xref: /linux/drivers/scsi/sd.c (revision e58e871becec2d3b04ed91c0c16fe8deac9c9dfa)
1 /*
2  *      sd.c Copyright (C) 1992 Drew Eckhardt
3  *           Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
4  *
5  *      Linux scsi disk driver
6  *              Initial versions: Drew Eckhardt
7  *              Subsequent revisions: Eric Youngdale
8  *	Modification history:
9  *       - Drew Eckhardt <drew@colorado.edu> original
10  *       - Eric Youngdale <eric@andante.org> add scatter-gather, multiple
11  *         outstanding request, and other enhancements.
12  *         Support loadable low-level scsi drivers.
13  *       - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using
14  *         eight major numbers.
15  *       - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
16  *	 - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in
17  *	   sd_init and cleanups.
18  *	 - Alex Davis <letmein@erols.com> Fix problem where partition info
19  *	   not being read in sd_open. Fix problem where removable media
20  *	   could be ejected after sd_open.
21  *	 - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
22  *	 - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox
23  *	   <willy@debian.org>, Kurt Garloff <garloff@suse.de>:
24  *	   Support 32k/1M disks.
25  *
26  *	Logging policy (needs CONFIG_SCSI_LOGGING defined):
27  *	 - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
28  *	 - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
29  *	 - entering sd_ioctl: SCSI_LOG_IOCTL level 1
30  *	 - entering other commands: SCSI_LOG_HLQUEUE level 3
31  *	Note: when the logging level is set by the user, it must be greater
32  *	than the level indicated above to trigger output.
33  */
34 
35 #include <linux/module.h>
36 #include <linux/fs.h>
37 #include <linux/kernel.h>
38 #include <linux/mm.h>
39 #include <linux/bio.h>
40 #include <linux/genhd.h>
41 #include <linux/hdreg.h>
42 #include <linux/errno.h>
43 #include <linux/idr.h>
44 #include <linux/interrupt.h>
45 #include <linux/init.h>
46 #include <linux/blkdev.h>
47 #include <linux/blkpg.h>
48 #include <linux/delay.h>
49 #include <linux/mutex.h>
50 #include <linux/string_helpers.h>
51 #include <linux/async.h>
52 #include <linux/slab.h>
53 #include <linux/pm_runtime.h>
54 #include <linux/pr.h>
55 #include <linux/t10-pi.h>
56 #include <linux/uaccess.h>
57 #include <asm/unaligned.h>
58 
59 #include <scsi/scsi.h>
60 #include <scsi/scsi_cmnd.h>
61 #include <scsi/scsi_dbg.h>
62 #include <scsi/scsi_device.h>
63 #include <scsi/scsi_driver.h>
64 #include <scsi/scsi_eh.h>
65 #include <scsi/scsi_host.h>
66 #include <scsi/scsi_ioctl.h>
67 #include <scsi/scsicam.h>
68 
69 #include "sd.h"
70 #include "scsi_priv.h"
71 #include "scsi_logging.h"
72 
73 MODULE_AUTHOR("Eric Youngdale");
74 MODULE_DESCRIPTION("SCSI disk (sd) driver");
75 MODULE_LICENSE("GPL");
76 
77 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
78 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
79 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
93 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
94 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
95 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
96 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
97 
98 #if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT)
99 #define SD_MINORS	16
100 #else
101 #define SD_MINORS	0
102 #endif
103 
104 static void sd_config_discard(struct scsi_disk *, unsigned int);
105 static void sd_config_write_same(struct scsi_disk *);
106 static int  sd_revalidate_disk(struct gendisk *);
107 static void sd_unlock_native_capacity(struct gendisk *disk);
108 static int  sd_probe(struct device *);
109 static int  sd_remove(struct device *);
110 static void sd_shutdown(struct device *);
111 static int sd_suspend_system(struct device *);
112 static int sd_suspend_runtime(struct device *);
113 static int sd_resume(struct device *);
114 static void sd_rescan(struct device *);
115 static int sd_init_command(struct scsi_cmnd *SCpnt);
116 static void sd_uninit_command(struct scsi_cmnd *SCpnt);
117 static int sd_done(struct scsi_cmnd *);
118 static void sd_eh_reset(struct scsi_cmnd *);
119 static int sd_eh_action(struct scsi_cmnd *, int);
120 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
121 static void scsi_disk_release(struct device *cdev);
122 static void sd_print_sense_hdr(struct scsi_disk *, struct scsi_sense_hdr *);
123 static void sd_print_result(const struct scsi_disk *, const char *, int);
124 
125 static DEFINE_SPINLOCK(sd_index_lock);
126 static DEFINE_IDA(sd_index_ida);
127 
128 /* This semaphore is used to mediate the 0->1 reference get in the
129  * face of object destruction (i.e. we can't allow a get on an
130  * object after last put) */
131 static DEFINE_MUTEX(sd_ref_mutex);
132 
133 static struct kmem_cache *sd_cdb_cache;
134 static mempool_t *sd_cdb_pool;
135 
136 static const char *sd_cache_types[] = {
137 	"write through", "none", "write back",
138 	"write back, no read (daft)"
139 };
140 
141 static void sd_set_flush_flag(struct scsi_disk *sdkp)
142 {
143 	bool wc = false, fua = false;
144 
145 	if (sdkp->WCE) {
146 		wc = true;
147 		if (sdkp->DPOFUA)
148 			fua = true;
149 	}
150 
151 	blk_queue_write_cache(sdkp->disk->queue, wc, fua);
152 }
153 
154 static ssize_t
155 cache_type_store(struct device *dev, struct device_attribute *attr,
156 		 const char *buf, size_t count)
157 {
158 	int i, ct = -1, rcd, wce, sp;
159 	struct scsi_disk *sdkp = to_scsi_disk(dev);
160 	struct scsi_device *sdp = sdkp->device;
161 	char buffer[64];
162 	char *buffer_data;
163 	struct scsi_mode_data data;
164 	struct scsi_sense_hdr sshdr;
165 	static const char temp[] = "temporary ";
166 	int len;
167 
168 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
169 		/* no cache control on RBC devices; theoretically they
170 		 * can do it, but there's probably so many exceptions
171 		 * it's not worth the risk */
172 		return -EINVAL;
173 
174 	if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
175 		buf += sizeof(temp) - 1;
176 		sdkp->cache_override = 1;
177 	} else {
178 		sdkp->cache_override = 0;
179 	}
180 
181 	for (i = 0; i < ARRAY_SIZE(sd_cache_types); i++) {
182 		len = strlen(sd_cache_types[i]);
183 		if (strncmp(sd_cache_types[i], buf, len) == 0 &&
184 		    buf[len] == '\n') {
185 			ct = i;
186 			break;
187 		}
188 	}
189 	if (ct < 0)
190 		return -EINVAL;
191 	rcd = ct & 0x01 ? 1 : 0;
192 	wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
193 
194 	if (sdkp->cache_override) {
195 		sdkp->WCE = wce;
196 		sdkp->RCD = rcd;
197 		sd_set_flush_flag(sdkp);
198 		return count;
199 	}
200 
201 	if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT,
202 			    SD_MAX_RETRIES, &data, NULL))
203 		return -EINVAL;
204 	len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
205 		  data.block_descriptor_length);
206 	buffer_data = buffer + data.header_length +
207 		data.block_descriptor_length;
208 	buffer_data[2] &= ~0x05;
209 	buffer_data[2] |= wce << 2 | rcd;
210 	sp = buffer_data[0] & 0x80 ? 1 : 0;
211 	buffer_data[0] &= ~0x80;
212 
213 	if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT,
214 			     SD_MAX_RETRIES, &data, &sshdr)) {
215 		if (scsi_sense_valid(&sshdr))
216 			sd_print_sense_hdr(sdkp, &sshdr);
217 		return -EINVAL;
218 	}
219 	revalidate_disk(sdkp->disk);
220 	return count;
221 }
222 
223 static ssize_t
224 manage_start_stop_show(struct device *dev, struct device_attribute *attr,
225 		       char *buf)
226 {
227 	struct scsi_disk *sdkp = to_scsi_disk(dev);
228 	struct scsi_device *sdp = sdkp->device;
229 
230 	return snprintf(buf, 20, "%u\n", sdp->manage_start_stop);
231 }
232 
233 static ssize_t
234 manage_start_stop_store(struct device *dev, struct device_attribute *attr,
235 			const char *buf, size_t count)
236 {
237 	struct scsi_disk *sdkp = to_scsi_disk(dev);
238 	struct scsi_device *sdp = sdkp->device;
239 
240 	if (!capable(CAP_SYS_ADMIN))
241 		return -EACCES;
242 
243 	sdp->manage_start_stop = simple_strtoul(buf, NULL, 10);
244 
245 	return count;
246 }
247 static DEVICE_ATTR_RW(manage_start_stop);
248 
249 static ssize_t
250 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
251 {
252 	struct scsi_disk *sdkp = to_scsi_disk(dev);
253 
254 	return snprintf(buf, 40, "%d\n", sdkp->device->allow_restart);
255 }
256 
257 static ssize_t
258 allow_restart_store(struct device *dev, struct device_attribute *attr,
259 		    const char *buf, size_t count)
260 {
261 	struct scsi_disk *sdkp = to_scsi_disk(dev);
262 	struct scsi_device *sdp = sdkp->device;
263 
264 	if (!capable(CAP_SYS_ADMIN))
265 		return -EACCES;
266 
267 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
268 		return -EINVAL;
269 
270 	sdp->allow_restart = simple_strtoul(buf, NULL, 10);
271 
272 	return count;
273 }
274 static DEVICE_ATTR_RW(allow_restart);
275 
276 static ssize_t
277 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
278 {
279 	struct scsi_disk *sdkp = to_scsi_disk(dev);
280 	int ct = sdkp->RCD + 2*sdkp->WCE;
281 
282 	return snprintf(buf, 40, "%s\n", sd_cache_types[ct]);
283 }
284 static DEVICE_ATTR_RW(cache_type);
285 
286 static ssize_t
287 FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
288 {
289 	struct scsi_disk *sdkp = to_scsi_disk(dev);
290 
291 	return snprintf(buf, 20, "%u\n", sdkp->DPOFUA);
292 }
293 static DEVICE_ATTR_RO(FUA);
294 
295 static ssize_t
296 protection_type_show(struct device *dev, struct device_attribute *attr,
297 		     char *buf)
298 {
299 	struct scsi_disk *sdkp = to_scsi_disk(dev);
300 
301 	return snprintf(buf, 20, "%u\n", sdkp->protection_type);
302 }
303 
304 static ssize_t
305 protection_type_store(struct device *dev, struct device_attribute *attr,
306 		      const char *buf, size_t count)
307 {
308 	struct scsi_disk *sdkp = to_scsi_disk(dev);
309 	unsigned int val;
310 	int err;
311 
312 	if (!capable(CAP_SYS_ADMIN))
313 		return -EACCES;
314 
315 	err = kstrtouint(buf, 10, &val);
316 
317 	if (err)
318 		return err;
319 
320 	if (val >= 0 && val <= T10_PI_TYPE3_PROTECTION)
321 		sdkp->protection_type = val;
322 
323 	return count;
324 }
325 static DEVICE_ATTR_RW(protection_type);
326 
327 static ssize_t
328 protection_mode_show(struct device *dev, struct device_attribute *attr,
329 		     char *buf)
330 {
331 	struct scsi_disk *sdkp = to_scsi_disk(dev);
332 	struct scsi_device *sdp = sdkp->device;
333 	unsigned int dif, dix;
334 
335 	dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
336 	dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
337 
338 	if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
339 		dif = 0;
340 		dix = 1;
341 	}
342 
343 	if (!dif && !dix)
344 		return snprintf(buf, 20, "none\n");
345 
346 	return snprintf(buf, 20, "%s%u\n", dix ? "dix" : "dif", dif);
347 }
348 static DEVICE_ATTR_RO(protection_mode);
349 
350 static ssize_t
351 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
352 {
353 	struct scsi_disk *sdkp = to_scsi_disk(dev);
354 
355 	return snprintf(buf, 20, "%u\n", sdkp->ATO);
356 }
357 static DEVICE_ATTR_RO(app_tag_own);
358 
359 static ssize_t
360 thin_provisioning_show(struct device *dev, struct device_attribute *attr,
361 		       char *buf)
362 {
363 	struct scsi_disk *sdkp = to_scsi_disk(dev);
364 
365 	return snprintf(buf, 20, "%u\n", sdkp->lbpme);
366 }
367 static DEVICE_ATTR_RO(thin_provisioning);
368 
369 static const char *lbp_mode[] = {
370 	[SD_LBP_FULL]		= "full",
371 	[SD_LBP_UNMAP]		= "unmap",
372 	[SD_LBP_WS16]		= "writesame_16",
373 	[SD_LBP_WS10]		= "writesame_10",
374 	[SD_LBP_ZERO]		= "writesame_zero",
375 	[SD_LBP_DISABLE]	= "disabled",
376 };
377 
378 static ssize_t
379 provisioning_mode_show(struct device *dev, struct device_attribute *attr,
380 		       char *buf)
381 {
382 	struct scsi_disk *sdkp = to_scsi_disk(dev);
383 
384 	return snprintf(buf, 20, "%s\n", lbp_mode[sdkp->provisioning_mode]);
385 }
386 
387 static ssize_t
388 provisioning_mode_store(struct device *dev, struct device_attribute *attr,
389 			const char *buf, size_t count)
390 {
391 	struct scsi_disk *sdkp = to_scsi_disk(dev);
392 	struct scsi_device *sdp = sdkp->device;
393 
394 	if (!capable(CAP_SYS_ADMIN))
395 		return -EACCES;
396 
397 	if (sd_is_zoned(sdkp)) {
398 		sd_config_discard(sdkp, SD_LBP_DISABLE);
399 		return count;
400 	}
401 
402 	if (sdp->type != TYPE_DISK)
403 		return -EINVAL;
404 
405 	if (!strncmp(buf, lbp_mode[SD_LBP_UNMAP], 20))
406 		sd_config_discard(sdkp, SD_LBP_UNMAP);
407 	else if (!strncmp(buf, lbp_mode[SD_LBP_WS16], 20))
408 		sd_config_discard(sdkp, SD_LBP_WS16);
409 	else if (!strncmp(buf, lbp_mode[SD_LBP_WS10], 20))
410 		sd_config_discard(sdkp, SD_LBP_WS10);
411 	else if (!strncmp(buf, lbp_mode[SD_LBP_ZERO], 20))
412 		sd_config_discard(sdkp, SD_LBP_ZERO);
413 	else if (!strncmp(buf, lbp_mode[SD_LBP_DISABLE], 20))
414 		sd_config_discard(sdkp, SD_LBP_DISABLE);
415 	else
416 		return -EINVAL;
417 
418 	return count;
419 }
420 static DEVICE_ATTR_RW(provisioning_mode);
421 
422 static const char *zeroing_mode[] = {
423 	[SD_ZERO_WRITE]		= "write",
424 	[SD_ZERO_WS]		= "writesame",
425 	[SD_ZERO_WS16_UNMAP]	= "writesame_16_unmap",
426 	[SD_ZERO_WS10_UNMAP]	= "writesame_10_unmap",
427 };
428 
429 static ssize_t
430 zeroing_mode_show(struct device *dev, struct device_attribute *attr,
431 		  char *buf)
432 {
433 	struct scsi_disk *sdkp = to_scsi_disk(dev);
434 
435 	return snprintf(buf, 20, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
436 }
437 
438 static ssize_t
439 zeroing_mode_store(struct device *dev, struct device_attribute *attr,
440 		   const char *buf, size_t count)
441 {
442 	struct scsi_disk *sdkp = to_scsi_disk(dev);
443 
444 	if (!capable(CAP_SYS_ADMIN))
445 		return -EACCES;
446 
447 	if (!strncmp(buf, zeroing_mode[SD_ZERO_WRITE], 20))
448 		sdkp->zeroing_mode = SD_ZERO_WRITE;
449 	else if (!strncmp(buf, zeroing_mode[SD_ZERO_WS], 20))
450 		sdkp->zeroing_mode = SD_ZERO_WS;
451 	else if (!strncmp(buf, zeroing_mode[SD_ZERO_WS16_UNMAP], 20))
452 		sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
453 	else if (!strncmp(buf, zeroing_mode[SD_ZERO_WS10_UNMAP], 20))
454 		sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
455 	else
456 		return -EINVAL;
457 
458 	return count;
459 }
460 static DEVICE_ATTR_RW(zeroing_mode);
461 
462 static ssize_t
463 max_medium_access_timeouts_show(struct device *dev,
464 				struct device_attribute *attr, char *buf)
465 {
466 	struct scsi_disk *sdkp = to_scsi_disk(dev);
467 
468 	return snprintf(buf, 20, "%u\n", sdkp->max_medium_access_timeouts);
469 }
470 
471 static ssize_t
472 max_medium_access_timeouts_store(struct device *dev,
473 				 struct device_attribute *attr, const char *buf,
474 				 size_t count)
475 {
476 	struct scsi_disk *sdkp = to_scsi_disk(dev);
477 	int err;
478 
479 	if (!capable(CAP_SYS_ADMIN))
480 		return -EACCES;
481 
482 	err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
483 
484 	return err ? err : count;
485 }
486 static DEVICE_ATTR_RW(max_medium_access_timeouts);
487 
488 static ssize_t
489 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
490 			   char *buf)
491 {
492 	struct scsi_disk *sdkp = to_scsi_disk(dev);
493 
494 	return snprintf(buf, 20, "%u\n", sdkp->max_ws_blocks);
495 }
496 
497 static ssize_t
498 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
499 			    const char *buf, size_t count)
500 {
501 	struct scsi_disk *sdkp = to_scsi_disk(dev);
502 	struct scsi_device *sdp = sdkp->device;
503 	unsigned long max;
504 	int err;
505 
506 	if (!capable(CAP_SYS_ADMIN))
507 		return -EACCES;
508 
509 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
510 		return -EINVAL;
511 
512 	err = kstrtoul(buf, 10, &max);
513 
514 	if (err)
515 		return err;
516 
517 	if (max == 0)
518 		sdp->no_write_same = 1;
519 	else if (max <= SD_MAX_WS16_BLOCKS) {
520 		sdp->no_write_same = 0;
521 		sdkp->max_ws_blocks = max;
522 	}
523 
524 	sd_config_write_same(sdkp);
525 
526 	return count;
527 }
528 static DEVICE_ATTR_RW(max_write_same_blocks);
529 
530 static struct attribute *sd_disk_attrs[] = {
531 	&dev_attr_cache_type.attr,
532 	&dev_attr_FUA.attr,
533 	&dev_attr_allow_restart.attr,
534 	&dev_attr_manage_start_stop.attr,
535 	&dev_attr_protection_type.attr,
536 	&dev_attr_protection_mode.attr,
537 	&dev_attr_app_tag_own.attr,
538 	&dev_attr_thin_provisioning.attr,
539 	&dev_attr_provisioning_mode.attr,
540 	&dev_attr_zeroing_mode.attr,
541 	&dev_attr_max_write_same_blocks.attr,
542 	&dev_attr_max_medium_access_timeouts.attr,
543 	NULL,
544 };
545 ATTRIBUTE_GROUPS(sd_disk);
546 
547 static struct class sd_disk_class = {
548 	.name		= "scsi_disk",
549 	.owner		= THIS_MODULE,
550 	.dev_release	= scsi_disk_release,
551 	.dev_groups	= sd_disk_groups,
552 };
553 
554 static const struct dev_pm_ops sd_pm_ops = {
555 	.suspend		= sd_suspend_system,
556 	.resume			= sd_resume,
557 	.poweroff		= sd_suspend_system,
558 	.restore		= sd_resume,
559 	.runtime_suspend	= sd_suspend_runtime,
560 	.runtime_resume		= sd_resume,
561 };
562 
563 static struct scsi_driver sd_template = {
564 	.gendrv = {
565 		.name		= "sd",
566 		.owner		= THIS_MODULE,
567 		.probe		= sd_probe,
568 		.remove		= sd_remove,
569 		.shutdown	= sd_shutdown,
570 		.pm		= &sd_pm_ops,
571 	},
572 	.rescan			= sd_rescan,
573 	.init_command		= sd_init_command,
574 	.uninit_command		= sd_uninit_command,
575 	.done			= sd_done,
576 	.eh_action		= sd_eh_action,
577 	.eh_reset		= sd_eh_reset,
578 };
579 
580 /*
581  * Dummy kobj_map->probe function.
