1 /* 2 * sd.c Copyright (C) 1992 Drew Eckhardt 3 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale 4 * 5 * Linux scsi disk driver 6 * Initial versions: Drew Eckhardt 7 * Subsequent revisions: Eric Youngdale 8 * Modification history: 9 * - Drew Eckhardt <drew@colorado.edu> original 10 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 11 * outstanding request, and other enhancements. 12 * Support loadable low-level scsi drivers. 13 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 14 * eight major numbers. 15 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs. 16 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 17 * sd_init and cleanups. 18 * - Alex Davis <letmein@erols.com> Fix problem where partition info 19 * not being read in sd_open. Fix problem where removable media 20 * could be ejected after sd_open. 21 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x 22 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 23 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 24 * Support 32k/1M disks. 25 * 26 * Logging policy (needs CONFIG_SCSI_LOGGING defined): 27 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2 28 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1 29 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1 30 * - entering other commands: SCSI_LOG_HLQUEUE level 3 31 * Note: when the logging level is set by the user, it must be greater 32 * than the level indicated above to trigger output. 33 */ 34 35 #include <linux/module.h> 36 #include <linux/fs.h> 37 #include <linux/kernel.h> 38 #include <linux/mm.h> 39 #include <linux/bio.h> 40 #include <linux/genhd.h> 41 #include <linux/hdreg.h> 42 #include <linux/errno.h> 43 #include <linux/idr.h> 44 #include <linux/interrupt.h> 45 #include <linux/init.h> 46 #include <linux/blkdev.h> 47 #include <linux/blkpg.h> 48 #include <linux/delay.h> 49 #include <linux/mutex.h> 50 #include <linux/string_helpers.h> 51 #include <linux/async.h> 52 #include <linux/slab.h> 53 #include <linux/pm_runtime.h> 54 #include <linux/pr.h> 55 #include <linux/t10-pi.h> 56 #include <asm/uaccess.h> 57 #include <asm/unaligned.h> 58 59 #include <scsi/scsi.h> 60 #include <scsi/scsi_cmnd.h> 61 #include <scsi/scsi_dbg.h> 62 #include <scsi/scsi_device.h> 63 #include <scsi/scsi_driver.h> 64 #include <scsi/scsi_eh.h> 65 #include <scsi/scsi_host.h> 66 #include <scsi/scsi_ioctl.h> 67 #include <scsi/scsicam.h> 68 69 #include "sd.h" 70 #include "scsi_priv.h" 71 #include "scsi_logging.h" 72 73 MODULE_AUTHOR("Eric Youngdale"); 74 MODULE_DESCRIPTION("SCSI disk (sd) driver"); 75 MODULE_LICENSE("GPL"); 76 77 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR); 78 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR); 79 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR); 80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR); 81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR); 82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR); 83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR); 84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR); 85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR); 86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR); 87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR); 88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR); 89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR); 90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR); 91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR); 92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR); 93 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK); 94 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD); 95 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC); 96 97 #if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT) 98 #define SD_MINORS 16 99 #else 100 #define SD_MINORS 0 101 #endif 102 103 static void sd_config_discard(struct scsi_disk *, unsigned int); 104 static void sd_config_write_same(struct scsi_disk *); 105 static int sd_revalidate_disk(struct gendisk *); 106 static void sd_unlock_native_capacity(struct gendisk *disk); 107 static int sd_probe(struct device *); 108 static int sd_remove(struct device *); 109 static void sd_shutdown(struct device *); 110 static int sd_suspend_system(struct device *); 111 static int sd_suspend_runtime(struct device *); 112 static int sd_resume(struct device *); 113 static void sd_rescan(struct device *); 114 static int sd_init_command(struct scsi_cmnd *SCpnt); 115 static void sd_uninit_command(struct scsi_cmnd *SCpnt); 116 static int sd_done(struct scsi_cmnd *); 117 static int sd_eh_action(struct scsi_cmnd *, int); 118 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer); 119 static void scsi_disk_release(struct device *cdev); 120 static void sd_print_sense_hdr(struct scsi_disk *, struct scsi_sense_hdr *); 121 static void sd_print_result(const struct scsi_disk *, const char *, int); 122 123 static DEFINE_SPINLOCK(sd_index_lock); 124 static DEFINE_IDA(sd_index_ida); 125 126 /* This semaphore is used to mediate the 0->1 reference get in the 127 * face of object destruction (i.e. we can't allow a get on an 128 * object after last put) */ 129 static DEFINE_MUTEX(sd_ref_mutex); 130 131 static struct kmem_cache *sd_cdb_cache; 132 static mempool_t *sd_cdb_pool; 133 134 static const char *sd_cache_types[] = { 135 "write through", "none", "write back", 136 "write back, no read (daft)" 137 }; 138 139 static void sd_set_flush_flag(struct scsi_disk *sdkp) 140 { 141 bool wc = false, fua = false; 142 143 if (sdkp->WCE) { 144 wc = true; 145 if (sdkp->DPOFUA) 146 fua = true; 147 } 148 149 blk_queue_write_cache(sdkp->disk->queue, wc, fua); 150 } 151 152 static ssize_t 153 cache_type_store(struct device *dev, struct device_attribute *attr, 154 const char *buf, size_t count) 155 { 156 int i, ct = -1, rcd, wce, sp; 157 struct scsi_disk *sdkp = to_scsi_disk(dev); 158 struct scsi_device *sdp = sdkp->device; 159 char buffer[64]; 160 char *buffer_data; 161 struct scsi_mode_data data; 162 struct scsi_sense_hdr sshdr; 163 static const char temp[] = "temporary "; 164 int len; 165 166 if (sdp->type != TYPE_DISK) 167 /* no cache control on RBC devices; theoretically they 168 * can do it, but there's probably so many exceptions 169 * it's not worth the risk */ 170 return -EINVAL; 171 172 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) { 173 buf += sizeof(temp) - 1; 174 sdkp->cache_override = 1; 175 } else { 176 sdkp->cache_override = 0; 177 } 178 179 for (i = 0; i < ARRAY_SIZE(sd_cache_types); i++) { 180 len = strlen(sd_cache_types[i]); 181 if (strncmp(sd_cache_types[i], buf, len) == 0 && 182 buf[len] == '\n') { 183 ct = i; 184 break; 185 } 186 } 187 if (ct < 0) 188 return -EINVAL; 189 rcd = ct & 0x01 ? 1 : 0; 190 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0; 191 192 if (sdkp->cache_override) { 193 sdkp->WCE = wce; 194 sdkp->RCD = rcd; 195 sd_set_flush_flag(sdkp); 196 return count; 197 } 198 199 if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT, 200 SD_MAX_RETRIES, &data, NULL)) 201 return -EINVAL; 202 len = min_t(size_t, sizeof(buffer), data.length - data.header_length - 203 data.block_descriptor_length); 204 buffer_data = buffer + data.header_length + 205 data.block_descriptor_length; 206 buffer_data[2] &= ~0x05; 207 buffer_data[2] |= wce << 2 | rcd; 208 sp = buffer_data[0] & 0x80 ? 1 : 0; 209 buffer_data[0] &= ~0x80; 210 211 if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT, 212 SD_MAX_RETRIES, &data, &sshdr)) { 213 if (scsi_sense_valid(&sshdr)) 214 sd_print_sense_hdr(sdkp, &sshdr); 215 return -EINVAL; 216 } 217 revalidate_disk(sdkp->disk); 218 return count; 219 } 220 221 static ssize_t 222 manage_start_stop_show(struct device *dev, struct device_attribute *attr, 223 char *buf) 224 { 225 struct scsi_disk *sdkp = to_scsi_disk(dev); 226 struct scsi_device *sdp = sdkp->device; 227 228 return snprintf(buf, 20, "%u\n", sdp->manage_start_stop); 229 } 230 231 static ssize_t 232 manage_start_stop_store(struct device *dev, struct device_attribute *attr, 233 const char *buf, size_t count) 234 { 235 struct scsi_disk *sdkp = to_scsi_disk(dev); 236 struct scsi_device *sdp = sdkp->device; 237 238 if (!capable(CAP_SYS_ADMIN)) 239 return -EACCES; 240 241 sdp->manage_start_stop = simple_strtoul(buf, NULL, 10); 242 243 return count; 244 } 245 static DEVICE_ATTR_RW(manage_start_stop); 246 247 static ssize_t 248 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf) 249 { 250 struct scsi_disk *sdkp = to_scsi_disk(dev); 251 252 return snprintf(buf, 40, "%d\n", sdkp->device->allow_restart); 253 } 254 255 static ssize_t 256 allow_restart_store(struct device *dev, struct device_attribute *attr, 257 const char *buf, size_t count) 258 { 259 struct scsi_disk *sdkp = to_scsi_disk(dev); 260 struct scsi_device *sdp = sdkp->device; 261 262 if (!capable(CAP_SYS_ADMIN)) 263 return -EACCES; 264 265 if (sdp->type != TYPE_DISK) 266 return -EINVAL; 267 268 sdp->allow_restart = simple_strtoul(buf, NULL, 10); 269 270 return count; 271 } 272 static DEVICE_ATTR_RW(allow_restart); 273 274 static ssize_t 275 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf) 276 { 277 struct scsi_disk *sdkp = to_scsi_disk(dev); 278 int ct = sdkp->RCD + 2*sdkp->WCE; 279 280 return snprintf(buf, 40, "%s\n", sd_cache_types[ct]); 281 } 282 static DEVICE_ATTR_RW(cache_type); 283 284 static ssize_t 285 FUA_show(struct device *dev, struct device_attribute *attr, char *buf) 286 { 287 struct scsi_disk *sdkp = to_scsi_disk(dev); 288 289 return snprintf(buf, 20, "%u\n", sdkp->DPOFUA); 290 } 291 static DEVICE_ATTR_RO(FUA); 292 293 static ssize_t 294 protection_type_show(struct device *dev, struct device_attribute *attr, 295 char *buf) 296 { 297 struct scsi_disk *sdkp = to_scsi_disk(dev); 298 299 return snprintf(buf, 20, "%u\n", sdkp->protection_type); 300 } 301 302 static ssize_t 303 protection_type_store(struct device *dev, struct device_attribute *attr, 304 const char *buf, size_t count) 305 { 306 struct scsi_disk *sdkp = to_scsi_disk(dev); 307 unsigned int val; 308 int err; 309 310 if (!capable(CAP_SYS_ADMIN)) 311 return -EACCES; 312 313 err = kstrtouint(buf, 10, &val); 314 315 if (err) 316 return err; 317 318 if (val >= 0 && val <= T10_PI_TYPE3_PROTECTION) 319 sdkp->protection_type = val; 320 321 return count; 322 } 323 static DEVICE_ATTR_RW(protection_type); 324 325 static ssize_t 326 protection_mode_show(struct device *dev, struct device_attribute *attr, 327 char *buf) 328 { 329 struct scsi_disk *sdkp = to_scsi_disk(dev); 330 struct scsi_device *sdp = sdkp->device; 331 unsigned int dif, dix; 332 333 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type); 334 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type); 335 336 if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) { 337 dif = 0; 338 dix = 1; 339 } 340 341 if (!dif && !dix) 342 return snprintf(buf, 20, "none\n"); 343 344 return snprintf(buf, 20, "%s%u\n", dix ? "dix" : "dif", dif); 345 } 346 static DEVICE_ATTR_RO(protection_mode); 347 348 static ssize_t 349 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf) 350 { 351 struct scsi_disk *sdkp = to_scsi_disk(dev); 352 353 return snprintf(buf, 20, "%u\n", sdkp->ATO); 354 } 355 static DEVICE_ATTR_RO(app_tag_own); 356 357 static ssize_t 358 thin_provisioning_show(struct device *dev, struct device_attribute *attr, 359 char *buf) 360 { 361 struct scsi_disk *sdkp = to_scsi_disk(dev); 362 363 return snprintf(buf, 20, "%u\n", sdkp->lbpme); 364 } 365 static DEVICE_ATTR_RO(thin_provisioning); 366 367 static const char *lbp_mode[] = { 368 [SD_LBP_FULL] = "full", 369 [SD_LBP_UNMAP] = "unmap", 370 [SD_LBP_WS16] = "writesame_16", 371 [SD_LBP_WS10] = "writesame_10", 372 [SD_LBP_ZERO] = "writesame_zero", 373 [SD_LBP_DISABLE] = "disabled", 374 }; 375 376 static ssize_t 377 provisioning_mode_show(struct device *dev, struct device_attribute *attr, 378 char *buf) 379 { 380 struct scsi_disk *sdkp = to_scsi_disk(dev); 381 382 return snprintf(buf, 20, "%s\n", lbp_mode[sdkp->provisioning_mode]); 383 } 384 385 static ssize_t 386 provisioning_mode_store(struct device *dev, struct device_attribute *attr, 387 const char *buf, size_t count) 388 { 389 struct scsi_disk *sdkp = to_scsi_disk(dev); 390 struct scsi_device *sdp = sdkp->device; 391 392 if (!capable(CAP_SYS_ADMIN)) 393 return -EACCES; 394 395 if (sdp->type != TYPE_DISK) 396 return -EINVAL; 397 398 if (!strncmp(buf, lbp_mode[SD_LBP_UNMAP], 20)) 399 sd_config_discard(sdkp, SD_LBP_UNMAP); 400 else if (!strncmp(buf, lbp_mode[SD_LBP_WS16], 20)) 401 sd_config_discard(sdkp, SD_LBP_WS16); 402 else if (!strncmp(buf, lbp_mode[SD_LBP_WS10], 20)) 403 sd_config_discard(sdkp, SD_LBP_WS10); 404 else if (!strncmp(buf, lbp_mode[SD_LBP_ZERO], 