1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * sd.c Copyright (C) 1992 Drew Eckhardt 4 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale 5 * 6 * Linux scsi disk driver 7 * Initial versions: Drew Eckhardt 8 * Subsequent revisions: Eric Youngdale 9 * Modification history: 10 * - Drew Eckhardt <drew@colorado.edu> original 11 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 12 * outstanding request, and other enhancements. 13 * Support loadable low-level scsi drivers. 14 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 15 * eight major numbers. 16 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs. 17 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 18 * sd_init and cleanups. 19 * - Alex Davis <letmein@erols.com> Fix problem where partition info 20 * not being read in sd_open. Fix problem where removable media 21 * could be ejected after sd_open. 22 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x 23 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 24 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 25 * Support 32k/1M disks. 26 * 27 * Logging policy (needs CONFIG_SCSI_LOGGING defined): 28 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2 29 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1 30 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1 31 * - entering other commands: SCSI_LOG_HLQUEUE level 3 32 * Note: when the logging level is set by the user, it must be greater 33 * than the level indicated above to trigger output. 34 */ 35 36 #include <linux/module.h> 37 #include <linux/fs.h> 38 #include <linux/kernel.h> 39 #include <linux/mm.h> 40 #include <linux/bio.h> 41 #include <linux/hdreg.h> 42 #include <linux/errno.h> 43 #include <linux/idr.h> 44 #include <linux/interrupt.h> 45 #include <linux/init.h> 46 #include <linux/blkdev.h> 47 #include <linux/blkpg.h> 48 #include <linux/blk-pm.h> 49 #include <linux/delay.h> 50 #include <linux/major.h> 51 #include <linux/mutex.h> 52 #include <linux/string_helpers.h> 53 #include <linux/slab.h> 54 #include <linux/sed-opal.h> 55 #include <linux/pm_runtime.h> 56 #include <linux/pr.h> 57 #include <linux/t10-pi.h> 58 #include <linux/uaccess.h> 59 #include <asm/unaligned.h> 60 61 #include <scsi/scsi.h> 62 #include <scsi/scsi_cmnd.h> 63 #include <scsi/scsi_dbg.h> 64 #include <scsi/scsi_device.h> 65 #include <scsi/scsi_driver.h> 66 #include <scsi/scsi_eh.h> 67 #include <scsi/scsi_host.h> 68 #include <scsi/scsi_ioctl.h> 69 #include <scsi/scsicam.h> 70 71 #include "sd.h" 72 #include "scsi_priv.h" 73 #include "scsi_logging.h" 74 75 MODULE_AUTHOR("Eric Youngdale"); 76 MODULE_DESCRIPTION("SCSI disk (sd) driver"); 77 MODULE_LICENSE("GPL"); 78 79 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR); 80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR); 81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR); 82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR); 83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR); 84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR); 85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR); 86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR); 87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR); 88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR); 89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR); 90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR); 91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR); 92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR); 93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR); 94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR); 95 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK); 96 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD); 97 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC); 98 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC); 99 100 #define SD_MINORS 16 101 102 static void sd_config_discard(struct scsi_disk *, unsigned int); 103 static void sd_config_write_same(struct scsi_disk *); 104 static int sd_revalidate_disk(struct gendisk *); 105 static void sd_unlock_native_capacity(struct gendisk *disk); 106 static int sd_probe(struct device *); 107 static int sd_remove(struct device *); 108 static void sd_shutdown(struct device *); 109 static int sd_suspend_system(struct device *); 110 static int sd_suspend_runtime(struct device *); 111 static int sd_resume_system(struct device *); 112 static int sd_resume_runtime(struct device *); 113 static void sd_rescan(struct device *); 114 static blk_status_t sd_init_command(struct scsi_cmnd *SCpnt); 115 static void sd_uninit_command(struct scsi_cmnd *SCpnt); 116 static int sd_done(struct scsi_cmnd *); 117 static void sd_eh_reset(struct scsi_cmnd *); 118 static int sd_eh_action(struct scsi_cmnd *, int); 119 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer); 120 static void scsi_disk_release(struct device *cdev); 121 122 static DEFINE_IDA(sd_index_ida); 123 124 static mempool_t *sd_page_pool; 125 static struct lock_class_key sd_bio_compl_lkclass; 126 127 static const char *sd_cache_types[] = { 128 "write through", "none", "write back", 129 "write back, no read (daft)" 130 }; 131 132 static void sd_set_flush_flag(struct scsi_disk *sdkp) 133 { 134 bool wc = false, fua = false; 135 136 if (sdkp->WCE) { 137 wc = true; 138 if (sdkp->DPOFUA) 139 fua = true; 140 } 141 142 blk_queue_write_cache(sdkp->disk->queue, wc, fua); 143 } 144 145 static ssize_t 146 cache_type_store(struct device *dev, struct device_attribute *attr, 147 const char *buf, size_t count) 148 { 149 int ct, rcd, wce, sp; 150 struct scsi_disk *sdkp = to_scsi_disk(dev); 151 struct scsi_device *sdp = sdkp->device; 152 char buffer[64]; 153 char *buffer_data; 154 struct scsi_mode_data data; 155 struct scsi_sense_hdr sshdr; 156 static const char temp[] = "temporary "; 157 int len; 158 159 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 160 /* no cache control on RBC devices; theoretically they 161 * can do it, but there's probably so many exceptions 162 * it's not worth the risk */ 163 return -EINVAL; 164 165 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) { 166 buf += sizeof(temp) - 1; 167 sdkp->cache_override = 1; 168 } else { 169 sdkp->cache_override = 0; 170 } 171 172 ct = sysfs_match_string(sd_cache_types, buf); 173 if (ct < 0) 174 return -EINVAL; 175 176 rcd = ct & 0x01 ? 1 : 0; 177 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0; 178 179 if (sdkp->cache_override) { 180 sdkp->WCE = wce; 181 sdkp->RCD = rcd; 182 sd_set_flush_flag(sdkp); 183 return count; 184 } 185 186 if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT, 187 sdkp->max_retries, &data, NULL)) 188 return -EINVAL; 189 len = min_t(size_t, sizeof(buffer), data.length - data.header_length - 190 data.block_descriptor_length); 191 buffer_data = buffer + data.header_length + 192 data.block_descriptor_length; 193 buffer_data[2] &= ~0x05; 194 buffer_data[2] |= wce << 2 | rcd; 195 sp = buffer_data[0] & 0x80 ? 1 : 0; 196 buffer_data[0] &= ~0x80; 197 198 /* 199 * Ensure WP, DPOFUA, and RESERVED fields are cleared in 200 * received mode parameter buffer before doing MODE SELECT. 201 */ 202 data.device_specific = 0; 203 204 if (scsi_mode_select(sdp, 1, sp, buffer_data, len, SD_TIMEOUT, 205 sdkp->max_retries, &data, &sshdr)) { 206 if (scsi_sense_valid(&sshdr)) 207 sd_print_sense_hdr(sdkp, &sshdr); 208 return -EINVAL; 209 } 210 sd_revalidate_disk(sdkp->disk); 211 return count; 212 } 213 214 static ssize_t 215 manage_start_stop_show(struct device *dev, struct device_attribute *attr, 216 char *buf) 217 { 218 struct scsi_disk *sdkp = to_scsi_disk(dev); 219 struct scsi_device *sdp = sdkp->device; 220 221 return sprintf(buf, "%u\n", sdp->manage_start_stop); 222 } 223 224 static ssize_t 225 manage_start_stop_store(struct device *dev, struct device_attribute *attr, 226 const char *buf, size_t count) 227 { 228 struct scsi_disk *sdkp = to_scsi_disk(dev); 229 struct scsi_device *sdp = sdkp->device; 230 bool v; 231 232 if (!capable(CAP_SYS_ADMIN)) 233 return -EACCES; 234 235 if (kstrtobool(buf, &v)) 236 return -EINVAL; 237 238 sdp->manage_start_stop = v; 239 240 return count; 241 } 242 static DEVICE_ATTR_RW(manage_start_stop); 243 244 static ssize_t 245 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf) 246 { 247 struct scsi_disk *sdkp = to_scsi_disk(dev); 248 249 return sprintf(buf, "%u\n", sdkp->device->allow_restart); 250 } 251 252 static ssize_t 253 allow_restart_store(struct device *dev, struct device_attribute *attr, 254 const char *buf, size_t count) 255 { 256 bool v; 257 struct scsi_disk *sdkp = to_scsi_disk(dev); 258 struct scsi_device *sdp = sdkp->device; 259 260 if (!capable(CAP_SYS_ADMIN)) 261 return -EACCES; 262 263 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 264 return -EINVAL; 265 266 if (kstrtobool(buf, &v)) 267 return -EINVAL; 268 269 sdp->allow_restart = v; 270 271 return count; 272 } 273 static DEVICE_ATTR_RW(allow_restart); 274 275 static ssize_t 276 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf) 277 { 278 struct scsi_disk *sdkp = to_scsi_disk(dev); 279 int ct = sdkp->RCD + 2*sdkp->WCE; 280 281 return sprintf(buf, "%s\n", sd_cache_types[ct]); 282 } 283 static DEVICE_ATTR_RW(cache_type); 284 285 static ssize_t 286 FUA_show(struct device *dev, struct device_attribute *attr, char *buf) 287 { 288 struct scsi_disk *sdkp = to_scsi_disk(dev); 289 290 return sprintf(buf, "%u\n", sdkp->DPOFUA); 291 } 292 static DEVICE_ATTR_RO(FUA); 293 294 static ssize_t 295 protection_type_show(struct device *dev, struct device_attribute *attr, 296 char *buf) 297 { 298 struct scsi_disk *sdkp = to_scsi_disk(dev); 299 300 return sprintf(buf, "%u\n", sdkp->protection_type); 301 } 302 303 static ssize_t 304 protection_type_store(struct device *dev, struct device_attribute *attr, 305 const char *buf, size_t count) 306 { 307 struct scsi_disk *sdkp = to_scsi_disk(dev); 308 unsigned int val; 309 int err; 310 311 if (!capable(CAP_SYS_ADMIN)) 312 return -EACCES; 313 314 err = kstrtouint(buf, 10, &val); 315 316 if (err) 317 return err; 318 319 if (val <= T10_PI_TYPE3_PROTECTION) 320 sdkp->protection_type = val; 321 322 return count; 323 } 324 static DEVICE_ATTR_RW(protection_type); 325 326 static ssize_t 327 protection_mode_show(struct device *dev, struct device_attribute *attr, 328 char *buf) 329 { 330 struct scsi_disk *sdkp = to_scsi_disk(dev); 331 struct scsi_device *sdp = sdkp->device; 332 unsigned int dif, dix; 333 334 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type); 335 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type); 336 337 if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) { 338 dif = 0; 339 dix = 1; 340 } 341 342 if (!dif && !dix) 343 return sprintf(buf, "none\n"); 344 345 return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif); 346 } 347 static DEVICE_ATTR_RO(protection_mode); 348 349 static ssize_t 350 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf) 351 { 352 struct scsi_disk *sdkp = to_scsi_disk(dev); 353 354 return sprintf(buf, "%u\n", sdkp->ATO); 355 } 356 static DEVICE_ATTR_RO(app_tag_own); 357 358 static ssize_t 359 thin_provisioning_show(struct device *dev, struct device_attribute *attr, 360 char *buf) 361 { 362 struct scsi_disk *sdkp = to_scsi_disk(dev); 363 364 return sprintf(buf, "%u\n", sdkp->lbpme); 365 } 366 static DEVICE_ATTR_RO(thin_provisioning); 367 368 /* sysfs_match_string() requires dense arrays */ 369 static const char *lbp_mode[] = { 370 [SD_LBP_FULL] = "full", 371 [SD_LBP_UNMAP] = "unmap", 372 [SD_LBP_WS16] = "writesame_16", 373 [SD_LBP_WS10] = "writesame_10", 374 [SD_LBP_ZERO] = "writesame_zero", 375 [SD_LBP_DISABLE] = "disabled", 376 }; 377 378 static ssize_t 379 provisioning_mode_show(struct device *dev, struct device_attribute *attr, 380 char *buf) 381 { 382 struct scsi_disk *sdkp = to_scsi_disk(dev); 383 384 return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]); 385 } 386 387 static ssize_t 388 provisioning_mode_store(struct device *dev, struct device_attribute *attr, 389 const char *buf, size_t count) 390 { 391 struct scsi_disk *sdkp = to_scsi_disk(dev); 392 struct scsi_device *sdp = sdkp->device; 393 int mode; 394 395 if (!capable(CAP_SYS_ADMIN)) 396 return -EACCES; 397 398 if (sd_is_zoned(sdkp)) { 399 sd_config_discard(sdkp, SD_LBP_DISABLE); 400 return count; 401 } 402 403 if (sdp->type != TYPE_DISK) 404 return -EINVAL; 405 406 mode = sysfs_match_string(lbp_mode, buf); 407 if (mode < 0) 408 return -EINVAL; 409 410 sd_config_discard(sdkp, mode); 411 412 return count; 413 } 414 static DEVICE_ATTR_RW(provisioning_mode); 415 416 /* sysfs_match_string() requires dense arrays */ 417 static const char *zeroing_mode[] = { 418 [SD_ZERO_WRITE] = "write", 419 [SD_ZERO_WS] = "writesame", 420 [SD_ZERO_WS16_UNMAP] = "writesame_16_unmap", 421 [SD_ZERO_WS10_UNMAP] = "writesame_10_unmap", 422 }; 423 424 static ssize_t 425 zeroing_mode_show(struct device *dev, struct device_attribute *attr, 426 char *buf) 427 { 428 struct scsi_disk *sdkp = to_scsi_disk(dev); 429 430 return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]); 431 } 432 433 static ssize_t 434 zeroing_mode_store(struct device *dev, struct device_attribute *attr, 435 const char *buf, size_t count) 436 { 437 struct scsi_disk *sdkp = to_scsi_disk(dev); 438 int mode; 439 440 if (!capable(CAP_SYS_ADMIN)) 441 return -EACCES; 442 443 mode = sysfs_match_string(zeroing_mode, buf); 444 if (mode < 0) 445 return -EINVAL; 446 447 sdkp->zeroing_mode = mode; 448 449 return count; 450 } 451 static DEVICE_ATTR_RW(zeroing_mode); 452 453 static ssize_t 454 max_medium_access_timeouts_show(struct device *dev, 455 struct device_attribute *attr, char *buf) 456 { 457 struct scsi_disk *sdkp = to_scsi_disk(dev); 458 459 return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts); 460 } 461 462 static ssize_t 463 max_medium_access_timeouts_store(struct device *dev, 464 struct device_attribute *attr, const char *buf, 465 size_t count) 466 { 467 struct scsi_disk *sdkp = to_scsi_disk(dev); 468 int err; 469 470 if (!capable(CAP_SYS_ADMIN)) 471 return -EACCES; 472 473 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts); 474 475 return err ? err : count; 476 } 477 static DEVICE_ATTR_RW(max_medium_access_timeouts); 478 479 static ssize_t 480 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr, 481 char *buf) 482 { 483 struct scsi_disk *sdkp = to_scsi_disk(dev); 484 485 return sprintf(buf, "%u\n", sdkp->max_ws_blocks); 