xref: /linux/drivers/scsi/sd.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *      sd.c Copyright (C) 1992 Drew Eckhardt
4  *           Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
5  *
6  *      Linux scsi disk driver
7  *              Initial versions: Drew Eckhardt
8  *              Subsequent revisions: Eric Youngdale
9  *	Modification history:
10  *       - Drew Eckhardt <drew@colorado.edu> original
11  *       - Eric Youngdale <eric@andante.org> add scatter-gather, multiple
12  *         outstanding request, and other enhancements.
13  *         Support loadable low-level scsi drivers.
14  *       - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using
15  *         eight major numbers.
16  *       - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
17  *	 - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in
18  *	   sd_init and cleanups.
19  *	 - Alex Davis <letmein@erols.com> Fix problem where partition info
20  *	   not being read in sd_open. Fix problem where removable media
21  *	   could be ejected after sd_open.
22  *	 - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
23  *	 - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox
24  *	   <willy@debian.org>, Kurt Garloff <garloff@suse.de>:
25  *	   Support 32k/1M disks.
26  *
27  *	Logging policy (needs CONFIG_SCSI_LOGGING defined):
28  *	 - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
29  *	 - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
30  *	 - entering sd_ioctl: SCSI_LOG_IOCTL level 1
31  *	 - entering other commands: SCSI_LOG_HLQUEUE level 3
32  *	Note: when the logging level is set by the user, it must be greater
33  *	than the level indicated above to trigger output.
34  */
35 
36 #include <linux/module.h>
37 #include <linux/fs.h>
38 #include <linux/kernel.h>
39 #include <linux/mm.h>
40 #include <linux/bio.h>
41 #include <linux/hdreg.h>
42 #include <linux/errno.h>
43 #include <linux/idr.h>
44 #include <linux/interrupt.h>
45 #include <linux/init.h>
46 #include <linux/blkdev.h>
47 #include <linux/blkpg.h>
48 #include <linux/blk-pm.h>
49 #include <linux/delay.h>
50 #include <linux/major.h>
51 #include <linux/mutex.h>
52 #include <linux/string_helpers.h>
53 #include <linux/slab.h>
54 #include <linux/sed-opal.h>
55 #include <linux/pm_runtime.h>
56 #include <linux/pr.h>
57 #include <linux/t10-pi.h>
58 #include <linux/uaccess.h>
59 #include <asm/unaligned.h>
60 
61 #include <scsi/scsi.h>
62 #include <scsi/scsi_cmnd.h>
63 #include <scsi/scsi_dbg.h>
64 #include <scsi/scsi_device.h>
65 #include <scsi/scsi_driver.h>
66 #include <scsi/scsi_eh.h>
67 #include <scsi/scsi_host.h>
68 #include <scsi/scsi_ioctl.h>
69 #include <scsi/scsicam.h>
70 #include <scsi/scsi_common.h>
71 
72 #include "sd.h"
73 #include "scsi_priv.h"
74 #include "scsi_logging.h"
75 
76 MODULE_AUTHOR("Eric Youngdale");
77 MODULE_DESCRIPTION("SCSI disk (sd) driver");
78 MODULE_LICENSE("GPL");
79 
80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
95 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
96 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
97 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
98 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
99 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
100 
101 #define SD_MINORS	16
102 
103 static void sd_config_discard(struct scsi_disk *, unsigned int);
104 static void sd_config_write_same(struct scsi_disk *);
105 static int  sd_revalidate_disk(struct gendisk *);
106 static void sd_unlock_native_capacity(struct gendisk *disk);
107 static void sd_shutdown(struct device *);
108 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
109 static void scsi_disk_release(struct device *cdev);
110 
111 static DEFINE_IDA(sd_index_ida);
112 
113 static mempool_t *sd_page_pool;
114 static struct lock_class_key sd_bio_compl_lkclass;
115 
116 static const char *sd_cache_types[] = {
117 	"write through", "none", "write back",
118 	"write back, no read (daft)"
119 };
120 
121 static void sd_set_flush_flag(struct scsi_disk *sdkp)
122 {
123 	bool wc = false, fua = false;
124 
125 	if (sdkp->WCE) {
126 		wc = true;
127 		if (sdkp->DPOFUA)
128 			fua = true;
129 	}
130 
131 	blk_queue_write_cache(sdkp->disk->queue, wc, fua);
132 }
133 
134 static ssize_t
135 cache_type_store(struct device *dev, struct device_attribute *attr,
136 		 const char *buf, size_t count)
137 {
138 	int ct, rcd, wce, sp;
139 	struct scsi_disk *sdkp = to_scsi_disk(dev);
140 	struct scsi_device *sdp = sdkp->device;
141 	char buffer[64];
142 	char *buffer_data;
143 	struct scsi_mode_data data;
144 	struct scsi_sense_hdr sshdr;
145 	static const char temp[] = "temporary ";
146 	int len, ret;
147 
148 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
149 		/* no cache control on RBC devices; theoretically they
150 		 * can do it, but there's probably so many exceptions
151 		 * it's not worth the risk */
152 		return -EINVAL;
153 
154 	if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
155 		buf += sizeof(temp) - 1;
156 		sdkp->cache_override = 1;
157 	} else {
158 		sdkp->cache_override = 0;
159 	}
160 
161 	ct = sysfs_match_string(sd_cache_types, buf);
162 	if (ct < 0)
163 		return -EINVAL;
164 
165 	rcd = ct & 0x01 ? 1 : 0;
166 	wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
167 
168 	if (sdkp->cache_override) {
169 		sdkp->WCE = wce;
170 		sdkp->RCD = rcd;
171 		sd_set_flush_flag(sdkp);
172 		return count;
173 	}
174 
175 	if (scsi_mode_sense(sdp, 0x08, 8, 0, buffer, sizeof(buffer), SD_TIMEOUT,
176 			    sdkp->max_retries, &data, NULL))
177 		return -EINVAL;
178 	len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
179 		  data.block_descriptor_length);
180 	buffer_data = buffer + data.header_length +
181 		data.block_descriptor_length;
182 	buffer_data[2] &= ~0x05;
183 	buffer_data[2] |= wce << 2 | rcd;
184 	sp = buffer_data[0] & 0x80 ? 1 : 0;
185 	buffer_data[0] &= ~0x80;
186 
187 	/*
188 	 * Ensure WP, DPOFUA, and RESERVED fields are cleared in
189 	 * received mode parameter buffer before doing MODE SELECT.
190 	 */
191 	data.device_specific = 0;
192 
193 	ret = scsi_mode_select(sdp, 1, sp, buffer_data, len, SD_TIMEOUT,
194 			       sdkp->max_retries, &data, &sshdr);
195 	if (ret) {
196 		if (ret > 0 && scsi_sense_valid(&sshdr))
197 			sd_print_sense_hdr(sdkp, &sshdr);
198 		return -EINVAL;
199 	}
200 	sd_revalidate_disk(sdkp->disk);
201 	return count;
202 }
203 
204 static ssize_t
205 manage_start_stop_show(struct device *dev,
206 		       struct device_attribute *attr, char *buf)
207 {
208 	struct scsi_disk *sdkp = to_scsi_disk(dev);
209 	struct scsi_device *sdp = sdkp->device;
210 
211 	return sysfs_emit(buf, "%u\n",
212 			  sdp->manage_system_start_stop &&
213 			  sdp->manage_runtime_start_stop &&
214 			  sdp->manage_shutdown);
215 }
216 static DEVICE_ATTR_RO(manage_start_stop);
217 
218 static ssize_t
219 manage_system_start_stop_show(struct device *dev,
220 			      struct device_attribute *attr, char *buf)
221 {
222 	struct scsi_disk *sdkp = to_scsi_disk(dev);
223 	struct scsi_device *sdp = sdkp->device;
224 
225 	return sysfs_emit(buf, "%u\n", sdp->manage_system_start_stop);
226 }
227 
228 static ssize_t
229 manage_system_start_stop_store(struct device *dev,
230 			       struct device_attribute *attr,
231 			       const char *buf, size_t count)
232 {
233 	struct scsi_disk *sdkp = to_scsi_disk(dev);
234 	struct scsi_device *sdp = sdkp->device;
235 	bool v;
236 
237 	if (!capable(CAP_SYS_ADMIN))
238 		return -EACCES;
239 
240 	if (kstrtobool(buf, &v))
241 		return -EINVAL;
242 
243 	sdp->manage_system_start_stop = v;
244 
245 	return count;
246 }
247 static DEVICE_ATTR_RW(manage_system_start_stop);
248 
249 static ssize_t
250 manage_runtime_start_stop_show(struct device *dev,
251 			       struct device_attribute *attr, char *buf)
252 {
253 	struct scsi_disk *sdkp = to_scsi_disk(dev);
254 	struct scsi_device *sdp = sdkp->device;
255 
256 	return sysfs_emit(buf, "%u\n", sdp->manage_runtime_start_stop);
257 }
258 
259 static ssize_t
260 manage_runtime_start_stop_store(struct device *dev,
261 				struct device_attribute *attr,
262 				const char *buf, size_t count)
263 {
264 	struct scsi_disk *sdkp = to_scsi_disk(dev);
265 	struct scsi_device *sdp = sdkp->device;
266 	bool v;
267 
268 	if (!capable(CAP_SYS_ADMIN))
269 		return -EACCES;
270 
271 	if (kstrtobool(buf, &v))
272 		return -EINVAL;
273 
274 	sdp->manage_runtime_start_stop = v;
275 
276 	return count;
277 }
278 static DEVICE_ATTR_RW(manage_runtime_start_stop);
279 
280 static ssize_t manage_shutdown_show(struct device *dev,
281 				    struct device_attribute *attr, char *buf)
282 {
283 	struct scsi_disk *sdkp = to_scsi_disk(dev);
284 	struct scsi_device *sdp = sdkp->device;
285 
286 	return sysfs_emit(buf, "%u\n", sdp->manage_shutdown);
287 }
288 
289 static ssize_t manage_shutdown_store(struct device *dev,
290 				     struct device_attribute *attr,
291 				     const char *buf, size_t count)
292 {
293 	struct scsi_disk *sdkp = to_scsi_disk(dev);
294 	struct scsi_device *sdp = sdkp->device;
295 	bool v;
296 
297 	if (!capable(CAP_SYS_ADMIN))
298 		return -EACCES;
299 
300 	if (kstrtobool(buf, &v))
301 		return -EINVAL;
302 
303 	sdp->manage_shutdown = v;
304 
305 	return count;
306 }
307 static DEVICE_ATTR_RW(manage_shutdown);
308 
309 static ssize_t
310 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
311 {
312 	struct scsi_disk *sdkp = to_scsi_disk(dev);
313 
314 	return sprintf(buf, "%u\n", sdkp->device->allow_restart);
315 }
316 
317 static ssize_t
318 allow_restart_store(struct device *dev, struct device_attribute *attr,
319 		    const char *buf, size_t count)
320 {
321 	bool v;
322 	struct scsi_disk *sdkp = to_scsi_disk(dev);
323 	struct scsi_device *sdp = sdkp->device;
324 
325 	if (!capable(CAP_SYS_ADMIN))
326 		return -EACCES;
327 
328 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
329 		return -EINVAL;
330 
331 	if (kstrtobool(buf, &v))
332 		return -EINVAL;
333 
334 	sdp->allow_restart = v;
335 
336 	return count;
337 }
338 static DEVICE_ATTR_RW(allow_restart);
339 
340 static ssize_t
341 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
342 {
343 	struct scsi_disk *sdkp = to_scsi_disk(dev);
344 	int ct = sdkp->RCD + 2*sdkp->WCE;
345 
346 	return sprintf(buf, "%s\n", sd_cache_types[ct]);
347 }
348 static DEVICE_ATTR_RW(cache_type);
349 
350 static ssize_t
351 FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
352 {
353 	struct scsi_disk *sdkp = to_scsi_disk(dev);
354 
355 	return sprintf(buf, "%u\n", sdkp->DPOFUA);
356 }
357 static DEVICE_ATTR_RO(FUA);
358 
359 static ssize_t
360 protection_type_show(struct device *dev, struct device_attribute *attr,
361 		     char *buf)
362 {
363 	struct scsi_disk *sdkp = to_scsi_disk(dev);
364 
365 	return sprintf(buf, "%u\n", sdkp->protection_type);
366 }
367 
368 static ssize_t
369 protection_type_store(struct device *dev, struct device_attribute *attr,
370 		      const char *buf, size_t count)
371 {
372 	struct scsi_disk *sdkp = to_scsi_disk(dev);
373 	unsigned int val;
374 	int err;
375 
376 	if (!capable(CAP_SYS_ADMIN))
377 		return -EACCES;
378 
379 	err = kstrtouint(buf, 10, &val);
380 
381 	if (err)
382 		return err;
383 
384 	if (val <= T10_PI_TYPE3_PROTECTION)
385 		sdkp->protection_type = val;
386 
387 	return count;
388 }
389 static DEVICE_ATTR_RW(protection_type);
390 
391 static ssize_t
392 protection_mode_show(struct device *dev, struct device_attribute *attr,
393 		     char *buf)
394 {
395 	struct scsi_disk *sdkp = to_scsi_disk(dev);
396 	struct scsi_device *sdp = sdkp->device;
397 	unsigned int dif, dix;
398 
399 	dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
400 	dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
401 
402 	if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
403 		dif = 0;
404 		dix = 1;
405 	}
406 
407 	if (!dif && !dix)
408 		return sprintf(buf, "none\n");
409 
410 	return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
411 }
412 static DEVICE_ATTR_RO(protection_mode);
413 
414 static ssize_t
415 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
416 {
417 	struct scsi_disk *sdkp = to_scsi_disk(dev);
418 
419 	return sprintf(buf, "%u\n", sdkp->ATO);
420 }
421 static DEVICE_ATTR_RO(app_tag_own);
422 
423 static ssize_t
424 thin_provisioning_show(struct device *dev, struct device_attribute *attr,
425 		       char *buf)
426 {
427 	struct scsi_disk *sdkp = to_scsi_disk(dev);
428 
429 	return sprintf(buf, "%u\n", sdkp->lbpme);
430 }
431 static DEVICE_ATTR_RO(thin_provisioning);
432 
433 /* sysfs_match_string() requires dense arrays */
434 static const char *lbp_mode[] = {
435 	[SD_LBP_FULL]		= "full",
436 	[SD_LBP_UNMAP]		= "unmap",
437 	[SD_LBP_WS16]		= "writesame_16",
438 	[SD_LBP_WS10]		= "writesame_10",
439 	[SD_LBP_ZERO]		= "writesame_zero",
440 	[SD_LBP_DISABLE]	= "disabled",
441 };
442 
443 static ssize_t
444 provisioning_mode_show(struct device *dev, struct device_attribute *attr,
445 		       char *buf)
446 {
447 	struct scsi_disk *sdkp = to_scsi_disk(dev);
448 
449 	return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
450 }
451 
452 static ssize_t
453 provisioning_mode_store(struct device *dev, struct device_attribute *attr,
454 			const char *buf, size_t count)
455 {
456 	struct scsi_disk *sdkp = to_scsi_disk(dev);
457 	struct scsi_device *sdp = sdkp->device;
458 	int mode;
459 
460 	if (!capable(CAP_SYS_ADMIN))
461 		return -EACCES;
462 
463 	if (sd_is_zoned(sdkp)) {
464 		sd_config_discard(sdkp, SD_LBP_DISABLE);
465 		return count;
466 	}
467 
468 	if (sdp->type != TYPE_DISK)
469 		return -EINVAL;
470 
471 	mode = sysfs_match_string(lbp_mode, buf);
472 	if (mode < 0)
473 		return -EINVAL;
474 
475 	sd_config_discard(sdkp, mode);
476 
477 	return count;
478 }
479 static DEVICE_ATTR_RW(provisioning_mode);
480 
481 /* sysfs_match_string() requires dense arrays */
482 static const char *zeroing_mode[] = {
483 	[SD_ZERO_WRITE]		= "write",
484 	[SD_ZERO_WS]		= "writesame",
485 	[SD_ZERO_WS16_UNMAP]	= "writesame_16_unmap",
486 	[SD_ZERO_WS10_UNMAP]	= "writesame_10_unmap",
487 };
488 
489 static ssize_t
490 zeroing_mode_show(struct device *dev, struct device_attribute *attr,
491 		  char *buf)
492 {
493 	struct scsi_disk *sdkp = to_scsi_disk(dev);
494 
495 	return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
496 }
497 
498 static ssize_t
499 zeroing_mode_store(struct device *dev, struct device_attribute *attr,
500 		   const char *buf, size_t count)
501 {
502 	struct scsi_disk *sdkp = to_scsi_disk(dev);
503 	int mode;
504 
505 	if (!capable(CAP_SYS_ADMIN))
506 		return -EACCES;
507 
508 	mode = sysfs_match_string(zeroing_mode, buf);
509 	if (mode < 0)
510 		return -EINVAL;
511 
512 	sdkp->zeroing_mode = mode;
513 
514 	return count;
515 }
516 static DEVICE_ATTR_RW(zeroing_mode);
517 
518 static ssize_t
519 max_medium_access_timeouts_show(struct device *dev,
520 				struct device_attribute *attr, char *buf)
521 {
522 	struct scsi_disk *sdkp = to_scsi_disk(dev);
523 
524 	return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
525 }
526 
527 static ssize_t
528 max_medium_access_timeouts_store(struct device *dev,
529 				 struct device_attribute *attr, const char *buf,
530 				 size_t count)
531 {
532 	struct scsi_disk *sdkp = to_scsi_disk(dev);
533 	int err;
534 
535 	if (!capable(CAP_SYS_ADMIN))
536 		return -EACCES;
537 
538 	err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
539 
540 	return err ? err : count;
541 }
542 static DEVICE_ATTR_RW(max_medium_access_timeouts);
543 
544 static ssize_t
545 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
546 			   char *buf)
547 {
548 	struct scsi_disk *sdkp = to_scsi_disk(dev);
549 
550 	return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
551 }
552 
553 static ssize_t
554 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
555 			    const char *buf, size_t count)
556 {
557 	struct scsi_disk *sdkp = to_scsi_disk(dev);
558 	struct scsi_device *sdp = sdkp->device;
559 	unsigned long max;
560 	int err;
561 
562 	if (!capable(CAP_SYS_ADMIN))
563 		return -EACCES;
564 
565 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
566 		return -EINVAL;
567 
568 	err = kstrtoul(buf, 10, &max);
569 
570 	if (err)
571 		return err;
572 
573 	if (max == 0)
574 		sdp->no_write_same = 1;
575 	else if (max <= SD_MAX_WS16_BLOCKS) {
576 		sdp->no_write_same = 0;
577 		sdkp->max_ws_blocks = max;
578 	}
579 
580 	sd_config_write_same(sdkp);
581 
582 	return count;
583 }
584 static DEVICE_ATTR_RW(max_write_same_blocks);
585 
586 static ssize_t
587 zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf)
588 {
589 	struct scsi_disk *sdkp = to_scsi_disk(dev);
590 
591 	if (sdkp->device->type == TYPE_ZBC)
592 		return sprintf(buf, "host-managed\n");
593 	if (sdkp->zoned == 1)
594 		return sprintf(buf, "host-aware\n");
595 	if (sdkp->zoned == 2)
596 		return sprintf(buf, "drive-managed\n");
597 	return sprintf(buf, "none\n");
598 }
599 static DEVICE_ATTR_RO(zoned_cap);
600 
601 static ssize_t
602 max_retries_store(struct device *dev, struct device_attribute *attr,
603 		  const char *buf, size_t count)
604 {
605 	struct scsi_disk *sdkp = to_scsi_disk(dev);
606 	struct scsi_device *sdev = sdkp->device;
607 	int retries, err;
608 
609 	err = kstrtoint(buf, 10, &retries);
610 	if (err)
611 		return err;
612 
613 	if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) {
614 		sdkp->max_retries = retries;
615 		return count;
616 	}
617 
618 	sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n",
619 		    SD_MAX_RETRIES);
620 	return -EINVAL;
621 }
622 
623 static ssize_t
624 max_retries_show(struct device *dev, struct device_attribute *attr,
625 		 char *buf)
626 {
627 	struct scsi_disk *sdkp = to_scsi_disk(dev);
628 
629 	return sprintf(buf, "%d\n", sdkp->max_retries);
630 }
631 
632 static DEVICE_ATTR_RW(max_retries);
633 
634 static struct attribute *sd_disk_attrs[] = {
635 	&dev_attr_cache_type.attr,
636 	&dev_attr_FUA.attr,
637 	&dev_attr_allow_restart.attr,
638 	&dev_attr_manage_start_stop.attr,
639 	&dev_attr_manage_system_start_stop.attr,
640 	&dev_attr_manage_runtime_start_stop.attr,
641 	&dev_attr_manage_shutdown.attr,
642 	&dev_attr_protection_type.attr,
643 	&dev_attr_protection_mode.attr,
644 	&dev_attr_app_tag_own.attr,
645 	&dev_attr_thin_provisioning.attr,
646 	&dev_attr_provisioning_mode.attr,
647 	&dev_attr_zeroing_mode.attr,
648 	&dev_attr_max_write_same_blocks.attr,
649 	&dev_attr_max_medium_access_timeouts.attr,
650 	&dev_attr_zoned_cap.attr,
651 	&dev_attr_max_retries.attr,
652 	NULL,
653 };
654 ATTRIBUTE_GROUPS(sd_disk);
655 
656 static struct class sd_disk_class = {
657 	.name		= "scsi_disk",
658 	.dev_release	= scsi_disk_release,
659 	.dev_groups	= sd_disk_groups,
660 };
661 
662 /*
663  * Don't request a new module, as that could deadlock in multipath
664  * environment.