582  * The default ->probe function will call modprobe, which is
583  * pointless as this module is already loaded.
584  */
585 static struct kobject *sd_default_probe(dev_t devt, int *partno, void *data)
586 {
587 	return NULL;
588 }
589 
590 /*
591  * Device no to disk mapping:
592  *
593  *       major         disc2     disc  p1
594  *   |............|.............|....|....| <- dev_t
595  *    31        20 19          8 7  4 3  0
596  *
597  * Inside a major, we have 16k disks, however mapped non-
598  * contiguously. The first 16 disks are for major0, the next
599  * ones with major1, ... Disk 256 is for major0 again, disk 272
600  * for major1, ...
601  * As we stay compatible with our numbering scheme, we can reuse
602  * the well-know SCSI majors 8, 65--71, 136--143.
603  */
604 static int sd_major(int major_idx)
605 {
606 	switch (major_idx) {
607 	case 0:
608 		return SCSI_DISK0_MAJOR;
609 	case 1 ... 7:
610 		return SCSI_DISK1_MAJOR + major_idx - 1;
611 	case 8 ... 15:
612 		return SCSI_DISK8_MAJOR + major_idx - 8;
613 	default:
614 		BUG();
615 		return 0;	/* shut up gcc */
616 	}
617 }
618 
619 static struct scsi_disk *scsi_disk_get(struct gendisk *disk)
620 {
621 	struct scsi_disk *sdkp = NULL;
622 
623 	mutex_lock(&sd_ref_mutex);
624 
625 	if (disk->private_data) {
626 		sdkp = scsi_disk(disk);
627 		if (scsi_device_get(sdkp->device) == 0)
628 			get_device(&sdkp->dev);
629 		else
630 			sdkp = NULL;
631 	}
632 	mutex_unlock(&sd_ref_mutex);
633 	return sdkp;
634 }
635 
636 static void scsi_disk_put(struct scsi_disk *sdkp)
637 {
638 	struct scsi_device *sdev = sdkp->device;
639 
640 	mutex_lock(&sd_ref_mutex);
641 	put_device(&sdkp->dev);
642 	scsi_device_put(sdev);
643 	mutex_unlock(&sd_ref_mutex);
644 }
645 
646 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
647 					   unsigned int dix, unsigned int dif)
648 {
649 	struct bio *bio = scmd->request->bio;
650 	unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif);
651 	unsigned int protect = 0;
652 
653 	if (dix) {				/* DIX Type 0, 1, 2, 3 */
654 		if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
655 			scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
656 
657 		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
658 			scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
659 	}
660 
661 	if (dif != T10_PI_TYPE3_PROTECTION) {	/* DIX/DIF Type 0, 1, 2 */
662 		scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
663 
664 		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
665 			scmd->prot_flags |= SCSI_PROT_REF_CHECK;
666 	}
667 
668 	if (dif) {				/* DIX/DIF Type 1, 2, 3 */
669 		scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
670 
671 		if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
672 			protect = 3 << 5;	/* Disable target PI checking */
673 		else
674 			protect = 1 << 5;	/* Enable target PI checking */
675 	}
676 
677 	scsi_set_prot_op(scmd, prot_op);
678 	scsi_set_prot_type(scmd, dif);
679 	scmd->prot_flags &= sd_prot_flag_mask(prot_op);
680 
681 	return protect;
682 }
683 
684 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
685 {
686 	struct request_queue *q = sdkp->disk->queue;
687 	unsigned int logical_block_size = sdkp->device->sector_size;
688 	unsigned int max_blocks = 0;
689 
690 	q->limits.discard_alignment =
691 		sdkp->unmap_alignment * logical_block_size;
692 	q->limits.discard_granularity =
693 		max(sdkp->physical_block_size,
694 		    sdkp->unmap_granularity * logical_block_size);
695 	sdkp->provisioning_mode = mode;
696 
697 	switch (mode) {
698 
699 	case SD_LBP_DISABLE:
700 		blk_queue_max_discard_sectors(q, 0);
701 		queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
702 		return;
703 
704 	case SD_LBP_UNMAP:
705 		max_blocks = min_not_zero(sdkp->max_unmap_blocks,
706 					  (u32)SD_MAX_WS16_BLOCKS);
707 		break;
708 
709 	case SD_LBP_WS16:
710 		max_blocks = min_not_zero(sdkp->max_ws_blocks,
711 					  (u32)SD_MAX_WS16_BLOCKS);
712 		break;
713 
714 	case SD_LBP_WS10:
715 		max_blocks = min_not_zero(sdkp->max_ws_blocks,
716 					  (u32)SD_MAX_WS10_BLOCKS);
717 		break;
718 
719 	case SD_LBP_ZERO:
720 		max_blocks = min_not_zero(sdkp->max_ws_blocks,
721 					  (u32)SD_MAX_WS10_BLOCKS);
722 		break;
723 	}
724 
725 	blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
726 	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
727 }
728 
729 static int sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
730 {
731 	struct scsi_device *sdp = cmd->device;
732 	struct request *rq = cmd->request;
733 	u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
734 	u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
735 	unsigned int data_len = 24;
736 	char *buf;
737 
738 	rq->special_vec.bv_page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
739 	if (!rq->special_vec.bv_page)
740 		return BLKPREP_DEFER;
741 	rq->special_vec.bv_offset = 0;
742 	rq->special_vec.bv_len = data_len;
743 	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
744 
745 	cmd->cmd_len = 10;
746 	cmd->cmnd[0] = UNMAP;
747 	cmd->cmnd[8] = 24;
748 
749 	buf = page_address(rq->special_vec.bv_page);
750 	put_unaligned_be16(6 + 16, &buf[0]);
751 	put_unaligned_be16(16, &buf[2]);
752 	put_unaligned_be64(sector, &buf[8]);
753 	put_unaligned_be32(nr_sectors, &buf[16]);
754 
755 	cmd->allowed = SD_MAX_RETRIES;
756 	cmd->transfersize = data_len;
757 	rq->timeout = SD_TIMEOUT;
758 	scsi_req(rq)->resid_len = data_len;
759 
760 	return scsi_init_io(cmd);
761 }
762 
763 static int sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd, bool unmap)
764 {
765 	struct scsi_device *sdp = cmd->device;
766 	struct request *rq = cmd->request;
767 	u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
768 	u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
769 	u32 data_len = sdp->sector_size;
770 
771 	rq->special_vec.bv_page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
772 	if (!rq->special_vec.bv_page)
773 		return BLKPREP_DEFER;
774 	rq->special_vec.bv_offset = 0;
775 	rq->special_vec.bv_len = data_len;
776 	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
777 
778 	cmd->cmd_len = 16;
779 	cmd->cmnd[0] = WRITE_SAME_16;
780 	if (unmap)
781 		cmd->cmnd[1] = 0x8; /* UNMAP */
782 	put_unaligned_be64(sector, &cmd->cmnd[2]);
783 	put_unaligned_be32(nr_sectors, &cmd->cmnd[10]);
784 
785 	cmd->allowed = SD_MAX_RETRIES;
786 	cmd->transfersize = data_len;
787 	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
788 	scsi_req(rq)->resid_len = data_len;
789 
790 	return scsi_init_io(cmd);
791 }
792 
793 static int sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd, bool unmap)
794 {
795 	struct scsi_device *sdp = cmd->device;
796 	struct request *rq = cmd->request;
797 	u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
798 	u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
799 	u32 data_len = sdp->sector_size;
800 
801 	rq->special_vec.bv_page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
802 	if (!rq->special_vec.bv_page)
803 		return BLKPREP_DEFER;
804 	rq->special_vec.bv_offset = 0;
805 	rq->special_vec.bv_len = data_len;
806 	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
807 
808 	cmd->cmd_len = 10;
809 	cmd->cmnd[0] = WRITE_SAME;
810 	if (unmap)
811 		cmd->cmnd[1] = 0x8; /* UNMAP */
812 	put_unaligned_be32(sector, &cmd->cmnd[2]);
813 	put_unaligned_be16(nr_sectors, &cmd->cmnd[7]);
814 
815 	cmd->allowed = SD_MAX_RETRIES;
816 	cmd->transfersize = data_len;
817 	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
818 	scsi_req(rq)->resid_len = data_len;
819 
820 	return scsi_init_io(cmd);
821 }
822 
823 static int sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
824 {
825 	struct request *rq = cmd->request;
826 	struct scsi_device *sdp = cmd->device;
827 	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
828 	u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
829 	u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
830 	int ret;
831 
832 	if (!(rq->cmd_flags & REQ_NOUNMAP)) {
833 		switch (sdkp->zeroing_mode) {
834 		case SD_ZERO_WS16_UNMAP:
835 			ret = sd_setup_write_same16_cmnd(cmd, true);
836 			goto out;
837 		case SD_ZERO_WS10_UNMAP:
838 			ret = sd_setup_write_same10_cmnd(cmd, true);
839 			goto out;
840 		}
841 	}
842 
843 	if (sdp->no_write_same)
844 		return BLKPREP_INVALID;
845 
846 	if (sdkp->ws16 || sector > 0xffffffff || nr_sectors > 0xffff)
847 		ret = sd_setup_write_same16_cmnd(cmd, false);
848 	else
849 		ret = sd_setup_write_same10_cmnd(cmd, false);
850 
851 out:
852 	if (sd_is_zoned(sdkp) && ret == BLKPREP_OK)
853 		return sd_zbc_write_lock_zone(cmd);
854 
855 	return ret;
856 }
857 
858 static void sd_config_write_same(struct scsi_disk *sdkp)
859 {
860 	struct request_queue *q = sdkp->disk->queue;
861 	unsigned int logical_block_size = sdkp->device->sector_size;
862 
863 	if (sdkp->device->no_write_same) {
864 		sdkp->max_ws_blocks = 0;
865 		goto out;
866 	}
867 
868 	/* Some devices can not handle block counts above 0xffff despite
869 	 * supporting WRITE SAME(16). Consequently we default to 64k
870 	 * blocks per I/O unless the device explicitly advertises a
871 	 * bigger limit.
872 	 */
873 	if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
874 		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
875 						   (u32)SD_MAX_WS16_BLOCKS);
876 	else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
877 		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
878 						   (u32)SD_MAX_WS10_BLOCKS);
879 	else {
880 		sdkp->device->no_write_same = 1;
881 		sdkp->max_ws_blocks = 0;
882 	}
883 
884 	if (sdkp->lbprz && sdkp->lbpws)
885 		sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
886 	else if (sdkp->lbprz && sdkp->lbpws10)
887 		sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
888 	else if (sdkp->max_ws_blocks)
889 		sdkp->zeroing_mode = SD_ZERO_WS;
890 	else
891 		sdkp->zeroing_mode = SD_ZERO_WRITE;
892 
893 out:
894 	blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks *
895 					 (logical_block_size >> 9));
896 	blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks *
897 					 (logical_block_size >> 9));
898 }
899 
900 /**
901  * sd_setup_write_same_cmnd - write the same data to multiple blocks
902  * @cmd: command to prepare
903  *
904  * Will set up either WRITE SAME(10) or WRITE SAME(16) depending on
905  * the preference indicated by the target device.
906  **/
907 static int sd_setup_write_same_cmnd(struct scsi_cmnd *cmd)
908 {
909 	struct request *rq = cmd->request;
910 	struct scsi_device *sdp = cmd->device;
911 	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
912 	struct bio *bio = rq->bio;
913 	sector_t sector = blk_rq_pos(rq);
914 	unsigned int nr_sectors = blk_rq_sectors(rq);
915 	unsigned int nr_bytes = blk_rq_bytes(rq);
916 	int ret;
917 
918 	if (sdkp->device->no_write_same)
919 		return BLKPREP_INVALID;
920 
921 	BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size);
922 
923 	if (sd_is_zoned(sdkp)) {
924 		ret = sd_zbc_write_lock_zone(cmd);
925 		if (ret != BLKPREP_OK)
926 			return ret;
927 	}
928 
929 	sector >>= ilog2(sdp->sector_size) - 9;
930 	nr_sectors >>= ilog2(sdp->sector_size) - 9;
931 
932 	rq->timeout = SD_WRITE_SAME_TIMEOUT;
933 
934 	if (sdkp->ws16 || sector > 0xffffffff || nr_sectors > 0xffff) {
935 		cmd->cmd_len = 16;
936 		cmd->cmnd[0] = WRITE_SAME_16;
937 		put_unaligned_be64(sector, &cmd->cmnd[2]);
938 		put_unaligned_be32(nr_sectors, &cmd->cmnd[10]);
939 	} else {
940 		cmd->cmd_len = 10;
941 		cmd->cmnd[0] = WRITE_SAME;
942 		put_unaligned_be32(sector, &cmd->cmnd[2]);
943 		put_unaligned_be16(nr_sectors, &cmd->cmnd[7]);
944 	}
945 
946 	cmd->transfersize = sdp->sector_size;
947 	cmd->allowed = SD_MAX_RETRIES;
948 
949 	/*
950 	 * For WRITE SAME the data transferred via the DATA OUT buffer is
951 	 * different from the amount of data actually written to the target.