486 } 487 488 static ssize_t 489 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr, 490 const char *buf, size_t count) 491 { 492 struct scsi_disk *sdkp = to_scsi_disk(dev); 493 struct scsi_device *sdp = sdkp->device; 494 unsigned long max; 495 int err; 496 497 if (!capable(CAP_SYS_ADMIN)) 498 return -EACCES; 499 500 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 501 return -EINVAL; 502 503 err = kstrtoul(buf, 10, &max); 504 505 if (err) 506 return err; 507 508 if (max == 0) 509 sdp->no_write_same = 1; 510 else if (max <= SD_MAX_WS16_BLOCKS) { 511 sdp->no_write_same = 0; 512 sdkp->max_ws_blocks = max; 513 } 514 515 sd_config_write_same(sdkp); 516 517 return count; 518 } 519 static DEVICE_ATTR_RW(max_write_same_blocks); 520 521 static ssize_t 522 zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf) 523 { 524 struct scsi_disk *sdkp = to_scsi_disk(dev); 525 526 if (sdkp->device->type == TYPE_ZBC) 527 return sprintf(buf, "host-managed\n"); 528 if (sdkp->zoned == 1) 529 return sprintf(buf, "host-aware\n"); 530 if (sdkp->zoned == 2) 531 return sprintf(buf, "drive-managed\n"); 532 return sprintf(buf, "none\n"); 533 } 534 static DEVICE_ATTR_RO(zoned_cap); 535 536 static ssize_t 537 max_retries_store(struct device *dev, struct device_attribute *attr, 538 const char *buf, size_t count) 539 { 540 struct scsi_disk *sdkp = to_scsi_disk(dev); 541 struct scsi_device *sdev = sdkp->device; 542 int retries, err; 543 544 err = kstrtoint(buf, 10, &retries); 545 if (err) 546 return err; 547 548 if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) { 549 sdkp->max_retries = retries; 550 return count; 551 } 552 553 sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n", 554 SD_MAX_RETRIES); 555 return -EINVAL; 556 } 557 558 static ssize_t 559 max_retries_show(struct device *dev, struct device_attribute *attr, 560 char *buf) 561 { 562 struct scsi_disk *sdkp = to_scsi_disk(dev); 563 564 return sprintf(buf, "%d\n", sdkp->max_retries); 565 } 566 567 static DEVICE_ATTR_RW(max_retries); 568 569 static struct attribute *sd_disk_attrs[] = { 570 &dev_attr_cache_type.attr, 571 &dev_attr_FUA.attr, 572 &dev_attr_allow_restart.attr, 573 &dev_attr_manage_start_stop.attr, 574 &dev_attr_protection_type.attr, 575 &dev_attr_protection_mode.attr, 576 &dev_attr_app_tag_own.attr, 577 &dev_attr_thin_provisioning.attr, 578 &dev_attr_provisioning_mode.attr, 579 &dev_attr_zeroing_mode.attr, 580 &dev_attr_max_write_same_blocks.attr, 581 &dev_attr_max_medium_access_timeouts.attr, 582 &dev_attr_zoned_cap.attr, 583 &dev_attr_max_retries.attr, 584 NULL, 585 }; 586 ATTRIBUTE_GROUPS(sd_disk); 587 588 static struct class sd_disk_class = { 589 .name = "scsi_disk", 590 .owner = THIS_MODULE, 591 .dev_release = scsi_disk_release, 592 .dev_groups = sd_disk_groups, 593 }; 594 595 static const struct dev_pm_ops sd_pm_ops = { 596 .suspend = sd_suspend_system, 597 .resume = sd_resume_system, 598 .poweroff = sd_suspend_system, 599 .restore = sd_resume_system, 600 .runtime_suspend = sd_suspend_runtime, 601 .runtime_resume = sd_resume_runtime, 602 }; 603 604 static struct scsi_driver sd_template = { 605 .gendrv = { 606 .name = "sd", 607 .owner = THIS_MODULE, 608 .probe = sd_probe, 609 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 610 .remove = sd_remove, 611 .shutdown = sd_shutdown, 612 .pm = &sd_pm_ops, 613 }, 614 .rescan = sd_rescan, 615 .init_command = sd_init_command, 616 .uninit_command = sd_uninit_command, 617 .done = sd_done, 618 .eh_action = sd_eh_action, 619 .eh_reset = sd_eh_reset, 620 }; 621 622 /* 623 * Don't request a new module, as that could deadlock in multipath 624 * environment. 625 */ 626 static void sd_default_probe(dev_t devt) 627 { 628 } 629 630 /* 631 * Device no to disk mapping: 632 * 633 * major disc2 disc p1 634 * |............|.............|....|....| <- dev_t 635 * 31 20 19 8 7 4 3 0 636 * 637 * Inside a major, we have 16k disks, however mapped non- 638 * contiguously. The first 16 disks are for major0, the next 639 * ones with major1, ... Disk 256 is for major0 again, disk 272 640 * for major1, ... 641 * As we stay compatible with our numbering scheme, we can reuse 642 * the well-know SCSI majors 8, 65--71, 136--143. 643 */ 644 static int sd_major(int major_idx) 645 { 646 switch (major_idx) { 647 case 0: 648 return SCSI_DISK0_MAJOR; 649 case 1 ... 7: 650 return SCSI_DISK1_MAJOR + major_idx - 1; 651 case 8 ... 15: 652 return SCSI_DISK8_MAJOR + major_idx - 8; 653 default: 654 BUG(); 655 return 0; /* shut up gcc */ 656 } 657 } 658 659 #ifdef CONFIG_BLK_SED_OPAL 660 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, 661 size_t len, bool send) 662 { 663 struct scsi_disk *sdkp = data; 664 struct scsi_device *sdev = sdkp->device; 665 u8 cdb[12] = { 0, }; 666 const struct scsi_exec_args exec_args = { 667 .req_flags = BLK_MQ_REQ_PM, 668 }; 669 int ret; 670 671 cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN; 672 cdb[1] = secp; 673 put_unaligned_be16(spsp, &cdb[2]); 674 put_unaligned_be32(len, &cdb[6]); 675 676 ret = scsi_execute_cmd(sdev, cdb, send ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 677 buffer, len, SD_TIMEOUT, sdkp->max_retries, 678 &exec_args); 679 return ret <= 0 ? ret : -EIO; 680 } 681 #endif /* CONFIG_BLK_SED_OPAL */ 682 683 /* 684 * Look up the DIX operation based on whether the command is read or 685 * write and whether dix and dif are enabled. 686 */ 687 static unsigned int sd_prot_op(bool write, bool dix, bool dif) 688 { 689 /* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */ 690 static const unsigned int ops[] = { /* wrt dix dif */ 691 SCSI_PROT_NORMAL, /* 0 0 0 */ 692 SCSI_PROT_READ_STRIP, /* 0 0 1 */ 693 SCSI_PROT_READ_INSERT, /* 0 1 0 */ 694 SCSI_PROT_READ_PASS, /* 0 1 1 */ 695 SCSI_PROT_NORMAL, /* 1 0 0 */ 696 SCSI_PROT_WRITE_INSERT, /* 1 0 1 */ 697 SCSI_PROT_WRITE_STRIP, /* 1 1 0 */ 698 SCSI_PROT_WRITE_PASS, /* 1 1 1 */ 699 }; 700 701 return ops[write << 2 | dix << 1 | dif]; 702 } 703 704 /* 705 * Returns a mask of the protection flags that are valid for a given DIX 706 * operation. 707 */ 708 static unsigned int sd_prot_flag_mask(unsigned int prot_op) 709 { 710 static const unsigned int flag_mask[] = { 711 [SCSI_PROT_NORMAL] = 0, 712 713 [SCSI_PROT_READ_STRIP] = SCSI_PROT_TRANSFER_PI | 714 SCSI_PROT_GUARD_CHECK | 715 SCSI_PROT_REF_CHECK | 716 SCSI_PROT_REF_INCREMENT, 717 718 [SCSI_PROT_READ_INSERT] = SCSI_PROT_REF_INCREMENT | 719 SCSI_PROT_IP_CHECKSUM, 720 721 [SCSI_PROT_READ_PASS] = SCSI_PROT_TRANSFER_PI | 722 SCSI_PROT_GUARD_CHECK | 723 SCSI_PROT_REF_CHECK | 724 SCSI_PROT_REF_INCREMENT | 725 SCSI_PROT_IP_CHECKSUM, 726 727 [SCSI_PROT_WRITE_INSERT] = SCSI_PROT_TRANSFER_PI | 728 SCSI_PROT_REF_INCREMENT, 729 730 [SCSI_PROT_WRITE_STRIP] = SCSI_PROT_GUARD_CHECK | 731 SCSI_PROT_REF_CHECK | 732 SCSI_PROT_REF_INCREMENT | 733 SCSI_PROT_IP_CHECKSUM, 734 735 [SCSI_PROT_WRITE_PASS] = SCSI_PROT_TRANSFER_PI | 736 SCSI_PROT_GUARD_CHECK | 737 SCSI_PROT_REF_CHECK | 738 SCSI_PROT_REF_INCREMENT | 739 SCSI_PROT_IP_CHECKSUM, 740 }; 741 742 return flag_mask[prot_op]; 743 } 744 745 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd, 746 unsigned int dix, unsigned int dif) 747 { 748 struct request *rq = scsi_cmd_to_rq(scmd); 749 struct bio *bio = rq->bio; 750 unsigned int prot_op = sd_prot_op(rq_data_dir(rq), dix, dif); 751 unsigned int protect = 0; 752 753 if (dix) { /* DIX Type 0, 1, 2, 3 */ 754 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM)) 755 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM; 756 757 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 758 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK; 759 } 760 761 if (dif != T10_PI_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */ 762 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT; 763 764 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 765 scmd->prot_flags |= SCSI_PROT_REF_CHECK; 766 } 767 768 if (dif) { /* DIX/DIF Type 1, 2, 3 */ 769 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI; 770 771 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK)) 772 protect = 3 << 5; /* Disable target PI checking */ 773 else 774 protect = 1 << 5; /* Enable target PI checking */ 775 } 776 777 scsi_set_prot_op(scmd, prot_op); 778 scsi_set_prot_type(scmd, dif); 779 scmd->prot_flags &= sd_prot_flag_mask(prot_op); 780 781 return protect; 782 } 783 784 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode) 785 { 786 struct request_queue *q = sdkp->disk->queue; 787 unsigned int logical_block_size = sdkp->device->sector_size; 788 unsigned int max_blocks = 0; 789 790 q->limits.discard_alignment = 791 sdkp->unmap_alignment * logical_block_size; 792 q->limits.discard_granularity = 793 max(sdkp->physical_block_size, 794 sdkp->unmap_granularity * logical_block_size); 795 sdkp->provisioning_mode = mode; 796 797 switch (mode) { 798 799 case SD_LBP_FULL: 800 case SD_LBP_DISABLE: 801 blk_queue_max_discard_sectors(q, 0); 802 return; 803 804 case SD_LBP_UNMAP: 805 max_blocks = min_not_zero(sdkp->max_unmap_blocks, 806 (u32)SD_MAX_WS16_BLOCKS); 807 break; 808 809 case SD_LBP_WS16: 810 if (sdkp->device->unmap_limit_for_ws) 811 max_blocks = sdkp->max_unmap_blocks; 812 else 813 max_blocks = sdkp->max_ws_blocks; 814 815 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS); 816 break; 817 818 case SD_LBP_WS10: 819 if (sdkp->device->unmap_limit_for_ws) 820 max_blocks = sdkp->max_unmap_blocks; 821 else 822 max_blocks = sdkp->max_ws_blocks; 823 824 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS); 825 break; 826 827 case SD_LBP_ZERO: 828 max_blocks = min_not_zero(sdkp->max_ws_blocks, 829 (u32)SD_MAX_WS10_BLOCKS); 830 break; 831 } 832 833 blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9)); 834 } 835 836 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd) 837 { 838 struct scsi_device *sdp = cmd->device; 839 struct request *rq = scsi_cmd_to_rq(cmd); 840 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 841 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 842 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 843 unsigned int data_len = 24; 844 char *buf; 845 846 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 847 if (!rq->special_vec.bv_page) 848 return BLK_STS_RESOURCE; 849 clear_highpage(rq->special_vec.bv_page); 850 rq->special_vec.bv_offset = 0; 851 rq->special_vec.bv_len = data_len; 852 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 853 854 cmd->cmd_len = 10; 855 cmd->cmnd[0] = UNMAP; 856 cmd->cmnd[8] = 24; 857 858 buf = bvec_virt(&rq->special_vec); 859 put_unaligned_be16(6 + 16, &buf[0]); 860 put_unaligned_be16(16, &buf[2]); 861 put_unaligned_be64(lba, &buf[8]); 862 put_unaligned_be32(nr_blocks, &buf[16]); 863 864 cmd->allowed = sdkp->max_retries; 865 cmd->transfersize = data_len; 866 rq->timeout = SD_TIMEOUT; 867 868 return scsi_alloc_sgtables(cmd); 869 } 870 871 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd, 872 bool unmap) 873 { 874 struct scsi_device *sdp = cmd->device; 875 struct request *rq = scsi_cmd_to_rq(cmd); 876 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 877 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 878 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 879 u32 data_len = sdp->sector_size; 880 881 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 882 if (!rq->special_vec.bv_page) 883 return BLK_STS_RESOURCE; 884 clear_highpage(rq->special_vec.bv_page); 885 rq->special_vec.bv_offset = 0; 886 rq->special_vec.bv_len = data_len; 887 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 888 889 cmd->cmd_len = 16; 890 cmd->cmnd[0] = WRITE_SAME_16; 891 if (unmap) 892 cmd->cmnd[1] = 0x8; /* UNMAP */ 893 put_unaligned_be64(lba, &cmd->cmnd[2]); 894 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 895 896 cmd->allowed = sdkp->max_retries; 897 cmd->transfersize = data_len; 898 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 899 900 return scsi_alloc_sgtables(cmd); 901 } 902 903 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd, 904 bool unmap) 905 { 906 struct scsi_device *sdp = cmd->device; 907 struct request *rq = scsi_cmd_to_rq(cmd); 908 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 909 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 910 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 911 u32 data_len = sdp->sector_size; 912 913 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 914 if (!rq->special_vec.bv_page) 915 return BLK_STS_RESOURCE; 916 clear_highpage(rq->special_vec.bv_page); 917 rq->special_vec.bv_offset = 0; 918 rq->special_vec.bv_len = data_len; 919 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 920 921 cmd->cmd_len = 10; 922 cmd->cmnd[0] = WRITE_SAME; 923 if (unmap) 924 cmd->cmnd[1] = 0x8; /* UNMAP */ 925 put_unaligned_be32(lba, &cmd->cmnd[2]); 926 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 927 928 cmd->allowed = sdkp->max_retries; 929 cmd->transfersize = data_len; 930 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 931 932 return scsi_alloc_sgtables(cmd); 933 } 934 935 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd) 936 { 937 struct request *rq = scsi_cmd_to_rq(cmd); 938 struct scsi_device *sdp = cmd->device; 939 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 940 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 941 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 942 943 if (!(rq->cmd_flags & REQ_NOUNMAP)) { 944 switch (sdkp->zeroing_mode) { 945 case SD_ZERO_WS16_UNMAP: 946 return sd_setup_write_same16_cmnd(cmd, true); 947 case SD_ZERO_WS10_UNMAP: 948 return sd_setup_write_same10_cmnd(cmd, true); 949 } 950 } 951 952 if (sdp->no_write_same) { 953 rq->rq_flags |= RQF_QUIET; 954 return BLK_STS_TARGET; 955 } 956 957 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) 958 return sd_setup_write_same16_cmnd(cmd, false); 959 960 return sd_setup_write_same10_cmnd(cmd, false); 961 } 962 963 static void sd_config_write_same(struct scsi_disk *sdkp) 964 { 965 struct request_queue *q = sdkp->disk->queue; 966 unsigned int logical_block_size = sdkp->device->sector_size; 967 968 if (sdkp->device->no_write_same) { 969 sdkp->max_ws_blocks = 0; 970 goto out; 971 } 972 973 /* Some devices can not handle block counts above 0xffff despite 974 * supporting WRITE SAME(16). Consequently we default to 64k 975 * blocks per I/O unless the device explicitly advertises a 976 * bigger limit. 