1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * sd.c Copyright (C) 1992 Drew Eckhardt 4 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale 5 * 6 * Linux scsi disk driver 7 * Initial versions: Drew Eckhardt 8 * Subsequent revisions: Eric Youngdale 9 * Modification history: 10 * - Drew Eckhardt <drew@colorado.edu> original 11 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 12 * outstanding request, and other enhancements. 13 * Support loadable low-level scsi drivers. 14 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 15 * eight major numbers. 16 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs. 17 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 18 * sd_init and cleanups. 19 * - Alex Davis <letmein@erols.com> Fix problem where partition info 20 * not being read in sd_open. Fix problem where removable media 21 * could be ejected after sd_open. 22 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x 23 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 24 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 25 * Support 32k/1M disks. 26 * 27 * Logging policy (needs CONFIG_SCSI_LOGGING defined): 28 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2 29 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1 30 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1 31 * - entering other commands: SCSI_LOG_HLQUEUE level 3 32 * Note: when the logging level is set by the user, it must be greater 33 * than the level indicated above to trigger output. 34 */ 35 36 #include <linux/bio-integrity.h> 37 #include <linux/module.h> 38 #include <linux/fs.h> 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/bio-integrity.h> 42 #include <linux/hdreg.h> 43 #include <linux/errno.h> 44 #include <linux/idr.h> 45 #include <linux/interrupt.h> 46 #include <linux/init.h> 47 #include <linux/blkdev.h> 48 #include <linux/blkpg.h> 49 #include <linux/blk-pm.h> 50 #include <linux/delay.h> 51 #include <linux/rw_hint.h> 52 #include <linux/major.h> 53 #include <linux/mutex.h> 54 #include <linux/string_helpers.h> 55 #include <linux/slab.h> 56 #include <linux/sed-opal.h> 57 #include <linux/pm_runtime.h> 58 #include <linux/pr.h> 59 #include <linux/t10-pi.h> 60 #include <linux/uaccess.h> 61 #include <asm/unaligned.h> 62 63 #include <scsi/scsi.h> 64 #include <scsi/scsi_cmnd.h> 65 #include <scsi/scsi_dbg.h> 66 #include <scsi/scsi_device.h> 67 #include <scsi/scsi_devinfo.h> 68 #include <scsi/scsi_driver.h> 69 #include <scsi/scsi_eh.h> 70 #include <scsi/scsi_host.h> 71 #include <scsi/scsi_ioctl.h> 72 #include <scsi/scsicam.h> 73 #include <scsi/scsi_common.h> 74 75 #include "sd.h" 76 #include "scsi_priv.h" 77 #include "scsi_logging.h" 78 79 MODULE_AUTHOR("Eric Youngdale"); 80 MODULE_DESCRIPTION("SCSI disk (sd) driver"); 81 MODULE_LICENSE("GPL"); 82 83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR); 84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR); 85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR); 86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR); 87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR); 88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR); 89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR); 90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR); 91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR); 92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR); 93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR); 94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR); 95 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR); 96 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR); 97 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR); 98 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR); 99 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK); 100 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD); 101 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC); 102 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC); 103 104 #define SD_MINORS 16 105 106 static void sd_config_discard(struct scsi_disk *sdkp, struct queue_limits *lim, 107 unsigned int mode); 108 static void sd_config_write_same(struct scsi_disk *sdkp, 109 struct queue_limits *lim); 110 static int sd_revalidate_disk(struct gendisk *); 111 static void sd_unlock_native_capacity(struct gendisk *disk); 112 static void sd_shutdown(struct device *); 113 static void scsi_disk_release(struct device *cdev); 114 115 static DEFINE_IDA(sd_index_ida); 116 117 static mempool_t *sd_page_pool; 118 static struct lock_class_key sd_bio_compl_lkclass; 119 120 static const char *sd_cache_types[] = { 121 "write through", "none", "write back", 122 "write back, no read (daft)" 123 }; 124 125 static void sd_set_flush_flag(struct scsi_disk *sdkp, 126 struct queue_limits *lim) 127 { 128 if (sdkp->WCE) { 129 lim->features |= BLK_FEAT_WRITE_CACHE; 130 if (sdkp->DPOFUA) 131 lim->features |= BLK_FEAT_FUA; 132 else 133 lim->features &= ~BLK_FEAT_FUA; 134 } else { 135 lim->features &= ~(BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA); 136 } 137 } 138 139 static ssize_t 140 cache_type_store(struct device *dev, struct device_attribute *attr, 141 const char *buf, size_t count) 142 { 143 int ct, rcd, wce, sp; 144 struct scsi_disk *sdkp = to_scsi_disk(dev); 145 struct scsi_device *sdp = sdkp->device; 146 char buffer[64]; 147 char *buffer_data; 148 struct scsi_mode_data data; 149 struct scsi_sense_hdr sshdr; 150 static const char temp[] = "temporary "; 151 int len, ret; 152 153 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 154 /* no cache control on RBC devices; theoretically they 155 * can do it, but there's probably so many exceptions 156 * it's not worth the risk */ 157 return -EINVAL; 158 159 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) { 160 buf += sizeof(temp) - 1; 161 sdkp->cache_override = 1; 162 } else { 163 sdkp->cache_override = 0; 164 } 165 166 ct = sysfs_match_string(sd_cache_types, buf); 167 if (ct < 0) 168 return -EINVAL; 169 170 rcd = ct & 0x01 ? 1 : 0; 171 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0; 172 173 if (sdkp->cache_override) { 174 struct queue_limits lim; 175 176 sdkp->WCE = wce; 177 sdkp->RCD = rcd; 178 179 lim = queue_limits_start_update(sdkp->disk->queue); 180 sd_set_flush_flag(sdkp, &lim); 181 blk_mq_freeze_queue(sdkp->disk->queue); 182 ret = queue_limits_commit_update(sdkp->disk->queue, &lim); 183 blk_mq_unfreeze_queue(sdkp->disk->queue); 184 if (ret) 185 return ret; 186 return count; 187 } 188 189 if (scsi_mode_sense(sdp, 0x08, 8, 0, buffer, sizeof(buffer), SD_TIMEOUT, 190 sdkp->max_retries, &data, NULL)) 191 return -EINVAL; 192 len = min_t(size_t, sizeof(buffer), data.length - data.header_length - 193 data.block_descriptor_length); 194 buffer_data = buffer + data.header_length + 195 data.block_descriptor_length; 196 buffer_data[2] &= ~0x05; 197 buffer_data[2] |= wce << 2 | rcd; 198 sp = buffer_data[0] & 0x80 ? 1 : 0; 199 buffer_data[0] &= ~0x80; 200 201 /* 202 * Ensure WP, DPOFUA, and RESERVED fields are cleared in 203 * received mode parameter buffer before doing MODE SELECT. 204 */ 205 data.device_specific = 0; 206 207 ret = scsi_mode_select(sdp, 1, sp, buffer_data, len, SD_TIMEOUT, 208 sdkp->max_retries, &data, &sshdr); 209 if (ret) { 210 if (ret > 0 && scsi_sense_valid(&sshdr)) 211 sd_print_sense_hdr(sdkp, &sshdr); 212 return -EINVAL; 213 } 214 sd_revalidate_disk(sdkp->disk); 215 return count; 216 } 217 218 static ssize_t 219 manage_start_stop_show(struct device *dev, 220 struct device_attribute *attr, char *buf) 221 { 222 struct scsi_disk *sdkp = to_scsi_disk(dev); 223 struct scsi_device *sdp = sdkp->device; 224 225 return sysfs_emit(buf, "%u\n", 226 sdp->manage_system_start_stop && 227 sdp->manage_runtime_start_stop && 228 sdp->manage_shutdown); 229 } 230 static DEVICE_ATTR_RO(manage_start_stop); 231 232 static ssize_t 233 manage_system_start_stop_show(struct device *dev, 234 struct device_attribute *attr, char *buf) 235 { 236 struct scsi_disk *sdkp = to_scsi_disk(dev); 237 struct scsi_device *sdp = sdkp->device; 238 239 return sysfs_emit(buf, "%u\n", sdp->manage_system_start_stop); 240 } 241 242 static ssize_t 243 manage_system_start_stop_store(struct device *dev, 244 struct device_attribute *attr, 245 const char *buf, size_t count) 246 { 247 struct scsi_disk *sdkp = to_scsi_disk(dev); 248 struct scsi_device *sdp = sdkp->device; 249 bool v; 250 251 if (!capable(CAP_SYS_ADMIN)) 252 return -EACCES; 253 254 if (kstrtobool(buf, &v)) 255 return -EINVAL; 256 257 sdp->manage_system_start_stop = v; 258 259 return count; 260 } 261 static DEVICE_ATTR_RW(manage_system_start_stop); 262 263 static ssize_t 264 manage_runtime_start_stop_show(struct device *dev, 265 struct device_attribute *attr, char *buf) 266 { 267 struct scsi_disk *sdkp = to_scsi_disk(dev); 268 struct scsi_device *sdp = sdkp->device; 269 270 return sysfs_emit(buf, "%u\n", sdp->manage_runtime_start_stop); 271 } 272 273 static ssize_t 274 manage_runtime_start_stop_store(struct device *dev, 275 struct device_attribute *attr, 276 const char *buf, size_t count) 277 { 278 struct scsi_disk *sdkp = to_scsi_disk(dev); 279 struct scsi_device *sdp = sdkp->device; 280 bool v; 281 282 if (!capable(CAP_SYS_ADMIN)) 283 return -EACCES; 284 285 if (kstrtobool(buf, &v)) 286 return -EINVAL; 287 288 sdp->manage_runtime_start_stop = v; 289 290 return count; 291 } 292 static DEVICE_ATTR_RW(manage_runtime_start_stop); 293 294 static ssize_t manage_shutdown_show(struct device *dev, 295 struct device_attribute *attr, char *buf) 296 { 297 struct scsi_disk *sdkp = to_scsi_disk(dev); 298 struct scsi_device *sdp = sdkp->device; 299 300 return sysfs_emit(buf, "%u\n", sdp->manage_shutdown); 301 } 302 303 static ssize_t manage_shutdown_store(struct device *dev, 304 struct device_attribute *attr, 305 const char *buf, size_t count) 306 { 307 struct scsi_disk *sdkp = to_scsi_disk(dev); 308 struct scsi_device *sdp = sdkp->device; 309 bool v; 310 311 if (!capable(CAP_SYS_ADMIN)) 312 return -EACCES; 313 314 if (kstrtobool(buf, &v)) 315 return -EINVAL; 316 317 sdp->manage_shutdown = v; 318 319 return count; 320 } 321 static DEVICE_ATTR_RW(manage_shutdown); 322 323 static ssize_t 324 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf) 325 { 326 struct scsi_disk *sdkp = to_scsi_disk(dev); 327 328 return sprintf(buf, "%u\n", sdkp->device->allow_restart); 329 } 330 331 static ssize_t 332 allow_restart_store(struct device *dev, struct device_attribute *attr, 333 const char *buf, size_t count) 334 { 335 bool v; 336 struct scsi_disk *sdkp = to_scsi_disk(dev); 337 struct scsi_device *sdp = sdkp->device; 338 339 if (!capable(CAP_SYS_ADMIN)) 340 return -EACCES; 341 342 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 343 return -EINVAL; 344 345 if (kstrtobool(buf, &v)) 346 return -EINVAL; 347 348 sdp->allow_restart = v; 349 350 return count; 351 } 352 static DEVICE_ATTR_RW(allow_restart); 353 354 static ssize_t 355 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf) 356 { 357 struct scsi_disk *sdkp = to_scsi_disk(dev); 358 int ct = sdkp->RCD + 2*sdkp->WCE; 359 360 return sprintf(buf, "%s\n", sd_cache_types[ct]); 361 } 362 static DEVICE_ATTR_RW(cache_type); 363 364 static ssize_t 365 FUA_show(struct device *dev, struct device_attribute *attr, char *buf) 366 { 367 struct scsi_disk *sdkp = to_scsi_disk(dev); 368 369 return sprintf(buf, "%u\n", sdkp->DPOFUA); 370 } 371 static DEVICE_ATTR_RO(FUA); 372 373 static ssize_t 374 protection_type_show(struct device *dev, struct device_attribute *attr, 375 char *buf) 376 { 377 struct scsi_disk *sdkp = to_scsi_disk(dev); 378 379 return sprintf(buf, "%u\n", sdkp->protection_type); 380 } 381 382 static ssize_t 383 protection_type_store(struct device *dev, struct device_attribute *attr, 384 const char *buf, size_t count) 385 { 386 struct scsi_disk *sdkp = to_scsi_disk(dev); 387 unsigned int val; 388 int err; 389 390 if (!capable(CAP_SYS_ADMIN)) 391 return -EACCES; 392 393 err = kstrtouint(buf, 10, &val); 394 395 if (err) 396 return err; 397 398 if (val <= T10_PI_TYPE3_PROTECTION) 399 sdkp->protection_type = val; 400 401 return count; 402 } 403 static DEVICE_ATTR_RW(protection_type); 404 405 static ssize_t 406 protection_mode_show(struct device *dev, struct device_attribute *attr, 407 char *buf) 408 { 409 struct scsi_disk *sdkp = to_scsi_disk(dev); 410 struct scsi_device *sdp = sdkp->device; 411 unsigned int dif, dix; 412 413 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type); 414 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type); 415 416 if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) { 417 dif = 0; 418 dix = 1; 419 } 420 421 if (!dif && !dix) 422 return sprintf(buf, "none\n"); 423 424 return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif); 425 } 426 static DEVICE_ATTR_RO(protection_mode); 427 428 static ssize_t 429 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf) 430 { 431 struct scsi_disk *sdkp = to_scsi_disk(dev); 432 433 return sprintf(buf, "%u\n", sdkp->ATO); 434 } 435 static DEVICE_ATTR_RO(app_tag_own); 436 437 static ssize_t 438 thin_provisioning_show(struct device *dev, struct device_attribute *attr, 439 char *buf) 440 { 441 struct scsi_disk *sdkp = to_scsi_disk(dev); 442 443 return sprintf(buf, "%u\n", sdkp->lbpme); 444 } 445 static DEVICE_ATTR_RO(thin_provisioning); 446 447 /* sysfs_match_string() requires dense arrays */ 448 static const char *lbp_mode[] = { 449 [SD_LBP_FULL] = "full", 450 [SD_LBP_UNMAP] = "unmap", 451 [SD_LBP_WS16] = "writesame_16", 452 [SD_LBP_WS10] = "writesame_10", 453 [SD_LBP_ZERO] = "writesame_zero", 454 [SD_LBP_DISABLE] = "disabled", 455 }; 456 457 static ssize_t 458 provisioning_mode_show(struct device *dev, struct device_attribute *attr, 459 char *buf) 460 { 461 struct scsi_disk *sdkp = to_scsi_disk(dev); 462 463 return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]); 464 } 465 466 static ssize_t 467 provisioning_mode_store(struct device *dev, struct device_attribute *attr, 468 const char *buf, size_t count) 469 { 470 struct scsi_disk *sdkp = to_scsi_disk(dev); 471 struct scsi_device *sdp = sdkp->device; 472 struct queue_limits lim; 473 int mode, err; 474 475 if (!capable(CAP_SYS_ADMIN)) 476 return -EACCES; 477 478 if (sdp->type != TYPE_DISK) 479 return -EINVAL; 480 481 mode = sysfs_match_string(lbp_mode, buf); 482 if (mode < 0) 483 return -EINVAL; 484 485 lim = queue_limits_start_update(sdkp->disk->queue); 486 sd_config_discard(sdkp, &lim, mode); 487 blk_mq_freeze_queue(sdkp->disk->queue); 488 err = queue_limits_commit_update(sdkp->disk->queue, &lim); 489 blk_mq_unfreeze_queue(sdkp->disk->queue); 490 if (err) 491 return err; 492 return count; 493 } 494 static DEVICE_ATTR_RW(provisioning_mode); 495 496 /* sysfs_match_string() requires dense arrays */ 497 static const char *zeroing_mode[] = { 498 [SD_ZERO_WRITE] = "write", 499 [SD_ZERO_WS] = "writesame", 500 [SD_ZERO_WS16_UNMAP] = "writesame_16_unmap", 501 [SD_ZERO_WS10_UNMAP] = "writesame_10_unmap", 502 }; 503 504 static ssize_t 505 zeroing_mode_show(struct device *dev, struct device_attribute *attr, 506 char *buf) 507 { 508 struct scsi_disk *sdkp = to_scsi_disk(dev); 509 510 return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]); 511 } 512 513 static ssize_t 514 zeroing_mode_store(struct device *dev, struct device_attribute *attr, 515 const char *buf, size_t count) 516 { 517 struct scsi_disk *sdkp = to_scsi_disk(dev); 518 int mode; 519 520 if (!capable(CAP_SYS_ADMIN)) 521 return -EACCES; 522 523 mode = sysfs_match_string(zeroing_mode, buf); 524 if (mode < 0) 525 return -EINVAL; 526 527 sdkp->zeroing_mode = mode; 528 529 return count; 530 } 531 static DEVICE_ATTR_RW(zeroing_mode); 532 533 static ssize_t 534 max_medium_access_timeouts_show(struct device *dev, 535 struct device_attribute *attr, char *buf) 536 { 537 struct scsi_disk *sdkp = to_scsi_disk(dev); 538 539 return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts); 540 } 541 542 static ssize_t 543 max_medium_access_timeouts_store(struct device *dev, 544 struct device_attribute *attr, const char *buf, 545 size_t count) 546 { 547 struct scsi_disk *sdkp = to_scsi_disk(dev); 548 int err; 549 550 if (!capable(CAP_SYS_ADMIN)) 551 return -EACCES; 552 553 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts); 554 555 return err ? err : count; 556 } 557 static DEVICE_ATTR_RW(max_medium_access_timeouts); 558 559 static ssize_t 560 