1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * sd.c Copyright (C) 1992 Drew Eckhardt 4 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale 5 * 6 * Linux scsi disk driver 7 * Initial versions: Drew Eckhardt 8 * Subsequent revisions: Eric Youngdale 9 * Modification history: 10 * - Drew Eckhardt <drew@colorado.edu> original 11 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 12 * outstanding request, and other enhancements. 13 * Support loadable low-level scsi drivers. 14 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 15 * eight major numbers. 16 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs. 17 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 18 * sd_init and cleanups. 19 * - Alex Davis <letmein@erols.com> Fix problem where partition info 20 * not being read in sd_open. Fix problem where removable media 21 * could be ejected after sd_open. 22 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x 23 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 24 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 25 * Support 32k/1M disks. 26 * 27 * Logging policy (needs CONFIG_SCSI_LOGGING defined): 28 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2 29 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1 30 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1 31 * - entering other commands: SCSI_LOG_HLQUEUE level 3 32 * Note: when the logging level is set by the user, it must be greater 33 * than the level indicated above to trigger output. 34 */ 35 36 #include <linux/module.h> 37 #include <linux/fs.h> 38 #include <linux/kernel.h> 39 #include <linux/mm.h> 40 #include <linux/bio.h> 41 #include <linux/hdreg.h> 42 #include <linux/errno.h> 43 #include <linux/idr.h> 44 #include <linux/interrupt.h> 45 #include <linux/init.h> 46 #include <linux/blkdev.h> 47 #include <linux/blkpg.h> 48 #include <linux/blk-pm.h> 49 #include <linux/delay.h> 50 #include <linux/major.h> 51 #include <linux/mutex.h> 52 #include <linux/string_helpers.h> 53 #include <linux/slab.h> 54 #include <linux/sed-opal.h> 55 #include <linux/pm_runtime.h> 56 #include <linux/pr.h> 57 #include <linux/t10-pi.h> 58 #include <linux/uaccess.h> 59 #include <asm/unaligned.h> 60 61 #include <scsi/scsi.h> 62 #include <scsi/scsi_cmnd.h> 63 #include <scsi/scsi_dbg.h> 64 #include <scsi/scsi_device.h> 65 #include <scsi/scsi_driver.h> 66 #include <scsi/scsi_eh.h> 67 #include <scsi/scsi_host.h> 68 #include <scsi/scsi_ioctl.h> 69 #include <scsi/scsicam.h> 70 71 #include "sd.h" 72 #include "scsi_priv.h" 73 #include "scsi_logging.h" 74 75 MODULE_AUTHOR("Eric Youngdale"); 76 MODULE_DESCRIPTION("SCSI disk (sd) driver"); 77 MODULE_LICENSE("GPL"); 78 79 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR); 80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR); 81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR); 82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR); 83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR); 84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR); 85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR); 86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR); 87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR); 88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR); 89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR); 90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR); 91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR); 92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR); 93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR); 94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR); 95 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK); 96 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD); 97 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC); 98 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC); 99 100 #define SD_MINORS 16 101 102 static void sd_config_discard(struct scsi_disk *, unsigned int); 103 static void sd_config_write_same(struct scsi_disk *); 104 static int sd_revalidate_disk(struct gendisk *); 105 static void sd_unlock_native_capacity(struct gendisk *disk); 106 static int sd_probe(struct device *); 107 static int sd_remove(struct device *); 108 static void sd_shutdown(struct device *); 109 static int sd_suspend_system(struct device *); 110 static int sd_suspend_runtime(struct device *); 111 static int sd_resume_system(struct device *); 112 static int sd_resume_runtime(struct device *); 113 static void sd_rescan(struct device *); 114 static blk_status_t sd_init_command(struct scsi_cmnd *SCpnt); 115 static void sd_uninit_command(struct scsi_cmnd *SCpnt); 116 static int sd_done(struct scsi_cmnd *); 117 static void sd_eh_reset(struct scsi_cmnd *); 118 static int sd_eh_action(struct scsi_cmnd *, int); 119 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer); 120 static void scsi_disk_release(struct device *cdev); 121 122 static DEFINE_IDA(sd_index_ida); 123 124 static struct kmem_cache *sd_cdb_cache; 125 static mempool_t *sd_cdb_pool; 126 static mempool_t *sd_page_pool; 127 static struct lock_class_key sd_bio_compl_lkclass; 128 129 static const char *sd_cache_types[] = { 130 "write through", "none", "write back", 131 "write back, no read (daft)" 132 }; 133 134 static void sd_set_flush_flag(struct scsi_disk *sdkp) 135 { 136 bool wc = false, fua = false; 137 138 if (sdkp->WCE) { 139 wc = true; 140 if (sdkp->DPOFUA) 141 fua = true; 142 } 143 144 blk_queue_write_cache(sdkp->disk->queue, wc, fua); 145 } 146 147 static ssize_t 148 cache_type_store(struct device *dev, struct device_attribute *attr, 149 const char *buf, size_t count) 150 { 151 int ct, rcd, wce, sp; 152 struct scsi_disk *sdkp = to_scsi_disk(dev); 153 struct scsi_device *sdp = sdkp->device; 154 char buffer[64]; 155 char *buffer_data; 156 struct scsi_mode_data data; 157 struct scsi_sense_hdr sshdr; 158 static const char temp[] = "temporary "; 159 int len; 160 161 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 162 /* no cache control on RBC devices; theoretically they 163 * can do it, but there's probably so many exceptions 164 * it's not worth the risk */ 165 return -EINVAL; 166 167 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) { 168 buf += sizeof(temp) - 1; 169 sdkp->cache_override = 1; 170 } else { 171 sdkp->cache_override = 0; 172 } 173 174 ct = sysfs_match_string(sd_cache_types, buf); 175 if (ct < 0) 176 return -EINVAL; 177 178 rcd = ct & 0x01 ? 1 : 0; 179 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0; 180 181 if (sdkp->cache_override) { 182 sdkp->WCE = wce; 183 sdkp->RCD = rcd; 184 sd_set_flush_flag(sdkp); 185 return count; 186 } 187 188 if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT, 189 sdkp->max_retries, &data, NULL)) 190 return -EINVAL; 191 len = min_t(size_t, sizeof(buffer), data.length - data.header_length - 192 data.block_descriptor_length); 193 buffer_data = buffer + data.header_length + 194 data.block_descriptor_length; 195 buffer_data[2] &= ~0x05; 196 buffer_data[2] |= wce << 2 | rcd; 197 sp = buffer_data[0] & 0x80 ? 1 : 0; 198 buffer_data[0] &= ~0x80; 199 200 /* 201 * Ensure WP, DPOFUA, and RESERVED fields are cleared in 202 * received mode parameter buffer before doing MODE SELECT. 203 */ 204 data.device_specific = 0; 205 206 if (scsi_mode_select(sdp, 1, sp, buffer_data, len, SD_TIMEOUT, 207 sdkp->max_retries, &data, &sshdr)) { 208 if (scsi_sense_valid(&sshdr)) 209 sd_print_sense_hdr(sdkp, &sshdr); 210 return -EINVAL; 211 } 212 sd_revalidate_disk(sdkp->disk); 213 return count; 214 } 215 216 static ssize_t 217 manage_start_stop_show(struct device *dev, struct device_attribute *attr, 218 char *buf) 219 { 220 struct scsi_disk *sdkp = to_scsi_disk(dev); 221 struct scsi_device *sdp = sdkp->device; 222 223 return sprintf(buf, "%u\n", sdp->manage_start_stop); 224 } 225 226 static ssize_t 227 manage_start_stop_store(struct device *dev, struct device_attribute *attr, 228 const char *buf, size_t count) 229 { 230 struct scsi_disk *sdkp = to_scsi_disk(dev); 231 struct scsi_device *sdp = sdkp->device; 232 bool v; 233 234 if (!capable(CAP_SYS_ADMIN)) 235 return -EACCES; 236 237 if (kstrtobool(buf, &v)) 238 return -EINVAL; 239 240 sdp->manage_start_stop = v; 241 242 return count; 243 } 244 static DEVICE_ATTR_RW(manage_start_stop); 245 246 static ssize_t 247 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf) 248 { 249 struct scsi_disk *sdkp = to_scsi_disk(dev); 250 251 return sprintf(buf, "%u\n", sdkp->device->allow_restart); 252 } 253 254 static ssize_t 255 allow_restart_store(struct device *dev, struct device_attribute *attr, 256 const char *buf, size_t count) 257 { 258 bool v; 259 struct scsi_disk *sdkp = to_scsi_disk(dev); 260 struct scsi_device *sdp = sdkp->device; 261 262 if (!capable(CAP_SYS_ADMIN)) 263 return -EACCES; 264 265 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 266 return -EINVAL; 267 268 if (kstrtobool(buf, &v)) 269 return -EINVAL; 270 271 sdp->allow_restart = v; 272 273 return count; 274 } 275 static DEVICE_ATTR_RW(allow_restart); 276 277 static ssize_t 278 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf) 279 { 280 struct scsi_disk *sdkp = to_scsi_disk(dev); 281 int ct = sdkp->RCD + 2*sdkp->WCE; 282 283 return sprintf(buf, "%s\n", sd_cache_types[ct]); 284 } 285 static DEVICE_ATTR_RW(cache_type); 286 287 static ssize_t 288 FUA_show(struct device *dev, struct device_attribute *attr, char *buf) 289 { 290 struct scsi_disk *sdkp = to_scsi_disk(dev); 291 292 return sprintf(buf, "%u\n", sdkp->DPOFUA); 293 } 294 static DEVICE_ATTR_RO(FUA); 295 296 static ssize_t 297 protection_type_show(struct device *dev, struct device_attribute *attr, 298 char *buf) 299 { 300 struct scsi_disk *sdkp = to_scsi_disk(dev); 301 302 return sprintf(buf, "%u\n", sdkp->protection_type); 303 } 304 305 static ssize_t 306 protection_type_store(struct device *dev, struct device_attribute *attr, 307 const char *buf, size_t count) 308 { 309 struct scsi_disk *sdkp = to_scsi_disk(dev); 310 unsigned int val; 311 int err; 312 313 if (!capable(CAP_SYS_ADMIN)) 314 return -EACCES; 315 316 err = kstrtouint(buf, 10, &val); 317 318 if (err) 319 return err; 320 321 if (val <= T10_PI_TYPE3_PROTECTION) 322 sdkp->protection_type = val; 323 324 return count; 325 } 326 static DEVICE_ATTR_RW(protection_type); 327 328 static ssize_t 329 protection_mode_show(struct device *dev, struct device_attribute *attr, 330 char *buf) 331 { 332 struct scsi_disk *sdkp = to_scsi_disk(dev); 333 struct scsi_device *sdp = sdkp->device; 334 unsigned int dif, dix; 335 336 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type); 337 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type); 338 339 if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) { 340 dif = 0; 341 dix = 1; 342 } 343 344 if (!dif && !dix) 345 return sprintf(buf, "none\n"); 346 347 return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif); 348 } 349 static DEVICE_ATTR_RO(protection_mode); 350 351 static ssize_t 352 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf) 353 { 354 struct scsi_disk *sdkp = to_scsi_disk(dev); 355 356 return sprintf(buf, "%u\n", sdkp->ATO); 357 } 358 static DEVICE_ATTR_RO(app_tag_own); 359 360 static ssize_t 361 thin_provisioning_show(struct device *dev, struct device_attribute *attr, 362 char *buf) 363 { 364 struct scsi_disk *sdkp = to_scsi_disk(dev); 365 366 return sprintf(buf, "%u\n", sdkp->lbpme); 367 } 368 static DEVICE_ATTR_RO(thin_provisioning); 369 370 /* sysfs_match_string() requires dense arrays */ 371 static const char *lbp_mode[] = { 372 [SD_LBP_FULL] = "full", 373 [SD_LBP_UNMAP] = "unmap", 374 [SD_LBP_WS16] = "writesame_16", 375 [SD_LBP_WS10] = "writesame_10", 376 [SD_LBP_ZERO] = "writesame_zero", 377 [SD_LBP_DISABLE] = "disabled", 378 }; 379 380 static ssize_t 381 provisioning_mode_show(struct device *dev, struct device_attribute *attr, 382 char *buf) 383 { 384 struct scsi_disk *sdkp = to_scsi_disk(dev); 385 386 return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]); 387 } 388 389 static ssize_t 390 provisioning_mode_store(struct device *dev, struct device_attribute *attr, 391 const char *buf, size_t count) 392 { 393 struct scsi_disk *sdkp = to_scsi_disk(dev); 394 struct scsi_device *sdp = sdkp->device; 395 int mode; 396 397 if (!capable(CAP_SYS_ADMIN)) 398 return -EACCES; 399 400 if (sd_is_zoned(sdkp)) { 401 sd_config_discard(sdkp, SD_LBP_DISABLE); 402 return count; 403 } 404 405 if (sdp->type != TYPE_DISK) 406 return -EINVAL; 407 408 mode = sysfs_match_string(lbp_mode, buf); 409 if (mode < 0) 410 return -EINVAL; 411 412 sd_config_discard(sdkp, mode); 413 414 return count; 415 } 416 static DEVICE_ATTR_RW(provisioning_mode); 417 418 /* sysfs_match_string() requires dense arrays */ 419 static const char *zeroing_mode[] = { 420 [SD_ZERO_WRITE] = "write", 421 [SD_ZERO_WS] = "writesame", 422 [SD_ZERO_WS16_UNMAP] = "writesame_16_unmap", 423 [SD_ZERO_WS10_UNMAP] = "writesame_10_unmap", 424 }; 425 426 static ssize_t 427 zeroing_mode_show(struct device *dev, struct device_attribute *attr, 428 char *buf) 429 { 430 struct scsi_disk *sdkp = to_scsi_disk(dev); 431 432 return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]); 433 } 434 435 static ssize_t 436 zeroing_mode_store(struct device *dev, struct device_attribute *attr, 437 const char *buf, size_t count) 438 { 439 struct scsi_disk *sdkp = to_scsi_disk(dev); 440 int mode; 441 442 if (!capable(CAP_SYS_ADMIN)) 443 return -EACCES; 444 445 mode = sysfs_match_string(zeroing_mode, buf); 446 if (mode < 0) 447 return -EINVAL; 448 449 sdkp->zeroing_mode = mode; 450 451 return count; 452 } 453 static DEVICE_ATTR_RW(zeroing_mode); 454 455 static ssize_t 456 max_medium_access_timeouts_show(struct device *dev, 457 struct device_attribute *attr, char *buf) 458 { 459 struct scsi_disk *sdkp = to_scsi_disk(dev); 460 461 return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts); 462 } 463 464 static ssize_t 465 max_medium_access_timeouts_store(struct device *dev, 466 struct device_attribute *attr, const char *buf, 467 size_t count) 468 { 469 struct scsi_disk *sdkp = to_scsi_disk(dev); 470 int err; 471 472 if (!capable(CAP_SYS_ADMIN)) 473 return -EACCES; 474 475 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts); 476 477 return err ? err : count; 478 } 479 static DEVICE_ATTR_RW(max_medium_access_timeouts); 480 481 static ssize_t 482 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr, 483 char *buf) 484 { 485 struct scsi_disk *sdkp = to_scsi_disk(dev); 486 487 return sprintf(buf, "%u\n", sdkp->max_ws_blocks); 488 } 489 490 static ssize_t 491 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr, 492 const char *buf, size_t count) 493 { 494 struct scsi_disk *sdkp = to_scsi_disk(dev); 495 struct scsi_device *sdp = sdkp->device; 496 unsigned long max; 497 int err; 498 499 if (!capable(CAP_SYS_ADMIN)) 500 return -EACCES; 501 502 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 503 return -EINVAL; 504 505 err = kstrtoul(buf, 10, &max); 506 507 if (err) 508 return err; 509 510 if (max == 0) 511 sdp->no_write_same = 1; 512 else if (max <= SD_MAX_WS16_BLOCKS) { 513 sdp->no_write_same = 0; 514 sdkp->max_ws_blocks = max; 515 } 516 517 sd_config_write_same(sdkp); 518 519 return count; 520 } 521 static DEVICE_ATTR_RW(max_write_same_blocks); 522 523 static ssize_t 524 zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf) 525 { 526 struct scsi_disk *sdkp = to_scsi_disk(dev); 527 528 if (sdkp->device->type == TYPE_ZBC) 529 return sprintf(buf, "host-managed\n"); 530 if (sdkp->zoned == 1) 531 return sprintf(buf, "host-aware\n"); 532 if (sdkp->zoned == 2) 533 return sprintf(buf, "drive-managed\n"); 534 return sprintf(buf, "none\n"); 535 } 536 static DEVICE_ATTR_RO(zoned_cap); 537 538 static ssize_t 539 max_retries_store(struct device *dev, struct device_attribute *attr, 540 const char *buf, size_t count) 541 { 542 struct scsi_disk *sdkp = to_scsi_disk(dev); 543 struct scsi_device *sdev = sdkp->device; 544 int retries, err; 545 546 err = kstrtoint(buf, 10, &retries); 547 if (err) 548 return err; 549 550 if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) { 551 sdkp->max_retries = retries; 552 return count; 553 } 554 555 sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n", 556 SD_MAX_RETRIES); 557 return -EINVAL; 558 } 559 560 static ssize_t 561 max_retries_show(struct device *dev, struct device_attribute *attr, 562 char *buf) 563 { 564 struct scsi_disk *sdkp = to_scsi_disk(dev); 565 566 return sprintf(buf, "%d\n", sdkp->max_retries); 567 } 568 569 static DEVICE_ATTR_RW(max_retries); 570 571 static struct attribute *sd_disk_attrs[] = { 572 &dev_attr_cache_type.attr, 573 &dev_attr_FUA.attr, 574 &dev_attr_allow_restart.attr, 575 &dev_attr_manage_start_stop.attr, 576 &dev_attr_protection_type.attr, 577 &dev_attr_protection_mode.attr, 578 &dev_attr_app_tag_own.attr, 579 &dev_attr_thin_provisioning.attr, 580 &dev_attr_provisioning_mode.attr, 581 &dev_attr_zeroing_mode.attr, 582 &dev_attr_max_write_same_blocks.attr, 583 &dev_attr_max_medium_access_timeouts.attr, 584 &dev_attr_zoned_cap.attr, 585 &dev_attr_max_retries.attr, 586 NULL, 587 }; 588 ATTRIBUTE_GROUPS(sd_disk); 589 590 static struct class sd_disk_class = { 591 .name = "scsi_disk", 592 .owner = THIS_MODULE, 593 .dev_release = scsi_disk_release, 594 .dev_groups = sd_disk_groups, 595 }; 596 597 static const struct dev_pm_ops sd_pm_ops = { 598 .suspend = sd_suspend_system, 599 .resume = sd_resume_system, 600 .poweroff = sd_suspend_system, 601 .restore = sd_resume_system, 602 .runtime_suspend = sd_suspend_runtime, 603 .runtime_resume = sd_resume_runtime, 604 }; 605 606 static struct scsi_driver sd_template = { 607 .gendrv = { 608 .name = "sd", 609 .owner = THIS_MODULE, 610 .probe = sd_probe, 611 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 612 .remove = sd_remove, 613 .shutdown = sd_shutdown, 614 .pm = &sd_pm_ops, 615 }, 616 .rescan = sd_rescan, 617 .init_command = sd_init_command, 618 .uninit_command = sd_uninit_command, 619 .done = sd_done, 620 .eh_action = sd_eh_action, 621 .eh_reset = sd_eh_reset, 622 }; 623 624 /* 625 * Don't request a new module, as that could deadlock in multipath 626 * environment. 627 */ 628 static void sd_default_probe(dev_t devt) 629 { 630 } 631 632 /* 633 * Device no to disk mapping: 634 * 635 * major disc2 disc p1 636 * |............|.............|....|....| <- dev_t 637 * 31 20 19 8 7 4 3 0 638 * 639 * Inside a major, we have 16k disks, however mapped non- 640 * contiguously. The first 16 disks are for major0, the next 641 * ones with major1, ... Disk 256 is for major0 again, disk 272 642 * for major1, ... 643 * As we stay compatible with our numbering scheme, we can reuse 644 * the well-know SCSI majors 8, 65--71, 136--143. 645 */ 646 static int sd_major(int major_idx) 647 { 648 switch (major_idx) { 649 case 0: 650 return SCSI_DISK0_MAJOR; 651 case 1 ... 7: 652 return SCSI_DISK1_MAJOR + major_idx - 1; 653 case 8 ... 15: 654 return SCSI_DISK8_MAJOR + major_idx - 8; 655 default: 656 BUG(); 657 return 0; /* shut up gcc */ 658 } 659 } 660 661 #ifdef CONFIG_BLK_SED_OPAL 662 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, 663 size_t len, bool send) 664 { 665 struct scsi_disk *sdkp = data; 666 struct scsi_device *sdev = sdkp->device; 667 u8 cdb[12] = { 0, }; 668 int ret; 669 670 cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN; 671 cdb[1] = secp; 672 put_unaligned_be16(spsp, &cdb[2]); 673 put_unaligned_be32(len, &cdb[6]); 674 675 ret = scsi_execute(sdev, cdb, send ? DMA_TO_DEVICE : DMA_FROM_DEVICE, 676 buffer, len, NULL, NULL, SD_TIMEOUT, sdkp->max_retries, 0, 677 RQF_PM, NULL); 678 return ret <= 0 ? ret : -EIO; 679 } 680 #endif /* CONFIG_BLK_SED_OPAL */ 681 682 /* 683 * Look up the DIX operation based on whether the command is read or 684 * write and whether dix and dif are enabled. 685 */ 686 static unsigned int sd_prot_op(bool write, bool dix, bool dif) 687 { 688 /* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */ 689 static const unsigned int ops[] = { /* wrt dix dif */ 690 SCSI_PROT_NORMAL, /* 0 0 0 */ 691 SCSI_PROT_READ_STRIP, /* 0 0 1 */ 692 SCSI_PROT_READ_INSERT, /* 0 1 0 */ 693 SCSI_PROT_READ_PASS, /* 0 1 1 */ 694 SCSI_PROT_NORMAL, /* 1 0 0 */ 695 SCSI_PROT_WRITE_INSERT, /* 1 0 1 */ 696 SCSI_PROT_WRITE_STRIP, /* 1 1 0 */ 697 SCSI_PROT_WRITE_PASS, /* 1 1 1 */ 698 }; 699 700 return ops[write << 2 | dix << 1 | dif]; 701 } 702 703 /* 704 * Returns a mask of the protection flags that are valid for a given DIX 705 * operation. 706 */ 707 static unsigned int sd_prot_flag_mask(unsigned int prot_op) 708 { 709 static const unsigned int flag_mask[] = { 710 [SCSI_PROT_NORMAL] = 0, 711 712 [SCSI_PROT_READ_STRIP] = SCSI_PROT_TRANSFER_PI | 713 SCSI_PROT_GUARD_CHECK | 714 SCSI_PROT_REF_CHECK | 715 SCSI_PROT_REF_INCREMENT, 716 717 [SCSI_PROT_READ_INSERT] = SCSI_PROT_REF_INCREMENT | 718 SCSI_PROT_IP_CHECKSUM, 719 720 [SCSI_PROT_READ_PASS] = SCSI_PROT_TRANSFER_PI | 721 SCSI_PROT_GUARD_CHECK | 722 SCSI_PROT_REF_CHECK | 723 SCSI_PROT_REF_INCREMENT | 724 SCSI_PROT_IP_CHECKSUM, 725 726 [SCSI_PROT_WRITE_INSERT] = SCSI_PROT_TRANSFER_PI | 727 SCSI_PROT_REF_INCREMENT, 728 729 [SCSI_PROT_WRITE_STRIP] = SCSI_PROT_GUARD_CHECK | 730 SCSI_PROT_REF_CHECK | 731 SCSI_PROT_REF_INCREMENT | 732 SCSI_PROT_IP_CHECKSUM, 733 734 [SCSI_PROT_WRITE_PASS] = SCSI_PROT_TRANSFER_PI | 735 SCSI_PROT_GUARD_CHECK | 736 SCSI_PROT_REF_CHECK | 737 SCSI_PROT_REF_INCREMENT | 738 SCSI_PROT_IP_CHECKSUM, 739 }; 740 741 return flag_mask[prot_op]; 742 } 743 744 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd, 745 unsigned int dix, unsigned int dif) 746 { 747 struct request *rq = scsi_cmd_to_rq(scmd); 748 struct bio *bio = rq->bio; 749 unsigned int prot_op = sd_prot_op(rq_data_dir(rq), dix, dif); 750 unsigned int protect = 0; 751 752 if (dix) { /* DIX Type 0, 1, 2, 3 */ 753 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM)) 754 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM; 755 756 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 757 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK; 758 } 759 760 if (dif != T10_PI_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */ 761 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT; 762 763 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 764 scmd->prot_flags |= SCSI_PROT_REF_CHECK; 765 } 766 767 if (dif) { /* DIX/DIF Type 1, 2, 3 */ 768 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI; 769 770 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK)) 771 protect = 3 << 5; /* Disable target PI checking */ 772 else 773 protect = 1 << 5; /* Enable target PI checking */ 774 } 775 776 scsi_set_prot_op(scmd, prot_op); 777 scsi_set_prot_type(scmd, dif); 778 scmd->prot_flags &= sd_prot_flag_mask(prot_op); 779 780 return protect; 781 } 782 783 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode) 784 { 785 struct request_queue *q = sdkp->disk->queue; 786 unsigned int logical_block_size = sdkp->device->sector_size; 787 unsigned int max_blocks = 0; 788 789 q->limits.discard_alignment = 790 sdkp->unmap_alignment * logical_block_size; 791 q->limits.discard_granularity = 792 max(sdkp->physical_block_size, 793 sdkp->unmap_granularity * logical_block_size); 794 sdkp->provisioning_mode = mode; 795 796 switch (mode) { 797 798 case SD_LBP_FULL: 799 case SD_LBP_DISABLE: 800 blk_queue_max_discard_sectors(q, 0); 801 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q); 802 return; 803 804 case SD_LBP_UNMAP: 805 max_blocks = min_not_zero(sdkp->max_unmap_blocks, 806 (u32)SD_MAX_WS16_BLOCKS); 807 break; 808 809 case SD_LBP_WS16: 810 if (sdkp->device->unmap_limit_for_ws) 811 max_blocks = sdkp->max_unmap_blocks; 812 else 813 max_blocks = sdkp->max_ws_blocks; 814 815 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS); 816 break; 817 818 case SD_LBP_WS10: 819 if (sdkp->device->unmap_limit_for_ws) 820 max_blocks = sdkp->max_unmap_blocks; 821 else 822 max_blocks = sdkp->max_ws_blocks; 823 824 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS); 825 break; 826 827 case SD_LBP_ZERO: 828 max_blocks = min_not_zero(sdkp->max_ws_blocks, 829 (u32)SD_MAX_WS10_BLOCKS); 830 break; 831 } 832 833 blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9)); 834 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q); 835 } 836 837 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd) 838 { 839 struct scsi_device *sdp = cmd->device; 840 struct request *rq = scsi_cmd_to_rq(cmd); 841 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 842 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 843 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 844 unsigned int data_len = 24; 845 char *buf; 846 847 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 848 if (!rq->special_vec.bv_page) 849 return BLK_STS_RESOURCE; 850 clear_highpage(rq->special_vec.bv_page); 851 rq->special_vec.bv_offset = 0; 852 rq->special_vec.bv_len = data_len; 853 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 854 855 cmd->cmd_len = 10; 856 cmd->cmnd[0] = UNMAP; 857 cmd->cmnd[8] = 24; 858 859 buf = bvec_virt(&rq->special_vec); 860 put_unaligned_be16(6 + 16, &buf[0]); 861 put_unaligned_be16(16, &buf[2]); 862 put_unaligned_be64(lba, &buf[8]); 863 put_unaligned_be32(nr_blocks, &buf[16]); 864 865 cmd->allowed = sdkp->max_retries; 866 cmd->transfersize = data_len; 867 rq->timeout = SD_TIMEOUT; 868 869 return scsi_alloc_sgtables(cmd); 870 } 871 872 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd, 873 bool unmap) 874 { 875 struct scsi_device *sdp = cmd->device; 876 struct request *rq = scsi_cmd_to_rq(cmd); 877 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 878 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 879 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 880 u32 data_len = sdp->sector_size; 881 882 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 883 if (!rq->special_vec.bv_page) 884 return BLK_STS_RESOURCE; 885 clear_highpage(rq->special_vec.bv_page); 886 rq->special_vec.bv_offset = 0; 887 rq->special_vec.bv_len = data_len; 888 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 889 890 cmd->cmd_len = 16; 891 cmd->cmnd[0] = WRITE_SAME_16; 892 if (unmap) 893 cmd->cmnd[1] = 0x8; /* UNMAP */ 894 put_unaligned_be64(lba, &cmd->cmnd[2]); 895 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 896 897 cmd->allowed = sdkp->max_retries; 898 cmd->transfersize = data_len; 899 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 900 901 return scsi_alloc_sgtables(cmd); 902 } 903 904 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd, 905 bool unmap) 906 { 907 struct scsi_device *sdp = cmd->device; 908 struct request *rq = scsi_cmd_to_rq(cmd); 909 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 910 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 911 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 912 u32 data_len = sdp->sector_size; 913 914 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 915 if (!rq->special_vec.bv_page) 916 return BLK_STS_RESOURCE; 917 clear_highpage(rq->special_vec.bv_page); 918 rq->special_vec.bv_offset = 0; 919 rq->special_vec.bv_len = data_len; 920 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 921 922 cmd->cmd_len = 10; 923 cmd->cmnd[0] = WRITE_SAME; 924 if (unmap) 925 cmd->cmnd[1] = 0x8; /* UNMAP */ 926 put_unaligned_be32(lba, &cmd->cmnd[2]); 927 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 928 929 cmd->allowed = sdkp->max_retries; 930 cmd->transfersize = data_len; 931 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 932 933 return scsi_alloc_sgtables(cmd); 934 } 935 936 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd) 937 { 938 struct request *rq = scsi_cmd_to_rq(cmd); 939 struct scsi_device *sdp = cmd->device; 940 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 941 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 942 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 943 944 if (!(rq->cmd_flags & REQ_NOUNMAP)) { 945 switch (sdkp->zeroing_mode) { 946 case SD_ZERO_WS16_UNMAP: 947 return sd_setup_write_same16_cmnd(cmd, true); 948 case SD_ZERO_WS10_UNMAP: 949 return sd_setup_write_same10_cmnd(cmd, true); 950 } 951 } 952 953 if (sdp->no_write_same) { 954 rq->rq_flags |= RQF_QUIET; 955 return BLK_STS_TARGET; 956 } 957 958 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) 959 return sd_setup_write_same16_cmnd(cmd, false); 960 961 return sd_setup_write_same10_cmnd(cmd, false); 962 } 963 964 static void sd_config_write_same(struct scsi_disk *sdkp) 965 { 966 struct request_queue *q = sdkp->disk->queue; 967 unsigned int logical_block_size = sdkp->device->sector_size; 968 969 if (sdkp->device->no_write_same) { 970 sdkp->max_ws_blocks = 0; 971 goto out; 972 } 973 974 /* Some devices can not handle block counts above 0xffff despite 975 * supporting WRITE SAME(16). Consequently we default to 64k 976 * blocks per I/O unless the device explicitly advertises a 977 * bigger limit. 