977 */ 978 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS) 979 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 980 (u32)SD_MAX_WS16_BLOCKS); 981 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes) 982 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 983 (u32)SD_MAX_WS10_BLOCKS); 984 else { 985 sdkp->device->no_write_same = 1; 986 sdkp->max_ws_blocks = 0; 987 } 988 989 if (sdkp->lbprz && sdkp->lbpws) 990 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP; 991 else if (sdkp->lbprz && sdkp->lbpws10) 992 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP; 993 else if (sdkp->max_ws_blocks) 994 sdkp->zeroing_mode = SD_ZERO_WS; 995 else 996 sdkp->zeroing_mode = SD_ZERO_WRITE; 997 998 if (sdkp->max_ws_blocks && 999 sdkp->physical_block_size > logical_block_size) { 1000 /* 1001 * Reporting a maximum number of blocks that is not aligned 1002 * on the device physical size would cause a large write same 1003 * request to be split into physically unaligned chunks by 1004 * __blkdev_issue_write_zeroes() even if the caller of this 1005 * functions took care to align the large request. So make sure 1006 * the maximum reported is aligned to the device physical block 1007 * size. This is only an optional optimization for regular 1008 * disks, but this is mandatory to avoid failure of large write 1009 * same requests directed at sequential write required zones of 1010 * host-managed ZBC disks. 1011 */ 1012 sdkp->max_ws_blocks = 1013 round_down(sdkp->max_ws_blocks, 1014 bytes_to_logical(sdkp->device, 1015 sdkp->physical_block_size)); 1016 } 1017 1018 out: 1019 blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks * 1020 (logical_block_size >> 9)); 1021 } 1022 1023 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd) 1024 { 1025 struct request *rq = scsi_cmd_to_rq(cmd); 1026 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 1027 1028 /* flush requests don't perform I/O, zero the S/G table */ 1029 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1030 1031 if (cmd->device->use_16_for_sync) { 1032 cmd->cmnd[0] = SYNCHRONIZE_CACHE_16; 1033 cmd->cmd_len = 16; 1034 } else { 1035 cmd->cmnd[0] = SYNCHRONIZE_CACHE; 1036 cmd->cmd_len = 10; 1037 } 1038 cmd->transfersize = 0; 1039 cmd->allowed = sdkp->max_retries; 1040 1041 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER; 1042 return BLK_STS_OK; 1043 } 1044 1045 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write, 1046 sector_t lba, unsigned int nr_blocks, 1047 unsigned char flags) 1048 { 1049 cmd->cmd_len = SD_EXT_CDB_SIZE; 1050 cmd->cmnd[0] = VARIABLE_LENGTH_CMD; 1051 cmd->cmnd[7] = 0x18; /* Additional CDB len */ 1052 cmd->cmnd[9] = write ? WRITE_32 : READ_32; 1053 cmd->cmnd[10] = flags; 1054 put_unaligned_be64(lba, &cmd->cmnd[12]); 1055 put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */ 1056 put_unaligned_be32(nr_blocks, &cmd->cmnd[28]); 1057 1058 return BLK_STS_OK; 1059 } 1060 1061 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write, 1062 sector_t lba, unsigned int nr_blocks, 1063 unsigned char flags) 1064 { 1065 cmd->cmd_len = 16; 1066 cmd->cmnd[0] = write ? WRITE_16 : READ_16; 1067 cmd->cmnd[1] = flags; 1068 cmd->cmnd[14] = 0; 1069 cmd->cmnd[15] = 0; 1070 put_unaligned_be64(lba, &cmd->cmnd[2]); 1071 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 1072 1073 return BLK_STS_OK; 1074 } 1075 1076 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write, 1077 sector_t lba, unsigned int nr_blocks, 1078 unsigned char flags) 1079 { 1080 cmd->cmd_len = 10; 1081 cmd->cmnd[0] = write ? WRITE_10 : READ_10; 1082 cmd->cmnd[1] = flags; 1083 cmd->cmnd[6] = 0; 1084 cmd->cmnd[9] = 0; 1085 put_unaligned_be32(lba, &cmd->cmnd[2]); 1086 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 1087 1088 return BLK_STS_OK; 1089 } 1090 1091 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write, 1092 sector_t lba, unsigned int nr_blocks, 1093 unsigned char flags) 1094 { 1095 /* Avoid that 0 blocks gets translated into 256 blocks. */ 1096 if (WARN_ON_ONCE(nr_blocks == 0)) 1097 return BLK_STS_IOERR; 1098 1099 if (unlikely(flags & 0x8)) { 1100 /* 1101 * This happens only if this drive failed 10byte rw 1102 * command with ILLEGAL_REQUEST during operation and 1103 * thus turned off use_10_for_rw. 1104 */ 1105 scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n"); 1106 return BLK_STS_IOERR; 1107 } 1108 1109 cmd->cmd_len = 6; 1110 cmd->cmnd[0] = write ? WRITE_6 : READ_6; 1111 cmd->cmnd[1] = (lba >> 16) & 0x1f; 1112 cmd->cmnd[2] = (lba >> 8) & 0xff; 1113 cmd->cmnd[3] = lba & 0xff; 1114 cmd->cmnd[4] = nr_blocks; 1115 cmd->cmnd[5] = 0; 1116 1117 return BLK_STS_OK; 1118 } 1119 1120 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd) 1121 { 1122 struct request *rq = scsi_cmd_to_rq(cmd); 1123 struct scsi_device *sdp = cmd->device; 1124 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 1125 sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 1126 sector_t threshold; 1127 unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 1128 unsigned int mask = logical_to_sectors(sdp, 1) - 1; 1129 bool write = rq_data_dir(rq) == WRITE; 1130 unsigned char protect, fua; 1131 blk_status_t ret; 1132 unsigned int dif; 1133 bool dix; 1134 1135 ret = scsi_alloc_sgtables(cmd); 1136 if (ret != BLK_STS_OK) 1137 return ret; 1138 1139 ret = BLK_STS_IOERR; 1140 if (!scsi_device_online(sdp) || sdp->changed) { 1141 scmd_printk(KERN_ERR, cmd, "device offline or changed\n"); 1142 goto fail; 1143 } 1144 1145 if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->q->disk)) { 1146 scmd_printk(KERN_ERR, cmd, "access beyond end of device\n"); 1147 goto fail; 1148 } 1149 1150 if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) { 1151 scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n"); 1152 goto fail; 1153 } 1154 1155 /* 1156 * Some SD card readers can't handle accesses which touch the 1157 * last one or two logical blocks. Split accesses as needed. 1158 */ 1159 threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS; 1160 1161 if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) { 1162 if (lba < threshold) { 1163 /* Access up to the threshold but not beyond */ 1164 nr_blocks = threshold - lba; 1165 } else { 1166 /* Access only a single logical block */ 1167 nr_blocks = 1; 1168 } 1169 } 1170 1171 if (req_op(rq) == REQ_OP_ZONE_APPEND) { 1172 ret = sd_zbc_prepare_zone_append(cmd, &lba, nr_blocks); 1173 if (ret) 1174 goto fail; 1175 } 1176 1177 fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0; 1178 dix = scsi_prot_sg_count(cmd); 1179 dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type); 1180 1181 if (dif || dix) 1182 protect = sd_setup_protect_cmnd(cmd, dix, dif); 1183 else 1184 protect = 0; 1185 1186 if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) { 1187 ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks, 1188 protect | fua); 1189 } else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) { 1190 ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks, 1191 protect | fua); 1192 } else if ((nr_blocks > 0xff) || (lba > 0x1fffff) || 1193 sdp->use_10_for_rw || protect) { 1194 ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks, 1195 protect | fua); 1196 } else { 1197 ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks, 1198 protect | fua); 1199 } 1200 1201 if (unlikely(ret != BLK_STS_OK)) 1202 goto fail; 1203 1204 /* 1205 * We shouldn't disconnect in the middle of a sector, so with a dumb 1206 * host adapter, it's safe to assume that we can at least transfer 1207 * this many bytes between each connect / disconnect. 1208 */ 1209 cmd->transfersize = sdp->sector_size; 1210 cmd->underflow = nr_blocks << 9; 1211 cmd->allowed = sdkp->max_retries; 1212 cmd->sdb.length = nr_blocks * sdp->sector_size; 1213 1214 SCSI_LOG_HLQUEUE(1, 1215 scmd_printk(KERN_INFO, cmd, 1216 "%s: block=%llu, count=%d\n", __func__, 1217 (unsigned long long)blk_rq_pos(rq), 1218 blk_rq_sectors(rq))); 1219 SCSI_LOG_HLQUEUE(2, 1220 scmd_printk(KERN_INFO, cmd, 1221 "%s %d/%u 512 byte blocks.\n", 1222 write ? "writing" : "reading", nr_blocks, 1223 blk_rq_sectors(rq))); 1224 1225 /* 1226 * This indicates that the command is ready from our end to be queued. 1227 */ 1228 return BLK_STS_OK; 1229 fail: 1230 scsi_free_sgtables(cmd); 1231 return ret; 1232 } 1233 1234 static blk_status_t sd_init_command(struct scsi_cmnd *cmd) 1235 { 1236 struct request *rq = scsi_cmd_to_rq(cmd); 1237 1238 switch (req_op(rq)) { 1239 case REQ_OP_DISCARD: 1240 switch (scsi_disk(rq->q->disk)->provisioning_mode) { 1241 case SD_LBP_UNMAP: 1242 return sd_setup_unmap_cmnd(cmd); 1243 case SD_LBP_WS16: 1244 return sd_setup_write_same16_cmnd(cmd, true); 1245 case SD_LBP_WS10: 1246 return sd_setup_write_same10_cmnd(cmd, true); 1247 case SD_LBP_ZERO: 1248 return sd_setup_write_same10_cmnd(cmd, false); 1249 default: 1250 return BLK_STS_TARGET; 1251 } 1252 case REQ_OP_WRITE_ZEROES: 1253 return sd_setup_write_zeroes_cmnd(cmd); 1254 case REQ_OP_FLUSH: 1255 return sd_setup_flush_cmnd(cmd); 1256 case REQ_OP_READ: 1257 case REQ_OP_WRITE: 1258 case REQ_OP_ZONE_APPEND: 1259 return sd_setup_read_write_cmnd(cmd); 1260 case REQ_OP_ZONE_RESET: 1261 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER, 1262 false); 1263 case REQ_OP_ZONE_RESET_ALL: 1264 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER, 1265 true); 1266 case REQ_OP_ZONE_OPEN: 1267 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false); 1268 case REQ_OP_ZONE_CLOSE: 1269 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false); 1270 case REQ_OP_ZONE_FINISH: 1271 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false); 1272 default: 1273 WARN_ON_ONCE(1); 1274 return BLK_STS_NOTSUPP; 1275 } 1276 } 1277 1278 static void sd_uninit_command(struct scsi_cmnd *SCpnt) 1279 { 1280 struct request *rq = scsi_cmd_to_rq(SCpnt); 1281 1282 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1283 mempool_free(rq->special_vec.bv_page, sd_page_pool); 1284 } 1285 1286 static bool sd_need_revalidate(struct block_device *bdev, 1287 struct scsi_disk *sdkp) 1288 { 1289 if (sdkp->device->removable || sdkp->write_prot) { 1290 if (bdev_check_media_change(bdev)) 1291 return true; 1292 } 1293 1294 /* 1295 * Force a full rescan after ioctl(BLKRRPART). While the disk state has 1296 * nothing to do with partitions, BLKRRPART is used to force a full 1297 * revalidate after things like a format for historical reasons. 1298 */ 1299 return test_bit(GD_NEED_PART_SCAN, &bdev->bd_disk->state); 1300 } 1301 1302 /** 1303 * sd_open - open a scsi disk device 1304 * @bdev: Block device of the scsi disk to open 1305 * @mode: FMODE_* mask 1306 * 1307 * Returns 0 if successful. Returns a negated errno value in case 1308 * of error. 1309 * 1310 * Note: This can be called from a user context (e.g. fsck(1) ) 1311 * or from within the kernel (e.g. as a result of a mount(1) ). 1312 * In the latter case @inode and @filp carry an abridged amount 1313 * of information as noted above. 1314 * 1315 * Locking: called with bdev->bd_disk->open_mutex held. 1316 **/ 1317 static int sd_open(struct block_device *bdev, fmode_t mode) 1318 { 1319 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1320 struct scsi_device *sdev = sdkp->device; 1321 int retval; 1322 1323 if (scsi_device_get(sdev)) 1324 return -ENXIO; 1325 1326 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n")); 1327 1328 /* 1329 * If the device is in error recovery, wait until it is done. 1330 * If the device is offline, then disallow any access to it. 1331 */ 1332 retval = -ENXIO; 1333 if (!scsi_block_when_processing_errors(sdev)) 1334 goto error_out; 1335 1336 if (sd_need_revalidate(bdev, sdkp)) 1337 sd_revalidate_disk(bdev->bd_disk); 1338 1339 /* 1340 * If the drive is empty, just let the open fail. 1341 */ 1342 retval = -ENOMEDIUM; 1343 if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY)) 1344 goto error_out; 1345 1346 /* 1347 * If the device has the write protect tab set, have the open fail 1348 * if the user expects to be able to write to the thing. 1349 */ 1350 retval = -EROFS; 1351 if (sdkp->write_prot && (mode & FMODE_WRITE)) 1352 goto error_out; 1353 1354 /* 1355 * It is possible that the disk changing stuff resulted in 1356 * the device being taken offline. If this is the case, 1357 * report this to the user, and don't pretend that the 1358 * open actually succeeded. 1359 */ 1360 retval = -ENXIO; 1361 if (!scsi_device_online(sdev)) 1362 goto error_out; 1363 1364 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) { 1365 if (scsi_block_when_processing_errors(sdev)) 1366 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT); 1367 } 1368 1369 return 0; 1370 1371 error_out: 1372 scsi_device_put(sdev); 1373 return retval; 1374 } 1375 1376 /** 1377 * sd_release - invoked when the (last) close(2) is called on this 1378 * scsi disk. 1379 * @disk: disk to release 1380 * @mode: FMODE_* mask 1381 * 1382 * Returns 0. 1383 * 1384 * Note: may block (uninterruptible) if error recovery is underway 1385 * on this disk. 1386 * 1387 * Locking: called with bdev->bd_disk->open_mutex held. 1388 **/ 1389 static void sd_release(struct gendisk *disk, fmode_t mode) 1390 { 1391 struct scsi_disk *sdkp = scsi_disk(disk); 1392 struct scsi_device *sdev = sdkp->device; 1393 1394 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n")); 1395 1396 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) { 1397 if (scsi_block_when_processing_errors(sdev)) 1398 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW); 1399 } 1400 1401 scsi_device_put(sdev); 1402 } 1403 1404 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1405 { 1406 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1407 struct scsi_device *sdp = sdkp->device; 1408 struct Scsi_Host *host = sdp->host; 1409 sector_t capacity = logical_to_sectors(sdp, sdkp->capacity); 1410 int diskinfo[4]; 1411 1412 /* default to most commonly used values */ 1413 diskinfo[0] = 0x40; /* 1 << 6 */ 1414 diskinfo[1] = 0x20; /* 1 << 5 */ 1415 diskinfo[2] = capacity >> 11; 1416 1417 /* override with calculated, extended default, or driver values */ 1418 if (host->hostt->bios_param) 1419 host->hostt->bios_param(sdp, bdev, capacity, diskinfo); 1420 else 1421 scsicam_bios_param(bdev, capacity, diskinfo); 1422 1423 geo->heads = diskinfo[0]; 1424 geo->sectors = diskinfo[1]; 1425 geo->cylinders = diskinfo[2]; 1426 return 0; 1427 } 1428 1429 /** 1430 * sd_ioctl - process an ioctl 1431 * @bdev: target block device 1432 * @mode: FMODE_* mask 1433 * @cmd: ioctl command number 1434 * @arg: this is third argument given to ioctl(2) system call. 1435 * Often contains a pointer. 