x24 && sshdr.ascq == 0x0) 2479 /* Invalid field in CDB */ 2480 sd_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n"); 2481 else 2482 sd_printk(KERN_ERR, sdkp, "Asking for cache data failed\n"); 2483 2484 defaults: 2485 if (sdp->wce_default_on) { 2486 sd_printk(KERN_NOTICE, sdkp, "Assuming drive cache: write back\n"); 2487 sdkp->WCE = 1; 2488 } else { 2489 sd_printk(KERN_ERR, sdkp, "Assuming drive cache: write through\n"); 2490 sdkp->WCE = 0; 2491 } 2492 sdkp->RCD = 0; 2493 sdkp->DPOFUA = 0; 2494 } 2495 2496 /* 2497 * The ATO bit indicates whether the DIF application tag is available 2498 * for use by the operating system. 2499 */ 2500 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer) 2501 { 2502 int res, offset; 2503 struct scsi_device *sdp = sdkp->device; 2504 struct scsi_mode_data data; 2505 struct scsi_sense_hdr sshdr; 2506 2507 if (sdp->type != TYPE_DISK) 2508 return; 2509 2510 if (sdkp->protection_type == 0) 2511 return; 2512 2513 res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT, 2514 SD_MAX_RETRIES, &data, &sshdr); 2515 2516 if (!scsi_status_is_good(res) || !data.header_length || 2517 data.length < 6) { 2518 sd_printk(KERN_WARNING, sdkp, 2519 "getting Control mode page failed, assume no ATO\n"); 2520 2521 if (scsi_sense_valid(&sshdr)) 2522 sd_print_sense_hdr(sdkp, &sshdr); 2523 2524 return; 2525 } 2526 2527 offset = data.header_length + data.block_descriptor_length; 2528 2529 if ((buffer[offset] & 0x3f) != 0x0a) { 2530 sd_printk(KERN_ERR, sdkp, "ATO Got wrong page\n"); 2531 return; 2532 } 2533 2534 if ((buffer[offset + 5] & 0x80) == 0) 2535 return; 2536 2537 sdkp->ATO = 1; 2538 2539 return; 2540 } 2541 2542 /** 2543 * sd_read_block_limits - Query disk device for preferred I/O sizes. 2544 * @disk: disk to query 2545 */ 2546 static void sd_read_block_limits(struct scsi_disk *sdkp) 2547 { 2548 unsigned int sector_sz = sdkp->device->sector_size; 2549 const int vpd_len = 64; 2550 unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL); 2551 2552 if (!buffer || 2553 /* Block Limits VPD */ 2554 scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len)) 2555 goto out; 2556 2557 blk_queue_io_min(sdkp->disk->queue, 2558 get_unaligned_be16(&buffer[6]) * sector_sz); 2559 blk_queue_io_opt(sdkp->disk->queue, 2560 get_unaligned_be32(&buffer[12]) * sector_sz); 2561 2562 if (buffer[3] == 0x3c) { 2563 unsigned int lba_count, desc_count; 2564 2565 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]); 2566 2567 if (!sdkp->lbpme) 2568 goto out; 2569 2570 lba_count = get_unaligned_be32(&buffer[20]); 2571 desc_count = get_unaligned_be32(&buffer[24]); 2572 2573 if (lba_count && desc_count) 2574 sdkp->max_unmap_blocks = lba_count; 2575 2576 sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]); 2577 2578 if (buffer[32] & 0x80) 2579 sdkp->unmap_alignment = 2580 get_unaligned_be32(&buffer[32]) & ~(1 << 31); 2581 2582 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */ 2583 2584 if (sdkp->max_unmap_blocks) 2585 sd_config_discard(sdkp, SD_LBP_UNMAP); 2586 else 2587 sd_config_discard(sdkp, SD_LBP_WS16); 2588 2589 } else { /* LBP VPD page tells us what to use */ 2590 2591 if (sdkp->lbpu && sdkp->max_unmap_blocks) 2592 sd_config_discard(sdkp, SD_LBP_UNMAP); 