978 */ 979 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS) 980 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 981 (u32)SD_MAX_WS16_BLOCKS); 982 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes) 983 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 984 (u32)SD_MAX_WS10_BLOCKS); 985 else { 986 sdkp->device->no_write_same = 1; 987 sdkp->max_ws_blocks = 0; 988 } 989 990 if (sdkp->lbprz && sdkp->lbpws) 991 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP; 992 else if (sdkp->lbprz && sdkp->lbpws10) 993 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP; 994 else if (sdkp->max_ws_blocks) 995 sdkp->zeroing_mode = SD_ZERO_WS; 996 else 997 sdkp->zeroing_mode = SD_ZERO_WRITE; 998 999 if (sdkp->max_ws_blocks && 1000 sdkp->physical_block_size > logical_block_size) { 1001 /* 1002 * Reporting a maximum number of blocks that is not aligned 1003 * on the device physical size would cause a large write same 1004 * request to be split into physically unaligned chunks by 1005 * __blkdev_issue_write_zeroes() and __blkdev_issue_write_same() 1006 * even if the caller of these functions took care to align the 1007 * large request. So make sure the maximum reported is aligned 1008 * to the device physical block size. This is only an optional 1009 * optimization for regular disks, but this is mandatory to 1010 * avoid failure of large write same requests directed at 1011 * sequential write required zones of host-managed ZBC disks. 1012 */ 1013 sdkp->max_ws_blocks = 1014 round_down(sdkp->max_ws_blocks, 1015 bytes_to_logical(sdkp->device, 1016 sdkp->physical_block_size)); 1017 } 1018 1019 out: 1020 blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks * 1021 (logical_block_size >> 9)); 1022 blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks * 1023 (logical_block_size >> 9)); 1024 } 1025 1026 /** 1027 * sd_setup_write_same_cmnd - write the same data to multiple blocks 1028 * @cmd: command to prepare 1029 * 1030 * Will set up either WRITE SAME(10) or WRITE SAME(16) depending on 1031 * the preference indicated by the target device. 1032 **/ 1033 static blk_status_t sd_setup_write_same_cmnd(struct scsi_cmnd *cmd) 1034 { 1035 struct request *rq = scsi_cmd_to_rq(cmd); 1036 struct scsi_device *sdp = cmd->device; 1037 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 1038 struct bio *bio = rq->bio; 1039 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 1040 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 1041 blk_status_t ret; 1042 1043 if (sdkp->device->no_write_same) 1044 return BLK_STS_TARGET; 1045 1046 BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size); 1047 1048 rq->timeout = SD_WRITE_SAME_TIMEOUT; 1049 1050 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) { 1051 cmd->cmd_len = 16; 1052 cmd->cmnd[0] = WRITE_SAME_16; 1053 put_unaligned_be64(lba, &cmd->cmnd[2]); 1054 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 1055 } else { 1056 cmd->cmd_len = 10; 1057 cmd->cmnd[0] = WRITE_SAME; 1058 put_unaligned_be32(lba, &cmd->cmnd[2]); 1059 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 1060 } 1061 1062 cmd->transfersize = sdp->sector_size; 1063 cmd->allowed = sdkp->max_retries; 1064 1065 /* 1066 * For WRITE SAME the data transferred via the DATA OUT buffer is 1067 * different from the amount of data actually written to the target. 1068 * 1069 * We set up __data_len to the amount of data transferred via the 1070 * DATA OUT buffer so that blk_rq_map_sg sets up the proper S/G list 1071 * to transfer a single sector of data first, but then reset it to 1072 * the amount of data to be written right after so that the I/O path 1073 * knows how much to actually write. 1074 */ 1075 rq->__data_len = sdp->sector_size; 1076 ret = scsi_alloc_sgtables(cmd); 1077 rq->__data_len = blk_rq_bytes(rq); 1078 1079 return ret; 1080 } 1081 1082 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd) 1083 { 1084 struct request *rq = scsi_cmd_to_rq(cmd); 1085 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 1086 1087 /* flush requests don't perform I/O, zero the S/G table */ 1088 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1089 1090 cmd->cmnd[0] = SYNCHRONIZE_CACHE; 1091 cmd->cmd_len = 10; 1092 cmd->transfersize = 0; 1093 cmd->allowed = sdkp->max_retries; 1094 1095 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER; 1096 return BLK_STS_OK; 1097 } 1098 1099 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write, 1100 sector_t lba, unsigned int nr_blocks, 1101 unsigned char flags) 1102 { 1103 cmd->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC); 1104 if (unlikely(cmd->cmnd == NULL)) 1105 return BLK_STS_RESOURCE; 1106 1107 cmd->cmd_len = SD_EXT_CDB_SIZE; 1108 memset(cmd->cmnd, 0, cmd->cmd_len); 1109 1110 cmd->cmnd[0] = VARIABLE_LENGTH_CMD; 1111 cmd->cmnd[7] = 0x18; /* Additional CDB len */ 1112 cmd->cmnd[9] = write ? WRITE_32 : READ_32; 1113 cmd->cmnd[10] = flags; 1114 put_unaligned_be64(lba, &cmd->cmnd[12]); 1115 put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */ 1116 put_unaligned_be32(nr_blocks, &cmd->cmnd[28]); 1117 1118 return BLK_STS_OK; 1119 } 1120 1121 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write, 1122 sector_t lba, unsigned int nr_blocks, 1123 unsigned char flags) 1124 { 1125 cmd->cmd_len = 16; 1126 cmd->cmnd[0] = write ? WRITE_16 : READ_16; 1127 cmd->cmnd[1] = flags; 1128 cmd->cmnd[14] = 0; 1129 cmd->cmnd[15] = 0; 1130 put_unaligned_be64(lba, &cmd->cmnd[2]); 1131 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 1132 1133 return BLK_STS_OK; 1134 } 1135 1136 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write, 1137 sector_t lba, unsigned int nr_blocks, 1138 unsigned char flags) 1139 { 1140 cmd->cmd_len = 10; 1141 cmd->cmnd[0] = write ? WRITE_10 : READ_10; 1142 cmd->cmnd[1] = flags; 1143 cmd->cmnd[6] = 0; 1144 cmd->cmnd[9] = 0; 1145 put_unaligned_be32(lba, &cmd->cmnd[2]); 1146 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 1147 1148 return BLK_STS_OK; 1149 } 1150 1151 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write, 1152 sector_t lba, unsigned int nr_blocks, 1153 unsigned char flags) 1154 { 1155 /* Avoid that 0 blocks gets translated into 256 blocks. */ 1156 if (WARN_ON_ONCE(nr_blocks == 0)) 1157 return BLK_STS_IOERR; 1158 1159 if (unlikely(flags & 0x8)) { 1160 /* 1161 * This happens only if this drive failed 10byte rw 1162 * command with ILLEGAL_REQUEST during operation and 1163 * thus turned off use_10_for_rw. 1164 */ 1165 scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n"); 1166 return BLK_STS_IOERR; 1167 } 1168 1169 cmd->cmd_len = 6; 1170 cmd->cmnd[0] = write ? WRITE_6 : READ_6; 1171 cmd->cmnd[1] = (lba >> 16) & 0x1f; 1172 cmd->cmnd[2] = (lba >> 8) & 0xff; 1173 cmd->cmnd[3] = lba & 0xff; 1174 cmd->cmnd[4] = nr_blocks; 1175 cmd->cmnd[5] = 0; 1176 1177 return BLK_STS_OK; 1178 } 1179 1180 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd) 1181 { 1182 struct request *rq = scsi_cmd_to_rq(cmd); 1183 struct scsi_device *sdp = cmd->device; 1184 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 1185 sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 1186 sector_t threshold; 1187 unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 1188 unsigned int mask = logical_to_sectors(sdp, 1) - 1; 1189 bool write = rq_data_dir(rq) == WRITE; 1190 unsigned char protect, fua; 1191 blk_status_t ret; 1192 unsigned int dif; 1193 bool dix; 1194 1195 ret = scsi_alloc_sgtables(cmd); 1196 if (ret != BLK_STS_OK) 1197 return ret; 1198 1199 ret = BLK_STS_IOERR; 1200 if (!scsi_device_online(sdp) || sdp->changed) { 1201 scmd_printk(KERN_ERR, cmd, "device offline or changed\n"); 1202 goto fail; 1203 } 1204 1205 if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->q->disk)) { 1206 scmd_printk(KERN_ERR, cmd, "access beyond end of device\n"); 1207 goto fail; 1208 } 1209 1210 if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) { 1211 scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n"); 1212 goto fail; 1213 } 1214 1215 /* 1216 * Some SD card readers can't handle accesses which touch the 1217 * last one or two logical blocks. Split accesses as needed. 1218 */ 1219 threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS; 1220 1221 if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) { 1222 if (lba < threshold) { 1223 /* Access up to the threshold but not beyond */ 1224 nr_blocks = threshold - lba; 1225 } else { 1226 /* Access only a single logical block */ 1227 nr_blocks = 1; 1228 } 1229 } 1230 1231 if (req_op(rq) == REQ_OP_ZONE_APPEND) { 1232 ret = sd_zbc_prepare_zone_append(cmd, &lba, nr_blocks); 1233 if (ret) 1234 goto fail; 1235 } 1236 1237 fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0; 1238 dix = scsi_prot_sg_count(cmd); 1239 dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type); 1240 1241 if (dif || dix) 1242 protect = sd_setup_protect_cmnd(cmd, dix, dif); 1243 else 1244 protect = 0; 1245 1246 if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) { 1247 ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks, 1248 protect | fua); 1249 } else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) { 1250 ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks, 1251 protect | fua); 1252 } else if ((nr_blocks > 0xff) || (lba > 0x1fffff) || 1253 sdp->use_10_for_rw || protect) { 1254 ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks, 1255 protect | fua); 1256 } else { 1257 ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks, 1258 protect | fua); 1259 } 1260 1261 if (unlikely(ret != BLK_STS_OK)) 1262 goto fail; 1263 1264 /* 1265 * We shouldn't disconnect in the middle of a sector, so with a dumb 1266 * host adapter, it's safe to assume that we can at least transfer 1267 * this many bytes between each connect / disconnect. 1268 */ 1269 cmd->transfersize = sdp->sector_size; 1270 cmd->underflow = nr_blocks << 9; 1271 cmd->allowed = sdkp->max_retries; 1272 cmd->sdb.length = nr_blocks * sdp->sector_size; 1273 1274 SCSI_LOG_HLQUEUE(1, 1275 scmd_printk(KERN_INFO, cmd, 1276 "%s: block=%llu, count=%d\n", __func__, 1277 (unsigned long long)blk_rq_pos(rq), 1278 blk_rq_sectors(rq))); 1279 SCSI_LOG_HLQUEUE(2, 1280 scmd_printk(KERN_INFO, cmd, 1281 "%s %d/%u 512 byte blocks.\n", 1282 write ? "writing" : "reading", nr_blocks, 1283 blk_rq_sectors(rq))); 1284 1285 /* 1286 * This indicates that the command is ready from our end to be queued. 1287 */ 1288 return BLK_STS_OK; 1289 fail: 1290 scsi_free_sgtables(cmd); 1291 return ret; 1292 } 1293 1294 static blk_status_t sd_init_command(struct scsi_cmnd *cmd) 1295 { 1296 struct request *rq = scsi_cmd_to_rq(cmd); 1297 1298 switch (req_op(rq)) { 1299 case REQ_OP_DISCARD: 1300 switch (scsi_disk(rq->q->disk)->provisioning_mode) { 1301 case SD_LBP_UNMAP: 1302 return sd_setup_unmap_cmnd(cmd); 1303 case SD_LBP_WS16: 1304 return sd_setup_write_same16_cmnd(cmd, true); 1305 case SD_LBP_WS10: 1306 return sd_setup_write_same10_cmnd(cmd, true); 1307 case SD_LBP_ZERO: 1308 return sd_setup_write_same10_cmnd(cmd, false); 1309 default: 1310 return BLK_STS_TARGET; 1311 } 1312 case REQ_OP_WRITE_ZEROES: 1313 return sd_setup_write_zeroes_cmnd(cmd); 1314 case REQ_OP_WRITE_SAME: 1315 return sd_setup_write_same_cmnd(cmd); 1316 case REQ_OP_FLUSH: 1317 return sd_setup_flush_cmnd(cmd); 1318 case REQ_OP_READ: 1319 case REQ_OP_WRITE: 1320 case REQ_OP_ZONE_APPEND: 1321 return sd_setup_read_write_cmnd(cmd); 1322 case REQ_OP_ZONE_RESET: 1323 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER, 1324 false); 1325 case REQ_OP_ZONE_RESET_ALL: 1326 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER, 1327 true); 1328 case REQ_OP_ZONE_OPEN: 1329 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false); 1330 case REQ_OP_ZONE_CLOSE: 1331 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false); 1332 case REQ_OP_ZONE_FINISH: 1333 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false); 1334 default: 1335 WARN_ON_ONCE(1); 1336 return BLK_STS_NOTSUPP; 1337 } 1338 } 1339 1340 static void sd_uninit_command(struct scsi_cmnd *SCpnt) 1341 { 1342 struct request *rq = scsi_cmd_to_rq(SCpnt); 1343 u8 *cmnd; 1344 1345 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1346 mempool_free(rq->special_vec.bv_page, sd_page_pool); 1347 1348 if (SCpnt->cmnd != scsi_req(rq)->cmd) { 1349 cmnd = SCpnt->cmnd; 1350 SCpnt->cmnd = NULL; 1351 SCpnt->cmd_len = 0; 1352 mempool_free(cmnd, sd_cdb_pool); 1353 } 1354 } 1355 1356 static bool sd_need_revalidate(struct block_device *bdev, 1357 struct scsi_disk *sdkp) 1358 { 1359 if (sdkp->device->removable || sdkp->write_prot) { 1360 if (bdev_check_media_change(bdev)) 1361 return true; 1362 } 1363 1364 /* 1365 * Force a full rescan after ioctl(BLKRRPART). While the disk state has 1366 * nothing to do with partitions, BLKRRPART is used to force a full 1367 * revalidate after things like a format for historical reasons. 1368 */ 1369 return test_bit(GD_NEED_PART_SCAN, &bdev->bd_disk->state); 1370 } 1371 1372 /** 1373 * sd_open - open a scsi disk device 1374 * @bdev: Block device of the scsi disk to open 1375 * @mode: FMODE_* mask 1376 * 1377 * Returns 0 if successful. Returns a negated errno value in case 1378 * of error. 1379 * 1380 * Note: This can be called from a user context (e.g. fsck(1) ) 1381 * or from within the kernel (e.g. as a result of a mount(1) ). 1382 * In the latter case @inode and @filp carry an abridged amount 1383 * of information as noted above. 1384 * 1385 * Locking: called with bdev->bd_disk->open_mutex held. 1386 **/ 1387 static int sd_open(struct block_device *bdev, fmode_t mode) 1388 { 1389 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1390 struct scsi_device *sdev = sdkp->device; 1391 int retval; 1392 1393 if (scsi_device_get(sdev)) 1394 return -ENXIO; 1395 1396 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n")); 1397 1398 /* 1399 * If the device is in error recovery, wait until it is done. 1400 * If the device is offline, then disallow any access to it. 1401 */ 1402 retval = -ENXIO; 1403 if (!scsi_block_when_processing_errors(sdev)) 1404 goto error_out; 1405 1406 if (sd_need_revalidate(bdev, sdkp)) 1407 sd_revalidate_disk(bdev->bd_disk); 1408 1409 /* 1410 * If the drive is empty, just let the open fail. 1411 */ 1412 retval = -ENOMEDIUM; 1413 if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY)) 1414 goto error_out; 1415 1416 /* 1417 * If the device has the write protect tab set, have the open fail 1418 * if the user expects to be able to write to the thing. 