952 	 *
953 	 * We set up __data_len to the amount of data transferred via the
954 	 * DATA OUT buffer so that blk_rq_map_sg sets up the proper S/G list
955 	 * to transfer a single sector of data first, but then reset it to
956 	 * the amount of data to be written right after so that the I/O path
957 	 * knows how much to actually write.
958 	 */
959 	rq->__data_len = sdp->sector_size;
960 	ret = scsi_init_io(cmd);
961 	rq->__data_len = nr_bytes;
962 
963 	if (sd_is_zoned(sdkp) && ret != BLKPREP_OK)
964 		sd_zbc_write_unlock_zone(cmd);
965 
966 	return ret;
967 }
968 
969 static int sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
970 {
971 	struct request *rq = cmd->request;
972 
973 	/* flush requests don't perform I/O, zero the S/G table */
974 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
975 
976 	cmd->cmnd[0] = SYNCHRONIZE_CACHE;
977 	cmd->cmd_len = 10;
978 	cmd->transfersize = 0;
979 	cmd->allowed = SD_MAX_RETRIES;
980 
981 	rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
982 	return BLKPREP_OK;
983 }
984 
985 static int sd_setup_read_write_cmnd(struct scsi_cmnd *SCpnt)
986 {
987 	struct request *rq = SCpnt->request;
988 	struct scsi_device *sdp = SCpnt->device;
989 	struct gendisk *disk = rq->rq_disk;
990 	struct scsi_disk *sdkp = scsi_disk(disk);
991 	sector_t block = blk_rq_pos(rq);
992 	sector_t threshold;
993 	unsigned int this_count = blk_rq_sectors(rq);
994 	unsigned int dif, dix;
995 	bool zoned_write = sd_is_zoned(sdkp) && rq_data_dir(rq) == WRITE;
996 	int ret;
997 	unsigned char protect;
998 
999 	if (zoned_write) {
1000 		ret = sd_zbc_write_lock_zone(SCpnt);
1001 		if (ret != BLKPREP_OK)
1002 			return ret;
1003 	}
1004 
1005 	ret = scsi_init_io(SCpnt);
1006 	if (ret != BLKPREP_OK)
1007 		goto out;
1008 	SCpnt = rq->special;
1009 
1010 	/* from here on until we're complete, any goto out
1011 	 * is used for a killable error condition */
1012 	ret = BLKPREP_KILL;
1013 
1014 	SCSI_LOG_HLQUEUE(1,
1015 		scmd_printk(KERN_INFO, SCpnt,
1016 			"%s: block=%llu, count=%d\n",
1017 			__func__, (unsigned long long)block, this_count));
1018 
1019 	if (!sdp || !scsi_device_online(sdp) ||
1020 	    block + blk_rq_sectors(rq) > get_capacity(disk)) {
1021 		SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
1022 						"Finishing %u sectors\n",
1023 						blk_rq_sectors(rq)));
1024 		SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
1025 						"Retry with 0x%p\n", SCpnt));
1026 		goto out;
1027 	}
1028 
1029 	if (sdp->changed) {
1030 		/*
1031 		 * quietly refuse to do anything to a changed disc until
1032 		 * the changed bit has been reset
1033 		 */
1034 		/* printk("SCSI disk has been changed or is not present. Prohibiting further I/O.\n"); */
1035 		goto out;
1036 	}
1037 
1038 	/*
1039 	 * Some SD card readers can't handle multi-sector accesses which touch
1040 	 * the last one or two hardware sectors.  Split accesses as needed.
1041 	 */
1042 	threshold = get_capacity(disk) - SD_LAST_BUGGY_SECTORS *
1043 		(sdp->sector_size / 512);
1044 
1045 	if (unlikely(sdp->last_sector_bug && block + this_count > threshold)) {
1046 		if (block < threshold) {
1047 			/* Access up to the threshold but not beyond */
1048 			this_count = threshold - block;
1049 		} else {
1050 			/* Access only a single hardware sector */
1051 			this_count = sdp->sector_size / 512;
1052 		}
1053 	}
1054 
1055 	SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, "block=%llu\n",
1056 					(unsigned long long)block));
1057 
1058 	/*
1059 	 * If we have a 1K hardware sectorsize, prevent access to single
1060 	 * 512 byte sectors.  In theory we could handle this - in fact
1061 	 * the scsi cdrom driver must be able to handle this because
1062 	 * we typically use 1K blocksizes, and cdroms typically have
1063 	 * 2K hardware sectorsizes.  Of course, things are simpler
1064 	 * with the cdrom, since it is read-only.  For performance
1065 	 * reasons, the filesystems should be able to handle this
1066 	 * and not force the scsi disk driver to use bounce buffers
1067 	 * for this.
1068 	 */
1069 	if (sdp->sector_size == 1024) {
1070 		if ((block & 1) || (blk_rq_sectors(rq) & 1)) {
1071 			scmd_printk(KERN_ERR, SCpnt,
1072 				    "Bad block number requested\n");
1073 			goto out;
1074 		} else {
1075 			block = block >> 1;
1076 			this_count = this_count >> 1;
1077 		}
1078 	}
1079 	if (sdp->sector_size == 2048) {
1080 		if ((block & 3) || (blk_rq_sectors(rq) & 3)) {
1081 			scmd_printk(KERN_ERR, SCpnt,
1082 				    "Bad block number requested\n");
1083 			goto out;
1084 		} else {
1085 			block = block >> 2;
1086 			this_count = this_count >> 2;
1087 		}
1088 	}
1089 	if (sdp->sector_size == 4096) {
1090 		if ((block & 7) || (blk_rq_sectors(rq) & 7)) {
1091 			scmd_printk(KERN_ERR, SCpnt,
1092 				    "Bad block number requested\n");
1093 			goto out;
1094 		} else {
1095 			block = block >> 3;
1096 			this_count = this_count >> 3;
1097 		}
1098 	}
1099 	if (rq_data_dir(rq) == WRITE) {
1100 		SCpnt->cmnd[0] = WRITE_6;
1101 
1102 		if (blk_integrity_rq(rq))
1103 			sd_dif_prepare(SCpnt);
1104 
1105 	} else if (rq_data_dir(rq) == READ) {
1106 		SCpnt->cmnd[0] = READ_6;
1107 	} else {
1108 		scmd_printk(KERN_ERR, SCpnt, "Unknown command %d\n", req_op(rq));
1109 		goto out;
1110 	}
1111 
1112 	SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
1113 					"%s %d/%u 512 byte blocks.\n",
1114 					(rq_data_dir(rq) == WRITE) ?
1115 					"writing" : "reading", this_count,
1116 					blk_rq_sectors(rq)));
1117 
1118 	dix = scsi_prot_sg_count(SCpnt);
1119 	dif = scsi_host_dif_capable(SCpnt->device->host, sdkp->protection_type);
1120 
1121 	if (dif || dix)
1122 		protect = sd_setup_protect_cmnd(SCpnt, dix, dif);
1123 	else
1124 		protect = 0;
1125 
1126 	if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1127 		SCpnt->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC);
1128 
1129 		if (unlikely(SCpnt->cmnd == NULL)) {
1130 			ret = BLKPREP_DEFER;
1131 			goto out;
1132 		}
1133 
1134 		SCpnt->cmd_len = SD_EXT_CDB_SIZE;
1135 		memset(SCpnt->cmnd, 0, SCpnt->cmd_len);
1136 		SCpnt->cmnd[0] = VARIABLE_LENGTH_CMD;
1137 		SCpnt->cmnd[7] = 0x18;
1138 		SCpnt->cmnd[9] = (rq_data_dir(rq) == READ) ? READ_32 : WRITE_32;
1139 		SCpnt->cmnd[10] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1140 
1141 		/* LBA */
1142 		SCpnt->cmnd[12] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0;
1143 		SCpnt->cmnd[13] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0;
1144 		SCpnt->cmnd[14] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0;
1145 		SCpnt->cmnd[15] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0;
1146 		SCpnt->cmnd[16] = (unsigned char) (block >> 24) & 0xff;
1147 		SCpnt->cmnd[17] = (unsigned char) (block >> 16) & 0xff;
1148 		SCpnt->cmnd[18] = (unsigned char) (block >> 8) & 0xff;
1149 		SCpnt->cmnd[19] = (unsigned char) block & 0xff;
1150 
1151 		/* Expected Indirect LBA */
1152 		SCpnt->cmnd[20] = (unsigned char) (block >> 24) & 0xff;
1153 		SCpnt->cmnd[21] = (unsigned char) (block >> 16) & 0xff;
1154 		SCpnt->cmnd[22] = (unsigned char) (block >> 8) & 0xff;
1155 		SCpnt->cmnd[23] = (unsigned char) block & 0xff;
1156 
1157 		/* Transfer length */
1158 		SCpnt->cmnd[28] = (unsigned char) (this_count >> 24) & 0xff;
1159 		SCpnt->cmnd[29] = (unsigned char) (this_count >> 16) & 0xff;
1160 		SCpnt->cmnd[30] = (unsigned char) (this_count >> 8) & 0xff;
1161 		SCpnt->cmnd[31] = (unsigned char) this_count & 0xff;
1162 	} else if (sdp->use_16_for_rw || (this_count > 0xffff)) {
1163 		SCpnt->cmnd[0] += READ_16 - READ_6;
1164 		SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1165 		SCpnt->cmnd[2] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0;
1166 		SCpnt->cmnd[3] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0;
1167 		SCpnt->cmnd[4] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0;
1168 		SCpnt->cmnd[5] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0;
1169 		SCpnt->cmnd[6] = (unsigned char) (block >> 24) & 0xff;
1170 		SCpnt->cmnd[7] = (unsigned char) (block >> 16) & 0xff;
1171 		SCpnt->cmnd[8] = (unsigned char) (block >> 8) & 0xff;
1172 		SCpnt->cmnd[9] = (unsigned char) block & 0xff;
1173 		SCpnt->cmnd[10] = (unsigned char) (this_count >> 24) & 0xff;
1174 		SCpnt->cmnd[11] = (unsigned char) (this_count >> 16) & 0xff;
1175 		SCpnt->cmnd[12] = (unsigned char) (this_count >> 8) & 0xff;
1176 		SCpnt->cmnd[13] = (unsigned char) this_count & 0xff;
1177 		SCpnt->cmnd[14] = SCpnt->cmnd[15] = 0;
1178 	} else if ((this_count > 0xff) || (block > 0x1fffff) ||
1179 		   scsi_device_protection(SCpnt->device) ||
1180 		   SCpnt->device->use_10_for_rw) {
1181 		SCpnt->cmnd[0] += READ_10 - READ_6;
1182 		SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1183 		SCpnt->cmnd[2] = (unsigned char) (block >> 24) & 0xff;
1184 		SCpnt->cmnd[3] = (unsigned char) (block >> 16) & 0xff;
1185 		SCpnt->cmnd[4] = (unsigned char) (block >> 8) & 0xff;
1186 		SCpnt->cmnd[5] = (unsigned char) block & 0xff;
1187 		SCpnt->cmnd[6] = SCpnt->cmnd[9] = 0;
1188 		SCpnt->cmnd[7] = (unsigned char) (this_count >> 8) & 0xff;
1189 		SCpnt->cmnd[8] = (unsigned char) this_count & 0xff;
1190 	} else {
1191 		if (unlikely(rq->cmd_flags & REQ_FUA)) {
1192 			/*
1193 			 * This happens only if this drive failed
1194 			 * 10byte rw command with ILLEGAL_REQUEST
1195 			 * during operation and thus turned off
1196 			 * use_10_for_rw.
1197 			 */
1198 			scmd_printk(KERN_ERR, SCpnt,
1199 				    "FUA write on READ/WRITE(6) drive\n");
1200 			goto out;
1201 		}
1202 
1203 		SCpnt->cmnd[1] |= (unsigned char) ((block >> 16) & 0x1f);
1204 		SCpnt->cmnd[2] = (unsigned char) ((block >> 8) & 0xff);
1205 		SCpnt->cmnd[3] = (unsigned char) block & 0xff;
1206 		SCpnt->cmnd[4] = (unsigned char) this_count;
1207 		SCpnt->cmnd[5] = 0;
1208 	}
1209 	SCpnt->sdb.length = this_count * sdp->sector_size;
1210 
1211 	/*
1212 	 * We shouldn't disconnect in the middle of a sector, so with a dumb
1213 	 * host adapter, it's safe to assume that we can at least transfer
1214 	 * this many bytes between each connect / disconnect.
1215 	 */
1216 	SCpnt->transfersize = sdp->sector_size;
1217 	SCpnt->underflow = this_count << 9;
1218 	SCpnt->allowed = SD_MAX_RETRIES;
1219 
1220 	/*
1221 	 * This indicates that the command is ready from our end to be
1222 	 * queued.
1223 	 */
1224 	ret = BLKPREP_OK;
1225  out:
1226 	if (zoned_write && ret != BLKPREP_OK)
1227 		sd_zbc_write_unlock_zone(SCpnt);
1228 
1229 	return ret;
1230 }
1231 
1232 static int sd_init_command(struct scsi_cmnd *cmd)
1233 {
1234 	struct request *rq = cmd->request;
1235 
1236 	switch (req_op(rq)) {
1237 	case REQ_OP_DISCARD:
1238 		switch (scsi_disk(rq->rq_disk)->provisioning_mode) {
1239 		case SD_LBP_UNMAP:
1240 			return sd_setup_unmap_cmnd(cmd);
1241 		case SD_LBP_WS16:
1242 			return sd_setup_write_same16_cmnd(cmd, true);
1243 		case SD_LBP_WS10:
1244 			return sd_setup_write_same10_cmnd(cmd, true);
1245 		case SD_LBP_ZERO:
1246 			return sd_setup_write_same10_cmnd(cmd, false);
1247 		default:
1248 			return BLKPREP_INVALID;
1249 		}
1250 	case REQ_OP_WRITE_ZEROES:
1251 		return sd_setup_write_zeroes_cmnd(cmd);
1252 	case REQ_OP_WRITE_SAME:
1253 		return sd_setup_write_same_cmnd(cmd);
1254 	case REQ_OP_FLUSH:
1255 		return sd_setup_flush_cmnd(cmd);
1256 	case REQ_OP_READ:
1257 	case REQ_OP_WRITE:
1258 		return sd_setup_read_write_cmnd(cmd);
1259 	case REQ_OP_ZONE_REPORT:
1260 		return sd_zbc_setup_report_cmnd(cmd);
1261 	case REQ_OP_ZONE_RESET:
1262 		return sd_zbc_setup_reset_cmnd(cmd);
1263 	default:
1264 		BUG();
1265 	}
1266 }
1267 
1268 static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1269 {
1270 	struct request *rq = SCpnt->request;
1271 
1272 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1273 		__free_page(rq->special_vec.bv_page);
1274 
1275 	if (SCpnt->cmnd != scsi_req(rq)->cmd) {
1276 		mempool_free(SCpnt->cmnd, sd_cdb_pool);
1277 		SCpnt->cmnd = NULL;
1278 		SCpnt->cmd_len = 0;
1279 	}
1280 }
1281 
1282 /**
1283  *	sd_open - open a scsi disk device
1284  *	@bdev: Block device of the scsi disk to open
1285  *	@mode: FMODE_* mask
1286  *
1287  *	Returns 0 if successful. Returns a negated errno value in case
1288  *	of error.
1289  *
1290  *	Note: This can be called from a user context (e.g. fsck(1) )
1291  *	or from within the kernel (e.g. as a result of a mount(1) ).
1292  *	In the latter case @inode and @filp carry an abridged amount
1293  *	of information as noted above.