20)) 405 sd_config_discard(sdkp, SD_LBP_ZERO); 406 else if (!strncmp(buf, lbp_mode[SD_LBP_DISABLE], 20)) 407 sd_config_discard(sdkp, SD_LBP_DISABLE); 408 else 409 return -EINVAL; 410 411 return count; 412 } 413 static DEVICE_ATTR_RW(provisioning_mode); 414 415 static ssize_t 416 max_medium_access_timeouts_show(struct device *dev, 417 struct device_attribute *attr, char *buf) 418 { 419 struct scsi_disk *sdkp = to_scsi_disk(dev); 420 421 return snprintf(buf, 20, "%u\n", sdkp->max_medium_access_timeouts); 422 } 423 424 static ssize_t 425 max_medium_access_timeouts_store(struct device *dev, 426 struct device_attribute *attr, const char *buf, 427 size_t count) 428 { 429 struct scsi_disk *sdkp = to_scsi_disk(dev); 430 int err; 431 432 if (!capable(CAP_SYS_ADMIN)) 433 return -EACCES; 434 435 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts); 436 437 return err ? err : count; 438 } 439 static DEVICE_ATTR_RW(max_medium_access_timeouts); 440 441 static ssize_t 442 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr, 443 char *buf) 444 { 445 struct scsi_disk *sdkp = to_scsi_disk(dev); 446 447 return snprintf(buf, 20, "%u\n", sdkp->max_ws_blocks); 448 } 449 450 static ssize_t 451 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr, 452 const char *buf, size_t count) 453 { 454 struct scsi_disk *sdkp = to_scsi_disk(dev); 455 struct scsi_device *sdp = sdkp->device; 456 unsigned long max; 457 int err; 458 459 if (!capable(CAP_SYS_ADMIN)) 460 return -EACCES; 461 462 if (sdp->type != TYPE_DISK) 463 return -EINVAL; 464 465 err = kstrtoul(buf, 10, &max); 466 467 if (err) 468 return err; 469 470 if (max == 0) 471 sdp->no_write_same = 1; 472 else if (max <= SD_MAX_WS16_BLOCKS) { 473 sdp->no_write_same = 0; 474 sdkp->max_ws_blocks = max; 475 } 476 477 sd_config_write_same(sdkp); 478 479 return count; 480 } 481 static DEVICE_ATTR_RW(max_write_same_blocks); 482 483 static struct attribute *sd_disk_attrs[] = { 484 &dev_attr_cache_type.attr, 485 &dev_attr_FUA.attr, 486 &dev_attr_allow_restart.attr, 487 &dev_attr_manage_start_stop.attr, 488 &dev_attr_protection_type.attr, 489 &dev_attr_protection_mode.attr, 490 &dev_attr_app_tag_own.attr, 491 &dev_attr_thin_provisioning.attr, 492 &dev_attr_provisioning_mode.attr, 493 &dev_attr_max_write_same_blocks.attr, 494 &dev_attr_max_medium_access_timeouts.attr, 495 NULL, 496 }; 497 ATTRIBUTE_GROUPS(sd_disk); 498 499 static struct class sd_disk_class = { 500 .name = "scsi_disk", 501 .owner = THIS_MODULE, 502 .dev_release = scsi_disk_release, 503 .dev_groups = sd_disk_groups, 504 }; 505 506 static const struct dev_pm_ops sd_pm_ops = { 507 .suspend = sd_suspend_system, 508 .resume = sd_resume, 509 .poweroff = sd_suspend_system, 510 .restore = sd_resume, 511 .runtime_suspend = sd_suspend_runtime, 512 .runtime_resume = sd_resume, 513 }; 514 515 static struct scsi_driver sd_template = { 516 .gendrv = { 517 .name = "sd", 518 .owner = THIS_MODULE, 519 .probe = sd_probe, 520 .remove = sd_remove, 521 .shutdown = sd_shutdown, 522 .pm = &sd_pm_ops, 523 }, 524 .rescan = sd_rescan, 525 .init_command = sd_init_command, 526 .uninit_command = sd_uninit_command, 527 .done = sd_done, 528 .eh_action = sd_eh_action, 529 }; 530 531 /* 532 * Dummy kobj_map->probe function. 533 * The default ->probe function will call modprobe, which is 534 * pointless as this module is already loaded. 535 */ 536 static struct kobject *sd_default_probe(dev_t devt, int *partno, void *data) 537 { 538 return NULL; 539 } 540 541 /* 542 * Device no to disk mapping: 543 * 544 * major disc2 disc p1 545 * |............|.............|....|....| <- dev_t 546 * 31 20 19 8 7 4 3 0 547 * 548 * Inside a major, we have 16k disks, however mapped non- 549 * contiguously. The first 16 disks are for major0, the next 550 * ones with major1, ... Disk 256 is for major0 again, disk 272 551 * for major1, ... 552 * As we stay compatible with our numbering scheme, we can reuse 553 * the well-know SCSI majors 8, 65--71, 136--143. 554 */ 555 static int sd_major(int major_idx) 556 { 557 switch (major_idx) { 558 case 0: 559 return SCSI_DISK0_MAJOR; 560 case 1 ... 7: 561 return SCSI_DISK1_MAJOR + major_idx - 1; 562 case 8 ... 15: 563 return SCSI_DISK8_MAJOR + major_idx - 8; 564 default: 565 BUG(); 566 return 0; /* shut up gcc */ 567 } 568 } 569 570 static struct scsi_disk *scsi_disk_get(struct gendisk *disk) 571 { 572 struct scsi_disk *sdkp = NULL; 573 574 mutex_lock(&sd_ref_mutex); 575 576 if (disk->private_data) { 577 sdkp = scsi_disk(disk); 578 if (scsi_device_get(sdkp->device) == 0) 579 get_device(&sdkp->dev); 580 else 581 sdkp = NULL; 582 } 583 mutex_unlock(&sd_ref_mutex); 584 return sdkp; 585 } 586 587 static void scsi_disk_put(struct scsi_disk *sdkp) 588 { 589 struct scsi_device *sdev = sdkp->device; 590 591 mutex_lock(&sd_ref_mutex); 592 put_device(&sdkp->dev); 593 scsi_device_put(sdev); 594 mutex_unlock(&sd_ref_mutex); 595 } 596 597 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd, 598 unsigned int dix, unsigned int dif) 599 { 600 struct bio *bio = scmd->request->bio; 601 unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif); 602 unsigned int protect = 0; 603 604 if (dix) { /* DIX Type 0, 1, 2, 3 */ 605 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM)) 606 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM; 607 608 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 609 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK; 610 } 611 612 if (dif != T10_PI_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */ 613 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT; 614 615 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 616 scmd->prot_flags |= SCSI_PROT_REF_CHECK; 617 } 618 619 if (dif) { /* DIX/DIF Type 1, 2, 3 */ 620 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI; 621 622 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK)) 623 protect = 3 << 5; /* Disable target PI checking */ 624 else 625 protect = 1 << 5; /* Enable target PI checking */ 626 } 627 628 scsi_set_prot_op(scmd, prot_op); 629 scsi_set_prot_type(scmd, dif); 630 scmd->prot_flags &= sd_prot_flag_mask(prot_op); 631 632 return protect; 633 } 634 635 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode) 636 { 637 struct request_queue *q = sdkp->disk->queue; 638 unsigned int logical_block_size = sdkp->device->sector_size; 639 unsigned int max_blocks = 0; 640 641 q->limits.discard_zeroes_data = 0; 642 643 /* 644 * When LBPRZ is reported, discard alignment and granularity 645 * must be fixed to the logical block size. Otherwise the block 646 * layer will drop misaligned portions of the request which can 647 * lead to data corruption. If LBPRZ is not set, we honor the 648 * device preference. 649 */ 650 if (sdkp->lbprz) { 651 q->limits.discard_alignment = 0; 652 q->limits.discard_granularity = logical_block_size; 653 } else { 654 q->limits.discard_alignment = sdkp->unmap_alignment * 655 logical_block_size; 656 q->limits.discard_granularity = 657 max(sdkp->physical_block_size, 658 sdkp->unmap_granularity * logical_block_size); 659 } 660 661 sdkp->provisioning_mode = mode; 662 663 switch (mode) { 664 665 case SD_LBP_DISABLE: 666 blk_queue_max_discard_sectors(q, 0); 667 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q); 668 return; 669 670 case SD_LBP_UNMAP: 671 max_blocks = min_not_zero(sdkp->max_unmap_blocks, 672 (u32)SD_MAX_WS16_BLOCKS); 673 break; 674 675 case SD_LBP_WS16: 676 max_blocks = min_not_zero(sdkp->max_ws_blocks, 677 (u32)SD_MAX_WS16_BLOCKS); 678 q->limits.discard_zeroes_data = sdkp->lbprz; 679 break; 680 681 case SD_LBP_WS10: 682 max_blocks = min_not_zero(sdkp->max_ws_blocks, 683 (u32)SD_MAX_WS10_BLOCKS); 684 q->limits.discard_zeroes_data = sdkp->lbprz; 685 break; 686 687 case SD_LBP_ZERO: 688 max_blocks = min_not_zero(sdkp->max_ws_blocks, 689 (u32)SD_MAX_WS10_BLOCKS); 690 q->limits.discard_zeroes_data = 1; 691 break; 692 } 693 694 blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9)); 695 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q); 696 } 697 698 /** 699 * sd_setup_discard_cmnd - unmap blocks on thinly provisioned device 700 * @sdp: scsi device to operate one 701 * @rq: Request to prepare 702 * 703 * Will issue either UNMAP or WRITE SAME(16) depending on preference 704 * indicated by target device. 705 **/ 706 static int sd_setup_discard_cmnd(struct scsi_cmnd *cmd) 707 { 708 struct request *rq = cmd->request; 709 struct scsi_device *sdp = cmd->device; 710 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 711 sector_t sector = blk_rq_pos(rq); 712 unsigned int nr_sectors = blk_rq_sectors(rq); 713 unsigned int nr_bytes = blk_rq_bytes(rq); 714 unsigned int len; 715 int ret; 716 char *buf; 717 struct page *page; 718 719 sector >>= ilog2(sdp->sector_size) - 9; 720 nr_sectors >>= ilog2(sdp->sector_size) - 9; 721 722 page = alloc_page(GFP_ATOMIC | __GFP_ZERO); 723 if (!page) 724 return BLKPREP_DEFER; 725 726 switch (sdkp->provisioning_mode) { 727 case SD_LBP_UNMAP: 728 buf = page_address(page); 729 730 cmd->cmd_len = 10; 731 cmd->cmnd[0] = UNMAP; 732 cmd->cmnd[8] = 24; 733 734 put_unaligned_be16(6 + 16, &buf[0]); 735 put_unaligned_be16(16, &buf[2]); 736 put_unaligned_be64(sector, &buf[8]); 737 put_unaligned_be32(nr_sectors, &buf[16]); 738 739 len = 24; 740 break; 741 742 case SD_LBP_WS16: 743 cmd->cmd_len = 16; 744 cmd->cmnd[0] = WRITE_SAME_16; 745 cmd->cmnd[1] = 0x8; /* UNMAP */ 746 put_unaligned_be64(sector, &cmd->cmnd[2]); 747 put_unaligned_be32(nr_sectors, &cmd->cmnd[10]); 748 749 len = sdkp->device->sector_size; 750 break; 751 752 case SD_LBP_WS10: 753 case SD_LBP_ZERO: 754 cmd->cmd_len = 10; 755 cmd->cmnd[0] = WRITE_SAME; 756 if (sdkp->provisioning_mode == SD_LBP_WS10) 757 cmd->cmnd[1] = 0x8; /* UNMAP */ 758 put_unaligned_be32(sector, &cmd->cmnd[2]); 759 put_unaligned_be16(nr_sectors, &cmd->cmnd[7]); 760 761 len = sdkp->device->sector_size; 762 break; 763 764 default: 765 ret = BLKPREP_INVALID; 766 goto out; 767 } 768 769 rq->completion_data = page; 770 rq->timeout = SD_TIMEOUT; 771 772 cmd->transfersize = len; 773 cmd->allowed = SD_MAX_RETRIES; 774 775 /* 776 * Initially __data_len is set to the amount of data that needs to be 777 * transferred to the target. This amount depends on whether WRITE SAME 778 * or UNMAP is being used. After the scatterlist has been mapped by 779 * scsi_init_io() we set __data_len to the size of the area to be 780 * discarded on disk. This allows us to report completion on the full 781 * amount of blocks described by the request. 782 */ 783 blk_add_request_payload(rq, page, 0, len); 784 ret = scsi_init_io(cmd); 785 rq->__data_len = nr_bytes; 786 787 out: 788 if (ret != BLKPREP_OK) 789 __free_page(page); 790 return ret; 791 } 792 793 static void sd_config_write_same(struct scsi_disk *sdkp) 794 { 795 struct request_queue *q = sdkp->disk->queue; 796 unsigned int logical_block_size = sdkp->device->sector_size; 797 798 if (sdkp->device->no_write_same) { 799 sdkp->max_ws_blocks = 0; 800 goto out; 801 } 802 803 /* Some devices can not handle block counts above 0xffff despite 804 * supporting WRITE SAME(16). Consequently we default to 64k 805 * blocks per I/O unless the device explicitly advertises a 806 * bigger limit. 807 */ 808 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS) 809 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 810 (u32)SD_MAX_WS16_BLOCKS); 811 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes) 812 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 813 (u32)SD_MAX_WS10_BLOCKS); 814 else { 815 sdkp->device->no_write_same = 1; 816 sdkp->max_ws_blocks = 0; 817 } 818 819 out: 820 blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks * 821 (logical_block_size >> 9)); 822 } 823 824 /** 825 * sd_setup_write_same_cmnd - write the same data to multiple blocks 826 * @cmd: command to prepare 827 * 828 * Will issue either WRITE SAME(10) or WRITE SAME(16) depending on 829 * preference indicated by target device. 830 **/ 831 static int sd_setup_write_same_cmnd(struct scsi_cmnd *cmd) 832 { 833 struct request *rq = cmd->request; 834 struct scsi_device *sdp = cmd->device; 835 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 836 struct bio *bio = rq->bio; 837 sector_t sector = blk_rq_pos(rq); 838 unsigned int nr_sectors = blk_rq_sectors(rq); 839 unsigned int nr_bytes = blk_rq_bytes(rq); 840 int ret; 841 842 if (sdkp->device->no_write_same) 843 return BLKPREP_INVALID; 844 845 BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size); 846 847 sector >>= ilog2(sdp->sector_size) - 9; 848 nr_sectors >>= ilog2(sdp->sector_size) - 9; 849 850 rq->timeout = SD_WRITE_SAME_TIMEOUT; 851 852 if (sdkp->ws16 || sector > 0xffffffff || nr_sectors > 0xffff) { 853 cmd->cmd_len = 16; 854 cmd->cmnd[0] = WRITE_SAME_16; 855 put_unaligned_be64(sector, &cmd->cmnd[2]); 856 put_unaligned_be32(nr_sectors, &cmd->cmnd[10]); 857 } else { 858 cmd->cmd_len = 10; 859 cmd->cmnd[0] = WRITE_SAME; 860 put_unaligned_be32(sector, &cmd->cmnd[2]); 861 put_unaligned_be16(nr_sectors, &cmd->cmnd[7]); 862 } 863 864 cmd->transfersize = sdp->sector_size; 865 cmd->allowed = SD_MAX_RETRIES; 866 867 /* 868 * For WRITE_SAME the data transferred in the DATA IN buffer is 869 * different from the amount of data actually written to the target. 