1419 */ 1420 retval = -EROFS; 1421 if (sdkp->write_prot && (mode & FMODE_WRITE)) 1422 goto error_out; 1423 1424 /* 1425 * It is possible that the disk changing stuff resulted in 1426 * the device being taken offline. If this is the case, 1427 * report this to the user, and don't pretend that the 1428 * open actually succeeded. 1429 */ 1430 retval = -ENXIO; 1431 if (!scsi_device_online(sdev)) 1432 goto error_out; 1433 1434 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) { 1435 if (scsi_block_when_processing_errors(sdev)) 1436 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT); 1437 } 1438 1439 return 0; 1440 1441 error_out: 1442 scsi_device_put(sdev); 1443 return retval; 1444 } 1445 1446 /** 1447 * sd_release - invoked when the (last) close(2) is called on this 1448 * scsi disk. 1449 * @disk: disk to release 1450 * @mode: FMODE_* mask 1451 * 1452 * Returns 0. 1453 * 1454 * Note: may block (uninterruptible) if error recovery is underway 1455 * on this disk. 1456 * 1457 * Locking: called with bdev->bd_disk->open_mutex held. 1458 **/ 1459 static void sd_release(struct gendisk *disk, fmode_t mode) 1460 { 1461 struct scsi_disk *sdkp = scsi_disk(disk); 1462 struct scsi_device *sdev = sdkp->device; 1463 1464 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n")); 1465 1466 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) { 1467 if (scsi_block_when_processing_errors(sdev)) 1468 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW); 1469 } 1470 1471 scsi_device_put(sdev); 1472 } 1473 1474 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1475 { 1476 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1477 struct scsi_device *sdp = sdkp->device; 1478 struct Scsi_Host *host = sdp->host; 1479 sector_t capacity = logical_to_sectors(sdp, sdkp->capacity); 1480 int diskinfo[4]; 1481 1482 /* default to most commonly used values */ 1483 diskinfo[0] = 0x40; /* 1 << 6 */ 1484 diskinfo[1] = 0x20; /* 1 << 5 */ 1485 diskinfo[2] = capacity >> 11; 1486 1487 /* override with calculated, extended default, or driver values */ 1488 if (host->hostt->bios_param) 1489 host->hostt->bios_param(sdp, bdev, capacity, diskinfo); 1490 else 1491 scsicam_bios_param(bdev, capacity, diskinfo); 1492 1493 geo->heads = diskinfo[0]; 1494 geo->sectors = diskinfo[1]; 1495 geo->cylinders = diskinfo[2]; 1496 return 0; 1497 } 1498 1499 /** 1500 * sd_ioctl - process an ioctl 1501 * @bdev: target block device 1502 * @mode: FMODE_* mask 1503 * @cmd: ioctl command number 1504 * @arg: this is third argument given to ioctl(2) system call. 1505 * Often contains a pointer. 1506 * 1507 * Returns 0 if successful (some ioctls return positive numbers on 1508 * success as well). Returns a negated errno value in case of error. 1509 * 1510 * Note: most ioctls are forward onto the block subsystem or further 1511 * down in the scsi subsystem. 1512 **/ 1513 static int sd_ioctl(struct block_device *bdev, fmode_t mode, 1514 unsigned int cmd, unsigned long arg) 1515 { 1516 struct gendisk *disk = bdev->bd_disk; 1517 struct scsi_disk *sdkp = scsi_disk(disk); 1518 struct scsi_device *sdp = sdkp->device; 1519 void __user *p = (void __user *)arg; 1520 int error; 1521 1522 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, " 1523 "cmd=0x%x\n", disk->disk_name, cmd)); 1524 1525 if (bdev_is_partition(bdev) && !capable(CAP_SYS_RAWIO)) 1526 return -ENOIOCTLCMD; 1527 1528 /* 1529 * If we are in the middle of error recovery, don't let anyone 1530 * else try and use this device. Also, if error recovery fails, it 1531 * may try and take the device offline, in which case all further 1532 * access to the device is prohibited. 1533 */ 1534 error = scsi_ioctl_block_when_processing_errors(sdp, cmd, 1535 (mode & FMODE_NDELAY) != 0); 1536 if (error) 1537 return error; 1538 1539 if (is_sed_ioctl(cmd)) 1540 return sed_ioctl(sdkp->opal_dev, cmd, p); 1541 return scsi_ioctl(sdp, mode, cmd, p); 1542 } 1543 1544 static void set_media_not_present(struct scsi_disk *sdkp) 1545 { 1546 if (sdkp->media_present) 1547 sdkp->device->changed = 1; 1548 1549 if (sdkp->device->removable) { 1550 sdkp->media_present = 0; 1551 sdkp->capacity = 0; 1552 } 1553 } 1554 1555 static int media_not_present(struct scsi_disk *sdkp, 1556 struct scsi_sense_hdr *sshdr) 1557 { 1558 if (!scsi_sense_valid(sshdr)) 1559 return 0; 1560 1561 /* not invoked for commands that could return deferred errors */ 1562 switch (sshdr->sense_key) { 1563 case UNIT_ATTENTION: 1564 case NOT_READY: 1565 /* medium not present */ 1566 if (sshdr->asc == 0x3A) { 1567 set_media_not_present(sdkp); 1568 return 1; 1569 } 1570 } 1571 return 0; 1572 } 1573 1574 /** 1575 * sd_check_events - check media events 1576 * @disk: kernel device descriptor 1577 * @clearing: disk events currently being cleared 1578 * 1579 * Returns mask of DISK_EVENT_*. 1580 * 1581 * Note: this function is invoked from the block subsystem. 1582 **/ 1583 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing) 1584 { 1585 struct scsi_disk *sdkp = disk->private_data; 1586 struct scsi_device *sdp; 1587 int retval; 1588 bool disk_changed; 1589 1590 if (!sdkp) 1591 return 0; 1592 1593 sdp = sdkp->device; 1594 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n")); 1595 1596 /* 1597 * If the device is offline, don't send any commands - just pretend as 1598 * if the command failed. If the device ever comes back online, we 1599 * can deal with it then. It is only because of unrecoverable errors 1600 * that we would ever take a device offline in the first place. 1601 */ 1602 if (!scsi_device_online(sdp)) { 1603 set_media_not_present(sdkp); 1604 goto out; 1605 } 1606 1607 /* 1608 * Using TEST_UNIT_READY enables differentiation between drive with 1609 * no cartridge loaded - NOT READY, drive with changed cartridge - 1610 * UNIT ATTENTION, or with same cartridge - GOOD STATUS. 1611 * 1612 * Drives that auto spin down. eg iomega jaz 1G, will be started 1613 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever 1614 * sd_revalidate() is called. 1615 */ 1616 if (scsi_block_when_processing_errors(sdp)) { 1617 struct scsi_sense_hdr sshdr = { 0, }; 1618 1619 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries, 1620 &sshdr); 1621 1622 /* failed to execute TUR, assume media not present */ 1623 if (retval < 0 || host_byte(retval)) { 1624 set_media_not_present(sdkp); 1625 goto out; 1626 } 1627 1628 if (media_not_present(sdkp, &sshdr)) 1629 goto out; 1630 } 1631 1632 /* 1633 * For removable scsi disk we have to recognise the presence 1634 * of a disk in the drive. 1635 */ 1636 if (!sdkp->media_present) 1637 sdp->changed = 1; 1638 sdkp->media_present = 1; 1639 out: 1640 /* 1641 * sdp->changed is set under the following conditions: 1642 * 1643 * Medium present state has changed in either direction. 1644 * Device has indicated UNIT_ATTENTION. 1645 */ 1646 disk_changed = sdp->changed; 1647 sdp->changed = 0; 1648 return disk_changed ? DISK_EVENT_MEDIA_CHANGE : 0; 1649 } 1650 1651 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr) 1652 { 1653 int retries, res; 1654 struct scsi_device *sdp = sdkp->device; 1655 const int timeout = sdp->request_queue->rq_timeout 1656 * SD_FLUSH_TIMEOUT_MULTIPLIER; 1657 struct scsi_sense_hdr my_sshdr; 1658 1659 if (!scsi_device_online(sdp)) 1660 return -ENODEV; 1661 1662 /* caller might not be interested in sense, but we need it */ 1663 if (!sshdr) 1664 sshdr = &my_sshdr; 1665 1666 for (retries = 3; retries > 0; --retries) { 1667 unsigned char cmd[10] = { 0 }; 1668 1669 cmd[0] = SYNCHRONIZE_CACHE; 1670 /* 1671 * Leave the rest of the command zero to indicate 1672 * flush everything. 1673 */ 1674 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr, 1675 timeout, sdkp->max_retries, 0, RQF_PM, NULL); 1676 if (res == 0) 1677 break; 1678 } 1679 1680 if (res) { 1681 sd_print_result(sdkp, "Synchronize Cache(10) failed", res); 1682 1683 if (res < 0) 1684 return res; 1685 1686 if (scsi_status_is_check_condition(res) && 1687 scsi_sense_valid(sshdr)) { 1688 sd_print_sense_hdr(sdkp, sshdr); 1689 1690 /* we need to evaluate the error return */ 1691 if (sshdr->asc == 0x3a || /* medium not present */ 1692 sshdr->asc == 0x20 || /* invalid command */ 1693 (sshdr->asc == 0x74 && sshdr->ascq == 0x71)) /* drive is password locked */ 1694 /* this is no error here */ 1695 return 0; 1696 } 1697 1698 switch (host_byte(res)) { 1699 /* ignore errors due to racing a disconnection */ 1700 case DID_BAD_TARGET: 1701 case DID_NO_CONNECT: 1702 return 0; 1703 /* signal the upper layer it might try again */ 1704 case DID_BUS_BUSY: 1705 case DID_IMM_RETRY: 1706 case DID_REQUEUE: 1707 case DID_SOFT_ERROR: 1708 return -EBUSY; 1709 default: 1710 return -EIO; 1711 } 1712 } 1713 return 0; 1714 } 1715 1716 static void sd_rescan(struct device *dev) 1717 { 1718 struct scsi_disk *sdkp = dev_get_drvdata(dev); 1719 1720 sd_revalidate_disk(sdkp->disk); 1721 } 1722 1723 static int sd_get_unique_id(struct gendisk *disk, u8 id[16], 1724 enum blk_unique_id type) 1725 { 1726 struct scsi_device *sdev = scsi_disk(disk)->device; 1727 const struct scsi_vpd *vpd; 1728 const unsigned char *d; 1729 int ret = -ENXIO, len; 1730 1731 rcu_read_lock(); 1732 vpd = rcu_dereference(sdev->vpd_pg83); 1733 if (!vpd) 1734 goto out_unlock; 1735 1736 ret = -EINVAL; 1737 for (d = vpd->data + 4; d < vpd->data + vpd->len; d += d[3] + 4) { 1738 /* we only care about designators with LU association */ 1739 if (((d[1] >> 4) & 0x3) != 0x00) 1740 continue; 1741 if ((d[1] & 0xf) != type) 1742 continue; 1743 1744 /* 1745 * Only exit early if a 16-byte descriptor was found. Otherwise 1746 * keep looking as one with more entropy might still show up. 1747 */ 1748 len = d[3]; 1749 if (len != 8 && len != 12 && len != 16) 1750 continue; 1751 ret = len; 1752 memcpy(id, d + 4, len); 1753 if (len == 16) 1754 break; 1755 } 1756 out_unlock: 1757 rcu_read_unlock(); 1758 return ret; 1759 } 1760 1761 static char sd_pr_type(enum pr_type type) 1762 { 1763 switch (type) { 1764 case PR_WRITE_EXCLUSIVE: 1765 return 0x01; 1766 case PR_EXCLUSIVE_ACCESS: 1767 return 0x03; 1768 case PR_WRITE_EXCLUSIVE_REG_ONLY: 1769 return 0x05; 1770 case PR_EXCLUSIVE_ACCESS_REG_ONLY: 1771 return 0x06; 1772 case PR_WRITE_EXCLUSIVE_ALL_REGS: 1773 return 0x07; 1774 case PR_EXCLUSIVE_ACCESS_ALL_REGS: 1775 return 0x08; 1776 default: 1777 return 0; 1778 } 1779 }; 1780 1781 static int sd_pr_command(struct block_device *bdev, u8 sa, 1782 u64 key, u64 sa_key, u8 type, u8 flags) 1783 { 1784 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1785 struct scsi_device *sdev = sdkp->device; 1786 struct scsi_sense_hdr sshdr; 1787 int result; 1788 u8 cmd[16] = { 0, }; 1789 u8 data[24] = { 0, }; 1790 1791 cmd[0] = PERSISTENT_RESERVE_OUT; 1792 cmd[1] = sa; 1793 cmd[2] = type; 1794 put_unaligned_be32(sizeof(data), &cmd[5]); 1795 1796 put_unaligned_be64(key, &data[0]); 1797 put_unaligned_be64(sa_key, &data[8]); 1798 data[20] = flags; 1799 1800 result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data), 1801 &sshdr, SD_TIMEOUT, sdkp->max_retries, NULL); 1802 1803 if (scsi_status_is_check_condition(result) && 1804 scsi_sense_valid(&sshdr)) { 1805 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result); 1806 scsi_print_sense_hdr(sdev, NULL, &sshdr); 1807 } 1808 1809 return result; 1810 } 1811 1812 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 1813 u32 flags) 1814 { 1815 if (flags & ~PR_FL_IGNORE_KEY) 1816 return -EOPNOTSUPP; 1817 return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00, 1818 old_key, new_key, 0, 1819 (1 << 0) /* APTPL */); 1820 } 1821 1822 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 1823 u32 flags) 1824 { 1825 if (flags) 1826 return -EOPNOTSUPP; 1827 return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0); 1828 } 1829 1830 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 1831 { 1832 return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0); 1833 } 1834 1835 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 1836 enum pr_type type, bool abort) 1837 { 1838 return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key, 1839 sd_pr_type(type), 0); 1840 } 1841 1842 static int sd_pr_clear(struct block_device *bdev, u64 key) 1843 { 1844 return sd_pr_command(bdev, 0x03, key, 0, 0, 0); 1845 } 1846 1847 static const struct pr_ops sd_pr_ops = { 1848 .pr_register = sd_pr_register, 1849 .pr_reserve = sd_pr_reserve, 1850 .pr_release = sd_pr_release, 1851 .pr_preempt = sd_pr_preempt, 1852 .pr_clear = sd_pr_clear, 1853 }; 1854 1855 static void scsi_disk_free_disk(struct gendisk *disk) 1856 { 1857 struct scsi_disk *sdkp = scsi_disk(disk); 1858 1859 put_device(&sdkp->disk_dev); 1860 } 1861 1862 static const struct block_device_operations sd_fops = { 1863 .owner = THIS_MODULE, 1864 .open = sd_open, 1865 .release = sd_release, 1866 .ioctl = sd_ioctl, 1867 .getgeo = sd_getgeo, 1868 .compat_ioctl = blkdev_compat_ptr_ioctl, 1869 .check_events = sd_check_events, 1870 .unlock_native_capacity = sd_unlock_native_capacity, 1871 .report_zones = sd_zbc_report_zones, 1872 .get_unique_id = sd_get_unique_id, 1873 .free_disk = scsi_disk_free_disk, 1874 .pr_ops = &sd_pr_ops, 1875 }; 1876 1877 /** 1878 * sd_eh_reset - reset error handling callback 1879 * @scmd: sd-issued command that has failed 1880 * 1881 * This function is called by the SCSI midlayer before starting 1882 * SCSI EH. When counting medium access failures we have to be 1883 * careful to register it only only once per device and SCSI EH run; 1884 * there might be several timed out commands which will cause the 1885 * 'max_medium_access_timeouts' counter to trigger after the first 1886 * SCSI EH run already and set the device to offline. 1887 * So this function resets the internal counter before starting SCSI EH. 1888 **/ 1889 static void sd_eh_reset(struct scsi_cmnd *scmd) 1890 { 1891 struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk); 1892 1893 /* New SCSI EH run, reset gate variable */ 1894 sdkp->ignore_medium_access_errors = false; 1895 } 1896 1897 /** 1898 * sd_eh_action - error handling callback 1899 * @scmd: sd-issued command that has failed 1900 * @eh_disp: The recovery disposition suggested by the midlayer 1901 * 1902 * This function is called by the SCSI midlayer upon completion of an 1903 * error test command (currently TEST UNIT READY). The result of sending 1904 * the eh command is passed in eh_disp. We're looking for devices that 1905 * fail medium access commands but are OK with non access commands like 1906 * test unit ready (so wrongly see the device as having a successful 1907 * recovery) 1908 **/ 1909 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp) 1910 { 1911 struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk); 1912 struct scsi_device *sdev = scmd->device; 1913 1914 if (!scsi_device_online(sdev) || 1915 !scsi_medium_access_command(scmd) || 1916 host_byte(scmd->result) != DID_TIME_OUT || 1917 eh_disp != SUCCESS) 1918 return eh_disp; 1919 1920 /* 1921 * The device has timed out executing a medium access command. 