2593 else if (sdkp->lbpws) 2594 sd_config_discard(sdkp, SD_LBP_WS16); 2595 else if (sdkp->lbpws10) 2596 sd_config_discard(sdkp, SD_LBP_WS10); 2597 else 2598 sd_config_discard(sdkp, SD_LBP_DISABLE); 2599 } 2600 } 2601 2602 out: 2603 kfree(buffer); 2604 } 2605 2606 /** 2607 * sd_read_block_characteristics - Query block dev. characteristics 2608 * @disk: disk to query 2609 */ 2610 static void sd_read_block_characteristics(struct scsi_disk *sdkp) 2611 { 2612 unsigned char *buffer; 2613 u16 rot; 2614 const int vpd_len = 64; 2615 2616 buffer = kmalloc(vpd_len, GFP_KERNEL); 2617 2618 if (!buffer || 2619 /* Block Device Characteristics VPD */ 2620 scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len)) 2621 goto out; 2622 2623 rot = get_unaligned_be16(&buffer[4]); 2624 2625 if (rot == 1) 2626 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, sdkp->disk->queue); 2627 2628 out: 2629 kfree(buffer); 2630 } 2631 2632 /** 2633 * sd_read_block_provisioning - Query provisioning VPD page 2634 * @disk: disk to query 2635 */ 2636 static void sd_read_block_provisioning(struct scsi_disk *sdkp) 2637 { 2638 unsigned char *buffer; 2639 const int vpd_len = 8; 2640 2641 if (sdkp->lbpme == 0) 2642 return; 2643 2644 buffer = kmalloc(vpd_len, GFP_KERNEL); 2645 2646 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len)) 2647 goto out; 2648 2649 sdkp->lbpvpd = 1; 2650 sdkp->lbpu = (buffer[5] >> 7) & 1; /* UNMAP */ 2651 sdkp->lbpws = (buffer[5] >> 6) & 1; /* WRITE SAME(16) with UNMAP */ 2652 sdkp->lbpws10 = (buffer[5] >> 5) & 1; /* WRITE SAME(10) with UNMAP */ 2653 2654 out: 2655 kfree(buffer); 2656 } 2657 2658 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer) 2659 { 2660 struct scsi_device *sdev = sdkp->device; 2661 2662 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) { 2663 /* too large values might cause issues with arcmsr */ 2664 int vpd_buf_len = 64; 2665 2666 sdev->no_report_opcodes = 1; 2667 2668 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION 2669 * CODES is unsupported and the device has an ATA 2670 * Information VPD page (SAT). 2671 */ 2672 if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len)) 2673 sdev->no_write_same = 1; 2674 } 2675 2676 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1) 2677 sdkp->ws16 = 1; 2678 2679 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1) 2680 sdkp->ws10 = 1; 2681 } 2682 2683 static int sd_try_extended_inquiry(struct scsi_device *sdp) 2684 { 2685 /* 2686 * Although VPD inquiries can go to SCSI-2 type devices, 2687 * some USB ones crash on receiving them, and the pages 2688 * we currently ask for are for SPC-3 and beyond 2689 */ 2690 if (sdp->scsi_level > SCSI_SPC_2 && !sdp->skip_vpd_pages) 2691 return 1; 2692 return 0; 2693 } 2694 2695 /** 2696 * sd_revalidate_disk - called the first time a new disk is seen, 2697 * performs disk spin up, read_capacity, etc. 2698 * @disk: struct gendisk we care about 2699 **/ 2700 static int sd_revalidate_disk(struct gendisk *disk) 2701 { 2702 struct scsi_disk *sdkp = scsi_disk(disk); 2703 struct scsi_device *sdp = sdkp->device; 2704 unsigned char *buffer; 2705 unsigned flush = 0; 2706 2707 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, 2708 "sd_revalidate_disk\n")); 2709 2710 /* 2711 * If the device is offline, don't try and read capacity or any 2712 * of the other niceties. 