870 * 871 * We set up __data_len to the amount of data transferred from the 872 * DATA IN buffer so that blk_rq_map_sg set up the proper S/G list 873 * to transfer a single sector of data first, but then reset it to 874 * the amount of data to be written right after so that the I/O path 875 * knows how much to actually write. 876 */ 877 rq->__data_len = sdp->sector_size; 878 ret = scsi_init_io(cmd); 879 rq->__data_len = nr_bytes; 880 return ret; 881 } 882 883 static int sd_setup_flush_cmnd(struct scsi_cmnd *cmd) 884 { 885 struct request *rq = cmd->request; 886 887 /* flush requests don't perform I/O, zero the S/G table */ 888 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 889 890 cmd->cmnd[0] = SYNCHRONIZE_CACHE; 891 cmd->cmd_len = 10; 892 cmd->transfersize = 0; 893 cmd->allowed = SD_MAX_RETRIES; 894 895 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER; 896 return BLKPREP_OK; 897 } 898 899 static int sd_setup_read_write_cmnd(struct scsi_cmnd *SCpnt) 900 { 901 struct request *rq = SCpnt->request; 902 struct scsi_device *sdp = SCpnt->device; 903 struct gendisk *disk = rq->rq_disk; 904 struct scsi_disk *sdkp; 905 sector_t block = blk_rq_pos(rq); 906 sector_t threshold; 907 unsigned int this_count = blk_rq_sectors(rq); 908 unsigned int dif, dix; 909 int ret; 910 unsigned char protect; 911 912 ret = scsi_init_io(SCpnt); 913 if (ret != BLKPREP_OK) 914 goto out; 915 SCpnt = rq->special; 916 sdkp = scsi_disk(disk); 917 918 /* from here on until we're complete, any goto out 919 * is used for a killable error condition */ 920 ret = BLKPREP_KILL; 921 922 SCSI_LOG_HLQUEUE(1, 923 scmd_printk(KERN_INFO, SCpnt, 924 "%s: block=%llu, count=%d\n", 925 __func__, (unsigned long long)block, this_count)); 926 927 if (!sdp || !scsi_device_online(sdp) || 928 block + blk_rq_sectors(rq) > get_capacity(disk)) { 929 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, 930 "Finishing %u sectors\n", 931 blk_rq_sectors(rq))); 932 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, 933 "Retry with 0x%p\n", SCpnt)); 934 goto out; 935 } 936 937 if (sdp->changed) { 938 /* 939 * quietly refuse to do anything to a changed disc until 940 * the changed bit has been reset 941 */ 942 /* printk("SCSI disk has been changed or is not present. Prohibiting further I/O.\n"); */ 943 goto out; 944 } 945 946 /* 947 * Some SD card readers can't handle multi-sector accesses which touch 948 * the last one or two hardware sectors. Split accesses as needed. 949 */ 950 threshold = get_capacity(disk) - SD_LAST_BUGGY_SECTORS * 951 (sdp->sector_size / 512); 952 953 if (unlikely(sdp->last_sector_bug && block + this_count > threshold)) { 954 if (block < threshold) { 955 /* Access up to the threshold but not beyond */ 956 this_count = threshold - block; 957 } else { 958 /* Access only a single hardware sector */ 959 this_count = sdp->sector_size / 512; 960 } 961 } 962 963 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, "block=%llu\n", 964 (unsigned long long)block)); 965 966 /* 967 * If we have a 1K hardware sectorsize, prevent access to single 968 * 512 byte sectors. In theory we could handle this - in fact 969 * the scsi cdrom driver must be able to handle this because 970 * we typically use 1K blocksizes, and cdroms typically have 971 * 2K hardware sectorsizes. Of course, things are simpler 972 * with the cdrom, since it is read-only. For performance 973 * reasons, the filesystems should be able to handle this 974 * and not force the scsi disk driver to use bounce buffers 975 * for this. 976 */ 977 if (sdp->sector_size == 1024) { 978 if ((block & 1) || (blk_rq_sectors(rq) & 1)) { 979 scmd_printk(KERN_ERR, SCpnt, 980 "Bad block number requested\n"); 981 goto out; 982 } else { 983 block = block >> 1; 984 this_count = this_count >> 1; 985 } 986 } 987 if (sdp->sector_size == 2048) { 988 if ((block & 3) || (blk_rq_sectors(rq) & 3)) { 989 scmd_printk(KERN_ERR, SCpnt, 990 "Bad block number requested\n"); 991 goto out; 992 } else { 993 block = block >> 2; 994 this_count = this_count >> 2; 995 } 996 } 997 if (sdp->sector_size == 4096) { 998 if ((block & 7) || (blk_rq_sectors(rq) & 7)) { 999 scmd_printk(KERN_ERR, SCpnt, 1000 "Bad block number requested\n"); 1001 goto out; 1002 } else { 1003 block = block >> 3; 1004 this_count = this_count >> 3; 1005 } 1006 } 1007 if (rq_data_dir(rq) == WRITE) { 1008 SCpnt->cmnd[0] = WRITE_6; 1009 1010 if (blk_integrity_rq(rq)) 1011 sd_dif_prepare(SCpnt); 1012 1013 } else if (rq_data_dir(rq) == READ) { 1014 SCpnt->cmnd[0] = READ_6; 1015 } else { 1016 scmd_printk(KERN_ERR, SCpnt, "Unknown command %llu,%llx\n", 1017 req_op(rq), (unsigned long long) rq->cmd_flags); 1018 goto out; 1019 } 1020 1021 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, 1022 "%s %d/%u 512 byte blocks.\n", 1023 (rq_data_dir(rq) == WRITE) ? 1024 "writing" : "reading", this_count, 1025 blk_rq_sectors(rq))); 1026 1027 dix = scsi_prot_sg_count(SCpnt); 1028 dif = scsi_host_dif_capable(SCpnt->device->host, sdkp->protection_type); 1029 1030 if (dif || dix) 1031 protect = sd_setup_protect_cmnd(SCpnt, dix, dif); 1032 else 1033 protect = 0; 1034 1035 if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) { 1036 SCpnt->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC); 1037 1038 if (unlikely(SCpnt->cmnd == NULL)) { 1039 ret = BLKPREP_DEFER; 1040 goto out; 1041 } 1042 1043 SCpnt->cmd_len = SD_EXT_CDB_SIZE; 1044 memset(SCpnt->cmnd, 0, SCpnt->cmd_len); 1045 SCpnt->cmnd[0] = VARIABLE_LENGTH_CMD; 1046 SCpnt->cmnd[7] = 0x18; 1047 SCpnt->cmnd[9] = (rq_data_dir(rq) == READ) ? READ_32 : WRITE_32; 1048 SCpnt->cmnd[10] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0); 1049 1050 /* LBA */ 1051 SCpnt->cmnd[12] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0; 1052 SCpnt->cmnd[13] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0; 1053 SCpnt->cmnd[14] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0; 1054 SCpnt->cmnd[15] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0; 1055 SCpnt->cmnd[16] = (unsigned char) (block >> 24) & 0xff; 1056 SCpnt->cmnd[17] = (unsigned char) (block >> 16) & 0xff; 1057 SCpnt->cmnd[18] = (unsigned char) (block >> 8) & 0xff; 1058 SCpnt->cmnd[19] = (unsigned char) block & 0xff; 1059 1060 /* Expected Indirect LBA */ 1061 SCpnt->cmnd[20] = (unsigned char) (block >> 24) & 0xff; 1062 SCpnt->cmnd[21] = (unsigned char) (block >> 16) & 0xff; 1063 SCpnt->cmnd[22] = (unsigned char) (block >> 8) & 0xff; 1064 SCpnt->cmnd[23] = (unsigned char) block & 0xff; 1065 1066 /* Transfer length */ 1067 SCpnt->cmnd[28] = (unsigned char) (this_count >> 24) & 0xff; 1068 SCpnt->cmnd[29] = (unsigned char) (this_count >> 16) & 0xff; 1069 SCpnt->cmnd[30] = (unsigned char) (this_count >> 8) & 0xff; 1070 SCpnt->cmnd[31] = (unsigned char) this_count & 0xff; 1071 } else if (sdp->use_16_for_rw || (this_count > 0xffff)) { 1072 SCpnt->cmnd[0] += READ_16 - READ_6; 1073 SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0); 1074 SCpnt->cmnd[2] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0; 1075 SCpnt->cmnd[3] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0; 1076 SCpnt->cmnd[4] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0; 1077 SCpnt->cmnd[5] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0; 1078 SCpnt->cmnd[6] = (unsigned char) (block >> 24) & 0xff; 1079 SCpnt->cmnd[7] = (unsigned char) (block >> 16) & 0xff; 1080 SCpnt->cmnd[8] = (unsigned char) (block >> 8) & 0xff; 1081 SCpnt->cmnd[9] = (unsigned char) block & 0xff; 1082 SCpnt->cmnd[10] = (unsigned char) (this_count >> 24) & 0xff; 1083 SCpnt->cmnd[11] = (unsigned char) (this_count >> 16) & 0xff; 1084 SCpnt->cmnd[12] = (unsigned char) (this_count >> 8) & 0xff; 1085 SCpnt->cmnd[13] = (unsigned char) this_count & 0xff; 1086 SCpnt->cmnd[14] = SCpnt->cmnd[15] = 0; 1087 } else if ((this_count > 0xff) || (block > 0x1fffff) || 1088 scsi_device_protection(SCpnt->device) || 1089 SCpnt->device->use_10_for_rw) { 1090 SCpnt->cmnd[0] += READ_10 - READ_6; 1091 SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0); 1092 SCpnt->cmnd[2] = (unsigned char) (block >> 24) & 0xff; 1093 SCpnt->cmnd[3] = (unsigned char) (block >> 16) & 0xff; 1094 SCpnt->cmnd[4] = (unsigned char) (block >> 8) & 0xff; 1095 SCpnt->cmnd[5] = (unsigned char) block & 0xff; 1096 SCpnt->cmnd[6] = SCpnt->cmnd[9] = 0; 1097 SCpnt->cmnd[7] = (unsigned char) (this_count >> 8) & 0xff; 1098 SCpnt->cmnd[8] = (unsigned char) this_count & 0xff; 1099 } else { 1100 if (unlikely(rq->cmd_flags & REQ_FUA)) { 1101 /* 1102 * This happens only if this drive failed 1103 * 10byte rw command with ILLEGAL_REQUEST 1104 * during operation and thus turned off 1105 * use_10_for_rw. 1106 */ 1107 scmd_printk(KERN_ERR, SCpnt, 1108 "FUA write on READ/WRITE(6) drive\n"); 1109 goto out; 1110 } 1111 1112 SCpnt->cmnd[1] |= (unsigned char) ((block >> 16) & 0x1f); 1113 SCpnt->cmnd[2] = (unsigned char) ((block >> 8) & 0xff); 1114 SCpnt->cmnd[3] = (unsigned char) block & 0xff; 1115 SCpnt->cmnd[4] = (unsigned char) this_count; 1116 SCpnt->cmnd[5] = 0; 1117 } 1118 SCpnt->sdb.length = this_count * sdp->sector_size; 1119 1120 /* 1121 * We shouldn't disconnect in the middle of a sector, so with a dumb 1122 * host adapter, it's safe to assume that we can at least transfer 1123 * this many bytes between each connect / disconnect. 1124 */ 1125 SCpnt->transfersize = sdp->sector_size; 1126 SCpnt->underflow = this_count << 9; 1127 SCpnt->allowed = SD_MAX_RETRIES; 1128 1129 /* 1130 * This indicates that the command is ready from our end to be 1131 * queued. 1132 */ 1133 ret = BLKPREP_OK; 1134 out: 1135 return ret; 1136 } 1137 1138 static int sd_init_command(struct scsi_cmnd *cmd) 1139 { 1140 struct request *rq = cmd->request; 1141 1142 switch (req_op(rq)) { 1143 case REQ_OP_DISCARD: 1144 return sd_setup_discard_cmnd(cmd); 1145 case REQ_OP_WRITE_SAME: 1146 return sd_setup_write_same_cmnd(cmd); 1147 case REQ_OP_FLUSH: 1148 return sd_setup_flush_cmnd(cmd); 1149 case REQ_OP_READ: 1150 case REQ_OP_WRITE: 1151 return sd_setup_read_write_cmnd(cmd); 1152 default: 1153 BUG(); 1154 } 1155 } 1156 1157 static void sd_uninit_command(struct scsi_cmnd *SCpnt) 1158 { 1159 struct request *rq = SCpnt->request; 1160 1161 if (req_op(rq) == REQ_OP_DISCARD) 1162 __free_page(rq->completion_data); 1163 1164 if (SCpnt->cmnd != rq->cmd) { 1165 mempool_free(SCpnt->cmnd, sd_cdb_pool); 1166 SCpnt->cmnd = NULL; 1167 SCpnt->cmd_len = 0; 1168 } 1169 } 1170 1171 /** 1172 * sd_open - open a scsi disk device 1173 * @inode: only i_rdev member may be used 1174 * @filp: only f_mode and f_flags may be used 1175 * 1176 * Returns 0 if successful. Returns a negated errno value in case 1177 * of error. 1178 * 1179 * Note: This can be called from a user context (e.g. fsck(1) ) 1180 * or from within the kernel (e.g. as a result of a mount(1) ). 1181 * In the latter case @inode and @filp carry an abridged amount 1182 * of information as noted above. 1183 * 1184 * Locking: called with bdev->bd_mutex held. 1185 **/ 1186 static int sd_open(struct block_device *bdev, fmode_t mode) 1187 { 1188 struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk); 1189 struct scsi_device *sdev; 1190 int retval; 1191 1192 if (!sdkp) 1193 return -ENXIO; 1194 1195 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n")); 1196 1197 sdev = sdkp->device; 1198 1199 /* 1200 * If the device is in error recovery, wait until it is done. 1201 * If the device is offline, then disallow any access to it. 1202 */ 1203 retval = -ENXIO; 1204 if (!scsi_block_when_processing_errors(sdev)) 1205 goto error_out; 1206 1207 if (sdev->removable || sdkp->write_prot) 1208 check_disk_change(bdev); 1209 1210 /* 1211 * If the drive is empty, just let the open fail. 1212 */ 1213 retval = -ENOMEDIUM; 1214 if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY)) 1215 goto error_out; 1216 1217 /* 1218 * If the device has the write protect tab set, have the open fail 1219 * if the user expects to be able to write to the thing. 1220 */ 1221 retval = -EROFS; 1222 if (sdkp->write_prot && (mode & FMODE_WRITE)) 1223 goto error_out; 1224 1225 /* 1226 * It is possible that the disk changing stuff resulted in 1227 * the device being taken offline. If this is the case, 1228 * report this to the user, and don't pretend that the 1229 * open actually succeeded. 