1922 * However, the TEST UNIT READY command sent during error 1923 * handling completed successfully. Either the device is in the 1924 * process of recovering or has it suffered an internal failure 1925 * that prevents access to the storage medium. 1926 */ 1927 if (!sdkp->ignore_medium_access_errors) { 1928 sdkp->medium_access_timed_out++; 1929 sdkp->ignore_medium_access_errors = true; 1930 } 1931 1932 /* 1933 * If the device keeps failing read/write commands but TEST UNIT 1934 * READY always completes successfully we assume that medium 1935 * access is no longer possible and take the device offline. 1936 */ 1937 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) { 1938 scmd_printk(KERN_ERR, scmd, 1939 "Medium access timeout failure. Offlining disk!\n"); 1940 mutex_lock(&sdev->state_mutex); 1941 scsi_device_set_state(sdev, SDEV_OFFLINE); 1942 mutex_unlock(&sdev->state_mutex); 1943 1944 return SUCCESS; 1945 } 1946 1947 return eh_disp; 1948 } 1949 1950 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd) 1951 { 1952 struct request *req = scsi_cmd_to_rq(scmd); 1953 struct scsi_device *sdev = scmd->device; 1954 unsigned int transferred, good_bytes; 1955 u64 start_lba, end_lba, bad_lba; 1956 1957 /* 1958 * Some commands have a payload smaller than the device logical 1959 * block size (e.g. INQUIRY on a 4K disk). 1960 */ 1961 if (scsi_bufflen(scmd) <= sdev->sector_size) 1962 return 0; 1963 1964 /* Check if we have a 'bad_lba' information */ 1965 if (!scsi_get_sense_info_fld(scmd->sense_buffer, 1966 SCSI_SENSE_BUFFERSIZE, 1967 &bad_lba)) 1968 return 0; 1969 1970 /* 1971 * If the bad lba was reported incorrectly, we have no idea where 1972 * the error is. 1973 */ 1974 start_lba = sectors_to_logical(sdev, blk_rq_pos(req)); 1975 end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd)); 1976 if (bad_lba < start_lba || bad_lba >= end_lba) 1977 return 0; 1978 1979 /* 1980 * resid is optional but mostly filled in. When it's unused, 1981 * its value is zero, so we assume the whole buffer transferred 1982 */ 1983 transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd); 1984 1985 /* This computation should always be done in terms of the 1986 * resolution of the device's medium. 1987 */ 1988 good_bytes = logical_to_bytes(sdev, bad_lba - start_lba); 1989 1990 return min(good_bytes, transferred); 1991 } 1992 1993 /** 1994 * sd_done - bottom half handler: called when the lower level 1995 * driver has completed (successfully or otherwise) a scsi command. 1996 * @SCpnt: mid-level's per command structure. 1997 * 1998 * Note: potentially run from within an ISR. Must not block. 1999 **/ 2000 static int sd_done(struct scsi_cmnd *SCpnt) 2001 { 2002 int result = SCpnt->result; 2003 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt); 2004 unsigned int sector_size = SCpnt->device->sector_size; 2005 unsigned int resid; 2006 struct scsi_sense_hdr sshdr; 2007 struct request *req = scsi_cmd_to_rq(SCpnt); 2008 struct scsi_disk *sdkp = scsi_disk(req->q->disk); 2009 int sense_valid = 0; 2010 int sense_deferred = 0; 2011 2012 switch (req_op(req)) { 2013 case REQ_OP_DISCARD: 2014 case REQ_OP_WRITE_ZEROES: 2015 case REQ_OP_WRITE_SAME: 2016 case REQ_OP_ZONE_RESET: 2017 case REQ_OP_ZONE_RESET_ALL: 2018 case REQ_OP_ZONE_OPEN: 2019 case REQ_OP_ZONE_CLOSE: 2020 case REQ_OP_ZONE_FINISH: 2021 if (!result) { 2022 good_bytes = blk_rq_bytes(req); 2023 scsi_set_resid(SCpnt, 0); 2024 } else { 2025 good_bytes = 0; 2026 scsi_set_resid(SCpnt, blk_rq_bytes(req)); 2027 } 2028 break; 2029 default: 2030 /* 2031 * In case of bogus fw or device, we could end up having 2032 * an unaligned partial completion. Check this here and force 2033 * alignment. 2034 */ 2035 resid = scsi_get_resid(SCpnt); 2036 if (resid & (sector_size - 1)) { 2037 sd_printk(KERN_INFO, sdkp, 2038 "Unaligned partial completion (resid=%u, sector_sz=%u)\n", 2039 resid, sector_size); 2040 scsi_print_command(SCpnt); 2041 resid = min(scsi_bufflen(SCpnt), 2042 round_up(resid, sector_size)); 2043 scsi_set_resid(SCpnt, resid); 2044 } 2045 } 2046 2047 if (result) { 2048 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr); 2049 if (sense_valid) 2050 sense_deferred = scsi_sense_is_deferred(&sshdr); 2051 } 2052 sdkp->medium_access_timed_out = 0; 2053 2054 if (!scsi_status_is_check_condition(result) && 2055 (!sense_valid || sense_deferred)) 2056 goto out; 2057 2058 switch (sshdr.sense_key) { 2059 case HARDWARE_ERROR: 2060 case MEDIUM_ERROR: 2061 good_bytes = sd_completed_bytes(SCpnt); 2062 break; 2063 case RECOVERED_ERROR: 2064 good_bytes = scsi_bufflen(SCpnt); 2065 break; 2066 case NO_SENSE: 2067 /* This indicates a false check condition, so ignore it. An 2068 * unknown amount of data was transferred so treat it as an 2069 * error. 2070 */ 2071 SCpnt->result = 0; 2072 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 2073 break; 2074 case ABORTED_COMMAND: 2075 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */ 2076 good_bytes = sd_completed_bytes(SCpnt); 2077 break; 2078 case ILLEGAL_REQUEST: 2079 switch (sshdr.asc) { 2080 case 0x10: /* DIX: Host detected corruption */ 2081 good_bytes = sd_completed_bytes(SCpnt); 2082 break; 2083 case 0x20: /* INVALID COMMAND OPCODE */ 2084 case 0x24: /* INVALID FIELD IN CDB */ 2085 switch (SCpnt->cmnd[0]) { 2086 case UNMAP: 2087 sd_config_discard(sdkp, SD_LBP_DISABLE); 2088 break; 2089 case WRITE_SAME_16: 2090 case WRITE_SAME: 2091 if (SCpnt->cmnd[1] & 8) { /* UNMAP */ 2092 sd_config_discard(sdkp, SD_LBP_DISABLE); 2093 } else { 2094 sdkp->device->no_write_same = 1; 2095 sd_config_write_same(sdkp); 2096 req->rq_flags |= RQF_QUIET; 2097 } 2098 break; 2099 } 2100 } 2101 break; 2102 default: 2103 break; 2104 } 2105 2106 out: 2107 if (sd_is_zoned(sdkp)) 2108 good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr); 2109 2110 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt, 2111 "sd_done: completed %d of %d bytes\n", 2112 good_bytes, scsi_bufflen(SCpnt))); 2113 2114 return good_bytes; 2115 } 2116 2117 /* 2118 * spinup disk - called only in sd_revalidate_disk() 2119 */ 2120 static void 2121 sd_spinup_disk(struct scsi_disk *sdkp) 2122 { 2123 unsigned char cmd[10]; 2124 unsigned long spintime_expire = 0; 2125 int retries, spintime; 2126 unsigned int the_result; 2127 struct scsi_sense_hdr sshdr; 2128 int sense_valid = 0; 2129 2130 spintime = 0; 2131 2132 /* Spin up drives, as required. Only do this at boot time */ 2133 /* Spinup needs to be done for module loads too. */ 2134 do { 2135 retries = 0; 2136 2137 do { 2138 bool media_was_present = sdkp->media_present; 2139 2140 cmd[0] = TEST_UNIT_READY; 2141 memset((void *) &cmd[1], 0, 9); 2142 2143 the_result = scsi_execute_req(sdkp->device, cmd, 2144 DMA_NONE, NULL, 0, 2145 &sshdr, SD_TIMEOUT, 2146 sdkp->max_retries, NULL); 2147 2148 /* 2149 * If the drive has indicated to us that it 2150 * doesn't have any media in it, don't bother 2151 * with any more polling. 2152 */ 2153 if (media_not_present(sdkp, &sshdr)) { 2154 if (media_was_present) 2155 sd_printk(KERN_NOTICE, sdkp, "Media removed, stopped polling\n"); 2156 return; 2157 } 2158 2159 if (the_result) 2160 sense_valid = scsi_sense_valid(&sshdr); 2161 retries++; 2162 } while (retries < 3 && 2163 (!scsi_status_is_good(the_result) || 2164 (scsi_status_is_check_condition(the_result) && 2165 sense_valid && sshdr.sense_key == UNIT_ATTENTION))); 2166 2167 if (!scsi_status_is_check_condition(the_result)) { 2168 /* no sense, TUR either succeeded or failed 2169 * with a status error */ 2170 if(!spintime && !scsi_status_is_good(the_result)) { 2171 sd_print_result(sdkp, "Test Unit Ready failed", 2172 the_result); 2173 } 2174 break; 2175 } 2176 2177 /* 2178 * The device does not want the automatic start to be issued. 2179 */ 2180 if (sdkp->device->no_start_on_add) 2181 break; 2182 2183 if (sense_valid && sshdr.sense_key == NOT_READY) { 2184 if (sshdr.asc == 4 && sshdr.ascq == 3) 2185 break; /* manual intervention required */ 2186 if (sshdr.asc == 4 && sshdr.ascq == 0xb) 2187 break; /* standby */ 2188 if (sshdr.asc == 4 && sshdr.ascq == 0xc) 2189 break; /* unavailable */ 2190 if (sshdr.asc == 4 && sshdr.ascq == 0x1b) 2191 break; /* sanitize in progress */ 2192 /* 2193 * Issue command to spin up drive when not ready 2194 */ 2195 if (!spintime) { 2196 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk..."); 2197 cmd[0] = START_STOP; 2198 cmd[1] = 1; /* Return immediately */ 2199 memset((void *) &cmd[2], 0, 8); 2200 cmd[4] = 1; /* Start spin cycle */ 2201 if (sdkp->device->start_stop_pwr_cond) 2202 cmd[4] |= 1 << 4; 2203 scsi_execute_req(sdkp->device, cmd, DMA_NONE, 2204 NULL, 0, &sshdr, 2205 SD_TIMEOUT, sdkp->max_retries, 2206 NULL); 2207 spintime_expire = jiffies + 100 * HZ; 2208 spintime = 1; 2209 } 2210 /* Wait 1 second for next try */ 2211 msleep(1000); 2212 printk(KERN_CONT "."); 2213 2214 /* 2215 * Wait for USB flash devices with slow firmware. 2216 * Yes, this sense key/ASC combination shouldn't 2217 * occur here. It's characteristic of these devices. 2218 */ 2219 } else if (sense_valid && 2220 sshdr.sense_key == UNIT_ATTENTION && 2221 sshdr.asc == 0x28) { 2222 if (!spintime) { 2223 spintime_expire = jiffies + 5 * HZ; 2224 spintime = 1; 2225 } 2226 /* Wait 1 second for next try */ 2227 msleep(1000); 2228 } else { 2229 /* we don't understand the sense code, so it's 2230 * probably pointless to loop */ 2231 if(!spintime) { 2232 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n"); 2233 sd_print_sense_hdr(sdkp, &sshdr); 2234 } 2235 break; 2236 } 2237 2238 } while (spintime && time_before_eq(jiffies, spintime_expire)); 2239 2240 if (spintime) { 2241 if (scsi_status_is_good(the_result)) 2242 printk(KERN_CONT "ready\n"); 2243 else 2244 printk(KERN_CONT "not responding...\n"); 2245 } 2246 } 2247 2248 /* 2249 * Determine whether disk supports Data Integrity Field. 2250 */ 2251 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer) 2252 { 2253 struct scsi_device *sdp = sdkp->device; 2254 u8 type; 2255 int ret = 0; 2256 2257 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) { 2258 sdkp->protection_type = 0; 2259 return ret; 2260 } 2261 2262 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */ 2263 2264 if (type > T10_PI_TYPE3_PROTECTION) 2265 ret = -ENODEV; 2266 else if (scsi_host_dif_capable(sdp->host, type)) 2267 ret = 1; 2268 2269 if (sdkp->first_scan || type != sdkp->protection_type) 2270 switch (ret) { 2271 case -ENODEV: 2272 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \ 2273 " protection type %u. Disabling disk!\n", 2274 type); 2275 break; 2276 case 1: 2277 sd_printk(KERN_NOTICE, sdkp, 2278 "Enabling DIF Type %u protection\n", type); 2279 break; 2280 case 0: 2281 sd_printk(KERN_NOTICE, sdkp, 2282 "Disabling DIF Type %u protection\n", type); 2283 break; 2284 } 2285 2286 sdkp->protection_type = type; 2287 2288 return ret; 2289 } 2290 2291 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp, 2292 struct scsi_sense_hdr *sshdr, int sense_valid, 2293 int the_result) 2294 { 2295 if (sense_valid) 2296 sd_print_sense_hdr(sdkp, sshdr); 2297 else 2298 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n"); 2299 2300 /* 2301 * Set dirty bit for removable devices if not ready - 2302 * sometimes drives will not report this properly. 2303 */ 2304 if (sdp->removable && 2305 sense_valid && sshdr->sense_key == NOT_READY) 2306 set_media_not_present(sdkp); 2307 2308 /* 2309 * We used to set media_present to 0 here to indicate no media 2310 * in the drive, but some drives fail read capacity even with 2311 * media present, so we can't do that. 2312 */ 2313 sdkp->capacity = 0; /* unknown mapped to zero - as usual */ 2314 } 2315 2316 #define RC16_LEN 32 2317 #if RC16_LEN > SD_BUF_SIZE 2318 #error RC16_LEN must not be more than SD_BUF_SIZE 2319 #endif 2320 2321 #define READ_CAPACITY_RETRIES_ON_RESET 10 2322 2323 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp, 2324 unsigned char *buffer) 2325 { 2326 unsigned char cmd[16]; 2327 struct scsi_sense_hdr sshdr; 2328 int sense_valid = 0; 2329 int the_result; 2330 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2331 unsigned int alignment; 2332 unsigned long long lba; 2333 unsigned sector_size; 2334 2335 if (sdp->no_read_capacity_16) 2336 return -EINVAL; 2337 2338 do { 2339 memset(cmd, 0, 16); 2340 cmd[0] = SERVICE_ACTION_IN_16; 2341 cmd[1] = SAI_READ_CAPACITY_16; 2342 cmd[13] = RC16_LEN; 2343 memset(buffer, 0, RC16_LEN); 2344 2345 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, 2346 buffer, RC16_LEN, &sshdr, 2347 SD_TIMEOUT, sdkp->max_retries, NULL); 2348 2349 if (media_not_present(sdkp, &sshdr)) 2350 return -ENODEV; 2351 2352 if (the_result > 0) { 2353 sense_valid = scsi_sense_valid(&sshdr); 2354 if (sense_valid && 2355 sshdr.sense_key == ILLEGAL_REQUEST && 2356 (sshdr.asc == 0x20 || sshdr.asc == 0x24) && 2357 sshdr.ascq == 0x00) 2358 /* Invalid Command Operation Code or 2359 * Invalid Field in CDB, just retry 2360 * silently with RC10 */ 2361 return -EINVAL; 2362 if (sense_valid && 2363 sshdr.sense_key == UNIT_ATTENTION && 2364 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2365 /* Device reset might occur several times, 2366 * give it one more chance */ 2367 if (--reset_retries > 0) 2368 continue; 2369 } 2370 retries--; 2371 2372 } while (the_result && retries); 2373 2374 if (the_result) { 2375 sd_print_result(sdkp, "Read Capacity(16) failed", the_result); 2376 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2377 return -EINVAL; 2378 } 2379 2380 sector_size = get_unaligned_be32(&buffer[8]); 2381 lba = get_unaligned_be64(&buffer[0]); 2382 2383 if (sd_read_protection_type(sdkp, buffer) < 0) { 2384 sdkp->capacity = 0; 2385 return -ENODEV; 2386 } 2387 2388 /* Logical blocks per physical block exponent */ 2389 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size; 2390 2391 /* RC basis */ 2392 sdkp->rc_basis = (buffer[12] >> 4) & 0x3; 2393 2394 /* Lowest aligned logical block */ 2395 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size; 2396 