2713 */ 2714 if (!scsi_device_online(sdp)) 2715 goto out; 2716 2717 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL); 2718 if (!buffer) { 2719 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory " 2720 "allocation failure.\n"); 2721 goto out; 2722 } 2723 2724 sd_spinup_disk(sdkp); 2725 2726 /* 2727 * Without media there is no reason to ask; moreover, some devices 2728 * react badly if we do. 2729 */ 2730 if (sdkp->media_present) { 2731 sd_read_capacity(sdkp, buffer); 2732 2733 if (sd_try_extended_inquiry(sdp)) { 2734 sd_read_block_provisioning(sdkp); 2735 sd_read_block_limits(sdkp); 2736 sd_read_block_characteristics(sdkp); 2737 } 2738 2739 sd_read_write_protect_flag(sdkp, buffer); 2740 sd_read_cache_type(sdkp, buffer); 2741 sd_read_app_tag_own(sdkp, buffer); 2742 sd_read_write_same(sdkp, buffer); 2743 } 2744 2745 sdkp->first_scan = 0; 2746 2747 /* 2748 * We now have all cache related info, determine how we deal 2749 * with flush requests. 2750 */ 2751 if (sdkp->WCE) { 2752 flush |= REQ_FLUSH; 2753 if (sdkp->DPOFUA) 2754 flush |= REQ_FUA; 2755 } 2756 2757 blk_queue_flush(sdkp->disk->queue, flush); 2758 2759 set_capacity(disk, sdkp->capacity); 2760 sd_config_write_same(sdkp); 2761 kfree(buffer); 2762 2763 out: 2764 return 0; 2765 } 2766 2767 /** 2768 * sd_unlock_native_capacity - unlock native capacity 2769 * @disk: struct gendisk to set capacity for 2770 * 2771 * Block layer calls this function if it detects that partitions 2772 * on @disk reach beyond the end of the device. If the SCSI host 2773 * implements ->unlock_native_capacity() method, it's invoked to 2774 * give it a chance to adjust the device capacity. 2775 * 2776 * CONTEXT: 2777 * Defined by block layer. Might sleep. 2778 */ 2779 static void sd_unlock_native_capacity(struct gendisk *disk) 2780 { 2781 struct scsi_device *sdev = scsi_disk(disk)->device; 2782 2783 if (sdev->host->hostt->unlock_native_capacity) 2784 sdev->host->hostt->unlock_native_capacity(sdev); 2785 } 2786 2787 /** 2788 * sd_format_disk_name - format disk name 2789 * @prefix: name prefix - ie. "sd" for SCSI disks 2790 * @index: index of the disk to format name for 2791 * @buf: output buffer 2792 * @buflen: length of the output buffer 2793 * 2794 * SCSI disk names starts at sda. The 26th device is sdz and the 2795 * 27th is sdaa. The last one for two lettered suffix is sdzz 2796 * which is followed by sdaaa. 2797 * 2798 * This is basically 26 base counting with one extra 'nil' entry 2799 * at the beginning from the second digit on and can be 2800 * determined using similar method as 26 base conversion with the 2801 * index shifted -1 after each digit is computed. 2802 * 2803 * CONTEXT: 2804 * Don't care. 2805 * 2806 * RETURNS: 2807 * 0 on success, -errno on failure. 