1294  *
1295  *	Locking: called with bdev->bd_mutex held.
1296  **/
1297 static int sd_open(struct block_device *bdev, fmode_t mode)
1298 {
1299 	struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk);
1300 	struct scsi_device *sdev;
1301 	int retval;
1302 
1303 	if (!sdkp)
1304 		return -ENXIO;
1305 
1306 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1307 
1308 	sdev = sdkp->device;
1309 
1310 	/*
1311 	 * If the device is in error recovery, wait until it is done.
1312 	 * If the device is offline, then disallow any access to it.
1313 	 */
1314 	retval = -ENXIO;
1315 	if (!scsi_block_when_processing_errors(sdev))
1316 		goto error_out;
1317 
1318 	if (sdev->removable || sdkp->write_prot)
1319 		check_disk_change(bdev);
1320 
1321 	/*
1322 	 * If the drive is empty, just let the open fail.
1323 	 */
1324 	retval = -ENOMEDIUM;
1325 	if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY))
1326 		goto error_out;
1327 
1328 	/*
1329 	 * If the device has the write protect tab set, have the open fail
1330 	 * if the user expects to be able to write to the thing.
1331 	 */
1332 	retval = -EROFS;
1333 	if (sdkp->write_prot && (mode & FMODE_WRITE))
1334 		goto error_out;
1335 
1336 	/*
1337 	 * It is possible that the disk changing stuff resulted in
1338 	 * the device being taken offline.  If this is the case,
1339 	 * report this to the user, and don't pretend that the
1340 	 * open actually succeeded.
1341 	 */
1342 	retval = -ENXIO;
1343 	if (!scsi_device_online(sdev))
1344 		goto error_out;
1345 
1346 	if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1347 		if (scsi_block_when_processing_errors(sdev))
1348 			scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1349 	}
1350 
1351 	return 0;
1352 
1353 error_out:
1354 	scsi_disk_put(sdkp);
1355 	return retval;
1356 }
1357 
1358 /**
1359  *	sd_release - invoked when the (last) close(2) is called on this
1360  *	scsi disk.
1361  *	@disk: disk to release
1362  *	@mode: FMODE_* mask
1363  *
1364  *	Returns 0.
1365  *
1366  *	Note: may block (uninterruptible) if error recovery is underway
1367  *	on this disk.
1368  *
1369  *	Locking: called with bdev->bd_mutex held.
1370  **/
1371 static void sd_release(struct gendisk *disk, fmode_t mode)
1372 {
1373 	struct scsi_disk *sdkp = scsi_disk(disk);
1374 	struct scsi_device *sdev = sdkp->device;
1375 
1376 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1377 
1378 	if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1379 		if (scsi_block_when_processing_errors(sdev))
1380 			scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1381 	}
1382 
1383 	/*
1384 	 * XXX and what if there are packets in flight and this close()
1385 	 * XXX is followed by a "rmmod sd_mod"?
1386 	 */
1387 
1388 	scsi_disk_put(sdkp);
1389 }
1390 
1391 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1392 {
1393 	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1394 	struct scsi_device *sdp = sdkp->device;
1395 	struct Scsi_Host *host = sdp->host;
1396 	sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1397 	int diskinfo[4];
1398 
1399 	/* default to most commonly used values */
1400 	diskinfo[0] = 0x40;	/* 1 << 6 */
1401 	diskinfo[1] = 0x20;	/* 1 << 5 */
1402 	diskinfo[2] = capacity >> 11;
1403 
1404 	/* override with calculated, extended default, or driver values */
1405 	if (host->hostt->bios_param)
1406 		host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1407 	else
1408 		scsicam_bios_param(bdev, capacity, diskinfo);
1409 
1410 	geo->heads = diskinfo[0];
1411 	geo->sectors = diskinfo[1];
1412 	geo->cylinders = diskinfo[2];
1413 	return 0;
1414 }
1415 
1416 /**
1417  *	sd_ioctl - process an ioctl
1418  *	@bdev: target block device
1419  *	@mode: FMODE_* mask
1420  *	@cmd: ioctl command number
1421  *	@arg: this is third argument given to ioctl(2) system call.
1422  *	Often contains a pointer.
1423  *
1424  *	Returns 0 if successful (some ioctls return positive numbers on
1425  *	success as well). Returns a negated errno value in case of error.
1426  *
1427  *	Note: most ioctls are forward onto the block subsystem or further
1428  *	down in the scsi subsystem.
1429  **/
1430 static int sd_ioctl(struct block_device *bdev, fmode_t mode,
1431 		    unsigned int cmd, unsigned long arg)
1432 {
1433 	struct gendisk *disk = bdev->bd_disk;
1434 	struct scsi_disk *sdkp = scsi_disk(disk);
1435 	struct scsi_device *sdp = sdkp->device;
1436 	void __user *p = (void __user *)arg;
1437 	int error;
1438 
1439 	SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1440 				    "cmd=0x%x\n", disk->disk_name, cmd));
1441 
1442 	error = scsi_verify_blk_ioctl(bdev, cmd);
1443 	if (error < 0)
1444 		return error;
1445 
1446 	/*
1447 	 * If we are in the middle of error recovery, don't let anyone
1448 	 * else try and use this device.  Also, if error recovery fails, it
1449 	 * may try and take the device offline, in which case all further
1450 	 * access to the device is prohibited.
1451 	 */
1452 	error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1453 			(mode & FMODE_NDELAY) != 0);
1454 	if (error)
1455 		goto out;
1456 
1457 	/*
1458 	 * Send SCSI addressing ioctls directly to mid level, send other
1459 	 * ioctls to block level and then onto mid level if they can't be
1460 	 * resolved.
1461 	 */
1462 	switch (cmd) {
1463 		case SCSI_IOCTL_GET_IDLUN:
1464 		case SCSI_IOCTL_GET_BUS_NUMBER:
1465 			error = scsi_ioctl(sdp, cmd, p);
1466 			break;
1467 		default:
1468 			error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p);
1469 			if (error != -ENOTTY)
1470 				break;
1471 			error = scsi_ioctl(sdp, cmd, p);
1472 			break;
1473 	}
1474 out:
1475 	return error;
1476 }
1477 
1478 static void set_media_not_present(struct scsi_disk *sdkp)
1479 {
1480 	if (sdkp->media_present)
1481 		sdkp->device->changed = 1;
1482 
1483 	if (sdkp->device->removable) {
1484 		sdkp->media_present = 0;
1485 		sdkp->capacity = 0;
1486 	}
1487 }
1488 
1489 static int media_not_present(struct scsi_disk *sdkp,
1490 			     struct scsi_sense_hdr *sshdr)
1491 {
1492 	if (!scsi_sense_valid(sshdr))
1493 		return 0;
1494 
1495 	/* not invoked for commands that could return deferred errors */
1496 	switch (sshdr->sense_key) {
1497 	case UNIT_ATTENTION:
1498 	case NOT_READY:
1499 		/* medium not present */
1500 		if (sshdr->asc == 0x3A) {
1501 			set_media_not_present(sdkp);
1502 			return 1;
1503 		}
1504 	}
1505 	return 0;
1506 }
1507 
1508 /**
1509  *	sd_check_events - check media events
1510  *	@disk: kernel device descriptor
1511  *	@clearing: disk events currently being cleared
1512  *
1513  *	Returns mask of DISK_EVENT_*.
1514  *
1515  *	Note: this function is invoked from the block subsystem.
1516  **/
1517 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1518 {
1519 	struct scsi_disk *sdkp = scsi_disk_get(disk);
1520 	struct scsi_device *sdp;
1521 	int retval;
1522 
1523 	if (!sdkp)
1524 		return 0;
1525 
1526 	sdp = sdkp->device;
1527 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1528 
1529 	/*
1530 	 * If the device is offline, don't send any commands - just pretend as
1531 	 * if the command failed.  If the device ever comes back online, we
1532 	 * can deal with it then.  It is only because of unrecoverable errors
1533 	 * that we would ever take a device offline in the first place.
1534 	 */
1535 	if (!scsi_device_online(sdp)) {
1536 		set_media_not_present(sdkp);
1537 		goto out;
1538 	}
1539 
1540 	/*
1541 	 * Using TEST_UNIT_READY enables differentiation between drive with
1542 	 * no cartridge loaded - NOT READY, drive with changed cartridge -
1543 	 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1544 	 *
1545 	 * Drives that auto spin down. eg iomega jaz 1G, will be started
1546 	 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1547 	 * sd_revalidate() is called.
1548 	 */
1549 	if (scsi_block_when_processing_errors(sdp)) {
1550 		struct scsi_sense_hdr sshdr = { 0, };
1551 
1552 		retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, SD_MAX_RETRIES,
1553 					      &sshdr);
1554 
1555 		/* failed to execute TUR, assume media not present */
1556 		if (host_byte(retval)) {
1557 			set_media_not_present(sdkp);
1558 			goto out;
1559 		}
1560 
1561 		if (media_not_present(sdkp, &sshdr))
1562 			goto out;
1563 	}
1564 
1565 	/*
1566 	 * For removable scsi disk we have to recognise the presence
1567 	 * of a disk in the drive.
1568 	 */
1569 	if (!sdkp->media_present)
1570 		sdp->changed = 1;
1571 	sdkp->media_present = 1;
1572 out:
1573 	/*
1574 	 * sdp->changed is set under the following conditions:
1575 	 *
1576 	 *	Medium present state has changed in either direction.
1577 	 *	Device has indicated UNIT_ATTENTION.
1578 	 */
1579 	retval = sdp->changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1580 	sdp->changed = 0;
1581 	scsi_disk_put(sdkp);
1582 	return retval;
1583 }
1584 
1585 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
1586 {
1587 	int retries, res;
1588 	struct scsi_device *sdp = sdkp->device;
1589 	const int timeout = sdp->request_queue->rq_timeout
1590 		* SD_FLUSH_TIMEOUT_MULTIPLIER;
1591 	struct scsi_sense_hdr my_sshdr;
1592 
1593 	if (!scsi_device_online(sdp))
1594 		return -ENODEV;
1595 
1596 	/* caller might not be interested in sense, but we need it */
1597 	if (!sshdr)
1598 		sshdr = &my_sshdr;
1599 
1600 	for (retries = 3; retries > 0; --retries) {
1601 		unsigned char cmd[10] = { 0 };
1602 
1603 		cmd[0] = SYNCHRONIZE_CACHE;
1604 		/*
1605 		 * Leave the rest of the command zero to indicate
1606 		 * flush everything.
1607 		 */
1608 		res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr,
1609 				timeout, SD_MAX_RETRIES, 0, RQF_PM, NULL);
1610 		if (res == 0)
1611 			break;
1612 	}
1613 
1614 	if (res) {
1615 		sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1616 
1617 		if (driver_byte(res) & DRIVER_SENSE)
1618 			sd_print_sense_hdr(sdkp, sshdr);
1619 
1620 		/* we need to evaluate the error return  */
1621 		if (scsi_sense_valid(sshdr) &&
1622 			(sshdr->asc == 0x3a ||	/* medium not present */
1623 			 sshdr->asc == 0x20))	/* invalid command */
1624 				/* this is no error here */
1625 				return 0;
1626 
1627 		switch (host_byte(res)) {
1628 		/* ignore errors due to racing a disconnection */
1629 		case DID_BAD_TARGET:
1630 		case DID_NO_CONNECT:
1631 			return 0;
1632 		/* signal the upper layer it might try again */
1633 		case DID_BUS_BUSY:
1634 		case DID_IMM_RETRY:
1635 		case DID_REQUEUE:
1636 		case DID_SOFT_ERROR:
1637 			return -EBUSY;
1638 		default:
1639 			return -EIO;
1640 		}
1641 	}
1642 	return 0;
1643 }
1644 
1645 static void sd_rescan(struct device *dev)
1646 {
1647 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
1648 
1649 	revalidate_disk(sdkp->disk);
1650 }
1651 
1652 
1653 #ifdef CONFIG_COMPAT
1654 /*
1655  * This gets directly called from VFS. When the ioctl
1656  * is not recognized we go back to the other translation paths.
1657  */
1658 static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode,
1659 			   unsigned int cmd, unsigned long arg)
1660 {
1661 	struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
1662 	int error;
1663 
1664 	error = scsi_ioctl_block_when_processing_errors(sdev, cmd,
1665 			(mode & FMODE_NDELAY) != 0);
1666 	if (error)
1667 		return error;
1668 
1669 	/*
1670 	 * Let the static ioctl translation table take care of it.
1671 	 */
1672 	if (!sdev->host->hostt->compat_ioctl)
1673 		return -ENOIOCTLCMD;
1674 	return sdev->host->hostt->compat_ioctl(sdev, cmd, (void __user *)arg);
1675 }
1676 #endif
1677 
1678 static char sd_pr_type(enum pr_type type)
1679 {
1680 	switch (type) {
1681 	case PR_WRITE_EXCLUSIVE:
1682 		return 0x01;
1683 	case PR_EXCLUSIVE_ACCESS:
1684 		return 0x03;
1685 	case PR_WRITE_EXCLUSIVE_REG_ONLY:
1686 		return 0x05;
1687 	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1688 		return 0x06;
1689 	case PR_WRITE_EXCLUSIVE_ALL_REGS:
1690 		return 0x07;
1691 	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1692 		return 0x08;
1693 	default:
1694 		return 0;
1695 	}
1696 };
1697 
1698 static int sd_pr_command(struct block_device *bdev, u8 sa,
1699 		u64 key, u64 sa_key, u8 type, u8 flags)
1700 {
1701 	struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
1702 	struct scsi_sense_hdr sshdr;
1703 	int result;
1704 	u8 cmd[16] = { 0, };
1705 	u8 data[24] = { 0, };
1706 
1707 	cmd[0] = PERSISTENT_RESERVE_OUT;
1708 	cmd[1] = sa;
1709 	cmd[2] = type;
1710 	put_unaligned_be32(sizeof(data), &cmd[5]);
1711 
1712 	put_unaligned_be64(key, &data[0]);
1713 	put_unaligned_be64(sa_key, &data[8]);
1714 	data[20] = flags;
1715 
1716 	result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data),
1717 			&sshdr, SD_TIMEOUT, SD_MAX_RETRIES, NULL);
1718 
1719 	if ((driver_byte(result) & DRIVER_SENSE) &&
1720 	    (scsi_sense_valid(&sshdr))) {
1721 		sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1722 		scsi_print_sense_hdr(sdev, NULL, &sshdr);
1723 	}
1724 
1725 	return result;
1726 }
1727 
1728 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1729 		u32 flags)
1730 {
1731 	if (flags & ~PR_FL_IGNORE_KEY)
1732 		return -EOPNOTSUPP;
1733 	return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1734 			old_key, new_key, 0,
1735 			(1 << 0) /* APTPL */);
1736 }
1737 
1738 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1739 		u32 flags)
1740 {
1741 	if (flags)
1742 		return -EOPNOTSUPP;
1743 	return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0);
1744 }
1745 
1746 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1747 {
1748 	return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0);
1749 }
1750 
1751 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1752 		enum pr_type type, bool abort)
1753 {
1754 	return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
1755 			     sd_pr_type(type), 0);
1756 }
1757 
1758 static int sd_pr_clear(struct block_device *bdev, u64 key)
1759 {
1760 	return sd_pr_command(bdev, 0x03, key, 0, 0, 0);
1761 }
1762 
1763 static const struct pr_ops sd_pr_ops = {
1764 	.pr_register	= sd_pr_register,
1765 	.pr_reserve	= sd_pr_reserve,
1766 	.pr_release	= sd_pr_release,
1767 	.pr_preempt	= sd_pr_preempt,
1768 	.pr_clear	= sd_pr_clear,
1769 };
1770 
1771 static const struct block_device_operations sd_fops = {
1772 	.owner			= THIS_MODULE,
1773 	.open			= sd_open,
1774 	.release		= sd_release,
1775 	.ioctl			= sd_ioctl,
1776 	.getgeo			= sd_getgeo,
1777 #ifdef CONFIG_COMPAT
1778 	.compat_ioctl		= sd_compat_ioctl,
1779 #endif
1780 	.check_events		= sd_check_events,
1781 	.revalidate_disk	= sd_revalidate_disk,
1782 	.unlock_native_capacity	= sd_unlock_native_capacity,
1783 	.pr_ops			= &sd_pr_ops,
1784 };
1785 
1786 /**
1787  *	sd_eh_reset - reset error handling callback
1788  *	@scmd:		sd-issued command that has failed
1789  *
1790  *	This function is called by the SCSI midlayer before starting
1791  *	SCSI EH. When counting medium access failures we have to be
1792  *	careful to register it only only once per device and SCSI EH run;
1793  *	there might be several timed out commands which will cause the
1794  *	'max_medium_access_timeouts' counter to trigger after the first
1795  *	SCSI EH run already and set the device to offline.