blk_queue_alignment_offset(sdp->request_queue, alignment); 2397 if (alignment && sdkp->first_scan) 2398 sd_printk(KERN_NOTICE, sdkp, 2399 "physical block alignment offset: %u\n", alignment); 2400 2401 if (buffer[14] & 0x80) { /* LBPME */ 2402 sdkp->lbpme = 1; 2403 2404 if (buffer[14] & 0x40) /* LBPRZ */ 2405 sdkp->lbprz = 1; 2406 2407 sd_config_discard(sdkp, SD_LBP_WS16); 2408 } 2409 2410 sdkp->capacity = lba + 1; 2411 return sector_size; 2412 } 2413 2414 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp, 2415 unsigned char *buffer) 2416 { 2417 unsigned char cmd[16]; 2418 struct scsi_sense_hdr sshdr; 2419 int sense_valid = 0; 2420 int the_result; 2421 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2422 sector_t lba; 2423 unsigned sector_size; 2424 2425 do { 2426 cmd[0] = READ_CAPACITY; 2427 memset(&cmd[1], 0, 9); 2428 memset(buffer, 0, 8); 2429 2430 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, 2431 buffer, 8, &sshdr, 2432 SD_TIMEOUT, sdkp->max_retries, NULL); 2433 2434 if (media_not_present(sdkp, &sshdr)) 2435 return -ENODEV; 2436 2437 if (the_result > 0) { 2438 sense_valid = scsi_sense_valid(&sshdr); 2439 if (sense_valid && 2440 sshdr.sense_key == UNIT_ATTENTION && 2441 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2442 /* Device reset might occur several times, 2443 * give it one more chance */ 2444 if (--reset_retries > 0) 2445 continue; 2446 } 2447 retries--; 2448 2449 } while (the_result && retries); 2450 2451 if (the_result) { 2452 sd_print_result(sdkp, "Read Capacity(10) failed", the_result); 2453 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2454 return -EINVAL; 2455 } 2456 2457 sector_size = get_unaligned_be32(&buffer[4]); 2458 lba = get_unaligned_be32(&buffer[0]); 2459 2460 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) { 2461 /* Some buggy (usb cardreader) devices return an lba of 2462 0xffffffff when the want to report a size of 0 (with 2463 which they really mean no media is present) */ 2464 sdkp->capacity = 0; 2465 sdkp->physical_block_size = sector_size; 2466 return sector_size; 2467 } 2468 2469 sdkp->capacity = lba + 1; 2470 sdkp->physical_block_size = sector_size; 2471 return sector_size; 2472 } 2473 2474 static int sd_try_rc16_first(struct scsi_device *sdp) 2475 { 2476 if (sdp->host->max_cmd_len < 16) 2477 return 0; 2478 if (sdp->try_rc_10_first) 2479 return 0; 2480 if (sdp->scsi_level > SCSI_SPC_2) 2481 return 1; 2482 if (scsi_device_protection(sdp)) 2483 return 1; 2484 return 0; 2485 } 2486 2487 /* 2488 * read disk capacity 2489 */ 2490 static void 2491 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer) 2492 { 2493 int sector_size; 2494 struct scsi_device *sdp = sdkp->device; 2495 2496 if (sd_try_rc16_first(sdp)) { 2497 sector_size = read_capacity_16(sdkp, sdp, buffer); 2498 if (sector_size == -EOVERFLOW) 2499 goto got_data; 2500 if (sector_size == -ENODEV) 2501 return; 2502 if (sector_size < 0) 2503 sector_size = read_capacity_10(sdkp, sdp, buffer); 2504 if (sector_size < 0) 2505 return; 2506 } else { 2507 sector_size = read_capacity_10(sdkp, sdp, buffer); 2508 if (sector_size == -EOVERFLOW) 2509 goto got_data; 2510 if (sector_size < 0) 2511 return; 2512 if ((sizeof(sdkp->capacity) > 4) && 2513 (sdkp->capacity > 0xffffffffULL)) { 2514 int old_sector_size = sector_size; 2515 sd_printk(KERN_NOTICE, sdkp, "Very big device. " 2516 "Trying to use READ CAPACITY(16).\n"); 2517 sector_size = read_capacity_16(sdkp, sdp, buffer); 2518 if (sector_size < 0) { 2519 sd_printk(KERN_NOTICE, sdkp, 2520 "Using 0xffffffff as device size\n"); 2521 sdkp->capacity = 1 + (sector_t) 0xffffffff; 2522 sector_size = old_sector_size; 2523 goto got_data; 2524 } 2525 /* Remember that READ CAPACITY(16) succeeded */ 2526 sdp->try_rc_10_first = 0; 2527 } 2528 } 2529 2530 /* Some devices are known to return the total number of blocks, 2531 * not the highest block number. Some devices have versions 2532 * which do this and others which do not. Some devices we might 2533 * suspect of doing this but we don't know for certain. 2534 * 2535 * If we know the reported capacity is wrong, decrement it. If 2536 * we can only guess, then assume the number of blocks is even 2537 * (usually true but not always) and err on the side of lowering 2538 * the capacity. 2539 */ 2540 if (sdp->fix_capacity || 2541 (sdp->guess_capacity && (sdkp->capacity & 0x01))) { 2542 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count " 2543 "from its reported value: %llu\n", 2544 (unsigned long long) sdkp->capacity); 2545 --sdkp->capacity; 2546 } 2547 2548 got_data: 2549 if (sector_size == 0) { 2550 sector_size = 512; 2551 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, " 2552 "assuming 512.\n"); 2553 } 2554 2555 if (sector_size != 512 && 2556 sector_size != 1024 && 2557 sector_size != 2048 && 2558 sector_size != 4096) { 2559 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n", 2560 sector_size); 2561 /* 2562 * The user might want to re-format the drive with 2563 * a supported sectorsize. Once this happens, it 2564 * would be relatively trivial to set the thing up. 2565 * For this reason, we leave the thing in the table. 2566 */ 2567 sdkp->capacity = 0; 2568 /* 2569 * set a bogus sector size so the normal read/write 2570 * logic in the block layer will eventually refuse any 2571 * request on this device without tripping over power 2572 * of two sector size assumptions 2573 */ 2574 sector_size = 512; 2575 } 2576 blk_queue_logical_block_size(sdp->request_queue, sector_size); 2577 blk_queue_physical_block_size(sdp->request_queue, 2578 sdkp->physical_block_size); 2579 sdkp->device->sector_size = sector_size; 2580 2581 if (sdkp->capacity > 0xffffffff) 2582 sdp->use_16_for_rw = 1; 2583 2584 } 2585 2586 /* 2587 * Print disk capacity 2588 */ 2589 static void 2590 sd_print_capacity(struct scsi_disk *sdkp, 2591 sector_t old_capacity) 2592 { 2593 int sector_size = sdkp->device->sector_size; 2594 char cap_str_2[10], cap_str_10[10]; 2595 2596 if (!sdkp->first_scan && old_capacity == sdkp->capacity) 2597 return; 2598 2599 string_get_size(sdkp->capacity, sector_size, 2600 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2)); 2601 string_get_size(sdkp->capacity, sector_size, 2602 STRING_UNITS_10, cap_str_10, sizeof(cap_str_10)); 2603 2604 sd_printk(KERN_NOTICE, sdkp, 2605 "%llu %d-byte logical blocks: (%s/%s)\n", 2606 (unsigned long long)sdkp->capacity, 2607 sector_size, cap_str_10, cap_str_2); 2608 2609 if (sdkp->physical_block_size != sector_size) 2610 sd_printk(KERN_NOTICE, sdkp, 2611 "%u-byte physical blocks\n", 2612 sdkp->physical_block_size); 2613 } 2614 2615 /* called with buffer of length 512 */ 2616 static inline int 2617 sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage, 2618 unsigned char *buffer, int len, struct scsi_mode_data *data, 2619 struct scsi_sense_hdr *sshdr) 2620 { 2621 /* 2622 * If we must use MODE SENSE(10), make sure that the buffer length 2623 * is at least 8 bytes so that the mode sense header fits. 2624 */ 2625 if (sdkp->device->use_10_for_ms && len < 8) 2626 len = 8; 2627 2628 return scsi_mode_sense(sdkp->device, dbd, modepage, buffer, len, 2629 SD_TIMEOUT, sdkp->max_retries, data, 2630 sshdr); 2631 } 2632 2633 /* 2634 * read write protect setting, if possible - called only in sd_revalidate_disk() 2635 * called with buffer of length SD_BUF_SIZE 2636 */ 2637 static void 2638 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer) 2639 { 2640 int res; 2641 struct scsi_device *sdp = sdkp->device; 2642 struct scsi_mode_data data; 2643 int old_wp = sdkp->write_prot; 2644 2645 set_disk_ro(sdkp->disk, 0); 2646 if (sdp->skip_ms_page_3f) { 2647 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n"); 2648 return; 2649 } 2650 2651 if (sdp->use_192_bytes_for_3f) { 2652 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL); 2653 } else { 2654 /* 2655 * First attempt: ask for all pages (0x3F), but only 4 bytes. 2656 * We have to start carefully: some devices hang if we ask 2657 * for more than is available. 2658 */ 2659 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL); 2660 2661 /* 2662 * Second attempt: ask for page 0 When only page 0 is 2663 * implemented, a request for page 3F may return Sense Key 2664 * 5: Illegal Request, Sense Code 24: Invalid field in 2665 * CDB. 2666 */ 2667 if (res < 0) 2668 res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL); 2669 2670 /* 2671 * Third attempt: ask 255 bytes, as we did earlier. 2672 */ 2673 if (res < 0) 2674 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255, 2675 &data, NULL); 2676 } 2677 2678 if (res < 0) { 2679 sd_first_printk(KERN_WARNING, sdkp, 2680 "Test WP failed, assume Write Enabled\n"); 2681 } else { 2682 sdkp->write_prot = ((data.device_specific & 0x80) != 0); 2683 set_disk_ro(sdkp->disk, sdkp->write_prot); 2684 if (sdkp->first_scan || old_wp != sdkp->write_prot) { 2685 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n", 2686 sdkp->write_prot ? "on" : "off"); 2687 sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer); 2688 } 2689 } 2690 } 2691 2692 /* 2693 * sd_read_cache_type - called only from sd_revalidate_disk() 2694 * called with buffer of length SD_BUF_SIZE 2695 */ 2696 static void 2697 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer) 2698 { 2699 int len = 0, res; 2700 struct scsi_device *sdp = sdkp->device; 2701 2702 int dbd; 2703 int modepage; 2704 int first_len; 2705 struct scsi_mode_data data; 2706 struct scsi_sense_hdr sshdr; 2707 int old_wce = sdkp->WCE; 2708 int old_rcd = sdkp->RCD; 2709 int old_dpofua = sdkp->DPOFUA; 2710 2711 2712 if (sdkp->cache_override) 2713 return; 2714 2715 first_len = 4; 2716 if (sdp->skip_ms_page_8) { 2717 if (sdp->type == TYPE_RBC) 2718 goto defaults; 2719 else { 2720 if (sdp->skip_ms_page_3f) 2721 goto defaults; 2722 modepage = 0x3F; 2723 if (sdp->use_192_bytes_for_3f) 2724 first_len = 192; 2725 dbd = 0; 2726 } 2727 } else if (sdp->type == TYPE_RBC) { 2728 modepage = 6; 2729 dbd = 8; 2730 } else { 2731 modepage = 8; 2732 dbd = 0; 2733 } 2734 2735 /* cautiously ask */ 2736 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len, 2737 &data, &sshdr); 2738 2739 if (res < 0) 2740 goto bad_sense; 2741 2742 if (!data.header_length) { 2743 modepage = 6; 2744 first_len = 0; 2745 sd_first_printk(KERN_ERR, sdkp, 2746 "Missing header in MODE_SENSE response\n"); 2747 } 2748 2749 /* that went OK, now ask for the proper length */ 2750 len = data.length; 2751 2752 /* 2753 * We're only interested in the first three bytes, actually. 2754 * But the data cache page is defined for the first 20. 2755 */ 2756 if (len < 3) 2757 goto bad_sense; 2758 else if (len > SD_BUF_SIZE) { 2759 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter " 2760 "data from %d to %d bytes\n", len, SD_BUF_SIZE); 2761 len = SD_BUF_SIZE; 2762 } 2763 if (modepage == 0x3F && sdp->use_192_bytes_for_3f) 2764 len = 192; 2765 2766 /* Get the data */ 2767 if (len > first_len) 2768 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len, 2769 &data, &sshdr); 2770 2771 if (!res) { 2772 int offset = data.header_length + data.block_descriptor_length; 2773 2774 while (offset < len) { 2775 u8 page_code = buffer[offset] & 0x3F; 2776 u8 spf = buffer[offset] & 0x40; 2777 2778 if (page_code == 8 || page_code == 6) { 2779 /* We're interested only in the first 3 bytes. 2780 */ 2781 if (len - offset <= 2) { 2782 sd_first_printk(KERN_ERR, sdkp, 2783 "Incomplete mode parameter " 2784 "data\n"); 2785 goto defaults; 2786 } else { 2787 modepage = page_code; 2788 goto Page_found; 2789 } 2790 } else { 2791 /* Go to the next page */ 2792 if (spf && len - offset > 3) 2793 offset += 4 + (buffer[offset+2] << 8) + 2794 buffer[offset+3]; 2795 else if (!spf && len - offset > 1) 2796 offset += 2 + buffer[offset+1]; 2797 else { 2798 sd_first_printk(KERN_ERR, sdkp, 2799 "Incomplete mode " 2800 "parameter data\n"); 2801 goto defaults; 2802 } 2803 } 2804 } 2805 2806 sd_first_printk(KERN_WARNING, sdkp, 2807 "No Caching mode page found\n"); 2808 goto defaults; 2809 2810 Page_found: 2811 if (modepage == 8) { 2812 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0); 2813 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0); 2814 } else { 2815 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0); 2816 sdkp->RCD = 0; 2817 } 2818 2819 sdkp->DPOFUA = (data.device_specific & 0x10) != 0; 2820 if (sdp->broken_fua) { 2821 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n"); 2822 sdkp->DPOFUA = 0; 2823 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw && 2824 !sdkp->device->use_16_for_rw) { 2825 sd_first_printk(KERN_NOTICE, sdkp, 2826 "Uses READ/WRITE(6), disabling FUA\n"); 2827 sdkp->DPOFUA = 0; 2828 } 2829 2830 /* No cache flush allowed for write protected devices */ 2831 if (sdkp->WCE && sdkp->write_prot) 2832 sdkp->WCE = 0; 2833 2834 if (sdkp->first_scan || old_wce != sdkp->WCE || 2835 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA) 2836 sd_printk(KERN_NOTICE, sdkp, 2837 "Write cache: %s, read cache: %s, %s\n", 2838 sdkp->WCE ? "enabled" : "disabled", 2839 sdkp->RCD ? "disabled" : "enabled", 2840 sdkp->DPOFUA ? "supports DPO and FUA" 2841 : "doesn't support DPO or FUA"); 2842 2843 return; 2844 } 2845 2846 bad_sense: 2847 if (scsi_sense_valid(&sshdr) && 2848 sshdr.sense_key == ILLEGAL_REQUEST && 2849 sshdr.asc == 0x24 && sshdr.ascq == 0x0) 2850 /* Invalid field in CDB */ 2851 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n"); 2852 else 2853 sd_first_printk(KERN_ERR, sdkp, 2854 "Asking for cache data failed\n"); 2855 2856 defaults: 2857 if (sdp->wce_default_on) { 2858 sd_first_printk(KERN_NOTICE, sdkp, 2859 "Assuming drive cache: write back\n"); 2860 sdkp->WCE = 1; 2861 } else { 2862 sd_first_printk(KERN_WARNING, sdkp, 2863 "Assuming drive cache: write through\n"); 2864 sdkp->WCE = 0; 2865 } 2866 sdkp->RCD = 0; 2867 sdkp->DPOFUA = 0; 2868 } 2869 2870 /* 2871 * The ATO bit indicates whether the DIF application tag is available 2872 * for use by the operating system. 