1230 */ 1231 retval = -ENXIO; 1232 if (!scsi_device_online(sdev)) 1233 goto error_out; 1234 1235 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) { 1236 if (scsi_block_when_processing_errors(sdev)) 1237 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT); 1238 } 1239 1240 return 0; 1241 1242 error_out: 1243 scsi_disk_put(sdkp); 1244 return retval; 1245 } 1246 1247 /** 1248 * sd_release - invoked when the (last) close(2) is called on this 1249 * scsi disk. 1250 * @inode: only i_rdev member may be used 1251 * @filp: only f_mode and f_flags may be used 1252 * 1253 * Returns 0. 1254 * 1255 * Note: may block (uninterruptible) if error recovery is underway 1256 * on this disk. 1257 * 1258 * Locking: called with bdev->bd_mutex held. 1259 **/ 1260 static void sd_release(struct gendisk *disk, fmode_t mode) 1261 { 1262 struct scsi_disk *sdkp = scsi_disk(disk); 1263 struct scsi_device *sdev = sdkp->device; 1264 1265 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n")); 1266 1267 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) { 1268 if (scsi_block_when_processing_errors(sdev)) 1269 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW); 1270 } 1271 1272 /* 1273 * XXX and what if there are packets in flight and this close() 1274 * XXX is followed by a "rmmod sd_mod"? 1275 */ 1276 1277 scsi_disk_put(sdkp); 1278 } 1279 1280 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1281 { 1282 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1283 struct scsi_device *sdp = sdkp->device; 1284 struct Scsi_Host *host = sdp->host; 1285 sector_t capacity = logical_to_sectors(sdp, sdkp->capacity); 1286 int diskinfo[4]; 1287 1288 /* default to most commonly used values */ 1289 diskinfo[0] = 0x40; /* 1 << 6 */ 1290 diskinfo[1] = 0x20; /* 1 << 5 */ 1291 diskinfo[2] = capacity >> 11; 1292 1293 /* override with calculated, extended default, or driver values */ 1294 if (host->hostt->bios_param) 1295 host->hostt->bios_param(sdp, bdev, capacity, diskinfo); 1296 else 1297 scsicam_bios_param(bdev, capacity, diskinfo); 1298 1299 geo->heads = diskinfo[0]; 1300 geo->sectors = diskinfo[1]; 1301 geo->cylinders = diskinfo[2]; 1302 return 0; 1303 } 1304 1305 /** 1306 * sd_ioctl - process an ioctl 1307 * @inode: only i_rdev/i_bdev members may be used 1308 * @filp: only f_mode and f_flags may be used 1309 * @cmd: ioctl command number 1310 * @arg: this is third argument given to ioctl(2) system call. 1311 * Often contains a pointer. 1312 * 1313 * Returns 0 if successful (some ioctls return positive numbers on 1314 * success as well). Returns a negated errno value in case of error. 1315 * 1316 * Note: most ioctls are forward onto the block subsystem or further 1317 * down in the scsi subsystem. 1318 **/ 1319 static int sd_ioctl(struct block_device *bdev, fmode_t mode, 1320 unsigned int cmd, unsigned long arg) 1321 { 1322 struct gendisk *disk = bdev->bd_disk; 1323 struct scsi_disk *sdkp = scsi_disk(disk); 1324 struct scsi_device *sdp = sdkp->device; 1325 void __user *p = (void __user *)arg; 1326 int error; 1327 1328 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, " 1329 "cmd=0x%x\n", disk->disk_name, cmd)); 1330 1331 error = scsi_verify_blk_ioctl(bdev, cmd); 1332 if (error < 0) 1333 return error; 1334 1335 /* 1336 * If we are in the middle of error recovery, don't let anyone 1337 * else try and use this device. Also, if error recovery fails, it 1338 * may try and take the device offline, in which case all further 1339 * access to the device is prohibited. 1340 */ 1341 error = scsi_ioctl_block_when_processing_errors(sdp, cmd, 1342 (mode & FMODE_NDELAY) != 0); 1343 if (error) 1344 goto out; 1345 1346 /* 1347 * Send SCSI addressing ioctls directly to mid level, send other 1348 * ioctls to block level and then onto mid level if they can't be 1349 * resolved. 1350 */ 1351 switch (cmd) { 1352 case SCSI_IOCTL_GET_IDLUN: 1353 case SCSI_IOCTL_GET_BUS_NUMBER: 1354 error = scsi_ioctl(sdp, cmd, p); 1355 break; 1356 default: 1357 error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p); 1358 if (error != -ENOTTY) 1359 break; 1360 error = scsi_ioctl(sdp, cmd, p); 1361 break; 1362 } 1363 out: 1364 return error; 1365 } 1366 1367 static void set_media_not_present(struct scsi_disk *sdkp) 1368 { 1369 if (sdkp->media_present) 1370 sdkp->device->changed = 1; 1371 1372 if (sdkp->device->removable) { 1373 sdkp->media_present = 0; 1374 sdkp->capacity = 0; 1375 } 1376 } 1377 1378 static int media_not_present(struct scsi_disk *sdkp, 1379 struct scsi_sense_hdr *sshdr) 1380 { 1381 if (!scsi_sense_valid(sshdr)) 1382 return 0; 1383 1384 /* not invoked for commands that could return deferred errors */ 1385 switch (sshdr->sense_key) { 1386 case UNIT_ATTENTION: 1387 case NOT_READY: 1388 /* medium not present */ 1389 if (sshdr->asc == 0x3A) { 1390 set_media_not_present(sdkp); 1391 return 1; 1392 } 1393 } 1394 return 0; 1395 } 1396 1397 /** 1398 * sd_check_events - check media events 1399 * @disk: kernel device descriptor 1400 * @clearing: disk events currently being cleared 1401 * 1402 * Returns mask of DISK_EVENT_*. 1403 * 1404 * Note: this function is invoked from the block subsystem. 1405 **/ 1406 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing) 1407 { 1408 struct scsi_disk *sdkp = scsi_disk_get(disk); 1409 struct scsi_device *sdp; 1410 struct scsi_sense_hdr *sshdr = NULL; 1411 int retval; 1412 1413 if (!sdkp) 1414 return 0; 1415 1416 sdp = sdkp->device; 1417 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n")); 1418 1419 /* 1420 * If the device is offline, don't send any commands - just pretend as 1421 * if the command failed. If the device ever comes back online, we 1422 * can deal with it then. It is only because of unrecoverable errors 1423 * that we would ever take a device offline in the first place. 1424 */ 1425 if (!scsi_device_online(sdp)) { 1426 set_media_not_present(sdkp); 1427 goto out; 1428 } 1429 1430 /* 1431 * Using TEST_UNIT_READY enables differentiation between drive with 1432 * no cartridge loaded - NOT READY, drive with changed cartridge - 1433 * UNIT ATTENTION, or with same cartridge - GOOD STATUS. 1434 * 1435 * Drives that auto spin down. eg iomega jaz 1G, will be started 1436 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever 1437 * sd_revalidate() is called. 1438 */ 1439 retval = -ENODEV; 1440 1441 if (scsi_block_when_processing_errors(sdp)) { 1442 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL); 1443 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, SD_MAX_RETRIES, 1444 sshdr); 1445 } 1446 1447 /* failed to execute TUR, assume media not present */ 1448 if (host_byte(retval)) { 1449 set_media_not_present(sdkp); 1450 goto out; 1451 } 1452 1453 if (media_not_present(sdkp, sshdr)) 1454 goto out; 1455 1456 /* 1457 * For removable scsi disk we have to recognise the presence 1458 * of a disk in the drive. 1459 */ 1460 if (!sdkp->media_present) 1461 sdp->changed = 1; 1462 sdkp->media_present = 1; 1463 out: 1464 /* 1465 * sdp->changed is set under the following conditions: 1466 * 1467 * Medium present state has changed in either direction. 1468 * Device has indicated UNIT_ATTENTION. 1469 */ 1470 kfree(sshdr); 1471 retval = sdp->changed ? DISK_EVENT_MEDIA_CHANGE : 0; 1472 sdp->changed = 0; 1473 scsi_disk_put(sdkp); 1474 return retval; 1475 } 1476 1477 static int sd_sync_cache(struct scsi_disk *sdkp) 1478 { 1479 int retries, res; 1480 struct scsi_device *sdp = sdkp->device; 1481 const int timeout = sdp->request_queue->rq_timeout 1482 * SD_FLUSH_TIMEOUT_MULTIPLIER; 1483 struct scsi_sense_hdr sshdr; 1484 1485 if (!scsi_device_online(sdp)) 1486 return -ENODEV; 1487 1488 for (retries = 3; retries > 0; --retries) { 1489 unsigned char cmd[10] = { 0 }; 1490 1491 cmd[0] = SYNCHRONIZE_CACHE; 1492 /* 1493 * Leave the rest of the command zero to indicate 1494 * flush everything. 1495 */ 1496 res = scsi_execute_req_flags(sdp, cmd, DMA_NONE, NULL, 0, 1497 &sshdr, timeout, SD_MAX_RETRIES, 1498 NULL, REQ_PM); 1499 if (res == 0) 1500 break; 1501 } 1502 1503 if (res) { 1504 sd_print_result(sdkp, "Synchronize Cache(10) failed", res); 1505 1506 if (driver_byte(res) & DRIVER_SENSE) 1507 sd_print_sense_hdr(sdkp, &sshdr); 1508 /* we need to evaluate the error return */ 1509 if (scsi_sense_valid(&sshdr) && 1510 (sshdr.asc == 0x3a || /* medium not present */ 1511 sshdr.asc == 0x20)) /* invalid command */ 1512 /* this is no error here */ 1513 return 0; 1514 1515 switch (host_byte(res)) { 1516 /* ignore errors due to racing a disconnection */ 1517 case DID_BAD_TARGET: 1518 case DID_NO_CONNECT: 1519 return 0; 1520 /* signal the upper layer it might try again */ 1521 case DID_BUS_BUSY: 1522 case DID_IMM_RETRY: 1523 case DID_REQUEUE: 1524 case DID_SOFT_ERROR: 1525 return -EBUSY; 1526 default: 1527 return -EIO; 1528 } 1529 } 1530 return 0; 1531 } 1532 1533 static void sd_rescan(struct device *dev) 1534 { 1535 struct scsi_disk *sdkp = dev_get_drvdata(dev); 1536 1537 revalidate_disk(sdkp->disk); 1538 } 1539 1540 1541 #ifdef CONFIG_COMPAT 1542 /* 1543 * This gets directly called from VFS. When the ioctl 1544 * is not recognized we go back to the other translation paths. 1545 */ 1546 static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode, 1547 unsigned int cmd, unsigned long arg) 1548 { 1549 struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device; 1550 int error; 1551 1552 error = scsi_ioctl_block_when_processing_errors(sdev, cmd, 1553 (mode & FMODE_NDELAY) != 0); 1554 if (error) 1555 return error; 1556 1557 /* 1558 * Let the static ioctl translation table take care of it. 1559 */ 1560 if (!sdev->host->hostt->compat_ioctl) 1561 return -ENOIOCTLCMD; 1562 return sdev->host->hostt->compat_ioctl(sdev, cmd, (void __user *)arg); 1563 } 1564 #endif 1565 1566 static char sd_pr_type(enum pr_type type) 1567 { 1568 switch (type) { 1569 case PR_WRITE_EXCLUSIVE: 1570 return 0x01; 1571 case PR_EXCLUSIVE_ACCESS: 1572 return 0x03; 1573 case PR_WRITE_EXCLUSIVE_REG_ONLY: 1574 return 0x05; 1575 case PR_EXCLUSIVE_ACCESS_REG_ONLY: 1576 return 0x06; 1577 case PR_WRITE_EXCLUSIVE_ALL_REGS: 1578 return 0x07; 1579 case PR_EXCLUSIVE_ACCESS_ALL_REGS: 1580 return 0x08; 1581 default: 1582 return 0; 1583 } 1584 }; 1585 1586 static int sd_pr_command(struct block_device *bdev, u8 sa, 1587 u64 key, u64 sa_key, u8 type, u8 flags) 1588 { 1589 struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device; 1590 struct scsi_sense_hdr sshdr; 1591 int result; 1592 u8 cmd[16] = { 0, }; 1593 u8 data[24] = { 0, }; 1594 1595 cmd[0] = PERSISTENT_RESERVE_OUT; 1596 cmd[1] = sa; 1597 cmd[2] = type; 1598 put_unaligned_be32(sizeof(data), &cmd[5]); 1599 1600 put_unaligned_be64(key, &data[0]); 1601 put_unaligned_be64(sa_key, &data[8]); 1602 data[20] = flags; 1603 1604 result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data), 1605 &sshdr, SD_TIMEOUT, SD_MAX_RETRIES, NULL); 1606 1607 if ((driver_byte(result) & DRIVER_SENSE) && 1608 (scsi_sense_valid(&sshdr))) { 1609 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result); 1610 scsi_print_sense_hdr(sdev, NULL, &sshdr); 1611 } 1612 1613 return result; 1614 } 1615 1616 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 1617 u32 flags) 1618 { 1619 if (flags & ~PR_FL_IGNORE_KEY) 1620 return -EOPNOTSUPP; 1621 return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00, 1622 old_key, new_key, 0, 1623 (1 << 0) /* APTPL */); 1624 } 1625 1626 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 1627 u32 flags) 1628 { 1629 if (flags) 1630 return -EOPNOTSUPP; 1631 return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0); 1632 } 1633 1634 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 1635 { 1636 return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0); 1637 } 1638 1639 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 1640 enum pr_type type, bool abort) 1641 { 1642 return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key, 1643 sd_pr_type(type), 0); 1644 } 1645 1646 static int sd_pr_clear(struct block_device *bdev, u64 key) 1647 { 1648 return sd_pr_command(bdev, 0x03, key, 0, 0, 0); 1649 } 1650 1651 static const struct pr_ops sd_pr_ops = { 1652 .pr_register = sd_pr_register, 1653 .pr_reserve = sd_pr_reserve, 1654 .pr_release = sd_pr_release, 1655 .pr_preempt = sd_pr_preempt, 1656 .pr_clear = sd_pr_clear, 1657 }; 1658 1659 static const struct block_device_operations sd_fops = { 1660 .owner = THIS_MODULE, 1661 .open = sd_open, 1662 .release = sd_release, 1663 .ioctl = sd_ioctl, 1664 .getgeo = sd_getgeo, 1665 #ifdef CONFIG_COMPAT 1666 .compat_ioctl = sd_compat_ioctl, 1667 #endif 1668 .check_events = sd_check_events, 1669 .revalidate_disk = sd_revalidate_disk, 1670 .unlock_native_capacity = sd_unlock_native_capacity, 1671 .pr_ops = &sd_pr_ops, 1672 }; 1673 1674 /** 1675 * sd_eh_action - error handling callback 1676 * @scmd: sd-issued command that has failed 1677 * @eh_disp: The recovery disposition suggested by the midlayer 1678 * 1679 * This function is called by the SCSI midlayer upon completion of an 1680 * error test command (currently TEST UNIT READY). The result of sending 1681 * the eh command is passed in eh_disp. We're looking for devices that 1682 * fail medium access commands but are OK with non access commands like 1683 * test unit ready (so wrongly see the device as having a successful 1684 * recovery) 1685 **/ 1686 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp) 1687 { 1688 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk); 1689 1690 if (!scsi_device_online(scmd->device) || 1691 !scsi_medium_access_command(scmd) || 1692 host_byte(scmd->result) != DID_TIME_OUT || 1693 eh_disp != SUCCESS) 1694 return eh_disp; 1695 1696 /* 1697 * The device has timed out executing a medium access command. 