1796  *	So this function resets the internal counter before starting SCSI EH.
1797  **/
1798 static void sd_eh_reset(struct scsi_cmnd *scmd)
1799 {
1800 	struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1801 
1802 	/* New SCSI EH run, reset gate variable */
1803 	sdkp->ignore_medium_access_errors = false;
1804 }
1805 
1806 /**
1807  *	sd_eh_action - error handling callback
1808  *	@scmd:		sd-issued command that has failed
1809  *	@eh_disp:	The recovery disposition suggested by the midlayer
1810  *
1811  *	This function is called by the SCSI midlayer upon completion of an
1812  *	error test command (currently TEST UNIT READY). The result of sending
1813  *	the eh command is passed in eh_disp.  We're looking for devices that
1814  *	fail medium access commands but are OK with non access commands like
1815  *	test unit ready (so wrongly see the device as having a successful
1816  *	recovery)
1817  **/
1818 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
1819 {
1820 	struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1821 
1822 	if (!scsi_device_online(scmd->device) ||
1823 	    !scsi_medium_access_command(scmd) ||
1824 	    host_byte(scmd->result) != DID_TIME_OUT ||
1825 	    eh_disp != SUCCESS)
1826 		return eh_disp;
1827 
1828 	/*
1829 	 * The device has timed out executing a medium access command.
1830 	 * However, the TEST UNIT READY command sent during error
1831 	 * handling completed successfully. Either the device is in the
1832 	 * process of recovering or has it suffered an internal failure
1833 	 * that prevents access to the storage medium.
1834 	 */
1835 	if (!sdkp->ignore_medium_access_errors) {
1836 		sdkp->medium_access_timed_out++;
1837 		sdkp->ignore_medium_access_errors = true;
1838 	}
1839 
1840 	/*
1841 	 * If the device keeps failing read/write commands but TEST UNIT
1842 	 * READY always completes successfully we assume that medium
1843 	 * access is no longer possible and take the device offline.
1844 	 */
1845 	if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
1846 		scmd_printk(KERN_ERR, scmd,
1847 			    "Medium access timeout failure. Offlining disk!\n");
1848 		scsi_device_set_state(scmd->device, SDEV_OFFLINE);
1849 
1850 		return SUCCESS;
1851 	}
1852 
1853 	return eh_disp;
1854 }
1855 
1856 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
1857 {
1858 	struct request *req = scmd->request;
1859 	struct scsi_device *sdev = scmd->device;
1860 	unsigned int transferred, good_bytes;
1861 	u64 start_lba, end_lba, bad_lba;
1862 
1863 	/*
1864 	 * Some commands have a payload smaller than the device logical
1865 	 * block size (e.g. INQUIRY on a 4K disk).
1866 	 */
1867 	if (scsi_bufflen(scmd) <= sdev->sector_size)
1868 		return 0;
1869 
1870 	/* Check if we have a 'bad_lba' information */
1871 	if (!scsi_get_sense_info_fld(scmd->sense_buffer,
1872 				     SCSI_SENSE_BUFFERSIZE,
1873 				     &bad_lba))
1874 		return 0;
1875 
1876 	/*
1877 	 * If the bad lba was reported incorrectly, we have no idea where
1878 	 * the error is.
1879 	 */
1880 	start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
1881 	end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
1882 	if (bad_lba < start_lba || bad_lba >= end_lba)
1883 		return 0;
1884 
1885 	/*
1886 	 * resid is optional but mostly filled in.  When it's unused,
1887 	 * its value is zero, so we assume the whole buffer transferred
1888 	 */
1889 	transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
1890 
1891 	/* This computation should always be done in terms of the
1892 	 * resolution of the device's medium.
1893 	 */
1894 	good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
1895 
1896 	return min(good_bytes, transferred);
1897 }
1898 
1899 /**
1900  *	sd_done - bottom half handler: called when the lower level
1901  *	driver has completed (successfully or otherwise) a scsi command.
1902  *	@SCpnt: mid-level's per command structure.
1903  *
1904  *	Note: potentially run from within an ISR. Must not block.
1905  **/
1906 static int sd_done(struct scsi_cmnd *SCpnt)
1907 {
1908 	int result = SCpnt->result;
1909 	unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
1910 	unsigned int sector_size = SCpnt->device->sector_size;
1911 	unsigned int resid;
1912 	struct scsi_sense_hdr sshdr;
1913 	struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk);
1914 	struct request *req = SCpnt->request;
1915 	int sense_valid = 0;
1916 	int sense_deferred = 0;
1917 
1918 	switch (req_op(req)) {
1919 	case REQ_OP_DISCARD:
1920 	case REQ_OP_WRITE_ZEROES:
1921 	case REQ_OP_WRITE_SAME:
1922 	case REQ_OP_ZONE_RESET:
1923 		if (!result) {
1924 			good_bytes = blk_rq_bytes(req);
1925 			scsi_set_resid(SCpnt, 0);
1926 		} else {
1927 			good_bytes = 0;
1928 			scsi_set_resid(SCpnt, blk_rq_bytes(req));
1929 		}
1930 		break;
1931 	case REQ_OP_ZONE_REPORT:
1932 		if (!result) {
1933 			good_bytes = scsi_bufflen(SCpnt)
1934 				- scsi_get_resid(SCpnt);
1935 			scsi_set_resid(SCpnt, 0);
1936 		} else {
1937 			good_bytes = 0;
1938 			scsi_set_resid(SCpnt, blk_rq_bytes(req));
1939 		}
1940 		break;
1941 	default:
1942 		/*
1943 		 * In case of bogus fw or device, we could end up having
1944 		 * an unaligned partial completion. Check this here and force
1945 		 * alignment.
1946 		 */
1947 		resid = scsi_get_resid(SCpnt);
1948 		if (resid & (sector_size - 1)) {
1949 			sd_printk(KERN_INFO, sdkp,
1950 				"Unaligned partial completion (resid=%u, sector_sz=%u)\n",
1951 				resid, sector_size);
1952 			resid = min(scsi_bufflen(SCpnt),
1953 				    round_up(resid, sector_size));
1954 			scsi_set_resid(SCpnt, resid);
1955 		}
1956 	}
1957 
1958 	if (result) {
1959 		sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
1960 		if (sense_valid)
1961 			sense_deferred = scsi_sense_is_deferred(&sshdr);
1962 	}
1963 	sdkp->medium_access_timed_out = 0;
1964 
1965 	if (driver_byte(result) != DRIVER_SENSE &&
1966 	    (!sense_valid || sense_deferred))
1967 		goto out;
1968 
1969 	switch (sshdr.sense_key) {
1970 	case HARDWARE_ERROR:
1971 	case MEDIUM_ERROR:
1972 		good_bytes = sd_completed_bytes(SCpnt);
1973 		break;
1974 	case RECOVERED_ERROR:
1975 		good_bytes = scsi_bufflen(SCpnt);
1976 		break;
1977 	case NO_SENSE:
1978 		/* This indicates a false check condition, so ignore it.  An
1979 		 * unknown amount of data was transferred so treat it as an
1980 		 * error.
1981 		 */
1982 		SCpnt->result = 0;
1983 		memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1984 		break;
1985 	case ABORTED_COMMAND:
1986 		if (sshdr.asc == 0x10)  /* DIF: Target detected corruption */
1987 			good_bytes = sd_completed_bytes(SCpnt);
1988 		break;
1989 	case ILLEGAL_REQUEST:
1990 		switch (sshdr.asc) {
1991 		case 0x10:	/* DIX: Host detected corruption */
1992 			good_bytes = sd_completed_bytes(SCpnt);
1993 			break;
1994 		case 0x20:	/* INVALID COMMAND OPCODE */
1995 		case 0x24:	/* INVALID FIELD IN CDB */
1996 			switch (SCpnt->cmnd[0]) {
1997 			case UNMAP:
1998 				sd_config_discard(sdkp, SD_LBP_DISABLE);
1999 				break;
2000 			case WRITE_SAME_16:
2001 			case WRITE_SAME:
2002 				if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2003 					sd_config_discard(sdkp, SD_LBP_DISABLE);
2004 				} else {
2005 					sdkp->device->no_write_same = 1;
2006 					sd_config_write_same(sdkp);
2007 					req->__data_len = blk_rq_bytes(req);
2008 					req->rq_flags |= RQF_QUIET;
2009 				}
2010 				break;
2011 			}
2012 		}
2013 		break;
2014 	default:
2015 		break;
2016 	}
2017 
2018  out:
2019 	if (sd_is_zoned(sdkp))
2020 		sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2021 
2022 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2023 					   "sd_done: completed %d of %d bytes\n",
2024 					   good_bytes, scsi_bufflen(SCpnt)));
2025 
2026 	if (rq_data_dir(SCpnt->request) == READ && scsi_prot_sg_count(SCpnt))
2027 		sd_dif_complete(SCpnt, good_bytes);
2028 
2029 	return good_bytes;
2030 }
2031 
2032 /*
2033  * spinup disk - called only in sd_revalidate_disk()
2034  */
2035 static void
2036 sd_spinup_disk(struct scsi_disk *sdkp)
2037 {
2038 	unsigned char cmd[10];
2039 	unsigned long spintime_expire = 0;
2040 	int retries, spintime;
2041 	unsigned int the_result;
2042 	struct scsi_sense_hdr sshdr;
2043 	int sense_valid = 0;
2044 
2045 	spintime = 0;
2046 
2047 	/* Spin up drives, as required.  Only do this at boot time */
2048 	/* Spinup needs to be done for module loads too. */
2049 	do {
2050 		retries = 0;
2051 
2052 		do {
2053 			cmd[0] = TEST_UNIT_READY;
2054 			memset((void *) &cmd[1], 0, 9);
2055 
2056 			the_result = scsi_execute_req(sdkp->device, cmd,
2057 						      DMA_NONE, NULL, 0,
2058 						      &sshdr, SD_TIMEOUT,
2059 						      SD_MAX_RETRIES, NULL);
2060 
2061 			/*
2062 			 * If the drive has indicated to us that it
2063 			 * doesn't have any media in it, don't bother
2064 			 * with any more polling.
2065 			 */
2066 			if (media_not_present(sdkp, &sshdr))
2067 				return;
2068 
2069 			if (the_result)
2070 				sense_valid = scsi_sense_valid(&sshdr);
2071 			retries++;
2072 		} while (retries < 3 &&
2073 			 (!scsi_status_is_good(the_result) ||
2074 			  ((driver_byte(the_result) & DRIVER_SENSE) &&
2075 			  sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
2076 
2077 		if ((driver_byte(the_result) & DRIVER_SENSE) == 0) {
2078 			/* no sense, TUR either succeeded or failed
2079 			 * with a status error */
2080 			if(!spintime && !scsi_status_is_good(the_result)) {
2081 				sd_print_result(sdkp, "Test Unit Ready failed",
2082 						the_result);
2083 			}
2084 			break;
2085 		}
2086 
2087 		/*
2088 		 * The device does not want the automatic start to be issued.
2089 		 */
2090 		if (sdkp->device->no_start_on_add)
2091 			break;
2092 
2093 		if (sense_valid && sshdr.sense_key == NOT_READY) {
2094 			if (sshdr.asc == 4 && sshdr.ascq == 3)
2095 				break;	/* manual intervention required */
2096 			if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2097 				break;	/* standby */
2098 			if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2099 				break;	/* unavailable */
2100 			/*
2101 			 * Issue command to spin up drive when not ready
2102 			 */
2103 			if (!spintime) {
2104 				sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2105 				cmd[0] = START_STOP;
2106 				cmd[1] = 1;	/* Return immediately */
2107 				memset((void *) &cmd[2], 0, 8);
2108 				cmd[4] = 1;	/* Start spin cycle */
2109 				if (sdkp->device->start_stop_pwr_cond)
2110 					cmd[4] |= 1 << 4;
2111 				scsi_execute_req(sdkp->device, cmd, DMA_NONE,
2112 						 NULL, 0, &sshdr,
2113 						 SD_TIMEOUT, SD_MAX_RETRIES,
2114 						 NULL);
2115 				spintime_expire = jiffies + 100 * HZ;
2116 				spintime = 1;
2117 			}
2118 			/* Wait 1 second for next try */
2119 			msleep(1000);
2120 			printk(".");
2121 
2122 		/*
2123 		 * Wait for USB flash devices with slow firmware.
2124 		 * Yes, this sense key/ASC combination shouldn't
2125 		 * occur here.  It's characteristic of these devices.
2126 		 */
2127 		} else if (sense_valid &&
2128 				sshdr.sense_key == UNIT_ATTENTION &&
2129 				sshdr.asc == 0x28) {
2130 			if (!spintime) {
2131 				spintime_expire = jiffies + 5 * HZ;
2132 				spintime = 1;
2133 			}
2134 			/* Wait 1 second for next try */
2135 			msleep(1000);
2136 		} else {
2137 			/* we don't understand the sense code, so it's
2138 			 * probably pointless to loop */
2139 			if(!spintime) {
2140 				sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2141 				sd_print_sense_hdr(sdkp, &sshdr);
2142 			}
2143 			break;
2144 		}
2145 
2146 	} while (spintime && time_before_eq(jiffies, spintime_expire));
2147 
2148 	if (spintime) {
2149 		if (scsi_status_is_good(the_result))
2150 			printk("ready\n");
2151 		else
2152 			printk("not responding...\n");
2153 	}
2154 }
2155 
2156 /*
2157  * Determine whether disk supports Data Integrity Field.
2158  */
2159 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2160 {
2161 	struct scsi_device *sdp = sdkp->device;
2162 	u8 type;
2163 	int ret = 0;
2164 
2165 	if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0)
2166 		return ret;
2167 
2168 	type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2169 
2170 	if (type > T10_PI_TYPE3_PROTECTION)
2171 		ret = -ENODEV;
2172 	else if (scsi_host_dif_capable(sdp->host, type))
2173 		ret = 1;
2174 
2175 	if (sdkp->first_scan || type != sdkp->protection_type)
2176 		switch (ret) {
2177 		case -ENODEV:
2178 			sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \
2179 				  " protection type %u. Disabling disk!\n",
2180 				  type);
2181 			break;
2182 		case 1:
2183 			sd_printk(KERN_NOTICE, sdkp,
2184 				  "Enabling DIF Type %u protection\n", type);
2185 			break;
2186 		case 0:
2187 			sd_printk(KERN_NOTICE, sdkp,
2188 				  "Disabling DIF Type %u protection\n", type);
2189 			break;
2190 		}
2191 
2192 	sdkp->protection_type = type;
2193 
2194 	return ret;
2195 }
2196 
2197 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2198 			struct scsi_sense_hdr *sshdr, int sense_valid,
2199 			int the_result)
2200 {
2201 	if (driver_byte(the_result) & DRIVER_SENSE)
2202 		sd_print_sense_hdr(sdkp, sshdr);
2203 	else
2204 		sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2205 
2206 	/*
2207 	 * Set dirty bit for removable devices if not ready -
2208 	 * sometimes drives will not report this properly.
2209 	 */
2210 	if (sdp->removable &&
2211 	    sense_valid && sshdr->sense_key == NOT_READY)
2212 		set_media_not_present(sdkp);
2213 
2214 	/*
2215 	 * We used to set media_present to 0 here to indicate no media
2216 	 * in the drive, but some drives fail read capacity even with
2217 	 * media present, so we can't do that.
2218 	 */
2219 	sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2220 }
2221 
2222 #define RC16_LEN 32
2223 #if RC16_LEN > SD_BUF_SIZE
2224 #error RC16_LEN must not be more than SD_BUF_SIZE
2225 #endif
2226 
2227 #define READ_CAPACITY_RETRIES_ON_RESET	10
2228 
2229 /*
2230  * Ensure that we don't overflow sector_t when CONFIG_LBDAF is not set
2231  * and the reported logical block size is bigger than 512 bytes. Note
2232  * that last_sector is a u64 and therefore logical_to_sectors() is not
2233  * applicable.