1436 * 1437 * Returns 0 if successful (some ioctls return positive numbers on 1438 * success as well). Returns a negated errno value in case of error. 1439 * 1440 * Note: most ioctls are forward onto the block subsystem or further 1441 * down in the scsi subsystem. 1442 **/ 1443 static int sd_ioctl(struct block_device *bdev, fmode_t mode, 1444 unsigned int cmd, unsigned long arg) 1445 { 1446 struct gendisk *disk = bdev->bd_disk; 1447 struct scsi_disk *sdkp = scsi_disk(disk); 1448 struct scsi_device *sdp = sdkp->device; 1449 void __user *p = (void __user *)arg; 1450 int error; 1451 1452 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, " 1453 "cmd=0x%x\n", disk->disk_name, cmd)); 1454 1455 if (bdev_is_partition(bdev) && !capable(CAP_SYS_RAWIO)) 1456 return -ENOIOCTLCMD; 1457 1458 /* 1459 * If we are in the middle of error recovery, don't let anyone 1460 * else try and use this device. Also, if error recovery fails, it 1461 * may try and take the device offline, in which case all further 1462 * access to the device is prohibited. 1463 */ 1464 error = scsi_ioctl_block_when_processing_errors(sdp, cmd, 1465 (mode & FMODE_NDELAY) != 0); 1466 if (error) 1467 return error; 1468 1469 if (is_sed_ioctl(cmd)) 1470 return sed_ioctl(sdkp->opal_dev, cmd, p); 1471 return scsi_ioctl(sdp, mode, cmd, p); 1472 } 1473 1474 static void set_media_not_present(struct scsi_disk *sdkp) 1475 { 1476 if (sdkp->media_present) 1477 sdkp->device->changed = 1; 1478 1479 if (sdkp->device->removable) { 1480 sdkp->media_present = 0; 1481 sdkp->capacity = 0; 1482 } 1483 } 1484 1485 static int media_not_present(struct scsi_disk *sdkp, 1486 struct scsi_sense_hdr *sshdr) 1487 { 1488 if (!scsi_sense_valid(sshdr)) 1489 return 0; 1490 1491 /* not invoked for commands that could return deferred errors */ 1492 switch (sshdr->sense_key) { 1493 case UNIT_ATTENTION: 1494 case NOT_READY: 1495 /* medium not present */ 1496 if (sshdr->asc == 0x3A) { 1497 set_media_not_present(sdkp); 1498 return 1; 1499 } 1500 } 1501 return 0; 1502 } 1503 1504 /** 1505 * sd_check_events - check media events 1506 * @disk: kernel device descriptor 1507 * @clearing: disk events currently being cleared 1508 * 1509 * Returns mask of DISK_EVENT_*. 1510 * 1511 * Note: this function is invoked from the block subsystem. 1512 **/ 1513 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing) 1514 { 1515 struct scsi_disk *sdkp = disk->private_data; 1516 struct scsi_device *sdp; 1517 int retval; 1518 bool disk_changed; 1519 1520 if (!sdkp) 1521 return 0; 1522 1523 sdp = sdkp->device; 1524 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n")); 1525 1526 /* 1527 * If the device is offline, don't send any commands - just pretend as 1528 * if the command failed. If the device ever comes back online, we 1529 * can deal with it then. It is only because of unrecoverable errors 1530 * that we would ever take a device offline in the first place. 1531 */ 1532 if (!scsi_device_online(sdp)) { 1533 set_media_not_present(sdkp); 1534 goto out; 1535 } 1536 1537 /* 1538 * Using TEST_UNIT_READY enables differentiation between drive with 1539 * no cartridge loaded - NOT READY, drive with changed cartridge - 1540 * UNIT ATTENTION, or with same cartridge - GOOD STATUS. 1541 * 1542 * Drives that auto spin down. eg iomega jaz 1G, will be started 1543 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever 1544 * sd_revalidate() is called. 1545 */ 1546 if (scsi_block_when_processing_errors(sdp)) { 1547 struct scsi_sense_hdr sshdr = { 0, }; 1548 1549 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries, 1550 &sshdr); 1551 1552 /* failed to execute TUR, assume media not present */ 1553 if (retval < 0 || host_byte(retval)) { 1554 set_media_not_present(sdkp); 1555 goto out; 1556 } 1557 1558 if (media_not_present(sdkp, &sshdr)) 1559 goto out; 1560 } 1561 1562 /* 1563 * For removable scsi disk we have to recognise the presence 1564 * of a disk in the drive. 1565 */ 1566 if (!sdkp->media_present) 1567 sdp->changed = 1; 1568 sdkp->media_present = 1; 1569 out: 1570 /* 1571 * sdp->changed is set under the following conditions: 1572 * 1573 * Medium present state has changed in either direction. 1574 * Device has indicated UNIT_ATTENTION. 1575 */ 1576 disk_changed = sdp->changed; 1577 sdp->changed = 0; 1578 return disk_changed ? DISK_EVENT_MEDIA_CHANGE : 0; 1579 } 1580 1581 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr) 1582 { 1583 int retries, res; 1584 struct scsi_device *sdp = sdkp->device; 1585 const int timeout = sdp->request_queue->rq_timeout 1586 * SD_FLUSH_TIMEOUT_MULTIPLIER; 1587 struct scsi_sense_hdr my_sshdr; 1588 const struct scsi_exec_args exec_args = { 1589 .req_flags = BLK_MQ_REQ_PM, 1590 /* caller might not be interested in sense, but we need it */ 1591 .sshdr = sshdr ? : &my_sshdr, 1592 }; 1593 1594 if (!scsi_device_online(sdp)) 1595 return -ENODEV; 1596 1597 sshdr = exec_args.sshdr; 1598 1599 for (retries = 3; retries > 0; --retries) { 1600 unsigned char cmd[16] = { 0 }; 1601 1602 if (sdp->use_16_for_sync) 1603 cmd[0] = SYNCHRONIZE_CACHE_16; 1604 else 1605 cmd[0] = SYNCHRONIZE_CACHE; 1606 /* 1607 * Leave the rest of the command zero to indicate 1608 * flush everything. 1609 */ 1610 res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, 1611 timeout, sdkp->max_retries, &exec_args); 1612 if (res == 0) 1613 break; 1614 } 1615 1616 if (res) { 1617 sd_print_result(sdkp, "Synchronize Cache(10) failed", res); 1618 1619 if (res < 0) 1620 return res; 1621 1622 if (scsi_status_is_check_condition(res) && 1623 scsi_sense_valid(sshdr)) { 1624 sd_print_sense_hdr(sdkp, sshdr); 1625 1626 /* we need to evaluate the error return */ 1627 if (sshdr->asc == 0x3a || /* medium not present */ 1628 sshdr->asc == 0x20 || /* invalid command */ 1629 (sshdr->asc == 0x74 && sshdr->ascq == 0x71)) /* drive is password locked */ 1630 /* this is no error here */ 1631 return 0; 1632 } 1633 1634 switch (host_byte(res)) { 1635 /* ignore errors due to racing a disconnection */ 1636 case DID_BAD_TARGET: 1637 case DID_NO_CONNECT: 1638 return 0; 1639 /* signal the upper layer it might try again */ 1640 case DID_BUS_BUSY: 1641 case DID_IMM_RETRY: 1642 case DID_REQUEUE: 1643 case DID_SOFT_ERROR: 1644 return -EBUSY; 1645 default: 1646 return -EIO; 1647 } 1648 } 1649 return 0; 1650 } 1651 1652 static void sd_rescan(struct device *dev) 1653 { 1654 struct scsi_disk *sdkp = dev_get_drvdata(dev); 1655 1656 sd_revalidate_disk(sdkp->disk); 1657 } 1658 1659 static int sd_get_unique_id(struct gendisk *disk, u8 id[16], 1660 enum blk_unique_id type) 1661 { 1662 struct scsi_device *sdev = scsi_disk(disk)->device; 1663 const struct scsi_vpd *vpd; 1664 const unsigned char *d; 1665 int ret = -ENXIO, len; 1666 1667 rcu_read_lock(); 1668 vpd = rcu_dereference(sdev->vpd_pg83); 1669 if (!vpd) 1670 goto out_unlock; 1671 1672 ret = -EINVAL; 1673 for (d = vpd->data + 4; d < vpd->data + vpd->len; d += d[3] + 4) { 1674 /* we only care about designators with LU association */ 1675 if (((d[1] >> 4) & 0x3) != 0x00) 1676 continue; 1677 if ((d[1] & 0xf) != type) 1678 continue; 1679 1680 /* 1681 * Only exit early if a 16-byte descriptor was found. Otherwise 1682 * keep looking as one with more entropy might still show up. 1683 */ 1684 len = d[3]; 1685 if (len != 8 && len != 12 && len != 16) 1686 continue; 1687 ret = len; 1688 memcpy(id, d + 4, len); 1689 if (len == 16) 1690 break; 1691 } 1692 out_unlock: 1693 rcu_read_unlock(); 1694 return ret; 1695 } 1696 1697 static char sd_pr_type(enum pr_type type) 1698 { 1699 switch (type) { 1700 case PR_WRITE_EXCLUSIVE: 1701 return 0x01; 1702 case PR_EXCLUSIVE_ACCESS: 1703 return 0x03; 1704 case PR_WRITE_EXCLUSIVE_REG_ONLY: 1705 return 0x05; 1706 case PR_EXCLUSIVE_ACCESS_REG_ONLY: 1707 return 0x06; 1708 case PR_WRITE_EXCLUSIVE_ALL_REGS: 1709 return 0x07; 1710 case PR_EXCLUSIVE_ACCESS_ALL_REGS: 1711 return 0x08; 1712 default: 1713 return 0; 1714 } 1715 }; 1716 1717 static int sd_scsi_to_pr_err(struct scsi_sense_hdr *sshdr, int result) 1718 { 1719 switch (host_byte(result)) { 1720 case DID_TRANSPORT_MARGINAL: 1721 case DID_TRANSPORT_DISRUPTED: 1722 case DID_BUS_BUSY: 1723 return PR_STS_RETRY_PATH_FAILURE; 1724 case DID_NO_CONNECT: 1725 return PR_STS_PATH_FAILED; 1726 case DID_TRANSPORT_FAILFAST: 1727 return PR_STS_PATH_FAST_FAILED; 1728 } 1729 1730 switch (status_byte(result)) { 1731 case SAM_STAT_RESERVATION_CONFLICT: 1732 return PR_STS_RESERVATION_CONFLICT; 1733 case SAM_STAT_CHECK_CONDITION: 1734 if (!scsi_sense_valid(sshdr)) 1735 return PR_STS_IOERR; 1736 1737 if (sshdr->sense_key == ILLEGAL_REQUEST && 1738 (sshdr->asc == 0x26 || sshdr->asc == 0x24)) 1739 return -EINVAL; 1740 1741 fallthrough; 1742 default: 1743 return PR_STS_IOERR; 1744 } 1745 } 1746 1747 static int sd_pr_command(struct block_device *bdev, u8 sa, 1748 u64 key, u64 sa_key, u8 type, u8 flags) 1749 { 1750 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1751 struct scsi_device *sdev = sdkp->device; 1752 struct scsi_sense_hdr sshdr; 1753 const struct scsi_exec_args exec_args = { 1754 .sshdr = &sshdr, 1755 }; 1756 int result; 1757 u8 cmd[16] = { 0, }; 1758 u8 data[24] = { 0, }; 1759 1760 cmd[0] = PERSISTENT_RESERVE_OUT; 1761 cmd[1] = sa; 1762 cmd[2] = type; 1763 put_unaligned_be32(sizeof(data), &cmd[5]); 1764 1765 put_unaligned_be64(key, &data[0]); 1766 put_unaligned_be64(sa_key, &data[8]); 1767 data[20] = flags; 1768 1769 result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, &data, 1770 sizeof(data), SD_TIMEOUT, sdkp->max_retries, 1771 &exec_args); 1772 1773 if (scsi_status_is_check_condition(result) && 1774 scsi_sense_valid(&sshdr)) { 1775 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result); 1776 scsi_print_sense_hdr(sdev, NULL, &sshdr); 1777 } 1778 1779 if (result <= 0) 1780 return result; 1781 1782 return sd_scsi_to_pr_err(&sshdr, result); 1783 } 1784 1785 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 1786 u32 flags) 1787 { 1788 if (flags & ~PR_FL_IGNORE_KEY) 1789 return -EOPNOTSUPP; 1790 return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00, 1791 old_key, new_key, 0, 1792 (1 << 0) /* APTPL */); 1793 } 1794 1795 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 1796 u32 flags) 1797 { 1798 if (flags) 1799 return -EOPNOTSUPP; 1800 return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0); 1801 } 1802 1803 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 1804 { 1805 return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0); 1806 } 1807 1808 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 1809 enum pr_type type, bool abort) 1810 { 1811 return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key, 1812 sd_pr_type(type), 0); 1813 } 1814 1815 static int sd_pr_clear(struct block_device *bdev, u64 key) 1816 { 1817 return sd_pr_command(bdev, 0x03, key, 0, 0, 0); 1818 } 1819 1820 static const struct pr_ops sd_pr_ops = { 1821 .pr_register = sd_pr_register, 1822 .pr_reserve = sd_pr_reserve, 1823 .pr_release = sd_pr_release, 1824 .pr_preempt = sd_pr_preempt, 1825 .pr_clear = sd_pr_clear, 1826 }; 1827 1828 static void scsi_disk_free_disk(struct gendisk *disk) 1829 { 1830 struct scsi_disk *sdkp = scsi_disk(disk); 1831 1832 put_device(&sdkp->disk_dev); 1833 } 1834 1835 static const struct block_device_operations sd_fops = { 1836 .owner = THIS_MODULE, 1837 .open = sd_open, 1838 .release = sd_release, 1839 .ioctl = sd_ioctl, 1840 .getgeo = sd_getgeo, 1841 .compat_ioctl = blkdev_compat_ptr_ioctl, 1842 .check_events = sd_check_events, 1843 .unlock_native_capacity = sd_unlock_native_capacity, 1844 .report_zones = sd_zbc_report_zones, 1845 .get_unique_id = sd_get_unique_id, 1846 .free_disk = scsi_disk_free_disk, 1847 .pr_ops = &sd_pr_ops, 1848 }; 1849 1850 /** 1851 * sd_eh_reset - reset error handling callback 1852 * @scmd: sd-issued command that has failed 1853 * 1854 * This function is called by the SCSI midlayer before starting 1855 * SCSI EH. When counting medium access failures we have to be 1856 * careful to register it only only once per device and SCSI EH run; 1857 * there might be several timed out commands which will cause the 1858 * 'max_medium_access_timeouts' counter to trigger after the first 1859 * SCSI EH run already and set the device to offline. 1860 * So this function resets the internal counter before starting SCSI EH. 1861 **/ 1862 static void sd_eh_reset(struct scsi_cmnd *scmd) 1863 { 1864 struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk); 1865 1866 /* New SCSI EH run, reset gate variable */ 1867 sdkp->ignore_medium_access_errors = false; 1868 } 1869 1870 /** 1871 * sd_eh_action - error handling callback 1872 * @scmd: sd-issued command that has failed 1873 * @eh_disp: The recovery disposition suggested by the midlayer 1874 * 1875 * This function is called by the SCSI midlayer upon completion of an 1876 * error test command (currently TEST UNIT READY). The result of sending 1877 * the eh command is passed in eh_disp. We're looking for devices that 1878 * fail medium access commands but are OK with non access commands like 1879 * test unit ready (so wrongly see the device as having a successful 1880 * recovery) 1881 **/ 1882 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp) 1883 { 1884 struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk); 1885 struct scsi_device *sdev = scmd->device; 1886 1887 if (!scsi_device_online(sdev) || 1888 !scsi_medium_access_command(scmd) || 1889 host_byte(scmd->result) != DID_TIME_OUT || 1890 eh_disp != SUCCESS) 1891 return eh_disp; 1892 1893 /* 1894 * The device has timed out executing a medium access command. 1895 * However, the TEST UNIT READY command sent during error 1896 * handling completed successfully. Either the device is in the 1897 * process of recovering or has it suffered an internal failure 1898 * that prevents access to the storage medium. 1899 */ 1900 if (!sdkp->ignore_medium_access_errors) { 1901 sdkp->medium_access_timed_out++; 1902 sdkp->ignore_medium_access_errors = true; 1903 } 1904 1905 /* 1906 * If the device keeps failing read/write commands but TEST UNIT 1907 * READY always completes successfully we assume that medium 1908 * access is no longer possible and take the device offline. 1909 */ 1910 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) { 1911 scmd_printk(KERN_ERR, scmd, 1912 "Medium access timeout failure. Offlining disk!