665  */
666 static void sd_default_probe(dev_t devt)
667 {
668 }
669 
670 /*
671  * Device no to disk mapping:
672  *
673  *       major         disc2     disc  p1
674  *   |............|.............|....|....| <- dev_t
675  *    31        20 19          8 7  4 3  0
676  *
677  * Inside a major, we have 16k disks, however mapped non-
678  * contiguously. The first 16 disks are for major0, the next
679  * ones with major1, ... Disk 256 is for major0 again, disk 272
680  * for major1, ...
681  * As we stay compatible with our numbering scheme, we can reuse
682  * the well-know SCSI majors 8, 65--71, 136--143.
683  */
684 static int sd_major(int major_idx)
685 {
686 	switch (major_idx) {
687 	case 0:
688 		return SCSI_DISK0_MAJOR;
689 	case 1 ... 7:
690 		return SCSI_DISK1_MAJOR + major_idx - 1;
691 	case 8 ... 15:
692 		return SCSI_DISK8_MAJOR + major_idx - 8;
693 	default:
694 		BUG();
695 		return 0;	/* shut up gcc */
696 	}
697 }
698 
699 #ifdef CONFIG_BLK_SED_OPAL
700 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
701 		size_t len, bool send)
702 {
703 	struct scsi_disk *sdkp = data;
704 	struct scsi_device *sdev = sdkp->device;
705 	u8 cdb[12] = { 0, };
706 	const struct scsi_exec_args exec_args = {
707 		.req_flags = BLK_MQ_REQ_PM,
708 	};
709 	int ret;
710 
711 	cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
712 	cdb[1] = secp;
713 	put_unaligned_be16(spsp, &cdb[2]);
714 	put_unaligned_be32(len, &cdb[6]);
715 
716 	ret = scsi_execute_cmd(sdev, cdb, send ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN,
717 			       buffer, len, SD_TIMEOUT, sdkp->max_retries,
718 			       &exec_args);
719 	return ret <= 0 ? ret : -EIO;
720 }
721 #endif /* CONFIG_BLK_SED_OPAL */
722 
723 /*
724  * Look up the DIX operation based on whether the command is read or
725  * write and whether dix and dif are enabled.
726  */
727 static unsigned int sd_prot_op(bool write, bool dix, bool dif)
728 {
729 	/* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */
730 	static const unsigned int ops[] = {	/* wrt dix dif */
731 		SCSI_PROT_NORMAL,		/*  0	0   0  */
732 		SCSI_PROT_READ_STRIP,		/*  0	0   1  */
733 		SCSI_PROT_READ_INSERT,		/*  0	1   0  */
734 		SCSI_PROT_READ_PASS,		/*  0	1   1  */
735 		SCSI_PROT_NORMAL,		/*  1	0   0  */
736 		SCSI_PROT_WRITE_INSERT,		/*  1	0   1  */
737 		SCSI_PROT_WRITE_STRIP,		/*  1	1   0  */
738 		SCSI_PROT_WRITE_PASS,		/*  1	1   1  */
739 	};
740 
741 	return ops[write << 2 | dix << 1 | dif];
742 }
743 
744 /*
745  * Returns a mask of the protection flags that are valid for a given DIX
746  * operation.
747  */
748 static unsigned int sd_prot_flag_mask(unsigned int prot_op)
749 {
750 	static const unsigned int flag_mask[] = {
751 		[SCSI_PROT_NORMAL]		= 0,
752 
753 		[SCSI_PROT_READ_STRIP]		= SCSI_PROT_TRANSFER_PI |
754 						  SCSI_PROT_GUARD_CHECK |
755 						  SCSI_PROT_REF_CHECK |
756 						  SCSI_PROT_REF_INCREMENT,
757 
758 		[SCSI_PROT_READ_INSERT]		= SCSI_PROT_REF_INCREMENT |
759 						  SCSI_PROT_IP_CHECKSUM,
760 
761 		[SCSI_PROT_READ_PASS]		= SCSI_PROT_TRANSFER_PI |
762 						  SCSI_PROT_GUARD_CHECK |
763 						  SCSI_PROT_REF_CHECK |
764 						  SCSI_PROT_REF_INCREMENT |
765 						  SCSI_PROT_IP_CHECKSUM,
766 
767 		[SCSI_PROT_WRITE_INSERT]	= SCSI_PROT_TRANSFER_PI |
768 						  SCSI_PROT_REF_INCREMENT,
769 
770 		[SCSI_PROT_WRITE_STRIP]		= SCSI_PROT_GUARD_CHECK |
771 						  SCSI_PROT_REF_CHECK |
772 						  SCSI_PROT_REF_INCREMENT |
773 						  SCSI_PROT_IP_CHECKSUM,
774 
775 		[SCSI_PROT_WRITE_PASS]		= SCSI_PROT_TRANSFER_PI |
776 						  SCSI_PROT_GUARD_CHECK |
777 						  SCSI_PROT_REF_CHECK |
778 						  SCSI_PROT_REF_INCREMENT |
779 						  SCSI_PROT_IP_CHECKSUM,
780 	};
781 
782 	return flag_mask[prot_op];
783 }
784 
785 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
786 					   unsigned int dix, unsigned int dif)
787 {
788 	struct request *rq = scsi_cmd_to_rq(scmd);
789 	struct bio *bio = rq->bio;
790 	unsigned int prot_op = sd_prot_op(rq_data_dir(rq), dix, dif);
791 	unsigned int protect = 0;
792 
793 	if (dix) {				/* DIX Type 0, 1, 2, 3 */
794 		if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
795 			scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
796 
797 		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
798 			scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
799 	}
800 
801 	if (dif != T10_PI_TYPE3_PROTECTION) {	/* DIX/DIF Type 0, 1, 2 */
802 		scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
803 
804 		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
805 			scmd->prot_flags |= SCSI_PROT_REF_CHECK;
806 	}
807 
808 	if (dif) {				/* DIX/DIF Type 1, 2, 3 */
809 		scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
810 
811 		if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
812 			protect = 3 << 5;	/* Disable target PI checking */
813 		else
814 			protect = 1 << 5;	/* Enable target PI checking */
815 	}
816 
817 	scsi_set_prot_op(scmd, prot_op);
818 	scsi_set_prot_type(scmd, dif);
819 	scmd->prot_flags &= sd_prot_flag_mask(prot_op);
820 
821 	return protect;
822 }
823 
824 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
825 {
826 	struct request_queue *q = sdkp->disk->queue;
827 	unsigned int logical_block_size = sdkp->device->sector_size;
828 	unsigned int max_blocks = 0;
829 
830 	q->limits.discard_alignment =
831 		sdkp->unmap_alignment * logical_block_size;
832 	q->limits.discard_granularity =
833 		max(sdkp->physical_block_size,
834 		    sdkp->unmap_granularity * logical_block_size);
835 	sdkp->provisioning_mode = mode;
836 
837 	switch (mode) {
838 
839 	case SD_LBP_FULL:
840 	case SD_LBP_DISABLE:
841 		blk_queue_max_discard_sectors(q, 0);
842 		return;
843 
844 	case SD_LBP_UNMAP:
845 		max_blocks = min_not_zero(sdkp->max_unmap_blocks,
846 					  (u32)SD_MAX_WS16_BLOCKS);
847 		break;
848 
849 	case SD_LBP_WS16:
850 		if (sdkp->device->unmap_limit_for_ws)
851 			max_blocks = sdkp->max_unmap_blocks;
852 		else
853 			max_blocks = sdkp->max_ws_blocks;
854 
855 		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
856 		break;
857 
858 	case SD_LBP_WS10:
859 		if (sdkp->device->unmap_limit_for_ws)
860 			max_blocks = sdkp->max_unmap_blocks;
861 		else
862 			max_blocks = sdkp->max_ws_blocks;
863 
864 		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
865 		break;
866 
867 	case SD_LBP_ZERO:
868 		max_blocks = min_not_zero(sdkp->max_ws_blocks,
869 					  (u32)SD_MAX_WS10_BLOCKS);
870 		break;
871 	}
872 
873 	blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
874 }
875 
876 static void *sd_set_special_bvec(struct request *rq, unsigned int data_len)
877 {
878 	struct page *page;
879 
880 	page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
881 	if (!page)
882 		return NULL;
883 	clear_highpage(page);
884 	bvec_set_page(&rq->special_vec, page, data_len, 0);
885 	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
886 	return bvec_virt(&rq->special_vec);
887 }
888 
889 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
890 {
891 	struct scsi_device *sdp = cmd->device;
892 	struct request *rq = scsi_cmd_to_rq(cmd);
893 	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
894 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
895 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
896 	unsigned int data_len = 24;
897 	char *buf;
898 
899 	buf = sd_set_special_bvec(rq, data_len);
900 	if (!buf)
901 		return BLK_STS_RESOURCE;
902 
903 	cmd->cmd_len = 10;
904 	cmd->cmnd[0] = UNMAP;
905 	cmd->cmnd[8] = 24;
906 
907 	put_unaligned_be16(6 + 16, &buf[0]);
908 	put_unaligned_be16(16, &buf[2]);
909 	put_unaligned_be64(lba, &buf[8]);
910 	put_unaligned_be32(nr_blocks, &buf[16]);
911 
912 	cmd->allowed = sdkp->max_retries;
913 	cmd->transfersize = data_len;
914 	rq->timeout = SD_TIMEOUT;
915 
916 	return scsi_alloc_sgtables(cmd);
917 }
918 
919 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd,
920 		bool unmap)
921 {
922 	struct scsi_device *sdp = cmd->device;
923 	struct request *rq = scsi_cmd_to_rq(cmd);
924 	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
925 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
926 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
927 	u32 data_len = sdp->sector_size;
928 
929 	if (!sd_set_special_bvec(rq, data_len))
930 		return BLK_STS_RESOURCE;
931 
932 	cmd->cmd_len = 16;
933 	cmd->cmnd[0] = WRITE_SAME_16;
934 	if (unmap)
935 		cmd->cmnd[1] = 0x8; /* UNMAP */
936 	put_unaligned_be64(lba, &cmd->cmnd[2]);
937 	put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
938 
939 	cmd->allowed = sdkp->max_retries;
940 	cmd->transfersize = data_len;
941 	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
942 
943 	return scsi_alloc_sgtables(cmd);
944 }
945 
946 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd,
947 		bool unmap)
948 {
949 	struct scsi_device *sdp = cmd->device;
950 	struct request *rq = scsi_cmd_to_rq(cmd);
951 	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
952 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
953 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
954 	u32 data_len = sdp->sector_size;
955 
956 	if (!sd_set_special_bvec(rq, data_len))
957 		return BLK_STS_RESOURCE;
958 
959 	cmd->cmd_len = 10;
960 	cmd->cmnd[0] = WRITE_SAME;
961 	if (unmap)
962 		cmd->cmnd[1] = 0x8; /* UNMAP */
963 	put_unaligned_be32(lba, &cmd->cmnd[2]);
964 	put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
965 
966 	cmd->allowed = sdkp->max_retries;
967 	cmd->transfersize = data_len;
968 	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
969 
970 	return scsi_alloc_sgtables(cmd);
971 }
972 
973 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
974 {
975 	struct request *rq = scsi_cmd_to_rq(cmd);
976 	struct scsi_device *sdp = cmd->device;
977 	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
978 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
979 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
980 
981 	if (!(rq->cmd_flags & REQ_NOUNMAP)) {
982 		switch (sdkp->zeroing_mode) {
983 		case SD_ZERO_WS16_UNMAP:
984 			return sd_setup_write_same16_cmnd(cmd, true);
985 		case SD_ZERO_WS10_UNMAP:
986 			return sd_setup_write_same10_cmnd(cmd, true);
987 		}
988 	}
989 
990 	if (sdp->no_write_same) {
991 		rq->rq_flags |= RQF_QUIET;
992 		return BLK_STS_TARGET;
993 	}
994 
995 	if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff)
996 		return sd_setup_write_same16_cmnd(cmd, false);
997 
998 	return sd_setup_write_same10_cmnd(cmd, false);
999 }
1000 
1001 static void sd_config_write_same(struct scsi_disk *sdkp)
1002 {
1003 	struct request_queue *q = sdkp->disk->queue;
1004 	unsigned int logical_block_size = sdkp->device->sector_size;
1005 
1006 	if (sdkp->device->no_write_same) {
1007 		sdkp->max_ws_blocks = 0;
1008 		goto out;
1009 	}
1010 
1011 	/* Some devices can not handle block counts above 0xffff despite
1012 	 * supporting WRITE SAME(16). Consequently we default to 64k
1013 	 * blocks per I/O unless the device explicitly advertises a
1014 	 * bigger limit.
1015 	 */
1016 	if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
1017 		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
1018 						   (u32)SD_MAX_WS16_BLOCKS);
1019 	else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
1020 		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
1021 						   (u32)SD_MAX_WS10_BLOCKS);
1022 	else {
1023 		sdkp->device->no_write_same = 1;
1024 		sdkp->max_ws_blocks = 0;
1025 	}
1026 
1027 	if (sdkp->lbprz && sdkp->lbpws)
1028 		sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
1029 	else if (sdkp->lbprz && sdkp->lbpws10)
1030 		sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
1031 	else if (sdkp->max_ws_blocks)
1032 		sdkp->zeroing_mode = SD_ZERO_WS;
1033 	else
1034 		sdkp->zeroing_mode = SD_ZERO_WRITE;
1035 
1036 	if (sdkp->max_ws_blocks &&
1037 	    sdkp->physical_block_size > logical_block_size) {
1038 		/*
1039 		 * Reporting a maximum number of blocks that is not aligned
1040 		 * on the device physical size would cause a large write same
1041 		 * request to be split into physically unaligned chunks by
1042 		 * __blkdev_issue_write_zeroes() even if the caller of this
1043 		 * functions took care to align the large request. So make sure
1044 		 * the maximum reported is aligned to the device physical block
1045 		 * size. This is only an optional optimization for regular
1046 		 * disks, but this is mandatory to avoid failure of large write
1047 		 * same requests directed at sequential write required zones of
1048 		 * host-managed ZBC disks.