1698 * However, the TEST UNIT READY command sent during error 1699 * handling completed successfully. Either the device is in the 1700 * process of recovering or has it suffered an internal failure 1701 * that prevents access to the storage medium. 1702 */ 1703 sdkp->medium_access_timed_out++; 1704 1705 /* 1706 * If the device keeps failing read/write commands but TEST UNIT 1707 * READY always completes successfully we assume that medium 1708 * access is no longer possible and take the device offline. 1709 */ 1710 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) { 1711 scmd_printk(KERN_ERR, scmd, 1712 "Medium access timeout failure. Offlining disk!\n"); 1713 scsi_device_set_state(scmd->device, SDEV_OFFLINE); 1714 1715 return FAILED; 1716 } 1717 1718 return eh_disp; 1719 } 1720 1721 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd) 1722 { 1723 u64 start_lba = blk_rq_pos(scmd->request); 1724 u64 end_lba = blk_rq_pos(scmd->request) + (scsi_bufflen(scmd) / 512); 1725 u64 factor = scmd->device->sector_size / 512; 1726 u64 bad_lba; 1727 int info_valid; 1728 /* 1729 * resid is optional but mostly filled in. When it's unused, 1730 * its value is zero, so we assume the whole buffer transferred 1731 */ 1732 unsigned int transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd); 1733 unsigned int good_bytes; 1734 1735 if (scmd->request->cmd_type != REQ_TYPE_FS) 1736 return 0; 1737 1738 info_valid = scsi_get_sense_info_fld(scmd->sense_buffer, 1739 SCSI_SENSE_BUFFERSIZE, 1740 &bad_lba); 1741 if (!info_valid) 1742 return 0; 1743 1744 if (scsi_bufflen(scmd) <= scmd->device->sector_size) 1745 return 0; 1746 1747 /* be careful ... don't want any overflows */ 1748 do_div(start_lba, factor); 1749 do_div(end_lba, factor); 1750 1751 /* The bad lba was reported incorrectly, we have no idea where 1752 * the error is. 1753 */ 1754 if (bad_lba < start_lba || bad_lba >= end_lba) 1755 return 0; 1756 1757 /* This computation should always be done in terms of 1758 * the resolution of the device's medium. 1759 */ 1760 good_bytes = (bad_lba - start_lba) * scmd->device->sector_size; 1761 return min(good_bytes, transferred); 1762 } 1763 1764 /** 1765 * sd_done - bottom half handler: called when the lower level 1766 * driver has completed (successfully or otherwise) a scsi command. 1767 * @SCpnt: mid-level's per command structure. 1768 * 1769 * Note: potentially run from within an ISR. Must not block. 1770 **/ 1771 static int sd_done(struct scsi_cmnd *SCpnt) 1772 { 1773 int result = SCpnt->result; 1774 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt); 1775 struct scsi_sense_hdr sshdr; 1776 struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk); 1777 struct request *req = SCpnt->request; 1778 int sense_valid = 0; 1779 int sense_deferred = 0; 1780 unsigned char op = SCpnt->cmnd[0]; 1781 unsigned char unmap = SCpnt->cmnd[1] & 8; 1782 1783 if (req_op(req) == REQ_OP_DISCARD || req_op(req) == REQ_OP_WRITE_SAME) { 1784 if (!result) { 1785 good_bytes = blk_rq_bytes(req); 1786 scsi_set_resid(SCpnt, 0); 1787 } else { 1788 good_bytes = 0; 1789 scsi_set_resid(SCpnt, blk_rq_bytes(req)); 1790 } 1791 } 1792 1793 if (result) { 1794 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr); 1795 if (sense_valid) 1796 sense_deferred = scsi_sense_is_deferred(&sshdr); 1797 } 1798 sdkp->medium_access_timed_out = 0; 1799 1800 if (driver_byte(result) != DRIVER_SENSE && 1801 (!sense_valid || sense_deferred)) 1802 goto out; 1803 1804 switch (sshdr.sense_key) { 1805 case HARDWARE_ERROR: 1806 case MEDIUM_ERROR: 1807 good_bytes = sd_completed_bytes(SCpnt); 1808 break; 1809 case RECOVERED_ERROR: 1810 good_bytes = scsi_bufflen(SCpnt); 1811 break; 1812 case NO_SENSE: 1813 /* This indicates a false check condition, so ignore it. An 1814 * unknown amount of data was transferred so treat it as an 1815 * error. 1816 */ 1817 SCpnt->result = 0; 1818 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 1819 break; 1820 case ABORTED_COMMAND: 1821 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */ 1822 good_bytes = sd_completed_bytes(SCpnt); 1823 break; 1824 case ILLEGAL_REQUEST: 1825 if (sshdr.asc == 0x10) /* DIX: Host detected corruption */ 1826 good_bytes = sd_completed_bytes(SCpnt); 1827 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */ 1828 if (sshdr.asc == 0x20 || sshdr.asc == 0x24) { 1829 switch (op) { 1830 case UNMAP: 1831 sd_config_discard(sdkp, SD_LBP_DISABLE); 1832 break; 1833 case WRITE_SAME_16: 1834 case WRITE_SAME: 1835 if (unmap) 1836 sd_config_discard(sdkp, SD_LBP_DISABLE); 1837 else { 1838 sdkp->device->no_write_same = 1; 1839 sd_config_write_same(sdkp); 1840 1841 good_bytes = 0; 1842 req->__data_len = blk_rq_bytes(req); 1843 req->cmd_flags |= REQ_QUIET; 1844 } 1845 } 1846 } 1847 break; 1848 default: 1849 break; 1850 } 1851 out: 1852 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt, 1853 "sd_done: completed %d of %d bytes\n", 1854 good_bytes, scsi_bufflen(SCpnt))); 1855 1856 if (rq_data_dir(SCpnt->request) == READ && scsi_prot_sg_count(SCpnt)) 1857 sd_dif_complete(SCpnt, good_bytes); 1858 1859 return good_bytes; 1860 } 1861 1862 /* 1863 * spinup disk - called only in sd_revalidate_disk() 1864 */ 1865 static void 1866 sd_spinup_disk(struct scsi_disk *sdkp) 1867 { 1868 unsigned char cmd[10]; 1869 unsigned long spintime_expire = 0; 1870 int retries, spintime; 1871 unsigned int the_result; 1872 struct scsi_sense_hdr sshdr; 1873 int sense_valid = 0; 1874 1875 spintime = 0; 1876 1877 /* Spin up drives, as required. Only do this at boot time */ 1878 /* Spinup needs to be done for module loads too. */ 1879 do { 1880 retries = 0; 1881 1882 do { 1883 cmd[0] = TEST_UNIT_READY; 1884 memset((void *) &cmd[1], 0, 9); 1885 1886 the_result = scsi_execute_req(sdkp->device, cmd, 1887 DMA_NONE, NULL, 0, 1888 &sshdr, SD_TIMEOUT, 1889 SD_MAX_RETRIES, NULL); 1890 1891 /* 1892 * If the drive has indicated to us that it 1893 * doesn't have any media in it, don't bother 1894 * with any more polling. 1895 */ 1896 if (media_not_present(sdkp, &sshdr)) 1897 return; 1898 1899 if (the_result) 1900 sense_valid = scsi_sense_valid(&sshdr); 1901 retries++; 1902 } while (retries < 3 && 1903 (!scsi_status_is_good(the_result) || 1904 ((driver_byte(the_result) & DRIVER_SENSE) && 1905 sense_valid && sshdr.sense_key == UNIT_ATTENTION))); 1906 1907 if ((driver_byte(the_result) & DRIVER_SENSE) == 0) { 1908 /* no sense, TUR either succeeded or failed 1909 * with a status error */ 1910 if(!spintime && !scsi_status_is_good(the_result)) { 1911 sd_print_result(sdkp, "Test Unit Ready failed", 1912 the_result); 1913 } 1914 break; 1915 } 1916 1917 /* 1918 * The device does not want the automatic start to be issued. 1919 */ 1920 if (sdkp->device->no_start_on_add) 1921 break; 1922 1923 if (sense_valid && sshdr.sense_key == NOT_READY) { 1924 if (sshdr.asc == 4 && sshdr.ascq == 3) 1925 break; /* manual intervention required */ 1926 if (sshdr.asc == 4 && sshdr.ascq == 0xb) 1927 break; /* standby */ 1928 if (sshdr.asc == 4 && sshdr.ascq == 0xc) 1929 break; /* unavailable */ 1930 /* 1931 * Issue command to spin up drive when not ready 1932 */ 1933 if (!spintime) { 1934 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk..."); 1935 cmd[0] = START_STOP; 1936 cmd[1] = 1; /* Return immediately */ 1937 memset((void *) &cmd[2], 0, 8); 1938 cmd[4] = 1; /* Start spin cycle */ 1939 if (sdkp->device->start_stop_pwr_cond) 1940 cmd[4] |= 1 << 4; 1941 scsi_execute_req(sdkp->device, cmd, DMA_NONE, 1942 NULL, 0, &sshdr, 1943 SD_TIMEOUT, SD_MAX_RETRIES, 1944 NULL); 1945 spintime_expire = jiffies + 100 * HZ; 1946 spintime = 1; 1947 } 1948 /* Wait 1 second for next try */ 1949 msleep(1000); 1950 printk("."); 1951 1952 /* 1953 * Wait for USB flash devices with slow firmware. 1954 * Yes, this sense key/ASC combination shouldn't 1955 * occur here. It's characteristic of these devices. 1956 */ 1957 } else if (sense_valid && 1958 sshdr.sense_key == UNIT_ATTENTION && 1959 sshdr.asc == 0x28) { 1960 if (!spintime) { 1961 spintime_expire = jiffies + 5 * HZ; 1962 spintime = 1; 1963 } 1964 /* Wait 1 second for next try */ 1965 msleep(1000); 1966 } else { 1967 /* we don't understand the sense code, so it's 1968 * probably pointless to loop */ 1969 if(!spintime) { 1970 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n"); 1971 sd_print_sense_hdr(sdkp, &sshdr); 1972 } 1973 break; 1974 } 1975 1976 } while (spintime && time_before_eq(jiffies, spintime_expire)); 1977 1978 if (spintime) { 1979 if (scsi_status_is_good(the_result)) 1980 printk("ready\n"); 1981 else 1982 printk("not responding...\n"); 1983 } 1984 } 1985 1986 1987 /* 1988 * Determine whether disk supports Data Integrity Field. 1989 */ 1990 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer) 1991 { 1992 struct scsi_device *sdp = sdkp->device; 1993 u8 type; 1994 int ret = 0; 1995 1996 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) 1997 return ret; 1998 1999 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */ 2000 2001 if (type > T10_PI_TYPE3_PROTECTION) 2002 ret = -ENODEV; 2003 else if (scsi_host_dif_capable(sdp->host, type)) 2004 ret = 1; 2005 2006 if (sdkp->first_scan || type != sdkp->protection_type) 2007 switch (ret) { 2008 case -ENODEV: 2009 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \ 2010 " protection type %u. Disabling disk!\n", 2011 type); 2012 break; 2013 case 1: 2014 sd_printk(KERN_NOTICE, sdkp, 2015 "Enabling DIF Type %u protection\n", type); 2016 break; 2017 case 0: 2018 sd_printk(KERN_NOTICE, sdkp, 2019 "Disabling DIF Type %u protection\n", type); 2020 break; 2021 } 2022 2023 sdkp->protection_type = type; 2024 2025 return ret; 2026 } 2027 2028 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp, 2029 struct scsi_sense_hdr *sshdr, int sense_valid, 2030 int the_result) 2031 { 2032 if (driver_byte(the_result) & DRIVER_SENSE) 2033 sd_print_sense_hdr(sdkp, sshdr); 2034 else 2035 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n"); 2036 2037 /* 2038 * Set dirty bit for removable devices if not ready - 2039 * sometimes drives will not report this properly. 2040 */ 2041 if (sdp->removable && 2042 sense_valid && sshdr->sense_key == NOT_READY) 2043 set_media_not_present(sdkp); 2044 2045 /* 2046 * We used to set media_present to 0 here to indicate no media 2047 * in the drive, but some drives fail read capacity even with 2048 * media present, so we can't do that. 2049 */ 2050 sdkp->capacity = 0; /* unknown mapped to zero - as usual */ 2051 } 2052 2053 #define RC16_LEN 32 2054 #if RC16_LEN > SD_BUF_SIZE 2055 #error RC16_LEN must not be more than SD_BUF_SIZE 2056 #endif 2057 2058 #define READ_CAPACITY_RETRIES_ON_RESET 10 2059 2060 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp, 2061 unsigned char *buffer) 2062 { 2063 unsigned char cmd[16]; 2064 struct scsi_sense_hdr sshdr; 2065 int sense_valid = 0; 2066 int the_result; 2067 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2068 unsigned int alignment; 2069 unsigned long long lba; 2070 unsigned sector_size; 2071 2072 if (sdp->no_read_capacity_16) 2073 return -EINVAL; 2074 2075 do { 2076 memset(cmd, 0, 16); 2077 cmd[0] = SERVICE_ACTION_IN_16; 2078 cmd[1] = SAI_READ_CAPACITY_16; 2079 cmd[13] = RC16_LEN; 2080 memset(buffer, 0, RC16_LEN); 2081 2082 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, 2083 buffer, RC16_LEN, &sshdr, 2084 SD_TIMEOUT, SD_MAX_RETRIES, NULL); 2085 2086 if (media_not_present(sdkp, &sshdr)) 2087 return -ENODEV; 2088 2089 if (the_result) { 2090 sense_valid = scsi_sense_valid(&sshdr); 2091 if (sense_valid && 2092 sshdr.sense_key == ILLEGAL_REQUEST && 2093 (sshdr.asc == 0x20 || sshdr.asc == 0x24) && 2094 sshdr.ascq == 0x00) 2095 /* Invalid Command Operation Code or 2096 * Invalid Field in CDB, just retry 2097 * silently with RC10 */ 2098 return -EINVAL; 2099 if (sense_valid && 2100 sshdr.sense_key == UNIT_ATTENTION && 2101 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2102 /* Device reset might occur several times, 2103 * give it one more chance */ 2104 if (--reset_retries > 0) 2105 continue; 2106 } 2107 retries--; 2108 2109 } while (the_result && retries); 2110 2111 if (the_result) { 2112 sd_print_result(sdkp, "Read Capacity(16) failed", the_result); 2113 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2114 return -EINVAL; 2115 } 2116 2117 sector_size = get_unaligned_be32(&buffer[8]); 2118 lba = get_unaligned_be64(&buffer[0]); 2119 2120 if (sd_read_protection_type(sdkp, buffer) < 0) { 2121 sdkp->capacity = 0; 2122 return -ENODEV; 2123 } 2124 2125 if ((sizeof(sdkp->capacity) == 4) && (lba >= 0xffffffffULL)) { 2126 sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a " 2127 "kernel compiled with support for large block " 2128 "devices.