\n"); 1913 mutex_lock(&sdev->state_mutex); 1914 scsi_device_set_state(sdev, SDEV_OFFLINE); 1915 mutex_unlock(&sdev->state_mutex); 1916 1917 return SUCCESS; 1918 } 1919 1920 return eh_disp; 1921 } 1922 1923 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd) 1924 { 1925 struct request *req = scsi_cmd_to_rq(scmd); 1926 struct scsi_device *sdev = scmd->device; 1927 unsigned int transferred, good_bytes; 1928 u64 start_lba, end_lba, bad_lba; 1929 1930 /* 1931 * Some commands have a payload smaller than the device logical 1932 * block size (e.g. INQUIRY on a 4K disk). 1933 */ 1934 if (scsi_bufflen(scmd) <= sdev->sector_size) 1935 return 0; 1936 1937 /* Check if we have a 'bad_lba' information */ 1938 if (!scsi_get_sense_info_fld(scmd->sense_buffer, 1939 SCSI_SENSE_BUFFERSIZE, 1940 &bad_lba)) 1941 return 0; 1942 1943 /* 1944 * If the bad lba was reported incorrectly, we have no idea where 1945 * the error is. 1946 */ 1947 start_lba = sectors_to_logical(sdev, blk_rq_pos(req)); 1948 end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd)); 1949 if (bad_lba < start_lba || bad_lba >= end_lba) 1950 return 0; 1951 1952 /* 1953 * resid is optional but mostly filled in. When it's unused, 1954 * its value is zero, so we assume the whole buffer transferred 1955 */ 1956 transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd); 1957 1958 /* This computation should always be done in terms of the 1959 * resolution of the device's medium. 1960 */ 1961 good_bytes = logical_to_bytes(sdev, bad_lba - start_lba); 1962 1963 return min(good_bytes, transferred); 1964 } 1965 1966 /** 1967 * sd_done - bottom half handler: called when the lower level 1968 * driver has completed (successfully or otherwise) a scsi command. 1969 * @SCpnt: mid-level's per command structure. 1970 * 1971 * Note: potentially run from within an ISR. Must not block. 1972 **/ 1973 static int sd_done(struct scsi_cmnd *SCpnt) 1974 { 1975 int result = SCpnt->result; 1976 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt); 1977 unsigned int sector_size = SCpnt->device->sector_size; 1978 unsigned int resid; 1979 struct scsi_sense_hdr sshdr; 1980 struct request *req = scsi_cmd_to_rq(SCpnt); 1981 struct scsi_disk *sdkp = scsi_disk(req->q->disk); 1982 int sense_valid = 0; 1983 int sense_deferred = 0; 1984 1985 switch (req_op(req)) { 1986 case REQ_OP_DISCARD: 1987 case REQ_OP_WRITE_ZEROES: 1988 case REQ_OP_ZONE_RESET: 1989 case REQ_OP_ZONE_RESET_ALL: 1990 case REQ_OP_ZONE_OPEN: 1991 case REQ_OP_ZONE_CLOSE: 1992 case REQ_OP_ZONE_FINISH: 1993 if (!result) { 1994 good_bytes = blk_rq_bytes(req); 1995 scsi_set_resid(SCpnt, 0); 1996 } else { 1997 good_bytes = 0; 1998 scsi_set_resid(SCpnt, blk_rq_bytes(req)); 1999 } 2000 break; 2001 default: 2002 /* 2003 * In case of bogus fw or device, we could end up having 2004 * an unaligned partial completion. Check this here and force 2005 * alignment. 2006 */ 2007 resid = scsi_get_resid(SCpnt); 2008 if (resid & (sector_size - 1)) { 2009 sd_printk(KERN_INFO, sdkp, 2010 "Unaligned partial completion (resid=%u, sector_sz=%u)\n", 2011 resid, sector_size); 2012 scsi_print_command(SCpnt); 2013 resid = min(scsi_bufflen(SCpnt), 2014 round_up(resid, sector_size)); 2015 scsi_set_resid(SCpnt, resid); 2016 } 2017 } 2018 2019 if (result) { 2020 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr); 2021 if (sense_valid) 2022 sense_deferred = scsi_sense_is_deferred(&sshdr); 2023 } 2024 sdkp->medium_access_timed_out = 0; 2025 2026 if (!scsi_status_is_check_condition(result) && 2027 (!sense_valid || sense_deferred)) 2028 goto out; 2029 2030 switch (sshdr.sense_key) { 2031 case HARDWARE_ERROR: 2032 case MEDIUM_ERROR: 2033 good_bytes = sd_completed_bytes(SCpnt); 2034 break; 2035 case RECOVERED_ERROR: 2036 good_bytes = scsi_bufflen(SCpnt); 2037 break; 2038 case NO_SENSE: 2039 /* This indicates a false check condition, so ignore it. An 2040 * unknown amount of data was transferred so treat it as an 2041 * error. 2042 */ 2043 SCpnt->result = 0; 2044 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 2045 break; 2046 case ABORTED_COMMAND: 2047 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */ 2048 good_bytes = sd_completed_bytes(SCpnt); 2049 break; 2050 case ILLEGAL_REQUEST: 2051 switch (sshdr.asc) { 2052 case 0x10: /* DIX: Host detected corruption */ 2053 good_bytes = sd_completed_bytes(SCpnt); 2054 break; 2055 case 0x20: /* INVALID COMMAND OPCODE */ 2056 case 0x24: /* INVALID FIELD IN CDB */ 2057 switch (SCpnt->cmnd[0]) { 2058 case UNMAP: 2059 sd_config_discard(sdkp, SD_LBP_DISABLE); 2060 break; 2061 case WRITE_SAME_16: 2062 case WRITE_SAME: 2063 if (SCpnt->cmnd[1] & 8) { /* UNMAP */ 2064 sd_config_discard(sdkp, SD_LBP_DISABLE); 2065 } else { 2066 sdkp->device->no_write_same = 1; 2067 sd_config_write_same(sdkp); 2068 req->rq_flags |= RQF_QUIET; 2069 } 2070 break; 2071 } 2072 } 2073 break; 2074 default: 2075 break; 2076 } 2077 2078 out: 2079 if (sd_is_zoned(sdkp)) 2080 good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr); 2081 2082 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt, 2083 "sd_done: completed %d of %d bytes\n", 2084 good_bytes, scsi_bufflen(SCpnt))); 2085 2086 return good_bytes; 2087 } 2088 2089 /* 2090 * spinup disk - called only in sd_revalidate_disk() 2091 */ 2092 static void 2093 sd_spinup_disk(struct scsi_disk *sdkp) 2094 { 2095 unsigned char cmd[10]; 2096 unsigned long spintime_expire = 0; 2097 int retries, spintime; 2098 unsigned int the_result; 2099 struct scsi_sense_hdr sshdr; 2100 const struct scsi_exec_args exec_args = { 2101 .sshdr = &sshdr, 2102 }; 2103 int sense_valid = 0; 2104 2105 spintime = 0; 2106 2107 /* Spin up drives, as required. Only do this at boot time */ 2108 /* Spinup needs to be done for module loads too. */ 2109 do { 2110 retries = 0; 2111 2112 do { 2113 bool media_was_present = sdkp->media_present; 2114 2115 cmd[0] = TEST_UNIT_READY; 2116 memset((void *) &cmd[1], 0, 9); 2117 2118 the_result = scsi_execute_cmd(sdkp->device, cmd, 2119 REQ_OP_DRV_IN, NULL, 0, 2120 SD_TIMEOUT, 2121 sdkp->max_retries, 2122 &exec_args); 2123 2124 /* 2125 * If the drive has indicated to us that it 2126 * doesn't have any media in it, don't bother 2127 * with any more polling. 2128 */ 2129 if (media_not_present(sdkp, &sshdr)) { 2130 if (media_was_present) 2131 sd_printk(KERN_NOTICE, sdkp, "Media removed, stopped polling\n"); 2132 return; 2133 } 2134 2135 if (the_result) 2136 sense_valid = scsi_sense_valid(&sshdr); 2137 retries++; 2138 } while (retries < 3 && 2139 (!scsi_status_is_good(the_result) || 2140 (scsi_status_is_check_condition(the_result) && 2141 sense_valid && sshdr.sense_key == UNIT_ATTENTION))); 2142 2143 if (!scsi_status_is_check_condition(the_result)) { 2144 /* no sense, TUR either succeeded or failed 2145 * with a status error */ 2146 if(!spintime && !scsi_status_is_good(the_result)) { 2147 sd_print_result(sdkp, "Test Unit Ready failed", 2148 the_result); 2149 } 2150 break; 2151 } 2152 2153 /* 2154 * The device does not want the automatic start to be issued. 2155 */ 2156 if (sdkp->device->no_start_on_add) 2157 break; 2158 2159 if (sense_valid && sshdr.sense_key == NOT_READY) { 2160 if (sshdr.asc == 4 && sshdr.ascq == 3) 2161 break; /* manual intervention required */ 2162 if (sshdr.asc == 4 && sshdr.ascq == 0xb) 2163 break; /* standby */ 2164 if (sshdr.asc == 4 && sshdr.ascq == 0xc) 2165 break; /* unavailable */ 2166 if (sshdr.asc == 4 && sshdr.ascq == 0x1b) 2167 break; /* sanitize in progress */ 2168 /* 2169 * Issue command to spin up drive when not ready 2170 */ 2171 if (!spintime) { 2172 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk..."); 2173 cmd[0] = START_STOP; 2174 cmd[1] = 1; /* Return immediately */ 2175 memset((void *) &cmd[2], 0, 8); 2176 cmd[4] = 1; /* Start spin cycle */ 2177 if (sdkp->device->start_stop_pwr_cond) 2178 cmd[4] |= 1 << 4; 2179 scsi_execute_cmd(sdkp->device, cmd, 2180 REQ_OP_DRV_IN, NULL, 0, 2181 SD_TIMEOUT, sdkp->max_retries, 2182 &exec_args); 2183 spintime_expire = jiffies + 100 * HZ; 2184 spintime = 1; 2185 } 2186 /* Wait 1 second for next try */ 2187 msleep(1000); 2188 printk(KERN_CONT "."); 2189 2190 /* 2191 * Wait for USB flash devices with slow firmware. 2192 * Yes, this sense key/ASC combination shouldn't 2193 * occur here. It's characteristic of these devices. 2194 */ 2195 } else if (sense_valid && 2196 sshdr.sense_key == UNIT_ATTENTION && 2197 sshdr.asc == 0x28) { 2198 if (!spintime) { 2199 spintime_expire = jiffies + 5 * HZ; 2200 spintime = 1; 2201 } 2202 /* Wait 1 second for next try */ 2203 msleep(1000); 2204 } else { 2205 /* we don't understand the sense code, so it's 2206 * probably pointless to loop */ 2207 if(!spintime) { 2208 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n"); 2209 sd_print_sense_hdr(sdkp, &sshdr); 2210 } 2211 break; 2212 } 2213 2214 } while (spintime && time_before_eq(jiffies, spintime_expire)); 2215 2216 if (spintime) { 2217 if (scsi_status_is_good(the_result)) 2218 printk(KERN_CONT "ready\n"); 2219 else 2220 printk(KERN_CONT "not responding...\n"); 2221 } 2222 } 2223 2224 /* 2225 * Determine whether disk supports Data Integrity Field. 2226 */ 2227 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer) 2228 { 2229 struct scsi_device *sdp = sdkp->device; 2230 u8 type; 2231 2232 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) { 2233 sdkp->protection_type = 0; 2234 return 0; 2235 } 2236 2237 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */ 2238 2239 if (type > T10_PI_TYPE3_PROTECTION) { 2240 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \ 2241 " protection type %u. Disabling disk!\n", 2242 type); 2243 sdkp->protection_type = 0; 2244 return -ENODEV; 2245 } 2246 2247 sdkp->protection_type = type; 2248 2249 return 0; 2250 } 2251 2252 static void sd_config_protection(struct scsi_disk *sdkp) 2253 { 2254 struct scsi_device *sdp = sdkp->device; 2255 2256 sd_dif_config_host(sdkp); 2257 2258 if (!sdkp->protection_type) 2259 return; 2260 2261 if (!scsi_host_dif_capable(sdp->host, sdkp->protection_type)) { 2262 sd_first_printk(KERN_NOTICE, sdkp, 2263 "Disabling DIF Type %u protection\n", 2264 sdkp->protection_type); 2265 sdkp->protection_type = 0; 2266 } 2267 2268 sd_first_printk(KERN_NOTICE, sdkp, "Enabling DIF Type %u protection\n", 2269 sdkp->protection_type); 2270 } 2271 2272 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp, 2273 struct scsi_sense_hdr *sshdr, int sense_valid, 2274 int the_result) 2275 { 2276 if (sense_valid) 2277 sd_print_sense_hdr(sdkp, sshdr); 2278 else 2279 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n"); 2280 2281 /* 2282 * Set dirty bit for removable devices if not ready - 2283 * sometimes drives will not report this properly. 2284 */ 2285 if (sdp->removable && 2286 sense_valid && sshdr->sense_key == NOT_READY) 2287 set_media_not_present(sdkp); 2288 2289 /* 2290 * We used to set media_present to 0 here to indicate no media 2291 * in the drive, but some drives fail read capacity even with 2292 * media present, so we can't do that. 2293 */ 2294 sdkp->capacity = 0; /* unknown mapped to zero - as usual */ 2295 } 2296 2297 #define RC16_LEN 32 2298 #if RC16_LEN > SD_BUF_SIZE 2299 #error RC16_LEN must not be more than SD_BUF_SIZE 2300 #endif 2301 2302 #define READ_CAPACITY_RETRIES_ON_RESET 10 2303 2304 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp, 2305 unsigned char *buffer) 2306 { 2307 unsigned char cmd[16]; 2308 struct scsi_sense_hdr sshdr; 2309 const struct scsi_exec_args exec_args = { 2310 .sshdr = &sshdr, 2311 }; 2312 int sense_valid = 0; 2313 int the_result; 2314 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2315 unsigned int alignment; 2316 unsigned long long lba; 2317 unsigned sector_size; 2318 2319 if (sdp->no_read_capacity_16) 2320 return -EINVAL; 2321 2322 do { 2323 memset(cmd, 0, 16); 2324 cmd[0] = SERVICE_ACTION_IN_16; 2325 cmd[1] = SAI_READ_CAPACITY_16; 2326 cmd[13] = RC16_LEN; 2327 memset(buffer, 0, RC16_LEN); 2328 2329 the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, 2330 buffer, RC16_LEN, SD_TIMEOUT, 2331 sdkp->max_retries, &exec_args); 2332 2333 if (media_not_present(sdkp, &sshdr)) 2334 return -ENODEV; 2335 2336 if (the_result > 0) { 2337 sense_valid = scsi_sense_valid(&sshdr); 2338 if (sense_valid && 2339 sshdr.sense_key == ILLEGAL_REQUEST && 2340 (sshdr.asc == 0x20 || sshdr.asc == 0x24) && 2341 sshdr.ascq == 0x00) 2342 /* Invalid Command Operation Code or 2343 * Invalid Field in CDB, just retry 2344 * silently with RC10 */ 2345 return -EINVAL; 2346 if (sense_valid && 2347 sshdr.sense_key == UNIT_ATTENTION && 2348 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2349 /* Device reset might occur several times, 2350 * give it one more chance */ 2351 if (--reset_retries > 0) 2352 continue; 2353 } 2354 retries--; 2355 2356 } while (the_result && retries); 2357 2358 if (the_result) { 2359 sd_print_result(sdkp, "Read Capacity(16) failed", the_result); 2360 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2361 return -EINVAL; 2362 } 2363 2364 sector_size = get_unaligned_be32(&buffer[8]); 2365 lba = get_unaligned_be64(&buffer[0]); 2366 2367 if (sd_read_protection_type(sdkp, buffer) < 0) { 2368 sdkp->capacity = 0; 2369 return -ENODEV; 2370 } 2371 2372 /* Logical blocks per physical block exponent */ 2373 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size; 2374 2375 /* RC basis */ 2376 sdkp->rc_basis = (buffer[12] >> 4) & 0x3; 2377 2378 /* Lowest aligned logical block */ 2379 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size; 2380 blk_queue_alignment_offset(sdp->request_queue, alignment); 2381 if (alignment && sdkp->first_scan) 2382 sd_printk(KERN_NOTICE, sdkp, 2383 "physical block alignment offset: %u\n", alignment); 2384 2385 if (buffer[14] & 0x80) { /* LBPME */ 2386 sdkp->lbpme = 1; 2387 2388 if (buffer[14] & 0x40) /* LBPRZ */ 2389 sdkp->lbprz = 1; 2390 2391 sd_config_discard(sdkp, SD_LBP_WS16); 2392 } 2393 2394 sdkp->capacity = lba + 1; 2395 return sector_size; 2396 } 2397 2398 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp, 2399 unsigned char *buffer) 2400 { 2401 unsigned char cmd[16]; 2402 struct scsi_sense_hdr sshdr; 2403 const struct scsi_exec_args exec_args = { 2404 .sshdr = &sshdr, 2405 }; 2406 int sense_valid = 0; 2407 int the_result; 2408 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2409 sector_t lba; 2410 unsigned sector_size; 2411 2412 do { 2413 cmd[0] = READ_CAPACITY; 2414 memset(&cmd[1], 0, 9); 2415 memset(buffer, 0, 8); 2416 2417 the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, buffer, 2418 