1049 		 */
1050 		sdkp->max_ws_blocks =
1051 			round_down(sdkp->max_ws_blocks,
1052 				   bytes_to_logical(sdkp->device,
1053 						    sdkp->physical_block_size));
1054 	}
1055 
1056 out:
1057 	blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks *
1058 					 (logical_block_size >> 9));
1059 }
1060 
1061 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
1062 {
1063 	struct request *rq = scsi_cmd_to_rq(cmd);
1064 	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1065 
1066 	/* flush requests don't perform I/O, zero the S/G table */
1067 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1068 
1069 	if (cmd->device->use_16_for_sync) {
1070 		cmd->cmnd[0] = SYNCHRONIZE_CACHE_16;
1071 		cmd->cmd_len = 16;
1072 	} else {
1073 		cmd->cmnd[0] = SYNCHRONIZE_CACHE;
1074 		cmd->cmd_len = 10;
1075 	}
1076 	cmd->transfersize = 0;
1077 	cmd->allowed = sdkp->max_retries;
1078 
1079 	rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
1080 	return BLK_STS_OK;
1081 }
1082 
1083 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write,
1084 				       sector_t lba, unsigned int nr_blocks,
1085 				       unsigned char flags, unsigned int dld)
1086 {
1087 	cmd->cmd_len = SD_EXT_CDB_SIZE;
1088 	cmd->cmnd[0]  = VARIABLE_LENGTH_CMD;
1089 	cmd->cmnd[7]  = 0x18; /* Additional CDB len */
1090 	cmd->cmnd[9]  = write ? WRITE_32 : READ_32;
1091 	cmd->cmnd[10] = flags;
1092 	cmd->cmnd[11] = dld & 0x07;
1093 	put_unaligned_be64(lba, &cmd->cmnd[12]);
1094 	put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */
1095 	put_unaligned_be32(nr_blocks, &cmd->cmnd[28]);
1096 
1097 	return BLK_STS_OK;
1098 }
1099 
1100 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write,
1101 				       sector_t lba, unsigned int nr_blocks,
1102 				       unsigned char flags, unsigned int dld)
1103 {
1104 	cmd->cmd_len  = 16;
1105 	cmd->cmnd[0]  = write ? WRITE_16 : READ_16;
1106 	cmd->cmnd[1]  = flags | ((dld >> 2) & 0x01);
1107 	cmd->cmnd[14] = (dld & 0x03) << 6;
1108 	cmd->cmnd[15] = 0;
1109 	put_unaligned_be64(lba, &cmd->cmnd[2]);
1110 	put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1111 
1112 	return BLK_STS_OK;
1113 }
1114 
1115 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write,
1116 				       sector_t lba, unsigned int nr_blocks,
1117 				       unsigned char flags)
1118 {
1119 	cmd->cmd_len = 10;
1120 	cmd->cmnd[0] = write ? WRITE_10 : READ_10;
1121 	cmd->cmnd[1] = flags;
1122 	cmd->cmnd[6] = 0;
1123 	cmd->cmnd[9] = 0;
1124 	put_unaligned_be32(lba, &cmd->cmnd[2]);
1125 	put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1126 
1127 	return BLK_STS_OK;
1128 }
1129 
1130 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write,
1131 				      sector_t lba, unsigned int nr_blocks,
1132 				      unsigned char flags)
1133 {
1134 	/* Avoid that 0 blocks gets translated into 256 blocks. */
1135 	if (WARN_ON_ONCE(nr_blocks == 0))
1136 		return BLK_STS_IOERR;
1137 
1138 	if (unlikely(flags & 0x8)) {
1139 		/*
1140 		 * This happens only if this drive failed 10byte rw
1141 		 * command with ILLEGAL_REQUEST during operation and
1142 		 * thus turned off use_10_for_rw.
1143 		 */
1144 		scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n");
1145 		return BLK_STS_IOERR;
1146 	}
1147 
1148 	cmd->cmd_len = 6;
1149 	cmd->cmnd[0] = write ? WRITE_6 : READ_6;
1150 	cmd->cmnd[1] = (lba >> 16) & 0x1f;
1151 	cmd->cmnd[2] = (lba >> 8) & 0xff;
1152 	cmd->cmnd[3] = lba & 0xff;
1153 	cmd->cmnd[4] = nr_blocks;
1154 	cmd->cmnd[5] = 0;
1155 
1156 	return BLK_STS_OK;
1157 }
1158 
1159 /*
1160  * Check if a command has a duration limit set. If it does, and the target
1161  * device supports CDL and the feature is enabled, return the limit
1162  * descriptor index to use. Return 0 (no limit) otherwise.
1163  */
1164 static int sd_cdl_dld(struct scsi_disk *sdkp, struct scsi_cmnd *scmd)
1165 {
1166 	struct scsi_device *sdp = sdkp->device;
1167 	int hint;
1168 
1169 	if (!sdp->cdl_supported || !sdp->cdl_enable)
1170 		return 0;
1171 
1172 	/*
1173 	 * Use "no limit" if the request ioprio does not specify a duration
1174 	 * limit hint.
1175 	 */
1176 	hint = IOPRIO_PRIO_HINT(req_get_ioprio(scsi_cmd_to_rq(scmd)));
1177 	if (hint < IOPRIO_HINT_DEV_DURATION_LIMIT_1 ||
1178 	    hint > IOPRIO_HINT_DEV_DURATION_LIMIT_7)
1179 		return 0;
1180 
1181 	return (hint - IOPRIO_HINT_DEV_DURATION_LIMIT_1) + 1;
1182 }
1183 
1184 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd)
1185 {
1186 	struct request *rq = scsi_cmd_to_rq(cmd);
1187 	struct scsi_device *sdp = cmd->device;
1188 	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1189 	sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1190 	sector_t threshold;
1191 	unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1192 	unsigned int mask = logical_to_sectors(sdp, 1) - 1;
1193 	bool write = rq_data_dir(rq) == WRITE;
1194 	unsigned char protect, fua;
1195 	unsigned int dld;
1196 	blk_status_t ret;
1197 	unsigned int dif;
1198 	bool dix;
1199 
1200 	ret = scsi_alloc_sgtables(cmd);
1201 	if (ret != BLK_STS_OK)
1202 		return ret;
1203 
1204 	ret = BLK_STS_IOERR;
1205 	if (!scsi_device_online(sdp) || sdp->changed) {
1206 		scmd_printk(KERN_ERR, cmd, "device offline or changed\n");
1207 		goto fail;
1208 	}
1209 
1210 	if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->q->disk)) {
1211 		scmd_printk(KERN_ERR, cmd, "access beyond end of device\n");
1212 		goto fail;
1213 	}
1214 
1215 	if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) {
1216 		scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n");
1217 		goto fail;
1218 	}
1219 
1220 	/*
1221 	 * Some SD card readers can't handle accesses which touch the
1222 	 * last one or two logical blocks. Split accesses as needed.
1223 	 */
1224 	threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS;
1225 
1226 	if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) {
1227 		if (lba < threshold) {
1228 			/* Access up to the threshold but not beyond */
1229 			nr_blocks = threshold - lba;
1230 		} else {
1231 			/* Access only a single logical block */
1232 			nr_blocks = 1;
1233 		}
1234 	}
1235 
1236 	if (req_op(rq) == REQ_OP_ZONE_APPEND) {
1237 		ret = sd_zbc_prepare_zone_append(cmd, &lba, nr_blocks);
1238 		if (ret)
1239 			goto fail;
1240 	}
1241 
1242 	fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0;
1243 	dix = scsi_prot_sg_count(cmd);
1244 	dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type);
1245 	dld = sd_cdl_dld(sdkp, cmd);
1246 
1247 	if (dif || dix)
1248 		protect = sd_setup_protect_cmnd(cmd, dix, dif);
1249 	else
1250 		protect = 0;
1251 
1252 	if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1253 		ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks,
1254 					 protect | fua, dld);
1255 	} else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) {
1256 		ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks,
1257 					 protect | fua, dld);
1258 	} else if ((nr_blocks > 0xff) || (lba > 0x1fffff) ||
1259 		   sdp->use_10_for_rw || protect) {
1260 		ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks,
1261 					 protect | fua);
1262 	} else {
1263 		ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks,
1264 					protect | fua);
1265 	}
1266 
1267 	if (unlikely(ret != BLK_STS_OK))
1268 		goto fail;
1269 
1270 	/*
1271 	 * We shouldn't disconnect in the middle of a sector, so with a dumb
1272 	 * host adapter, it's safe to assume that we can at least transfer
1273 	 * this many bytes between each connect / disconnect.
1274 	 */
1275 	cmd->transfersize = sdp->sector_size;
1276 	cmd->underflow = nr_blocks << 9;
1277 	cmd->allowed = sdkp->max_retries;
1278 	cmd->sdb.length = nr_blocks * sdp->sector_size;
1279 
1280 	SCSI_LOG_HLQUEUE(1,
1281 			 scmd_printk(KERN_INFO, cmd,
1282 				     "%s: block=%llu, count=%d\n", __func__,
1283 				     (unsigned long long)blk_rq_pos(rq),
1284 				     blk_rq_sectors(rq)));
1285 	SCSI_LOG_HLQUEUE(2,
1286 			 scmd_printk(KERN_INFO, cmd,
1287 				     "%s %d/%u 512 byte blocks.\n",
1288 				     write ? "writing" : "reading", nr_blocks,
1289 				     blk_rq_sectors(rq)));
1290 
1291 	/*
1292 	 * This indicates that the command is ready from our end to be queued.
1293 	 */
1294 	return BLK_STS_OK;
1295 fail:
1296 	scsi_free_sgtables(cmd);
1297 	return ret;
1298 }
1299 
1300 static blk_status_t sd_init_command(struct scsi_cmnd *cmd)
1301 {
1302 	struct request *rq = scsi_cmd_to_rq(cmd);
1303 
1304 	switch (req_op(rq)) {
1305 	case REQ_OP_DISCARD:
1306 		switch (scsi_disk(rq->q->disk)->provisioning_mode) {
1307 		case SD_LBP_UNMAP:
1308 			return sd_setup_unmap_cmnd(cmd);
1309 		case SD_LBP_WS16:
1310 			return sd_setup_write_same16_cmnd(cmd, true);
1311 		case SD_LBP_WS10:
1312 			return sd_setup_write_same10_cmnd(cmd, true);
1313 		case SD_LBP_ZERO:
1314 			return sd_setup_write_same10_cmnd(cmd, false);
1315 		default:
1316 			return BLK_STS_TARGET;
1317 		}
1318 	case REQ_OP_WRITE_ZEROES:
1319 		return sd_setup_write_zeroes_cmnd(cmd);
1320 	case REQ_OP_FLUSH:
1321 		return sd_setup_flush_cmnd(cmd);
1322 	case REQ_OP_READ:
1323 	case REQ_OP_WRITE:
1324 	case REQ_OP_ZONE_APPEND:
1325 		return sd_setup_read_write_cmnd(cmd);
1326 	case REQ_OP_ZONE_RESET:
1327 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1328 						   false);
1329 	case REQ_OP_ZONE_RESET_ALL:
1330 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1331 						   true);
1332 	case REQ_OP_ZONE_OPEN:
1333 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false);
1334 	case REQ_OP_ZONE_CLOSE:
1335 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false);
1336 	case REQ_OP_ZONE_FINISH:
1337 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false);
1338 	default:
1339 		WARN_ON_ONCE(1);
1340 		return BLK_STS_NOTSUPP;
1341 	}
1342 }
1343 
1344 static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1345 {
1346 	struct request *rq = scsi_cmd_to_rq(SCpnt);
1347 
1348 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1349 		mempool_free(rq->special_vec.bv_page, sd_page_pool);
1350 }
1351 
1352 static bool sd_need_revalidate(struct gendisk *disk, struct scsi_disk *sdkp)
1353 {
1354 	if (sdkp->device->removable || sdkp->write_prot) {
1355 		if (disk_check_media_change(disk))
1356 			return true;
1357 	}
1358 
1359 	/*
1360 	 * Force a full rescan after ioctl(BLKRRPART).  While the disk state has
1361 	 * nothing to do with partitions, BLKRRPART is used to force a full
1362 	 * revalidate after things like a format for historical reasons.
1363 	 */
1364 	return test_bit(GD_NEED_PART_SCAN, &disk->state);
1365 }
1366 
1367 /**
1368  *	sd_open - open a scsi disk device
1369  *	@disk: disk to open
1370  *	@mode: open mode
1371  *
1372  *	Returns 0 if successful. Returns a negated errno value in case
1373  *	of error.
1374  *
1375  *	Note: This can be called from a user context (e.g. fsck(1) )
1376  *	or from within the kernel (e.g. as a result of a mount(1) ).
1377  *	In the latter case @inode and @filp carry an abridged amount
1378  *	of information as noted above.
1379  *
1380  *	Locking: called with disk->open_mutex held.
1381  **/
1382 static int sd_open(struct gendisk *disk, blk_mode_t mode)
1383 {
1384 	struct scsi_disk *sdkp = scsi_disk(disk);
1385 	struct scsi_device *sdev = sdkp->device;
1386 	int retval;
1387 
1388 	if (scsi_device_get(sdev))
1389 		return -ENXIO;
1390 
1391 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1392 
1393 	/*
1394 	 * If the device is in error recovery, wait until it is done.
1395 	 * If the device is offline, then disallow any access to it.
1396 	 */
1397 	retval = -ENXIO;
1398 	if (!scsi_block_when_processing_errors(sdev))
1399 		goto error_out;
1400 
1401 	if (sd_need_revalidate(disk, sdkp))
1402 		sd_revalidate_disk(disk);
1403 
1404 	/*
1405 	 * If the drive is empty, just let the open fail.
1406 	 */
1407 	retval = -ENOMEDIUM;
1408 	if (sdev->removable && !sdkp->media_present &&
1409 	    !(mode & BLK_OPEN_NDELAY))
1410 		goto error_out;
1411 
1412 	/*
1413 	 * If the device has the write protect tab set, have the open fail
1414 	 * if the user expects to be able to write to the thing.
1415 	 */
1416 	retval = -EROFS;
1417 	if (sdkp->write_prot && (mode & BLK_OPEN_WRITE))
1418 		goto error_out;
1419 
1420 	/*
1421 	 * It is possible that the disk changing stuff resulted in
1422 	 * the device being taken offline.  If this is the case,
1423 	 * report this to the user, and don't pretend that the
1424 	 * open actually succeeded.
1425 	 */
1426 	retval = -ENXIO;
1427 	if (!scsi_device_online(sdev))
1428 		goto error_out;
1429 
1430 	if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1431 		if (scsi_block_when_processing_errors(sdev))
1432 			scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1433 	}
1434 
1435 	return 0;
1436 
1437 error_out:
1438 	scsi_device_put(sdev);
1439 	return retval;
1440 }
1441 
1442 /**
1443  *	sd_release - invoked when the (last) close(2) is called on this
1444  *	scsi disk.
1445  *	@disk: disk to release
1446  *
1447  *	Returns 0.
1448  *
1449  *	Note: may block (uninterruptible) if error recovery is underway
1450  *	on this disk.
1451  *
1452  *	Locking: called with disk->open_mutex held.
1453  **/
1454 static void sd_release(struct gendisk *disk)
1455 {
1456 	struct scsi_disk *sdkp = scsi_disk(disk);
1457 	struct scsi_device *sdev = sdkp->device;
1458 
1459 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1460 
1461 	if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1462 		if (scsi_block_when_processing_errors(sdev))
1463 			scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1464 	}
1465 
1466 	scsi_device_put(sdev);
1467 }
1468 
1469 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1470 {
1471 	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1472 	struct scsi_device *sdp = sdkp->device;
1473 	struct Scsi_Host *host = sdp->host;
1474 	sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1475 	int diskinfo[4];
1476 
1477 	/* default to most commonly used values */
1478 	diskinfo[0] = 0x40;	/* 1 << 6 */
1479 	diskinfo[1] = 0x20;	/* 1 << 5 */
1480 	diskinfo[2] = capacity >> 11;
1481 
1482 	/* override with calculated, extended default, or driver values */
1483 	if (host->hostt->bios_param)
1484 		host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1485 	else
1486 		scsicam_bios_param(bdev, capacity, diskinfo);
1487 
1488 	geo->heads = diskinfo[0];
1489 	geo->sectors = diskinfo[1];
1490 	geo->cylinders = diskinfo[2];
1491 	return 0;
1492 }
1493 
1494 /**
1495  *	sd_ioctl - process an ioctl
1496  *	@bdev: target block device
1497  *	@mode: open mode
1498  *	@cmd: ioctl command number
1499  *	@arg: this is third argument given to ioctl(2) system call.
1500  *	Often contains a pointer.
1501  *
1502  *	Returns 0 if successful (some ioctls return positive numbers on
1503  *	success as well). Returns a negated errno value in case of error.
1504  *
1505  *	Note: most ioctls are forward onto the block subsystem or further
1506  *	down in the scsi subsystem.
1507  **/
1508 static int sd_ioctl(struct block_device *bdev, blk_mode_t mode,
1509 		    unsigned int cmd, unsigned long arg)
1510 {
1511 	struct gendisk *disk = bdev->bd_disk;
1512 	struct scsi_disk *sdkp = scsi_disk(disk);
1513 	struct scsi_device *sdp = sdkp->device;
1514 	void __user *p = (void __user *)arg;
1515 	int error;
1516 
1517 	SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1518 				    "cmd=0x%x\n", disk->disk_name, cmd));
1519 
1520 	if (bdev_is_partition(bdev) && !capable(CAP_SYS_RAWIO))
1521 		return -ENOIOCTLCMD;
1522 
1523 	/*
1524 	 * If we are in the middle of error recovery, don't let anyone
1525 	 * else try and use this device.  Also, if error recovery fails, it
1526 	 * may try and take the device offline, in which case all further
1527 	 * access to the device is prohibited.
1528 	 */
1529 	error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1530 			(mode & BLK_OPEN_NDELAY));
1531 	if (error)
1532 		return error;
1533 
1534 	if (is_sed_ioctl(cmd))
1535 		return sed_ioctl(sdkp->opal_dev, cmd, p);
1536 	return scsi_ioctl(sdp, mode & BLK_OPEN_WRITE, cmd, p);
1537 }
1538 
1539 static void set_media_not_present(struct scsi_disk *sdkp)
1540 {
1541 	if (sdkp->media_present)
1542 		sdkp->device->changed = 1;
1543 
1544 	if (sdkp->device->removable) {
1545 		sdkp->media_present = 0;
1546 		sdkp->capacity = 0;
1547 	}
1548 }
1549 
1550 static int media_not_present(struct scsi_disk *sdkp,
1551 			     struct scsi_sense_hdr *sshdr)
1552 {
1553 	if (!scsi_sense_valid(sshdr))
1554 		return 0;
1555 
1556 	/* not invoked for commands that could return deferred errors */
1557 	switch (sshdr->sense_key) {
1558 	case UNIT_ATTENTION:
1559 	case NOT_READY:
1560 		/* medium not present */
1561 		if (sshdr->asc == 0x3A) {
1562 			set_media_not_present(sdkp);
1563 			return 1;
1564 		}
1565 	}
1566 	return 0;
1567 }
1568 
1569 /**
1570  *	sd_check_events - check media events
1571  *	@disk: kernel device descriptor
1572  *	@clearing: disk events currently being cleared
1573  *
1574  *	Returns mask of DISK_EVENT_*.
1575  *
1576  *	Note: this function is invoked from the block subsystem.
1577  **/
1578 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1579 {
1580 	struct scsi_disk *sdkp = disk->private_data;
1581 	struct scsi_device *sdp;
1582 	int retval;
1583 	bool disk_changed;
1584 
1585 	if (!sdkp)
1586 		return 0;
1587 
1588 	sdp = sdkp->device;
1589 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1590 
1591 	/*
1592 	 * If the device is offline, don't send any commands - just pretend as
1593 	 * if the command failed.  If the device ever comes back online, we
1594 	 * can deal with it then.  It is only because of unrecoverable errors
1595 	 * that we would ever take a device offline in the first place.
1596 	 */
1597 	if (!scsi_device_online(sdp)) {
1598 		set_media_not_present(sdkp);
1599 		goto out;
1600 	}
1601 
1602 	/*
1603 	 * Using TEST_UNIT_READY enables differentiation between drive with
1604 	 * no cartridge loaded - NOT READY, drive with changed cartridge -
1605 	 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1606 	 *
1607 	 * Drives that auto spin down. eg iomega jaz 1G, will be started
1608 	 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1609 	 * sd_revalidate() is called.