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr, 561 char *buf) 562 { 563 struct scsi_disk *sdkp = to_scsi_disk(dev); 564 565 return sprintf(buf, "%u\n", sdkp->max_ws_blocks); 566 } 567 568 static ssize_t 569 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr, 570 const char *buf, size_t count) 571 { 572 struct scsi_disk *sdkp = to_scsi_disk(dev); 573 struct scsi_device *sdp = sdkp->device; 574 struct queue_limits lim; 575 unsigned long max; 576 int err; 577 578 if (!capable(CAP_SYS_ADMIN)) 579 return -EACCES; 580 581 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 582 return -EINVAL; 583 584 err = kstrtoul(buf, 10, &max); 585 586 if (err) 587 return err; 588 589 if (max == 0) 590 sdp->no_write_same = 1; 591 else if (max <= SD_MAX_WS16_BLOCKS) { 592 sdp->no_write_same = 0; 593 sdkp->max_ws_blocks = max; 594 } 595 596 lim = queue_limits_start_update(sdkp->disk->queue); 597 sd_config_write_same(sdkp, &lim); 598 blk_mq_freeze_queue(sdkp->disk->queue); 599 err = queue_limits_commit_update(sdkp->disk->queue, &lim); 600 blk_mq_unfreeze_queue(sdkp->disk->queue); 601 if (err) 602 return err; 603 return count; 604 } 605 static DEVICE_ATTR_RW(max_write_same_blocks); 606 607 static ssize_t 608 zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf) 609 { 610 struct scsi_disk *sdkp = to_scsi_disk(dev); 611 612 if (sdkp->device->type == TYPE_ZBC) 613 return sprintf(buf, "host-managed\n"); 614 if (sdkp->zoned == 1) 615 return sprintf(buf, "host-aware\n"); 616 if (sdkp->zoned == 2) 617 return sprintf(buf, "drive-managed\n"); 618 return sprintf(buf, "none\n"); 619 } 620 static DEVICE_ATTR_RO(zoned_cap); 621 622 static ssize_t 623 max_retries_store(struct device *dev, struct device_attribute *attr, 624 const char *buf, size_t count) 625 { 626 struct scsi_disk *sdkp = to_scsi_disk(dev); 627 struct scsi_device *sdev = sdkp->device; 628 int retries, err; 629 630 err = kstrtoint(buf, 10, &retries); 631 if (err) 632 return err; 633 634 if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) { 635 sdkp->max_retries = retries; 636 return count; 637 } 638 639 sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n", 640 SD_MAX_RETRIES); 641 return -EINVAL; 642 } 643 644 static ssize_t 645 max_retries_show(struct device *dev, struct device_attribute *attr, 646 char *buf) 647 { 648 struct scsi_disk *sdkp = to_scsi_disk(dev); 649 650 return sprintf(buf, "%d\n", sdkp->max_retries); 651 } 652 653 static DEVICE_ATTR_RW(max_retries); 654 655 static struct attribute *sd_disk_attrs[] = { 656 &dev_attr_cache_type.attr, 657 &dev_attr_FUA.attr, 658 &dev_attr_allow_restart.attr, 659 &dev_attr_manage_start_stop.attr, 660 &dev_attr_manage_system_start_stop.attr, 661 &dev_attr_manage_runtime_start_stop.attr, 662 &dev_attr_manage_shutdown.attr, 663 &dev_attr_protection_type.attr, 664 &dev_attr_protection_mode.attr, 665 &dev_attr_app_tag_own.attr, 666 &dev_attr_thin_provisioning.attr, 667 &dev_attr_provisioning_mode.attr, 668 &dev_attr_zeroing_mode.attr, 669 &dev_attr_max_write_same_blocks.attr, 670 &dev_attr_max_medium_access_timeouts.attr, 671 &dev_attr_zoned_cap.attr, 672 &dev_attr_max_retries.attr, 673 NULL, 674 }; 675 ATTRIBUTE_GROUPS(sd_disk); 676 677 static struct class sd_disk_class = { 678 .name = "scsi_disk", 679 .dev_release = scsi_disk_release, 680 .dev_groups = sd_disk_groups, 681 }; 682 683 /* 684 * Don't request a new module, as that could deadlock in multipath 685 * environment. 686 */ 687 static void sd_default_probe(dev_t devt) 688 { 689 } 690 691 /* 692 * Device no to disk mapping: 693 * 694 * major disc2 disc p1 695 * |............|.............|....|....| <- dev_t 696 * 31 20 19 8 7 4 3 0 697 * 698 * Inside a major, we have 16k disks, however mapped non- 699 * contiguously. The first 16 disks are for major0, the next 700 * ones with major1, ... Disk 256 is for major0 again, disk 272 701 * for major1, ... 702 * As we stay compatible with our numbering scheme, we can reuse 703 * the well-know SCSI majors 8, 65--71, 136--143. 704 */ 705 static int sd_major(int major_idx) 706 { 707 switch (major_idx) { 708 case 0: 709 return SCSI_DISK0_MAJOR; 710 case 1 ... 7: 711 return SCSI_DISK1_MAJOR + major_idx - 1; 712 case 8 ... 15: 713 return SCSI_DISK8_MAJOR + major_idx - 8; 714 default: 715 BUG(); 716 return 0; /* shut up gcc */ 717 } 718 } 719 720 #ifdef CONFIG_BLK_SED_OPAL 721 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, 722 size_t len, bool send) 723 { 724 struct scsi_disk *sdkp = data; 725 struct scsi_device *sdev = sdkp->device; 726 u8 cdb[12] = { 0, }; 727 const struct scsi_exec_args exec_args = { 728 .req_flags = BLK_MQ_REQ_PM, 729 }; 730 int ret; 731 732 cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN; 733 cdb[1] = secp; 734 put_unaligned_be16(spsp, &cdb[2]); 735 put_unaligned_be32(len, &cdb[6]); 736 737 ret = scsi_execute_cmd(sdev, cdb, send ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 738 buffer, len, SD_TIMEOUT, sdkp->max_retries, 739 &exec_args); 740 return ret <= 0 ? ret : -EIO; 741 } 742 #endif /* CONFIG_BLK_SED_OPAL */ 743 744 /* 745 * Look up the DIX operation based on whether the command is read or 746 * write and whether dix and dif are enabled. 747 */ 748 static unsigned int sd_prot_op(bool write, bool dix, bool dif) 749 { 750 /* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */ 751 static const unsigned int ops[] = { /* wrt dix dif */ 752 SCSI_PROT_NORMAL, /* 0 0 0 */ 753 SCSI_PROT_READ_STRIP, /* 0 0 1 */ 754 SCSI_PROT_READ_INSERT, /* 0 1 0 */ 755 SCSI_PROT_READ_PASS, /* 0 1 1 */ 756 SCSI_PROT_NORMAL, /* 1 0 0 */ 757 SCSI_PROT_WRITE_INSERT, /* 1 0 1 */ 758 SCSI_PROT_WRITE_STRIP, /* 1 1 0 */ 759 SCSI_PROT_WRITE_PASS, /* 1 1 1 */ 760 }; 761 762 return ops[write << 2 | dix << 1 | dif]; 763 } 764 765 /* 766 * Returns a mask of the protection flags that are valid for a given DIX 767 * operation. 768 */ 769 static unsigned int sd_prot_flag_mask(unsigned int prot_op) 770 { 771 static const unsigned int flag_mask[] = { 772 [SCSI_PROT_NORMAL] = 0, 773 774 [SCSI_PROT_READ_STRIP] = SCSI_PROT_TRANSFER_PI | 775 SCSI_PROT_GUARD_CHECK | 776 SCSI_PROT_REF_CHECK | 777 SCSI_PROT_REF_INCREMENT, 778 779 [SCSI_PROT_READ_INSERT] = SCSI_PROT_REF_INCREMENT | 780 SCSI_PROT_IP_CHECKSUM, 781 782 [SCSI_PROT_READ_PASS] = SCSI_PROT_TRANSFER_PI | 783 SCSI_PROT_GUARD_CHECK | 784 SCSI_PROT_REF_CHECK | 785 SCSI_PROT_REF_INCREMENT | 786 SCSI_PROT_IP_CHECKSUM, 787 788 [SCSI_PROT_WRITE_INSERT] = SCSI_PROT_TRANSFER_PI | 789 SCSI_PROT_REF_INCREMENT, 790 791 [SCSI_PROT_WRITE_STRIP] = SCSI_PROT_GUARD_CHECK | 792 SCSI_PROT_REF_CHECK | 793 SCSI_PROT_REF_INCREMENT | 794 SCSI_PROT_IP_CHECKSUM, 795 796 [SCSI_PROT_WRITE_PASS] = SCSI_PROT_TRANSFER_PI | 797 SCSI_PROT_GUARD_CHECK | 798 SCSI_PROT_REF_CHECK | 799 SCSI_PROT_REF_INCREMENT | 800 SCSI_PROT_IP_CHECKSUM, 801 }; 802 803 return flag_mask[prot_op]; 804 } 805 806 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd, 807 unsigned int dix, unsigned int dif) 808 { 809 struct request *rq = scsi_cmd_to_rq(scmd); 810 struct bio *bio = rq->bio; 811 unsigned int prot_op = sd_prot_op(rq_data_dir(rq), dix, dif); 812 unsigned int protect = 0; 813 814 if (dix) { /* DIX Type 0, 1, 2, 3 */ 815 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM)) 816 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM; 817 818 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 819 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK; 820 } 821 822 if (dif != T10_PI_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */ 823 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT; 824 825 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 826 scmd->prot_flags |= SCSI_PROT_REF_CHECK; 827 } 828 829 if (dif) { /* DIX/DIF Type 1, 2, 3 */ 830 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI; 831 832 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK)) 833 protect = 3 << 5; /* Disable target PI checking */ 834 else 835 protect = 1 << 5; /* Enable target PI checking */ 836 } 837 838 scsi_set_prot_op(scmd, prot_op); 839 scsi_set_prot_type(scmd, dif); 840 scmd->prot_flags &= sd_prot_flag_mask(prot_op); 841 842 return protect; 843 } 844 845 static void sd_disable_discard(struct scsi_disk *sdkp) 846 { 847 sdkp->provisioning_mode = SD_LBP_DISABLE; 848 blk_queue_disable_discard(sdkp->disk->queue); 849 } 850 851 static void sd_config_discard(struct scsi_disk *sdkp, struct queue_limits *lim, 852 unsigned int mode) 853 { 854 unsigned int logical_block_size = sdkp->device->sector_size; 855 unsigned int max_blocks = 0; 856 857 lim->discard_alignment = sdkp->unmap_alignment * logical_block_size; 858 lim->discard_granularity = max(sdkp->physical_block_size, 859 sdkp->unmap_granularity * logical_block_size); 860 sdkp->provisioning_mode = mode; 861 862 switch (mode) { 863 864 case SD_LBP_FULL: 865 case SD_LBP_DISABLE: 866 break; 867 868 case SD_LBP_UNMAP: 869 max_blocks = min_not_zero(sdkp->max_unmap_blocks, 870 (u32)SD_MAX_WS16_BLOCKS); 871 break; 872 873 case SD_LBP_WS16: 874 if (sdkp->device->unmap_limit_for_ws) 875 max_blocks = sdkp->max_unmap_blocks; 876 else 877 max_blocks = sdkp->max_ws_blocks; 878 879 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS); 880 break; 881 882 case SD_LBP_WS10: 883 if (sdkp->device->unmap_limit_for_ws) 884 max_blocks = sdkp->max_unmap_blocks; 885 else 886 max_blocks = sdkp->max_ws_blocks; 887 888 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS); 889 break; 890 891 case SD_LBP_ZERO: 892 max_blocks = min_not_zero(sdkp->max_ws_blocks, 893 (u32)SD_MAX_WS10_BLOCKS); 894 break; 895 } 896 897 lim->max_hw_discard_sectors = max_blocks * 898 (logical_block_size >> SECTOR_SHIFT); 899 } 900 901 static void *sd_set_special_bvec(struct request *rq, unsigned int data_len) 902 { 903 struct page *page; 904 905 page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 906 if (!page) 907 return NULL; 908 clear_highpage(page); 909 bvec_set_page(&rq->special_vec, page, data_len, 0); 910 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 911 return bvec_virt(&rq->special_vec); 912 } 913 914 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd) 915 { 916 struct scsi_device *sdp = cmd->device; 917 struct request *rq = scsi_cmd_to_rq(cmd); 918 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 919 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 920 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 921 unsigned int data_len = 24; 922 char *buf; 923 924 buf = sd_set_special_bvec(rq, data_len); 925 if (!buf) 926 return BLK_STS_RESOURCE; 927 928 cmd->cmd_len = 10; 929 cmd->cmnd[0] = UNMAP; 930 cmd->cmnd[8] = 24; 931 932 put_unaligned_be16(6 + 16, &buf[0]); 933 put_unaligned_be16(16, &buf[2]); 934 put_unaligned_be64(lba, &buf[8]); 935 put_unaligned_be32(nr_blocks, &buf[16]); 936 937 cmd->allowed = sdkp->max_retries; 938 cmd->transfersize = data_len; 939 rq->timeout = SD_TIMEOUT; 940 941 return scsi_alloc_sgtables(cmd); 942 } 943 944 static void sd_config_atomic(struct scsi_disk *sdkp, struct queue_limits *lim) 945 { 946 unsigned int logical_block_size = sdkp->device->sector_size, 947 physical_block_size_sectors, max_atomic, unit_min, unit_max; 948 949 if ((!sdkp->max_atomic && !sdkp->max_atomic_with_boundary) || 950 sdkp->protection_type == T10_PI_TYPE2_PROTECTION) 951 return; 952 953 physical_block_size_sectors = sdkp->physical_block_size / 954 sdkp->device->sector_size; 955 956 unit_min = rounddown_pow_of_two(sdkp->atomic_granularity ? 957 sdkp->atomic_granularity : 958 physical_block_size_sectors); 959 960 /* 961 * Only use atomic boundary when we have the odd scenario of 962 * sdkp->max_atomic == 0, which the spec does permit. 963 */ 964 if (sdkp->max_atomic) { 965 max_atomic = sdkp->max_atomic; 966 unit_max = rounddown_pow_of_two(sdkp->max_atomic); 967 sdkp->use_atomic_write_boundary = 0; 968 } else { 969 max_atomic = sdkp->max_atomic_with_boundary; 970 unit_max = rounddown_pow_of_two(sdkp->max_atomic_boundary); 971 sdkp->use_atomic_write_boundary = 1; 972 } 973 974 /* 975 * Ensure compliance with granularity and alignment. For now, keep it 976 * simple and just don't support atomic writes for values mismatched 977 * with max_{boundary}atomic, physical block size, and 978 * atomic_granularity itself. 979 * 980 * We're really being distrustful by checking unit_max also... 981 */ 982 if (sdkp->atomic_granularity > 1) { 983 if (unit_min > 1 && unit_min % sdkp->atomic_granularity) 984 return; 985 if (unit_max > 1 && unit_max % sdkp->atomic_granularity) 986 return; 987 } 988 989 if (sdkp->atomic_alignment > 1) { 990 if (unit_min > 1 && unit_min % sdkp->atomic_alignment) 991 return; 992 if (unit_max > 1 && unit_max % sdkp->atomic_alignment) 993 return; 994 } 995 996 lim->atomic_write_hw_max = max_atomic * logical_block_size; 997 lim->atomic_write_hw_boundary = 0; 998 lim->atomic_write_hw_unit_min = unit_min * logical_block_size; 999 lim->atomic_write_hw_unit_max = unit_max * logical_block_size; 1000 } 1001 1002 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd, 1003 bool unmap) 1004 { 1005 struct scsi_device *sdp = cmd->device; 1006 struct request *rq = scsi_cmd_to_rq(cmd); 1007 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 1008 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 1009 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 1010 u32 data_len = sdp->sector_size; 1011 1012 if (!sd_set_special_bvec(rq, data_len)) 1013 return BLK_STS_RESOURCE; 1014 1015 cmd->cmd_len = 16; 1016 cmd->cmnd[0] = WRITE_SAME_16; 1017 if (unmap) 1018 cmd->cmnd[1] = 0x8; /* UNMAP */ 1019 put_unaligned_be64(lba, &cmd->cmnd[2]); 1020 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 1021 1022 cmd->allowed = sdkp->max_retries; 1023 cmd->transfersize = data_len; 1024 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 1025 1026 return scsi_alloc_sgtables(cmd); 1027 } 1028 1029 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd, 1030 bool unmap) 1031 { 1032 struct scsi_device *sdp = cmd->device; 1033 struct request *rq = scsi_cmd_to_rq(cmd); 1034 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 1035 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 1036 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 1037 u32 data_len = sdp->sector_size; 1038 1039 if (!sd_set_special_bvec(rq, data_len)) 1040 return BLK_STS_RESOURCE; 1041 1042 cmd->cmd_len = 10; 1043 cmd->cmnd[0] = WRITE_SAME; 1044 if (unmap) 1045 cmd->cmnd[1] = 0x8; /* UNMAP */ 1046 put_unaligned_be32(lba, &cmd->cmnd[2]); 1047 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 1048 1049 cmd->allowed = sdkp->max_retries; 1050 cmd->transfersize = data_len; 1051 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 1052 1053 return scsi_alloc_sgtables(cmd); 1054 } 1055 1056 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd) 1057 { 1058 struct request *rq = scsi_cmd_to_rq(cmd); 1059 struct scsi_device *sdp = cmd->device; 1060 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 1061 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 1062 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 1063 1064 if (!(rq->cmd_flags & REQ_NOUNMAP)) { 1065 switch (sdkp->zeroing_mode) { 1066 case SD_ZERO_WS16_UNMAP: 1067 return sd_setup_write_same16_cmnd(cmd, true); 1068 case SD_ZERO_WS10_UNMAP: 1069 return sd_setup_write_same10_cmnd(cmd, true); 1070 } 1071 } 1072 1073 if (sdp->no_write_same) { 1074 rq->rq_flags |= RQF_QUIET; 1075 return BLK_STS_TARGET; 1076 } 1077 1078 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) 1079 return sd_setup_write_same16_cmnd(cmd, false); 1080 1081 return sd_setup_write_same10_cmnd(cmd, false); 1082 } 1083 1084 static void sd_disable_write_same(struct scsi_disk *sdkp) 1085 { 1086 sdkp->device->no_write_same = 1; 1087 sdkp->max_ws_blocks = 0; 1088 blk_queue_disable_write_zeroes(sdkp->disk->queue); 1089 } 1090 1091 static void sd_config_write_same(struct scsi_disk *sdkp, 1092 struct queue_limits *lim) 1093 { 1094 unsigned int logical_block_size = sdkp->device->sector_size; 1095 1096 if (sdkp->device->no_write_same) { 1097 sdkp->max_ws_blocks = 0; 1098 goto out; 1099 } 1100 1101 /* Some devices can not handle block counts above 0xffff despite 1102 * supporting WRITE SAME(16). Consequently we default to 64k 1103 * blocks per I/O unless the device explicitly advertises a 1104 * bigger limit. 