8, SD_TIMEOUT, sdkp->max_retries, 2419 &exec_args); 2420 2421 if (media_not_present(sdkp, &sshdr)) 2422 return -ENODEV; 2423 2424 if (the_result > 0) { 2425 sense_valid = scsi_sense_valid(&sshdr); 2426 if (sense_valid && 2427 sshdr.sense_key == UNIT_ATTENTION && 2428 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2429 /* Device reset might occur several times, 2430 * give it one more chance */ 2431 if (--reset_retries > 0) 2432 continue; 2433 } 2434 retries--; 2435 2436 } while (the_result && retries); 2437 2438 if (the_result) { 2439 sd_print_result(sdkp, "Read Capacity(10) failed", the_result); 2440 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2441 return -EINVAL; 2442 } 2443 2444 sector_size = get_unaligned_be32(&buffer[4]); 2445 lba = get_unaligned_be32(&buffer[0]); 2446 2447 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) { 2448 /* Some buggy (usb cardreader) devices return an lba of 2449 0xffffffff when the want to report a size of 0 (with 2450 which they really mean no media is present) */ 2451 sdkp->capacity = 0; 2452 sdkp->physical_block_size = sector_size; 2453 return sector_size; 2454 } 2455 2456 sdkp->capacity = lba + 1; 2457 sdkp->physical_block_size = sector_size; 2458 return sector_size; 2459 } 2460 2461 static int sd_try_rc16_first(struct scsi_device *sdp) 2462 { 2463 if (sdp->host->max_cmd_len < 16) 2464 return 0; 2465 if (sdp->try_rc_10_first) 2466 return 0; 2467 if (sdp->scsi_level > SCSI_SPC_2) 2468 return 1; 2469 if (scsi_device_protection(sdp)) 2470 return 1; 2471 return 0; 2472 } 2473 2474 /* 2475 * read disk capacity 2476 */ 2477 static void 2478 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer) 2479 { 2480 int sector_size; 2481 struct scsi_device *sdp = sdkp->device; 2482 2483 if (sd_try_rc16_first(sdp)) { 2484 sector_size = read_capacity_16(sdkp, sdp, buffer); 2485 if (sector_size == -EOVERFLOW) 2486 goto got_data; 2487 if (sector_size == -ENODEV) 2488 return; 2489 if (sector_size < 0) 2490 sector_size = read_capacity_10(sdkp, sdp, buffer); 2491 if (sector_size < 0) 2492 return; 2493 } else { 2494 sector_size = read_capacity_10(sdkp, sdp, buffer); 2495 if (sector_size == -EOVERFLOW) 2496 goto got_data; 2497 if (sector_size < 0) 2498 return; 2499 if ((sizeof(sdkp->capacity) > 4) && 2500 (sdkp->capacity > 0xffffffffULL)) { 2501 int old_sector_size = sector_size; 2502 sd_printk(KERN_NOTICE, sdkp, "Very big device. " 2503 "Trying to use READ CAPACITY(16).\n"); 2504 sector_size = read_capacity_16(sdkp, sdp, buffer); 2505 if (sector_size < 0) { 2506 sd_printk(KERN_NOTICE, sdkp, 2507 "Using 0xffffffff as device size\n"); 2508 sdkp->capacity = 1 + (sector_t) 0xffffffff; 2509 sector_size = old_sector_size; 2510 goto got_data; 2511 } 2512 /* Remember that READ CAPACITY(16) succeeded */ 2513 sdp->try_rc_10_first = 0; 2514 } 2515 } 2516 2517 /* Some devices are known to return the total number of blocks, 2518 * not the highest block number. Some devices have versions 2519 * which do this and others which do not. Some devices we might 2520 * suspect of doing this but we don't know for certain. 2521 * 2522 * If we know the reported capacity is wrong, decrement it. If 2523 * we can only guess, then assume the number of blocks is even 2524 * (usually true but not always) and err on the side of lowering 2525 * the capacity. 2526 */ 2527 if (sdp->fix_capacity || 2528 (sdp->guess_capacity && (sdkp->capacity & 0x01))) { 2529 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count " 2530 "from its reported value: %llu\n", 2531 (unsigned long long) sdkp->capacity); 2532 --sdkp->capacity; 2533 } 2534 2535 got_data: 2536 if (sector_size == 0) { 2537 sector_size = 512; 2538 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, " 2539 "assuming 512.\n"); 2540 } 2541 2542 if (sector_size != 512 && 2543 sector_size != 1024 && 2544 sector_size != 2048 && 2545 sector_size != 4096) { 2546 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n", 2547 sector_size); 2548 /* 2549 * The user might want to re-format the drive with 2550 * a supported sectorsize. Once this happens, it 2551 * would be relatively trivial to set the thing up. 2552 * For this reason, we leave the thing in the table. 2553 */ 2554 sdkp->capacity = 0; 2555 /* 2556 * set a bogus sector size so the normal read/write 2557 * logic in the block layer will eventually refuse any 2558 * request on this device without tripping over power 2559 * of two sector size assumptions 2560 */ 2561 sector_size = 512; 2562 } 2563 blk_queue_logical_block_size(sdp->request_queue, sector_size); 2564 blk_queue_physical_block_size(sdp->request_queue, 2565 sdkp->physical_block_size); 2566 sdkp->device->sector_size = sector_size; 2567 2568 if (sdkp->capacity > 0xffffffff) 2569 sdp->use_16_for_rw = 1; 2570 2571 } 2572 2573 /* 2574 * Print disk capacity 2575 */ 2576 static void 2577 sd_print_capacity(struct scsi_disk *sdkp, 2578 sector_t old_capacity) 2579 { 2580 int sector_size = sdkp->device->sector_size; 2581 char cap_str_2[10], cap_str_10[10]; 2582 2583 if (!sdkp->first_scan && old_capacity == sdkp->capacity) 2584 return; 2585 2586 string_get_size(sdkp->capacity, sector_size, 2587 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2)); 2588 string_get_size(sdkp->capacity, sector_size, 2589 STRING_UNITS_10, cap_str_10, sizeof(cap_str_10)); 2590 2591 sd_printk(KERN_NOTICE, sdkp, 2592 "%llu %d-byte logical blocks: (%s/%s)\n", 2593 (unsigned long long)sdkp->capacity, 2594 sector_size, cap_str_10, cap_str_2); 2595 2596 if (sdkp->physical_block_size != sector_size) 2597 sd_printk(KERN_NOTICE, sdkp, 2598 "%u-byte physical blocks\n", 2599 sdkp->physical_block_size); 2600 } 2601 2602 /* called with buffer of length 512 */ 2603 static inline int 2604 sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage, 2605 unsigned char *buffer, int len, struct scsi_mode_data *data, 2606 struct scsi_sense_hdr *sshdr) 2607 { 2608 /* 2609 * If we must use MODE SENSE(10), make sure that the buffer length 2610 * is at least 8 bytes so that the mode sense header fits. 2611 */ 2612 if (sdkp->device->use_10_for_ms && len < 8) 2613 len = 8; 2614 2615 return scsi_mode_sense(sdkp->device, dbd, modepage, buffer, len, 2616 SD_TIMEOUT, sdkp->max_retries, data, 2617 sshdr); 2618 } 2619 2620 /* 2621 * read write protect setting, if possible - called only in sd_revalidate_disk() 2622 * called with buffer of length SD_BUF_SIZE 2623 */ 2624 static void 2625 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer) 2626 { 2627 int res; 2628 struct scsi_device *sdp = sdkp->device; 2629 struct scsi_mode_data data; 2630 int old_wp = sdkp->write_prot; 2631 2632 set_disk_ro(sdkp->disk, 0); 2633 if (sdp->skip_ms_page_3f) { 2634 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n"); 2635 return; 2636 } 2637 2638 if (sdp->use_192_bytes_for_3f) { 2639 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL); 2640 } else { 2641 /* 2642 * First attempt: ask for all pages (0x3F), but only 4 bytes. 2643 * We have to start carefully: some devices hang if we ask 2644 * for more than is available. 2645 */ 2646 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL); 2647 2648 /* 2649 * Second attempt: ask for page 0 When only page 0 is 2650 * implemented, a request for page 3F may return Sense Key 2651 * 5: Illegal Request, Sense Code 24: Invalid field in 2652 * CDB. 2653 */ 2654 if (res < 0) 2655 res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL); 2656 2657 /* 2658 * Third attempt: ask 255 bytes, as we did earlier. 2659 */ 2660 if (res < 0) 2661 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255, 2662 &data, NULL); 2663 } 2664 2665 if (res < 0) { 2666 sd_first_printk(KERN_WARNING, sdkp, 2667 "Test WP failed, assume Write Enabled\n"); 2668 } else { 2669 sdkp->write_prot = ((data.device_specific & 0x80) != 0); 2670 set_disk_ro(sdkp->disk, sdkp->write_prot); 2671 if (sdkp->first_scan || old_wp != sdkp->write_prot) { 2672 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n", 2673 sdkp->write_prot ? "on" : "off"); 2674 sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer); 2675 } 2676 } 2677 } 2678 2679 /* 2680 * sd_read_cache_type - called only from sd_revalidate_disk() 2681 * called with buffer of length SD_BUF_SIZE 2682 */ 2683 static void 2684 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer) 2685 { 2686 int len = 0, res; 2687 struct scsi_device *sdp = sdkp->device; 2688 2689 int dbd; 2690 int modepage; 2691 int first_len; 2692 struct scsi_mode_data data; 2693 struct scsi_sense_hdr sshdr; 2694 int old_wce = sdkp->WCE; 2695 int old_rcd = sdkp->RCD; 2696 int old_dpofua = sdkp->DPOFUA; 2697 2698 2699 if (sdkp->cache_override) 2700 return; 2701 2702 first_len = 4; 2703 if (sdp->skip_ms_page_8) { 2704 if (sdp->type == TYPE_RBC) 2705 goto defaults; 2706 else { 2707 if (sdp->skip_ms_page_3f) 2708 goto defaults; 2709 modepage = 0x3F; 2710 if (sdp->use_192_bytes_for_3f) 2711 first_len = 192; 2712 dbd = 0; 2713 } 2714 } else if (sdp->type == TYPE_RBC) { 2715 modepage = 6; 2716 dbd = 8; 2717 } else { 2718 modepage = 8; 2719 dbd = 0; 2720 } 2721 2722 /* cautiously ask */ 2723 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len, 2724 &data, &sshdr); 2725 2726 if (res < 0) 2727 goto bad_sense; 2728 2729 if (!data.header_length) { 2730 modepage = 6; 2731 first_len = 0; 2732 sd_first_printk(KERN_ERR, sdkp, 2733 "Missing header in MODE_SENSE response\n"); 2734 } 2735 2736 /* that went OK, now ask for the proper length */ 2737 len = data.length; 2738 2739 /* 2740 * We're only interested in the first three bytes, actually. 2741 * But the data cache page is defined for the first 20. 2742 */ 2743 if (len < 3) 2744 goto bad_sense; 2745 else if (len > SD_BUF_SIZE) { 2746 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter " 2747 "data from %d to %d bytes\n", len, SD_BUF_SIZE); 2748 len = SD_BUF_SIZE; 2749 } 2750 if (modepage == 0x3F && sdp->use_192_bytes_for_3f) 2751 len = 192; 2752 2753 /* Get the data */ 2754 if (len > first_len) 2755 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len, 2756 &data, &sshdr); 2757 2758 if (!res) { 2759 int offset = data.header_length + data.block_descriptor_length; 2760 2761 while (offset < len) { 2762 u8 page_code = buffer[offset] & 0x3F; 2763 u8 spf = buffer[offset] & 0x40; 2764 2765 if (page_code == 8 || page_code == 6) { 2766 /* We're interested only in the first 3 bytes. 2767 */ 2768 if (len - offset <= 2) { 2769 sd_first_printk(KERN_ERR, sdkp, 2770 "Incomplete mode parameter " 2771 "data\n"); 2772 goto defaults; 2773 } else { 2774 modepage = page_code; 2775 goto Page_found; 2776 } 2777 } else { 2778 /* Go to the next page */ 2779 if (spf && len - offset > 3) 2780 offset += 4 + (buffer[offset+2] << 8) + 2781 buffer[offset+3]; 2782 else if (!spf && len - offset > 1) 2783 offset += 2 + buffer[offset+1]; 2784 else { 2785 sd_first_printk(KERN_ERR, sdkp, 2786 "Incomplete mode " 2787 "parameter data\n"); 2788 goto defaults; 2789 } 2790 } 2791 } 2792 2793 sd_first_printk(KERN_WARNING, sdkp, 2794 "No Caching mode page found\n"); 2795 goto defaults; 2796 2797 Page_found: 2798 if (modepage == 8) { 2799 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0); 2800 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0); 2801 } else { 2802 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0); 2803 sdkp->RCD = 0; 2804 } 2805 2806 sdkp->DPOFUA = (data.device_specific & 0x10) != 0; 2807 if (sdp->broken_fua) { 2808 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n"); 2809 sdkp->DPOFUA = 0; 2810 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw && 2811 !sdkp->device->use_16_for_rw) { 2812 sd_first_printk(KERN_NOTICE, sdkp, 2813 "Uses READ/WRITE(6), disabling FUA\n"); 2814 sdkp->DPOFUA = 0; 2815 } 2816 2817 /* No cache flush allowed for write protected devices */ 2818 if (sdkp->WCE && sdkp->write_prot) 2819 sdkp->WCE = 0; 2820 2821 if (sdkp->first_scan || old_wce != sdkp->WCE || 2822 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA) 2823 sd_printk(KERN_NOTICE, sdkp, 2824 "Write cache: %s, read cache: %s, %s\n", 2825 sdkp->WCE ? "enabled" : "disabled", 2826 sdkp->RCD ? "disabled" : "enabled", 2827 sdkp->DPOFUA ? "supports DPO and FUA" 2828 : "doesn't support DPO or FUA"); 2829 2830 return; 2831 } 2832 2833 bad_sense: 2834 if (scsi_sense_valid(&sshdr) && 2835 sshdr.sense_key == ILLEGAL_REQUEST && 2836 sshdr.asc == 0x24 && sshdr.ascq == 0x0) 2837 /* Invalid field in CDB */ 2838 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n"); 2839 else 2840 sd_first_printk(KERN_ERR, sdkp, 2841 "Asking for cache data failed\n"); 2842 2843 defaults: 2844 if (sdp->wce_default_on) { 2845 sd_first_printk(KERN_NOTICE, sdkp, 2846 "Assuming drive cache: write back\n"); 2847 sdkp->WCE = 1; 2848 } else { 2849 sd_first_printk(KERN_WARNING, sdkp, 2850 "Assuming drive cache: write through\n"); 2851 sdkp->WCE = 0; 2852 } 2853 sdkp->RCD = 0; 2854 sdkp->DPOFUA = 0; 2855 } 2856 2857 /* 2858 * The ATO bit indicates whether the DIF application tag is available 2859 * for use by the operating system. 2860 */ 2861 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer) 2862 { 2863 int res, offset; 2864 struct scsi_device *sdp = sdkp->device; 2865 struct scsi_mode_data data; 2866 struct scsi_sense_hdr sshdr; 2867 2868 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 2869 return; 2870 2871 if (sdkp->protection_type == 0) 2872 return; 2873 2874 res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT, 2875 sdkp->max_retries, &data, &sshdr); 2876 2877 if (res < 0 || !data.header_length || 2878 data.length < 6) { 2879 sd_first_printk(KERN_WARNING, sdkp, 2880 "getting Control mode page failed, assume no ATO\n"); 2881 2882 if (scsi_sense_valid(&sshdr)) 2883 sd_print_sense_hdr(sdkp, &sshdr); 2884 2885 return; 2886 } 2887 2888 offset = data.header_length + data.block_descriptor_length; 2889 2890 if ((buffer[offset] & 0x3f) != 0x0a) { 2891 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n"); 2892 return; 2893 } 2894 2895 if ((buffer[offset + 5] & 0x80) == 0) 2896 return; 2897 2898 sdkp->ATO = 1; 2899 2900 return; 2901 } 2902 2903 /** 2904 * sd_read_block_limits - Query disk device for preferred I/O sizes. 