1610 	 */
1611 	if (scsi_block_when_processing_errors(sdp)) {
1612 		struct scsi_sense_hdr sshdr = { 0, };
1613 
1614 		retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries,
1615 					      &sshdr);
1616 
1617 		/* failed to execute TUR, assume media not present */
1618 		if (retval < 0 || host_byte(retval)) {
1619 			set_media_not_present(sdkp);
1620 			goto out;
1621 		}
1622 
1623 		if (media_not_present(sdkp, &sshdr))
1624 			goto out;
1625 	}
1626 
1627 	/*
1628 	 * For removable scsi disk we have to recognise the presence
1629 	 * of a disk in the drive.
1630 	 */
1631 	if (!sdkp->media_present)
1632 		sdp->changed = 1;
1633 	sdkp->media_present = 1;
1634 out:
1635 	/*
1636 	 * sdp->changed is set under the following conditions:
1637 	 *
1638 	 *	Medium present state has changed in either direction.
1639 	 *	Device has indicated UNIT_ATTENTION.
1640 	 */
1641 	disk_changed = sdp->changed;
1642 	sdp->changed = 0;
1643 	return disk_changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1644 }
1645 
1646 static int sd_sync_cache(struct scsi_disk *sdkp)
1647 {
1648 	int res;
1649 	struct scsi_device *sdp = sdkp->device;
1650 	const int timeout = sdp->request_queue->rq_timeout
1651 		* SD_FLUSH_TIMEOUT_MULTIPLIER;
1652 	/* Leave the rest of the command zero to indicate flush everything. */
1653 	const unsigned char cmd[16] = { sdp->use_16_for_sync ?
1654 				SYNCHRONIZE_CACHE_16 : SYNCHRONIZE_CACHE };
1655 	struct scsi_sense_hdr sshdr;
1656 	struct scsi_failure failure_defs[] = {
1657 		{
1658 			.allowed = 3,
1659 			.result = SCMD_FAILURE_RESULT_ANY,
1660 		},
1661 		{}
1662 	};
1663 	struct scsi_failures failures = {
1664 		.failure_definitions = failure_defs,
1665 	};
1666 	const struct scsi_exec_args exec_args = {
1667 		.req_flags = BLK_MQ_REQ_PM,
1668 		.sshdr = &sshdr,
1669 		.failures = &failures,
1670 	};
1671 
1672 	if (!scsi_device_online(sdp))
1673 		return -ENODEV;
1674 
1675 	res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, timeout,
1676 			       sdkp->max_retries, &exec_args);
1677 	if (res) {
1678 		sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1679 
1680 		if (res < 0)
1681 			return res;
1682 
1683 		if (scsi_status_is_check_condition(res) &&
1684 		    scsi_sense_valid(&sshdr)) {
1685 			sd_print_sense_hdr(sdkp, &sshdr);
1686 
1687 			/* we need to evaluate the error return  */
1688 			if (sshdr.asc == 0x3a ||	/* medium not present */
1689 			    sshdr.asc == 0x20 ||	/* invalid command */
1690 			    (sshdr.asc == 0x74 && sshdr.ascq == 0x71))	/* drive is password locked */
1691 				/* this is no error here */
1692 				return 0;
1693 			/*
1694 			 * This drive doesn't support sync and there's not much
1695 			 * we can do because this is called during shutdown
1696 			 * or suspend so just return success so those operations
1697 			 * can proceed.
1698 			 */
1699 			if (sshdr.sense_key == ILLEGAL_REQUEST)
1700 				return 0;
1701 		}
1702 
1703 		switch (host_byte(res)) {
1704 		/* ignore errors due to racing a disconnection */
1705 		case DID_BAD_TARGET:
1706 		case DID_NO_CONNECT:
1707 			return 0;
1708 		/* signal the upper layer it might try again */
1709 		case DID_BUS_BUSY:
1710 		case DID_IMM_RETRY:
1711 		case DID_REQUEUE:
1712 		case DID_SOFT_ERROR:
1713 			return -EBUSY;
1714 		default:
1715 			return -EIO;
1716 		}
1717 	}
1718 	return 0;
1719 }
1720 
1721 static void sd_rescan(struct device *dev)
1722 {
1723 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
1724 
1725 	sd_revalidate_disk(sdkp->disk);
1726 }
1727 
1728 static int sd_get_unique_id(struct gendisk *disk, u8 id[16],
1729 		enum blk_unique_id type)
1730 {
1731 	struct scsi_device *sdev = scsi_disk(disk)->device;
1732 	const struct scsi_vpd *vpd;
1733 	const unsigned char *d;
1734 	int ret = -ENXIO, len;
1735 
1736 	rcu_read_lock();
1737 	vpd = rcu_dereference(sdev->vpd_pg83);
1738 	if (!vpd)
1739 		goto out_unlock;
1740 
1741 	ret = -EINVAL;
1742 	for (d = vpd->data + 4; d < vpd->data + vpd->len; d += d[3] + 4) {
1743 		/* we only care about designators with LU association */
1744 		if (((d[1] >> 4) & 0x3) != 0x00)
1745 			continue;
1746 		if ((d[1] & 0xf) != type)
1747 			continue;
1748 
1749 		/*
1750 		 * Only exit early if a 16-byte descriptor was found.  Otherwise
1751 		 * keep looking as one with more entropy might still show up.
1752 		 */
1753 		len = d[3];
1754 		if (len != 8 && len != 12 && len != 16)
1755 			continue;
1756 		ret = len;
1757 		memcpy(id, d + 4, len);
1758 		if (len == 16)
1759 			break;
1760 	}
1761 out_unlock:
1762 	rcu_read_unlock();
1763 	return ret;
1764 }
1765 
1766 static int sd_scsi_to_pr_err(struct scsi_sense_hdr *sshdr, int result)
1767 {
1768 	switch (host_byte(result)) {
1769 	case DID_TRANSPORT_MARGINAL:
1770 	case DID_TRANSPORT_DISRUPTED:
1771 	case DID_BUS_BUSY:
1772 		return PR_STS_RETRY_PATH_FAILURE;
1773 	case DID_NO_CONNECT:
1774 		return PR_STS_PATH_FAILED;
1775 	case DID_TRANSPORT_FAILFAST:
1776 		return PR_STS_PATH_FAST_FAILED;
1777 	}
1778 
1779 	switch (status_byte(result)) {
1780 	case SAM_STAT_RESERVATION_CONFLICT:
1781 		return PR_STS_RESERVATION_CONFLICT;
1782 	case SAM_STAT_CHECK_CONDITION:
1783 		if (!scsi_sense_valid(sshdr))
1784 			return PR_STS_IOERR;
1785 
1786 		if (sshdr->sense_key == ILLEGAL_REQUEST &&
1787 		    (sshdr->asc == 0x26 || sshdr->asc == 0x24))
1788 			return -EINVAL;
1789 
1790 		fallthrough;
1791 	default:
1792 		return PR_STS_IOERR;
1793 	}
1794 }
1795 
1796 static int sd_pr_in_command(struct block_device *bdev, u8 sa,
1797 			    unsigned char *data, int data_len)
1798 {
1799 	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1800 	struct scsi_device *sdev = sdkp->device;
1801 	struct scsi_sense_hdr sshdr;
1802 	u8 cmd[10] = { PERSISTENT_RESERVE_IN, sa };
1803 	struct scsi_failure failure_defs[] = {
1804 		{
1805 			.sense = UNIT_ATTENTION,
1806 			.asc = SCMD_FAILURE_ASC_ANY,
1807 			.ascq = SCMD_FAILURE_ASCQ_ANY,
1808 			.allowed = 5,
1809 			.result = SAM_STAT_CHECK_CONDITION,
1810 		},
1811 		{}
1812 	};
1813 	struct scsi_failures failures = {
1814 		.failure_definitions = failure_defs,
1815 	};
1816 	const struct scsi_exec_args exec_args = {
1817 		.sshdr = &sshdr,
1818 		.failures = &failures,
1819 	};
1820 	int result;
1821 
1822 	put_unaligned_be16(data_len, &cmd[7]);
1823 
1824 	result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, data, data_len,
1825 				  SD_TIMEOUT, sdkp->max_retries, &exec_args);
1826 	if (scsi_status_is_check_condition(result) &&
1827 	    scsi_sense_valid(&sshdr)) {
1828 		sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1829 		scsi_print_sense_hdr(sdev, NULL, &sshdr);
1830 	}
1831 
1832 	if (result <= 0)
1833 		return result;
1834 
1835 	return sd_scsi_to_pr_err(&sshdr, result);
1836 }
1837 
1838 static int sd_pr_read_keys(struct block_device *bdev, struct pr_keys *keys_info)
1839 {
1840 	int result, i, data_offset, num_copy_keys;
1841 	u32 num_keys = keys_info->num_keys;
1842 	int data_len = num_keys * 8 + 8;
1843 	u8 *data;
1844 
1845 	data = kzalloc(data_len, GFP_KERNEL);
1846 	if (!data)
1847 		return -ENOMEM;
1848 
1849 	result = sd_pr_in_command(bdev, READ_KEYS, data, data_len);
1850 	if (result)
1851 		goto free_data;
1852 
1853 	keys_info->generation = get_unaligned_be32(&data[0]);
1854 	keys_info->num_keys = get_unaligned_be32(&data[4]) / 8;
1855 
1856 	data_offset = 8;
1857 	num_copy_keys = min(num_keys, keys_info->num_keys);
1858 
1859 	for (i = 0; i < num_copy_keys; i++) {
1860 		keys_info->keys[i] = get_unaligned_be64(&data[data_offset]);
1861 		data_offset += 8;
1862 	}
1863 
1864 free_data:
1865 	kfree(data);
1866 	return result;
1867 }
1868 
1869 static int sd_pr_read_reservation(struct block_device *bdev,
1870 				  struct pr_held_reservation *rsv)
1871 {
1872 	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1873 	struct scsi_device *sdev = sdkp->device;
1874 	u8 data[24] = { };
1875 	int result, len;
1876 
1877 	result = sd_pr_in_command(bdev, READ_RESERVATION, data, sizeof(data));
1878 	if (result)
1879 		return result;
1880 
1881 	len = get_unaligned_be32(&data[4]);
1882 	if (!len)
1883 		return 0;
1884 
1885 	/* Make sure we have at least the key and type */
1886 	if (len < 14) {
1887 		sdev_printk(KERN_INFO, sdev,
1888 			    "READ RESERVATION failed due to short return buffer of %d bytes\n",
1889 			    len);
1890 		return -EINVAL;
1891 	}
1892 
1893 	rsv->generation = get_unaligned_be32(&data[0]);
1894 	rsv->key = get_unaligned_be64(&data[8]);
1895 	rsv->type = scsi_pr_type_to_block(data[21] & 0x0f);
1896 	return 0;
1897 }
1898 
1899 static int sd_pr_out_command(struct block_device *bdev, u8 sa, u64 key,
1900 			     u64 sa_key, enum scsi_pr_type type, u8 flags)
1901 {
1902 	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1903 	struct scsi_device *sdev = sdkp->device;
1904 	struct scsi_sense_hdr sshdr;
1905 	struct scsi_failure failure_defs[] = {
1906 		{
1907 			.sense = UNIT_ATTENTION,
1908 			.asc = SCMD_FAILURE_ASC_ANY,
1909 			.ascq = SCMD_FAILURE_ASCQ_ANY,
1910 			.allowed = 5,
1911 			.result = SAM_STAT_CHECK_CONDITION,
1912 		},
1913 		{}
1914 	};
1915 	struct scsi_failures failures = {
1916 		.failure_definitions = failure_defs,
1917 	};
1918 	const struct scsi_exec_args exec_args = {
1919 		.sshdr = &sshdr,
1920 		.failures = &failures,
1921 	};
1922 	int result;
1923 	u8 cmd[16] = { 0, };
1924 	u8 data[24] = { 0, };
1925 
1926 	cmd[0] = PERSISTENT_RESERVE_OUT;
1927 	cmd[1] = sa;
1928 	cmd[2] = type;
1929 	put_unaligned_be32(sizeof(data), &cmd[5]);
1930 
1931 	put_unaligned_be64(key, &data[0]);
1932 	put_unaligned_be64(sa_key, &data[8]);
1933 	data[20] = flags;
1934 
1935 	result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, &data,
1936 				  sizeof(data), SD_TIMEOUT, sdkp->max_retries,
1937 				  &exec_args);
1938 
1939 	if (scsi_status_is_check_condition(result) &&
1940 	    scsi_sense_valid(&sshdr)) {
1941 		sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1942 		scsi_print_sense_hdr(sdev, NULL, &sshdr);
1943 	}
1944 
1945 	if (result <= 0)
1946 		return result;
1947 
1948 	return sd_scsi_to_pr_err(&sshdr, result);
1949 }
1950 
1951 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1952 		u32 flags)
1953 {
1954 	if (flags & ~PR_FL_IGNORE_KEY)
1955 		return -EOPNOTSUPP;
1956 	return sd_pr_out_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1957 			old_key, new_key, 0,
1958 			(1 << 0) /* APTPL */);
1959 }
1960 
1961 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1962 		u32 flags)
1963 {
1964 	if (flags)
1965 		return -EOPNOTSUPP;
1966 	return sd_pr_out_command(bdev, 0x01, key, 0,
1967 				 block_pr_type_to_scsi(type), 0);
1968 }
1969 
1970 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1971 {
1972 	return sd_pr_out_command(bdev, 0x02, key, 0,
1973 				 block_pr_type_to_scsi(type), 0);
1974 }
1975 
1976 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1977 		enum pr_type type, bool abort)
1978 {
1979 	return sd_pr_out_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
1980 				 block_pr_type_to_scsi(type), 0);
1981 }
1982 
1983 static int sd_pr_clear(struct block_device *bdev, u64 key)
1984 {
1985 	return sd_pr_out_command(bdev, 0x03, key, 0, 0, 0);
1986 }
1987 
1988 static const struct pr_ops sd_pr_ops = {
1989 	.pr_register	= sd_pr_register,
1990 	.pr_reserve	= sd_pr_reserve,
1991 	.pr_release	= sd_pr_release,
1992 	.pr_preempt	= sd_pr_preempt,
1993 	.pr_clear	= sd_pr_clear,
1994 	.pr_read_keys	= sd_pr_read_keys,
1995 	.pr_read_reservation = sd_pr_read_reservation,
1996 };
1997 
1998 static void scsi_disk_free_disk(struct gendisk *disk)
1999 {
2000 	struct scsi_disk *sdkp = scsi_disk(disk);
2001 
2002 	put_device(&sdkp->disk_dev);
2003 }
2004 
2005 static const struct block_device_operations sd_fops = {
2006 	.owner			= THIS_MODULE,
2007 	.open			= sd_open,
2008 	.release		= sd_release,
2009 	.ioctl			= sd_ioctl,
2010 	.getgeo			= sd_getgeo,
2011 	.compat_ioctl		= blkdev_compat_ptr_ioctl,
2012 	.check_events		= sd_check_events,
2013 	.unlock_native_capacity	= sd_unlock_native_capacity,
2014 	.report_zones		= sd_zbc_report_zones,
2015 	.get_unique_id		= sd_get_unique_id,
2016 	.free_disk		= scsi_disk_free_disk,
2017 	.pr_ops			= &sd_pr_ops,
2018 };
2019 
2020 /**
2021  *	sd_eh_reset - reset error handling callback
2022  *	@scmd:		sd-issued command that has failed
2023  *
2024  *	This function is called by the SCSI midlayer before starting
2025  *	SCSI EH. When counting medium access failures we have to be
2026  *	careful to register it only only once per device and SCSI EH run;
2027  *	there might be several timed out commands which will cause the
2028  *	'max_medium_access_timeouts' counter to trigger after the first
2029  *	SCSI EH run already and set the device to offline.
2030  *	So this function resets the internal counter before starting SCSI EH.
2031  **/
2032 static void sd_eh_reset(struct scsi_cmnd *scmd)
2033 {
2034 	struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk);
2035 
2036 	/* New SCSI EH run, reset gate variable */
2037 	sdkp->ignore_medium_access_errors = false;
2038 }
2039 
2040 /**
2041  *	sd_eh_action - error handling callback
2042  *	@scmd:		sd-issued command that has failed
2043  *	@eh_disp:	The recovery disposition suggested by the midlayer
2044  *
2045  *	This function is called by the SCSI midlayer upon completion of an
2046  *	error test command (currently TEST UNIT READY). The result of sending
2047  *	the eh command is passed in eh_disp.  We're looking for devices that
2048  *	fail medium access commands but are OK with non access commands like
2049  *	test unit ready (so wrongly see the device as having a successful
2050  *	recovery)
2051  **/
2052 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
2053 {
2054 	struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk);
2055 	struct scsi_device *sdev = scmd->device;
2056 
2057 	if (!scsi_device_online(sdev) ||
2058 	    !scsi_medium_access_command(scmd) ||
2059 	    host_byte(scmd->result) != DID_TIME_OUT ||
2060 	    eh_disp != SUCCESS)
2061 		return eh_disp;
2062 
2063 	/*
2064 	 * The device has timed out executing a medium access command.
2065 	 * However, the TEST UNIT READY command sent during error
2066 	 * handling completed successfully. Either the device is in the
2067 	 * process of recovering or has it suffered an internal failure
2068 	 * that prevents access to the storage medium.
2069 	 */
2070 	if (!sdkp->ignore_medium_access_errors) {
2071 		sdkp->medium_access_timed_out++;
2072 		sdkp->ignore_medium_access_errors = true;
2073 	}
2074 
2075 	/*
2076 	 * If the device keeps failing read/write commands but TEST UNIT
2077 	 * READY always completes successfully we assume that medium
2078 	 * access is no longer possible and take the device offline.
2079 	 */
2080 	if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
2081 		scmd_printk(KERN_ERR, scmd,
2082 			    "Medium access timeout failure. Offlining disk!\n");
2083 		mutex_lock(&sdev->state_mutex);
2084 		scsi_device_set_state(sdev, SDEV_OFFLINE);
2085 		mutex_unlock(&sdev->state_mutex);
2086 
2087 		return SUCCESS;
2088 	}
2089 
2090 	return eh_disp;
2091 }
2092 
2093 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
2094 {
2095 	struct request *req = scsi_cmd_to_rq(scmd);
2096 	struct scsi_device *sdev = scmd->device;
2097 	unsigned int transferred, good_bytes;
2098 	u64 start_lba, end_lba, bad_lba;
2099 
2100 	/*
2101 	 * Some commands have a payload smaller than the device logical
2102 	 * block size (e.g. INQUIRY on a 4K disk).