1105 */ 1106 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS) 1107 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 1108 (u32)SD_MAX_WS16_BLOCKS); 1109 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes) 1110 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 1111 (u32)SD_MAX_WS10_BLOCKS); 1112 else { 1113 sdkp->device->no_write_same = 1; 1114 sdkp->max_ws_blocks = 0; 1115 } 1116 1117 if (sdkp->lbprz && sdkp->lbpws) 1118 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP; 1119 else if (sdkp->lbprz && sdkp->lbpws10) 1120 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP; 1121 else if (sdkp->max_ws_blocks) 1122 sdkp->zeroing_mode = SD_ZERO_WS; 1123 else 1124 sdkp->zeroing_mode = SD_ZERO_WRITE; 1125 1126 if (sdkp->max_ws_blocks && 1127 sdkp->physical_block_size > logical_block_size) { 1128 /* 1129 * Reporting a maximum number of blocks that is not aligned 1130 * on the device physical size would cause a large write same 1131 * request to be split into physically unaligned chunks by 1132 * __blkdev_issue_write_zeroes() even if the caller of this 1133 * functions took care to align the large request. So make sure 1134 * the maximum reported is aligned to the device physical block 1135 * size. This is only an optional optimization for regular 1136 * disks, but this is mandatory to avoid failure of large write 1137 * same requests directed at sequential write required zones of 1138 * host-managed ZBC disks. 1139 */ 1140 sdkp->max_ws_blocks = 1141 round_down(sdkp->max_ws_blocks, 1142 bytes_to_logical(sdkp->device, 1143 sdkp->physical_block_size)); 1144 } 1145 1146 out: 1147 lim->max_write_zeroes_sectors = 1148 sdkp->max_ws_blocks * (logical_block_size >> SECTOR_SHIFT); 1149 } 1150 1151 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd) 1152 { 1153 struct request *rq = scsi_cmd_to_rq(cmd); 1154 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 1155 1156 /* flush requests don't perform I/O, zero the S/G table */ 1157 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1158 1159 if (cmd->device->use_16_for_sync) { 1160 cmd->cmnd[0] = SYNCHRONIZE_CACHE_16; 1161 cmd->cmd_len = 16; 1162 } else { 1163 cmd->cmnd[0] = SYNCHRONIZE_CACHE; 1164 cmd->cmd_len = 10; 1165 } 1166 cmd->transfersize = 0; 1167 cmd->allowed = sdkp->max_retries; 1168 1169 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER; 1170 return BLK_STS_OK; 1171 } 1172 1173 /** 1174 * sd_group_number() - Compute the GROUP NUMBER field 1175 * @cmd: SCSI command for which to compute the value of the six-bit GROUP NUMBER 1176 * field. 1177 * 1178 * From SBC-5 r05 (https://www.t10.org/cgi-bin/ac.pl?t=f&f=sbc5r05.pdf): 1179 * 0: no relative lifetime. 1180 * 1: shortest relative lifetime. 1181 * 2: second shortest relative lifetime. 1182 * 3 - 0x3d: intermediate relative lifetimes. 1183 * 0x3e: second longest relative lifetime. 1184 * 0x3f: longest relative lifetime. 1185 */ 1186 static u8 sd_group_number(struct scsi_cmnd *cmd) 1187 { 1188 const struct request *rq = scsi_cmd_to_rq(cmd); 1189 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 1190 1191 if (!sdkp->rscs) 1192 return 0; 1193 1194 return min3((u32)rq->write_hint, (u32)sdkp->permanent_stream_count, 1195 0x3fu); 1196 } 1197 1198 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write, 1199 sector_t lba, unsigned int nr_blocks, 1200 unsigned char flags, unsigned int dld) 1201 { 1202 cmd->cmd_len = SD_EXT_CDB_SIZE; 1203 cmd->cmnd[0] = VARIABLE_LENGTH_CMD; 1204 cmd->cmnd[6] = sd_group_number(cmd); 1205 cmd->cmnd[7] = 0x18; /* Additional CDB len */ 1206 cmd->cmnd[9] = write ? WRITE_32 : READ_32; 1207 cmd->cmnd[10] = flags; 1208 cmd->cmnd[11] = dld & 0x07; 1209 put_unaligned_be64(lba, &cmd->cmnd[12]); 1210 put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */ 1211 put_unaligned_be32(nr_blocks, &cmd->cmnd[28]); 1212 1213 return BLK_STS_OK; 1214 } 1215 1216 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write, 1217 sector_t lba, unsigned int nr_blocks, 1218 unsigned char flags, unsigned int dld) 1219 { 1220 cmd->cmd_len = 16; 1221 cmd->cmnd[0] = write ? WRITE_16 : READ_16; 1222 cmd->cmnd[1] = flags | ((dld >> 2) & 0x01); 1223 cmd->cmnd[14] = ((dld & 0x03) << 6) | sd_group_number(cmd); 1224 cmd->cmnd[15] = 0; 1225 put_unaligned_be64(lba, &cmd->cmnd[2]); 1226 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 1227 1228 return BLK_STS_OK; 1229 } 1230 1231 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write, 1232 sector_t lba, unsigned int nr_blocks, 1233 unsigned char flags) 1234 { 1235 cmd->cmd_len = 10; 1236 cmd->cmnd[0] = write ? WRITE_10 : READ_10; 1237 cmd->cmnd[1] = flags; 1238 cmd->cmnd[6] = sd_group_number(cmd); 1239 cmd->cmnd[9] = 0; 1240 put_unaligned_be32(lba, &cmd->cmnd[2]); 1241 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 1242 1243 return BLK_STS_OK; 1244 } 1245 1246 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write, 1247 sector_t lba, unsigned int nr_blocks, 1248 unsigned char flags) 1249 { 1250 /* Avoid that 0 blocks gets translated into 256 blocks. */ 1251 if (WARN_ON_ONCE(nr_blocks == 0)) 1252 return BLK_STS_IOERR; 1253 1254 if (unlikely(flags & 0x8)) { 1255 /* 1256 * This happens only if this drive failed 10byte rw 1257 * command with ILLEGAL_REQUEST during operation and 1258 * thus turned off use_10_for_rw. 1259 */ 1260 scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n"); 1261 return BLK_STS_IOERR; 1262 } 1263 1264 cmd->cmd_len = 6; 1265 cmd->cmnd[0] = write ? WRITE_6 : READ_6; 1266 cmd->cmnd[1] = (lba >> 16) & 0x1f; 1267 cmd->cmnd[2] = (lba >> 8) & 0xff; 1268 cmd->cmnd[3] = lba & 0xff; 1269 cmd->cmnd[4] = nr_blocks; 1270 cmd->cmnd[5] = 0; 1271 1272 return BLK_STS_OK; 1273 } 1274 1275 /* 1276 * Check if a command has a duration limit set. If it does, and the target 1277 * device supports CDL and the feature is enabled, return the limit 1278 * descriptor index to use. Return 0 (no limit) otherwise. 1279 */ 1280 static int sd_cdl_dld(struct scsi_disk *sdkp, struct scsi_cmnd *scmd) 1281 { 1282 struct scsi_device *sdp = sdkp->device; 1283 int hint; 1284 1285 if (!sdp->cdl_supported || !sdp->cdl_enable) 1286 return 0; 1287 1288 /* 1289 * Use "no limit" if the request ioprio does not specify a duration 1290 * limit hint. 1291 */ 1292 hint = IOPRIO_PRIO_HINT(req_get_ioprio(scsi_cmd_to_rq(scmd))); 1293 if (hint < IOPRIO_HINT_DEV_DURATION_LIMIT_1 || 1294 hint > IOPRIO_HINT_DEV_DURATION_LIMIT_7) 1295 return 0; 1296 1297 return (hint - IOPRIO_HINT_DEV_DURATION_LIMIT_1) + 1; 1298 } 1299 1300 static blk_status_t sd_setup_atomic_cmnd(struct scsi_cmnd *cmd, 1301 sector_t lba, unsigned int nr_blocks, 1302 bool boundary, unsigned char flags) 1303 { 1304 cmd->cmd_len = 16; 1305 cmd->cmnd[0] = WRITE_ATOMIC_16; 1306 cmd->cmnd[1] = flags; 1307 put_unaligned_be64(lba, &cmd->cmnd[2]); 1308 put_unaligned_be16(nr_blocks, &cmd->cmnd[12]); 1309 if (boundary) 1310 put_unaligned_be16(nr_blocks, &cmd->cmnd[10]); 1311 else 1312 put_unaligned_be16(0, &cmd->cmnd[10]); 1313 put_unaligned_be16(nr_blocks, &cmd->cmnd[12]); 1314 cmd->cmnd[14] = 0; 1315 cmd->cmnd[15] = 0; 1316 1317 return BLK_STS_OK; 1318 } 1319 1320 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd) 1321 { 1322 struct request *rq = scsi_cmd_to_rq(cmd); 1323 struct scsi_device *sdp = cmd->device; 1324 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 1325 sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 1326 sector_t threshold; 1327 unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 1328 unsigned int mask = logical_to_sectors(sdp, 1) - 1; 1329 bool write = rq_data_dir(rq) == WRITE; 1330 unsigned char protect, fua; 1331 unsigned int dld; 1332 blk_status_t ret; 1333 unsigned int dif; 1334 bool dix; 1335 1336 ret = scsi_alloc_sgtables(cmd); 1337 if (ret != BLK_STS_OK) 1338 return ret; 1339 1340 ret = BLK_STS_IOERR; 1341 if (!scsi_device_online(sdp) || sdp->changed) { 1342 scmd_printk(KERN_ERR, cmd, "device offline or changed\n"); 1343 goto fail; 1344 } 1345 1346 if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->q->disk)) { 1347 scmd_printk(KERN_ERR, cmd, "access beyond end of device\n"); 1348 goto fail; 1349 } 1350 1351 if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) { 1352 scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n"); 1353 goto fail; 1354 } 1355 1356 /* 1357 * Some SD card readers can't handle accesses which touch the 1358 * last one or two logical blocks. Split accesses as needed. 1359 */ 1360 threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS; 1361 1362 if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) { 1363 if (lba < threshold) { 1364 /* Access up to the threshold but not beyond */ 1365 nr_blocks = threshold - lba; 1366 } else { 1367 /* Access only a single logical block */ 1368 nr_blocks = 1; 1369 } 1370 } 1371 1372 fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0; 1373 dix = scsi_prot_sg_count(cmd); 1374 dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type); 1375 dld = sd_cdl_dld(sdkp, cmd); 1376 1377 if (dif || dix) 1378 protect = sd_setup_protect_cmnd(cmd, dix, dif); 1379 else 1380 protect = 0; 1381 1382 if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) { 1383 ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks, 1384 protect | fua, dld); 1385 } else if (rq->cmd_flags & REQ_ATOMIC) { 1386 ret = sd_setup_atomic_cmnd(cmd, lba, nr_blocks, 1387 sdkp->use_atomic_write_boundary, 1388 protect | fua); 1389 } else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) { 1390 ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks, 1391 protect | fua, dld); 1392 } else if ((nr_blocks > 0xff) || (lba > 0x1fffff) || 1393 sdp->use_10_for_rw || protect || rq->write_hint) { 1394 ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks, 1395 protect | fua); 1396 } else { 1397 ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks, 1398 protect | fua); 1399 } 1400 1401 if (unlikely(ret != BLK_STS_OK)) 1402 goto fail; 1403 1404 /* 1405 * We shouldn't disconnect in the middle of a sector, so with a dumb 1406 * host adapter, it's safe to assume that we can at least transfer 1407 * this many bytes between each connect / disconnect. 1408 */ 1409 cmd->transfersize = sdp->sector_size; 1410 cmd->underflow = nr_blocks << 9; 1411 cmd->allowed = sdkp->max_retries; 1412 cmd->sdb.length = nr_blocks * sdp->sector_size; 1413 1414 SCSI_LOG_HLQUEUE(1, 1415 scmd_printk(KERN_INFO, cmd, 1416 "%s: block=%llu, count=%d\n", __func__, 1417 (unsigned long long)blk_rq_pos(rq), 1418 blk_rq_sectors(rq))); 1419 SCSI_LOG_HLQUEUE(2, 1420 scmd_printk(KERN_INFO, cmd, 1421 "%s %d/%u 512 byte blocks.\n", 1422 write ? "writing" : "reading", nr_blocks, 1423 blk_rq_sectors(rq))); 1424 1425 /* 1426 * This indicates that the command is ready from our end to be queued. 1427 */ 1428 return BLK_STS_OK; 1429 fail: 1430 scsi_free_sgtables(cmd); 1431 return ret; 1432 } 1433 1434 static blk_status_t sd_init_command(struct scsi_cmnd *cmd) 1435 { 1436 struct request *rq = scsi_cmd_to_rq(cmd); 1437 1438 switch (req_op(rq)) { 1439 case REQ_OP_DISCARD: 1440 switch (scsi_disk(rq->q->disk)->provisioning_mode) { 1441 case SD_LBP_UNMAP: 1442 return sd_setup_unmap_cmnd(cmd); 1443 case SD_LBP_WS16: 1444 return sd_setup_write_same16_cmnd(cmd, true); 1445 case SD_LBP_WS10: 1446 return sd_setup_write_same10_cmnd(cmd, true); 1447 case SD_LBP_ZERO: 1448 return sd_setup_write_same10_cmnd(cmd, false); 1449 default: 1450 return BLK_STS_TARGET; 1451 } 1452 case REQ_OP_WRITE_ZEROES: 1453 return sd_setup_write_zeroes_cmnd(cmd); 1454 case REQ_OP_FLUSH: 1455 return sd_setup_flush_cmnd(cmd); 1456 case REQ_OP_READ: 1457 case REQ_OP_WRITE: 1458 return sd_setup_read_write_cmnd(cmd); 1459 case REQ_OP_ZONE_RESET: 1460 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER, 1461 false); 1462 case REQ_OP_ZONE_RESET_ALL: 1463 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER, 1464 true); 1465 case REQ_OP_ZONE_OPEN: 1466 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false); 1467 case REQ_OP_ZONE_CLOSE: 1468 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false); 1469 case REQ_OP_ZONE_FINISH: 1470 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false); 1471 default: 1472 WARN_ON_ONCE(1); 1473 return BLK_STS_NOTSUPP; 1474 } 1475 } 1476 1477 static void sd_uninit_command(struct scsi_cmnd *SCpnt) 1478 { 1479 struct request *rq = scsi_cmd_to_rq(SCpnt); 1480 1481 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1482 mempool_free(rq->special_vec.bv_page, sd_page_pool); 1483 } 1484 1485 static bool sd_need_revalidate(struct gendisk *disk, struct scsi_disk *sdkp) 1486 { 1487 if (sdkp->device->removable || sdkp->write_prot) { 1488 if (disk_check_media_change(disk)) 1489 return true; 1490 } 1491 1492 /* 1493 * Force a full rescan after ioctl(BLKRRPART). While the disk state has 1494 * nothing to do with partitions, BLKRRPART is used to force a full 1495 * revalidate after things like a format for historical reasons. 1496 */ 1497 return test_bit(GD_NEED_PART_SCAN, &disk->state); 1498 } 1499 1500 /** 1501 * sd_open - open a scsi disk device 1502 * @disk: disk to open 1503 * @mode: open mode 1504 * 1505 * Returns 0 if successful. Returns a negated errno value in case 1506 * of error. 1507 * 1508 * Note: This can be called from a user context (e.g. fsck(1) ) 1509 * or from within the kernel (e.g. as a result of a mount(1) ). 1510 * In the latter case @inode and @filp carry an abridged amount 1511 * of information as noted above. 1512 * 1513 * Locking: called with disk->open_mutex held. 1514 **/ 1515 static int sd_open(struct gendisk *disk, blk_mode_t mode) 1516 { 1517 struct scsi_disk *sdkp = scsi_disk(disk); 1518 struct scsi_device *sdev = sdkp->device; 1519 int retval; 1520 1521 if (scsi_device_get(sdev)) 1522 return -ENXIO; 1523 1524 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n")); 1525 1526 /* 1527 * If the device is in error recovery, wait until it is done. 1528 * If the device is offline, then disallow any access to it. 1529 */ 1530 retval = -ENXIO; 1531 if (!scsi_block_when_processing_errors(sdev)) 1532 goto error_out; 1533 1534 if (sd_need_revalidate(disk, sdkp)) 1535 sd_revalidate_disk(disk); 1536 1537 /* 1538 * If the drive is empty, just let the open fail. 1539 */ 1540 retval = -ENOMEDIUM; 1541 if (sdev->removable && !sdkp->media_present && 1542 !(mode & BLK_OPEN_NDELAY)) 1543 goto error_out; 1544 1545 /* 1546 * If the device has the write protect tab set, have the open fail 1547 * if the user expects to be able to write to the thing. 1548 */ 1549 retval = -EROFS; 1550 if (sdkp->write_prot && (mode & BLK_OPEN_WRITE)) 1551 goto error_out; 1552 1553 /* 1554 * It is possible that the disk changing stuff resulted in 1555 * the device being taken offline. If this is the case, 1556 * report this to the user, and don't pretend that the 1557 * open actually succeeded. 1558 */ 1559 retval = -ENXIO; 1560 if (!scsi_device_online(sdev)) 1561 goto error_out; 1562 1563 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) { 1564 if (scsi_block_when_processing_errors(sdev)) 1565 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT); 1566 } 1567 1568 return 0; 1569 1570 error_out: 1571 scsi_device_put(sdev); 1572 return retval; 1573 } 1574 1575 /** 1576 * sd_release - invoked when the (last) close(2) is called on this 1577 * scsi disk. 1578 * @disk: disk to release 1579 * 1580 * Returns 0. 1581 * 1582 * Note: may block (uninterruptible) if error recovery is underway 1583 * on this disk. 1584 * 1585 * Locking: called with disk->open_mutex held. 1586 **/ 1587 static void sd_release(struct gendisk *disk) 1588 { 1589 struct scsi_disk *sdkp = scsi_disk(disk); 1590 struct scsi_device *sdev = sdkp->device; 1591 1592 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n")); 1593 1594 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) { 1595 if (scsi_block_when_processing_errors(sdev)) 1596 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW); 1597 } 1598 1599 scsi_device_put(sdev); 1600 } 1601 1602 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1603 { 1604 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1605 struct scsi_device *sdp = sdkp->device; 1606 struct Scsi_Host *host = sdp->host; 1607 sector_t capacity = logical_to_sectors(sdp, sdkp->capacity); 1608 int diskinfo[4]; 1609 1610 /* default to most commonly used values */ 1611 diskinfo[0] = 0x40; /* 1 << 6 */ 1612 diskinfo[1] = 0x20; /* 1 << 5 */ 1613 diskinfo[2] = capacity >> 11; 1614 1615 /* override with calculated, extended default, or driver values */ 1616 if (host->hostt->bios_param) 1617 host->hostt->bios_param(sdp, bdev, capacity, diskinfo); 1618 else 1619 scsicam_bios_param(bdev, capacity, diskinfo); 1620 1621 geo->heads = diskinfo[0]; 1622 geo->sectors = diskinfo[1]; 1623 geo->cylinders = diskinfo[2]; 1624 return 0; 1625 } 1626 1627 /** 1628 * sd_ioctl - process an ioctl 1629 * @bdev: target block device 1630 * @mode: open mode 1631 * @cmd: ioctl command number 1632 * @arg: this is third argument given to ioctl(2) system call. 1633 * Often contains a pointer. 