2905 * @sdkp: disk to query 2906 */ 2907 static void sd_read_block_limits(struct scsi_disk *sdkp) 2908 { 2909 struct scsi_vpd *vpd; 2910 2911 rcu_read_lock(); 2912 2913 vpd = rcu_dereference(sdkp->device->vpd_pgb0); 2914 if (!vpd || vpd->len < 16) 2915 goto out; 2916 2917 sdkp->min_xfer_blocks = get_unaligned_be16(&vpd->data[6]); 2918 sdkp->max_xfer_blocks = get_unaligned_be32(&vpd->data[8]); 2919 sdkp->opt_xfer_blocks = get_unaligned_be32(&vpd->data[12]); 2920 2921 if (vpd->len >= 64) { 2922 unsigned int lba_count, desc_count; 2923 2924 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&vpd->data[36]); 2925 2926 if (!sdkp->lbpme) 2927 goto out; 2928 2929 lba_count = get_unaligned_be32(&vpd->data[20]); 2930 desc_count = get_unaligned_be32(&vpd->data[24]); 2931 2932 if (lba_count && desc_count) 2933 sdkp->max_unmap_blocks = lba_count; 2934 2935 sdkp->unmap_granularity = get_unaligned_be32(&vpd->data[28]); 2936 2937 if (vpd->data[32] & 0x80) 2938 sdkp->unmap_alignment = 2939 get_unaligned_be32(&vpd->data[32]) & ~(1 << 31); 2940 2941 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */ 2942 2943 if (sdkp->max_unmap_blocks) 2944 sd_config_discard(sdkp, SD_LBP_UNMAP); 2945 else 2946 sd_config_discard(sdkp, SD_LBP_WS16); 2947 2948 } else { /* LBP VPD page tells us what to use */ 2949 if (sdkp->lbpu && sdkp->max_unmap_blocks) 2950 sd_config_discard(sdkp, SD_LBP_UNMAP); 2951 else if (sdkp->lbpws) 2952 sd_config_discard(sdkp, SD_LBP_WS16); 2953 else if (sdkp->lbpws10) 2954 sd_config_discard(sdkp, SD_LBP_WS10); 2955 else 2956 sd_config_discard(sdkp, SD_LBP_DISABLE); 2957 } 2958 } 2959 2960 out: 2961 rcu_read_unlock(); 2962 } 2963 2964 /** 2965 * sd_read_block_characteristics - Query block dev. characteristics 2966 * @sdkp: disk to query 2967 */ 2968 static void sd_read_block_characteristics(struct scsi_disk *sdkp) 2969 { 2970 struct request_queue *q = sdkp->disk->queue; 2971 struct scsi_vpd *vpd; 2972 u16 rot; 2973 u8 zoned; 2974 2975 rcu_read_lock(); 2976 vpd = rcu_dereference(sdkp->device->vpd_pgb1); 2977 2978 if (!vpd || vpd->len < 8) { 2979 rcu_read_unlock(); 2980 return; 2981 } 2982 2983 rot = get_unaligned_be16(&vpd->data[4]); 2984 zoned = (vpd->data[8] >> 4) & 3; 2985 rcu_read_unlock(); 2986 2987 if (rot == 1) { 2988 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 2989 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q); 2990 } 2991 2992 if (sdkp->device->type == TYPE_ZBC) { 2993 /* Host-managed */ 2994 disk_set_zoned(sdkp->disk, BLK_ZONED_HM); 2995 } else { 2996 sdkp->zoned = zoned; 2997 if (sdkp->zoned == 1) { 2998 /* Host-aware */ 2999 disk_set_zoned(sdkp->disk, BLK_ZONED_HA); 3000 } else { 3001 /* Regular disk or drive managed disk */ 3002 disk_set_zoned(sdkp->disk, BLK_ZONED_NONE); 3003 } 3004 } 3005 3006 if (!sdkp->first_scan) 3007 return; 3008 3009 if (blk_queue_is_zoned(q)) { 3010 sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n", 3011 q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware"); 3012 } else { 3013 if (sdkp->zoned == 1) 3014 sd_printk(KERN_NOTICE, sdkp, 3015 "Host-aware SMR disk used as regular disk\n"); 3016 else if (sdkp->zoned == 2) 3017 sd_printk(KERN_NOTICE, sdkp, 3018 "Drive-managed SMR disk\n"); 3019 } 3020 } 3021 3022 /** 3023 * sd_read_block_provisioning - Query provisioning VPD page 3024 * @sdkp: disk to query 3025 */ 3026 static void sd_read_block_provisioning(struct scsi_disk *sdkp) 3027 { 3028 struct scsi_vpd *vpd; 3029 3030 if (sdkp->lbpme == 0) 3031 return; 3032 3033 rcu_read_lock(); 3034 vpd = rcu_dereference(sdkp->device->vpd_pgb2); 3035 3036 if (!vpd || vpd->len < 8) { 3037 rcu_read_unlock(); 3038 return; 3039 } 3040 3041 sdkp->lbpvpd = 1; 3042 sdkp->lbpu = (vpd->data[5] >> 7) & 1; /* UNMAP */ 3043 sdkp->lbpws = (vpd->data[5] >> 6) & 1; /* WRITE SAME(16) w/ UNMAP */ 3044 sdkp->lbpws10 = (vpd->data[5] >> 5) & 1; /* WRITE SAME(10) w/ UNMAP */ 3045 rcu_read_unlock(); 3046 } 3047 3048 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer) 3049 { 3050 struct scsi_device *sdev = sdkp->device; 3051 3052 if (sdev->host->no_write_same) { 3053 sdev->no_write_same = 1; 3054 3055 return; 3056 } 3057 3058 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) { 3059 struct scsi_vpd *vpd; 3060 3061 sdev->no_report_opcodes = 1; 3062 3063 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION 3064 * CODES is unsupported and the device has an ATA 3065 * Information VPD page (SAT). 3066 */ 3067 rcu_read_lock(); 3068 vpd = rcu_dereference(sdev->vpd_pg89); 3069 if (vpd) 3070 sdev->no_write_same = 1; 3071 rcu_read_unlock(); 3072 } 3073 3074 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1) 3075 sdkp->ws16 = 1; 3076 3077 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1) 3078 sdkp->ws10 = 1; 3079 } 3080 3081 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer) 3082 { 3083 struct scsi_device *sdev = sdkp->device; 3084 3085 if (!sdev->security_supported) 3086 return; 3087 3088 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3089 SECURITY_PROTOCOL_IN) == 1 && 3090 scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3091 SECURITY_PROTOCOL_OUT) == 1) 3092 sdkp->security = 1; 3093 } 3094 3095 static inline sector_t sd64_to_sectors(struct scsi_disk *sdkp, u8 *buf) 3096 { 3097 return logical_to_sectors(sdkp->device, get_unaligned_be64(buf)); 3098 } 3099 3100 /** 3101 * sd_read_cpr - Query concurrent positioning ranges 3102 * @sdkp: disk to query 3103 */ 3104 static void sd_read_cpr(struct scsi_disk *sdkp) 3105 { 3106 struct blk_independent_access_ranges *iars = NULL; 3107 unsigned char *buffer = NULL; 3108 unsigned int nr_cpr = 0; 3109 int i, vpd_len, buf_len = SD_BUF_SIZE; 3110 u8 *desc; 3111 3112 /* 3113 * We need to have the capacity set first for the block layer to be 3114 * able to check the ranges. 3115 */ 3116 if (sdkp->first_scan) 3117 return; 3118 3119 if (!sdkp->capacity) 3120 goto out; 3121 3122 /* 3123 * Concurrent Positioning Ranges VPD: there can be at most 256 ranges, 3124 * leading to a maximum page size of 64 + 256*32 bytes. 3125 */ 3126 buf_len = 64 + 256*32; 3127 buffer = kmalloc(buf_len, GFP_KERNEL); 3128 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb9, buffer, buf_len)) 3129 goto out; 3130 3131 /* We must have at least a 64B header and one 32B range descriptor */ 3132 vpd_len = get_unaligned_be16(&buffer[2]) + 4; 3133 if (vpd_len > buf_len || vpd_len < 64 + 32 || (vpd_len & 31)) { 3134 sd_printk(KERN_ERR, sdkp, 3135 "Invalid Concurrent Positioning Ranges VPD page\n"); 3136 goto out; 3137 } 3138 3139 nr_cpr = (vpd_len - 64) / 32; 3140 if (nr_cpr == 1) { 3141 nr_cpr = 0; 3142 goto out; 3143 } 3144 3145 iars = disk_alloc_independent_access_ranges(sdkp->disk, nr_cpr); 3146 if (!iars) { 3147 nr_cpr = 0; 3148 goto out; 3149 } 3150 3151 desc = &buffer[64]; 3152 for (i = 0; i < nr_cpr; i++, desc += 32) { 3153 if (desc[0] != i) { 3154 sd_printk(KERN_ERR, sdkp, 3155 "Invalid Concurrent Positioning Range number\n"); 3156 nr_cpr = 0; 3157 break; 3158 } 3159 3160 iars->ia_range[i].sector = sd64_to_sectors(sdkp, desc + 8); 3161 iars->ia_range[i].nr_sectors = sd64_to_sectors(sdkp, desc + 16); 3162 } 3163 3164 out: 3165 disk_set_independent_access_ranges(sdkp->disk, iars); 3166 if (nr_cpr && sdkp->nr_actuators != nr_cpr) { 3167 sd_printk(KERN_NOTICE, sdkp, 3168 "%u concurrent positioning ranges\n", nr_cpr); 3169 sdkp->nr_actuators = nr_cpr; 3170 } 3171 3172 kfree(buffer); 3173 } 3174 3175 static bool sd_validate_min_xfer_size(struct scsi_disk *sdkp) 3176 { 3177 struct scsi_device *sdp = sdkp->device; 3178 unsigned int min_xfer_bytes = 3179 logical_to_bytes(sdp, sdkp->min_xfer_blocks); 3180 3181 if (sdkp->min_xfer_blocks == 0) 3182 return false; 3183 3184 if (min_xfer_bytes & (sdkp->physical_block_size - 1)) { 3185 sd_first_printk(KERN_WARNING, sdkp, 3186 "Preferred minimum I/O size %u bytes not a " \ 3187 "multiple of physical block size (%u bytes)\n", 3188 min_xfer_bytes, sdkp->physical_block_size); 3189 sdkp->min_xfer_blocks = 0; 3190 return false; 3191 } 3192 3193 sd_first_printk(KERN_INFO, sdkp, "Preferred minimum I/O size %u bytes\n", 3194 min_xfer_bytes); 3195 return true; 3196 } 3197 3198 /* 3199 * Determine the device's preferred I/O size for reads and writes 3200 * unless the reported value is unreasonably small, large, not a 3201 * multiple of the physical block size, or simply garbage. 3202 */ 3203 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp, 3204 unsigned int dev_max) 3205 { 3206 struct scsi_device *sdp = sdkp->device; 3207 unsigned int opt_xfer_bytes = 3208 logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 3209 unsigned int min_xfer_bytes = 3210 logical_to_bytes(sdp, sdkp->min_xfer_blocks); 3211 3212 if (sdkp->opt_xfer_blocks == 0) 3213 return false; 3214 3215 if (sdkp->opt_xfer_blocks > dev_max) { 3216 sd_first_printk(KERN_WARNING, sdkp, 3217 "Optimal transfer size %u logical blocks " \ 3218 "> dev_max (%u logical blocks)\n", 3219 sdkp->opt_xfer_blocks, dev_max); 3220 return false; 3221 } 3222 3223 if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) { 3224 sd_first_printk(KERN_WARNING, sdkp, 3225 "Optimal transfer size %u logical blocks " \ 3226 "> sd driver limit (%u logical blocks)\n", 3227 sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS); 3228 return false; 3229 } 3230 3231 if (opt_xfer_bytes < PAGE_SIZE) { 3232 sd_first_printk(KERN_WARNING, sdkp, 3233 "Optimal transfer size %u bytes < " \ 3234 "PAGE_SIZE (%u bytes)\n", 3235 opt_xfer_bytes, (unsigned int)PAGE_SIZE); 3236 return false; 3237 } 3238 3239 if (min_xfer_bytes && opt_xfer_bytes % min_xfer_bytes) { 3240 sd_first_printk(KERN_WARNING, sdkp, 3241 "Optimal transfer size %u bytes not a " \ 3242 "multiple of preferred minimum block " \ 3243 "size (%u bytes)\n", 3244 opt_xfer_bytes, min_xfer_bytes); 3245 return false; 3246 } 3247 3248 if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) { 3249 sd_first_printk(KERN_WARNING, sdkp, 3250 "Optimal transfer size %u bytes not a " \ 3251 "multiple of physical block size (%u bytes)\n", 3252 opt_xfer_bytes, sdkp->physical_block_size); 3253 return false; 3254 } 3255 3256 sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n", 3257 opt_xfer_bytes); 3258 return true; 3259 } 3260 3261 /** 3262 * sd_revalidate_disk - called the first time a new disk is seen, 3263 * performs disk spin up, read_capacity, etc. 3264 * @disk: struct gendisk we care about 3265 **/ 3266 static int sd_revalidate_disk(struct gendisk *disk) 3267 { 3268 struct scsi_disk *sdkp = scsi_disk(disk); 3269 struct scsi_device *sdp = sdkp->device; 3270 struct request_queue *q = sdkp->disk->queue; 3271 sector_t old_capacity = sdkp->capacity; 3272 unsigned char *buffer; 3273 unsigned int dev_max, rw_max; 3274 3275 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, 3276 "sd_revalidate_disk\n")); 3277 3278 /* 3279 * If the device is offline, don't try and read capacity or any 3280 * of the other niceties. 3281 */ 3282 if (!scsi_device_online(sdp)) 3283 goto out; 3284 3285 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL); 3286 if (!buffer) { 3287 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory " 3288 "allocation failure.\n"); 3289 goto out; 3290 } 3291 3292 sd_spinup_disk(sdkp); 3293 3294 /* 3295 * Without media there is no reason to ask; moreover, some devices 3296 * react badly if we do. 3297 */ 3298 if (sdkp->media_present) { 3299 sd_read_capacity(sdkp, buffer); 3300 3301 /* 3302 * set the default to rotational. All non-rotational devices 3303 * support the block characteristics VPD page, which will 3304 * cause this to be updated correctly and any device which 3305 * doesn't support it should be treated as rotational. 3306 */ 3307 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q); 3308 blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q); 3309 3310 if (scsi_device_supports_vpd(sdp)) { 3311 sd_read_block_provisioning(sdkp); 3312 sd_read_block_limits(sdkp); 3313 sd_read_block_characteristics(sdkp); 3314 sd_zbc_read_zones(sdkp, buffer); 3315 sd_read_cpr(sdkp); 3316 } 3317 3318 sd_print_capacity(sdkp, old_capacity); 3319 3320 sd_read_write_protect_flag(sdkp, buffer); 3321 sd_read_cache_type(sdkp, buffer); 3322 sd_read_app_tag_own(sdkp, buffer); 3323 sd_read_write_same(sdkp, buffer); 3324 sd_read_security(sdkp, buffer); 3325 sd_config_protection(sdkp); 3326 } 3327 3328 /* 3329 * We now have all cache related info, determine how we deal 3330 * with flush requests. 3331 */ 3332 sd_set_flush_flag(sdkp); 3333 3334 /* Initial block count limit based on CDB TRANSFER LENGTH field size. */ 3335 dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS; 3336 3337 /* Some devices report a maximum block count for READ/WRITE requests. */ 3338 dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks); 3339 q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max); 3340 3341 if (sd_validate_min_xfer_size(sdkp)) 3342 blk_queue_io_min(sdkp->disk->queue, 3343 logical_to_bytes(sdp, sdkp->min_xfer_blocks)); 3344 else 3345 blk_queue_io_min(sdkp->disk->queue, 0); 3346 3347 if (sd_validate_opt_xfer_size(sdkp, dev_max)) { 3348 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 3349 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks); 3350 } else { 3351 q->limits.io_opt = 0; 3352 rw_max = min_not_zero(logical_to_sectors(sdp, dev_max), 3353 (sector_t)BLK_DEF_MAX_SECTORS); 3354 } 3355 3356 /* 3357 * Limit default to SCSI host optimal sector limit if set. There may be 3358 * an impact on performance for when the size of a request exceeds this 3359 * host limit. 3360 */ 3361 rw_max = min_not_zero(rw_max, sdp->host->opt_sectors); 3362 3363 /* Do not exceed controller limit */ 3364 rw_max = min(rw_max, queue_max_hw_sectors(q)); 3365 3366 /* 3367 * Only update max_sectors if previously unset or if the current value 3368 * exceeds the capabilities of the hardware. 3369 */ 3370 if (sdkp->first_scan || 3371 q->limits.max_sectors > q->limits.max_dev_sectors || 3372 q->limits.max_sectors > q->limits.max_hw_sectors) 3373 q->limits.max_sectors = rw_max; 3374 3375 sdkp->first_scan = 0; 3376 3377 set_capacity_and_notify(disk, logical_to_sectors(sdp, sdkp->capacity)); 3378 sd_config_write_same(sdkp); 3379 kfree(buffer); 3380 3381 /* 3382 * For a zoned drive, revalidating the zones can be done only once 3383 * the gendisk capacity is set. So if this fails, set back the gendisk 3384 * capacity to 0. 3385 */ 3386 if (sd_zbc_revalidate_zones(sdkp)) 3387 set_capacity_and_notify(disk, 0); 3388 3389 out: 3390 return 0; 3391 } 3392 3393 /** 3394 * sd_unlock_native_capacity - unlock native capacity 3395 * @disk: struct gendisk to set capacity for 3396 * 3397 * Block layer calls this function if it detects that partitions 3398 * on @disk reach beyond the end of the device. If the SCSI host 3399 * implements ->unlock_native_capacity() method, it's invoked to 3400 * give it a chance to adjust the device capacity. 