2808 */ 2809 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen) 2810 { 2811 const int base = 'z' - 'a' + 1; 2812 char *begin = buf + strlen(prefix); 2813 char *end = buf + buflen; 2814 char *p; 2815 int unit; 2816 2817 p = end - 1; 2818 *p = '\0'; 2819 unit = base; 2820 do { 2821 if (p == begin) 2822 return -EINVAL; 2823 *--p = 'a' + (index % unit); 2824 index = (index / unit) - 1; 2825 } while (index >= 0); 2826 2827 memmove(begin, p, end - p); 2828 memcpy(buf, prefix, strlen(prefix)); 2829 2830 return 0; 2831 } 2832 2833 /* 2834 * The asynchronous part of sd_probe 2835 */ 2836 static void sd_probe_async(void *data, async_cookie_t cookie) 2837 { 2838 struct scsi_disk *sdkp = data; 2839 struct scsi_device *sdp; 2840 struct gendisk *gd; 2841 u32 index; 2842 struct device *dev; 2843 2844 sdp = sdkp->device; 2845 gd = sdkp->disk; 2846 index = sdkp->index; 2847 dev = &sdp->sdev_gendev; 2848 2849 gd->major = sd_major((index & 0xf0) >> 4); 2850 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00); 2851 gd->minors = SD_MINORS; 2852 2853 gd->fops = &sd_fops; 2854 gd->private_data = &sdkp->driver; 2855 gd->queue = sdkp->device->request_queue; 2856 2857 /* defaults, until the device tells us otherwise */ 2858 sdp->sector_size = 512; 2859 sdkp->capacity = 0; 2860 sdkp->media_present = 1; 2861 sdkp->write_prot = 0; 2862 sdkp->cache_override = 0; 2863 sdkp->WCE = 0; 2864 sdkp->RCD = 0; 2865 sdkp->ATO = 0; 2866 sdkp->first_scan = 1; 2867 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS; 2868 2869 sd_revalidate_disk(gd); 2870 2871 blk_queue_prep_rq(sdp->request_queue, sd_prep_fn); 2872 blk_queue_unprep_rq(sdp->request_queue, sd_unprep_fn); 2873 2874 gd->driverfs_dev = &sdp->sdev_gendev; 2875 gd->flags = GENHD_FL_EXT_DEVT; 2876 if (sdp->removable) { 2877 gd->flags |= GENHD_FL_REMOVABLE; 2878 gd->events |= DISK_EVENT_MEDIA_CHANGE; 2879 } 2880 2881 blk_pm_runtime_init(sdp->request_queue, dev); 2882 add_disk(gd); 2883 if (sdkp->capacity) 2884 sd_dif_config_host(sdkp); 2885 2886 sd_revalidate_disk(gd); 2887 2888 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n", 2889 sdp->removable ? "removable " : ""); 2890 scsi_autopm_put_device(sdp); 2891 put_device(&sdkp->dev); 2892 } 2893 2894 /** 2895 * sd_probe - called during driver initialization and whenever a 2896 * new scsi device is attached to the system. It is called once 2897 * for each scsi device (not just disks) present. 2898 * @dev: pointer to device object 2899 * 2900 * Returns 0 if successful (or not interested in this scsi device 2901 * (e.g. scanner)); 1 when there is an error. 2902 * 2903 * Note: this function is invoked from the scsi mid-level. 2904 * This function sets up the mapping between a given 2905 * <host,channel,id,lun> (found in sdp) and new device name 2906 * (e.g. /dev/sda). More precisely it is the block device major 2907 * and minor number that is chosen here. 2908 * 2909 * Assume sd_probe is not re-entrant (for time being) 2910 * Also think about sd_probe() and sd_remove() running coincidentally. 2911 **/ 2912 static int sd_probe(struct device *dev) 2913 { 2914 struct scsi_device *sdp = to_scsi_device(dev); 2915 struct scsi_disk *sdkp; 2916 struct gendisk *gd; 2917 int index; 2918 int error; 2919 2920 error = -ENODEV; 2921 if (sdp->type != TYPE_DISK && sdp->type != TYPE_MOD && sdp->type != TYPE_RBC) 2922 goto out; 2923 2924 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp, 2925 "sd_probe\n")); 2926 2927 error = -ENOMEM; 2928 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL); 