2103 	 */
2104 	if (scsi_bufflen(scmd) <= sdev->sector_size)
2105 		return 0;
2106 
2107 	/* Check if we have a 'bad_lba' information */
2108 	if (!scsi_get_sense_info_fld(scmd->sense_buffer,
2109 				     SCSI_SENSE_BUFFERSIZE,
2110 				     &bad_lba))
2111 		return 0;
2112 
2113 	/*
2114 	 * If the bad lba was reported incorrectly, we have no idea where
2115 	 * the error is.
2116 	 */
2117 	start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
2118 	end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
2119 	if (bad_lba < start_lba || bad_lba >= end_lba)
2120 		return 0;
2121 
2122 	/*
2123 	 * resid is optional but mostly filled in.  When it's unused,
2124 	 * its value is zero, so we assume the whole buffer transferred
2125 	 */
2126 	transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
2127 
2128 	/* This computation should always be done in terms of the
2129 	 * resolution of the device's medium.
2130 	 */
2131 	good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
2132 
2133 	return min(good_bytes, transferred);
2134 }
2135 
2136 /**
2137  *	sd_done - bottom half handler: called when the lower level
2138  *	driver has completed (successfully or otherwise) a scsi command.
2139  *	@SCpnt: mid-level's per command structure.
2140  *
2141  *	Note: potentially run from within an ISR. Must not block.
2142  **/
2143 static int sd_done(struct scsi_cmnd *SCpnt)
2144 {
2145 	int result = SCpnt->result;
2146 	unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
2147 	unsigned int sector_size = SCpnt->device->sector_size;
2148 	unsigned int resid;
2149 	struct scsi_sense_hdr sshdr;
2150 	struct request *req = scsi_cmd_to_rq(SCpnt);
2151 	struct scsi_disk *sdkp = scsi_disk(req->q->disk);
2152 	int sense_valid = 0;
2153 	int sense_deferred = 0;
2154 
2155 	switch (req_op(req)) {
2156 	case REQ_OP_DISCARD:
2157 	case REQ_OP_WRITE_ZEROES:
2158 	case REQ_OP_ZONE_RESET:
2159 	case REQ_OP_ZONE_RESET_ALL:
2160 	case REQ_OP_ZONE_OPEN:
2161 	case REQ_OP_ZONE_CLOSE:
2162 	case REQ_OP_ZONE_FINISH:
2163 		if (!result) {
2164 			good_bytes = blk_rq_bytes(req);
2165 			scsi_set_resid(SCpnt, 0);
2166 		} else {
2167 			good_bytes = 0;
2168 			scsi_set_resid(SCpnt, blk_rq_bytes(req));
2169 		}
2170 		break;
2171 	default:
2172 		/*
2173 		 * In case of bogus fw or device, we could end up having
2174 		 * an unaligned partial completion. Check this here and force
2175 		 * alignment.
2176 		 */
2177 		resid = scsi_get_resid(SCpnt);
2178 		if (resid & (sector_size - 1)) {
2179 			sd_printk(KERN_INFO, sdkp,
2180 				"Unaligned partial completion (resid=%u, sector_sz=%u)\n",
2181 				resid, sector_size);
2182 			scsi_print_command(SCpnt);
2183 			resid = min(scsi_bufflen(SCpnt),
2184 				    round_up(resid, sector_size));
2185 			scsi_set_resid(SCpnt, resid);
2186 		}
2187 	}
2188 
2189 	if (result) {
2190 		sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
2191 		if (sense_valid)
2192 			sense_deferred = scsi_sense_is_deferred(&sshdr);
2193 	}
2194 	sdkp->medium_access_timed_out = 0;
2195 
2196 	if (!scsi_status_is_check_condition(result) &&
2197 	    (!sense_valid || sense_deferred))
2198 		goto out;
2199 
2200 	switch (sshdr.sense_key) {
2201 	case HARDWARE_ERROR:
2202 	case MEDIUM_ERROR:
2203 		good_bytes = sd_completed_bytes(SCpnt);
2204 		break;
2205 	case RECOVERED_ERROR:
2206 		good_bytes = scsi_bufflen(SCpnt);
2207 		break;
2208 	case NO_SENSE:
2209 		/* This indicates a false check condition, so ignore it.  An
2210 		 * unknown amount of data was transferred so treat it as an
2211 		 * error.
2212 		 */
2213 		SCpnt->result = 0;
2214 		memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
2215 		break;
2216 	case ABORTED_COMMAND:
2217 		if (sshdr.asc == 0x10)  /* DIF: Target detected corruption */
2218 			good_bytes = sd_completed_bytes(SCpnt);
2219 		break;
2220 	case ILLEGAL_REQUEST:
2221 		switch (sshdr.asc) {
2222 		case 0x10:	/* DIX: Host detected corruption */
2223 			good_bytes = sd_completed_bytes(SCpnt);
2224 			break;
2225 		case 0x20:	/* INVALID COMMAND OPCODE */
2226 		case 0x24:	/* INVALID FIELD IN CDB */
2227 			switch (SCpnt->cmnd[0]) {
2228 			case UNMAP:
2229 				sd_config_discard(sdkp, SD_LBP_DISABLE);
2230 				break;
2231 			case WRITE_SAME_16:
2232 			case WRITE_SAME:
2233 				if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2234 					sd_config_discard(sdkp, SD_LBP_DISABLE);
2235 				} else {
2236 					sdkp->device->no_write_same = 1;
2237 					sd_config_write_same(sdkp);
2238 					req->rq_flags |= RQF_QUIET;
2239 				}
2240 				break;
2241 			}
2242 		}
2243 		break;
2244 	default:
2245 		break;
2246 	}
2247 
2248  out:
2249 	if (sd_is_zoned(sdkp))
2250 		good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2251 
2252 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2253 					   "sd_done: completed %d of %d bytes\n",
2254 					   good_bytes, scsi_bufflen(SCpnt)));
2255 
2256 	return good_bytes;
2257 }
2258 
2259 /*
2260  * spinup disk - called only in sd_revalidate_disk()
2261  */
2262 static void
2263 sd_spinup_disk(struct scsi_disk *sdkp)
2264 {
2265 	static const u8 cmd[10] = { TEST_UNIT_READY };
2266 	unsigned long spintime_expire = 0;
2267 	int spintime, sense_valid = 0;
2268 	unsigned int the_result;
2269 	struct scsi_sense_hdr sshdr;
2270 	struct scsi_failure failure_defs[] = {
2271 		/* Do not retry Medium Not Present */
2272 		{
2273 			.sense = UNIT_ATTENTION,
2274 			.asc = 0x3A,
2275 			.ascq = SCMD_FAILURE_ASCQ_ANY,
2276 			.result = SAM_STAT_CHECK_CONDITION,
2277 		},
2278 		{
2279 			.sense = NOT_READY,
2280 			.asc = 0x3A,
2281 			.ascq = SCMD_FAILURE_ASCQ_ANY,
2282 			.result = SAM_STAT_CHECK_CONDITION,
2283 		},
2284 		/* Retry when scsi_status_is_good would return false 3 times */
2285 		{
2286 			.result = SCMD_FAILURE_STAT_ANY,
2287 			.allowed = 3,
2288 		},
2289 		{}
2290 	};
2291 	struct scsi_failures failures = {
2292 		.failure_definitions = failure_defs,
2293 	};
2294 	const struct scsi_exec_args exec_args = {
2295 		.sshdr = &sshdr,
2296 		.failures = &failures,
2297 	};
2298 
2299 	spintime = 0;
2300 
2301 	/* Spin up drives, as required.  Only do this at boot time */
2302 	/* Spinup needs to be done for module loads too. */
2303 	do {
2304 		bool media_was_present = sdkp->media_present;
2305 
2306 		scsi_failures_reset_retries(&failures);
2307 
2308 		the_result = scsi_execute_cmd(sdkp->device, cmd, REQ_OP_DRV_IN,
2309 					      NULL, 0, SD_TIMEOUT,
2310 					      sdkp->max_retries, &exec_args);
2311 
2312 
2313 		if (the_result > 0) {
2314 			/*
2315 			 * If the drive has indicated to us that it doesn't
2316 			 * have any media in it, don't bother with any more
2317 			 * polling.
2318 			 */
2319 			if (media_not_present(sdkp, &sshdr)) {
2320 				if (media_was_present)
2321 					sd_printk(KERN_NOTICE, sdkp,
2322 						  "Media removed, stopped polling\n");
2323 				return;
2324 			}
2325 			sense_valid = scsi_sense_valid(&sshdr);
2326 		}
2327 
2328 		if (!scsi_status_is_check_condition(the_result)) {
2329 			/* no sense, TUR either succeeded or failed
2330 			 * with a status error */
2331 			if(!spintime && !scsi_status_is_good(the_result)) {
2332 				sd_print_result(sdkp, "Test Unit Ready failed",
2333 						the_result);
2334 			}
2335 			break;
2336 		}
2337 
2338 		/*
2339 		 * The device does not want the automatic start to be issued.
2340 		 */
2341 		if (sdkp->device->no_start_on_add)
2342 			break;
2343 
2344 		if (sense_valid && sshdr.sense_key == NOT_READY) {
2345 			if (sshdr.asc == 4 && sshdr.ascq == 3)
2346 				break;	/* manual intervention required */
2347 			if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2348 				break;	/* standby */
2349 			if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2350 				break;	/* unavailable */
2351 			if (sshdr.asc == 4 && sshdr.ascq == 0x1b)
2352 				break;	/* sanitize in progress */
2353 			if (sshdr.asc == 4 && sshdr.ascq == 0x24)
2354 				break;	/* depopulation in progress */
2355 			if (sshdr.asc == 4 && sshdr.ascq == 0x25)
2356 				break;	/* depopulation restoration in progress */
2357 			/*
2358 			 * Issue command to spin up drive when not ready
2359 			 */
2360 			if (!spintime) {
2361 				/* Return immediately and start spin cycle */
2362 				const u8 start_cmd[10] = {
2363 					[0] = START_STOP,
2364 					[1] = 1,
2365 					[4] = sdkp->device->start_stop_pwr_cond ?
2366 						0x11 : 1,
2367 				};
2368 
2369 				sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2370 				scsi_execute_cmd(sdkp->device, start_cmd,
2371 						 REQ_OP_DRV_IN, NULL, 0,
2372 						 SD_TIMEOUT, sdkp->max_retries,
2373 						 &exec_args);
2374 				spintime_expire = jiffies + 100 * HZ;
2375 				spintime = 1;
2376 			}
2377 			/* Wait 1 second for next try */
2378 			msleep(1000);
2379 			printk(KERN_CONT ".");
2380 
2381 		/*
2382 		 * Wait for USB flash devices with slow firmware.
2383 		 * Yes, this sense key/ASC combination shouldn't
2384 		 * occur here.  It's characteristic of these devices.
2385 		 */
2386 		} else if (sense_valid &&
2387 				sshdr.sense_key == UNIT_ATTENTION &&
2388 				sshdr.asc == 0x28) {
2389 			if (!spintime) {
2390 				spintime_expire = jiffies + 5 * HZ;
2391 				spintime = 1;
2392 			}
2393 			/* Wait 1 second for next try */
2394 			msleep(1000);
2395 		} else {
2396 			/* we don't understand the sense code, so it's
2397 			 * probably pointless to loop */
2398 			if(!spintime) {
2399 				sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2400 				sd_print_sense_hdr(sdkp, &sshdr);
2401 			}
2402 			break;
2403 		}
2404 
2405 	} while (spintime && time_before_eq(jiffies, spintime_expire));
2406 
2407 	if (spintime) {
2408 		if (scsi_status_is_good(the_result))
2409 			printk(KERN_CONT "ready\n");
2410 		else
2411 			printk(KERN_CONT "not responding...\n");
2412 	}
2413 }
2414 
2415 /*
2416  * Determine whether disk supports Data Integrity Field.
2417  */
2418 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2419 {
2420 	struct scsi_device *sdp = sdkp->device;
2421 	u8 type;
2422 
2423 	if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) {
2424 		sdkp->protection_type = 0;
2425 		return 0;
2426 	}
2427 
2428 	type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2429 
2430 	if (type > T10_PI_TYPE3_PROTECTION) {
2431 		sd_printk(KERN_ERR, sdkp, "formatted with unsupported"	\
2432 			  " protection type %u. Disabling disk!\n",
2433 			  type);
2434 		sdkp->protection_type = 0;
2435 		return -ENODEV;
2436 	}
2437 
2438 	sdkp->protection_type = type;
2439 
2440 	return 0;
2441 }
2442 
2443 static void sd_config_protection(struct scsi_disk *sdkp)
2444 {
2445 	struct scsi_device *sdp = sdkp->device;
2446 
2447 	sd_dif_config_host(sdkp);
2448 
2449 	if (!sdkp->protection_type)
2450 		return;
2451 
2452 	if (!scsi_host_dif_capable(sdp->host, sdkp->protection_type)) {
2453 		sd_first_printk(KERN_NOTICE, sdkp,
2454 				"Disabling DIF Type %u protection\n",
2455 				sdkp->protection_type);
2456 		sdkp->protection_type = 0;
2457 	}
2458 
2459 	sd_first_printk(KERN_NOTICE, sdkp, "Enabling DIF Type %u protection\n",
2460 			sdkp->protection_type);
2461 }
2462 
2463 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2464 			struct scsi_sense_hdr *sshdr, int sense_valid,
2465 			int the_result)
2466 {
2467 	if (sense_valid)
2468 		sd_print_sense_hdr(sdkp, sshdr);
2469 	else
2470 		sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2471 
2472 	/*
2473 	 * Set dirty bit for removable devices if not ready -
2474 	 * sometimes drives will not report this properly.
2475 	 */
2476 	if (sdp->removable &&
2477 	    sense_valid && sshdr->sense_key == NOT_READY)
2478 		set_media_not_present(sdkp);
2479 
2480 	/*
2481 	 * We used to set media_present to 0 here to indicate no media
2482 	 * in the drive, but some drives fail read capacity even with
2483 	 * media present, so we can't do that.
2484 	 */
2485 	sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2486 }
2487 
2488 #define RC16_LEN 32
2489 #if RC16_LEN > SD_BUF_SIZE
2490 #error RC16_LEN must not be more than SD_BUF_SIZE
2491 #endif
2492 
2493 #define READ_CAPACITY_RETRIES_ON_RESET	10
2494 
2495 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2496 						unsigned char *buffer)
2497 {
2498 	unsigned char cmd[16];
2499 	struct scsi_sense_hdr sshdr;
2500 	const struct scsi_exec_args exec_args = {
2501 		.sshdr = &sshdr,
2502 	};
2503 	int sense_valid = 0;
2504 	int the_result;
2505 	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2506 	unsigned int alignment;
2507 	unsigned long long lba;
2508 	unsigned sector_size;
2509 
2510 	if (sdp->no_read_capacity_16)
2511 		return -EINVAL;
2512 
2513 	do {
2514 		memset(cmd, 0, 16);
2515 		cmd[0] = SERVICE_ACTION_IN_16;
2516 		cmd[1] = SAI_READ_CAPACITY_16;
2517 		cmd[13] = RC16_LEN;
2518 		memset(buffer, 0, RC16_LEN);
2519 
2520 		the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN,
2521 					      buffer, RC16_LEN, SD_TIMEOUT,
2522 					      sdkp->max_retries, &exec_args);
2523 		if (the_result > 0) {
2524 			if (media_not_present(sdkp, &sshdr))
2525 				return -ENODEV;
2526 
2527 			sense_valid = scsi_sense_valid(&sshdr);
2528 			if (sense_valid &&
2529 			    sshdr.sense_key == ILLEGAL_REQUEST &&
2530 			    (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2531 			    sshdr.ascq == 0x00)
2532 				/* Invalid Command Operation Code or
2533 				 * Invalid Field in CDB, just retry
2534 				 * silently with RC10 */
2535 				return -EINVAL;
2536 			if (sense_valid &&
2537 			    sshdr.sense_key == UNIT_ATTENTION &&
2538 			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2539 				/* Device reset might occur several times,
2540 				 * give it one more chance */
2541 				if (--reset_retries > 0)
2542 					continue;
2543 		}
2544 		retries--;
2545 
2546 	} while (the_result && retries);
2547 
2548 	if (the_result) {
2549 		sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2550 		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2551 		return -EINVAL;
2552 	}
2553 
2554 	sector_size = get_unaligned_be32(&buffer[8]);
2555 	lba = get_unaligned_be64(&buffer[0]);
2556 
2557 	if (sd_read_protection_type(sdkp, buffer) < 0) {
2558 		sdkp->capacity = 0;
2559 		return -ENODEV;
2560 	}
2561 
2562 	/* Logical blocks per physical block exponent */
2563 	sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2564 
2565 	/* RC basis */
2566 	sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2567 
2568 	/* Lowest aligned logical block */
2569 	alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2570 	blk_queue_alignment_offset(sdp->request_queue, alignment);
2571 	if (alignment && sdkp->first_scan)
2572 		sd_printk(KERN_NOTICE, sdkp,
2573 			  "physical block alignment offset: %u\n", alignment);
2574 
2575 	if (buffer[14] & 0x80) { /* LBPME */
2576 		sdkp->lbpme = 1;
2577 
2578 		if (buffer[14] & 0x40) /* LBPRZ */
2579 			sdkp->lbprz = 1;
2580 
2581 		sd_config_discard(sdkp, SD_LBP_WS16);
2582 	}
2583 
2584 	sdkp->capacity = lba + 1;
2585 	return sector_size;
2586 }
2587 
2588 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2589 						unsigned char *buffer)
2590 {
2591 	static const u8 cmd[10] = { READ_CAPACITY };
2592 	struct scsi_sense_hdr sshdr;
2593 	struct scsi_failure failure_defs[] = {
2594 		/* Do not retry Medium Not Present */
2595 		{
2596 			.sense = UNIT_ATTENTION,
2597 			.asc = 0x3A,
2598 			.result = SAM_STAT_CHECK_CONDITION,
2599 		},
2600 		{
2601 			.sense = NOT_READY,
2602 			.asc = 0x3A,
2603 			.result = SAM_STAT_CHECK_CONDITION,
2604 		},
2605 		 /* Device reset might occur several times so retry a lot */
2606 		{
2607 			.sense = UNIT_ATTENTION,
2608 			.asc = 0x29,
2609 			.allowed = READ_CAPACITY_RETRIES_ON_RESET,
2610 			.result = SAM_STAT_CHECK_CONDITION,
2611 		},
2612 		/* Any other error not listed above retry 3 times */
2613 		{
2614 			.result = SCMD_FAILURE_RESULT_ANY,
2615 			.allowed = 3,
2616 		},
2617 		{}
2618 	};
2619 	struct scsi_failures failures = {
2620 		.failure_definitions = failure_defs,
2621 	};
2622 	const struct scsi_exec_args exec_args = {
2623 		.sshdr = &sshdr,
2624 		.failures = &failures,
2625 	};
2626 	int sense_valid = 0;
2627 	int the_result;
2628 	sector_t lba;
2629 	unsigned sector_size;
2630 
2631 	memset(buffer, 0, 8);
2632 
2633 	the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, buffer,
2634 				      8, SD_TIMEOUT, sdkp->max_retries,
2635 				      &exec_args);
2636 
2637 	if (the_result > 0) {
2638 		sense_valid = scsi_sense_valid(&sshdr);
2639 
2640 		if (media_not_present(sdkp, &sshdr))
2641 			return -ENODEV;
2642 	}
2643 
2644 	if (the_result) {
2645 		sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2646 		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2647 		return -EINVAL;
2648 	}
2649 
2650 	sector_size = get_unaligned_be32(&buffer[4]);
2651 	lba = get_unaligned_be32(&buffer[0]);
2652 
2653 	if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2654 		/* Some buggy (usb cardreader) devices return an lba of
2655 		   0xffffffff when the want to report a size of 0 (with
2656 		   which they really mean no media is present) */
2657 		sdkp->capacity = 0;
2658 		sdkp->physical_block_size = sector_size;
2659 		return sector_size;
2660 	}
2661 
2662 	sdkp->capacity = lba + 1;
2663 	sdkp->physical_block_size = sector_size;
2664 	return sector_size;
2665 }
2666 
2667 static int sd_try_rc16_first(struct scsi_device *sdp)
2668 {
2669 	if (sdp->host->max_cmd_len < 16)
2670 		return 0;
2671 	if (sdp->try_rc_10_first)
2672 		return 0;
2673 	if (sdp->scsi_level > SCSI_SPC_2)
2674 		return 1;
2675 	if (scsi_device_protection(sdp))
2676 		return 1;
2677 	return 0;
2678 }
2679 
2680 /*
2681  * read disk capacity
2682  */
2683 static void
2684 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2685 {
2686 	int sector_size;
2687 	struct scsi_device *sdp = sdkp->device;
2688 
2689 	if (sd_try_rc16_first(sdp)) {
2690 		sector_size = read_capacity_16(sdkp, sdp, buffer);
2691 		if (sector_size == -EOVERFLOW)
2692 			goto got_data;
2693 		if (sector_size == -ENODEV)
2694 			return;
2695 		if (sector_size < 0)
2696 			sector_size = read_capacity_10(sdkp, sdp, buffer);
2697 		if (sector_size < 0)
2698 			return;
2699 	} else {
2700 		sector_size = read_capacity_10(sdkp, sdp, buffer);
2701 		if (sector_size == -EOVERFLOW)
2702 			goto got_data;
2703 		if (sector_size < 0)
2704 			return;
2705 		if ((sizeof(sdkp->capacity) > 4) &&
2706 		    (sdkp->capacity > 0xffffffffULL)) {
2707 			int old_sector_size = sector_size;
2708 			sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2709 					"Trying to use READ CAPACITY(16).\n");
2710 			sector_size = read_capacity_16(sdkp, sdp, buffer);
2711 			if (sector_size < 0) {
2712 				sd_printk(KERN_NOTICE, sdkp,
2713 					"Using 0xffffffff as device size\n");
2714 				sdkp->capacity = 1 + (sector_t) 0xffffffff;
2715 				sector_size = old_sector_size;
2716 				goto got_data;
2717 			}
2718 			/* Remember that READ CAPACITY(16) succeeded */
2719 			sdp->try_rc_10_first = 0;
2720 		}
2721 	}
2722 
2723 	/* Some devices are known to return the total number of blocks,
2724 	 * not the highest block number.  Some devices have versions
2725 	 * which do this and others which do not.  Some devices we might
2726 	 * suspect of doing this but we don't know for certain.