1634 * 1635 * Returns 0 if successful (some ioctls return positive numbers on 1636 * success as well). Returns a negated errno value in case of error. 1637 * 1638 * Note: most ioctls are forward onto the block subsystem or further 1639 * down in the scsi subsystem. 1640 **/ 1641 static int sd_ioctl(struct block_device *bdev, blk_mode_t mode, 1642 unsigned int cmd, unsigned long arg) 1643 { 1644 struct gendisk *disk = bdev->bd_disk; 1645 struct scsi_disk *sdkp = scsi_disk(disk); 1646 struct scsi_device *sdp = sdkp->device; 1647 void __user *p = (void __user *)arg; 1648 int error; 1649 1650 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, " 1651 "cmd=0x%x\n", disk->disk_name, cmd)); 1652 1653 if (bdev_is_partition(bdev) && !capable(CAP_SYS_RAWIO)) 1654 return -ENOIOCTLCMD; 1655 1656 /* 1657 * If we are in the middle of error recovery, don't let anyone 1658 * else try and use this device. Also, if error recovery fails, it 1659 * may try and take the device offline, in which case all further 1660 * access to the device is prohibited. 1661 */ 1662 error = scsi_ioctl_block_when_processing_errors(sdp, cmd, 1663 (mode & BLK_OPEN_NDELAY)); 1664 if (error) 1665 return error; 1666 1667 if (is_sed_ioctl(cmd)) 1668 return sed_ioctl(sdkp->opal_dev, cmd, p); 1669 return scsi_ioctl(sdp, mode & BLK_OPEN_WRITE, cmd, p); 1670 } 1671 1672 static void set_media_not_present(struct scsi_disk *sdkp) 1673 { 1674 if (sdkp->media_present) 1675 sdkp->device->changed = 1; 1676 1677 if (sdkp->device->removable) { 1678 sdkp->media_present = 0; 1679 sdkp->capacity = 0; 1680 } 1681 } 1682 1683 static int media_not_present(struct scsi_disk *sdkp, 1684 struct scsi_sense_hdr *sshdr) 1685 { 1686 if (!scsi_sense_valid(sshdr)) 1687 return 0; 1688 1689 /* not invoked for commands that could return deferred errors */ 1690 switch (sshdr->sense_key) { 1691 case UNIT_ATTENTION: 1692 case NOT_READY: 1693 /* medium not present */ 1694 if (sshdr->asc == 0x3A) { 1695 set_media_not_present(sdkp); 1696 return 1; 1697 } 1698 } 1699 return 0; 1700 } 1701 1702 /** 1703 * sd_check_events - check media events 1704 * @disk: kernel device descriptor 1705 * @clearing: disk events currently being cleared 1706 * 1707 * Returns mask of DISK_EVENT_*. 1708 * 1709 * Note: this function is invoked from the block subsystem. 1710 **/ 1711 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing) 1712 { 1713 struct scsi_disk *sdkp = disk->private_data; 1714 struct scsi_device *sdp; 1715 int retval; 1716 bool disk_changed; 1717 1718 if (!sdkp) 1719 return 0; 1720 1721 sdp = sdkp->device; 1722 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n")); 1723 1724 /* 1725 * If the device is offline, don't send any commands - just pretend as 1726 * if the command failed. If the device ever comes back online, we 1727 * can deal with it then. It is only because of unrecoverable errors 1728 * that we would ever take a device offline in the first place. 1729 */ 1730 if (!scsi_device_online(sdp)) { 1731 set_media_not_present(sdkp); 1732 goto out; 1733 } 1734 1735 /* 1736 * Using TEST_UNIT_READY enables differentiation between drive with 1737 * no cartridge loaded - NOT READY, drive with changed cartridge - 1738 * UNIT ATTENTION, or with same cartridge - GOOD STATUS. 1739 * 1740 * Drives that auto spin down. eg iomega jaz 1G, will be started 1741 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever 1742 * sd_revalidate() is called. 1743 */ 1744 if (scsi_block_when_processing_errors(sdp)) { 1745 struct scsi_sense_hdr sshdr = { 0, }; 1746 1747 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries, 1748 &sshdr); 1749 1750 /* failed to execute TUR, assume media not present */ 1751 if (retval < 0 || host_byte(retval)) { 1752 set_media_not_present(sdkp); 1753 goto out; 1754 } 1755 1756 if (media_not_present(sdkp, &sshdr)) 1757 goto out; 1758 } 1759 1760 /* 1761 * For removable scsi disk we have to recognise the presence 1762 * of a disk in the drive. 1763 */ 1764 if (!sdkp->media_present) 1765 sdp->changed = 1; 1766 sdkp->media_present = 1; 1767 out: 1768 /* 1769 * sdp->changed is set under the following conditions: 1770 * 1771 * Medium present state has changed in either direction. 1772 * Device has indicated UNIT_ATTENTION. 1773 */ 1774 disk_changed = sdp->changed; 1775 sdp->changed = 0; 1776 return disk_changed ? DISK_EVENT_MEDIA_CHANGE : 0; 1777 } 1778 1779 static int sd_sync_cache(struct scsi_disk *sdkp) 1780 { 1781 int res; 1782 struct scsi_device *sdp = sdkp->device; 1783 const int timeout = sdp->request_queue->rq_timeout 1784 * SD_FLUSH_TIMEOUT_MULTIPLIER; 1785 /* Leave the rest of the command zero to indicate flush everything. */ 1786 const unsigned char cmd[16] = { sdp->use_16_for_sync ? 1787 SYNCHRONIZE_CACHE_16 : SYNCHRONIZE_CACHE }; 1788 struct scsi_sense_hdr sshdr; 1789 struct scsi_failure failure_defs[] = { 1790 { 1791 .allowed = 3, 1792 .result = SCMD_FAILURE_RESULT_ANY, 1793 }, 1794 {} 1795 }; 1796 struct scsi_failures failures = { 1797 .failure_definitions = failure_defs, 1798 }; 1799 const struct scsi_exec_args exec_args = { 1800 .req_flags = BLK_MQ_REQ_PM, 1801 .sshdr = &sshdr, 1802 .failures = &failures, 1803 }; 1804 1805 if (!scsi_device_online(sdp)) 1806 return -ENODEV; 1807 1808 res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, timeout, 1809 sdkp->max_retries, &exec_args); 1810 if (res) { 1811 sd_print_result(sdkp, "Synchronize Cache(10) failed", res); 1812 1813 if (res < 0) 1814 return res; 1815 1816 if (scsi_status_is_check_condition(res) && 1817 scsi_sense_valid(&sshdr)) { 1818 sd_print_sense_hdr(sdkp, &sshdr); 1819 1820 /* we need to evaluate the error return */ 1821 if (sshdr.asc == 0x3a || /* medium not present */ 1822 sshdr.asc == 0x20 || /* invalid command */ 1823 (sshdr.asc == 0x74 && sshdr.ascq == 0x71)) /* drive is password locked */ 1824 /* this is no error here */ 1825 return 0; 1826 1827 /* 1828 * If a format is in progress or if the drive does not 1829 * support sync, there is not much we can do because 1830 * this is called during shutdown or suspend so just 1831 * return success so those operations can proceed. 1832 */ 1833 if ((sshdr.asc == 0x04 && sshdr.ascq == 0x04) || 1834 sshdr.sense_key == ILLEGAL_REQUEST) 1835 return 0; 1836 } 1837 1838 switch (host_byte(res)) { 1839 /* ignore errors due to racing a disconnection */ 1840 case DID_BAD_TARGET: 1841 case DID_NO_CONNECT: 1842 return 0; 1843 /* signal the upper layer it might try again */ 1844 case DID_BUS_BUSY: 1845 case DID_IMM_RETRY: 1846 case DID_REQUEUE: 1847 case DID_SOFT_ERROR: 1848 return -EBUSY; 1849 default: 1850 return -EIO; 1851 } 1852 } 1853 return 0; 1854 } 1855 1856 static void sd_rescan(struct device *dev) 1857 { 1858 struct scsi_disk *sdkp = dev_get_drvdata(dev); 1859 1860 sd_revalidate_disk(sdkp->disk); 1861 } 1862 1863 static int sd_get_unique_id(struct gendisk *disk, u8 id[16], 1864 enum blk_unique_id type) 1865 { 1866 struct scsi_device *sdev = scsi_disk(disk)->device; 1867 const struct scsi_vpd *vpd; 1868 const unsigned char *d; 1869 int ret = -ENXIO, len; 1870 1871 rcu_read_lock(); 1872 vpd = rcu_dereference(sdev->vpd_pg83); 1873 if (!vpd) 1874 goto out_unlock; 1875 1876 ret = -EINVAL; 1877 for (d = vpd->data + 4; d < vpd->data + vpd->len; d += d[3] + 4) { 1878 /* we only care about designators with LU association */ 1879 if (((d[1] >> 4) & 0x3) != 0x00) 1880 continue; 1881 if ((d[1] & 0xf) != type) 1882 continue; 1883 1884 /* 1885 * Only exit early if a 16-byte descriptor was found. Otherwise 1886 * keep looking as one with more entropy might still show up. 1887 */ 1888 len = d[3]; 1889 if (len != 8 && len != 12 && len != 16) 1890 continue; 1891 ret = len; 1892 memcpy(id, d + 4, len); 1893 if (len == 16) 1894 break; 1895 } 1896 out_unlock: 1897 rcu_read_unlock(); 1898 return ret; 1899 } 1900 1901 static int sd_scsi_to_pr_err(struct scsi_sense_hdr *sshdr, int result) 1902 { 1903 switch (host_byte(result)) { 1904 case DID_TRANSPORT_MARGINAL: 1905 case DID_TRANSPORT_DISRUPTED: 1906 case DID_BUS_BUSY: 1907 return PR_STS_RETRY_PATH_FAILURE; 1908 case DID_NO_CONNECT: 1909 return PR_STS_PATH_FAILED; 1910 case DID_TRANSPORT_FAILFAST: 1911 return PR_STS_PATH_FAST_FAILED; 1912 } 1913 1914 switch (status_byte(result)) { 1915 case SAM_STAT_RESERVATION_CONFLICT: 1916 return PR_STS_RESERVATION_CONFLICT; 1917 case SAM_STAT_CHECK_CONDITION: 1918 if (!scsi_sense_valid(sshdr)) 1919 return PR_STS_IOERR; 1920 1921 if (sshdr->sense_key == ILLEGAL_REQUEST && 1922 (sshdr->asc == 0x26 || sshdr->asc == 0x24)) 1923 return -EINVAL; 1924 1925 fallthrough; 1926 default: 1927 return PR_STS_IOERR; 1928 } 1929 } 1930 1931 static int sd_pr_in_command(struct block_device *bdev, u8 sa, 1932 unsigned char *data, int data_len) 1933 { 1934 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1935 struct scsi_device *sdev = sdkp->device; 1936 struct scsi_sense_hdr sshdr; 1937 u8 cmd[10] = { PERSISTENT_RESERVE_IN, sa }; 1938 struct scsi_failure failure_defs[] = { 1939 { 1940 .sense = UNIT_ATTENTION, 1941 .asc = SCMD_FAILURE_ASC_ANY, 1942 .ascq = SCMD_FAILURE_ASCQ_ANY, 1943 .allowed = 5, 1944 .result = SAM_STAT_CHECK_CONDITION, 1945 }, 1946 {} 1947 }; 1948 struct scsi_failures failures = { 1949 .failure_definitions = failure_defs, 1950 }; 1951 const struct scsi_exec_args exec_args = { 1952 .sshdr = &sshdr, 1953 .failures = &failures, 1954 }; 1955 int result; 1956 1957 put_unaligned_be16(data_len, &cmd[7]); 1958 1959 result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, data, data_len, 1960 SD_TIMEOUT, sdkp->max_retries, &exec_args); 1961 if (scsi_status_is_check_condition(result) && 1962 scsi_sense_valid(&sshdr)) { 1963 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result); 1964 scsi_print_sense_hdr(sdev, NULL, &sshdr); 1965 } 1966 1967 if (result <= 0) 1968 return result; 1969 1970 return sd_scsi_to_pr_err(&sshdr, result); 1971 } 1972 1973 static int sd_pr_read_keys(struct block_device *bdev, struct pr_keys *keys_info) 1974 { 1975 int result, i, data_offset, num_copy_keys; 1976 u32 num_keys = keys_info->num_keys; 1977 int data_len = num_keys * 8 + 8; 1978 u8 *data; 1979 1980 data = kzalloc(data_len, GFP_KERNEL); 1981 if (!data) 1982 return -ENOMEM; 1983 1984 result = sd_pr_in_command(bdev, READ_KEYS, data, data_len); 1985 if (result) 1986 goto free_data; 1987 1988 keys_info->generation = get_unaligned_be32(&data[0]); 1989 keys_info->num_keys = get_unaligned_be32(&data[4]) / 8; 1990 1991 data_offset = 8; 1992 num_copy_keys = min(num_keys, keys_info->num_keys); 1993 1994 for (i = 0; i < num_copy_keys; i++) { 1995 keys_info->keys[i] = get_unaligned_be64(&data[data_offset]); 1996 data_offset += 8; 1997 } 1998 1999 free_data: 2000 kfree(data); 2001 return result; 2002 } 2003 2004 static int sd_pr_read_reservation(struct block_device *bdev, 2005 struct pr_held_reservation *rsv) 2006 { 2007 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 2008 struct scsi_device *sdev = sdkp->device; 2009 u8 data[24] = { }; 2010 int result, len; 2011 2012 result = sd_pr_in_command(bdev, READ_RESERVATION, data, sizeof(data)); 2013 if (result) 2014 return result; 2015 2016 len = get_unaligned_be32(&data[4]); 2017 if (!len) 2018 return 0; 2019 2020 /* Make sure we have at least the key and type */ 2021 if (len < 14) { 2022 sdev_printk(KERN_INFO, sdev, 2023 "READ RESERVATION failed due to short return buffer of %d bytes\n", 2024 len); 2025 return -EINVAL; 2026 } 2027 2028 rsv->generation = get_unaligned_be32(&data[0]); 2029 rsv->key = get_unaligned_be64(&data[8]); 2030 rsv->type = scsi_pr_type_to_block(data[21] & 0x0f); 2031 return 0; 2032 } 2033 2034 static int sd_pr_out_command(struct block_device *bdev, u8 sa, u64 key, 2035 u64 sa_key, enum scsi_pr_type type, u8 flags) 2036 { 2037 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 2038 struct scsi_device *sdev = sdkp->device; 2039 struct scsi_sense_hdr sshdr; 2040 struct scsi_failure failure_defs[] = { 2041 { 2042 .sense = UNIT_ATTENTION, 2043 .asc = SCMD_FAILURE_ASC_ANY, 2044 .ascq = SCMD_FAILURE_ASCQ_ANY, 2045 .allowed = 5, 2046 .result = SAM_STAT_CHECK_CONDITION, 2047 }, 2048 {} 2049 }; 2050 struct scsi_failures failures = { 2051 .failure_definitions = failure_defs, 2052 }; 2053 const struct scsi_exec_args exec_args = { 2054 .sshdr = &sshdr, 2055 .failures = &failures, 2056 }; 2057 int result; 2058 u8 cmd[16] = { 0, }; 2059 u8 data[24] = { 0, }; 2060 2061 cmd[0] = PERSISTENT_RESERVE_OUT; 2062 cmd[1] = sa; 2063 cmd[2] = type; 2064 put_unaligned_be32(sizeof(data), &cmd[5]); 2065 2066 put_unaligned_be64(key, &data[0]); 2067 put_unaligned_be64(sa_key, &data[8]); 2068 data[20] = flags; 2069 2070 result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, &data, 2071 sizeof(data), SD_TIMEOUT, sdkp->max_retries, 2072 &exec_args); 2073 2074 if (scsi_status_is_check_condition(result) && 2075 scsi_sense_valid(&sshdr)) { 2076 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result); 2077 scsi_print_sense_hdr(sdev, NULL, &sshdr); 2078 } 2079 2080 if (result <= 0) 2081 return result; 2082 2083 return sd_scsi_to_pr_err(&sshdr, result); 2084 } 2085 2086 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 2087 u32 flags) 2088 { 2089 if (flags & ~PR_FL_IGNORE_KEY) 2090 return -EOPNOTSUPP; 2091 return sd_pr_out_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00, 2092 old_key, new_key, 0, 2093 (1 << 0) /* APTPL */); 2094 } 2095 2096 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 2097 u32 flags) 2098 { 2099 if (flags) 2100 return -EOPNOTSUPP; 2101 return sd_pr_out_command(bdev, 0x01, key, 0, 2102 block_pr_type_to_scsi(type), 0); 2103 } 2104 2105 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 2106 { 2107 return sd_pr_out_command(bdev, 0x02, key, 0, 2108 block_pr_type_to_scsi(type), 0); 2109 } 2110 2111 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 2112 enum pr_type type, bool abort) 2113 { 2114 return sd_pr_out_command(bdev, abort ? 0x05 : 0x04, old_key, new_key, 2115 block_pr_type_to_scsi(type), 0); 2116 } 2117 2118 static int sd_pr_clear(struct block_device *bdev, u64 key) 2119 { 2120 return sd_pr_out_command(bdev, 0x03, key, 0, 0, 0); 2121 } 2122 2123 static const struct pr_ops sd_pr_ops = { 2124 .pr_register = sd_pr_register, 2125 .pr_reserve = sd_pr_reserve, 2126 .pr_release = sd_pr_release, 2127 .pr_preempt = sd_pr_preempt, 2128 .pr_clear = sd_pr_clear, 2129 .pr_read_keys = sd_pr_read_keys, 2130 .pr_read_reservation = sd_pr_read_reservation, 2131 }; 2132 2133 static void scsi_disk_free_disk(struct gendisk *disk) 2134 { 2135 struct scsi_disk *sdkp = scsi_disk(disk); 2136 2137 put_device(&sdkp->disk_dev); 2138 } 2139 2140 static const struct block_device_operations sd_fops = { 2141 .owner = THIS_MODULE, 2142 .open = sd_open, 2143 .release = sd_release, 2144 .ioctl = sd_ioctl, 2145 .getgeo = sd_getgeo, 2146 .compat_ioctl = blkdev_compat_ptr_ioctl, 2147 .check_events = sd_check_events, 2148 .unlock_native_capacity = sd_unlock_native_capacity, 2149 .report_zones = sd_zbc_report_zones, 2150 .get_unique_id = sd_get_unique_id, 2151 .free_disk = scsi_disk_free_disk, 2152 .pr_ops = &sd_pr_ops, 2153 }; 2154 2155 /** 2156 * sd_eh_reset - reset error handling callback 2157 * @scmd: sd-issued command that has failed 2158 * 2159 * This function is called by the SCSI midlayer before starting 2160 * SCSI EH. When counting medium access failures we have to be 2161 * careful to register it only only once per device and SCSI EH run; 2162 * there might be several timed out commands which will cause the 2163 * 'max_medium_access_timeouts' counter to trigger after the first 2164 * SCSI EH run already and set the device to offline. 