2929 if (!sdkp) 2930 goto out; 2931 2932 gd = alloc_disk(SD_MINORS); 2933 if (!gd) 2934 goto out_free; 2935 2936 do { 2937 if (!ida_pre_get(&sd_index_ida, GFP_KERNEL)) 2938 goto out_put; 2939 2940 spin_lock(&sd_index_lock); 2941 error = ida_get_new(&sd_index_ida, &index); 2942 spin_unlock(&sd_index_lock); 2943 } while (error == -EAGAIN); 2944 2945 if (error) { 2946 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n"); 2947 goto out_put; 2948 } 2949 2950 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN); 2951 if (error) { 2952 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n"); 2953 goto out_free_index; 2954 } 2955 2956 sdkp->device = sdp; 2957 sdkp->driver = &sd_template; 2958 sdkp->disk = gd; 2959 sdkp->index = index; 2960 atomic_set(&sdkp->openers, 0); 2961 atomic_set(&sdkp->device->ioerr_cnt, 0); 2962 2963 if (!sdp->request_queue->rq_timeout) { 2964 if (sdp->type != TYPE_MOD) 2965 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT); 2966 else 2967 blk_queue_rq_timeout(sdp->request_queue, 2968 SD_MOD_TIMEOUT); 2969 } 2970 2971 device_initialize(&sdkp->dev); 2972 sdkp->dev.parent = dev; 2973 sdkp->dev.class = &sd_disk_class; 2974 dev_set_name(&sdkp->dev, "%s", dev_name(dev)); 2975 2976 if (device_add(&sdkp->dev)) 2977 goto out_free_index; 2978 2979 get_device(dev); 2980 dev_set_drvdata(dev, sdkp); 2981 2982 get_device(&sdkp->dev); /* prevent release before async_schedule */ 2983 async_schedule_domain(sd_probe_async, sdkp, &scsi_sd_probe_domain); 2984 2985 return 0; 2986 2987 out_free_index: 2988 spin_lock(&sd_index_lock); 2989 ida_remove(&sd_index_ida, index); 2990 spin_unlock(&sd_index_lock); 2991 out_put: 2992 put_disk(gd); 2993 out_free: 2994 kfree(sdkp); 2995 out: 2996 return error; 2997 } 2998 2999 /** 3000 * sd_remove - called whenever a scsi disk (previously recognized by 3001 * sd_probe) is detached from the system. It is called (potentially 3002 * multiple times) during sd module unload. 3003 * @sdp: pointer to mid level scsi device object 3004 * 3005 * Note: this function is invoked from the scsi mid-level. 3006 * This function potentially frees up a device name (e.g. /dev/sdc) 3007 * that could be re-used by a subsequent sd_probe(). 3008 * This function is not called when the built-in sd driver is "exit-ed". 3009 **/ 3010 static int sd_remove(struct device *dev) 3011 { 3012 struct scsi_disk *sdkp; 3013 dev_t devt; 3014 3015 sdkp = dev_get_drvdata(dev); 3016 devt = disk_devt(sdkp->disk); 3017 scsi_autopm_get_device(sdkp->device); 3018 3019 async_synchronize_full_domain(&scsi_sd_probe_domain); 3020 blk_queue_prep_rq(sdkp->device->request_queue, scsi_prep_fn); 3021 blk_queue_unprep_rq(sdkp->device->request_queue, NULL); 3022 device_del(&sdkp->dev); 3023 del_gendisk(sdkp->disk); 3024 sd_shutdown(dev); 3025 3026 blk_register_region(devt, SD_MINORS, NULL, 3027 sd_default_probe, NULL, NULL); 3028 3029 mutex_lock(&sd_ref_mutex); 3030 dev_set_drvdata(dev, NULL); 3031 put_device(&sdkp->dev); 3032 mutex_unlock(&sd_ref_mutex); 3033 3034 return 0; 3035 } 3036 3037 /** 3038 * scsi_disk_release - Called to free the scsi_disk structure 3039 * @dev: pointer to embedded class device 3040 * 3041 * sd_ref_mutex must be held entering this routine. Because it is 3042 * called on last put, you should always use the scsi_disk_get() 3043 * scsi_disk_put() helpers which manipulate the semaphore directly 3044 * and never do a direct put_device. 