2727 	 *
2728 	 * If we know the reported capacity is wrong, decrement it.  If
2729 	 * we can only guess, then assume the number of blocks is even
2730 	 * (usually true but not always) and err on the side of lowering
2731 	 * the capacity.
2732 	 */
2733 	if (sdp->fix_capacity ||
2734 	    (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2735 		sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2736 				"from its reported value: %llu\n",
2737 				(unsigned long long) sdkp->capacity);
2738 		--sdkp->capacity;
2739 	}
2740 
2741 got_data:
2742 	if (sector_size == 0) {
2743 		sector_size = 512;
2744 		sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2745 			  "assuming 512.\n");
2746 	}
2747 
2748 	if (sector_size != 512 &&
2749 	    sector_size != 1024 &&
2750 	    sector_size != 2048 &&
2751 	    sector_size != 4096) {
2752 		sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2753 			  sector_size);
2754 		/*
2755 		 * The user might want to re-format the drive with
2756 		 * a supported sectorsize.  Once this happens, it
2757 		 * would be relatively trivial to set the thing up.
2758 		 * For this reason, we leave the thing in the table.
2759 		 */
2760 		sdkp->capacity = 0;
2761 		/*
2762 		 * set a bogus sector size so the normal read/write
2763 		 * logic in the block layer will eventually refuse any
2764 		 * request on this device without tripping over power
2765 		 * of two sector size assumptions
2766 		 */
2767 		sector_size = 512;
2768 	}
2769 	blk_queue_logical_block_size(sdp->request_queue, sector_size);
2770 	blk_queue_physical_block_size(sdp->request_queue,
2771 				      sdkp->physical_block_size);
2772 	sdkp->device->sector_size = sector_size;
2773 
2774 	if (sdkp->capacity > 0xffffffff)
2775 		sdp->use_16_for_rw = 1;
2776 
2777 }
2778 
2779 /*
2780  * Print disk capacity
2781  */
2782 static void
2783 sd_print_capacity(struct scsi_disk *sdkp,
2784 		  sector_t old_capacity)
2785 {
2786 	int sector_size = sdkp->device->sector_size;
2787 	char cap_str_2[10], cap_str_10[10];
2788 
2789 	if (!sdkp->first_scan && old_capacity == sdkp->capacity)
2790 		return;
2791 
2792 	string_get_size(sdkp->capacity, sector_size,
2793 			STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2794 	string_get_size(sdkp->capacity, sector_size,
2795 			STRING_UNITS_10, cap_str_10, sizeof(cap_str_10));
2796 
2797 	sd_printk(KERN_NOTICE, sdkp,
2798 		  "%llu %d-byte logical blocks: (%s/%s)\n",
2799 		  (unsigned long long)sdkp->capacity,
2800 		  sector_size, cap_str_10, cap_str_2);
2801 
2802 	if (sdkp->physical_block_size != sector_size)
2803 		sd_printk(KERN_NOTICE, sdkp,
2804 			  "%u-byte physical blocks\n",
2805 			  sdkp->physical_block_size);
2806 }
2807 
2808 /* called with buffer of length 512 */
2809 static inline int
2810 sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage,
2811 		 unsigned char *buffer, int len, struct scsi_mode_data *data,
2812 		 struct scsi_sense_hdr *sshdr)
2813 {
2814 	/*
2815 	 * If we must use MODE SENSE(10), make sure that the buffer length
2816 	 * is at least 8 bytes so that the mode sense header fits.
2817 	 */
2818 	if (sdkp->device->use_10_for_ms && len < 8)
2819 		len = 8;
2820 
2821 	return scsi_mode_sense(sdkp->device, dbd, modepage, 0, buffer, len,
2822 			       SD_TIMEOUT, sdkp->max_retries, data, sshdr);
2823 }
2824 
2825 /*
2826  * read write protect setting, if possible - called only in sd_revalidate_disk()
2827  * called with buffer of length SD_BUF_SIZE
2828  */
2829 static void
2830 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2831 {
2832 	int res;
2833 	struct scsi_device *sdp = sdkp->device;
2834 	struct scsi_mode_data data;
2835 	int old_wp = sdkp->write_prot;
2836 
2837 	set_disk_ro(sdkp->disk, 0);
2838 	if (sdp->skip_ms_page_3f) {
2839 		sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2840 		return;
2841 	}
2842 
2843 	if (sdp->use_192_bytes_for_3f) {
2844 		res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL);
2845 	} else {
2846 		/*
2847 		 * First attempt: ask for all pages (0x3F), but only 4 bytes.
2848 		 * We have to start carefully: some devices hang if we ask
2849 		 * for more than is available.
2850 		 */
2851 		res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL);
2852 
2853 		/*
2854 		 * Second attempt: ask for page 0 When only page 0 is
2855 		 * implemented, a request for page 3F may return Sense Key
2856 		 * 5: Illegal Request, Sense Code 24: Invalid field in
2857 		 * CDB.
2858 		 */
2859 		if (res < 0)
2860 			res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL);
2861 
2862 		/*
2863 		 * Third attempt: ask 255 bytes, as we did earlier.
2864 		 */
2865 		if (res < 0)
2866 			res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255,
2867 					       &data, NULL);
2868 	}
2869 
2870 	if (res < 0) {
2871 		sd_first_printk(KERN_WARNING, sdkp,
2872 			  "Test WP failed, assume Write Enabled\n");
2873 	} else {
2874 		sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2875 		set_disk_ro(sdkp->disk, sdkp->write_prot);
2876 		if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2877 			sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2878 				  sdkp->write_prot ? "on" : "off");
2879 			sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
2880 		}
2881 	}
2882 }
2883 
2884 /*
2885  * sd_read_cache_type - called only from sd_revalidate_disk()
2886  * called with buffer of length SD_BUF_SIZE
2887  */
2888 static void
2889 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2890 {
2891 	int len = 0, res;
2892 	struct scsi_device *sdp = sdkp->device;
2893 
2894 	int dbd;
2895 	int modepage;
2896 	int first_len;
2897 	struct scsi_mode_data data;
2898 	struct scsi_sense_hdr sshdr;
2899 	int old_wce = sdkp->WCE;
2900 	int old_rcd = sdkp->RCD;
2901 	int old_dpofua = sdkp->DPOFUA;
2902 
2903 
2904 	if (sdkp->cache_override)
2905 		return;
2906 
2907 	first_len = 4;
2908 	if (sdp->skip_ms_page_8) {
2909 		if (sdp->type == TYPE_RBC)
2910 			goto defaults;
2911 		else {
2912 			if (sdp->skip_ms_page_3f)
2913 				goto defaults;
2914 			modepage = 0x3F;
2915 			if (sdp->use_192_bytes_for_3f)
2916 				first_len = 192;
2917 			dbd = 0;
2918 		}
2919 	} else if (sdp->type == TYPE_RBC) {
2920 		modepage = 6;
2921 		dbd = 8;
2922 	} else {
2923 		modepage = 8;
2924 		dbd = 0;
2925 	}
2926 
2927 	/* cautiously ask */
2928 	res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len,
2929 			&data, &sshdr);
2930 
2931 	if (res < 0)
2932 		goto bad_sense;
2933 
2934 	if (!data.header_length) {
2935 		modepage = 6;
2936 		first_len = 0;
2937 		sd_first_printk(KERN_ERR, sdkp,
2938 				"Missing header in MODE_SENSE response\n");
2939 	}
2940 
2941 	/* that went OK, now ask for the proper length */
2942 	len = data.length;
2943 
2944 	/*
2945 	 * We're only interested in the first three bytes, actually.
2946 	 * But the data cache page is defined for the first 20.
2947 	 */
2948 	if (len < 3)
2949 		goto bad_sense;
2950 	else if (len > SD_BUF_SIZE) {
2951 		sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2952 			  "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2953 		len = SD_BUF_SIZE;
2954 	}
2955 	if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2956 		len = 192;
2957 
2958 	/* Get the data */
2959 	if (len > first_len)
2960 		res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len,
2961 				&data, &sshdr);
2962 
2963 	if (!res) {
2964 		int offset = data.header_length + data.block_descriptor_length;
2965 
2966 		while (offset < len) {
2967 			u8 page_code = buffer[offset] & 0x3F;
2968 			u8 spf       = buffer[offset] & 0x40;
2969 
2970 			if (page_code == 8 || page_code == 6) {
2971 				/* We're interested only in the first 3 bytes.
2972 				 */
2973 				if (len - offset <= 2) {
2974 					sd_first_printk(KERN_ERR, sdkp,
2975 						"Incomplete mode parameter "
2976 							"data\n");
2977 					goto defaults;
2978 				} else {
2979 					modepage = page_code;
2980 					goto Page_found;
2981 				}
2982 			} else {
2983 				/* Go to the next page */
2984 				if (spf && len - offset > 3)
2985 					offset += 4 + (buffer[offset+2] << 8) +
2986 						buffer[offset+3];
2987 				else if (!spf && len - offset > 1)
2988 					offset += 2 + buffer[offset+1];
2989 				else {
2990 					sd_first_printk(KERN_ERR, sdkp,
2991 							"Incomplete mode "
2992 							"parameter data\n");
2993 					goto defaults;
2994 				}
2995 			}
2996 		}
2997 
2998 		sd_first_printk(KERN_WARNING, sdkp,
2999 				"No Caching mode page found\n");
3000 		goto defaults;
3001 
3002 	Page_found:
3003 		if (modepage == 8) {
3004 			sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
3005 			sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
3006 		} else {
3007 			sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
3008 			sdkp->RCD = 0;
3009 		}
3010 
3011 		sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
3012 		if (sdp->broken_fua) {
3013 			sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
3014 			sdkp->DPOFUA = 0;
3015 		} else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
3016 			   !sdkp->device->use_16_for_rw) {
3017 			sd_first_printk(KERN_NOTICE, sdkp,
3018 				  "Uses READ/WRITE(6), disabling FUA\n");
3019 			sdkp->DPOFUA = 0;
3020 		}
3021 
3022 		/* No cache flush allowed for write protected devices */
3023 		if (sdkp->WCE && sdkp->write_prot)
3024 			sdkp->WCE = 0;
3025 
3026 		if (sdkp->first_scan || old_wce != sdkp->WCE ||
3027 		    old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
3028 			sd_printk(KERN_NOTICE, sdkp,
3029 				  "Write cache: %s, read cache: %s, %s\n",
3030 				  sdkp->WCE ? "enabled" : "disabled",
3031 				  sdkp->RCD ? "disabled" : "enabled",
3032 				  sdkp->DPOFUA ? "supports DPO and FUA"
3033 				  : "doesn't support DPO or FUA");
3034 
3035 		return;
3036 	}
3037 
3038 bad_sense:
3039 	if (res == -EIO && scsi_sense_valid(&sshdr) &&
3040 	    sshdr.sense_key == ILLEGAL_REQUEST &&
3041 	    sshdr.asc == 0x24 && sshdr.ascq == 0x0)
3042 		/* Invalid field in CDB */
3043 		sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
3044 	else
3045 		sd_first_printk(KERN_ERR, sdkp,
3046 				"Asking for cache data failed\n");
3047 
3048 defaults:
3049 	if (sdp->wce_default_on) {
3050 		sd_first_printk(KERN_NOTICE, sdkp,
3051 				"Assuming drive cache: write back\n");
3052 		sdkp->WCE = 1;
3053 	} else {
3054 		sd_first_printk(KERN_WARNING, sdkp,
3055 				"Assuming drive cache: write through\n");
3056 		sdkp->WCE = 0;
3057 	}
3058 	sdkp->RCD = 0;
3059 	sdkp->DPOFUA = 0;
3060 }
3061 
3062 /*
3063  * The ATO bit indicates whether the DIF application tag is available
3064  * for use by the operating system.
3065  */
3066 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
3067 {
3068 	int res, offset;
3069 	struct scsi_device *sdp = sdkp->device;
3070 	struct scsi_mode_data data;
3071 	struct scsi_sense_hdr sshdr;
3072 
3073 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
3074 		return;
3075 
3076 	if (sdkp->protection_type == 0)
3077 		return;
3078 
3079 	res = scsi_mode_sense(sdp, 1, 0x0a, 0, buffer, 36, SD_TIMEOUT,
3080 			      sdkp->max_retries, &data, &sshdr);
3081 
3082 	if (res < 0 || !data.header_length ||
3083 	    data.length < 6) {
3084 		sd_first_printk(KERN_WARNING, sdkp,
3085 			  "getting Control mode page failed, assume no ATO\n");
3086 
3087 		if (res == -EIO && scsi_sense_valid(&sshdr))
3088 			sd_print_sense_hdr(sdkp, &sshdr);
3089 
3090 		return;
3091 	}
3092 
3093 	offset = data.header_length + data.block_descriptor_length;
3094 
3095 	if ((buffer[offset] & 0x3f) != 0x0a) {
3096 		sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
3097 		return;
3098 	}
3099 
3100 	if ((buffer[offset + 5] & 0x80) == 0)
3101 		return;
3102 
3103 	sdkp->ATO = 1;
3104 
3105 	return;
3106 }
3107 
3108 /**
3109  * sd_read_block_limits - Query disk device for preferred I/O sizes.
3110  * @sdkp: disk to query
3111  */
3112 static void sd_read_block_limits(struct scsi_disk *sdkp)
3113 {
3114 	struct scsi_vpd *vpd;
3115 
3116 	rcu_read_lock();
3117 
3118 	vpd = rcu_dereference(sdkp->device->vpd_pgb0);
3119 	if (!vpd || vpd->len < 16)
3120 		goto out;
3121 
3122 	sdkp->min_xfer_blocks = get_unaligned_be16(&vpd->data[6]);
3123 	sdkp->max_xfer_blocks = get_unaligned_be32(&vpd->data[8]);
3124 	sdkp->opt_xfer_blocks = get_unaligned_be32(&vpd->data[12]);
3125 
3126 	if (vpd->len >= 64) {
3127 		unsigned int lba_count, desc_count;
3128 
3129 		sdkp->max_ws_blocks = (u32)get_unaligned_be64(&vpd->data[36]);
3130 
3131 		if (!sdkp->lbpme)
3132 			goto out;
3133 
3134 		lba_count = get_unaligned_be32(&vpd->data[20]);
3135 		desc_count = get_unaligned_be32(&vpd->data[24]);
3136 
3137 		if (lba_count && desc_count)
3138 			sdkp->max_unmap_blocks = lba_count;
3139 
3140 		sdkp->unmap_granularity = get_unaligned_be32(&vpd->data[28]);
3141 
3142 		if (vpd->data[32] & 0x80)
3143 			sdkp->unmap_alignment =
3144 				get_unaligned_be32(&vpd->data[32]) & ~(1 << 31);
3145 
3146 		if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
3147 
3148 			if (sdkp->max_unmap_blocks)
3149 				sd_config_discard(sdkp, SD_LBP_UNMAP);
3150 			else
3151 				sd_config_discard(sdkp, SD_LBP_WS16);
3152 
3153 		} else {	/* LBP VPD page tells us what to use */
3154 			if (sdkp->lbpu && sdkp->max_unmap_blocks)
3155 				sd_config_discard(sdkp, SD_LBP_UNMAP);
3156 			else if (sdkp->lbpws)
3157 				sd_config_discard(sdkp, SD_LBP_WS16);
3158 			else if (sdkp->lbpws10)
3159 				sd_config_discard(sdkp, SD_LBP_WS10);
3160 			else
3161 				sd_config_discard(sdkp, SD_LBP_DISABLE);
3162 		}
3163 	}
3164 
3165  out:
3166 	rcu_read_unlock();
3167 }
3168 
3169 /**
3170  * sd_read_block_characteristics - Query block dev. characteristics
3171  * @sdkp: disk to query
3172  */
3173 static void sd_read_block_characteristics(struct scsi_disk *sdkp)
3174 {
3175 	struct request_queue *q = sdkp->disk->queue;
3176 	struct scsi_vpd *vpd;
3177 	u16 rot;
3178 
3179 	rcu_read_lock();
3180 	vpd = rcu_dereference(sdkp->device->vpd_pgb1);
3181 
3182 	if (!vpd || vpd->len < 8) {
3183 		rcu_read_unlock();
3184 	        return;
3185 	}
3186 
3187 	rot = get_unaligned_be16(&vpd->data[4]);
3188 	sdkp->zoned = (vpd->data[8] >> 4) & 3;
3189 	rcu_read_unlock();
3190 
3191 	if (rot == 1) {
3192 		blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
3193 		blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
3194 	}
3195 
3196 
3197 #ifdef CONFIG_BLK_DEV_ZONED /* sd_probe rejects ZBD devices early otherwise */
3198 	if (sdkp->device->type == TYPE_ZBC) {
3199 		/*
3200 		 * Host-managed.