2165 * So this function resets the internal counter before starting SCSI EH. 2166 **/ 2167 static void sd_eh_reset(struct scsi_cmnd *scmd) 2168 { 2169 struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk); 2170 2171 /* New SCSI EH run, reset gate variable */ 2172 sdkp->ignore_medium_access_errors = false; 2173 } 2174 2175 /** 2176 * sd_eh_action - error handling callback 2177 * @scmd: sd-issued command that has failed 2178 * @eh_disp: The recovery disposition suggested by the midlayer 2179 * 2180 * This function is called by the SCSI midlayer upon completion of an 2181 * error test command (currently TEST UNIT READY). The result of sending 2182 * the eh command is passed in eh_disp. We're looking for devices that 2183 * fail medium access commands but are OK with non access commands like 2184 * test unit ready (so wrongly see the device as having a successful 2185 * recovery) 2186 **/ 2187 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp) 2188 { 2189 struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk); 2190 struct scsi_device *sdev = scmd->device; 2191 2192 if (!scsi_device_online(sdev) || 2193 !scsi_medium_access_command(scmd) || 2194 host_byte(scmd->result) != DID_TIME_OUT || 2195 eh_disp != SUCCESS) 2196 return eh_disp; 2197 2198 /* 2199 * The device has timed out executing a medium access command. 2200 * However, the TEST UNIT READY command sent during error 2201 * handling completed successfully. Either the device is in the 2202 * process of recovering or has it suffered an internal failure 2203 * that prevents access to the storage medium. 2204 */ 2205 if (!sdkp->ignore_medium_access_errors) { 2206 sdkp->medium_access_timed_out++; 2207 sdkp->ignore_medium_access_errors = true; 2208 } 2209 2210 /* 2211 * If the device keeps failing read/write commands but TEST UNIT 2212 * READY always completes successfully we assume that medium 2213 * access is no longer possible and take the device offline. 2214 */ 2215 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) { 2216 scmd_printk(KERN_ERR, scmd, 2217 "Medium access timeout failure. Offlining disk!\n"); 2218 mutex_lock(&sdev->state_mutex); 2219 scsi_device_set_state(sdev, SDEV_OFFLINE); 2220 mutex_unlock(&sdev->state_mutex); 2221 2222 return SUCCESS; 2223 } 2224 2225 return eh_disp; 2226 } 2227 2228 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd) 2229 { 2230 struct request *req = scsi_cmd_to_rq(scmd); 2231 struct scsi_device *sdev = scmd->device; 2232 unsigned int transferred, good_bytes; 2233 u64 start_lba, end_lba, bad_lba; 2234 2235 /* 2236 * Some commands have a payload smaller than the device logical 2237 * block size (e.g. INQUIRY on a 4K disk). 2238 */ 2239 if (scsi_bufflen(scmd) <= sdev->sector_size) 2240 return 0; 2241 2242 /* Check if we have a 'bad_lba' information */ 2243 if (!scsi_get_sense_info_fld(scmd->sense_buffer, 2244 SCSI_SENSE_BUFFERSIZE, 2245 &bad_lba)) 2246 return 0; 2247 2248 /* 2249 * If the bad lba was reported incorrectly, we have no idea where 2250 * the error is. 2251 */ 2252 start_lba = sectors_to_logical(sdev, blk_rq_pos(req)); 2253 end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd)); 2254 if (bad_lba < start_lba || bad_lba >= end_lba) 2255 return 0; 2256 2257 /* 2258 * resid is optional but mostly filled in. When it's unused, 2259 * its value is zero, so we assume the whole buffer transferred 2260 */ 2261 transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd); 2262 2263 /* This computation should always be done in terms of the 2264 * resolution of the device's medium. 2265 */ 2266 good_bytes = logical_to_bytes(sdev, bad_lba - start_lba); 2267 2268 return min(good_bytes, transferred); 2269 } 2270 2271 /** 2272 * sd_done - bottom half handler: called when the lower level 2273 * driver has completed (successfully or otherwise) a scsi command. 2274 * @SCpnt: mid-level's per command structure. 2275 * 2276 * Note: potentially run from within an ISR. Must not block. 2277 **/ 2278 static int sd_done(struct scsi_cmnd *SCpnt) 2279 { 2280 int result = SCpnt->result; 2281 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt); 2282 unsigned int sector_size = SCpnt->device->sector_size; 2283 unsigned int resid; 2284 struct scsi_sense_hdr sshdr; 2285 struct request *req = scsi_cmd_to_rq(SCpnt); 2286 struct scsi_disk *sdkp = scsi_disk(req->q->disk); 2287 int sense_valid = 0; 2288 int sense_deferred = 0; 2289 2290 switch (req_op(req)) { 2291 case REQ_OP_DISCARD: 2292 case REQ_OP_WRITE_ZEROES: 2293 case REQ_OP_ZONE_RESET: 2294 case REQ_OP_ZONE_RESET_ALL: 2295 case REQ_OP_ZONE_OPEN: 2296 case REQ_OP_ZONE_CLOSE: 2297 case REQ_OP_ZONE_FINISH: 2298 if (!result) { 2299 good_bytes = blk_rq_bytes(req); 2300 scsi_set_resid(SCpnt, 0); 2301 } else { 2302 good_bytes = 0; 2303 scsi_set_resid(SCpnt, blk_rq_bytes(req)); 2304 } 2305 break; 2306 default: 2307 /* 2308 * In case of bogus fw or device, we could end up having 2309 * an unaligned partial completion. Check this here and force 2310 * alignment. 2311 */ 2312 resid = scsi_get_resid(SCpnt); 2313 if (resid & (sector_size - 1)) { 2314 sd_printk(KERN_INFO, sdkp, 2315 "Unaligned partial completion (resid=%u, sector_sz=%u)\n", 2316 resid, sector_size); 2317 scsi_print_command(SCpnt); 2318 resid = min(scsi_bufflen(SCpnt), 2319 round_up(resid, sector_size)); 2320 scsi_set_resid(SCpnt, resid); 2321 } 2322 } 2323 2324 if (result) { 2325 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr); 2326 if (sense_valid) 2327 sense_deferred = scsi_sense_is_deferred(&sshdr); 2328 } 2329 sdkp->medium_access_timed_out = 0; 2330 2331 if (!scsi_status_is_check_condition(result) && 2332 (!sense_valid || sense_deferred)) 2333 goto out; 2334 2335 switch (sshdr.sense_key) { 2336 case HARDWARE_ERROR: 2337 case MEDIUM_ERROR: 2338 good_bytes = sd_completed_bytes(SCpnt); 2339 break; 2340 case RECOVERED_ERROR: 2341 good_bytes = scsi_bufflen(SCpnt); 2342 break; 2343 case NO_SENSE: 2344 /* This indicates a false check condition, so ignore it. An 2345 * unknown amount of data was transferred so treat it as an 2346 * error. 2347 */ 2348 SCpnt->result = 0; 2349 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 2350 break; 2351 case ABORTED_COMMAND: 2352 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */ 2353 good_bytes = sd_completed_bytes(SCpnt); 2354 break; 2355 case ILLEGAL_REQUEST: 2356 switch (sshdr.asc) { 2357 case 0x10: /* DIX: Host detected corruption */ 2358 good_bytes = sd_completed_bytes(SCpnt); 2359 break; 2360 case 0x20: /* INVALID COMMAND OPCODE */ 2361 case 0x24: /* INVALID FIELD IN CDB */ 2362 switch (SCpnt->cmnd[0]) { 2363 case UNMAP: 2364 sd_disable_discard(sdkp); 2365 break; 2366 case WRITE_SAME_16: 2367 case WRITE_SAME: 2368 if (SCpnt->cmnd[1] & 8) { /* UNMAP */ 2369 sd_disable_discard(sdkp); 2370 } else { 2371 sd_disable_write_same(sdkp); 2372 req->rq_flags |= RQF_QUIET; 2373 } 2374 break; 2375 } 2376 } 2377 break; 2378 default: 2379 break; 2380 } 2381 2382 out: 2383 if (sdkp->device->type == TYPE_ZBC) 2384 good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr); 2385 2386 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt, 2387 "sd_done: completed %d of %d bytes\n", 2388 good_bytes, scsi_bufflen(SCpnt))); 2389 2390 return good_bytes; 2391 } 2392 2393 /* 2394 * spinup disk - called only in sd_revalidate_disk() 2395 */ 2396 static void 2397 sd_spinup_disk(struct scsi_disk *sdkp) 2398 { 2399 static const u8 cmd[10] = { TEST_UNIT_READY }; 2400 unsigned long spintime_expire = 0; 2401 int spintime, sense_valid = 0; 2402 unsigned int the_result; 2403 struct scsi_sense_hdr sshdr; 2404 struct scsi_failure failure_defs[] = { 2405 /* Do not retry Medium Not Present */ 2406 { 2407 .sense = UNIT_ATTENTION, 2408 .asc = 0x3A, 2409 .ascq = SCMD_FAILURE_ASCQ_ANY, 2410 .result = SAM_STAT_CHECK_CONDITION, 2411 }, 2412 { 2413 .sense = NOT_READY, 2414 .asc = 0x3A, 2415 .ascq = SCMD_FAILURE_ASCQ_ANY, 2416 .result = SAM_STAT_CHECK_CONDITION, 2417 }, 2418 /* Retry when scsi_status_is_good would return false 3 times */ 2419 { 2420 .result = SCMD_FAILURE_STAT_ANY, 2421 .allowed = 3, 2422 }, 2423 {} 2424 }; 2425 struct scsi_failures failures = { 2426 .failure_definitions = failure_defs, 2427 }; 2428 const struct scsi_exec_args exec_args = { 2429 .sshdr = &sshdr, 2430 .failures = &failures, 2431 }; 2432 2433 spintime = 0; 2434 2435 /* Spin up drives, as required. Only do this at boot time */ 2436 /* Spinup needs to be done for module loads too. */ 2437 do { 2438 bool media_was_present = sdkp->media_present; 2439 2440 scsi_failures_reset_retries(&failures); 2441 2442 the_result = scsi_execute_cmd(sdkp->device, cmd, REQ_OP_DRV_IN, 2443 NULL, 0, SD_TIMEOUT, 2444 sdkp->max_retries, &exec_args); 2445 2446 2447 if (the_result > 0) { 2448 /* 2449 * If the drive has indicated to us that it doesn't 2450 * have any media in it, don't bother with any more 2451 * polling. 2452 */ 2453 if (media_not_present(sdkp, &sshdr)) { 2454 if (media_was_present) 2455 sd_printk(KERN_NOTICE, sdkp, 2456 "Media removed, stopped polling\n"); 2457 return; 2458 } 2459 sense_valid = scsi_sense_valid(&sshdr); 2460 } 2461 2462 if (!scsi_status_is_check_condition(the_result)) { 2463 /* no sense, TUR either succeeded or failed 2464 * with a status error */ 2465 if(!spintime && !scsi_status_is_good(the_result)) { 2466 sd_print_result(sdkp, "Test Unit Ready failed", 2467 the_result); 2468 } 2469 break; 2470 } 2471 2472 /* 2473 * The device does not want the automatic start to be issued. 2474 */ 2475 if (sdkp->device->no_start_on_add) 2476 break; 2477 2478 if (sense_valid && sshdr.sense_key == NOT_READY) { 2479 if (sshdr.asc == 4 && sshdr.ascq == 3) 2480 break; /* manual intervention required */ 2481 if (sshdr.asc == 4 && sshdr.ascq == 0xb) 2482 break; /* standby */ 2483 if (sshdr.asc == 4 && sshdr.ascq == 0xc) 2484 break; /* unavailable */ 2485 if (sshdr.asc == 4 && sshdr.ascq == 0x1b) 2486 break; /* sanitize in progress */ 2487 if (sshdr.asc == 4 && sshdr.ascq == 0x24) 2488 break; /* depopulation in progress */ 2489 if (sshdr.asc == 4 && sshdr.ascq == 0x25) 2490 break; /* depopulation restoration in progress */ 2491 /* 2492 * Issue command to spin up drive when not ready 2493 */ 2494 if (!spintime) { 2495 /* Return immediately and start spin cycle */ 2496 const u8 start_cmd[10] = { 2497 [0] = START_STOP, 2498 [1] = 1, 2499 [4] = sdkp->device->start_stop_pwr_cond ? 2500 0x11 : 1, 2501 }; 2502 2503 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk..."); 2504 scsi_execute_cmd(sdkp->device, start_cmd, 2505 REQ_OP_DRV_IN, NULL, 0, 2506 SD_TIMEOUT, sdkp->max_retries, 2507 &exec_args); 2508 spintime_expire = jiffies + 100 * HZ; 2509 spintime = 1; 2510 } 2511 /* Wait 1 second for next try */ 2512 msleep(1000); 2513 printk(KERN_CONT "."); 2514 2515 /* 2516 * Wait for USB flash devices with slow firmware. 2517 * Yes, this sense key/ASC combination shouldn't 2518 * occur here. It's characteristic of these devices. 2519 */ 2520 } else if (sense_valid && 2521 sshdr.sense_key == UNIT_ATTENTION && 2522 sshdr.asc == 0x28) { 2523 if (!spintime) { 2524 spintime_expire = jiffies + 5 * HZ; 2525 spintime = 1; 2526 } 2527 /* Wait 1 second for next try */ 2528 msleep(1000); 2529 } else { 2530 /* we don't understand the sense code, so it's 2531 * probably pointless to loop */ 2532 if(!spintime) { 2533 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n"); 2534 sd_print_sense_hdr(sdkp, &sshdr); 2535 } 2536 break; 2537 } 2538 2539 } while (spintime && time_before_eq(jiffies, spintime_expire)); 2540 2541 if (spintime) { 2542 if (scsi_status_is_good(the_result)) 2543 printk(KERN_CONT "ready\n"); 2544 else 2545 printk(KERN_CONT "not responding...\n"); 2546 } 2547 } 2548 2549 /* 2550 * Determine whether disk supports Data Integrity Field. 2551 */ 2552 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer) 2553 { 2554 struct scsi_device *sdp = sdkp->device; 2555 u8 type; 2556 2557 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) { 2558 sdkp->protection_type = 0; 2559 return 0; 2560 } 2561 2562 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */ 2563 2564 if (type > T10_PI_TYPE3_PROTECTION) { 2565 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \ 2566 " protection type %u. Disabling disk!\n", 2567 type); 2568 sdkp->protection_type = 0; 2569 return -ENODEV; 2570 } 2571 2572 sdkp->protection_type = type; 2573 2574 return 0; 2575 } 2576 2577 static void sd_config_protection(struct scsi_disk *sdkp, 2578 struct queue_limits *lim) 2579 { 2580 struct scsi_device *sdp = sdkp->device; 2581 2582 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY)) 2583 sd_dif_config_host(sdkp, lim); 2584 2585 if (!sdkp->protection_type) 2586 return; 2587 2588 if (!scsi_host_dif_capable(sdp->host, sdkp->protection_type)) { 2589 sd_first_printk(KERN_NOTICE, sdkp, 2590 "Disabling DIF Type %u protection\n", 2591 sdkp->protection_type); 2592 sdkp->protection_type = 0; 2593 } 2594 2595 sd_first_printk(KERN_NOTICE, sdkp, "Enabling DIF Type %u protection\n", 2596 sdkp->protection_type); 2597 } 2598 2599 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp, 2600 struct scsi_sense_hdr *sshdr, int sense_valid, 2601 int the_result) 2602 { 2603 if (sense_valid) 2604 sd_print_sense_hdr(sdkp, sshdr); 2605 else 2606 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n"); 2607 2608 /* 2609 * Set dirty bit for removable devices if not ready - 2610 * sometimes drives will not report this properly. 2611 */ 2612 if (sdp->removable && 2613 sense_valid && sshdr->sense_key == NOT_READY) 2614 set_media_not_present(sdkp); 2615 2616 /* 2617 * We used to set media_present to 0 here to indicate no media 2618 * in the drive, but some drives fail read capacity even with 2619 * media present, so we can't do that. 2620 */ 2621 sdkp->capacity = 0; /* unknown mapped to zero - as usual */ 2622 } 2623 2624 #define RC16_LEN 32 2625 #if RC16_LEN > SD_BUF_SIZE 2626 #error RC16_LEN must not be more than SD_BUF_SIZE 2627 #endif 2628 2629 #define READ_CAPACITY_RETRIES_ON_RESET 10 2630 2631 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp, 2632 struct queue_limits *lim, unsigned char *buffer) 2633 { 2634 unsigned char cmd[16]; 2635 struct scsi_sense_hdr sshdr; 2636 const struct scsi_exec_args exec_args = { 2637 .sshdr = &sshdr, 2638 }; 2639 int sense_valid = 0; 2640 int the_result; 2641 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2642 unsigned int alignment; 2643 unsigned long long lba; 2644 unsigned sector_size; 2645 2646 if (sdp->no_read_capacity_16) 2647 return -EINVAL; 2648 2649 do { 2650 memset(cmd, 0, 16); 2651 cmd[0] = SERVICE_ACTION_IN_16; 2652 cmd[1] = SAI_READ_CAPACITY_16; 2653 cmd[13] = RC16_LEN; 2654 memset(buffer, 0, RC16_LEN); 2655 2656 the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, 2657 buffer, RC16_LEN, SD_TIMEOUT, 2658 sdkp->max_retries, &exec_args); 2659 if (the_result > 0) { 2660 if (media_not_present(sdkp, &sshdr)) 2661 return -ENODEV; 2662 2663 sense_valid = scsi_sense_valid(&sshdr); 2664 if (sense_valid && 2665 sshdr.sense_key == ILLEGAL_REQUEST && 2666 (sshdr.asc == 0x20 || sshdr.asc == 0x24) && 2667 sshdr.ascq == 0x00) 2668 /* Invalid Command Operation Code or 2669 * Invalid Field in CDB, just retry 2670 * silently with RC10 */ 2671 return -EINVAL; 2672 if (sense_valid && 2673 sshdr.sense_key == UNIT_ATTENTION && 2674 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2675 /* Device reset might occur several times, 2676 * give it one more chance */ 2677 if (--reset_retries > 0) 2678 continue; 2679 } 2680 retries--; 2681 2682 } while (the_result && retries); 2683 2684 if (the_result) { 2685 sd_print_result(sdkp, "Read Capacity(16) failed", the_result); 2686 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2687 return -EINVAL; 2688 } 2689 2690 sector_size = get_unaligned_be32(&buffer[8]); 2691 lba = get_unaligned_be64(&buffer[0]); 2692 2693 if (sd_read_protection_type(sdkp, buffer) < 0) { 2694 sdkp->capacity = 0; 2695 return -ENODEV; 2696 } 2697 2698 /* Logical blocks per physical block exponent */ 2699 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size; 2700 2701 /* RC basis */ 2702 sdkp->rc_basis = (buffer[12] >> 4) & 0x3; 2703 2704 /* Lowest aligned logical block */ 2705 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size; 2706 lim->alignment_offset = alignment; 2707 if (alignment && sdkp->first_scan) 2708 sd_printk(KERN_NOTICE, sdkp, 2709 "physical block alignment offset: %u\n", alignment); 2710 2711 if (buffer[14] & 0x80) { /* LBPME */ 2712 sdkp->lbpme = 1; 2713 2714 if (buffer[14] & 0x40) /* LBPRZ */ 2715 sdkp->lbprz = 1; 2716 } 2717 2718 sdkp->capacity = lba + 1; 2719 return sector_size; 2720 } 2721 2722 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp, 2723 unsigned char *buffer) 2724 { 2725 static const u8 cmd[10] = { READ_CAPACITY }; 2726 struct