\n"); 2129 sdkp->capacity = 0; 2130 return -EOVERFLOW; 2131 } 2132 2133 /* Logical blocks per physical block exponent */ 2134 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size; 2135 2136 /* Lowest aligned logical block */ 2137 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size; 2138 blk_queue_alignment_offset(sdp->request_queue, alignment); 2139 if (alignment && sdkp->first_scan) 2140 sd_printk(KERN_NOTICE, sdkp, 2141 "physical block alignment offset: %u\n", alignment); 2142 2143 if (buffer[14] & 0x80) { /* LBPME */ 2144 sdkp->lbpme = 1; 2145 2146 if (buffer[14] & 0x40) /* LBPRZ */ 2147 sdkp->lbprz = 1; 2148 2149 sd_config_discard(sdkp, SD_LBP_WS16); 2150 } 2151 2152 sdkp->capacity = lba + 1; 2153 return sector_size; 2154 } 2155 2156 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp, 2157 unsigned char *buffer) 2158 { 2159 unsigned char cmd[16]; 2160 struct scsi_sense_hdr sshdr; 2161 int sense_valid = 0; 2162 int the_result; 2163 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2164 sector_t lba; 2165 unsigned sector_size; 2166 2167 do { 2168 cmd[0] = READ_CAPACITY; 2169 memset(&cmd[1], 0, 9); 2170 memset(buffer, 0, 8); 2171 2172 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, 2173 buffer, 8, &sshdr, 2174 SD_TIMEOUT, SD_MAX_RETRIES, NULL); 2175 2176 if (media_not_present(sdkp, &sshdr)) 2177 return -ENODEV; 2178 2179 if (the_result) { 2180 sense_valid = scsi_sense_valid(&sshdr); 2181 if (sense_valid && 2182 sshdr.sense_key == UNIT_ATTENTION && 2183 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2184 /* Device reset might occur several times, 2185 * give it one more chance */ 2186 if (--reset_retries > 0) 2187 continue; 2188 } 2189 retries--; 2190 2191 } while (the_result && retries); 2192 2193 if (the_result) { 2194 sd_print_result(sdkp, "Read Capacity(10) failed", the_result); 2195 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2196 return -EINVAL; 2197 } 2198 2199 sector_size = get_unaligned_be32(&buffer[4]); 2200 lba = get_unaligned_be32(&buffer[0]); 2201 2202 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) { 2203 /* Some buggy (usb cardreader) devices return an lba of 2204 0xffffffff when the want to report a size of 0 (with 2205 which they really mean no media is present) */ 2206 sdkp->capacity = 0; 2207 sdkp->physical_block_size = sector_size; 2208 return sector_size; 2209 } 2210 2211 if ((sizeof(sdkp->capacity) == 4) && (lba == 0xffffffff)) { 2212 sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a " 2213 "kernel compiled with support for large block " 2214 "devices.\n"); 2215 sdkp->capacity = 0; 2216 return -EOVERFLOW; 2217 } 2218 2219 sdkp->capacity = lba + 1; 2220 sdkp->physical_block_size = sector_size; 2221 return sector_size; 2222 } 2223 2224 static int sd_try_rc16_first(struct scsi_device *sdp) 2225 { 2226 if (sdp->host->max_cmd_len < 16) 2227 return 0; 2228 if (sdp->try_rc_10_first) 2229 return 0; 2230 if (sdp->scsi_level > SCSI_SPC_2) 2231 return 1; 2232 if (scsi_device_protection(sdp)) 2233 return 1; 2234 return 0; 2235 } 2236 2237 /* 2238 * read disk capacity 2239 */ 2240 static void 2241 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer) 2242 { 2243 int sector_size; 2244 struct scsi_device *sdp = sdkp->device; 2245 sector_t old_capacity = sdkp->capacity; 2246 2247 if (sd_try_rc16_first(sdp)) { 2248 sector_size = read_capacity_16(sdkp, sdp, buffer); 2249 if (sector_size == -EOVERFLOW) 2250 goto got_data; 2251 if (sector_size == -ENODEV) 2252 return; 2253 if (sector_size < 0) 2254 sector_size = read_capacity_10(sdkp, sdp, buffer); 2255 if (sector_size < 0) 2256 return; 2257 } else { 2258 sector_size = read_capacity_10(sdkp, sdp, buffer); 2259 if (sector_size == -EOVERFLOW) 2260 goto got_data; 2261 if (sector_size < 0) 2262 return; 2263 if ((sizeof(sdkp->capacity) > 4) && 2264 (sdkp->capacity > 0xffffffffULL)) { 2265 int old_sector_size = sector_size; 2266 sd_printk(KERN_NOTICE, sdkp, "Very big device. " 2267 "Trying to use READ CAPACITY(16).\n"); 2268 sector_size = read_capacity_16(sdkp, sdp, buffer); 2269 if (sector_size < 0) { 2270 sd_printk(KERN_NOTICE, sdkp, 2271 "Using 0xffffffff as device size\n"); 2272 sdkp->capacity = 1 + (sector_t) 0xffffffff; 2273 sector_size = old_sector_size; 2274 goto got_data; 2275 } 2276 } 2277 } 2278 2279 /* Some devices are known to return the total number of blocks, 2280 * not the highest block number. Some devices have versions 2281 * which do this and others which do not. Some devices we might 2282 * suspect of doing this but we don't know for certain. 2283 * 2284 * If we know the reported capacity is wrong, decrement it. If 2285 * we can only guess, then assume the number of blocks is even 2286 * (usually true but not always) and err on the side of lowering 2287 * the capacity. 2288 */ 2289 if (sdp->fix_capacity || 2290 (sdp->guess_capacity && (sdkp->capacity & 0x01))) { 2291 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count " 2292 "from its reported value: %llu\n", 2293 (unsigned long long) sdkp->capacity); 2294 --sdkp->capacity; 2295 } 2296 2297 got_data: 2298 if (sector_size == 0) { 2299 sector_size = 512; 2300 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, " 2301 "assuming 512.\n"); 2302 } 2303 2304 if (sector_size != 512 && 2305 sector_size != 1024 && 2306 sector_size != 2048 && 2307 sector_size != 4096) { 2308 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n", 2309 sector_size); 2310 /* 2311 * The user might want to re-format the drive with 2312 * a supported sectorsize. Once this happens, it 2313 * would be relatively trivial to set the thing up. 2314 * For this reason, we leave the thing in the table. 2315 */ 2316 sdkp->capacity = 0; 2317 /* 2318 * set a bogus sector size so the normal read/write 2319 * logic in the block layer will eventually refuse any 2320 * request on this device without tripping over power 2321 * of two sector size assumptions 2322 */ 2323 sector_size = 512; 2324 } 2325 blk_queue_logical_block_size(sdp->request_queue, sector_size); 2326 2327 { 2328 char cap_str_2[10], cap_str_10[10]; 2329 2330 string_get_size(sdkp->capacity, sector_size, 2331 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2)); 2332 string_get_size(sdkp->capacity, sector_size, 2333 STRING_UNITS_10, cap_str_10, 2334 sizeof(cap_str_10)); 2335 2336 if (sdkp->first_scan || old_capacity != sdkp->capacity) { 2337 sd_printk(KERN_NOTICE, sdkp, 2338 "%llu %d-byte logical blocks: (%s/%s)\n", 2339 (unsigned long long)sdkp->capacity, 2340 sector_size, cap_str_10, cap_str_2); 2341 2342 if (sdkp->physical_block_size != sector_size) 2343 sd_printk(KERN_NOTICE, sdkp, 2344 "%u-byte physical blocks\n", 2345 sdkp->physical_block_size); 2346 } 2347 } 2348 2349 if (sdkp->capacity > 0xffffffff) 2350 sdp->use_16_for_rw = 1; 2351 2352 blk_queue_physical_block_size(sdp->request_queue, 2353 sdkp->physical_block_size); 2354 sdkp->device->sector_size = sector_size; 2355 } 2356 2357 /* called with buffer of length 512 */ 2358 static inline int 2359 sd_do_mode_sense(struct scsi_device *sdp, int dbd, int modepage, 2360 unsigned char *buffer, int len, struct scsi_mode_data *data, 2361 struct scsi_sense_hdr *sshdr) 2362 { 2363 return scsi_mode_sense(sdp, dbd, modepage, buffer, len, 2364 SD_TIMEOUT, SD_MAX_RETRIES, data, 2365 sshdr); 2366 } 2367 2368 /* 2369 * read write protect setting, if possible - called only in sd_revalidate_disk() 2370 * called with buffer of length SD_BUF_SIZE 2371 */ 2372 static void 2373 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer) 2374 { 2375 int res; 2376 struct scsi_device *sdp = sdkp->device; 2377 struct scsi_mode_data data; 2378 int old_wp = sdkp->write_prot; 2379 2380 set_disk_ro(sdkp->disk, 0); 2381 if (sdp->skip_ms_page_3f) { 2382 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n"); 2383 return; 2384 } 2385 2386 if (sdp->use_192_bytes_for_3f) { 2387 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 192, &data, NULL); 2388 } else { 2389 /* 2390 * First attempt: ask for all pages (0x3F), but only 4 bytes. 2391 * We have to start carefully: some devices hang if we ask 2392 * for more than is available. 2393 */ 2394 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 4, &data, NULL); 2395 2396 /* 2397 * Second attempt: ask for page 0 When only page 0 is 2398 * implemented, a request for page 3F may return Sense Key 2399 * 5: Illegal Request, Sense Code 24: Invalid field in 2400 * CDB. 2401 */ 2402 if (!scsi_status_is_good(res)) 2403 res = sd_do_mode_sense(sdp, 0, 0, buffer, 4, &data, NULL); 2404 2405 /* 2406 * Third attempt: ask 255 bytes, as we did earlier. 2407 */ 2408 if (!scsi_status_is_good(res)) 2409 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 255, 2410 &data, NULL); 2411 } 2412 2413 if (!scsi_status_is_good(res)) { 2414 sd_first_printk(KERN_WARNING, sdkp, 2415 "Test WP failed, assume Write Enabled\n"); 2416 } else { 2417 sdkp->write_prot = ((data.device_specific & 0x80) != 0); 2418 set_disk_ro(sdkp->disk, sdkp->write_prot); 2419 if (sdkp->first_scan || old_wp != sdkp->write_prot) { 2420 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n", 2421 sdkp->write_prot ? "on" : "off"); 2422 sd_printk(KERN_DEBUG, sdkp, 2423 "Mode Sense: %02x %02x %02x %02x\n", 2424 buffer[0], buffer[1], buffer[2], buffer[3]); 2425 } 2426 } 2427 } 2428 2429 /* 2430 * sd_read_cache_type - called only from sd_revalidate_disk() 2431 * called with buffer of length SD_BUF_SIZE 2432 */ 2433 static void 2434 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer) 2435 { 2436 int len = 0, res; 2437 struct scsi_device *sdp = sdkp->device; 2438 2439 int dbd; 2440 int modepage; 2441 int first_len; 2442 struct scsi_mode_data data; 2443 struct scsi_sense_hdr sshdr; 2444 int old_wce = sdkp->WCE; 2445 int old_rcd = sdkp->RCD; 2446 int old_dpofua = sdkp->DPOFUA; 2447 2448 2449 if (sdkp->cache_override) 2450 return; 2451 2452 first_len = 4; 2453 if (sdp->skip_ms_page_8) { 2454 if (sdp->type == TYPE_RBC) 2455 goto defaults; 2456 else { 2457 if (sdp->skip_ms_page_3f) 2458 goto defaults; 2459 modepage = 0x3F; 2460 if (sdp->use_192_bytes_for_3f) 2461 first_len = 192; 2462 dbd = 0; 2463 } 2464 } else if (sdp->type == TYPE_RBC) { 2465 modepage = 6; 2466 dbd = 8; 2467 } else { 2468 modepage = 8; 2469 dbd = 0; 2470 } 2471 2472 /* cautiously ask */ 2473 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, first_len, 2474 &data, &sshdr); 2475 2476 if (!scsi_status_is_good(res)) 2477 goto bad_sense; 2478 2479 if (!data.header_length) { 2480 modepage = 6; 2481 first_len = 0; 2482 sd_first_printk(KERN_ERR, sdkp, 2483 "Missing header in MODE_SENSE response\n"); 2484 } 2485 2486 /* that went OK, now ask for the proper length */ 2487 len = data.length; 2488 2489 /* 2490 * We're only interested in the first three bytes, actually. 2491 * But the data cache page is defined for the first 20. 2492 */ 2493 if (len < 3) 2494 goto bad_sense; 2495 else if (len > SD_BUF_SIZE) { 2496 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter " 2497 "data from %d to %d bytes\n", len, SD_BUF_SIZE); 2498 len = SD_BUF_SIZE; 2499 } 2500 if (modepage == 0x3F && sdp->use_192_bytes_for_3f) 2501 len = 192; 2502 2503 /* Get the data */ 2504 if (len > first_len) 2505 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, len, 2506 &data, &sshdr); 2507 2508 if (scsi_status_is_good(res)) { 2509 int offset = data.header_length + data.block_descriptor_length; 2510 2511 while (offset < len) { 2512 u8 page_code = buffer[offset] & 0x3F; 2513 u8 spf = buffer[offset] & 0x40; 2514 2515 if (page_code == 8 || page_code == 6) { 2516 /* We're interested only in the first 3 bytes. 