3201 		 */
3202 		disk_set_zoned(sdkp->disk);
3203 
3204 		/*
3205 		 * Per ZBC and ZAC specifications, writes in sequential write
3206 		 * required zones of host-managed devices must be aligned to
3207 		 * the device physical block size.
3208 		 */
3209 		blk_queue_zone_write_granularity(q, sdkp->physical_block_size);
3210 	} else {
3211 		/*
3212 		 * Host-aware devices are treated as conventional.
3213 		 */
3214 		WARN_ON_ONCE(blk_queue_is_zoned(q));
3215 	}
3216 #endif /* CONFIG_BLK_DEV_ZONED */
3217 
3218 	if (!sdkp->first_scan)
3219 		return;
3220 
3221 	if (blk_queue_is_zoned(q))
3222 		sd_printk(KERN_NOTICE, sdkp, "Host-managed zoned block device\n");
3223 	else if (sdkp->zoned == 1)
3224 		sd_printk(KERN_NOTICE, sdkp, "Host-aware SMR disk used as regular disk\n");
3225 	else if (sdkp->zoned == 2)
3226 		sd_printk(KERN_NOTICE, sdkp, "Drive-managed SMR disk\n");
3227 }
3228 
3229 /**
3230  * sd_read_block_provisioning - Query provisioning VPD page
3231  * @sdkp: disk to query
3232  */
3233 static void sd_read_block_provisioning(struct scsi_disk *sdkp)
3234 {
3235 	struct scsi_vpd *vpd;
3236 
3237 	if (sdkp->lbpme == 0)
3238 		return;
3239 
3240 	rcu_read_lock();
3241 	vpd = rcu_dereference(sdkp->device->vpd_pgb2);
3242 
3243 	if (!vpd || vpd->len < 8) {
3244 		rcu_read_unlock();
3245 		return;
3246 	}
3247 
3248 	sdkp->lbpvpd	= 1;
3249 	sdkp->lbpu	= (vpd->data[5] >> 7) & 1; /* UNMAP */
3250 	sdkp->lbpws	= (vpd->data[5] >> 6) & 1; /* WRITE SAME(16) w/ UNMAP */
3251 	sdkp->lbpws10	= (vpd->data[5] >> 5) & 1; /* WRITE SAME(10) w/ UNMAP */
3252 	rcu_read_unlock();
3253 }
3254 
3255 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
3256 {
3257 	struct scsi_device *sdev = sdkp->device;
3258 
3259 	if (sdev->host->no_write_same) {
3260 		sdev->no_write_same = 1;
3261 
3262 		return;
3263 	}
3264 
3265 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY, 0) < 0) {
3266 		struct scsi_vpd *vpd;
3267 
3268 		sdev->no_report_opcodes = 1;
3269 
3270 		/* Disable WRITE SAME if REPORT SUPPORTED OPERATION
3271 		 * CODES is unsupported and the device has an ATA
3272 		 * Information VPD page (SAT).
3273 		 */
3274 		rcu_read_lock();
3275 		vpd = rcu_dereference(sdev->vpd_pg89);
3276 		if (vpd)
3277 			sdev->no_write_same = 1;
3278 		rcu_read_unlock();
3279 	}
3280 
3281 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16, 0) == 1)
3282 		sdkp->ws16 = 1;
3283 
3284 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME, 0) == 1)
3285 		sdkp->ws10 = 1;
3286 }
3287 
3288 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3289 {
3290 	struct scsi_device *sdev = sdkp->device;
3291 
3292 	if (!sdev->security_supported)
3293 		return;
3294 
3295 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3296 			SECURITY_PROTOCOL_IN, 0) == 1 &&
3297 	    scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3298 			SECURITY_PROTOCOL_OUT, 0) == 1)
3299 		sdkp->security = 1;
3300 }
3301 
3302 static inline sector_t sd64_to_sectors(struct scsi_disk *sdkp, u8 *buf)
3303 {
3304 	return logical_to_sectors(sdkp->device, get_unaligned_be64(buf));
3305 }
3306 
3307 /**
3308  * sd_read_cpr - Query concurrent positioning ranges
3309  * @sdkp:	disk to query
3310  */
3311 static void sd_read_cpr(struct scsi_disk *sdkp)
3312 {
3313 	struct blk_independent_access_ranges *iars = NULL;
3314 	unsigned char *buffer = NULL;
3315 	unsigned int nr_cpr = 0;
3316 	int i, vpd_len, buf_len = SD_BUF_SIZE;
3317 	u8 *desc;
3318 
3319 	/*
3320 	 * We need to have the capacity set first for the block layer to be
3321 	 * able to check the ranges.
3322 	 */
3323 	if (sdkp->first_scan)
3324 		return;
3325 
3326 	if (!sdkp->capacity)
3327 		goto out;
3328 
3329 	/*
3330 	 * Concurrent Positioning Ranges VPD: there can be at most 256 ranges,
3331 	 * leading to a maximum page size of 64 + 256*32 bytes.
3332 	 */
3333 	buf_len = 64 + 256*32;
3334 	buffer = kmalloc(buf_len, GFP_KERNEL);
3335 	if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb9, buffer, buf_len))
3336 		goto out;
3337 
3338 	/* We must have at least a 64B header and one 32B range descriptor */
3339 	vpd_len = get_unaligned_be16(&buffer[2]) + 4;
3340 	if (vpd_len > buf_len || vpd_len < 64 + 32 || (vpd_len & 31)) {
3341 		sd_printk(KERN_ERR, sdkp,
3342 			  "Invalid Concurrent Positioning Ranges VPD page\n");
3343 		goto out;
3344 	}
3345 
3346 	nr_cpr = (vpd_len - 64) / 32;
3347 	if (nr_cpr == 1) {
3348 		nr_cpr = 0;
3349 		goto out;
3350 	}
3351 
3352 	iars = disk_alloc_independent_access_ranges(sdkp->disk, nr_cpr);
3353 	if (!iars) {
3354 		nr_cpr = 0;
3355 		goto out;
3356 	}
3357 
3358 	desc = &buffer[64];
3359 	for (i = 0; i < nr_cpr; i++, desc += 32) {
3360 		if (desc[0] != i) {
3361 			sd_printk(KERN_ERR, sdkp,
3362 				"Invalid Concurrent Positioning Range number\n");
3363 			nr_cpr = 0;
3364 			break;
3365 		}
3366 
3367 		iars->ia_range[i].sector = sd64_to_sectors(sdkp, desc + 8);
3368 		iars->ia_range[i].nr_sectors = sd64_to_sectors(sdkp, desc + 16);
3369 	}
3370 
3371 out:
3372 	disk_set_independent_access_ranges(sdkp->disk, iars);
3373 	if (nr_cpr && sdkp->nr_actuators != nr_cpr) {
3374 		sd_printk(KERN_NOTICE, sdkp,
3375 			  "%u concurrent positioning ranges\n", nr_cpr);
3376 		sdkp->nr_actuators = nr_cpr;
3377 	}
3378 
3379 	kfree(buffer);
3380 }
3381 
3382 static bool sd_validate_min_xfer_size(struct scsi_disk *sdkp)
3383 {
3384 	struct scsi_device *sdp = sdkp->device;
3385 	unsigned int min_xfer_bytes =
3386 		logical_to_bytes(sdp, sdkp->min_xfer_blocks);
3387 
3388 	if (sdkp->min_xfer_blocks == 0)
3389 		return false;
3390 
3391 	if (min_xfer_bytes & (sdkp->physical_block_size - 1)) {
3392 		sd_first_printk(KERN_WARNING, sdkp,
3393 				"Preferred minimum I/O size %u bytes not a " \
3394 				"multiple of physical block size (%u bytes)\n",
3395 				min_xfer_bytes, sdkp->physical_block_size);
3396 		sdkp->min_xfer_blocks = 0;
3397 		return false;
3398 	}
3399 
3400 	sd_first_printk(KERN_INFO, sdkp, "Preferred minimum I/O size %u bytes\n",
3401 			min_xfer_bytes);
3402 	return true;
3403 }
3404 
3405 /*
3406  * Determine the device's preferred I/O size for reads and writes
3407  * unless the reported value is unreasonably small, large, not a
3408  * multiple of the physical block size, or simply garbage.
3409  */
3410 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp,
3411 				      unsigned int dev_max)
3412 {
3413 	struct scsi_device *sdp = sdkp->device;
3414 	unsigned int opt_xfer_bytes =
3415 		logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3416 	unsigned int min_xfer_bytes =
3417 		logical_to_bytes(sdp, sdkp->min_xfer_blocks);
3418 
3419 	if (sdkp->opt_xfer_blocks == 0)
3420 		return false;
3421 
3422 	if (sdkp->opt_xfer_blocks > dev_max) {
3423 		sd_first_printk(KERN_WARNING, sdkp,
3424 				"Optimal transfer size %u logical blocks " \
3425 				"> dev_max (%u logical blocks)\n",
3426 				sdkp->opt_xfer_blocks, dev_max);
3427 		return false;
3428 	}
3429 
3430 	if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) {
3431 		sd_first_printk(KERN_WARNING, sdkp,
3432 				"Optimal transfer size %u logical blocks " \
3433 				"> sd driver limit (%u logical blocks)\n",
3434 				sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS);
3435 		return false;
3436 	}
3437 
3438 	if (opt_xfer_bytes < PAGE_SIZE) {
3439 		sd_first_printk(KERN_WARNING, sdkp,
3440 				"Optimal transfer size %u bytes < " \
3441 				"PAGE_SIZE (%u bytes)\n",
3442 				opt_xfer_bytes, (unsigned int)PAGE_SIZE);
3443 		return false;
3444 	}
3445 
3446 	if (min_xfer_bytes && opt_xfer_bytes % min_xfer_bytes) {
3447 		sd_first_printk(KERN_WARNING, sdkp,
3448 				"Optimal transfer size %u bytes not a " \
3449 				"multiple of preferred minimum block " \
3450 				"size (%u bytes)\n",
3451 				opt_xfer_bytes, min_xfer_bytes);
3452 		return false;
3453 	}
3454 
3455 	if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) {
3456 		sd_first_printk(KERN_WARNING, sdkp,
3457 				"Optimal transfer size %u bytes not a " \
3458 				"multiple of physical block size (%u bytes)\n",
3459 				opt_xfer_bytes, sdkp->physical_block_size);
3460 		return false;
3461 	}
3462 
3463 	sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n",
3464 			opt_xfer_bytes);
3465 	return true;
3466 }
3467 
3468 static void sd_read_block_zero(struct scsi_disk *sdkp)
3469 {
3470 	unsigned int buf_len = sdkp->device->sector_size;
3471 	char *buffer, cmd[10] = { };
3472 
3473 	buffer = kmalloc(buf_len, GFP_KERNEL);
3474 	if (!buffer)
3475 		return;
3476 
3477 	cmd[0] = READ_10;
3478 	put_unaligned_be32(0, &cmd[2]); /* Logical block address 0 */
3479 	put_unaligned_be16(1, &cmd[7]);	/* Transfer 1 logical block */
3480 
3481 	scsi_execute_cmd(sdkp->device, cmd, REQ_OP_DRV_IN, buffer, buf_len,
3482 			 SD_TIMEOUT, sdkp->max_retries, NULL);
3483 	kfree(buffer);
3484 }
3485 
3486 /**
3487  *	sd_revalidate_disk - called the first time a new disk is seen,
3488  *	performs disk spin up, read_capacity, etc.
3489  *	@disk: struct gendisk we care about
3490  **/
3491 static int sd_revalidate_disk(struct gendisk *disk)
3492 {
3493 	struct scsi_disk *sdkp = scsi_disk(disk);
3494 	struct scsi_device *sdp = sdkp->device;
3495 	struct request_queue *q = sdkp->disk->queue;
3496 	sector_t old_capacity = sdkp->capacity;
3497 	unsigned char *buffer;
3498 	unsigned int dev_max, rw_max;
3499 
3500 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3501 				      "sd_revalidate_disk\n"));
3502 
3503 	/*
3504 	 * If the device is offline, don't try and read capacity or any
3505 	 * of the other niceties.
3506 	 */
3507 	if (!scsi_device_online(sdp))
3508 		goto out;
3509 
3510 	buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3511 	if (!buffer) {
3512 		sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3513 			  "allocation failure.\n");
3514 		goto out;
3515 	}
3516 
3517 	sd_spinup_disk(sdkp);
3518 
3519 	/*
3520 	 * Without media there is no reason to ask; moreover, some devices
3521 	 * react badly if we do.
3522 	 */
3523 	if (sdkp->media_present) {
3524 		sd_read_capacity(sdkp, buffer);
3525 		/*
3526 		 * Some USB/UAS devices return generic values for mode pages
3527 		 * until the media has been accessed. Trigger a READ operation
3528 		 * to force the device to populate mode pages.
3529 		 */
3530 		if (sdp->read_before_ms)
3531 			sd_read_block_zero(sdkp);
3532 		/*
3533 		 * set the default to rotational.  All non-rotational devices
3534 		 * support the block characteristics VPD page, which will
3535 		 * cause this to be updated correctly and any device which
3536 		 * doesn't support it should be treated as rotational.
3537 		 */
3538 		blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
3539 		blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q);
3540 
3541 		if (scsi_device_supports_vpd(sdp)) {
3542 			sd_read_block_provisioning(sdkp);
3543 			sd_read_block_limits(sdkp);
3544 			sd_read_block_characteristics(sdkp);
3545 			sd_zbc_read_zones(sdkp, buffer);
3546 			sd_read_cpr(sdkp);
3547 		}
3548 
3549 		sd_print_capacity(sdkp, old_capacity);
3550 
3551 		sd_read_write_protect_flag(sdkp, buffer);
3552 		sd_read_cache_type(sdkp, buffer);
3553 		sd_read_app_tag_own(sdkp, buffer);
3554 		sd_read_write_same(sdkp, buffer);
3555 		sd_read_security(sdkp, buffer);
3556 		sd_config_protection(sdkp);
3557 	}
3558 
3559 	/*
3560 	 * We now have all cache related info, determine how we deal
3561 	 * with flush requests.
3562 	 */
3563 	sd_set_flush_flag(sdkp);
3564 
3565 	/* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3566 	dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3567 
3568 	/* Some devices report a maximum block count for READ/WRITE requests. */
3569 	dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3570 	q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3571 
3572 	if (sd_validate_min_xfer_size(sdkp))
3573 		blk_queue_io_min(sdkp->disk->queue,
3574 				 logical_to_bytes(sdp, sdkp->min_xfer_blocks));
3575 	else
3576 		blk_queue_io_min(sdkp->disk->queue, 0);
3577 
3578 	if (sd_validate_opt_xfer_size(sdkp, dev_max)) {
3579 		q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3580 		rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
3581 	} else {
3582 		q->limits.io_opt = 0;
3583 		rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
3584 				      (sector_t)BLK_DEF_MAX_SECTORS_CAP);
3585 	}
3586 
3587 	/*
3588 	 * Limit default to SCSI host optimal sector limit if set. There may be
3589 	 * an impact on performance for when the size of a request exceeds this
3590 	 * host limit.
3591 	 */
3592 	rw_max = min_not_zero(rw_max, sdp->host->opt_sectors);
3593 
3594 	/* Do not exceed controller limit */
3595 	rw_max = min(rw_max, queue_max_hw_sectors(q));
3596 
3597 	/*
3598 	 * Only update max_sectors if previously unset or if the current value
3599 	 * exceeds the capabilities of the hardware.
3600 	 */
3601 	if (sdkp->first_scan ||
3602 	    q->limits.max_sectors > q->limits.max_dev_sectors ||
3603 	    q->limits.max_sectors > q->limits.max_hw_sectors)
3604 		q->limits.max_sectors = rw_max;
3605 
3606 	sdkp->first_scan = 0;
3607 
3608 	set_capacity_and_notify(disk, logical_to_sectors(sdp, sdkp->capacity));
3609 	sd_config_write_same(sdkp);
3610 	kfree(buffer);
3611 
3612 	/*
3613 	 * For a zoned drive, revalidating the zones can be done only once
3614 	 * the gendisk capacity is set. So if this fails, set back the gendisk
3615 	 * capacity to 0.
3616 	 */
3617 	if (sd_zbc_revalidate_zones(sdkp))
3618 		set_capacity_and_notify(disk, 0);
3619 
3620  out:
3621 	return 0;
3622 }
3623 
3624 /**
3625  *	sd_unlock_native_capacity - unlock native capacity
3626  *	@disk: struct gendisk to set capacity for
3627  *
3628  *	Block layer calls this function if it detects that partitions
3629  *	on @disk reach beyond the end of the device.  If the SCSI host
3630  *	implements ->unlock_native_capacity() method, it's invoked to
3631  *	give it a chance to adjust the device capacity.
3632  *
3633  *	CONTEXT:
3634  *	Defined by block layer.  Might sleep.