3401 * 3402 * CONTEXT: 3403 * Defined by block layer. Might sleep. 3404 */ 3405 static void sd_unlock_native_capacity(struct gendisk *disk) 3406 { 3407 struct scsi_device *sdev = scsi_disk(disk)->device; 3408 3409 if (sdev->host->hostt->unlock_native_capacity) 3410 sdev->host->hostt->unlock_native_capacity(sdev); 3411 } 3412 3413 /** 3414 * sd_format_disk_name - format disk name 3415 * @prefix: name prefix - ie. "sd" for SCSI disks 3416 * @index: index of the disk to format name for 3417 * @buf: output buffer 3418 * @buflen: length of the output buffer 3419 * 3420 * SCSI disk names starts at sda. The 26th device is sdz and the 3421 * 27th is sdaa. The last one for two lettered suffix is sdzz 3422 * which is followed by sdaaa. 3423 * 3424 * This is basically 26 base counting with one extra 'nil' entry 3425 * at the beginning from the second digit on and can be 3426 * determined using similar method as 26 base conversion with the 3427 * index shifted -1 after each digit is computed. 3428 * 3429 * CONTEXT: 3430 * Don't care. 3431 * 3432 * RETURNS: 3433 * 0 on success, -errno on failure. 3434 */ 3435 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen) 3436 { 3437 const int base = 'z' - 'a' + 1; 3438 char *begin = buf + strlen(prefix); 3439 char *end = buf + buflen; 3440 char *p; 3441 int unit; 3442 3443 p = end - 1; 3444 *p = '\0'; 3445 unit = base; 3446 do { 3447 if (p == begin) 3448 return -EINVAL; 3449 *--p = 'a' + (index % unit); 3450 index = (index / unit) - 1; 3451 } while (index >= 0); 3452 3453 memmove(begin, p, end - p); 3454 memcpy(buf, prefix, strlen(prefix)); 3455 3456 return 0; 3457 } 3458 3459 /** 3460 * sd_probe - called during driver initialization and whenever a 3461 * new scsi device is attached to the system. It is called once 3462 * for each scsi device (not just disks) present. 3463 * @dev: pointer to device object 3464 * 3465 * Returns 0 if successful (or not interested in this scsi device 3466 * (e.g. scanner)); 1 when there is an error. 3467 * 3468 * Note: this function is invoked from the scsi mid-level. 3469 * This function sets up the mapping between a given 3470 * <host,channel,id,lun> (found in sdp) and new device name 3471 * (e.g. /dev/sda). More precisely it is the block device major 3472 * and minor number that is chosen here. 3473 * 3474 * Assume sd_probe is not re-entrant (for time being) 3475 * Also think about sd_probe() and sd_remove() running coincidentally. 3476 **/ 3477 static int sd_probe(struct device *dev) 3478 { 3479 struct scsi_device *sdp = to_scsi_device(dev); 3480 struct scsi_disk *sdkp; 3481 struct gendisk *gd; 3482 int index; 3483 int error; 3484 3485 scsi_autopm_get_device(sdp); 3486 error = -ENODEV; 3487 if (sdp->type != TYPE_DISK && 3488 sdp->type != TYPE_ZBC && 3489 sdp->type != TYPE_MOD && 3490 sdp->type != TYPE_RBC) 3491 goto out; 3492 3493 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) && sdp->type == TYPE_ZBC) { 3494 sdev_printk(KERN_WARNING, sdp, 3495 "Unsupported ZBC host-managed device.\n"); 3496 goto out; 3497 } 3498 3499 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp, 3500 "sd_probe\n")); 3501 3502 error = -ENOMEM; 3503 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL); 3504 if (!sdkp) 3505 goto out; 3506 3507 gd = blk_mq_alloc_disk_for_queue(sdp->request_queue, 3508 &sd_bio_compl_lkclass); 3509 if (!gd) 3510 goto out_free; 3511 3512 index = ida_alloc(&sd_index_ida, GFP_KERNEL); 3513 if (index < 0) { 3514 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n"); 3515 goto out_put; 3516 } 3517 3518 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN); 3519 if (error) { 3520 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n"); 3521 goto out_free_index; 3522 } 3523 3524 sdkp->device = sdp; 3525 sdkp->disk = gd; 3526 sdkp->index = index; 3527 sdkp->max_retries = SD_MAX_RETRIES; 3528 atomic_set(&sdkp->openers, 0); 3529 atomic_set(&sdkp->device->ioerr_cnt, 0); 3530 3531 if (!sdp->request_queue->rq_timeout) { 3532 if (sdp->type != TYPE_MOD) 3533 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT); 3534 else 3535 blk_queue_rq_timeout(sdp->request_queue, 3536 SD_MOD_TIMEOUT); 3537 } 3538 3539 device_initialize(&sdkp->disk_dev); 3540 sdkp->disk_dev.parent = get_device(dev); 3541 sdkp->disk_dev.class = &sd_disk_class; 3542 dev_set_name(&sdkp->disk_dev, "%s", dev_name(dev)); 3543 3544 error = device_add(&sdkp->disk_dev); 3545 if (error) { 3546 put_device(&sdkp->disk_dev); 3547 goto out; 3548 } 3549 3550 dev_set_drvdata(dev, sdkp); 3551 3552 gd->major = sd_major((index & 0xf0) >> 4); 3553 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00); 3554 gd->minors = SD_MINORS; 3555 3556 gd->fops = &sd_fops; 3557 gd->private_data = sdkp; 3558 3559 /* defaults, until the device tells us otherwise */ 3560 sdp->sector_size = 512; 3561 sdkp->capacity = 0; 3562 sdkp->media_present = 1; 3563 sdkp->write_prot = 0; 3564 sdkp->cache_override = 0; 3565 sdkp->WCE = 0; 3566 sdkp->RCD = 0; 3567 sdkp->ATO = 0; 3568 sdkp->first_scan = 1; 3569 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS; 3570 3571 sd_revalidate_disk(gd); 3572 3573 if (sdp->removable) { 3574 gd->flags |= GENHD_FL_REMOVABLE; 3575 gd->events |= DISK_EVENT_MEDIA_CHANGE; 3576 gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT; 3577 } 3578 3579 blk_pm_runtime_init(sdp->request_queue, dev); 3580 if (sdp->rpm_autosuspend) { 3581 pm_runtime_set_autosuspend_delay(dev, 3582 sdp->host->hostt->rpm_autosuspend_delay); 3583 } 3584 3585 error = device_add_disk(dev, gd, NULL); 3586 if (error) { 3587 put_device(&sdkp->disk_dev); 3588 put_disk(gd); 3589 goto out; 3590 } 3591 3592 if (sdkp->security) { 3593 sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit); 3594 if (sdkp->opal_dev) 3595 sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n"); 3596 } 3597 3598 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n", 3599 sdp->removable ? "removable " : ""); 3600 scsi_autopm_put_device(sdp); 3601 3602 return 0; 3603 3604 out_free_index: 3605 ida_free(&sd_index_ida, index); 3606 out_put: 3607 put_disk(gd); 3608 out_free: 3609 kfree(sdkp); 3610 out: 3611 scsi_autopm_put_device(sdp); 3612 return error; 3613 } 3614 3615 /** 3616 * sd_remove - called whenever a scsi disk (previously recognized by 3617 * sd_probe) is detached from the system. It is called (potentially 3618 * multiple times) during sd module unload. 3619 * @dev: pointer to device object 3620 * 3621 * Note: this function is invoked from the scsi mid-level. 3622 * This function potentially frees up a device name (e.g. /dev/sdc) 3623 * that could be re-used by a subsequent sd_probe(). 3624 * This function is not called when the built-in sd driver is "exit-ed". 3625 **/ 3626 static int sd_remove(struct device *dev) 3627 { 3628 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3629 3630 scsi_autopm_get_device(sdkp->device); 3631 3632 device_del(&sdkp->disk_dev); 3633 del_gendisk(sdkp->disk); 3634 sd_shutdown(dev); 3635 3636 put_disk(sdkp->disk); 3637 return 0; 3638 } 3639 3640 static void scsi_disk_release(struct device *dev) 3641 { 3642 struct scsi_disk *sdkp = to_scsi_disk(dev); 3643 3644 ida_free(&sd_index_ida, sdkp->index); 3645 sd_zbc_free_zone_info(sdkp); 3646 put_device(&sdkp->device->sdev_gendev); 3647 free_opal_dev(sdkp->opal_dev); 3648 3649 kfree(sdkp); 3650 } 3651 3652 static int sd_start_stop_device(struct scsi_disk *sdkp, int start) 3653 { 3654 unsigned char cmd[6] = { START_STOP }; /* START_VALID */ 3655 struct scsi_sense_hdr sshdr; 3656 const struct scsi_exec_args exec_args = { 3657 .sshdr = &sshdr, 3658 .req_flags = BLK_MQ_REQ_PM, 3659 }; 3660 struct scsi_device *sdp = sdkp->device; 3661 int res; 3662 3663 if (start) 3664 cmd[4] |= 1; /* START */ 3665 3666 if (sdp->start_stop_pwr_cond) 3667 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */ 3668 3669 if (!scsi_device_online(sdp)) 3670 return -ENODEV; 3671 3672 res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, SD_TIMEOUT, 3673 sdkp->max_retries, &exec_args); 3674 if (res) { 3675 sd_print_result(sdkp, "Start/Stop Unit failed", res); 3676 if (res > 0 && scsi_sense_valid(&sshdr)) { 3677 sd_print_sense_hdr(sdkp, &sshdr); 3678 /* 0x3a is medium not present */ 3679 if (sshdr.asc == 0x3a) 3680 res = 0; 3681 } 3682 } 3683 3684 /* SCSI error codes must not go to the generic layer */ 3685 if (res) 3686 return -EIO; 3687 3688 return 0; 3689 } 3690 3691 /* 3692 * Send a SYNCHRONIZE CACHE instruction down to the device through 3693 * the normal SCSI command structure. Wait for the command to 3694 * complete. 3695 */ 3696 static void sd_shutdown(struct device *dev) 3697 { 3698 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3699 3700 if (!sdkp) 3701 return; /* this can happen */ 3702 3703 if (pm_runtime_suspended(dev)) 3704 return; 3705 3706 if (sdkp->WCE && sdkp->media_present) { 3707 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3708 sd_sync_cache(sdkp, NULL); 3709 } 3710 3711 if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) { 3712 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3713 sd_start_stop_device(sdkp, 0); 3714 } 3715 } 3716 3717 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors) 3718 { 3719 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3720 struct scsi_sense_hdr sshdr; 3721 int ret = 0; 3722 3723 if (!sdkp) /* E.g.: runtime suspend following sd_remove() */ 3724 return 0; 3725 3726 if (sdkp->WCE && sdkp->media_present) { 3727 if (!sdkp->device->silence_suspend) 3728 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3729 ret = sd_sync_cache(sdkp, &sshdr); 3730 3731 if (ret) { 3732 /* ignore OFFLINE device */ 3733 if (ret == -ENODEV) 3734 return 0; 3735 3736 if (!scsi_sense_valid(&sshdr) || 3737 sshdr.sense_key != ILLEGAL_REQUEST) 3738 return ret; 3739 3740 /* 3741 * sshdr.sense_key == ILLEGAL_REQUEST means this drive 3742 * doesn't support sync. There's not much to do and 3743 * suspend shouldn't fail. 3744 */ 3745 ret = 0; 3746 } 3747 } 3748 3749 if (sdkp->device->manage_start_stop) { 3750 if (!sdkp->device->silence_suspend) 3751 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3752 /* an error is not worth aborting a system sleep */ 3753 ret = sd_start_stop_device(sdkp, 0); 3754 if (ignore_stop_errors) 3755 ret = 0; 3756 } 3757 3758 return ret; 3759 } 3760 3761 static int sd_suspend_system(struct device *dev) 3762 { 3763 if (pm_runtime_suspended(dev)) 3764 return 0; 3765 3766 return sd_suspend_common(dev, true); 3767 } 3768 3769 static int sd_suspend_runtime(struct device *dev) 3770 { 3771 return sd_suspend_common(dev, false); 3772 } 3773 3774 static int sd_resume(struct device *dev) 3775 { 3776 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3777 int ret; 3778 3779 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */ 3780 return 0; 3781 3782 if (!sdkp->device->manage_start_stop) 3783 return 0; 3784 3785 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n"); 3786 ret = sd_start_stop_device(sdkp, 1); 3787 if (!ret) 3788 opal_unlock_from_suspend(sdkp->opal_dev); 3789 return ret; 3790 } 3791 3792 static int sd_resume_system(struct device *dev) 3793 { 3794 if (pm_runtime_suspended(dev)) 3795 return 0; 3796 3797 return sd_resume(dev); 3798 } 3799 3800 static int sd_resume_runtime(struct device *dev) 3801 { 3802 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3803 struct scsi_device *sdp; 3804 3805 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */ 3806 return 0; 3807 3808 sdp = sdkp->device; 3809 3810 if (sdp->ignore_media_change) { 3811 /* clear the device's sense data */ 3812 static const u8 cmd[10] = { REQUEST_SENSE }; 3813 const struct scsi_exec_args exec_args = { 3814 .req_flags = BLK_MQ_REQ_PM, 3815 }; 3816 3817 if (scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, 3818 sdp->request_queue->rq_timeout, 1, 3819 &exec_args)) 3820 sd_printk(KERN_NOTICE, sdkp, 3821 "Failed to clear sense data\n"); 3822 } 3823 3824 return sd_resume(dev); 3825 } 3826 3827 /** 3828 * init_sd - entry point for this driver (both when built in or when 3829 * a module). 3830 * 3831 * Note: this function registers this driver with the scsi mid-level. 3832 **/ 3833 static int __init init_sd(void) 3834 { 3835 int majors = 0, i, err; 3836 3837 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n")); 3838 3839 for (i = 0; i < SD_MAJORS; i++) { 3840 if (__register_blkdev(sd_major(i), "sd", sd_default_probe)) 3841 continue; 3842 majors++; 3843 } 3844 3845 if (!majors) 3846 return -ENODEV; 3847 3848 err = class_register(&sd_disk_class); 3849 if (err) 3850 goto err_out; 3851 3852 sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0); 3853 if (!sd_page_pool) { 3854 printk(KERN_ERR "sd: can't init discard page pool\n"); 3855 err = -ENOMEM; 3856 goto err_out_class; 3857 } 3858 3859 err = scsi_register_driver(&sd_template.gendrv); 3860 if (err) 3861 goto err_out_driver; 3862 3863 return 0; 3864 3865 err_out_driver: 3866 mempool_destroy(sd_page_pool); 3867 err_out_class: 3868 class_unregister(&sd_disk_class); 3869 err_out: 3870 for (i = 0; i < SD_MAJORS; i++) 3871 unregister_blkdev(sd_major(i), "sd"); 3872 return err; 3873 } 3874 3875 /** 3876 * exit_sd - exit point for this driver (when it is a module). 3877 * 3878 * Note: this function unregisters this driver from the scsi mid-level. 3879 **/ 3880 static void __exit exit_sd(void) 3881 { 3882 int i; 3883 3884 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n")); 3885 3886 scsi_unregister_driver(&sd_template.gendrv); 3887 mempool_destroy(sd_page_pool); 3888 3889 class_unregister(&sd_disk_class); 3890 3891 for (i = 0; i < SD_MAJORS; i++) 3892 unregister_blkdev(sd_major(i), "sd"); 3893 } 3894 3895 module_init(init_sd); 3896 module_exit(exit_sd); 3897 3898 void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr) 3899 { 3900 scsi_print_sense_hdr(sdkp->device, 3901 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr); 3902 } 3903 3904 void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result) 3905 { 3906 const char *hb_string = scsi_hostbyte_string(result); 3907 3908 if (hb_string) 3909 sd_printk(KERN_INFO, sdkp, 3910 "%s: Result: hostbyte=%s driverbyte=%s\n", msg, 3911 hb_string ? hb_string : "invalid", 3912 "DRIVER_OK"); 3913 else 3914 sd_printk(KERN_INFO, sdkp, 3915 "%s: Result: hostbyte=0x%02x driverbyte=%s\n", 3916 msg, host_byte(result), "DRIVER_OK"); 3917 } 3918