3045 **/ 3046 static void scsi_disk_release(struct device *dev) 3047 { 3048 struct scsi_disk *sdkp = to_scsi_disk(dev); 3049 struct gendisk *disk = sdkp->disk; 3050 3051 spin_lock(&sd_index_lock); 3052 ida_remove(&sd_index_ida, sdkp->index); 3053 spin_unlock(&sd_index_lock); 3054 3055 disk->private_data = NULL; 3056 put_disk(disk); 3057 put_device(&sdkp->device->sdev_gendev); 3058 3059 kfree(sdkp); 3060 } 3061 3062 static int sd_start_stop_device(struct scsi_disk *sdkp, int start) 3063 { 3064 unsigned char cmd[6] = { START_STOP }; /* START_VALID */ 3065 struct scsi_sense_hdr sshdr; 3066 struct scsi_device *sdp = sdkp->device; 3067 int res; 3068 3069 if (start) 3070 cmd[4] |= 1; /* START */ 3071 3072 if (sdp->start_stop_pwr_cond) 3073 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */ 3074 3075 if (!scsi_device_online(sdp)) 3076 return -ENODEV; 3077 3078 res = scsi_execute_req_flags(sdp, cmd, DMA_NONE, NULL, 0, &sshdr, 3079 SD_TIMEOUT, SD_MAX_RETRIES, NULL, REQ_PM); 3080 if (res) { 3081 sd_printk(KERN_WARNING, sdkp, "START_STOP FAILED\n"); 3082 sd_print_result(sdkp, res); 3083 if (driver_byte(res) & DRIVER_SENSE) 3084 sd_print_sense_hdr(sdkp, &sshdr); 3085 if (scsi_sense_valid(&sshdr) && 3086 /* 0x3a is medium not present */ 3087 sshdr.asc == 0x3a) 3088 res = 0; 3089 } 3090 3091 /* SCSI error codes must not go to the generic layer */ 3092 if (res) 3093 return -EIO; 3094 3095 return 0; 3096 } 3097 3098 /* 3099 * Send a SYNCHRONIZE CACHE instruction down to the device through 3100 * the normal SCSI command structure. Wait for the command to 3101 * complete. 3102 */ 3103 static void sd_shutdown(struct device *dev) 3104 { 3105 struct scsi_disk *sdkp = scsi_disk_get_from_dev(dev); 3106 3107 if (!sdkp) 3108 return; /* this can happen */ 3109 3110 if (pm_runtime_suspended(dev)) 3111 goto exit; 3112 3113 if (sdkp->WCE && sdkp->media_present) { 3114 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3115 sd_sync_cache(sdkp); 3116 } 3117 3118 if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) { 3119 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3120 sd_start_stop_device(sdkp, 0); 3121 } 3122 3123 exit: 3124 scsi_disk_put(sdkp); 3125 } 3126 3127 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors) 3128 { 3129 struct scsi_disk *sdkp = scsi_disk_get_from_dev(dev); 3130 int ret = 0; 3131 3132 if (!sdkp) 3133 return 0; /* this can happen */ 3134 3135 if (sdkp->WCE && sdkp->media_present) { 3136 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3137 ret = sd_sync_cache(sdkp); 3138 if (ret) { 3139 /* ignore OFFLINE device */ 3140 if (ret == -ENODEV) 3141 ret = 0; 3142 goto done; 3143 } 3144 } 3145 3146 if (sdkp->device->manage_start_stop) { 3147 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3148 /* an error is not worth aborting a system sleep */ 3149 ret = sd_start_stop_device(sdkp, 0); 3150 if (ignore_stop_errors) 3151 ret = 0; 3152 } 3153 3154 done: 3155 scsi_disk_put(sdkp); 3156 return ret; 3157 } 3158 3159 static int