2517 */ 2518 if (len - offset <= 2) { 2519 sd_first_printk(KERN_ERR, sdkp, 2520 "Incomplete mode parameter " 2521 "data\n"); 2522 goto defaults; 2523 } else { 2524 modepage = page_code; 2525 goto Page_found; 2526 } 2527 } else { 2528 /* Go to the next page */ 2529 if (spf && len - offset > 3) 2530 offset += 4 + (buffer[offset+2] << 8) + 2531 buffer[offset+3]; 2532 else if (!spf && len - offset > 1) 2533 offset += 2 + buffer[offset+1]; 2534 else { 2535 sd_first_printk(KERN_ERR, sdkp, 2536 "Incomplete mode " 2537 "parameter data\n"); 2538 goto defaults; 2539 } 2540 } 2541 } 2542 2543 sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n"); 2544 goto defaults; 2545 2546 Page_found: 2547 if (modepage == 8) { 2548 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0); 2549 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0); 2550 } else { 2551 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0); 2552 sdkp->RCD = 0; 2553 } 2554 2555 sdkp->DPOFUA = (data.device_specific & 0x10) != 0; 2556 if (sdp->broken_fua) { 2557 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n"); 2558 sdkp->DPOFUA = 0; 2559 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw) { 2560 sd_first_printk(KERN_NOTICE, sdkp, 2561 "Uses READ/WRITE(6), disabling FUA\n"); 2562 sdkp->DPOFUA = 0; 2563 } 2564 2565 /* No cache flush allowed for write protected devices */ 2566 if (sdkp->WCE && sdkp->write_prot) 2567 sdkp->WCE = 0; 2568 2569 if (sdkp->first_scan || old_wce != sdkp->WCE || 2570 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA) 2571 sd_printk(KERN_NOTICE, sdkp, 2572 "Write cache: %s, read cache: %s, %s\n", 2573 sdkp->WCE ? "enabled" : "disabled", 2574 sdkp->RCD ? "disabled" : "enabled", 2575 sdkp->DPOFUA ? "supports DPO and FUA" 2576 : "doesn't support DPO or FUA"); 2577 2578 return; 2579 } 2580 2581 bad_sense: 2582 if (scsi_sense_valid(&sshdr) && 2583 sshdr.sense_key == ILLEGAL_REQUEST && 2584 sshdr.asc == 0x24 && sshdr.ascq == 0x0) 2585 /* Invalid field in CDB */ 2586 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n"); 2587 else 2588 sd_first_printk(KERN_ERR, sdkp, 2589 "Asking for cache data failed\n"); 2590 2591 defaults: 2592 if (sdp->wce_default_on) { 2593 sd_first_printk(KERN_NOTICE, sdkp, 2594 "Assuming drive cache: write back\n"); 2595 sdkp->WCE = 1; 2596 } else { 2597 sd_first_printk(KERN_ERR, sdkp, 2598 "Assuming drive cache: write through\n"); 2599 sdkp->WCE = 0; 2600 } 2601 sdkp->RCD = 0; 2602 sdkp->DPOFUA = 0; 2603 } 2604 2605 /* 2606 * The ATO bit indicates whether the DIF application tag is available 2607 * for use by the operating system. 2608 */ 2609 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer) 2610 { 2611 int res, offset; 2612 struct scsi_device *sdp = sdkp->device; 2613 struct scsi_mode_data data; 2614 struct scsi_sense_hdr sshdr; 2615 2616 if (sdp->type != TYPE_DISK) 2617 return; 2618 2619 if (sdkp->protection_type == 0) 2620 return; 2621 2622 res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT, 2623 SD_MAX_RETRIES, &data, &sshdr); 2624 2625 if (!scsi_status_is_good(res) || !data.header_length || 2626 data.length < 6) { 2627 sd_first_printk(KERN_WARNING, sdkp, 2628 "getting Control mode page failed, assume no ATO\n"); 2629 2630 if (scsi_sense_valid(&sshdr)) 2631 sd_print_sense_hdr(sdkp, &sshdr); 2632 2633 return; 2634 } 2635 2636 offset = data.header_length + data.block_descriptor_length; 2637 2638 if ((buffer[offset] & 0x3f) != 0x0a) { 2639 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n"); 2640 return; 2641 } 2642 2643 if ((buffer[offset + 5] & 0x80) == 0) 2644 return; 2645 2646 sdkp->ATO = 1; 2647 2648 return; 2649 } 2650 2651 /** 2652 * sd_read_block_limits - Query disk device for preferred I/O sizes. 2653 * @disk: disk to query 2654 */ 2655 static void sd_read_block_limits(struct scsi_disk *sdkp) 2656 { 2657 unsigned int sector_sz = sdkp->device->sector_size; 2658 const int vpd_len = 64; 2659 unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL); 2660 2661 if (!buffer || 2662 /* Block Limits VPD */ 2663 scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len)) 2664 goto out; 2665 2666 blk_queue_io_min(sdkp->disk->queue, 2667 get_unaligned_be16(&buffer[6]) * sector_sz); 2668 2669 sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]); 2670 sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]); 2671 2672 if (buffer[3] == 0x3c) { 2673 unsigned int lba_count, desc_count; 2674 2675 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]); 2676 2677 if (!sdkp->lbpme) 2678 goto out; 2679 2680 lba_count = get_unaligned_be32(&buffer[20]); 2681 desc_count = get_unaligned_be32(&buffer[24]); 2682 2683 if (lba_count && desc_count) 2684 sdkp->max_unmap_blocks = lba_count; 2685 2686 sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]); 2687 2688 if (buffer[32] & 0x80) 2689 sdkp->unmap_alignment = 2690 get_unaligned_be32(&buffer[32]) & ~(1 << 31); 2691 2692 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */ 2693 2694 if (sdkp->max_unmap_blocks) 2695 sd_config_discard(sdkp, SD_LBP_UNMAP); 2696 else 2697 sd_config_discard(sdkp, SD_LBP_WS16); 2698 2699 } else { /* LBP VPD page tells us what to use */ 2700 if (sdkp->lbpu && sdkp->max_unmap_blocks && !sdkp->lbprz) 2701 sd_config_discard(sdkp, SD_LBP_UNMAP); 2702 else if (sdkp->lbpws) 2703 sd_config_discard(sdkp, SD_LBP_WS16); 2704 else if (sdkp->lbpws10) 2705 sd_config_discard(sdkp, SD_LBP_WS10); 2706 else if (sdkp->lbpu && sdkp->max_unmap_blocks) 2707 sd_config_discard(sdkp, SD_LBP_UNMAP); 2708 else 2709 sd_config_discard(sdkp, SD_LBP_DISABLE); 2710 } 2711 } 2712 2713 out: 2714 kfree(buffer); 2715 } 2716 2717 /** 2718 * sd_read_block_characteristics - Query block dev. characteristics 2719 * @disk: disk to query 2720 */ 2721 static void sd_read_block_characteristics(struct scsi_disk *sdkp) 2722 { 2723 unsigned char *buffer; 2724 u16 rot; 2725 const int vpd_len = 64; 2726 2727 buffer = kmalloc(vpd_len, GFP_KERNEL); 2728 2729 if (!buffer || 2730 /* Block Device Characteristics VPD */ 2731 scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len)) 2732 goto out; 2733 2734 rot = get_unaligned_be16(&buffer[4]); 2735 2736 if (rot == 1) { 2737 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, sdkp->disk->queue); 2738 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, sdkp->disk->queue); 2739 } 2740 2741 out: 2742 kfree(buffer); 2743 } 2744 2745 /** 2746 * sd_read_block_provisioning - Query provisioning VPD page 2747 * @disk: disk to query 2748 */ 2749 static void sd_read_block_provisioning(struct scsi_disk *sdkp) 2750 { 2751 unsigned char *buffer; 2752 const int vpd_len = 8; 2753 2754 if (sdkp->lbpme == 0) 2755 return; 2756 2757 buffer = kmalloc(vpd_len, GFP_KERNEL); 2758 2759 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len)) 2760 goto out; 2761 2762 sdkp->lbpvpd = 1; 2763 sdkp->lbpu = (buffer[5] >> 7) & 1; /* UNMAP */ 2764 sdkp->lbpws = (buffer[5] >> 6) & 1; /* WRITE SAME(16) with UNMAP */ 2765 sdkp->lbpws10 = (buffer[5] >> 5) & 1; /* WRITE SAME(10) with UNMAP */ 2766 2767 out: 2768 kfree(buffer); 2769 } 2770 2771 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer) 2772 { 2773 struct scsi_device *sdev = sdkp->device; 2774 2775 if (sdev->host->no_write_same) { 2776 sdev->no_write_same = 1; 2777 2778 return; 2779 } 2780 2781 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) { 2782 /* too large values might cause issues with arcmsr */ 2783 int vpd_buf_len = 64; 2784 2785 sdev->no_report_opcodes = 1; 2786 2787 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION 2788 * CODES is unsupported and the device has an ATA 2789 * Information VPD page (SAT). 2790 */ 2791 if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len)) 2792 sdev->no_write_same = 1; 2793 } 2794 2795 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1) 2796 sdkp->ws16 = 1; 2797 2798 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1) 2799 sdkp->ws10 = 1; 2800 } 2801 2802 /** 2803 * sd_revalidate_disk - called the first time a new disk is seen, 2804 * performs disk spin up, read_capacity, etc. 2805 * @disk: struct gendisk we care about 2806 **/ 2807 static int sd_revalidate_disk(struct gendisk *disk) 2808 { 2809 struct scsi_disk *sdkp = scsi_disk(disk); 2810 struct scsi_device *sdp = sdkp->device; 2811 struct request_queue *q = sdkp->disk->queue; 2812 unsigned char *buffer; 2813 unsigned int dev_max, rw_max; 2814 2815 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, 2816 "sd_revalidate_disk\n")); 2817 2818 /* 2819 * If the device is offline, don't try and read capacity or any 2820 * of the other niceties. 2821 */ 2822 if (!scsi_device_online(sdp)) 2823 goto out; 2824 2825 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL); 2826 if (!buffer) { 2827 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory " 2828 "allocation failure.\n"); 2829 goto out; 2830 } 2831 2832 sd_spinup_disk(sdkp); 2833 2834 /* 2835 * Without media there is no reason to ask; moreover, some devices 2836 * react badly if we do. 2837 */ 2838 if (sdkp->media_present) { 2839 sd_read_capacity(sdkp, buffer); 2840 2841 if (scsi_device_supports_vpd(sdp)) { 2842 sd_read_block_provisioning(sdkp); 2843 sd_read_block_limits(sdkp); 2844 sd_read_block_characteristics(sdkp); 2845 } 2846 2847 sd_read_write_protect_flag(sdkp, buffer); 2848 sd_read_cache_type(sdkp, buffer); 2849 sd_read_app_tag_own(sdkp, buffer); 2850 sd_read_write_same(sdkp, buffer); 2851 } 2852 2853 sdkp->first_scan = 0; 2854 2855 /* 2856 * We now have all cache related info, determine how we deal 2857 * with flush requests. 2858 */ 2859 sd_set_flush_flag(sdkp); 2860 2861 /* Initial block count limit based on CDB TRANSFER LENGTH field size. */ 2862 dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS; 2863 2864 /* Some devices report a maximum block count for READ/WRITE requests. */ 2865 dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks); 2866 q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max); 2867 2868 /* 2869 * Use the device's preferred I/O size for reads and writes 2870 * unless the reported value is unreasonably small, large, or 2871 * garbage. 2872 */ 2873 if (sdkp->opt_xfer_blocks && 2874 sdkp->opt_xfer_blocks <= dev_max && 2875 sdkp->opt_xfer_blocks <= SD_DEF_XFER_BLOCKS && 2876 logical_to_bytes(sdp, sdkp->opt_xfer_blocks) >= PAGE_SIZE) { 2877 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 2878 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks); 2879 } else 2880 rw_max = BLK_DEF_MAX_SECTORS; 2881 2882 /* Combine with controller limits */ 2883 q->limits.max_sectors = min(rw_max, queue_max_hw_sectors(q)); 2884 2885 set_capacity(disk, logical_to_sectors(sdp, sdkp->capacity)); 2886 sd_config_write_same(sdkp); 2887 kfree(buffer); 2888 2889 out: 2890 return 0; 2891 } 2892 2893 /** 2894 * sd_unlock_native_capacity - unlock native capacity 2895 * @disk: struct gendisk to set capacity for 2896 * 2897 * Block layer calls this function if it detects that partitions 2898 * on @disk reach beyond the end of the device. If the SCSI host 2899 * implements ->unlock_native_capacity() method, it's invoked to 2900 * give it a chance to adjust the device capacity. 2901 * 2902 * CONTEXT: 2903 * Defined by block layer. Might sleep. 2904 */ 2905 static void sd_unlock_native_capacity(struct gendisk *disk) 2906 { 2907 struct scsi_device *sdev = scsi_disk(disk)->device; 2908 2909 if (sdev->host->hostt->unlock_native_capacity) 2910 sdev->host->hostt->unlock_native_capacity(sdev); 2911 } 2912 2913 /** 2914 * sd_format_disk_name - format disk name 2915 * @prefix: name prefix - ie. "sd" for SCSI disks 2916 * @index: index of the disk to format name for 2917 * @buf: output buffer 2918 * @buflen: length of the output buffer 2919 * 2920 * SCSI disk names starts at sda. The 26th device is sdz and the 2921 * 27th is sdaa. The last one for two lettered suffix is sdzz 2922 * which is followed by sdaaa. 2923 * 2924 * This is basically 26 base counting with one extra 'nil' entry 2925 * at the beginning from the second digit on and can be 2926 * determined using similar method as 26 base conversion with the 2927 * index shifted -1 after each digit is computed. 2928 * 2929 * CONTEXT: 2930 * Don't care. 2931 * 2932 * RETURNS: 2933 * 0 on success, -errno on failure. 