scsi_sense_hdr sshdr; 2727 struct scsi_failure failure_defs[] = { 2728 /* Do not retry Medium Not Present */ 2729 { 2730 .sense = UNIT_ATTENTION, 2731 .asc = 0x3A, 2732 .result = SAM_STAT_CHECK_CONDITION, 2733 }, 2734 { 2735 .sense = NOT_READY, 2736 .asc = 0x3A, 2737 .result = SAM_STAT_CHECK_CONDITION, 2738 }, 2739 /* Device reset might occur several times so retry a lot */ 2740 { 2741 .sense = UNIT_ATTENTION, 2742 .asc = 0x29, 2743 .allowed = READ_CAPACITY_RETRIES_ON_RESET, 2744 .result = SAM_STAT_CHECK_CONDITION, 2745 }, 2746 /* Any other error not listed above retry 3 times */ 2747 { 2748 .result = SCMD_FAILURE_RESULT_ANY, 2749 .allowed = 3, 2750 }, 2751 {} 2752 }; 2753 struct scsi_failures failures = { 2754 .failure_definitions = failure_defs, 2755 }; 2756 const struct scsi_exec_args exec_args = { 2757 .sshdr = &sshdr, 2758 .failures = &failures, 2759 }; 2760 int sense_valid = 0; 2761 int the_result; 2762 sector_t lba; 2763 unsigned sector_size; 2764 2765 memset(buffer, 0, 8); 2766 2767 the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, buffer, 2768 8, SD_TIMEOUT, sdkp->max_retries, 2769 &exec_args); 2770 2771 if (the_result > 0) { 2772 sense_valid = scsi_sense_valid(&sshdr); 2773 2774 if (media_not_present(sdkp, &sshdr)) 2775 return -ENODEV; 2776 } 2777 2778 if (the_result) { 2779 sd_print_result(sdkp, "Read Capacity(10) failed", the_result); 2780 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2781 return -EINVAL; 2782 } 2783 2784 sector_size = get_unaligned_be32(&buffer[4]); 2785 lba = get_unaligned_be32(&buffer[0]); 2786 2787 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) { 2788 /* Some buggy (usb cardreader) devices return an lba of 2789 0xffffffff when the want to report a size of 0 (with 2790 which they really mean no media is present) */ 2791 sdkp->capacity = 0; 2792 sdkp->physical_block_size = sector_size; 2793 return sector_size; 2794 } 2795 2796 sdkp->capacity = lba + 1; 2797 sdkp->physical_block_size = sector_size; 2798 return sector_size; 2799 } 2800 2801 static int sd_try_rc16_first(struct scsi_device *sdp) 2802 { 2803 if (sdp->host->max_cmd_len < 16) 2804 return 0; 2805 if (sdp->try_rc_10_first) 2806 return 0; 2807 if (sdp->scsi_level > SCSI_SPC_2) 2808 return 1; 2809 if (scsi_device_protection(sdp)) 2810 return 1; 2811 return 0; 2812 } 2813 2814 /* 2815 * read disk capacity 2816 */ 2817 static void 2818 sd_read_capacity(struct scsi_disk *sdkp, struct queue_limits *lim, 2819 unsigned char *buffer) 2820 { 2821 int sector_size; 2822 struct scsi_device *sdp = sdkp->device; 2823 2824 if (sd_try_rc16_first(sdp)) { 2825 sector_size = read_capacity_16(sdkp, sdp, lim, buffer); 2826 if (sector_size == -EOVERFLOW) 2827 goto got_data; 2828 if (sector_size == -ENODEV) 2829 return; 2830 if (sector_size < 0) 2831 sector_size = read_capacity_10(sdkp, sdp, buffer); 2832 if (sector_size < 0) 2833 return; 2834 } else { 2835 sector_size = read_capacity_10(sdkp, sdp, buffer); 2836 if (sector_size == -EOVERFLOW) 2837 goto got_data; 2838 if (sector_size < 0) 2839 return; 2840 if ((sizeof(sdkp->capacity) > 4) && 2841 (sdkp->capacity > 0xffffffffULL)) { 2842 int old_sector_size = sector_size; 2843 sd_printk(KERN_NOTICE, sdkp, "Very big device. " 2844 "Trying to use READ CAPACITY(16).\n"); 2845 sector_size = read_capacity_16(sdkp, sdp, lim, buffer); 2846 if (sector_size < 0) { 2847 sd_printk(KERN_NOTICE, sdkp, 2848 "Using 0xffffffff as device size\n"); 2849 sdkp->capacity = 1 + (sector_t) 0xffffffff; 2850 sector_size = old_sector_size; 2851 goto got_data; 2852 } 2853 /* Remember that READ CAPACITY(16) succeeded */ 2854 sdp->try_rc_10_first = 0; 2855 } 2856 } 2857 2858 /* Some devices are known to return the total number of blocks, 2859 * not the highest block number. Some devices have versions 2860 * which do this and others which do not. Some devices we might 2861 * suspect of doing this but we don't know for certain. 2862 * 2863 * If we know the reported capacity is wrong, decrement it. If 2864 * we can only guess, then assume the number of blocks is even 2865 * (usually true but not always) and err on the side of lowering 2866 * the capacity. 2867 */ 2868 if (sdp->fix_capacity || 2869 (sdp->guess_capacity && (sdkp->capacity & 0x01))) { 2870 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count " 2871 "from its reported value: %llu\n", 2872 (unsigned long long) sdkp->capacity); 2873 --sdkp->capacity; 2874 } 2875 2876 got_data: 2877 if (sector_size == 0) { 2878 sector_size = 512; 2879 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, " 2880 "assuming 512.\n"); 2881 } 2882 2883 if (sector_size != 512 && 2884 sector_size != 1024 && 2885 sector_size != 2048 && 2886 sector_size != 4096) { 2887 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n", 2888 sector_size); 2889 /* 2890 * The user might want to re-format the drive with 2891 * a supported sectorsize. Once this happens, it 2892 * would be relatively trivial to set the thing up. 2893 * For this reason, we leave the thing in the table. 2894 */ 2895 sdkp->capacity = 0; 2896 /* 2897 * set a bogus sector size so the normal read/write 2898 * logic in the block layer will eventually refuse any 2899 * request on this device without tripping over power 2900 * of two sector size assumptions 2901 */ 2902 sector_size = 512; 2903 } 2904 lim->logical_block_size = sector_size; 2905 lim->physical_block_size = sdkp->physical_block_size; 2906 sdkp->device->sector_size = sector_size; 2907 2908 if (sdkp->capacity > 0xffffffff) 2909 sdp->use_16_for_rw = 1; 2910 2911 } 2912 2913 /* 2914 * Print disk capacity 2915 */ 2916 static void 2917 sd_print_capacity(struct scsi_disk *sdkp, 2918 sector_t old_capacity) 2919 { 2920 int sector_size = sdkp->device->sector_size; 2921 char cap_str_2[10], cap_str_10[10]; 2922 2923 if (!sdkp->first_scan && old_capacity == sdkp->capacity) 2924 return; 2925 2926 string_get_size(sdkp->capacity, sector_size, 2927 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2)); 2928 string_get_size(sdkp->capacity, sector_size, 2929 STRING_UNITS_10, cap_str_10, sizeof(cap_str_10)); 2930 2931 sd_printk(KERN_NOTICE, sdkp, 2932 "%llu %d-byte logical blocks: (%s/%s)\n", 2933 (unsigned long long)sdkp->capacity, 2934 sector_size, cap_str_10, cap_str_2); 2935 2936 if (sdkp->physical_block_size != sector_size) 2937 sd_printk(KERN_NOTICE, sdkp, 2938 "%u-byte physical blocks\n", 2939 sdkp->physical_block_size); 2940 } 2941 2942 /* called with buffer of length 512 */ 2943 static inline int 2944 sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage, 2945 unsigned char *buffer, int len, struct scsi_mode_data *data, 2946 struct scsi_sense_hdr *sshdr) 2947 { 2948 /* 2949 * If we must use MODE SENSE(10), make sure that the buffer length 2950 * is at least 8 bytes so that the mode sense header fits. 2951 */ 2952 if (sdkp->device->use_10_for_ms && len < 8) 2953 len = 8; 2954 2955 return scsi_mode_sense(sdkp->device, dbd, modepage, 0, buffer, len, 2956 SD_TIMEOUT, sdkp->max_retries, data, sshdr); 2957 } 2958 2959 /* 2960 * read write protect setting, if possible - called only in sd_revalidate_disk() 2961 * called with buffer of length SD_BUF_SIZE 2962 */ 2963 static void 2964 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer) 2965 { 2966 int res; 2967 struct scsi_device *sdp = sdkp->device; 2968 struct scsi_mode_data data; 2969 int old_wp = sdkp->write_prot; 2970 2971 set_disk_ro(sdkp->disk, 0); 2972 if (sdp->skip_ms_page_3f) { 2973 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n"); 2974 return; 2975 } 2976 2977 if (sdp->use_192_bytes_for_3f) { 2978 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL); 2979 } else { 2980 /* 2981 * First attempt: ask for all pages (0x3F), but only 4 bytes. 2982 * We have to start carefully: some devices hang if we ask 2983 * for more than is available. 2984 */ 2985 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL); 2986 2987 /* 2988 * Second attempt: ask for page 0 When only page 0 is 2989 * implemented, a request for page 3F may return Sense Key 2990 * 5: Illegal Request, Sense Code 24: Invalid field in 2991 * CDB. 2992 */ 2993 if (res < 0) 2994 res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL); 2995 2996 /* 2997 * Third attempt: ask 255 bytes, as we did earlier. 2998 */ 2999 if (res < 0) 3000 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255, 3001 &data, NULL); 3002 } 3003 3004 if (res < 0) { 3005 sd_first_printk(KERN_WARNING, sdkp, 3006 "Test WP failed, assume Write Enabled\n"); 3007 } else { 3008 sdkp->write_prot = ((data.device_specific & 0x80) != 0); 3009 set_disk_ro(sdkp->disk, sdkp->write_prot); 3010 if (sdkp->first_scan || old_wp != sdkp->write_prot) { 3011 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n", 3012 sdkp->write_prot ? "on" : "off"); 3013 sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer); 3014 } 3015 } 3016 } 3017 3018 /* 3019 * sd_read_cache_type - called only from sd_revalidate_disk() 3020 * called with buffer of length SD_BUF_SIZE 3021 */ 3022 static void 3023 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer) 3024 { 3025 int len = 0, res; 3026 struct scsi_device *sdp = sdkp->device; 3027 3028 int dbd; 3029 int modepage; 3030 int first_len; 3031 struct scsi_mode_data data; 3032 struct scsi_sense_hdr sshdr; 3033 int old_wce = sdkp->WCE; 3034 int old_rcd = sdkp->RCD; 3035 int old_dpofua = sdkp->DPOFUA; 3036 3037 3038 if (sdkp->cache_override) 3039 return; 3040 3041 first_len = 4; 3042 if (sdp->skip_ms_page_8) { 3043 if (sdp->type == TYPE_RBC) 3044 goto defaults; 3045 else { 3046 if (sdp->skip_ms_page_3f) 3047 goto defaults; 3048 modepage = 0x3F; 3049 if (sdp->use_192_bytes_for_3f) 3050 first_len = 192; 3051 dbd = 0; 3052 } 3053 } else if (sdp->type == TYPE_RBC) { 3054 modepage = 6; 3055 dbd = 8; 3056 } else { 3057 modepage = 8; 3058 dbd = 0; 3059 } 3060 3061 /* cautiously ask */ 3062 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len, 3063 &data, &sshdr); 3064 3065 if (res < 0) 3066 goto bad_sense; 3067 3068 if (!data.header_length) { 3069 modepage = 6; 3070 first_len = 0; 3071 sd_first_printk(KERN_ERR, sdkp, 3072 "Missing header in MODE_SENSE response\n"); 3073 } 3074 3075 /* that went OK, now ask for the proper length */ 3076 len = data.length; 3077 3078 /* 3079 * We're only interested in the first three bytes, actually. 3080 * But the data cache page is defined for the first 20. 3081 */ 3082 if (len < 3) 3083 goto bad_sense; 3084 else if (len > SD_BUF_SIZE) { 3085 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter " 3086 "data from %d to %d bytes\n", len, SD_BUF_SIZE); 3087 len = SD_BUF_SIZE; 3088 } 3089 if (modepage == 0x3F && sdp->use_192_bytes_for_3f) 3090 len = 192; 3091 3092 /* Get the data */ 3093 if (len > first_len) 3094 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len, 3095 &data, &sshdr); 3096 3097 if (!res) { 3098 int offset = data.header_length + data.block_descriptor_length; 3099 3100 while (offset < len) { 3101 u8 page_code = buffer[offset] & 0x3F; 3102 u8 spf = buffer[offset] & 0x40; 3103 3104 if (page_code == 8 || page_code == 6) { 3105 /* We're interested only in the first 3 bytes. 3106 */ 3107 if (len - offset <= 2) { 3108 sd_first_printk(KERN_ERR, sdkp, 3109 "Incomplete mode parameter " 3110 "data\n"); 3111 goto defaults; 3112 } else { 3113 modepage = page_code; 3114 goto Page_found; 3115 } 3116 } else { 3117 /* Go to the next page */ 3118 if (spf && len - offset > 3) 3119 offset += 4 + (buffer[offset+2] << 8) + 3120 buffer[offset+3]; 3121 else if (!spf && len - offset > 1) 3122 offset += 2 + buffer[offset+1]; 3123 else { 3124 sd_first_printk(KERN_ERR, sdkp, 3125 "Incomplete mode " 3126 "parameter data\n"); 3127 goto defaults; 3128 } 3129 } 3130 } 3131 3132 sd_first_printk(KERN_WARNING, sdkp, 3133 "No Caching mode page found\n"); 3134 goto defaults; 3135 3136 Page_found: 3137 if (modepage == 8) { 3138 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0); 3139 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0); 3140 } else { 3141 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0); 3142 sdkp->RCD = 0; 3143 } 3144 3145 sdkp->DPOFUA = (data.device_specific & 0x10) != 0; 3146 if (sdp->broken_fua) { 3147 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n"); 3148 sdkp->DPOFUA = 0; 3149 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw && 3150 !sdkp->device->use_16_for_rw) { 3151 sd_first_printk(KERN_NOTICE, sdkp, 3152 "Uses READ/WRITE(6), disabling FUA\n"); 3153 sdkp->DPOFUA = 0; 3154 } 3155 3156 /* No cache flush allowed for write protected devices */ 3157 if (sdkp->WCE && sdkp->write_prot) 3158 sdkp->WCE = 0; 3159 3160 if (sdkp->first_scan || old_wce != sdkp->WCE || 3161 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA) 3162 sd_printk(KERN_NOTICE, sdkp, 3163 "Write cache: %s, read cache: %s, %s\n", 3164 sdkp->WCE ? "enabled" : "disabled", 3165 sdkp->RCD ? "disabled" : "enabled", 3166 sdkp->DPOFUA ? "supports DPO and FUA" 3167 : "doesn't support DPO or FUA"); 3168 3169 return; 3170 } 3171 3172 bad_sense: 3173 if (res == -EIO && scsi_sense_valid(&sshdr) && 3174 sshdr.sense_key == ILLEGAL_REQUEST && 3175 sshdr.asc == 0x24 && sshdr.ascq == 0x0) 3176 /* Invalid field in CDB */ 3177 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n"); 3178 else 3179 sd_first_printk(KERN_ERR, sdkp, 3180 "Asking for cache data failed\n"); 3181 3182 defaults: 3183 if (sdp->wce_default_on) { 3184 sd_first_printk(KERN_NOTICE, sdkp, 3185 "Assuming drive cache: write back\n"); 3186 sdkp->WCE = 1; 3187 } else { 3188 sd_first_printk(KERN_WARNING, sdkp, 3189 "Assuming drive cache: write through\n"); 3190 sdkp->WCE = 0; 3191 } 3192 sdkp->RCD = 0; 3193 sdkp->DPOFUA = 0; 3194 } 3195 3196 static bool sd_is_perm_stream(struct scsi_disk *sdkp, unsigned int stream_id) 3197 { 3198 u8 cdb[16] = { SERVICE_ACTION_IN_16, SAI_GET_STREAM_STATUS }; 3199 struct { 3200 struct scsi_stream_status_header h; 3201 struct scsi_stream_status s; 3202 } buf; 3203 struct scsi_device *sdev = sdkp->device; 3204 struct scsi_sense_hdr sshdr; 3205 const struct scsi_exec_args exec_args = { 3206 .sshdr = &sshdr, 3207 }; 3208 int res; 3209 3210 put_unaligned_be16(stream_id, &cdb[4]); 3211 put_unaligned_be32(sizeof(buf), &cdb[10]); 3212 3213 res = scsi_execute_cmd(sdev, cdb, REQ_OP_DRV_IN, &buf, sizeof(buf), 3214 SD_TIMEOUT, sdkp->max_retries, &exec_args); 3215 if (res < 0) 3216 return false; 3217 if (scsi_status_is_check_condition(res) && scsi_sense_valid(&sshdr)) 3218 sd_print_sense_hdr(sdkp, &sshdr); 3219 if (res) 3220 return false; 3221 if (get_unaligned_be32(&buf.h.len) < sizeof(struct scsi_stream_status)) 3222 return false; 3223 return buf.h.stream_status[0].perm; 3224 } 3225 3226 static void sd_read_io_hints(struct scsi_disk *sdkp, unsigned char *buffer) 3227 { 3228 struct scsi_device *sdp = sdkp->device; 3229 const struct scsi_io_group_descriptor *desc, *start, *end; 3230 u16 permanent_stream_count_old; 3231 struct scsi_sense_hdr sshdr; 3232 struct scsi_mode_data data; 3233 int res; 3234 3235 if (sdp->sdev_bflags & BLIST_SKIP_IO_HINTS) 3236 return; 3237 3238 res = scsi_mode_sense(sdp, /*dbd=*/0x8, /*modepage=*/0x0a, 3239 /*subpage=*/0x05, buffer, SD_BUF_SIZE, SD_TIMEOUT, 3240 sdkp->max_retries, &data, &sshdr); 3241 if (res < 0) 3242 return; 3243 start = (void *)buffer + data.header_length + 16; 3244 end = (void *)buffer + ALIGN_DOWN(data.header_length + data.length, 3245 sizeof(*end)); 3246 /* 3247 * From "SBC-5 Constrained Streams with Data Lifetimes": Device severs 3248 * should assign the lowest numbered stream identifiers to permanent 3249 * streams. 3250 */ 3251 for (desc = start; desc < end; desc++) 3252 if (!desc->st_enble || !sd_is_perm_stream(sdkp, desc - start)) 3253 break; 3254 permanent_stream_count_old = sdkp->permanent_stream_count; 3255 sdkp->permanent_stream_count = desc - start; 3256 if (sdkp->rscs && sdkp->permanent_stream_count < 2) 3257 sd_printk(KERN_INFO, sdkp, 3258 "Unexpected: RSCS has been set and the permanent stream count is %u\n", 3259 sdkp->permanent_stream_count); 3260 else if (sdkp->permanent_stream_count != permanent_stream_count_old) 3261 sd_printk(KERN_INFO, sdkp, "permanent stream count = %d\n", 3262 sdkp->permanent_stream_count); 3263 } 3264 3265 /* 3266 * The ATO bit indicates whether the DIF application tag is available 3267 * for use by the operating system. 