2234  */
2235 static bool sd_addressable_capacity(u64 lba, unsigned int sector_size)
2236 {
2237 	u64 last_sector = (lba + 1ULL) << (ilog2(sector_size) - 9);
2238 
2239 	if (sizeof(sector_t) == 4 && last_sector > U32_MAX)
2240 		return false;
2241 
2242 	return true;
2243 }
2244 
2245 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2246 						unsigned char *buffer)
2247 {
2248 	unsigned char cmd[16];
2249 	struct scsi_sense_hdr sshdr;
2250 	int sense_valid = 0;
2251 	int the_result;
2252 	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2253 	unsigned int alignment;
2254 	unsigned long long lba;
2255 	unsigned sector_size;
2256 
2257 	if (sdp->no_read_capacity_16)
2258 		return -EINVAL;
2259 
2260 	do {
2261 		memset(cmd, 0, 16);
2262 		cmd[0] = SERVICE_ACTION_IN_16;
2263 		cmd[1] = SAI_READ_CAPACITY_16;
2264 		cmd[13] = RC16_LEN;
2265 		memset(buffer, 0, RC16_LEN);
2266 
2267 		the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2268 					buffer, RC16_LEN, &sshdr,
2269 					SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2270 
2271 		if (media_not_present(sdkp, &sshdr))
2272 			return -ENODEV;
2273 
2274 		if (the_result) {
2275 			sense_valid = scsi_sense_valid(&sshdr);
2276 			if (sense_valid &&
2277 			    sshdr.sense_key == ILLEGAL_REQUEST &&
2278 			    (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2279 			    sshdr.ascq == 0x00)
2280 				/* Invalid Command Operation Code or
2281 				 * Invalid Field in CDB, just retry
2282 				 * silently with RC10 */
2283 				return -EINVAL;
2284 			if (sense_valid &&
2285 			    sshdr.sense_key == UNIT_ATTENTION &&
2286 			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2287 				/* Device reset might occur several times,
2288 				 * give it one more chance */
2289 				if (--reset_retries > 0)
2290 					continue;
2291 		}
2292 		retries--;
2293 
2294 	} while (the_result && retries);
2295 
2296 	if (the_result) {
2297 		sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2298 		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2299 		return -EINVAL;
2300 	}
2301 
2302 	sector_size = get_unaligned_be32(&buffer[8]);
2303 	lba = get_unaligned_be64(&buffer[0]);
2304 
2305 	if (sd_read_protection_type(sdkp, buffer) < 0) {
2306 		sdkp->capacity = 0;
2307 		return -ENODEV;
2308 	}
2309 
2310 	if (!sd_addressable_capacity(lba, sector_size)) {
2311 		sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a "
2312 			"kernel compiled with support for large block "
2313 			"devices.\n");
2314 		sdkp->capacity = 0;
2315 		return -EOVERFLOW;
2316 	}
2317 
2318 	/* Logical blocks per physical block exponent */
2319 	sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2320 
2321 	/* RC basis */
2322 	sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2323 
2324 	/* Lowest aligned logical block */
2325 	alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2326 	blk_queue_alignment_offset(sdp->request_queue, alignment);
2327 	if (alignment && sdkp->first_scan)
2328 		sd_printk(KERN_NOTICE, sdkp,
2329 			  "physical block alignment offset: %u\n", alignment);
2330 
2331 	if (buffer[14] & 0x80) { /* LBPME */
2332 		sdkp->lbpme = 1;
2333 
2334 		if (buffer[14] & 0x40) /* LBPRZ */
2335 			sdkp->lbprz = 1;
2336 
2337 		sd_config_discard(sdkp, SD_LBP_WS16);
2338 	}
2339 
2340 	sdkp->capacity = lba + 1;
2341 	return sector_size;
2342 }
2343 
2344 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2345 						unsigned char *buffer)
2346 {
2347 	unsigned char cmd[16];
2348 	struct scsi_sense_hdr sshdr;
2349 	int sense_valid = 0;
2350 	int the_result;
2351 	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2352 	sector_t lba;
2353 	unsigned sector_size;
2354 
2355 	do {
2356 		cmd[0] = READ_CAPACITY;
2357 		memset(&cmd[1], 0, 9);
2358 		memset(buffer, 0, 8);
2359 
2360 		the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2361 					buffer, 8, &sshdr,
2362 					SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2363 
2364 		if (media_not_present(sdkp, &sshdr))
2365 			return -ENODEV;
2366 
2367 		if (the_result) {
2368 			sense_valid = scsi_sense_valid(&sshdr);
2369 			if (sense_valid &&
2370 			    sshdr.sense_key == UNIT_ATTENTION &&
2371 			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2372 				/* Device reset might occur several times,
2373 				 * give it one more chance */
2374 				if (--reset_retries > 0)
2375 					continue;
2376 		}
2377 		retries--;
2378 
2379 	} while (the_result && retries);
2380 
2381 	if (the_result) {
2382 		sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2383 		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2384 		return -EINVAL;
2385 	}
2386 
2387 	sector_size = get_unaligned_be32(&buffer[4]);
2388 	lba = get_unaligned_be32(&buffer[0]);
2389 
2390 	if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2391 		/* Some buggy (usb cardreader) devices return an lba of
2392 		   0xffffffff when the want to report a size of 0 (with
2393 		   which they really mean no media is present) */
2394 		sdkp->capacity = 0;
2395 		sdkp->physical_block_size = sector_size;
2396 		return sector_size;
2397 	}
2398 
2399 	if (!sd_addressable_capacity(lba, sector_size)) {
2400 		sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a "
2401 			"kernel compiled with support for large block "
2402 			"devices.\n");
2403 		sdkp->capacity = 0;
2404 		return -EOVERFLOW;
2405 	}
2406 
2407 	sdkp->capacity = lba + 1;
2408 	sdkp->physical_block_size = sector_size;
2409 	return sector_size;
2410 }
2411 
2412 static int sd_try_rc16_first(struct scsi_device *sdp)
2413 {
2414 	if (sdp->host->max_cmd_len < 16)
2415 		return 0;
2416 	if (sdp->try_rc_10_first)
2417 		return 0;
2418 	if (sdp->scsi_level > SCSI_SPC_2)
2419 		return 1;
2420 	if (scsi_device_protection(sdp))
2421 		return 1;
2422 	return 0;
2423 }
2424 
2425 /*
2426  * read disk capacity
2427  */
2428 static void
2429 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2430 {
2431 	int sector_size;
2432 	struct scsi_device *sdp = sdkp->device;
2433 
2434 	if (sd_try_rc16_first(sdp)) {
2435 		sector_size = read_capacity_16(sdkp, sdp, buffer);
2436 		if (sector_size == -EOVERFLOW)
2437 			goto got_data;
2438 		if (sector_size == -ENODEV)
2439 			return;
2440 		if (sector_size < 0)
2441 			sector_size = read_capacity_10(sdkp, sdp, buffer);
2442 		if (sector_size < 0)
2443 			return;
2444 	} else {
2445 		sector_size = read_capacity_10(sdkp, sdp, buffer);
2446 		if (sector_size == -EOVERFLOW)
2447 			goto got_data;
2448 		if (sector_size < 0)
2449 			return;
2450 		if ((sizeof(sdkp->capacity) > 4) &&
2451 		    (sdkp->capacity > 0xffffffffULL)) {
2452 			int old_sector_size = sector_size;
2453 			sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2454 					"Trying to use READ CAPACITY(16).\n");
2455 			sector_size = read_capacity_16(sdkp, sdp, buffer);
2456 			if (sector_size < 0) {
2457 				sd_printk(KERN_NOTICE, sdkp,
2458 					"Using 0xffffffff as device size\n");
2459 				sdkp->capacity = 1 + (sector_t) 0xffffffff;
2460 				sector_size = old_sector_size;
2461 				goto got_data;
2462 			}
2463 		}
2464 	}
2465 
2466 	/* Some devices are known to return the total number of blocks,
2467 	 * not the highest block number.  Some devices have versions
2468 	 * which do this and others which do not.  Some devices we might
2469 	 * suspect of doing this but we don't know for certain.
2470 	 *
2471 	 * If we know the reported capacity is wrong, decrement it.  If
2472 	 * we can only guess, then assume the number of blocks is even
2473 	 * (usually true but not always) and err on the side of lowering
2474 	 * the capacity.
2475 	 */
2476 	if (sdp->fix_capacity ||
2477 	    (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2478 		sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2479 				"from its reported value: %llu\n",
2480 				(unsigned long long) sdkp->capacity);
2481 		--sdkp->capacity;
2482 	}
2483 
2484 got_data:
2485 	if (sector_size == 0) {
2486 		sector_size = 512;
2487 		sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2488 			  "assuming 512.\n");
2489 	}
2490 
2491 	if (sector_size != 512 &&
2492 	    sector_size != 1024 &&
2493 	    sector_size != 2048 &&
2494 	    sector_size != 4096) {
2495 		sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2496 			  sector_size);
2497 		/*
2498 		 * The user might want to re-format the drive with
2499 		 * a supported sectorsize.  Once this happens, it
2500 		 * would be relatively trivial to set the thing up.
2501 		 * For this reason, we leave the thing in the table.
2502 		 */
2503 		sdkp->capacity = 0;
2504 		/*
2505 		 * set a bogus sector size so the normal read/write
2506 		 * logic in the block layer will eventually refuse any
2507 		 * request on this device without tripping over power
2508 		 * of two sector size assumptions
2509 		 */
2510 		sector_size = 512;
2511 	}
2512 	blk_queue_logical_block_size(sdp->request_queue, sector_size);
2513 	blk_queue_physical_block_size(sdp->request_queue,
2514 				      sdkp->physical_block_size);
2515 	sdkp->device->sector_size = sector_size;
2516 
2517 	if (sdkp->capacity > 0xffffffff)
2518 		sdp->use_16_for_rw = 1;
2519 
2520 }
2521 
2522 /*
2523  * Print disk capacity
2524  */
2525 static void
2526 sd_print_capacity(struct scsi_disk *sdkp,
2527 		  sector_t old_capacity)
2528 {
2529 	int sector_size = sdkp->device->sector_size;
2530 	char cap_str_2[10], cap_str_10[10];
2531 
2532 	string_get_size(sdkp->capacity, sector_size,
2533 			STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2534 	string_get_size(sdkp->capacity, sector_size,
2535 			STRING_UNITS_10, cap_str_10,
2536 			sizeof(cap_str_10));
2537 
2538 	if (sdkp->first_scan || old_capacity != sdkp->capacity) {
2539 		sd_printk(KERN_NOTICE, sdkp,
2540 			  "%llu %d-byte logical blocks: (%s/%s)\n",
2541 			  (unsigned long long)sdkp->capacity,
2542 			  sector_size, cap_str_10, cap_str_2);
2543 
2544 		if (sdkp->physical_block_size != sector_size)
2545 			sd_printk(KERN_NOTICE, sdkp,
2546 				  "%u-byte physical blocks\n",
2547 				  sdkp->physical_block_size);
2548 
2549 		sd_zbc_print_zones(sdkp);
2550 	}
2551 }
2552 
2553 /* called with buffer of length 512 */
2554 static inline int
2555 sd_do_mode_sense(struct scsi_device *sdp, int dbd, int modepage,
2556 		 unsigned char *buffer, int len, struct scsi_mode_data *data,
2557 		 struct scsi_sense_hdr *sshdr)
2558 {
2559 	return scsi_mode_sense(sdp, dbd, modepage, buffer, len,
2560 			       SD_TIMEOUT, SD_MAX_RETRIES, data,
2561 			       sshdr);
2562 }
2563 
2564 /*
2565  * read write protect setting, if possible - called only in sd_revalidate_disk()
2566  * called with buffer of length SD_BUF_SIZE
2567  */
2568 static void
2569 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2570 {
2571 	int res;
2572 	struct scsi_device *sdp = sdkp->device;
2573 	struct scsi_mode_data data;
2574 	int old_wp = sdkp->write_prot;
2575 
2576 	set_disk_ro(sdkp->disk, 0);
2577 	if (sdp->skip_ms_page_3f) {
2578 		sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2579 		return;
2580 	}
2581 
2582 	if (sdp->use_192_bytes_for_3f) {
2583 		res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 192, &data, NULL);
2584 	} else {
2585 		/*
2586 		 * First attempt: ask for all pages (0x3F), but only 4 bytes.
2587 		 * We have to start carefully: some devices hang if we ask
2588 		 * for more than is available.
2589 		 */
2590 		res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 4, &data, NULL);
2591 
2592 		/*
2593 		 * Second attempt: ask for page 0 When only page 0 is
2594 		 * implemented, a request for page 3F may return Sense Key
2595 		 * 5: Illegal Request, Sense Code 24: Invalid field in
2596 		 * CDB.
2597 		 */
2598 		if (!scsi_status_is_good(res))
2599 			res = sd_do_mode_sense(sdp, 0, 0, buffer, 4, &data, NULL);
2600 
2601 		/*
2602 		 * Third attempt: ask 255 bytes, as we did earlier.
2603 		 */
2604 		if (!scsi_status_is_good(res))
2605 			res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 255,
2606 					       &data, NULL);
2607 	}
2608 
2609 	if (!scsi_status_is_good(res)) {
2610 		sd_first_printk(KERN_WARNING, sdkp,
2611 			  "Test WP failed, assume Write Enabled\n");
2612 	} else {
2613 		sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2614 		set_disk_ro(sdkp->disk, sdkp->write_prot);
2615 		if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2616 			sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2617 				  sdkp->write_prot ? "on" : "off");
2618 			sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
2619 		}
2620 	}
2621 }
2622 
2623 /*
2624  * sd_read_cache_type - called only from sd_revalidate_disk()
2625  * called with buffer of length SD_BUF_SIZE
2626  */
2627 static void
2628 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2629 {
2630 	int len = 0, res;
2631 	struct scsi_device *sdp = sdkp->device;
2632 
2633 	int dbd;
2634 	int modepage;
2635 	int first_len;
2636 	struct scsi_mode_data data;
2637 	struct scsi_sense_hdr sshdr;
2638 	int old_wce = sdkp->WCE;
2639 	int old_rcd = sdkp->RCD;
2640 	int old_dpofua = sdkp->DPOFUA;
2641 
2642 
2643 	if (sdkp->cache_override)
2644 		return;
2645 
2646 	first_len = 4;
2647 	if (sdp->skip_ms_page_8) {
2648 		if (sdp->type == TYPE_RBC)
2649 			goto defaults;
2650 		else {
2651 			if (sdp->skip_ms_page_3f)
2652 				goto defaults;
2653 			modepage = 0x3F;
2654 			if (sdp->use_192_bytes_for_3f)
2655 				first_len = 192;
2656 			dbd = 0;
2657 		}
2658 	} else if (sdp->type == TYPE_RBC) {
2659 		modepage = 6;
2660 		dbd = 8;
2661 	} else {
2662 		modepage = 8;
2663 		dbd = 0;
2664 	}
2665 
2666 	/* cautiously ask */
2667 	res = sd_do_mode_sense(sdp, dbd, modepage, buffer, first_len,
2668 			&data, &sshdr);
2669 
2670 	if (!scsi_status_is_good(res))
2671 		goto bad_sense;
2672 
2673 	if (!data.header_length) {
2674 		modepage = 6;
2675 		first_len = 0;
2676 		sd_first_printk(KERN_ERR, sdkp,
2677 				"Missing header in MODE_SENSE response\n");
2678 	}
2679 
2680 	/* that went OK, now ask for the proper length */
2681 	len = data.length;
2682 
2683 	/*
2684 	 * We're only interested in the first three bytes, actually.
2685 	 * But the data cache page is defined for the first 20.
2686 	 */
2687 	if (len < 3)
2688 		goto bad_sense;
2689 	else if (len > SD_BUF_SIZE) {
2690 		sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2691 			  "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2692 		len = SD_BUF_SIZE;
2693 	}
2694 	if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2695 		len = 192;
2696 
2697 	/* Get the data */
2698 	if (len > first_len)
2699 		res = sd_do_mode_sense(sdp, dbd, modepage, buffer, len,
2700 				&data, &sshdr);
2701 
2702 	if (scsi_status_is_good(res)) {
2703 		int offset = data.header_length + data.block_descriptor_length;
2704 
2705 		while (offset < len) {
2706 			u8 page_code = buffer[offset] & 0x3F;
2707 			u8 spf       = buffer[offset] & 0x40;
2708 
2709 			if (page_code == 8 || page_code == 6) {
2710 				/* We're interested only in the first 3 bytes.