2873 */ 2874 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer) 2875 { 2876 int res, offset; 2877 struct scsi_device *sdp = sdkp->device; 2878 struct scsi_mode_data data; 2879 struct scsi_sense_hdr sshdr; 2880 2881 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 2882 return; 2883 2884 if (sdkp->protection_type == 0) 2885 return; 2886 2887 res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT, 2888 sdkp->max_retries, &data, &sshdr); 2889 2890 if (res < 0 || !data.header_length || 2891 data.length < 6) { 2892 sd_first_printk(KERN_WARNING, sdkp, 2893 "getting Control mode page failed, assume no ATO\n"); 2894 2895 if (scsi_sense_valid(&sshdr)) 2896 sd_print_sense_hdr(sdkp, &sshdr); 2897 2898 return; 2899 } 2900 2901 offset = data.header_length + data.block_descriptor_length; 2902 2903 if ((buffer[offset] & 0x3f) != 0x0a) { 2904 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n"); 2905 return; 2906 } 2907 2908 if ((buffer[offset + 5] & 0x80) == 0) 2909 return; 2910 2911 sdkp->ATO = 1; 2912 2913 return; 2914 } 2915 2916 /** 2917 * sd_read_block_limits - Query disk device for preferred I/O sizes. 2918 * @sdkp: disk to query 2919 */ 2920 static void sd_read_block_limits(struct scsi_disk *sdkp) 2921 { 2922 unsigned int sector_sz = sdkp->device->sector_size; 2923 const int vpd_len = 64; 2924 unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL); 2925 2926 if (!buffer || 2927 /* Block Limits VPD */ 2928 scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len)) 2929 goto out; 2930 2931 blk_queue_io_min(sdkp->disk->queue, 2932 get_unaligned_be16(&buffer[6]) * sector_sz); 2933 2934 sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]); 2935 sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]); 2936 2937 if (buffer[3] == 0x3c) { 2938 unsigned int lba_count, desc_count; 2939 2940 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]); 2941 2942 if (!sdkp->lbpme) 2943 goto out; 2944 2945 lba_count = get_unaligned_be32(&buffer[20]); 2946 desc_count = get_unaligned_be32(&buffer[24]); 2947 2948 if (lba_count && desc_count) 2949 sdkp->max_unmap_blocks = lba_count; 2950 2951 sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]); 2952 2953 if (buffer[32] & 0x80) 2954 sdkp->unmap_alignment = 2955 get_unaligned_be32(&buffer[32]) & ~(1 << 31); 2956 2957 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */ 2958 2959 if (sdkp->max_unmap_blocks) 2960 sd_config_discard(sdkp, SD_LBP_UNMAP); 2961 else 2962 sd_config_discard(sdkp, SD_LBP_WS16); 2963 2964 } else { /* LBP VPD page tells us what to use */ 2965 if (sdkp->lbpu && sdkp->max_unmap_blocks) 2966 sd_config_discard(sdkp, SD_LBP_UNMAP); 2967 else if (sdkp->lbpws) 2968 sd_config_discard(sdkp, SD_LBP_WS16); 2969 else if (sdkp->lbpws10) 2970 sd_config_discard(sdkp, SD_LBP_WS10); 2971 else 2972 sd_config_discard(sdkp, SD_LBP_DISABLE); 2973 } 2974 } 2975 2976 out: 2977 kfree(buffer); 2978 } 2979 2980 /** 2981 * sd_read_block_characteristics - Query block dev. characteristics 2982 * @sdkp: disk to query 2983 */ 2984 static void sd_read_block_characteristics(struct scsi_disk *sdkp) 2985 { 2986 struct request_queue *q = sdkp->disk->queue; 2987 unsigned char *buffer; 2988 u16 rot; 2989 const int vpd_len = 64; 2990 2991 buffer = kmalloc(vpd_len, GFP_KERNEL); 2992 2993 if (!buffer || 2994 /* Block Device Characteristics VPD */ 2995 scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len)) 2996 goto out; 2997 2998 rot = get_unaligned_be16(&buffer[4]); 2999 3000 if (rot == 1) { 3001 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 3002 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q); 3003 } 3004 3005 if (sdkp->device->type == TYPE_ZBC) { 3006 /* Host-managed */ 3007 blk_queue_set_zoned(sdkp->disk, BLK_ZONED_HM); 3008 } else { 3009 sdkp->zoned = (buffer[8] >> 4) & 3; 3010 if (sdkp->zoned == 1) { 3011 /* Host-aware */ 3012 blk_queue_set_zoned(sdkp->disk, BLK_ZONED_HA); 3013 } else { 3014 /* Regular disk or drive managed disk */ 3015 blk_queue_set_zoned(sdkp->disk, BLK_ZONED_NONE); 3016 } 3017 } 3018 3019 if (!sdkp->first_scan) 3020 goto out; 3021 3022 if (blk_queue_is_zoned(q)) { 3023 sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n", 3024 q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware"); 3025 } else { 3026 if (sdkp->zoned == 1) 3027 sd_printk(KERN_NOTICE, sdkp, 3028 "Host-aware SMR disk used as regular disk\n"); 3029 else if (sdkp->zoned == 2) 3030 sd_printk(KERN_NOTICE, sdkp, 3031 "Drive-managed SMR disk\n"); 3032 } 3033 3034 out: 3035 kfree(buffer); 3036 } 3037 3038 /** 3039 * sd_read_block_provisioning - Query provisioning VPD page 3040 * @sdkp: disk to query 3041 */ 3042 static void sd_read_block_provisioning(struct scsi_disk *sdkp) 3043 { 3044 unsigned char *buffer; 3045 const int vpd_len = 8; 3046 3047 if (sdkp->lbpme == 0) 3048 return; 3049 3050 buffer = kmalloc(vpd_len, GFP_KERNEL); 3051 3052 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len)) 3053 goto out; 3054 3055 sdkp->lbpvpd = 1; 3056 sdkp->lbpu = (buffer[5] >> 7) & 1; /* UNMAP */ 3057 sdkp->lbpws = (buffer[5] >> 6) & 1; /* WRITE SAME(16) with UNMAP */ 3058 sdkp->lbpws10 = (buffer[5] >> 5) & 1; /* WRITE SAME(10) with UNMAP */ 3059 3060 out: 3061 kfree(buffer); 3062 } 3063 3064 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer) 3065 { 3066 struct scsi_device *sdev = sdkp->device; 3067 3068 if (sdev->host->no_write_same) { 3069 sdev->no_write_same = 1; 3070 3071 return; 3072 } 3073 3074 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) { 3075 /* too large values might cause issues with arcmsr */ 3076 int vpd_buf_len = 64; 3077 3078 sdev->no_report_opcodes = 1; 3079 3080 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION 3081 * CODES is unsupported and the device has an ATA 3082 * Information VPD page (SAT). 3083 */ 3084 if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len)) 3085 sdev->no_write_same = 1; 3086 } 3087 3088 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1) 3089 sdkp->ws16 = 1; 3090 3091 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1) 3092 sdkp->ws10 = 1; 3093 } 3094 3095 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer) 3096 { 3097 struct scsi_device *sdev = sdkp->device; 3098 3099 if (!sdev->security_supported) 3100 return; 3101 3102 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3103 SECURITY_PROTOCOL_IN) == 1 && 3104 scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3105 SECURITY_PROTOCOL_OUT) == 1) 3106 sdkp->security = 1; 3107 } 3108 3109 static inline sector_t sd64_to_sectors(struct scsi_disk *sdkp, u8 *buf) 3110 { 3111 return logical_to_sectors(sdkp->device, get_unaligned_be64(buf)); 3112 } 3113 3114 /** 3115 * sd_read_cpr - Query concurrent positioning ranges 3116 * @sdkp: disk to query 3117 */ 3118 static void sd_read_cpr(struct scsi_disk *sdkp) 3119 { 3120 struct blk_independent_access_ranges *iars = NULL; 3121 unsigned char *buffer = NULL; 3122 unsigned int nr_cpr = 0; 3123 int i, vpd_len, buf_len = SD_BUF_SIZE; 3124 u8 *desc; 3125 3126 /* 3127 * We need to have the capacity set first for the block layer to be 3128 * able to check the ranges. 3129 */ 3130 if (sdkp->first_scan) 3131 return; 3132 3133 if (!sdkp->capacity) 3134 goto out; 3135 3136 /* 3137 * Concurrent Positioning Ranges VPD: there can be at most 256 ranges, 3138 * leading to a maximum page size of 64 + 256*32 bytes. 3139 */ 3140 buf_len = 64 + 256*32; 3141 buffer = kmalloc(buf_len, GFP_KERNEL); 3142 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb9, buffer, buf_len)) 3143 goto out; 3144 3145 /* We must have at least a 64B header and one 32B range descriptor */ 3146 vpd_len = get_unaligned_be16(&buffer[2]) + 3; 3147 if (vpd_len > buf_len || vpd_len < 64 + 32 || (vpd_len & 31)) { 3148 sd_printk(KERN_ERR, sdkp, 3149 "Invalid Concurrent Positioning Ranges VPD page\n"); 3150 goto out; 3151 } 3152 3153 nr_cpr = (vpd_len - 64) / 32; 3154 if (nr_cpr == 1) { 3155 nr_cpr = 0; 3156 goto out; 3157 } 3158 3159 iars = disk_alloc_independent_access_ranges(sdkp->disk, nr_cpr); 3160 if (!iars) { 3161 nr_cpr = 0; 3162 goto out; 3163 } 3164 3165 desc = &buffer[64]; 3166 for (i = 0; i < nr_cpr; i++, desc += 32) { 3167 if (desc[0] != i) { 3168 sd_printk(KERN_ERR, sdkp, 3169 "Invalid Concurrent Positioning Range number\n"); 3170 nr_cpr = 0; 3171 break; 3172 } 3173 3174 iars->ia_range[i].sector = sd64_to_sectors(sdkp, desc + 8); 3175 iars->ia_range[i].nr_sectors = sd64_to_sectors(sdkp, desc + 16); 3176 } 3177 3178 out: 3179 disk_set_independent_access_ranges(sdkp->disk, iars); 3180 if (nr_cpr && sdkp->nr_actuators != nr_cpr) { 3181 sd_printk(KERN_NOTICE, sdkp, 3182 "%u concurrent positioning ranges\n", nr_cpr); 3183 sdkp->nr_actuators = nr_cpr; 3184 } 3185 3186 kfree(buffer); 3187 } 3188 3189 /* 3190 * Determine the device's preferred I/O size for reads and writes 3191 * unless the reported value is unreasonably small, large, not a 3192 * multiple of the physical block size, or simply garbage. 3193 */ 3194 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp, 3195 unsigned int dev_max) 3196 { 3197 struct scsi_device *sdp = sdkp->device; 3198 unsigned int opt_xfer_bytes = 3199 logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 3200 3201 if (sdkp->opt_xfer_blocks == 0) 3202 return false; 3203 3204 if (sdkp->opt_xfer_blocks > dev_max) { 3205 sd_first_printk(KERN_WARNING, sdkp, 3206 "Optimal transfer size %u logical blocks " \ 3207 "> dev_max (%u logical blocks)\n", 3208 sdkp->opt_xfer_blocks, dev_max); 3209 return false; 3210 } 3211 3212 if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) { 3213 sd_first_printk(KERN_WARNING, sdkp, 3214 "Optimal transfer size %u logical blocks " \ 3215 "> sd driver limit (%u logical blocks)\n", 3216 sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS); 3217 return false; 3218 } 3219 3220 if (opt_xfer_bytes < PAGE_SIZE) { 3221 sd_first_printk(KERN_WARNING, sdkp, 3222 "Optimal transfer size %u bytes < " \ 3223 "PAGE_SIZE (%u bytes)\n", 3224 opt_xfer_bytes, (unsigned int)PAGE_SIZE); 3225 return false; 3226 } 3227 3228 if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) { 3229 sd_first_printk(KERN_WARNING, sdkp, 3230 "Optimal transfer size %u bytes not a " \ 3231 "multiple of physical block size (%u bytes)\n", 3232 opt_xfer_bytes, sdkp->physical_block_size); 3233 return false; 3234 } 3235 3236 sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n", 3237 opt_xfer_bytes); 3238 return true; 3239 } 3240 3241 /** 3242 * sd_revalidate_disk - called the first time a new disk is seen, 3243 * performs disk spin up, read_capacity, etc. 3244 * @disk: struct gendisk we care about 3245 **/ 3246 static int sd_revalidate_disk(struct gendisk *disk) 3247 { 3248 struct scsi_disk *sdkp = scsi_disk(disk); 3249 struct scsi_device *sdp = sdkp->device; 3250 struct request_queue *q = sdkp->disk->queue; 3251 sector_t old_capacity = sdkp->capacity; 3252 unsigned char *buffer; 3253 unsigned int dev_max, rw_max; 3254 3255 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, 3256 "sd_revalidate_disk\n")); 3257 3258 /* 3259 * If the device is offline, don't try and read capacity or any 3260 * of the other niceties. 3261 */ 3262 if (!scsi_device_online(sdp)) 3263 goto out; 3264 3265 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL); 3266 if (!buffer) { 3267 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory " 3268 "allocation failure.\n"); 3269 goto out; 3270 } 3271 3272 sd_spinup_disk(sdkp); 3273 3274 /* 3275 * Without media there is no reason to ask; moreover, some devices 3276 * react badly if we do. 3277 */ 3278 if (sdkp->media_present) { 3279 sd_read_capacity(sdkp, buffer); 3280 3281 /* 3282 * set the default to rotational. All non-rotational devices 3283 * support the block characteristics VPD page, which will 3284 * cause this to be updated correctly and any device which 3285 * doesn't support it should be treated as rotational. 3286 */ 3287 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q); 3288 blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q); 3289 3290 if (scsi_device_supports_vpd(sdp)) { 3291 sd_read_block_provisioning(sdkp); 3292 sd_read_block_limits(sdkp); 3293 sd_read_block_characteristics(sdkp); 3294 sd_zbc_read_zones(sdkp, buffer); 3295 } 3296 3297 sd_print_capacity(sdkp, old_capacity); 3298 3299 sd_read_write_protect_flag(sdkp, buffer); 3300 sd_read_cache_type(sdkp, buffer); 3301 sd_read_app_tag_own(sdkp, buffer); 3302 sd_read_write_same(sdkp, buffer); 3303 sd_read_security(sdkp, buffer); 3304 sd_read_cpr(sdkp); 3305 } 3306 3307 /* 3308 * We now have all cache related info, determine how we deal 3309 * with flush requests. 3310 */ 3311 sd_set_flush_flag(sdkp); 3312 3313 /* Initial block count limit based on CDB TRANSFER LENGTH field size. */ 3314 dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS; 3315 3316 /* Some devices report a maximum block count for READ/WRITE requests. */ 3317 dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks); 3318 q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max); 3319 3320 if (sd_validate_opt_xfer_size(sdkp, dev_max)) { 3321 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 3322 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks); 3323 } else { 3324 q->limits.io_opt = 0; 3325 rw_max = min_not_zero(logical_to_sectors(sdp, dev_max), 3326 (sector_t)BLK_DEF_MAX_SECTORS); 3327 } 3328 3329 /* Do not exceed controller limit */ 3330 rw_max = min(rw_max, queue_max_hw_sectors(q)); 3331 3332 /* 3333 * Only update max_sectors if previously unset or if the current value 3334 * exceeds the capabilities of the hardware. 3335 */ 3336 if (sdkp->first_scan || 3337 q->limits.max_sectors > q->limits.max_dev_sectors || 3338 q->limits.max_sectors > q->limits.max_hw_sectors) 3339 q->limits.max_sectors = rw_max; 3340 3341 sdkp->first_scan = 0; 3342 3343 set_capacity_and_notify(disk, logical_to_sectors(sdp, sdkp->capacity)); 3344 sd_config_write_same(sdkp); 3345 kfree(buffer); 3346 3347 /* 3348 * For a zoned drive, revalidating the zones can be done only once 3349 * the gendisk capacity is set. So if this fails, set back the gendisk 3350 * capacity to 0. 3351 */ 3352 if (sd_zbc_revalidate_zones(sdkp)) 3353 set_capacity_and_notify(disk, 0); 3354 3355 out: 3356 return 0; 3357 } 3358 3359 /** 3360 * sd_unlock_native_capacity - unlock native capacity 3361 * @disk: struct gendisk to set capacity for 3362 * 3363 * Block layer calls this function if it detects that partitions 3364 * on @disk reach beyond the end of the device. If the SCSI host 3365 * implements ->unlock_native_capacity() method, it's invoked to 3366 * give it a chance to adjust the device capacity. 3367 * 3368 * CONTEXT: 3369 * Defined by block layer. Might sleep. 