3268 */ 3269 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer) 3270 { 3271 int res, offset; 3272 struct scsi_device *sdp = sdkp->device; 3273 struct scsi_mode_data data; 3274 struct scsi_sense_hdr sshdr; 3275 3276 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 3277 return; 3278 3279 if (sdkp->protection_type == 0) 3280 return; 3281 3282 res = scsi_mode_sense(sdp, 1, 0x0a, 0, buffer, 36, SD_TIMEOUT, 3283 sdkp->max_retries, &data, &sshdr); 3284 3285 if (res < 0 || !data.header_length || 3286 data.length < 6) { 3287 sd_first_printk(KERN_WARNING, sdkp, 3288 "getting Control mode page failed, assume no ATO\n"); 3289 3290 if (res == -EIO && scsi_sense_valid(&sshdr)) 3291 sd_print_sense_hdr(sdkp, &sshdr); 3292 3293 return; 3294 } 3295 3296 offset = data.header_length + data.block_descriptor_length; 3297 3298 if ((buffer[offset] & 0x3f) != 0x0a) { 3299 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n"); 3300 return; 3301 } 3302 3303 if ((buffer[offset + 5] & 0x80) == 0) 3304 return; 3305 3306 sdkp->ATO = 1; 3307 3308 return; 3309 } 3310 3311 static unsigned int sd_discard_mode(struct scsi_disk *sdkp) 3312 { 3313 if (!sdkp->lbpme) 3314 return SD_LBP_FULL; 3315 3316 if (!sdkp->lbpvpd) { 3317 /* LBP VPD page not provided */ 3318 if (sdkp->max_unmap_blocks) 3319 return SD_LBP_UNMAP; 3320 return SD_LBP_WS16; 3321 } 3322 3323 /* LBP VPD page tells us what to use */ 3324 if (sdkp->lbpu && sdkp->max_unmap_blocks) 3325 return SD_LBP_UNMAP; 3326 if (sdkp->lbpws) 3327 return SD_LBP_WS16; 3328 if (sdkp->lbpws10) 3329 return SD_LBP_WS10; 3330 return SD_LBP_DISABLE; 3331 } 3332 3333 /* 3334 * Query disk device for preferred I/O sizes. 3335 */ 3336 static void sd_read_block_limits(struct scsi_disk *sdkp, 3337 struct queue_limits *lim) 3338 { 3339 struct scsi_vpd *vpd; 3340 3341 rcu_read_lock(); 3342 3343 vpd = rcu_dereference(sdkp->device->vpd_pgb0); 3344 if (!vpd || vpd->len < 16) 3345 goto out; 3346 3347 sdkp->min_xfer_blocks = get_unaligned_be16(&vpd->data[6]); 3348 sdkp->max_xfer_blocks = get_unaligned_be32(&vpd->data[8]); 3349 sdkp->opt_xfer_blocks = get_unaligned_be32(&vpd->data[12]); 3350 3351 if (vpd->len >= 64) { 3352 unsigned int lba_count, desc_count; 3353 3354 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&vpd->data[36]); 3355 3356 if (!sdkp->lbpme) 3357 goto config_atomic; 3358 3359 lba_count = get_unaligned_be32(&vpd->data[20]); 3360 desc_count = get_unaligned_be32(&vpd->data[24]); 3361 3362 if (lba_count && desc_count) 3363 sdkp->max_unmap_blocks = lba_count; 3364 3365 sdkp->unmap_granularity = get_unaligned_be32(&vpd->data[28]); 3366 3367 if (vpd->data[32] & 0x80) 3368 sdkp->unmap_alignment = 3369 get_unaligned_be32(&vpd->data[32]) & ~(1 << 31); 3370 3371 config_atomic: 3372 sdkp->max_atomic = get_unaligned_be32(&vpd->data[44]); 3373 sdkp->atomic_alignment = get_unaligned_be32(&vpd->data[48]); 3374 sdkp->atomic_granularity = get_unaligned_be32(&vpd->data[52]); 3375 sdkp->max_atomic_with_boundary = get_unaligned_be32(&vpd->data[56]); 3376 sdkp->max_atomic_boundary = get_unaligned_be32(&vpd->data[60]); 3377 3378 sd_config_atomic(sdkp, lim); 3379 } 3380 3381 out: 3382 rcu_read_unlock(); 3383 } 3384 3385 /* Parse the Block Limits Extension VPD page (0xb7) */ 3386 static void sd_read_block_limits_ext(struct scsi_disk *sdkp) 3387 { 3388 struct scsi_vpd *vpd; 3389 3390 rcu_read_lock(); 3391 vpd = rcu_dereference(sdkp->device->vpd_pgb7); 3392 if (vpd && vpd->len >= 2) 3393 sdkp->rscs = vpd->data[5] & 1; 3394 rcu_read_unlock(); 3395 } 3396 3397 /* Query block device characteristics */ 3398 static void sd_read_block_characteristics(struct scsi_disk *sdkp, 3399 struct queue_limits *lim) 3400 { 3401 struct scsi_vpd *vpd; 3402 u16 rot; 3403 3404 rcu_read_lock(); 3405 vpd = rcu_dereference(sdkp->device->vpd_pgb1); 3406 3407 if (!vpd || vpd->len < 8) { 3408 rcu_read_unlock(); 3409 return; 3410 } 3411 3412 rot = get_unaligned_be16(&vpd->data[4]); 3413 sdkp->zoned = (vpd->data[8] >> 4) & 3; 3414 rcu_read_unlock(); 3415 3416 if (rot == 1) 3417 lim->features &= ~(BLK_FEAT_ROTATIONAL | BLK_FEAT_ADD_RANDOM); 3418 3419 if (!sdkp->first_scan) 3420 return; 3421 3422 if (sdkp->device->type == TYPE_ZBC) 3423 sd_printk(KERN_NOTICE, sdkp, "Host-managed zoned block device\n"); 3424 else if (sdkp->zoned == 1) 3425 sd_printk(KERN_NOTICE, sdkp, "Host-aware SMR disk used as regular disk\n"); 3426 else if (sdkp->zoned == 2) 3427 sd_printk(KERN_NOTICE, sdkp, "Drive-managed SMR disk\n"); 3428 } 3429 3430 /** 3431 * sd_read_block_provisioning - Query provisioning VPD page 3432 * @sdkp: disk to query 3433 */ 3434 static void sd_read_block_provisioning(struct scsi_disk *sdkp) 3435 { 3436 struct scsi_vpd *vpd; 3437 3438 if (sdkp->lbpme == 0) 3439 return; 3440 3441 rcu_read_lock(); 3442 vpd = rcu_dereference(sdkp->device->vpd_pgb2); 3443 3444 if (!vpd || vpd->len < 8) { 3445 rcu_read_unlock(); 3446 return; 3447 } 3448 3449 sdkp->lbpvpd = 1; 3450 sdkp->lbpu = (vpd->data[5] >> 7) & 1; /* UNMAP */ 3451 sdkp->lbpws = (vpd->data[5] >> 6) & 1; /* WRITE SAME(16) w/ UNMAP */ 3452 sdkp->lbpws10 = (vpd->data[5] >> 5) & 1; /* WRITE SAME(10) w/ UNMAP */ 3453 rcu_read_unlock(); 3454 } 3455 3456 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer) 3457 { 3458 struct scsi_device *sdev = sdkp->device; 3459 3460 if (sdev->host->no_write_same) { 3461 sdev->no_write_same = 1; 3462 3463 return; 3464 } 3465 3466 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY, 0) < 0) { 3467 struct scsi_vpd *vpd; 3468 3469 sdev->no_report_opcodes = 1; 3470 3471 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION 3472 * CODES is unsupported and the device has an ATA 3473 * Information VPD page (SAT). 3474 */ 3475 rcu_read_lock(); 3476 vpd = rcu_dereference(sdev->vpd_pg89); 3477 if (vpd) 3478 sdev->no_write_same = 1; 3479 rcu_read_unlock(); 3480 } 3481 3482 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16, 0) == 1) 3483 sdkp->ws16 = 1; 3484 3485 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME, 0) == 1) 3486 sdkp->ws10 = 1; 3487 } 3488 3489 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer) 3490 { 3491 struct scsi_device *sdev = sdkp->device; 3492 3493 if (!sdev->security_supported) 3494 return; 3495 3496 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3497 SECURITY_PROTOCOL_IN, 0) == 1 && 3498 scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3499 SECURITY_PROTOCOL_OUT, 0) == 1) 3500 sdkp->security = 1; 3501 } 3502 3503 static inline sector_t sd64_to_sectors(struct scsi_disk *sdkp, u8 *buf) 3504 { 3505 return logical_to_sectors(sdkp->device, get_unaligned_be64(buf)); 3506 } 3507 3508 /** 3509 * sd_read_cpr - Query concurrent positioning ranges 3510 * @sdkp: disk to query 3511 */ 3512 static void sd_read_cpr(struct scsi_disk *sdkp) 3513 { 3514 struct blk_independent_access_ranges *iars = NULL; 3515 unsigned char *buffer = NULL; 3516 unsigned int nr_cpr = 0; 3517 int i, vpd_len, buf_len = SD_BUF_SIZE; 3518 u8 *desc; 3519 3520 /* 3521 * We need to have the capacity set first for the block layer to be 3522 * able to check the ranges. 3523 */ 3524 if (sdkp->first_scan) 3525 return; 3526 3527 if (!sdkp->capacity) 3528 goto out; 3529 3530 /* 3531 * Concurrent Positioning Ranges VPD: there can be at most 256 ranges, 3532 * leading to a maximum page size of 64 + 256*32 bytes. 3533 */ 3534 buf_len = 64 + 256*32; 3535 buffer = kmalloc(buf_len, GFP_KERNEL); 3536 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb9, buffer, buf_len)) 3537 goto out; 3538 3539 /* We must have at least a 64B header and one 32B range descriptor */ 3540 vpd_len = get_unaligned_be16(&buffer[2]) + 4; 3541 if (vpd_len > buf_len || vpd_len < 64 + 32 || (vpd_len & 31)) { 3542 sd_printk(KERN_ERR, sdkp, 3543 "Invalid Concurrent Positioning Ranges VPD page\n"); 3544 goto out; 3545 } 3546 3547 nr_cpr = (vpd_len - 64) / 32; 3548 if (nr_cpr == 1) { 3549 nr_cpr = 0; 3550 goto out; 3551 } 3552 3553 iars = disk_alloc_independent_access_ranges(sdkp->disk, nr_cpr); 3554 if (!iars) { 3555 nr_cpr = 0; 3556 goto out; 3557 } 3558 3559 desc = &buffer[64]; 3560 for (i = 0; i < nr_cpr; i++, desc += 32) { 3561 if (desc[0] != i) { 3562 sd_printk(KERN_ERR, sdkp, 3563 "Invalid Concurrent Positioning Range number\n"); 3564 nr_cpr = 0; 3565 break; 3566 } 3567 3568 iars->ia_range[i].sector = sd64_to_sectors(sdkp, desc + 8); 3569 iars->ia_range[i].nr_sectors = sd64_to_sectors(sdkp, desc + 16); 3570 } 3571 3572 out: 3573 disk_set_independent_access_ranges(sdkp->disk, iars); 3574 if (nr_cpr && sdkp->nr_actuators != nr_cpr) { 3575 sd_printk(KERN_NOTICE, sdkp, 3576 "%u concurrent positioning ranges\n", nr_cpr); 3577 sdkp->nr_actuators = nr_cpr; 3578 } 3579 3580 kfree(buffer); 3581 } 3582 3583 static bool sd_validate_min_xfer_size(struct scsi_disk *sdkp) 3584 { 3585 struct scsi_device *sdp = sdkp->device; 3586 unsigned int min_xfer_bytes = 3587 logical_to_bytes(sdp, sdkp->min_xfer_blocks); 3588 3589 if (sdkp->min_xfer_blocks == 0) 3590 return false; 3591 3592 if (min_xfer_bytes & (sdkp->physical_block_size - 1)) { 3593 sd_first_printk(KERN_WARNING, sdkp, 3594 "Preferred minimum I/O size %u bytes not a " \ 3595 "multiple of physical block size (%u bytes)\n", 3596 min_xfer_bytes, sdkp->physical_block_size); 3597 sdkp->min_xfer_blocks = 0; 3598 return false; 3599 } 3600 3601 sd_first_printk(KERN_INFO, sdkp, "Preferred minimum I/O size %u bytes\n", 3602 min_xfer_bytes); 3603 return true; 3604 } 3605 3606 /* 3607 * Determine the device's preferred I/O size for reads and writes 3608 * unless the reported value is unreasonably small, large, not a 3609 * multiple of the physical block size, or simply garbage. 3610 */ 3611 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp, 3612 unsigned int dev_max) 3613 { 3614 struct scsi_device *sdp = sdkp->device; 3615 unsigned int opt_xfer_bytes = 3616 logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 3617 unsigned int min_xfer_bytes = 3618 logical_to_bytes(sdp, sdkp->min_xfer_blocks); 3619 3620 if (sdkp->opt_xfer_blocks == 0) 3621 return false; 3622 3623 if (sdkp->opt_xfer_blocks > dev_max) { 3624 sd_first_printk(KERN_WARNING, sdkp, 3625 "Optimal transfer size %u logical blocks " \ 3626 "> dev_max (%u logical blocks)\n", 3627 sdkp->opt_xfer_blocks, dev_max); 3628 return false; 3629 } 3630 3631 if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) { 3632 sd_first_printk(KERN_WARNING, sdkp, 3633 "Optimal transfer size %u logical blocks " \ 3634 "> sd driver limit (%u logical blocks)\n", 3635 sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS); 3636 return false; 3637 } 3638 3639 if (opt_xfer_bytes < PAGE_SIZE) { 3640 sd_first_printk(KERN_WARNING, sdkp, 3641 "Optimal transfer size %u bytes < " \ 3642 "PAGE_SIZE (%u bytes)\n", 3643 opt_xfer_bytes, (unsigned int)PAGE_SIZE); 3644 return false; 3645 } 3646 3647 if (min_xfer_bytes && opt_xfer_bytes % min_xfer_bytes) { 3648 sd_first_printk(KERN_WARNING, sdkp, 3649 "Optimal transfer size %u bytes not a " \ 3650 "multiple of preferred minimum block " \ 3651 "size (%u bytes)\n", 3652 opt_xfer_bytes, min_xfer_bytes); 3653 return false; 3654 } 3655 3656 if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) { 3657 sd_first_printk(KERN_WARNING, sdkp, 3658 "Optimal transfer size %u bytes not a " \ 3659 "multiple of physical block size (%u bytes)\n", 3660 opt_xfer_bytes, sdkp->physical_block_size); 3661 return false; 3662 } 3663 3664 sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n", 3665 opt_xfer_bytes); 3666 return true; 3667 } 3668 3669 static void sd_read_block_zero(struct scsi_disk *sdkp) 3670 { 3671 struct scsi_device *sdev = sdkp->device; 3672 unsigned int buf_len = sdev->sector_size; 3673 u8 *buffer, cmd[16] = { }; 3674 3675 buffer = kmalloc(buf_len, GFP_KERNEL); 3676 if (!buffer) 3677 return; 3678 3679 if (sdev->use_16_for_rw) { 3680 cmd[0] = READ_16; 3681 put_unaligned_be64(0, &cmd[2]); /* Logical block address 0 */ 3682 put_unaligned_be32(1, &cmd[10]);/* Transfer 1 logical block */ 3683 } else { 3684 cmd[0] = READ_10; 3685 put_unaligned_be32(0, &cmd[2]); /* Logical block address 0 */ 3686 put_unaligned_be16(1, &cmd[7]); /* Transfer 1 logical block */ 3687 } 3688 3689 scsi_execute_cmd(sdkp->device, cmd, REQ_OP_DRV_IN, buffer, buf_len, 3690 SD_TIMEOUT, sdkp->max_retries, NULL); 3691 kfree(buffer); 3692 } 3693 3694 /** 3695 * sd_revalidate_disk - called the first time a new disk is seen, 3696 * performs disk spin up, read_capacity, etc. 3697 * @disk: struct gendisk we care about 3698 **/ 3699 static int sd_revalidate_disk(struct gendisk *disk) 3700 { 3701 struct scsi_disk *sdkp = scsi_disk(disk); 3702 struct scsi_device *sdp = sdkp->device; 3703 sector_t old_capacity = sdkp->capacity; 3704 struct queue_limits lim; 3705 unsigned char *buffer; 3706 unsigned int dev_max; 3707 int err; 3708 3709 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, 3710 "sd_revalidate_disk\n")); 3711 3712 /* 3713 * If the device is offline, don't try and read capacity or any 3714 * of the other niceties. 3715 */ 3716 if (!scsi_device_online(sdp)) 3717 goto out; 3718 3719 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL); 3720 if (!buffer) { 3721 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory " 3722 "allocation failure.\n"); 3723 goto out; 3724 } 3725 3726 sd_spinup_disk(sdkp); 3727 3728 lim = queue_limits_start_update(sdkp->disk->queue); 3729 3730 /* 3731 * Without media there is no reason to ask; moreover, some devices 3732 * react badly if we do. 3733 */ 3734 if (sdkp->media_present) { 3735 sd_read_capacity(sdkp, &lim, buffer); 3736 /* 3737 * Some USB/UAS devices return generic values for mode pages 3738 * until the media has been accessed. Trigger a READ operation 3739 * to force the device to populate mode pages. 3740 */ 3741 if (sdp->read_before_ms) 3742 sd_read_block_zero(sdkp); 3743 /* 3744 * set the default to rotational. All non-rotational devices 3745 * support the block characteristics VPD page, which will 3746 * cause this to be updated correctly and any device which 3747 * doesn't support it should be treated as rotational. 3748 */ 3749 lim.features |= (BLK_FEAT_ROTATIONAL | BLK_FEAT_ADD_RANDOM); 3750 3751 if (scsi_device_supports_vpd(sdp)) { 3752 sd_read_block_provisioning(sdkp); 3753 sd_read_block_limits(sdkp, &lim); 3754 sd_read_block_limits_ext(sdkp); 3755 sd_read_block_characteristics(sdkp, &lim); 3756 sd_zbc_read_zones(sdkp, &lim, buffer); 3757 } 3758 3759 sd_config_discard(sdkp, &lim, sd_discard_mode(sdkp)); 3760 3761 sd_print_capacity(sdkp, old_capacity); 3762 3763 sd_read_write_protect_flag(sdkp, buffer); 3764 sd_read_cache_type(sdkp, buffer); 3765 sd_read_io_hints(sdkp, buffer); 3766 sd_read_app_tag_own(sdkp, buffer); 3767 sd_read_write_same(sdkp, buffer); 3768 sd_read_security(sdkp, buffer); 3769 sd_config_protection(sdkp, &lim); 3770 } 3771 3772 /* 3773 * We now have all cache related info, determine how we deal 3774 * with flush requests. 3775 */ 3776 sd_set_flush_flag(sdkp, &lim); 3777 3778 /* Initial block count limit based on CDB TRANSFER LENGTH field size. */ 3779 dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS; 3780 3781 /* Some devices report a maximum block count for READ/WRITE requests. */ 3782 dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks); 3783 lim.max_dev_sectors = logical_to_sectors(sdp, dev_max); 3784 3785 if (sd_validate_min_xfer_size(sdkp)) 3786 lim.io_min = logical_to_bytes(sdp, sdkp->min_xfer_blocks); 3787 else 3788 lim.io_min = 0; 3789 3790 /* 3791 * Limit default to SCSI host optimal sector limit if set. There may be 3792 * an impact on performance for when the size of a request exceeds this 3793 * host limit. 3794 */ 3795 lim.io_opt = sdp->host->opt_sectors << SECTOR_SHIFT; 3796 if (sd_validate_opt_xfer_size(sdkp, dev_max)) { 3797 lim.io_opt = min_not_zero(lim.io_opt, 3798 logical_to_bytes(sdp, sdkp->opt_xfer_blocks)); 3799 } 3800 3801 sdkp->first_scan = 0; 3802 3803 set_capacity_and_notify(disk, logical_to_sectors(sdp, sdkp->capacity)); 3804 sd_config_write_same(sdkp, &lim); 3805 kfree(buffer); 3806 3807 blk_mq_freeze_queue(sdkp->disk->queue); 3808 err = queue_limits_commit_update(sdkp->disk->queue, &lim); 3809 blk_mq_unfreeze_queue(sdkp->disk->queue); 3810 if (err) 3811 return err; 3812 3813 /* 3814 * Query concurrent positioning ranges after 3815 * queue_limits_commit_update() unlocked q->limits_lock to avoid 3816 * deadlock with q->sysfs_dir_lock and q->sysfs_lock. 3817 */ 3818 if (sdkp->media_present && scsi_device_supports_vpd(sdp)) 3819 sd_read_cpr(sdkp); 3820 3821 /* 3822 * For a zoned drive, revalidating the zones can be done only once 3823 * the gendisk capacity is set. So if this fails, set back the gendisk 3824 * capacity to 0. 