2711 				 */
2712 				if (len - offset <= 2) {
2713 					sd_first_printk(KERN_ERR, sdkp,
2714 						"Incomplete mode parameter "
2715 							"data\n");
2716 					goto defaults;
2717 				} else {
2718 					modepage = page_code;
2719 					goto Page_found;
2720 				}
2721 			} else {
2722 				/* Go to the next page */
2723 				if (spf && len - offset > 3)
2724 					offset += 4 + (buffer[offset+2] << 8) +
2725 						buffer[offset+3];
2726 				else if (!spf && len - offset > 1)
2727 					offset += 2 + buffer[offset+1];
2728 				else {
2729 					sd_first_printk(KERN_ERR, sdkp,
2730 							"Incomplete mode "
2731 							"parameter data\n");
2732 					goto defaults;
2733 				}
2734 			}
2735 		}
2736 
2737 		sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n");
2738 		goto defaults;
2739 
2740 	Page_found:
2741 		if (modepage == 8) {
2742 			sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2743 			sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2744 		} else {
2745 			sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2746 			sdkp->RCD = 0;
2747 		}
2748 
2749 		sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2750 		if (sdp->broken_fua) {
2751 			sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2752 			sdkp->DPOFUA = 0;
2753 		} else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
2754 			   !sdkp->device->use_16_for_rw) {
2755 			sd_first_printk(KERN_NOTICE, sdkp,
2756 				  "Uses READ/WRITE(6), disabling FUA\n");
2757 			sdkp->DPOFUA = 0;
2758 		}
2759 
2760 		/* No cache flush allowed for write protected devices */
2761 		if (sdkp->WCE && sdkp->write_prot)
2762 			sdkp->WCE = 0;
2763 
2764 		if (sdkp->first_scan || old_wce != sdkp->WCE ||
2765 		    old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2766 			sd_printk(KERN_NOTICE, sdkp,
2767 				  "Write cache: %s, read cache: %s, %s\n",
2768 				  sdkp->WCE ? "enabled" : "disabled",
2769 				  sdkp->RCD ? "disabled" : "enabled",
2770 				  sdkp->DPOFUA ? "supports DPO and FUA"
2771 				  : "doesn't support DPO or FUA");
2772 
2773 		return;
2774 	}
2775 
2776 bad_sense:
2777 	if (scsi_sense_valid(&sshdr) &&
2778 	    sshdr.sense_key == ILLEGAL_REQUEST &&
2779 	    sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2780 		/* Invalid field in CDB */
2781 		sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2782 	else
2783 		sd_first_printk(KERN_ERR, sdkp,
2784 				"Asking for cache data failed\n");
2785 
2786 defaults:
2787 	if (sdp->wce_default_on) {
2788 		sd_first_printk(KERN_NOTICE, sdkp,
2789 				"Assuming drive cache: write back\n");
2790 		sdkp->WCE = 1;
2791 	} else {
2792 		sd_first_printk(KERN_ERR, sdkp,
2793 				"Assuming drive cache: write through\n");
2794 		sdkp->WCE = 0;
2795 	}
2796 	sdkp->RCD = 0;
2797 	sdkp->DPOFUA = 0;
2798 }
2799 
2800 /*
2801  * The ATO bit indicates whether the DIF application tag is available
2802  * for use by the operating system.
2803  */
2804 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
2805 {
2806 	int res, offset;
2807 	struct scsi_device *sdp = sdkp->device;
2808 	struct scsi_mode_data data;
2809 	struct scsi_sense_hdr sshdr;
2810 
2811 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
2812 		return;
2813 
2814 	if (sdkp->protection_type == 0)
2815 		return;
2816 
2817 	res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT,
2818 			      SD_MAX_RETRIES, &data, &sshdr);
2819 
2820 	if (!scsi_status_is_good(res) || !data.header_length ||
2821 	    data.length < 6) {
2822 		sd_first_printk(KERN_WARNING, sdkp,
2823 			  "getting Control mode page failed, assume no ATO\n");
2824 
2825 		if (scsi_sense_valid(&sshdr))
2826 			sd_print_sense_hdr(sdkp, &sshdr);
2827 
2828 		return;
2829 	}
2830 
2831 	offset = data.header_length + data.block_descriptor_length;
2832 
2833 	if ((buffer[offset] & 0x3f) != 0x0a) {
2834 		sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
2835 		return;
2836 	}
2837 
2838 	if ((buffer[offset + 5] & 0x80) == 0)
2839 		return;
2840 
2841 	sdkp->ATO = 1;
2842 
2843 	return;
2844 }
2845 
2846 /**
2847  * sd_read_block_limits - Query disk device for preferred I/O sizes.
2848  * @sdkp: disk to query
2849  */
2850 static void sd_read_block_limits(struct scsi_disk *sdkp)
2851 {
2852 	unsigned int sector_sz = sdkp->device->sector_size;
2853 	const int vpd_len = 64;
2854 	unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL);
2855 
2856 	if (!buffer ||
2857 	    /* Block Limits VPD */
2858 	    scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len))
2859 		goto out;
2860 
2861 	blk_queue_io_min(sdkp->disk->queue,
2862 			 get_unaligned_be16(&buffer[6]) * sector_sz);
2863 
2864 	sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]);
2865 	sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]);
2866 
2867 	if (buffer[3] == 0x3c) {
2868 		unsigned int lba_count, desc_count;
2869 
2870 		sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]);
2871 
2872 		if (!sdkp->lbpme)
2873 			goto out;
2874 
2875 		lba_count = get_unaligned_be32(&buffer[20]);
2876 		desc_count = get_unaligned_be32(&buffer[24]);
2877 
2878 		if (lba_count && desc_count)
2879 			sdkp->max_unmap_blocks = lba_count;
2880 
2881 		sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]);
2882 
2883 		if (buffer[32] & 0x80)
2884 			sdkp->unmap_alignment =
2885 				get_unaligned_be32(&buffer[32]) & ~(1 << 31);
2886 
2887 		if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
2888 
2889 			if (sdkp->max_unmap_blocks)
2890 				sd_config_discard(sdkp, SD_LBP_UNMAP);
2891 			else
2892 				sd_config_discard(sdkp, SD_LBP_WS16);
2893 
2894 		} else {	/* LBP VPD page tells us what to use */
2895 			if (sdkp->lbpu && sdkp->max_unmap_blocks)
2896 				sd_config_discard(sdkp, SD_LBP_UNMAP);
2897 			else if (sdkp->lbpws)
2898 				sd_config_discard(sdkp, SD_LBP_WS16);
2899 			else if (sdkp->lbpws10)
2900 				sd_config_discard(sdkp, SD_LBP_WS10);
2901 			else if (sdkp->lbpu && sdkp->max_unmap_blocks)
2902 				sd_config_discard(sdkp, SD_LBP_UNMAP);
2903 			else
2904 				sd_config_discard(sdkp, SD_LBP_DISABLE);
2905 		}
2906 	}
2907 
2908  out:
2909 	kfree(buffer);
2910 }
2911 
2912 /**
2913  * sd_read_block_characteristics - Query block dev. characteristics
2914  * @sdkp: disk to query
2915  */
2916 static void sd_read_block_characteristics(struct scsi_disk *sdkp)
2917 {
2918 	struct request_queue *q = sdkp->disk->queue;
2919 	unsigned char *buffer;
2920 	u16 rot;
2921 	const int vpd_len = 64;
2922 
2923 	buffer = kmalloc(vpd_len, GFP_KERNEL);
2924 
2925 	if (!buffer ||
2926 	    /* Block Device Characteristics VPD */
2927 	    scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len))
2928 		goto out;
2929 
2930 	rot = get_unaligned_be16(&buffer[4]);
2931 
2932 	if (rot == 1) {
2933 		queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
2934 		queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
2935 	}
2936 
2937 	if (sdkp->device->type == TYPE_ZBC) {
2938 		/* Host-managed */
2939 		q->limits.zoned = BLK_ZONED_HM;
2940 	} else {
2941 		sdkp->zoned = (buffer[8] >> 4) & 3;
2942 		if (sdkp->zoned == 1)
2943 			/* Host-aware */
2944 			q->limits.zoned = BLK_ZONED_HA;
2945 		else
2946 			/*
2947 			 * Treat drive-managed devices as
2948 			 * regular block devices.
2949 			 */
2950 			q->limits.zoned = BLK_ZONED_NONE;
2951 	}
2952 	if (blk_queue_is_zoned(q) && sdkp->first_scan)
2953 		sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n",
2954 		      q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware");
2955 
2956  out:
2957 	kfree(buffer);
2958 }
2959 
2960 /**
2961  * sd_read_block_provisioning - Query provisioning VPD page
2962  * @sdkp: disk to query
2963  */
2964 static void sd_read_block_provisioning(struct scsi_disk *sdkp)
2965 {
2966 	unsigned char *buffer;
2967 	const int vpd_len = 8;
2968 
2969 	if (sdkp->lbpme == 0)
2970 		return;
2971 
2972 	buffer = kmalloc(vpd_len, GFP_KERNEL);
2973 
2974 	if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len))
2975 		goto out;
2976 
2977 	sdkp->lbpvpd	= 1;
2978 	sdkp->lbpu	= (buffer[5] >> 7) & 1;	/* UNMAP */
2979 	sdkp->lbpws	= (buffer[5] >> 6) & 1;	/* WRITE SAME(16) with UNMAP */
2980 	sdkp->lbpws10	= (buffer[5] >> 5) & 1;	/* WRITE SAME(10) with UNMAP */
2981 
2982  out:
2983 	kfree(buffer);
2984 }
2985 
2986 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
2987 {
2988 	struct scsi_device *sdev = sdkp->device;
2989 
2990 	if (sdev->host->no_write_same) {
2991 		sdev->no_write_same = 1;
2992 
2993 		return;
2994 	}
2995 
2996 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) {
2997 		/* too large values might cause issues with arcmsr */
2998 		int vpd_buf_len = 64;
2999 
3000 		sdev->no_report_opcodes = 1;
3001 
3002 		/* Disable WRITE SAME if REPORT SUPPORTED OPERATION
3003 		 * CODES is unsupported and the device has an ATA
3004 		 * Information VPD page (SAT).
3005 		 */
3006 		if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len))
3007 			sdev->no_write_same = 1;
3008 	}
3009 
3010 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1)
3011 		sdkp->ws16 = 1;
3012 
3013 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1)
3014 		sdkp->ws10 = 1;
3015 }
3016 
3017 /**
3018  *	sd_revalidate_disk - called the first time a new disk is seen,
3019  *	performs disk spin up, read_capacity, etc.
3020  *	@disk: struct gendisk we care about
3021  **/
3022 static int sd_revalidate_disk(struct gendisk *disk)
3023 {
3024 	struct scsi_disk *sdkp = scsi_disk(disk);
3025 	struct scsi_device *sdp = sdkp->device;
3026 	struct request_queue *q = sdkp->disk->queue;
3027 	sector_t old_capacity = sdkp->capacity;
3028 	unsigned char *buffer;
3029 	unsigned int dev_max, rw_max;
3030 
3031 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3032 				      "sd_revalidate_disk\n"));
3033 
3034 	/*
3035 	 * If the device is offline, don't try and read capacity or any
3036 	 * of the other niceties.
3037 	 */
3038 	if (!scsi_device_online(sdp))
3039 		goto out;
3040 
3041 	buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3042 	if (!buffer) {
3043 		sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3044 			  "allocation failure.\n");
3045 		goto out;
3046 	}
3047 
3048 	sd_spinup_disk(sdkp);
3049 
3050 	/*
3051 	 * Without media there is no reason to ask; moreover, some devices
3052 	 * react badly if we do.
3053 	 */
3054 	if (sdkp->media_present) {
3055 		sd_read_capacity(sdkp, buffer);
3056 
3057 		if (scsi_device_supports_vpd(sdp)) {
3058 			sd_read_block_provisioning(sdkp);
3059 			sd_read_block_limits(sdkp);
3060 			sd_read_block_characteristics(sdkp);
3061 			sd_zbc_read_zones(sdkp, buffer);
3062 		}
3063 
3064 		sd_print_capacity(sdkp, old_capacity);
3065 
3066 		sd_read_write_protect_flag(sdkp, buffer);
3067 		sd_read_cache_type(sdkp, buffer);
3068 		sd_read_app_tag_own(sdkp, buffer);
3069 		sd_read_write_same(sdkp, buffer);
3070 	}
3071 
3072 	sdkp->first_scan = 0;
3073 
3074 	/*
3075 	 * We now have all cache related info, determine how we deal
3076 	 * with flush requests.
3077 	 */
3078 	sd_set_flush_flag(sdkp);
3079 
3080 	/* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3081 	dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3082 
3083 	/* Some devices report a maximum block count for READ/WRITE requests. */
3084 	dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3085 	q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3086 
3087 	/*
3088 	 * Use the device's preferred I/O size for reads and writes
3089 	 * unless the reported value is unreasonably small, large, or
3090 	 * garbage.
3091 	 */
3092 	if (sdkp->opt_xfer_blocks &&
3093 	    sdkp->opt_xfer_blocks <= dev_max &&
3094 	    sdkp->opt_xfer_blocks <= SD_DEF_XFER_BLOCKS &&
3095 	    logical_to_bytes(sdp, sdkp->opt_xfer_blocks) >= PAGE_SIZE) {
3096 		q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3097 		rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
3098 	} else
3099 		rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
3100 				      (sector_t)BLK_DEF_MAX_SECTORS);
3101 
3102 	/* Combine with controller limits */
3103 	q->limits.max_sectors = min(rw_max, queue_max_hw_sectors(q));
3104 
3105 	set_capacity(disk, logical_to_sectors(sdp, sdkp->capacity));
3106 	sd_config_write_same(sdkp);
3107 	kfree(buffer);
3108 
3109  out:
3110 	return 0;
3111 }
3112 
3113 /**
3114  *	sd_unlock_native_capacity - unlock native capacity
3115  *	@disk: struct gendisk to set capacity for
3116  *
3117  *	Block layer calls this function if it detects that partitions
3118  *	on @disk reach beyond the end of the device.  If the SCSI host
3119  *	implements ->unlock_native_capacity() method, it's invoked to
3120  *	give it a chance to adjust the device capacity.
3121  *
3122  *	CONTEXT:
3123  *	Defined by block layer.  Might sleep.
3124  */
3125 static void sd_unlock_native_capacity(struct gendisk *disk)
3126 {
3127 	struct scsi_device *sdev = scsi_disk(disk)->device;
3128 
3129 	if (sdev->host->hostt->unlock_native_capacity)
3130 		sdev->host->hostt->unlock_native_capacity(sdev);
3131 }
3132 
3133 /**
3134  *	sd_format_disk_name - format disk name
3135  *	@prefix: name prefix - ie. "sd" for SCSI disks
3136  *	@index: index of the disk to format name for
3137  *	@buf: output buffer
3138  *	@buflen: length of the output buffer
3139  *
3140  *	SCSI disk names starts at sda.  The 26th device is sdz and the
3141  *	27th is sdaa.  The last one for two lettered suffix is sdzz
3142  *	which is followed by sdaaa.
3143  *
3144  *	This is basically 26 base counting with one extra 'nil' entry
3145  *	at the beginning from the second digit on and can be
3146  *	determined using similar method as 26 base conversion with the
3147  *	index shifted -1 after each digit is computed.
3148  *
3149  *	CONTEXT:
3150  *	Don't care.
3151  *
3152  *	RETURNS:
3153  *	0 on success, -errno on failure.