2934 */ 2935 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen) 2936 { 2937 const int base = 'z' - 'a' + 1; 2938 char *begin = buf + strlen(prefix); 2939 char *end = buf + buflen; 2940 char *p; 2941 int unit; 2942 2943 p = end - 1; 2944 *p = '\0'; 2945 unit = base; 2946 do { 2947 if (p == begin) 2948 return -EINVAL; 2949 *--p = 'a' + (index % unit); 2950 index = (index / unit) - 1; 2951 } while (index >= 0); 2952 2953 memmove(begin, p, end - p); 2954 memcpy(buf, prefix, strlen(prefix)); 2955 2956 return 0; 2957 } 2958 2959 /* 2960 * The asynchronous part of sd_probe 2961 */ 2962 static void sd_probe_async(void *data, async_cookie_t cookie) 2963 { 2964 struct scsi_disk *sdkp = data; 2965 struct scsi_device *sdp; 2966 struct gendisk *gd; 2967 u32 index; 2968 struct device *dev; 2969 2970 sdp = sdkp->device; 2971 gd = sdkp->disk; 2972 index = sdkp->index; 2973 dev = &sdp->sdev_gendev; 2974 2975 gd->major = sd_major((index & 0xf0) >> 4); 2976 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00); 2977 gd->minors = SD_MINORS; 2978 2979 gd->fops = &sd_fops; 2980 gd->private_data = &sdkp->driver; 2981 gd->queue = sdkp->device->request_queue; 2982 2983 /* defaults, until the device tells us otherwise */ 2984 sdp->sector_size = 512; 2985 sdkp->capacity = 0; 2986 sdkp->media_present = 1; 2987 sdkp->write_prot = 0; 2988 sdkp->cache_override = 0; 2989 sdkp->WCE = 0; 2990 sdkp->RCD = 0; 2991 sdkp->ATO = 0; 2992 sdkp->first_scan = 1; 2993 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS; 2994 2995 sd_revalidate_disk(gd); 2996 2997 gd->flags = GENHD_FL_EXT_DEVT; 2998 if (sdp->removable) { 2999 gd->flags |= GENHD_FL_REMOVABLE; 3000 gd->events |= DISK_EVENT_MEDIA_CHANGE; 3001 } 3002 3003 blk_pm_runtime_init(sdp->request_queue, dev); 3004 device_add_disk(dev, gd); 3005 if (sdkp->capacity) 3006 sd_dif_config_host(sdkp); 3007 3008 sd_revalidate_disk(gd); 3009 3010 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n", 3011 sdp->removable ? "removable " : ""); 3012 scsi_autopm_put_device(sdp); 3013 put_device(&sdkp->dev); 3014 } 3015 3016 /** 3017 * sd_probe - called during driver initialization and whenever a 3018 * new scsi device is attached to the system. It is called once 3019 * for each scsi device (not just disks) present. 3020 * @dev: pointer to device object 3021 * 3022 * Returns 0 if successful (or not interested in this scsi device 3023 * (e.g. scanner)); 1 when there is an error. 3024 * 3025 * Note: this function is invoked from the scsi mid-level. 3026 * This function sets up the mapping between a given 3027 * <host,channel,id,lun> (found in sdp) and new device name 3028 * (e.g. /dev/sda). More precisely it is the block device major 3029 * and minor number that is chosen here. 3030 * 3031 * Assume sd_probe is not re-entrant (for time being) 3032 * Also think about sd_probe() and sd_remove() running coincidentally. 3033 **/ 3034 static int sd_probe(struct device *dev) 3035 { 3036 struct scsi_device *sdp = to_scsi_device(dev); 3037 struct scsi_disk *sdkp; 3038 struct gendisk *gd; 3039 int index; 3040 int error; 3041 3042 scsi_autopm_get_device(sdp); 3043 error = -ENODEV; 3044 if (sdp->type != TYPE_DISK && sdp->type != TYPE_MOD && sdp->type != TYPE_RBC) 3045 goto out; 3046 3047 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp, 3048 "sd_probe\n")); 3049 3050 error = -ENOMEM; 3051 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL); 3052 if (!sdkp) 3053 goto out; 3054 3055 gd = alloc_disk(SD_MINORS); 3056 if (!gd) 3057 goto out_free; 3058 3059 do { 3060 if (!ida_pre_get(&sd_index_ida, GFP_KERNEL)) 3061 goto out_put; 3062 3063 spin_lock(&sd_index_lock); 3064 error = ida_get_new(&sd_index_ida, &index); 3065 spin_unlock(&sd_index_lock); 3066 } while (error == -EAGAIN); 3067 3068 if (error) { 3069 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n"); 3070 goto out_put; 3071 } 3072 3073 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN); 3074 if (error) { 3075 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n"); 3076 goto out_free_index; 3077 } 3078 3079 sdkp->device = sdp; 3080 sdkp->driver = &sd_template; 3081 sdkp->disk = gd; 3082 sdkp->index = index; 3083 atomic_set(&sdkp->openers, 0); 3084 atomic_set(&sdkp->device->ioerr_cnt, 0); 3085 3086 if (!sdp->request_queue->rq_timeout) { 3087 if (sdp->type != TYPE_MOD) 3088 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT); 3089 else 3090 blk_queue_rq_timeout(sdp->request_queue, 3091 SD_MOD_TIMEOUT); 3092 } 3093 3094 device_initialize(&sdkp->dev); 3095 sdkp->dev.parent = dev; 3096 sdkp->dev.class = &sd_disk_class; 3097 dev_set_name(&sdkp->dev, "%s", dev_name(dev)); 3098 3099 error = device_add(&sdkp->dev); 3100 if (error) 3101 goto out_free_index; 3102 3103 get_device(dev); 3104 dev_set_drvdata(dev, sdkp); 3105 3106 get_device(&sdkp->dev); /* prevent release before async_schedule */ 3107 async_schedule_domain(sd_probe_async, sdkp, &scsi_sd_probe_domain); 3108 3109 return 0; 3110 3111 out_free_index: 3112 spin_lock(&sd_index_lock); 3113 ida_remove(&sd_index_ida, index); 3114 spin_unlock(&sd_index_lock); 3115 out_put: 3116 put_disk(gd); 3117 out_free: 3118 kfree(sdkp); 3119 out: 3120 scsi_autopm_put_device(sdp); 3121 return error; 3122 } 3123 3124 /** 3125 * sd_remove - called whenever a scsi disk (previously recognized by 3126 * sd_probe) is detached from the system. It is called (potentially 3127 * multiple times) during sd module unload. 3128 * @sdp: pointer to mid level scsi device object 3129 * 3130 * Note: this function is invoked from the scsi mid-level. 3131 * This function potentially frees up a device name (e.g. /dev/sdc) 3132 * that could be re-used by a subsequent sd_probe(). 3133 * This function is not called when the built-in sd driver is "exit-ed". 3134 **/ 3135 static int sd_remove(struct device *dev) 3136 { 3137 struct scsi_disk *sdkp; 3138 dev_t devt; 3139 3140 sdkp = dev_get_drvdata(dev); 3141 devt = disk_devt(sdkp->disk); 3142 scsi_autopm_get_device(sdkp->device); 3143 3144 async_synchronize_full_domain(&scsi_sd_pm_domain); 3145 async_synchronize_full_domain(&scsi_sd_probe_domain); 3146 device_del(&sdkp->dev); 3147 del_gendisk(sdkp->disk); 3148 sd_shutdown(dev); 3149 3150 blk_register_region(devt, SD_MINORS, NULL, 3151 sd_default_probe, NULL, NULL); 3152 3153 mutex_lock(&sd_ref_mutex); 3154 dev_set_drvdata(dev, NULL); 3155 put_device(&sdkp->dev); 3156 mutex_unlock(&sd_ref_mutex); 3157 3158 return 0; 3159 } 3160 3161 /** 3162 * scsi_disk_release - Called to free the scsi_disk structure 3163 * @dev: pointer to embedded class device 3164 * 3165 * sd_ref_mutex must be held entering this routine. Because it is 3166 * called on last put, you should always use the scsi_disk_get() 3167 * scsi_disk_put() helpers which manipulate the semaphore directly 3168 * and never do a direct put_device. 3169 **/ 3170 static void scsi_disk_release(struct device *dev) 3171 { 3172 struct scsi_disk *sdkp = to_scsi_disk(dev); 3173 struct gendisk *disk = sdkp->disk; 3174 3175 spin_lock(&sd_index_lock); 3176 ida_remove(&sd_index_ida, sdkp->index); 3177 spin_unlock(&sd_index_lock); 3178 3179 disk->private_data = NULL; 3180 put_disk(disk); 3181 put_device(&sdkp->device->sdev_gendev); 3182 3183 kfree(sdkp); 3184 } 3185 3186 static int sd_start_stop_device(struct scsi_disk *sdkp, int start) 3187 { 3188 unsigned char cmd[6] = { START_STOP }; /* START_VALID */ 3189 struct scsi_sense_hdr sshdr; 3190 struct scsi_device *sdp = sdkp->device; 3191 int res; 3192 3193 if (start) 3194 cmd[4] |= 1; /* START */ 3195 3196 if (sdp->start_stop_pwr_cond) 3197 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */ 3198 3199 if (!scsi_device_online(sdp)) 3200 return -ENODEV; 3201 3202 res = scsi_execute_req_flags(sdp, cmd, DMA_NONE, NULL, 0, &sshdr, 3203 SD_TIMEOUT, SD_MAX_RETRIES, NULL, REQ_PM); 3204 if (res) { 3205 sd_print_result(sdkp, "Start/Stop Unit failed", res); 3206 if (driver_byte(res) & DRIVER_SENSE) 3207 sd_print_sense_hdr(sdkp, &sshdr); 3208 if (scsi_sense_valid(&sshdr) && 3209 /* 0x3a is medium not present */ 3210 sshdr.asc == 0x3a) 3211 res = 0; 3212 } 3213 3214 /* SCSI error codes must not go to the generic layer */ 3215 if (res) 3216 return -EIO; 3217 3218 return 0; 3219 } 3220 3221 /* 3222 * Send a SYNCHRONIZE CACHE instruction down to the device through 3223 * the normal SCSI command structure. Wait for the command to 3224 * complete. 3225 */ 3226 static void sd_shutdown(struct device *dev) 3227 { 3228 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3229 3230 if (!sdkp) 3231 return; /* this can happen */ 3232 3233 if (pm_runtime_suspended(dev)) 3234 return; 3235 3236 if (sdkp->WCE && sdkp->media_present) { 3237 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3238 sd_sync_cache(sdkp); 3239 } 3240 3241 if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) { 3242 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3243 sd_start_stop_device(sdkp, 0); 3244 } 3245 } 3246 3247 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors) 3248 { 3249 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3250 int ret = 0; 3251 3252 if (!sdkp) /* E.g.: runtime suspend following sd_remove() */ 3253 return 0; 3254 3255 if (sdkp->WCE && sdkp->media_present) { 3256 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3257 ret = sd_sync_cache(sdkp); 3258 if (ret) { 3259 /* ignore OFFLINE device */ 3260 if (ret == -ENODEV) 3261 ret = 0; 3262 goto done; 3263 } 3264 } 3265 3266 if (sdkp->device->manage_start_stop) { 3267 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3268 /* an error is not worth aborting a system sleep */ 3269 ret = sd_start_stop_device(sdkp, 0); 3270 if (ignore_stop_errors) 3271 ret = 0; 3272 } 3273 3274 done: 3275 return ret; 3276 } 3277 3278 static int sd_suspend_system(struct device *dev) 3279 { 3280 return sd_suspend_common(dev, true); 3281 } 3282 3283 static int sd_suspend_runtime(struct device *dev) 3284 { 3285 return sd_suspend_common(dev, false); 3286 } 3287 3288 static int sd_resume(struct device *dev) 3289 { 3290 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3291 3292 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */ 3293 return 0; 3294 3295 if (!sdkp->device->manage_start_stop) 3296 return 0; 3297 3298 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n"); 3299 return sd_start_stop_device(sdkp, 1); 3300 } 3301 3302 /** 3303 * init_sd - entry point for this driver (both when built in or when 3304 * a module). 3305 * 3306 * Note: this function registers this driver with the scsi mid-level. 3307 **/ 3308 static int __init init_sd(void) 3309 { 3310 int majors = 0, i, err; 3311 3312 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n")); 3313 3314 for (i = 0; i < SD_MAJORS; i++) { 3315 if (register_blkdev(sd_major(i), "sd") != 0) 3316 continue; 3317 majors++; 3318 blk_register_region(sd_major(i), SD_MINORS, NULL, 3319 sd_default_probe, NULL, NULL); 3320 } 3321 3322 if (!majors) 3323 return -ENODEV; 3324 3325 err = class_register(&sd_disk_class); 3326 if (err) 3327 goto err_out; 3328 3329 sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE, 3330 0, 0, NULL); 3331 if (!sd_cdb_cache) { 3332 printk(KERN_ERR "sd: can't init extended cdb cache\n"); 3333 err = -ENOMEM; 3334 goto err_out_class; 3335 } 3336 3337 sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache); 3338 if (!sd_cdb_pool) { 3339 printk(KERN_ERR "sd: can't init extended cdb pool\n"); 3340 err = -ENOMEM; 3341 goto err_out_cache; 3342 } 3343 3344 err = scsi_register_driver(&sd_template.gendrv); 3345 if (err) 3346 goto err_out_driver; 3347 3348 return 0; 3349 3350 err_out_driver: 3351 mempool_destroy(sd_cdb_pool); 3352 3353 err_out_cache: 3354 kmem_cache_destroy(sd_cdb_cache); 3355 3356 err_out_class: 3357 class_unregister(&sd_disk_class); 3358 err_out: 3359 for (i = 0; i < SD_MAJORS; i++) 3360 unregister_blkdev(sd_major(i), "sd"); 3361 return err; 3362 } 3363 3364 /** 3365 * exit_sd - exit point for this driver (when it is a module). 3366 * 3367 * Note: this function unregisters this driver from the scsi mid-level. 3368 **/ 3369 static void __exit exit_sd(void) 3370 { 3371 int i; 3372 3373 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n")); 3374 3375 scsi_unregister_driver(&sd_template.gendrv); 3376 mempool_destroy(sd_cdb_pool); 3377 kmem_cache_destroy(sd_cdb_cache); 3378 3379 class_unregister(&sd_disk_class); 3380 3381 for (i = 0; i < SD_MAJORS; i++) { 3382 blk_unregister_region(sd_major(i), SD_MINORS); 3383 unregister_blkdev(sd_major(i), "sd"); 3384 } 3385 } 3386 3387 module_init(init_sd); 3388 module_exit(exit_sd); 3389 3390 static void sd_print_sense_hdr(struct scsi_disk *sdkp, 3391 struct scsi_sense_hdr *sshdr) 3392 { 3393 scsi_print_sense_hdr(sdkp->device, 3394 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr); 3395 } 3396 3397 static void sd_print_result(const struct scsi_disk *sdkp, const char *msg, 3398 int result) 3399 { 3400 const char *hb_string = scsi_hostbyte_string(result); 3401 const char *db_string = scsi_driverbyte_string(result); 3402 3403 if (hb_string || db_string) 3404 sd_printk(KERN_INFO, sdkp, 3405 "%s: Result: hostbyte=%s driverbyte=%s\n", msg, 3406 hb_string ? hb_string : "invalid", 3407 db_string ? db_string : "invalid"); 3408 else 3409 sd_printk(KERN_INFO, sdkp, 3410 "%s: Result: hostbyte=0x%02x driverbyte=0x%02x\n", 3411 msg, host_byte(result), driver_byte(result)); 3412 } 3413 3414