3825 */ 3826 if (sd_zbc_revalidate_zones(sdkp)) 3827 set_capacity_and_notify(disk, 0); 3828 3829 out: 3830 return 0; 3831 } 3832 3833 /** 3834 * sd_unlock_native_capacity - unlock native capacity 3835 * @disk: struct gendisk to set capacity for 3836 * 3837 * Block layer calls this function if it detects that partitions 3838 * on @disk reach beyond the end of the device. If the SCSI host 3839 * implements ->unlock_native_capacity() method, it's invoked to 3840 * give it a chance to adjust the device capacity. 3841 * 3842 * CONTEXT: 3843 * Defined by block layer. Might sleep. 3844 */ 3845 static void sd_unlock_native_capacity(struct gendisk *disk) 3846 { 3847 struct scsi_device *sdev = scsi_disk(disk)->device; 3848 3849 if (sdev->host->hostt->unlock_native_capacity) 3850 sdev->host->hostt->unlock_native_capacity(sdev); 3851 } 3852 3853 /** 3854 * sd_format_disk_name - format disk name 3855 * @prefix: name prefix - ie. "sd" for SCSI disks 3856 * @index: index of the disk to format name for 3857 * @buf: output buffer 3858 * @buflen: length of the output buffer 3859 * 3860 * SCSI disk names starts at sda. The 26th device is sdz and the 3861 * 27th is sdaa. The last one for two lettered suffix is sdzz 3862 * which is followed by sdaaa. 3863 * 3864 * This is basically 26 base counting with one extra 'nil' entry 3865 * at the beginning from the second digit on and can be 3866 * determined using similar method as 26 base conversion with the 3867 * index shifted -1 after each digit is computed. 3868 * 3869 * CONTEXT: 3870 * Don't care. 3871 * 3872 * RETURNS: 3873 * 0 on success, -errno on failure. 3874 */ 3875 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen) 3876 { 3877 const int base = 'z' - 'a' + 1; 3878 char *begin = buf + strlen(prefix); 3879 char *end = buf + buflen; 3880 char *p; 3881 int unit; 3882 3883 p = end - 1; 3884 *p = '\0'; 3885 unit = base; 3886 do { 3887 if (p == begin) 3888 return -EINVAL; 3889 *--p = 'a' + (index % unit); 3890 index = (index / unit) - 1; 3891 } while (index >= 0); 3892 3893 memmove(begin, p, end - p); 3894 memcpy(buf, prefix, strlen(prefix)); 3895 3896 return 0; 3897 } 3898 3899 /** 3900 * sd_probe - called during driver initialization and whenever a 3901 * new scsi device is attached to the system. It is called once 3902 * for each scsi device (not just disks) present. 3903 * @dev: pointer to device object 3904 * 3905 * Returns 0 if successful (or not interested in this scsi device 3906 * (e.g. scanner)); 1 when there is an error. 3907 * 3908 * Note: this function is invoked from the scsi mid-level. 3909 * This function sets up the mapping between a given 3910 * <host,channel,id,lun> (found in sdp) and new device name 3911 * (e.g. /dev/sda). More precisely it is the block device major 3912 * and minor number that is chosen here. 3913 * 3914 * Assume sd_probe is not re-entrant (for time being) 3915 * Also think about sd_probe() and sd_remove() running coincidentally. 3916 **/ 3917 static int sd_probe(struct device *dev) 3918 { 3919 struct scsi_device *sdp = to_scsi_device(dev); 3920 struct scsi_disk *sdkp; 3921 struct gendisk *gd; 3922 int index; 3923 int error; 3924 3925 scsi_autopm_get_device(sdp); 3926 error = -ENODEV; 3927 if (sdp->type != TYPE_DISK && 3928 sdp->type != TYPE_ZBC && 3929 sdp->type != TYPE_MOD && 3930 sdp->type != TYPE_RBC) 3931 goto out; 3932 3933 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) && sdp->type == TYPE_ZBC) { 3934 sdev_printk(KERN_WARNING, sdp, 3935 "Unsupported ZBC host-managed device.\n"); 3936 goto out; 3937 } 3938 3939 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp, 3940 "sd_probe\n")); 3941 3942 error = -ENOMEM; 3943 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL); 3944 if (!sdkp) 3945 goto out; 3946 3947 gd = blk_mq_alloc_disk_for_queue(sdp->request_queue, 3948 &sd_bio_compl_lkclass); 3949 if (!gd) 3950 goto out_free; 3951 3952 index = ida_alloc(&sd_index_ida, GFP_KERNEL); 3953 if (index < 0) { 3954 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n"); 3955 goto out_put; 3956 } 3957 3958 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN); 3959 if (error) { 3960 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n"); 3961 goto out_free_index; 3962 } 3963 3964 sdkp->device = sdp; 3965 sdkp->disk = gd; 3966 sdkp->index = index; 3967 sdkp->max_retries = SD_MAX_RETRIES; 3968 atomic_set(&sdkp->openers, 0); 3969 atomic_set(&sdkp->device->ioerr_cnt, 0); 3970 3971 if (!sdp->request_queue->rq_timeout) { 3972 if (sdp->type != TYPE_MOD) 3973 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT); 3974 else 3975 blk_queue_rq_timeout(sdp->request_queue, 3976 SD_MOD_TIMEOUT); 3977 } 3978 3979 device_initialize(&sdkp->disk_dev); 3980 sdkp->disk_dev.parent = get_device(dev); 3981 sdkp->disk_dev.class = &sd_disk_class; 3982 dev_set_name(&sdkp->disk_dev, "%s", dev_name(dev)); 3983 3984 error = device_add(&sdkp->disk_dev); 3985 if (error) { 3986 put_device(&sdkp->disk_dev); 3987 goto out; 3988 } 3989 3990 dev_set_drvdata(dev, sdkp); 3991 3992 gd->major = sd_major((index & 0xf0) >> 4); 3993 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00); 3994 gd->minors = SD_MINORS; 3995 3996 gd->fops = &sd_fops; 3997 gd->private_data = sdkp; 3998 3999 /* defaults, until the device tells us otherwise */ 4000 sdp->sector_size = 512; 4001 sdkp->capacity = 0; 4002 sdkp->media_present = 1; 4003 sdkp->write_prot = 0; 4004 sdkp->cache_override = 0; 4005 sdkp->WCE = 0; 4006 sdkp->RCD = 0; 4007 sdkp->ATO = 0; 4008 sdkp->first_scan = 1; 4009 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS; 4010 4011 sd_revalidate_disk(gd); 4012 4013 if (sdp->removable) { 4014 gd->flags |= GENHD_FL_REMOVABLE; 4015 gd->events |= DISK_EVENT_MEDIA_CHANGE; 4016 gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT; 4017 } 4018 4019 blk_pm_runtime_init(sdp->request_queue, dev); 4020 if (sdp->rpm_autosuspend) { 4021 pm_runtime_set_autosuspend_delay(dev, 4022 sdp->host->rpm_autosuspend_delay); 4023 } 4024 4025 error = device_add_disk(dev, gd, NULL); 4026 if (error) { 4027 device_unregister(&sdkp->disk_dev); 4028 put_disk(gd); 4029 goto out; 4030 } 4031 4032 if (sdkp->security) { 4033 sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit); 4034 if (sdkp->opal_dev) 4035 sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n"); 4036 } 4037 4038 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n", 4039 sdp->removable ? "removable " : ""); 4040 scsi_autopm_put_device(sdp); 4041 4042 return 0; 4043 4044 out_free_index: 4045 ida_free(&sd_index_ida, index); 4046 out_put: 4047 put_disk(gd); 4048 out_free: 4049 kfree(sdkp); 4050 out: 4051 scsi_autopm_put_device(sdp); 4052 return error; 4053 } 4054 4055 /** 4056 * sd_remove - called whenever a scsi disk (previously recognized by 4057 * sd_probe) is detached from the system. It is called (potentially 4058 * multiple times) during sd module unload. 4059 * @dev: pointer to device object 4060 * 4061 * Note: this function is invoked from the scsi mid-level. 4062 * This function potentially frees up a device name (e.g. /dev/sdc) 4063 * that could be re-used by a subsequent sd_probe(). 4064 * This function is not called when the built-in sd driver is "exit-ed". 4065 **/ 4066 static int sd_remove(struct device *dev) 4067 { 4068 struct scsi_disk *sdkp = dev_get_drvdata(dev); 4069 4070 scsi_autopm_get_device(sdkp->device); 4071 4072 device_del(&sdkp->disk_dev); 4073 del_gendisk(sdkp->disk); 4074 if (!sdkp->suspended) 4075 sd_shutdown(dev); 4076 4077 put_disk(sdkp->disk); 4078 return 0; 4079 } 4080 4081 static void scsi_disk_release(struct device *dev) 4082 { 4083 struct scsi_disk *sdkp = to_scsi_disk(dev); 4084 4085 ida_free(&sd_index_ida, sdkp->index); 4086 put_device(&sdkp->device->sdev_gendev); 4087 free_opal_dev(sdkp->opal_dev); 4088 4089 kfree(sdkp); 4090 } 4091 4092 static int sd_start_stop_device(struct scsi_disk *sdkp, int start) 4093 { 4094 unsigned char cmd[6] = { START_STOP }; /* START_VALID */ 4095 struct scsi_sense_hdr sshdr; 4096 const struct scsi_exec_args exec_args = { 4097 .sshdr = &sshdr, 4098 .req_flags = BLK_MQ_REQ_PM, 4099 }; 4100 struct scsi_device *sdp = sdkp->device; 4101 int res; 4102 4103 if (start) 4104 cmd[4] |= 1; /* START */ 4105 4106 if (sdp->start_stop_pwr_cond) 4107 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */ 4108 4109 if (!scsi_device_online(sdp)) 4110 return -ENODEV; 4111 4112 res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, SD_TIMEOUT, 4113 sdkp->max_retries, &exec_args); 4114 if (res) { 4115 sd_print_result(sdkp, "Start/Stop Unit failed", res); 4116 if (res > 0 && scsi_sense_valid(&sshdr)) { 4117 sd_print_sense_hdr(sdkp, &sshdr); 4118 /* 0x3a is medium not present */ 4119 if (sshdr.asc == 0x3a) 4120 res = 0; 4121 } 4122 } 4123 4124 /* SCSI error codes must not go to the generic layer */ 4125 if (res) 4126 return -EIO; 4127 4128 return 0; 4129 } 4130 4131 /* 4132 * Send a SYNCHRONIZE CACHE instruction down to the device through 4133 * the normal SCSI command structure. Wait for the command to 4134 * complete. 4135 */ 4136 static void sd_shutdown(struct device *dev) 4137 { 4138 struct scsi_disk *sdkp = dev_get_drvdata(dev); 4139 4140 if (!sdkp) 4141 return; /* this can happen */ 4142 4143 if (pm_runtime_suspended(dev)) 4144 return; 4145 4146 if (sdkp->WCE && sdkp->media_present) { 4147 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 4148 sd_sync_cache(sdkp); 4149 } 4150 4151 if ((system_state != SYSTEM_RESTART && 4152 sdkp->device->manage_system_start_stop) || 4153 (system_state == SYSTEM_POWER_OFF && 4154 sdkp->device->manage_shutdown)) { 4155 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 4156 sd_start_stop_device(sdkp, 0); 4157 } 4158 } 4159 4160 static inline bool sd_do_start_stop(struct scsi_device *sdev, bool runtime) 4161 { 4162 return (sdev->manage_system_start_stop && !runtime) || 4163 (sdev->manage_runtime_start_stop && runtime); 4164 } 4165 4166 static int sd_suspend_common(struct device *dev, bool runtime) 4167 { 4168 struct scsi_disk *sdkp = dev_get_drvdata(dev); 4169 int ret = 0; 4170 4171 if (!sdkp) /* E.g.: runtime suspend following sd_remove() */ 4172 return 0; 4173 4174 if (sdkp->WCE && sdkp->media_present) { 4175 if (!sdkp->device->silence_suspend) 4176 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 4177 ret = sd_sync_cache(sdkp); 4178 /* ignore OFFLINE device */ 4179 if (ret == -ENODEV) 4180 return 0; 4181 4182 if (ret) 4183 return ret; 4184 } 4185 4186 if (sd_do_start_stop(sdkp->device, runtime)) { 4187 if (!sdkp->device->silence_suspend) 4188 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 4189 /* an error is not worth aborting a system sleep */ 4190 ret = sd_start_stop_device(sdkp, 0); 4191 if (!runtime) 4192 ret = 0; 4193 } 4194 4195 if (!ret) 4196 sdkp->suspended = true; 4197 4198 return ret; 4199 } 4200 4201 static int sd_suspend_system(struct device *dev) 4202 { 4203 if (pm_runtime_suspended(dev)) 4204 return 0; 4205 4206 return sd_suspend_common(dev, false); 4207 } 4208 4209 static int sd_suspend_runtime(struct device *dev) 4210 { 4211 return sd_suspend_common(dev, true); 4212 } 4213 4214 static int sd_resume(struct device *dev) 4215 { 4216 struct scsi_disk *sdkp = dev_get_drvdata(dev); 4217 4218 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n"); 4219 4220 if (opal_unlock_from_suspend(sdkp->opal_dev)) { 4221 sd_printk(KERN_NOTICE, sdkp, "OPAL unlock failed\n"); 4222 return -EIO; 4223 } 4224 4225 return 0; 4226 } 4227 4228 static int sd_resume_common(struct device *dev, bool runtime) 4229 { 4230 struct scsi_disk *sdkp = dev_get_drvdata(dev); 4231 int ret; 4232 4233 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */ 4234 return 0; 4235 4236 if (!sd_do_start_stop(sdkp->device, runtime)) { 4237 sdkp->suspended = false; 4238 return 0; 4239 } 4240 4241 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n"); 4242 ret = sd_start_stop_device(sdkp, 1); 4243 if (!ret) { 4244 sd_resume(dev); 4245 sdkp->suspended = false; 4246 } 4247 4248 return ret; 4249 } 4250 4251 static int sd_resume_system(struct device *dev) 4252 { 4253 if (pm_runtime_suspended(dev)) { 4254 struct scsi_disk *sdkp = dev_get_drvdata(dev); 4255 struct scsi_device *sdp = sdkp ? sdkp->device : NULL; 4256 4257 if (sdp && sdp->force_runtime_start_on_system_start) 4258 pm_request_resume(dev); 4259 4260 return 0; 4261 } 4262 4263 return sd_resume_common(dev, false); 4264 } 4265 4266 static int sd_resume_runtime(struct device *dev) 4267 { 4268 struct scsi_disk *sdkp = dev_get_drvdata(dev); 4269 struct scsi_device *sdp; 4270 4271 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */ 4272 return 0; 4273 4274 sdp = sdkp->device; 4275 4276 if (sdp->ignore_media_change) { 4277 /* clear the device's sense data */ 4278 static const u8 cmd[10] = { REQUEST_SENSE }; 4279 const struct scsi_exec_args exec_args = { 4280 .req_flags = BLK_MQ_REQ_PM, 4281 }; 4282 4283 if (scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, 4284 sdp->request_queue->rq_timeout, 1, 4285 &exec_args)) 4286 sd_printk(KERN_NOTICE, sdkp, 4287 "Failed to clear sense data\n"); 4288 } 4289 4290 return sd_resume_common(dev, true); 4291 } 4292 4293 static const struct dev_pm_ops sd_pm_ops = { 4294 .suspend = sd_suspend_system, 4295 .resume = sd_resume_system, 4296 .poweroff = sd_suspend_system, 4297 .restore = sd_resume_system, 4298 .runtime_suspend = sd_suspend_runtime, 4299 .runtime_resume = sd_resume_runtime, 4300 }; 4301 4302 static struct scsi_driver sd_template = { 4303 .gendrv = { 4304 .name = "sd", 4305 .probe = sd_probe, 4306 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 4307 .remove = sd_remove, 4308 .shutdown = sd_shutdown, 4309 .pm = &sd_pm_ops, 4310 }, 4311 .rescan = sd_rescan, 4312 .resume = sd_resume, 4313 .init_command = sd_init_command, 4314 .uninit_command = sd_uninit_command, 4315 .done = sd_done, 4316 .eh_action = sd_eh_action, 4317 .eh_reset = sd_eh_reset, 4318 }; 4319 4320 /** 4321 * init_sd - entry point for this driver (both when built in or when 4322 * a module). 4323 * 4324 * Note: this function registers this driver with the scsi mid-level. 4325 **/ 4326 static int __init init_sd(void) 4327 { 4328 int majors = 0, i, err; 4329 4330 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n")); 4331 4332 for (i = 0; i < SD_MAJORS; i++) { 4333 if (__register_blkdev(sd_major(i), "sd", sd_default_probe)) 4334 continue; 4335 majors++; 4336 } 4337 4338 if (!majors) 4339 return -ENODEV; 4340 4341 err = class_register(&sd_disk_class); 4342 if (err) 4343 goto err_out; 4344 4345 sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0); 4346 if (!sd_page_pool) { 4347 printk(KERN_ERR "sd: can't init discard page pool\n"); 4348 err = -ENOMEM; 4349 goto err_out_class; 4350 } 4351 4352 err = scsi_register_driver(&sd_template.gendrv); 4353 if (err) 4354 goto err_out_driver; 4355 4356 return 0; 4357 4358 err_out_driver: 4359 mempool_destroy(sd_page_pool); 4360 err_out_class: 4361 class_unregister(&sd_disk_class); 4362 err_out: 4363 for (i = 0; i < SD_MAJORS; i++) 4364 unregister_blkdev(sd_major(i), "sd"); 4365 return err; 4366 } 4367 4368 /** 4369 * exit_sd - exit point for this driver (when it is a module). 4370 * 4371 * Note: this function unregisters this driver from the scsi mid-level. 4372 **/ 4373 static void __exit exit_sd(void) 4374 { 4375 int i; 4376 4377 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n")); 4378 4379 scsi_unregister_driver(&sd_template.gendrv); 4380 mempool_destroy(sd_page_pool); 4381 4382 class_unregister(&sd_disk_class); 4383 4384 for (i = 0; i < SD_MAJORS; i++) 4385 unregister_blkdev(sd_major(i), "sd"); 4386 } 4387 4388 module_init(init_sd); 4389 module_exit(exit_sd); 4390 4391 void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr) 4392 { 4393 scsi_print_sense_hdr(sdkp->device, 4394 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr); 4395 } 4396 4397 void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result) 4398 { 4399 const char *hb_string = scsi_hostbyte_string(result); 4400 4401 if (hb_string) 4402 sd_printk(KERN_INFO, sdkp, 4403 "%s: Result: hostbyte=%s driverbyte=%s\n", msg, 4404 hb_string ? hb_string : "invalid", 4405 "DRIVER_OK"); 4406 else 4407 sd_printk(KERN_INFO, sdkp, 4408 "%s: Result: hostbyte=0x%02x driverbyte=%s\n", 4409 msg, host_byte(result), "DRIVER_OK"); 4410 } 4411