3635  */
3636 static void sd_unlock_native_capacity(struct gendisk *disk)
3637 {
3638 	struct scsi_device *sdev = scsi_disk(disk)->device;
3639 
3640 	if (sdev->host->hostt->unlock_native_capacity)
3641 		sdev->host->hostt->unlock_native_capacity(sdev);
3642 }
3643 
3644 /**
3645  *	sd_format_disk_name - format disk name
3646  *	@prefix: name prefix - ie. "sd" for SCSI disks
3647  *	@index: index of the disk to format name for
3648  *	@buf: output buffer
3649  *	@buflen: length of the output buffer
3650  *
3651  *	SCSI disk names starts at sda.  The 26th device is sdz and the
3652  *	27th is sdaa.  The last one for two lettered suffix is sdzz
3653  *	which is followed by sdaaa.
3654  *
3655  *	This is basically 26 base counting with one extra 'nil' entry
3656  *	at the beginning from the second digit on and can be
3657  *	determined using similar method as 26 base conversion with the
3658  *	index shifted -1 after each digit is computed.
3659  *
3660  *	CONTEXT:
3661  *	Don't care.
3662  *
3663  *	RETURNS:
3664  *	0 on success, -errno on failure.
3665  */
3666 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3667 {
3668 	const int base = 'z' - 'a' + 1;
3669 	char *begin = buf + strlen(prefix);
3670 	char *end = buf + buflen;
3671 	char *p;
3672 	int unit;
3673 
3674 	p = end - 1;
3675 	*p = '\0';
3676 	unit = base;
3677 	do {
3678 		if (p == begin)
3679 			return -EINVAL;
3680 		*--p = 'a' + (index % unit);
3681 		index = (index / unit) - 1;
3682 	} while (index >= 0);
3683 
3684 	memmove(begin, p, end - p);
3685 	memcpy(buf, prefix, strlen(prefix));
3686 
3687 	return 0;
3688 }
3689 
3690 /**
3691  *	sd_probe - called during driver initialization and whenever a
3692  *	new scsi device is attached to the system. It is called once
3693  *	for each scsi device (not just disks) present.
3694  *	@dev: pointer to device object
3695  *
3696  *	Returns 0 if successful (or not interested in this scsi device
3697  *	(e.g. scanner)); 1 when there is an error.
3698  *
3699  *	Note: this function is invoked from the scsi mid-level.
3700  *	This function sets up the mapping between a given
3701  *	<host,channel,id,lun> (found in sdp) and new device name
3702  *	(e.g. /dev/sda). More precisely it is the block device major
3703  *	and minor number that is chosen here.
3704  *
3705  *	Assume sd_probe is not re-entrant (for time being)
3706  *	Also think about sd_probe() and sd_remove() running coincidentally.
3707  **/
3708 static int sd_probe(struct device *dev)
3709 {
3710 	struct scsi_device *sdp = to_scsi_device(dev);
3711 	struct scsi_disk *sdkp;
3712 	struct gendisk *gd;
3713 	int index;
3714 	int error;
3715 
3716 	scsi_autopm_get_device(sdp);
3717 	error = -ENODEV;
3718 	if (sdp->type != TYPE_DISK &&
3719 	    sdp->type != TYPE_ZBC &&
3720 	    sdp->type != TYPE_MOD &&
3721 	    sdp->type != TYPE_RBC)
3722 		goto out;
3723 
3724 	if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) && sdp->type == TYPE_ZBC) {
3725 		sdev_printk(KERN_WARNING, sdp,
3726 			    "Unsupported ZBC host-managed device.\n");
3727 		goto out;
3728 	}
3729 
3730 	SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3731 					"sd_probe\n"));
3732 
3733 	error = -ENOMEM;
3734 	sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3735 	if (!sdkp)
3736 		goto out;
3737 
3738 	gd = blk_mq_alloc_disk_for_queue(sdp->request_queue,
3739 					 &sd_bio_compl_lkclass);
3740 	if (!gd)
3741 		goto out_free;
3742 
3743 	index = ida_alloc(&sd_index_ida, GFP_KERNEL);
3744 	if (index < 0) {
3745 		sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3746 		goto out_put;
3747 	}
3748 
3749 	error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3750 	if (error) {
3751 		sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3752 		goto out_free_index;
3753 	}
3754 
3755 	sdkp->device = sdp;
3756 	sdkp->disk = gd;
3757 	sdkp->index = index;
3758 	sdkp->max_retries = SD_MAX_RETRIES;
3759 	atomic_set(&sdkp->openers, 0);
3760 	atomic_set(&sdkp->device->ioerr_cnt, 0);
3761 
3762 	if (!sdp->request_queue->rq_timeout) {
3763 		if (sdp->type != TYPE_MOD)
3764 			blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3765 		else
3766 			blk_queue_rq_timeout(sdp->request_queue,
3767 					     SD_MOD_TIMEOUT);
3768 	}
3769 
3770 	device_initialize(&sdkp->disk_dev);
3771 	sdkp->disk_dev.parent = get_device(dev);
3772 	sdkp->disk_dev.class = &sd_disk_class;
3773 	dev_set_name(&sdkp->disk_dev, "%s", dev_name(dev));
3774 
3775 	error = device_add(&sdkp->disk_dev);
3776 	if (error) {
3777 		put_device(&sdkp->disk_dev);
3778 		goto out;
3779 	}
3780 
3781 	dev_set_drvdata(dev, sdkp);
3782 
3783 	gd->major = sd_major((index & 0xf0) >> 4);
3784 	gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3785 	gd->minors = SD_MINORS;
3786 
3787 	gd->fops = &sd_fops;
3788 	gd->private_data = sdkp;
3789 
3790 	/* defaults, until the device tells us otherwise */
3791 	sdp->sector_size = 512;
3792 	sdkp->capacity = 0;
3793 	sdkp->media_present = 1;
3794 	sdkp->write_prot = 0;
3795 	sdkp->cache_override = 0;
3796 	sdkp->WCE = 0;
3797 	sdkp->RCD = 0;
3798 	sdkp->ATO = 0;
3799 	sdkp->first_scan = 1;
3800 	sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3801 
3802 	sd_revalidate_disk(gd);
3803 
3804 	if (sdp->removable) {
3805 		gd->flags |= GENHD_FL_REMOVABLE;
3806 		gd->events |= DISK_EVENT_MEDIA_CHANGE;
3807 		gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT;
3808 	}
3809 
3810 	blk_pm_runtime_init(sdp->request_queue, dev);
3811 	if (sdp->rpm_autosuspend) {
3812 		pm_runtime_set_autosuspend_delay(dev,
3813 			sdp->host->rpm_autosuspend_delay);
3814 	}
3815 
3816 	error = device_add_disk(dev, gd, NULL);
3817 	if (error) {
3818 		put_device(&sdkp->disk_dev);
3819 		put_disk(gd);
3820 		goto out;
3821 	}
3822 
3823 	if (sdkp->security) {
3824 		sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit);
3825 		if (sdkp->opal_dev)
3826 			sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
3827 	}
3828 
3829 	sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3830 		  sdp->removable ? "removable " : "");
3831 	scsi_autopm_put_device(sdp);
3832 
3833 	return 0;
3834 
3835  out_free_index:
3836 	ida_free(&sd_index_ida, index);
3837  out_put:
3838 	put_disk(gd);
3839  out_free:
3840 	kfree(sdkp);
3841  out:
3842 	scsi_autopm_put_device(sdp);
3843 	return error;
3844 }
3845 
3846 /**
3847  *	sd_remove - called whenever a scsi disk (previously recognized by
3848  *	sd_probe) is detached from the system. It is called (potentially
3849  *	multiple times) during sd module unload.
3850  *	@dev: pointer to device object
3851  *
3852  *	Note: this function is invoked from the scsi mid-level.
3853  *	This function potentially frees up a device name (e.g. /dev/sdc)
3854  *	that could be re-used by a subsequent sd_probe().
3855  *	This function is not called when the built-in sd driver is "exit-ed".
3856  **/
3857 static int sd_remove(struct device *dev)
3858 {
3859 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3860 
3861 	scsi_autopm_get_device(sdkp->device);
3862 
3863 	device_del(&sdkp->disk_dev);
3864 	del_gendisk(sdkp->disk);
3865 	if (!sdkp->suspended)
3866 		sd_shutdown(dev);
3867 
3868 	put_disk(sdkp->disk);
3869 	return 0;
3870 }
3871 
3872 static void scsi_disk_release(struct device *dev)
3873 {
3874 	struct scsi_disk *sdkp = to_scsi_disk(dev);
3875 
3876 	ida_free(&sd_index_ida, sdkp->index);
3877 	sd_zbc_free_zone_info(sdkp);
3878 	put_device(&sdkp->device->sdev_gendev);
3879 	free_opal_dev(sdkp->opal_dev);
3880 
3881 	kfree(sdkp);
3882 }
3883 
3884 static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3885 {
3886 	unsigned char cmd[6] = { START_STOP };	/* START_VALID */
3887 	struct scsi_sense_hdr sshdr;
3888 	const struct scsi_exec_args exec_args = {
3889 		.sshdr = &sshdr,
3890 		.req_flags = BLK_MQ_REQ_PM,
3891 	};
3892 	struct scsi_device *sdp = sdkp->device;
3893 	int res;
3894 
3895 	if (start)
3896 		cmd[4] |= 1;	/* START */
3897 
3898 	if (sdp->start_stop_pwr_cond)
3899 		cmd[4] |= start ? 1 << 4 : 3 << 4;	/* Active or Standby */
3900 
3901 	if (!scsi_device_online(sdp))
3902 		return -ENODEV;
3903 
3904 	res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, SD_TIMEOUT,
3905 			       sdkp->max_retries, &exec_args);
3906 	if (res) {
3907 		sd_print_result(sdkp, "Start/Stop Unit failed", res);
3908 		if (res > 0 && scsi_sense_valid(&sshdr)) {
3909 			sd_print_sense_hdr(sdkp, &sshdr);
3910 			/* 0x3a is medium not present */
3911 			if (sshdr.asc == 0x3a)
3912 				res = 0;
3913 		}
3914 	}
3915 
3916 	/* SCSI error codes must not go to the generic layer */
3917 	if (res)
3918 		return -EIO;
3919 
3920 	return 0;
3921 }
3922 
3923 /*
3924  * Send a SYNCHRONIZE CACHE instruction down to the device through
3925  * the normal SCSI command structure.  Wait for the command to
3926  * complete.
3927  */
3928 static void sd_shutdown(struct device *dev)
3929 {
3930 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3931 
3932 	if (!sdkp)
3933 		return;         /* this can happen */
3934 
3935 	if (pm_runtime_suspended(dev))
3936 		return;
3937 
3938 	if (sdkp->WCE && sdkp->media_present) {
3939 		sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3940 		sd_sync_cache(sdkp);
3941 	}
3942 
3943 	if ((system_state != SYSTEM_RESTART &&
3944 	     sdkp->device->manage_system_start_stop) ||
3945 	    (system_state == SYSTEM_POWER_OFF &&
3946 	     sdkp->device->manage_shutdown)) {
3947 		sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3948 		sd_start_stop_device(sdkp, 0);
3949 	}
3950 }
3951 
3952 static inline bool sd_do_start_stop(struct scsi_device *sdev, bool runtime)
3953 {
3954 	return (sdev->manage_system_start_stop && !runtime) ||
3955 		(sdev->manage_runtime_start_stop && runtime);
3956 }
3957 
3958 static int sd_suspend_common(struct device *dev, bool runtime)
3959 {
3960 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3961 	int ret = 0;
3962 
3963 	if (!sdkp)	/* E.g.: runtime suspend following sd_remove() */
3964 		return 0;
3965 
3966 	if (sdkp->WCE && sdkp->media_present) {
3967 		if (!sdkp->device->silence_suspend)
3968 			sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3969 		ret = sd_sync_cache(sdkp);
3970 		/* ignore OFFLINE device */
3971 		if (ret == -ENODEV)
3972 			return 0;
3973 
3974 		if (ret)
3975 			return ret;
3976 	}
3977 
3978 	if (sd_do_start_stop(sdkp->device, runtime)) {
3979 		if (!sdkp->device->silence_suspend)
3980 			sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3981 		/* an error is not worth aborting a system sleep */
3982 		ret = sd_start_stop_device(sdkp, 0);
3983 		if (!runtime)
3984 			ret = 0;
3985 	}
3986 
3987 	if (!ret)
3988 		sdkp->suspended = true;
3989 
3990 	return ret;
3991 }
3992 
3993 static int sd_suspend_system(struct device *dev)
3994 {
3995 	if (pm_runtime_suspended(dev))
3996 		return 0;
3997 
3998 	return sd_suspend_common(dev, false);
3999 }
4000 
4001 static int sd_suspend_runtime(struct device *dev)
4002 {
4003 	return sd_suspend_common(dev, true);
4004 }
4005 
4006 static int sd_resume(struct device *dev, bool runtime)
4007 {
4008 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
4009 	int ret;
4010 
4011 	if (!sdkp)	/* E.g.: runtime resume at the start of sd_probe() */
4012 		return 0;
4013 
4014 	if (!sd_do_start_stop(sdkp->device, runtime)) {
4015 		sdkp->suspended = false;
4016 		return 0;
4017 	}
4018 
4019 	sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
4020 	ret = sd_start_stop_device(sdkp, 1);
4021 	if (!ret) {
4022 		opal_unlock_from_suspend(sdkp->opal_dev);
4023 		sdkp->suspended = false;
4024 	}
4025 
4026 	return ret;
4027 }
4028 
4029 static int sd_resume_system(struct device *dev)
4030 {
4031 	if (pm_runtime_suspended(dev)) {
4032 		struct scsi_disk *sdkp = dev_get_drvdata(dev);
4033 		struct scsi_device *sdp = sdkp ? sdkp->device : NULL;
4034 
4035 		if (sdp && sdp->force_runtime_start_on_system_start)
4036 			pm_request_resume(dev);
4037 
4038 		return 0;
4039 	}
4040 
4041 	return sd_resume(dev, false);
4042 }
4043 
4044 static int sd_resume_runtime(struct device *dev)
4045 {
4046 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
4047 	struct scsi_device *sdp;
4048 
4049 	if (!sdkp)	/* E.g.: runtime resume at the start of sd_probe() */
4050 		return 0;
4051 
4052 	sdp = sdkp->device;
4053 
4054 	if (sdp->ignore_media_change) {
4055 		/* clear the device's sense data */
4056 		static const u8 cmd[10] = { REQUEST_SENSE };
4057 		const struct scsi_exec_args exec_args = {
4058 			.req_flags = BLK_MQ_REQ_PM,
4059 		};
4060 
4061 		if (scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0,
4062 				     sdp->request_queue->rq_timeout, 1,
4063 				     &exec_args))
4064 			sd_printk(KERN_NOTICE, sdkp,
4065 				  "Failed to clear sense data\n");
4066 	}
4067 
4068 	return sd_resume(dev, true);
4069 }
4070 
4071 static const struct dev_pm_ops sd_pm_ops = {
4072 	.suspend		= sd_suspend_system,
4073 	.resume			= sd_resume_system,
4074 	.poweroff		= sd_suspend_system,
4075 	.restore		= sd_resume_system,
4076 	.runtime_suspend	= sd_suspend_runtime,
4077 	.runtime_resume		= sd_resume_runtime,
4078 };
4079 
4080 static struct scsi_driver sd_template = {
4081 	.gendrv = {
4082 		.name		= "sd",
4083 		.owner		= THIS_MODULE,
4084 		.probe		= sd_probe,
4085 		.probe_type	= PROBE_PREFER_ASYNCHRONOUS,
4086 		.remove		= sd_remove,
4087 		.shutdown	= sd_shutdown,
4088 		.pm		= &sd_pm_ops,
4089 	},
4090 	.rescan			= sd_rescan,
4091 	.init_command		= sd_init_command,
4092 	.uninit_command		= sd_uninit_command,
4093 	.done			= sd_done,
4094 	.eh_action		= sd_eh_action,
4095 	.eh_reset		= sd_eh_reset,
4096 };
4097 
4098 /**
4099  *	init_sd - entry point for this driver (both when built in or when
4100  *	a module).
4101  *
4102  *	Note: this function registers this driver with the scsi mid-level.
4103  **/
4104 static int __init init_sd(void)
4105 {
4106 	int majors = 0, i, err;
4107 
4108 	SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
4109 
4110 	for (i = 0; i < SD_MAJORS; i++) {
4111 		if (__register_blkdev(sd_major(i), "sd", sd_default_probe))
4112 			continue;
4113 		majors++;
4114 	}
4115 
4116 	if (!majors)
4117 		return -ENODEV;
4118 
4119 	err = class_register(&sd_disk_class);
4120 	if (err)
4121 		goto err_out;
4122 
4123 	sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0);
4124 	if (!sd_page_pool) {
4125 		printk(KERN_ERR "sd: can't init discard page pool\n");
4126 		err = -ENOMEM;
4127 		goto err_out_class;
4128 	}
4129 
4130 	err = scsi_register_driver(&sd_template.gendrv);
4131 	if (err)
4132 		goto err_out_driver;
4133 
4134 	return 0;
4135 
4136 err_out_driver:
4137 	mempool_destroy(sd_page_pool);
4138 err_out_class:
4139 	class_unregister(&sd_disk_class);
4140 err_out:
4141 	for (i = 0; i < SD_MAJORS; i++)
4142 		unregister_blkdev(sd_major(i), "sd");
4143 	return err;
4144 }
4145 
4146 /**
4147  *	exit_sd - exit point for this driver (when it is a module).
4148  *
4149  *	Note: this function unregisters this driver from the scsi mid-level.
4150  **/
4151 static void __exit exit_sd(void)
4152 {
4153 	int i;
4154 
4155 	SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
4156 
4157 	scsi_unregister_driver(&sd_template.gendrv);
4158 	mempool_destroy(sd_page_pool);
4159 
4160 	class_unregister(&sd_disk_class);
4161 
4162 	for (i = 0; i < SD_MAJORS; i++)
4163 		unregister_blkdev(sd_major(i), "sd");
4164 }
4165 
4166 module_init(init_sd);
4167 module_exit(exit_sd);
4168 
4169 void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
4170 {
4171 	scsi_print_sense_hdr(sdkp->device,
4172 			     sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
4173 }
4174 
4175 void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result)
4176 {
4177 	const char *hb_string = scsi_hostbyte_string(result);
4178 
4179 	if (hb_string)
4180 		sd_printk(KERN_INFO, sdkp,
4181 			  "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
4182 			  hb_string ? hb_string : "invalid",
4183 			  "DRIVER_OK");
4184 	else
4185 		sd_printk(KERN_INFO, sdkp,
4186 			  "%s: Result: hostbyte=0x%02x driverbyte=%s\n",
4187 			  msg, host_byte(result), "DRIVER_OK");
4188 }
4189