sd_suspend_system(struct device *dev) 3160 { 3161 return sd_suspend_common(dev, true); 3162 } 3163 3164 static int sd_suspend_runtime(struct device *dev) 3165 { 3166 return sd_suspend_common(dev, false); 3167 } 3168 3169 static int sd_resume(struct device *dev) 3170 { 3171 struct scsi_disk *sdkp = scsi_disk_get_from_dev(dev); 3172 int ret = 0; 3173 3174 if (!sdkp->device->manage_start_stop) 3175 goto done; 3176 3177 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n"); 3178 ret = sd_start_stop_device(sdkp, 1); 3179 3180 done: 3181 scsi_disk_put(sdkp); 3182 return ret; 3183 } 3184 3185 /** 3186 * init_sd - entry point for this driver (both when built in or when 3187 * a module). 3188 * 3189 * Note: this function registers this driver with the scsi mid-level. 3190 **/ 3191 static int __init init_sd(void) 3192 { 3193 int majors = 0, i, err; 3194 3195 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n")); 3196 3197 for (i = 0; i < SD_MAJORS; i++) { 3198 if (register_blkdev(sd_major(i), "sd") != 0) 3199 continue; 3200 majors++; 3201 blk_register_region(sd_major(i), SD_MINORS, NULL, 3202 sd_default_probe, NULL, NULL); 3203 } 3204 3205 if (!majors) 3206 return -ENODEV; 3207 3208 err = class_register(&sd_disk_class); 3209 if (err) 3210 goto err_out; 3211 3212 sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE, 3213 0, 0, NULL); 3214 if (!sd_cdb_cache) { 3215 printk(KERN_ERR "sd: can't init extended cdb cache\n"); 3216 goto err_out_class; 3217 } 3218 3219 sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache); 3220 if (!sd_cdb_pool) { 3221 printk(KERN_ERR "sd: can't init extended cdb pool\n"); 3222 goto err_out_cache; 3223 } 3224 3225 err = scsi_register_driver(&sd_template.gendrv); 3226 if (err) 3227 goto err_out_driver; 3228 3229 return 0; 3230 3231 err_out_driver: 3232 mempool_destroy(sd_cdb_pool); 3233 3234 err_out_cache: 3235 kmem_cache_destroy(sd_cdb_cache); 3236 3237 err_out_class: 3238 class_unregister(&sd_disk_class); 3239 err_out: 3240 for (i = 0; i < SD_MAJORS; i++) 3241 unregister_blkdev(sd_major(i), "sd"); 3242 return err; 3243 } 3244 3245 /** 3246 * exit_sd - exit point for this driver (when it is a module). 3247 * 3248 * Note: this function unregisters this driver from the scsi mid-level. 3249 **/ 3250 static void __exit exit_sd(void) 3251 { 3252 int i; 3253 3254 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n")); 3255 3256 scsi_unregister_driver(&sd_template.gendrv); 3257 mempool_destroy(sd_cdb_pool); 3258 kmem_cache_destroy(sd_cdb_cache); 3259 3260 class_unregister(&sd_disk_class); 3261 3262 for (i = 0; i < SD_MAJORS; i++) { 3263 blk_unregister_region(sd_major(i), SD_MINORS); 3264 unregister_blkdev(sd_major(i), "sd"); 3265 } 3266 } 3267 3268 module_init(init_sd); 3269 module_exit(exit_sd); 3270 3271 static void sd_print_sense_hdr(struct scsi_disk *sdkp, 3272 struct scsi_sense_hdr *sshdr) 3273 { 3274 sd_printk(KERN_INFO, sdkp, " "); 3275 scsi_show_sense_hdr(sshdr); 3276 sd_printk(KERN_INFO, sdkp, " "); 3277 scsi_show_extd_sense(sshdr->asc, sshdr->ascq); 3278 } 3279 3280 static void sd_print_result(struct scsi_disk *sdkp, int result) 3281 { 3282 sd_printk(KERN_INFO, sdkp, " "); 3283 scsi_show_result(result); 3284 } 3285 3286