3154  */
3155 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3156 {
3157 	const int base = 'z' - 'a' + 1;
3158 	char *begin = buf + strlen(prefix);
3159 	char *end = buf + buflen;
3160 	char *p;
3161 	int unit;
3162 
3163 	p = end - 1;
3164 	*p = '\0';
3165 	unit = base;
3166 	do {
3167 		if (p == begin)
3168 			return -EINVAL;
3169 		*--p = 'a' + (index % unit);
3170 		index = (index / unit) - 1;
3171 	} while (index >= 0);
3172 
3173 	memmove(begin, p, end - p);
3174 	memcpy(buf, prefix, strlen(prefix));
3175 
3176 	return 0;
3177 }
3178 
3179 /*
3180  * The asynchronous part of sd_probe
3181  */
3182 static void sd_probe_async(void *data, async_cookie_t cookie)
3183 {
3184 	struct scsi_disk *sdkp = data;
3185 	struct scsi_device *sdp;
3186 	struct gendisk *gd;
3187 	u32 index;
3188 	struct device *dev;
3189 
3190 	sdp = sdkp->device;
3191 	gd = sdkp->disk;
3192 	index = sdkp->index;
3193 	dev = &sdp->sdev_gendev;
3194 
3195 	gd->major = sd_major((index & 0xf0) >> 4);
3196 	gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3197 	gd->minors = SD_MINORS;
3198 
3199 	gd->fops = &sd_fops;
3200 	gd->private_data = &sdkp->driver;
3201 	gd->queue = sdkp->device->request_queue;
3202 
3203 	/* defaults, until the device tells us otherwise */
3204 	sdp->sector_size = 512;
3205 	sdkp->capacity = 0;
3206 	sdkp->media_present = 1;
3207 	sdkp->write_prot = 0;
3208 	sdkp->cache_override = 0;
3209 	sdkp->WCE = 0;
3210 	sdkp->RCD = 0;
3211 	sdkp->ATO = 0;
3212 	sdkp->first_scan = 1;
3213 	sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3214 
3215 	sd_revalidate_disk(gd);
3216 
3217 	gd->flags = GENHD_FL_EXT_DEVT;
3218 	if (sdp->removable) {
3219 		gd->flags |= GENHD_FL_REMOVABLE;
3220 		gd->events |= DISK_EVENT_MEDIA_CHANGE;
3221 	}
3222 
3223 	blk_pm_runtime_init(sdp->request_queue, dev);
3224 	device_add_disk(dev, gd);
3225 	if (sdkp->capacity)
3226 		sd_dif_config_host(sdkp);
3227 
3228 	sd_revalidate_disk(gd);
3229 
3230 	sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3231 		  sdp->removable ? "removable " : "");
3232 	scsi_autopm_put_device(sdp);
3233 	put_device(&sdkp->dev);
3234 }
3235 
3236 /**
3237  *	sd_probe - called during driver initialization and whenever a
3238  *	new scsi device is attached to the system. It is called once
3239  *	for each scsi device (not just disks) present.
3240  *	@dev: pointer to device object
3241  *
3242  *	Returns 0 if successful (or not interested in this scsi device
3243  *	(e.g. scanner)); 1 when there is an error.
3244  *
3245  *	Note: this function is invoked from the scsi mid-level.
3246  *	This function sets up the mapping between a given
3247  *	<host,channel,id,lun> (found in sdp) and new device name
3248  *	(e.g. /dev/sda). More precisely it is the block device major
3249  *	and minor number that is chosen here.
3250  *
3251  *	Assume sd_probe is not re-entrant (for time being)
3252  *	Also think about sd_probe() and sd_remove() running coincidentally.
3253  **/
3254 static int sd_probe(struct device *dev)
3255 {
3256 	struct scsi_device *sdp = to_scsi_device(dev);
3257 	struct scsi_disk *sdkp;
3258 	struct gendisk *gd;
3259 	int index;
3260 	int error;
3261 
3262 	scsi_autopm_get_device(sdp);
3263 	error = -ENODEV;
3264 	if (sdp->type != TYPE_DISK &&
3265 	    sdp->type != TYPE_ZBC &&
3266 	    sdp->type != TYPE_MOD &&
3267 	    sdp->type != TYPE_RBC)
3268 		goto out;
3269 
3270 #ifndef CONFIG_BLK_DEV_ZONED
3271 	if (sdp->type == TYPE_ZBC)
3272 		goto out;
3273 #endif
3274 	SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3275 					"sd_probe\n"));
3276 
3277 	error = -ENOMEM;
3278 	sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3279 	if (!sdkp)
3280 		goto out;
3281 
3282 	gd = alloc_disk(SD_MINORS);
3283 	if (!gd)
3284 		goto out_free;
3285 
3286 	do {
3287 		if (!ida_pre_get(&sd_index_ida, GFP_KERNEL))
3288 			goto out_put;
3289 
3290 		spin_lock(&sd_index_lock);
3291 		error = ida_get_new(&sd_index_ida, &index);
3292 		spin_unlock(&sd_index_lock);
3293 	} while (error == -EAGAIN);
3294 
3295 	if (error) {
3296 		sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3297 		goto out_put;
3298 	}
3299 
3300 	error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3301 	if (error) {
3302 		sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3303 		goto out_free_index;
3304 	}
3305 
3306 	sdkp->device = sdp;
3307 	sdkp->driver = &sd_template;
3308 	sdkp->disk = gd;
3309 	sdkp->index = index;
3310 	atomic_set(&sdkp->openers, 0);
3311 	atomic_set(&sdkp->device->ioerr_cnt, 0);
3312 
3313 	if (!sdp->request_queue->rq_timeout) {
3314 		if (sdp->type != TYPE_MOD)
3315 			blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3316 		else
3317 			blk_queue_rq_timeout(sdp->request_queue,
3318 					     SD_MOD_TIMEOUT);
3319 	}
3320 
3321 	device_initialize(&sdkp->dev);
3322 	sdkp->dev.parent = dev;
3323 	sdkp->dev.class = &sd_disk_class;
3324 	dev_set_name(&sdkp->dev, "%s", dev_name(dev));
3325 
3326 	error = device_add(&sdkp->dev);
3327 	if (error)
3328 		goto out_free_index;
3329 
3330 	get_device(dev);
3331 	dev_set_drvdata(dev, sdkp);
3332 
3333 	get_device(&sdkp->dev);	/* prevent release before async_schedule */
3334 	async_schedule_domain(sd_probe_async, sdkp, &scsi_sd_probe_domain);
3335 
3336 	return 0;
3337 
3338  out_free_index:
3339 	spin_lock(&sd_index_lock);
3340 	ida_remove(&sd_index_ida, index);
3341 	spin_unlock(&sd_index_lock);
3342  out_put:
3343 	put_disk(gd);
3344  out_free:
3345 	kfree(sdkp);
3346  out:
3347 	scsi_autopm_put_device(sdp);
3348 	return error;
3349 }
3350 
3351 /**
3352  *	sd_remove - called whenever a scsi disk (previously recognized by
3353  *	sd_probe) is detached from the system. It is called (potentially
3354  *	multiple times) during sd module unload.
3355  *	@dev: pointer to device object
3356  *
3357  *	Note: this function is invoked from the scsi mid-level.
3358  *	This function potentially frees up a device name (e.g. /dev/sdc)
3359  *	that could be re-used by a subsequent sd_probe().
3360  *	This function is not called when the built-in sd driver is "exit-ed".
3361  **/
3362 static int sd_remove(struct device *dev)
3363 {
3364 	struct scsi_disk *sdkp;
3365 	dev_t devt;
3366 
3367 	sdkp = dev_get_drvdata(dev);
3368 	devt = disk_devt(sdkp->disk);
3369 	scsi_autopm_get_device(sdkp->device);
3370 
3371 	async_synchronize_full_domain(&scsi_sd_pm_domain);
3372 	async_synchronize_full_domain(&scsi_sd_probe_domain);
3373 	device_del(&sdkp->dev);
3374 	del_gendisk(sdkp->disk);
3375 	sd_shutdown(dev);
3376 
3377 	sd_zbc_remove(sdkp);
3378 
3379 	blk_register_region(devt, SD_MINORS, NULL,
3380 			    sd_default_probe, NULL, NULL);
3381 
3382 	mutex_lock(&sd_ref_mutex);
3383 	dev_set_drvdata(dev, NULL);
3384 	put_device(&sdkp->dev);
3385 	mutex_unlock(&sd_ref_mutex);
3386 
3387 	return 0;
3388 }
3389 
3390 /**
3391  *	scsi_disk_release - Called to free the scsi_disk structure
3392  *	@dev: pointer to embedded class device
3393  *
3394  *	sd_ref_mutex must be held entering this routine.  Because it is
3395  *	called on last put, you should always use the scsi_disk_get()
3396  *	scsi_disk_put() helpers which manipulate the semaphore directly
3397  *	and never do a direct put_device.
3398  **/
3399 static void scsi_disk_release(struct device *dev)
3400 {
3401 	struct scsi_disk *sdkp = to_scsi_disk(dev);
3402 	struct gendisk *disk = sdkp->disk;
3403 
3404 	spin_lock(&sd_index_lock);
3405 	ida_remove(&sd_index_ida, sdkp->index);
3406 	spin_unlock(&sd_index_lock);
3407 
3408 	disk->private_data = NULL;
3409 	put_disk(disk);
3410 	put_device(&sdkp->device->sdev_gendev);
3411 
3412 	kfree(sdkp);
3413 }
3414 
3415 static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3416 {
3417 	unsigned char cmd[6] = { START_STOP };	/* START_VALID */
3418 	struct scsi_sense_hdr sshdr;
3419 	struct scsi_device *sdp = sdkp->device;
3420 	int res;
3421 
3422 	if (start)
3423 		cmd[4] |= 1;	/* START */
3424 
3425 	if (sdp->start_stop_pwr_cond)
3426 		cmd[4] |= start ? 1 << 4 : 3 << 4;	/* Active or Standby */
3427 
3428 	if (!scsi_device_online(sdp))
3429 		return -ENODEV;
3430 
3431 	res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr,
3432 			SD_TIMEOUT, SD_MAX_RETRIES, 0, RQF_PM, NULL);
3433 	if (res) {
3434 		sd_print_result(sdkp, "Start/Stop Unit failed", res);
3435 		if (driver_byte(res) & DRIVER_SENSE)
3436 			sd_print_sense_hdr(sdkp, &sshdr);
3437 		if (scsi_sense_valid(&sshdr) &&
3438 			/* 0x3a is medium not present */
3439 			sshdr.asc == 0x3a)
3440 			res = 0;
3441 	}
3442 
3443 	/* SCSI error codes must not go to the generic layer */
3444 	if (res)
3445 		return -EIO;
3446 
3447 	return 0;
3448 }
3449 
3450 /*
3451  * Send a SYNCHRONIZE CACHE instruction down to the device through
3452  * the normal SCSI command structure.  Wait for the command to
3453  * complete.
3454  */
3455 static void sd_shutdown(struct device *dev)
3456 {
3457 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3458 
3459 	if (!sdkp)
3460 		return;         /* this can happen */
3461 
3462 	if (pm_runtime_suspended(dev))
3463 		return;
3464 
3465 	if (sdkp->WCE && sdkp->media_present) {
3466 		sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3467 		sd_sync_cache(sdkp, NULL);
3468 	}
3469 
3470 	if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) {
3471 		sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3472 		sd_start_stop_device(sdkp, 0);
3473 	}
3474 }
3475 
3476 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors)
3477 {
3478 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3479 	struct scsi_sense_hdr sshdr;
3480 	int ret = 0;
3481 
3482 	if (!sdkp)	/* E.g.: runtime suspend following sd_remove() */
3483 		return 0;
3484 
3485 	if (sdkp->WCE && sdkp->media_present) {
3486 		sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3487 		ret = sd_sync_cache(sdkp, &sshdr);
3488 
3489 		if (ret) {
3490 			/* ignore OFFLINE device */
3491 			if (ret == -ENODEV)
3492 				return 0;
3493 
3494 			if (!scsi_sense_valid(&sshdr) ||
3495 			    sshdr.sense_key != ILLEGAL_REQUEST)
3496 				return ret;
3497 
3498 			/*
3499 			 * sshdr.sense_key == ILLEGAL_REQUEST means this drive
3500 			 * doesn't support sync. There's not much to do and
3501 			 * suspend shouldn't fail.
3502 			 */
3503 			 ret = 0;
3504 		}
3505 	}
3506 
3507 	if (sdkp->device->manage_start_stop) {
3508 		sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3509 		/* an error is not worth aborting a system sleep */
3510 		ret = sd_start_stop_device(sdkp, 0);
3511 		if (ignore_stop_errors)
3512 			ret = 0;
3513 	}
3514 
3515 	return ret;
3516 }
3517 
3518 static int sd_suspend_system(struct device *dev)
3519 {
3520 	return sd_suspend_common(dev, true);
3521 }
3522 
3523 static int sd_suspend_runtime(struct device *dev)
3524 {
3525 	return sd_suspend_common(dev, false);
3526 }
3527 
3528 static int sd_resume(struct device *dev)
3529 {
3530 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3531 
3532 	if (!sdkp)	/* E.g.: runtime resume at the start of sd_probe() */
3533 		return 0;
3534 
3535 	if (!sdkp->device->manage_start_stop)
3536 		return 0;
3537 
3538 	sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3539 	return sd_start_stop_device(sdkp, 1);
3540 }
3541 
3542 /**
3543  *	init_sd - entry point for this driver (both when built in or when
3544  *	a module).
3545  *
3546  *	Note: this function registers this driver with the scsi mid-level.
3547  **/
3548 static int __init init_sd(void)
3549 {
3550 	int majors = 0, i, err;
3551 
3552 	SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
3553 
3554 	for (i = 0; i < SD_MAJORS; i++) {
3555 		if (register_blkdev(sd_major(i), "sd") != 0)
3556 			continue;
3557 		majors++;
3558 		blk_register_region(sd_major(i), SD_MINORS, NULL,
3559 				    sd_default_probe, NULL, NULL);
3560 	}
3561 
3562 	if (!majors)
3563 		return -ENODEV;
3564 
3565 	err = class_register(&sd_disk_class);
3566 	if (err)
3567 		goto err_out;
3568 
3569 	sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE,
3570 					 0, 0, NULL);
3571 	if (!sd_cdb_cache) {
3572 		printk(KERN_ERR "sd: can't init extended cdb cache\n");
3573 		err = -ENOMEM;
3574 		goto err_out_class;
3575 	}
3576 
3577 	sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache);
3578 	if (!sd_cdb_pool) {
3579 		printk(KERN_ERR "sd: can't init extended cdb pool\n");
3580 		err = -ENOMEM;
3581 		goto err_out_cache;
3582 	}
3583 
3584 	err = scsi_register_driver(&sd_template.gendrv);
3585 	if (err)
3586 		goto err_out_driver;
3587 
3588 	return 0;
3589 
3590 err_out_driver:
3591 	mempool_destroy(sd_cdb_pool);
3592 
3593 err_out_cache:
3594 	kmem_cache_destroy(sd_cdb_cache);
3595 
3596 err_out_class:
3597 	class_unregister(&sd_disk_class);
3598 err_out:
3599 	for (i = 0; i < SD_MAJORS; i++)
3600 		unregister_blkdev(sd_major(i), "sd");
3601 	return err;
3602 }
3603 
3604 /**
3605  *	exit_sd - exit point for this driver (when it is a module).
3606  *
3607  *	Note: this function unregisters this driver from the scsi mid-level.
3608  **/
3609 static void __exit exit_sd(void)
3610 {
3611 	int i;
3612 
3613 	SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
3614 
3615 	scsi_unregister_driver(&sd_template.gendrv);
3616 	mempool_destroy(sd_cdb_pool);
3617 	kmem_cache_destroy(sd_cdb_cache);
3618 
3619 	class_unregister(&sd_disk_class);
3620 
3621 	for (i = 0; i < SD_MAJORS; i++) {
3622 		blk_unregister_region(sd_major(i), SD_MINORS);
3623 		unregister_blkdev(sd_major(i), "sd");
3624 	}
3625 }
3626 
3627 module_init(init_sd);
3628 module_exit(exit_sd);
3629 
3630 static void sd_print_sense_hdr(struct scsi_disk *sdkp,
3631 			       struct scsi_sense_hdr *sshdr)
3632 {
3633 	scsi_print_sense_hdr(sdkp->device,
3634 			     sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
3635 }
3636 
3637 static void sd_print_result(const struct scsi_disk *sdkp, const char *msg,
3638 			    int result)
3639 {
3640 	const char *hb_string = scsi_hostbyte_string(result);
3641 	const char *db_string = scsi_driverbyte_string(result);
3642 
3643 	if (hb_string || db_string)
3644 		sd_printk(KERN_INFO, sdkp,
3645 			  "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
3646 			  hb_string ? hb_string : "invalid",
3647 			  db_string ? db_string : "invalid");
3648 	else
3649 		sd_printk(KERN_INFO, sdkp,
3650 			  "%s: Result: hostbyte=0x%02x driverbyte=0x%02x\n",
3651 			  msg, host_byte(result), driver_byte(result));
3652 }
3653 
3654