3370 */ 3371 static void sd_unlock_native_capacity(struct gendisk *disk) 3372 { 3373 struct scsi_device *sdev = scsi_disk(disk)->device; 3374 3375 if (sdev->host->hostt->unlock_native_capacity) 3376 sdev->host->hostt->unlock_native_capacity(sdev); 3377 } 3378 3379 /** 3380 * sd_format_disk_name - format disk name 3381 * @prefix: name prefix - ie. "sd" for SCSI disks 3382 * @index: index of the disk to format name for 3383 * @buf: output buffer 3384 * @buflen: length of the output buffer 3385 * 3386 * SCSI disk names starts at sda. The 26th device is sdz and the 3387 * 27th is sdaa. The last one for two lettered suffix is sdzz 3388 * which is followed by sdaaa. 3389 * 3390 * This is basically 26 base counting with one extra 'nil' entry 3391 * at the beginning from the second digit on and can be 3392 * determined using similar method as 26 base conversion with the 3393 * index shifted -1 after each digit is computed. 3394 * 3395 * CONTEXT: 3396 * Don't care. 3397 * 3398 * RETURNS: 3399 * 0 on success, -errno on failure. 3400 */ 3401 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen) 3402 { 3403 const int base = 'z' - 'a' + 1; 3404 char *begin = buf + strlen(prefix); 3405 char *end = buf + buflen; 3406 char *p; 3407 int unit; 3408 3409 p = end - 1; 3410 *p = '\0'; 3411 unit = base; 3412 do { 3413 if (p == begin) 3414 return -EINVAL; 3415 *--p = 'a' + (index % unit); 3416 index = (index / unit) - 1; 3417 } while (index >= 0); 3418 3419 memmove(begin, p, end - p); 3420 memcpy(buf, prefix, strlen(prefix)); 3421 3422 return 0; 3423 } 3424 3425 /** 3426 * sd_probe - called during driver initialization and whenever a 3427 * new scsi device is attached to the system. It is called once 3428 * for each scsi device (not just disks) present. 3429 * @dev: pointer to device object 3430 * 3431 * Returns 0 if successful (or not interested in this scsi device 3432 * (e.g. scanner)); 1 when there is an error. 3433 * 3434 * Note: this function is invoked from the scsi mid-level. 3435 * This function sets up the mapping between a given 3436 * <host,channel,id,lun> (found in sdp) and new device name 3437 * (e.g. /dev/sda). More precisely it is the block device major 3438 * and minor number that is chosen here. 3439 * 3440 * Assume sd_probe is not re-entrant (for time being) 3441 * Also think about sd_probe() and sd_remove() running coincidentally. 3442 **/ 3443 static int sd_probe(struct device *dev) 3444 { 3445 struct scsi_device *sdp = to_scsi_device(dev); 3446 struct scsi_disk *sdkp; 3447 struct gendisk *gd; 3448 int index; 3449 int error; 3450 3451 scsi_autopm_get_device(sdp); 3452 error = -ENODEV; 3453 if (sdp->type != TYPE_DISK && 3454 sdp->type != TYPE_ZBC && 3455 sdp->type != TYPE_MOD && 3456 sdp->type != TYPE_RBC) 3457 goto out; 3458 3459 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) && sdp->type == TYPE_ZBC) { 3460 sdev_printk(KERN_WARNING, sdp, 3461 "Unsupported ZBC host-managed device.\n"); 3462 goto out; 3463 } 3464 3465 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp, 3466 "sd_probe\n")); 3467 3468 error = -ENOMEM; 3469 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL); 3470 if (!sdkp) 3471 goto out; 3472 3473 gd = __alloc_disk_node(sdp->request_queue, NUMA_NO_NODE, 3474 &sd_bio_compl_lkclass); 3475 if (!gd) 3476 goto out_free; 3477 3478 index = ida_alloc(&sd_index_ida, GFP_KERNEL); 3479 if (index < 0) { 3480 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n"); 3481 goto out_put; 3482 } 3483 3484 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN); 3485 if (error) { 3486 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n"); 3487 goto out_free_index; 3488 } 3489 3490 sdkp->device = sdp; 3491 sdkp->disk = gd; 3492 sdkp->index = index; 3493 sdkp->max_retries = SD_MAX_RETRIES; 3494 atomic_set(&sdkp->openers, 0); 3495 atomic_set(&sdkp->device->ioerr_cnt, 0); 3496 3497 if (!sdp->request_queue->rq_timeout) { 3498 if (sdp->type != TYPE_MOD) 3499 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT); 3500 else 3501 blk_queue_rq_timeout(sdp->request_queue, 3502 SD_MOD_TIMEOUT); 3503 } 3504 3505 device_initialize(&sdkp->disk_dev); 3506 sdkp->disk_dev.parent = get_device(dev); 3507 sdkp->disk_dev.class = &sd_disk_class; 3508 dev_set_name(&sdkp->disk_dev, "%s", dev_name(dev)); 3509 3510 error = device_add(&sdkp->disk_dev); 3511 if (error) { 3512 put_device(&sdkp->disk_dev); 3513 goto out; 3514 } 3515 3516 dev_set_drvdata(dev, sdkp); 3517 3518 gd->major = sd_major((index & 0xf0) >> 4); 3519 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00); 3520 gd->minors = SD_MINORS; 3521 3522 gd->fops = &sd_fops; 3523 gd->private_data = sdkp; 3524 3525 /* defaults, until the device tells us otherwise */ 3526 sdp->sector_size = 512; 3527 sdkp->capacity = 0; 3528 sdkp->media_present = 1; 3529 sdkp->write_prot = 0; 3530 sdkp->cache_override = 0; 3531 sdkp->WCE = 0; 3532 sdkp->RCD = 0; 3533 sdkp->ATO = 0; 3534 sdkp->first_scan = 1; 3535 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS; 3536 3537 sd_revalidate_disk(gd); 3538 3539 if (sdp->removable) { 3540 gd->flags |= GENHD_FL_REMOVABLE; 3541 gd->events |= DISK_EVENT_MEDIA_CHANGE; 3542 gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT; 3543 } 3544 3545 blk_pm_runtime_init(sdp->request_queue, dev); 3546 if (sdp->rpm_autosuspend) { 3547 pm_runtime_set_autosuspend_delay(dev, 3548 sdp->host->hostt->rpm_autosuspend_delay); 3549 } 3550 3551 error = device_add_disk(dev, gd, NULL); 3552 if (error) { 3553 put_device(&sdkp->disk_dev); 3554 goto out; 3555 } 3556 3557 if (sdkp->capacity) 3558 sd_dif_config_host(sdkp); 3559 3560 sd_revalidate_disk(gd); 3561 3562 if (sdkp->security) { 3563 sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit); 3564 if (sdkp->opal_dev) 3565 sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n"); 3566 } 3567 3568 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n", 3569 sdp->removable ? "removable " : ""); 3570 scsi_autopm_put_device(sdp); 3571 3572 return 0; 3573 3574 out_free_index: 3575 ida_free(&sd_index_ida, index); 3576 out_put: 3577 put_disk(gd); 3578 out_free: 3579 sd_zbc_release_disk(sdkp); 3580 kfree(sdkp); 3581 out: 3582 scsi_autopm_put_device(sdp); 3583 return error; 3584 } 3585 3586 /** 3587 * sd_remove - called whenever a scsi disk (previously recognized by 3588 * sd_probe) is detached from the system. It is called (potentially 3589 * multiple times) during sd module unload. 3590 * @dev: pointer to device object 3591 * 3592 * Note: this function is invoked from the scsi mid-level. 3593 * This function potentially frees up a device name (e.g. /dev/sdc) 3594 * that could be re-used by a subsequent sd_probe(). 3595 * This function is not called when the built-in sd driver is "exit-ed". 3596 **/ 3597 static int sd_remove(struct device *dev) 3598 { 3599 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3600 3601 scsi_autopm_get_device(sdkp->device); 3602 3603 device_del(&sdkp->disk_dev); 3604 del_gendisk(sdkp->disk); 3605 sd_shutdown(dev); 3606 3607 put_disk(sdkp->disk); 3608 return 0; 3609 } 3610 3611 static void scsi_disk_release(struct device *dev) 3612 { 3613 struct scsi_disk *sdkp = to_scsi_disk(dev); 3614 3615 ida_free(&sd_index_ida, sdkp->index); 3616 sd_zbc_release_disk(sdkp); 3617 put_device(&sdkp->device->sdev_gendev); 3618 free_opal_dev(sdkp->opal_dev); 3619 3620 kfree(sdkp); 3621 } 3622 3623 static int sd_start_stop_device(struct scsi_disk *sdkp, int start) 3624 { 3625 unsigned char cmd[6] = { START_STOP }; /* START_VALID */ 3626 struct scsi_sense_hdr sshdr; 3627 struct scsi_device *sdp = sdkp->device; 3628 int res; 3629 3630 if (start) 3631 cmd[4] |= 1; /* START */ 3632 3633 if (sdp->start_stop_pwr_cond) 3634 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */ 3635 3636 if (!scsi_device_online(sdp)) 3637 return -ENODEV; 3638 3639 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr, 3640 SD_TIMEOUT, sdkp->max_retries, 0, RQF_PM, NULL); 3641 if (res) { 3642 sd_print_result(sdkp, "Start/Stop Unit failed", res); 3643 if (res > 0 && scsi_sense_valid(&sshdr)) { 3644 sd_print_sense_hdr(sdkp, &sshdr); 3645 /* 0x3a is medium not present */ 3646 if (sshdr.asc == 0x3a) 3647 res = 0; 3648 } 3649 } 3650 3651 /* SCSI error codes must not go to the generic layer */ 3652 if (res) 3653 return -EIO; 3654 3655 return 0; 3656 } 3657 3658 /* 3659 * Send a SYNCHRONIZE CACHE instruction down to the device through 3660 * the normal SCSI command structure. Wait for the command to 3661 * complete. 3662 */ 3663 static void sd_shutdown(struct device *dev) 3664 { 3665 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3666 3667 if (!sdkp) 3668 return; /* this can happen */ 3669 3670 if (pm_runtime_suspended(dev)) 3671 return; 3672 3673 if (sdkp->WCE && sdkp->media_present) { 3674 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3675 sd_sync_cache(sdkp, NULL); 3676 } 3677 3678 if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) { 3679 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3680 sd_start_stop_device(sdkp, 0); 3681 } 3682 } 3683 3684 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors) 3685 { 3686 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3687 struct scsi_sense_hdr sshdr; 3688 int ret = 0; 3689 3690 if (!sdkp) /* E.g.: runtime suspend following sd_remove() */ 3691 return 0; 3692 3693 if (sdkp->WCE && sdkp->media_present) { 3694 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3695 ret = sd_sync_cache(sdkp, &sshdr); 3696 3697 if (ret) { 3698 /* ignore OFFLINE device */ 3699 if (ret == -ENODEV) 3700 return 0; 3701 3702 if (!scsi_sense_valid(&sshdr) || 3703 sshdr.sense_key != ILLEGAL_REQUEST) 3704 return ret; 3705 3706 /* 3707 * sshdr.sense_key == ILLEGAL_REQUEST means this drive 3708 * doesn't support sync. There's not much to do and 3709 * suspend shouldn't fail. 3710 */ 3711 ret = 0; 3712 } 3713 } 3714 3715 if (sdkp->device->manage_start_stop) { 3716 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3717 /* an error is not worth aborting a system sleep */ 3718 ret = sd_start_stop_device(sdkp, 0); 3719 if (ignore_stop_errors) 3720 ret = 0; 3721 } 3722 3723 return ret; 3724 } 3725 3726 static int sd_suspend_system(struct device *dev) 3727 { 3728 if (pm_runtime_suspended(dev)) 3729 return 0; 3730 3731 return sd_suspend_common(dev, true); 3732 } 3733 3734 static int sd_suspend_runtime(struct device *dev) 3735 { 3736 return sd_suspend_common(dev, false); 3737 } 3738 3739 static int sd_resume(struct device *dev) 3740 { 3741 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3742 int ret; 3743 3744 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */ 3745 return 0; 3746 3747 if (!sdkp->device->manage_start_stop) 3748 return 0; 3749 3750 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n"); 3751 ret = sd_start_stop_device(sdkp, 1); 3752 if (!ret) 3753 opal_unlock_from_suspend(sdkp->opal_dev); 3754 return ret; 3755 } 3756 3757 static int sd_resume_system(struct device *dev) 3758 { 3759 if (pm_runtime_suspended(dev)) 3760 return 0; 3761 3762 return sd_resume(dev); 3763 } 3764 3765 static int sd_resume_runtime(struct device *dev) 3766 { 3767 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3768 struct scsi_device *sdp; 3769 3770 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */ 3771 return 0; 3772 3773 sdp = sdkp->device; 3774 3775 if (sdp->ignore_media_change) { 3776 /* clear the device's sense data */ 3777 static const u8 cmd[10] = { REQUEST_SENSE }; 3778 3779 if (scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, 3780 NULL, sdp->request_queue->rq_timeout, 1, 0, 3781 RQF_PM, NULL)) 3782 sd_printk(KERN_NOTICE, sdkp, 3783 "Failed to clear sense data\n"); 3784 } 3785 3786 return sd_resume(dev); 3787 } 3788 3789 /** 3790 * init_sd - entry point for this driver (both when built in or when 3791 * a module). 3792 * 3793 * Note: this function registers this driver with the scsi mid-level. 3794 **/ 3795 static int __init init_sd(void) 3796 { 3797 int majors = 0, i, err; 3798 3799 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n")); 3800 3801 for (i = 0; i < SD_MAJORS; i++) { 3802 if (__register_blkdev(sd_major(i), "sd", sd_default_probe)) 3803 continue; 3804 majors++; 3805 } 3806 3807 if (!majors) 3808 return -ENODEV; 3809 3810 err = class_register(&sd_disk_class); 3811 if (err) 3812 goto err_out; 3813 3814 sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE, 3815 0, 0, NULL); 3816 if (!sd_cdb_cache) { 3817 printk(KERN_ERR "sd: can't init extended cdb cache\n"); 3818 err = -ENOMEM; 3819 goto err_out_class; 3820 } 3821 3822 sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache); 3823 if (!sd_cdb_pool) { 3824 printk(KERN_ERR "sd: can't init extended cdb pool\n"); 3825 err = -ENOMEM; 3826 goto err_out_cache; 3827 } 3828 3829 sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0); 3830 if (!sd_page_pool) { 3831 printk(KERN_ERR "sd: can't init discard page pool\n"); 3832 err = -ENOMEM; 3833 goto err_out_ppool; 3834 } 3835 3836 err = scsi_register_driver(&sd_template.gendrv); 3837 if (err) 3838 goto err_out_driver; 3839 3840 return 0; 3841 3842 err_out_driver: 3843 mempool_destroy(sd_page_pool); 3844 3845 err_out_ppool: 3846 mempool_destroy(sd_cdb_pool); 3847 3848 err_out_cache: 3849 kmem_cache_destroy(sd_cdb_cache); 3850 3851 err_out_class: 3852 class_unregister(&sd_disk_class); 3853 err_out: 3854 for (i = 0; i < SD_MAJORS; i++) 3855 unregister_blkdev(sd_major(i), "sd"); 3856 return err; 3857 } 3858 3859 /** 3860 * exit_sd - exit point for this driver (when it is a module). 3861 * 3862 * Note: this function unregisters this driver from the scsi mid-level. 3863 **/ 3864 static void __exit exit_sd(void) 3865 { 3866 int i; 3867 3868 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n")); 3869 3870 scsi_unregister_driver(&sd_template.gendrv); 3871 mempool_destroy(sd_cdb_pool); 3872 mempool_destroy(sd_page_pool); 3873 kmem_cache_destroy(sd_cdb_cache); 3874 3875 class_unregister(&sd_disk_class); 3876 3877 for (i = 0; i < SD_MAJORS; i++) 3878 unregister_blkdev(sd_major(i), "sd"); 3879 } 3880 3881 module_init(init_sd); 3882 module_exit(exit_sd); 3883 3884 void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr) 3885 { 3886 scsi_print_sense_hdr(sdkp->device, 3887 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr); 3888 } 3889 3890 void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result) 3891 { 3892 const char *hb_string = scsi_hostbyte_string(result); 3893 3894 if (hb_string) 3895 sd_printk(KERN_INFO, sdkp, 3896 "%s: Result: hostbyte=%s driverbyte=%s\n", msg, 3897 hb_string ? hb_string : "invalid", 3898 "DRIVER_OK"); 3899 else 3900 sd_printk(KERN_INFO, sdkp, 3901 "%s: Result: hostbyte=0x%02x driverbyte=%s\n", 3902 msg, host_byte(result), "DRIVER_OK"); 3903 } 3904