1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * sd.c Copyright (C) 1992 Drew Eckhardt 4 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale 5 * 6 * Linux scsi disk driver 7 * Initial versions: Drew Eckhardt 8 * Subsequent revisions: Eric Youngdale 9 * Modification history: 10 * - Drew Eckhardt <drew@colorado.edu> original 11 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 12 * outstanding request, and other enhancements. 13 * Support loadable low-level scsi drivers. 14 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 15 * eight major numbers. 16 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs. 17 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 18 * sd_init and cleanups. 19 * - Alex Davis <letmein@erols.com> Fix problem where partition info 20 * not being read in sd_open. Fix problem where removable media 21 * could be ejected after sd_open. 22 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x 23 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 24 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 25 * Support 32k/1M disks. 26 * 27 * Logging policy (needs CONFIG_SCSI_LOGGING defined): 28 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2 29 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1 30 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1 31 * - entering other commands: SCSI_LOG_HLQUEUE level 3 32 * Note: when the logging level is set by the user, it must be greater 33 * than the level indicated above to trigger output. 34 */ 35 36 #include <linux/module.h> 37 #include <linux/fs.h> 38 #include <linux/kernel.h> 39 #include <linux/mm.h> 40 #include <linux/bio.h> 41 #include <linux/genhd.h> 42 #include <linux/hdreg.h> 43 #include <linux/errno.h> 44 #include <linux/idr.h> 45 #include <linux/interrupt.h> 46 #include <linux/init.h> 47 #include <linux/blkdev.h> 48 #include <linux/blkpg.h> 49 #include <linux/blk-pm.h> 50 #include <linux/delay.h> 51 #include <linux/mutex.h> 52 #include <linux/string_helpers.h> 53 #include <linux/async.h> 54 #include <linux/slab.h> 55 #include <linux/sed-opal.h> 56 #include <linux/pm_runtime.h> 57 #include <linux/pr.h> 58 #include <linux/t10-pi.h> 59 #include <linux/uaccess.h> 60 #include <asm/unaligned.h> 61 62 #include <scsi/scsi.h> 63 #include <scsi/scsi_cmnd.h> 64 #include <scsi/scsi_dbg.h> 65 #include <scsi/scsi_device.h> 66 #include <scsi/scsi_driver.h> 67 #include <scsi/scsi_eh.h> 68 #include <scsi/scsi_host.h> 69 #include <scsi/scsi_ioctl.h> 70 #include <scsi/scsicam.h> 71 72 #include "sd.h" 73 #include "scsi_priv.h" 74 #include "scsi_logging.h" 75 76 MODULE_AUTHOR("Eric Youngdale"); 77 MODULE_DESCRIPTION("SCSI disk (sd) driver"); 78 MODULE_LICENSE("GPL"); 79 80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR); 81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR); 82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR); 83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR); 84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR); 85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR); 86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR); 87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR); 88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR); 89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR); 90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR); 91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR); 92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR); 93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR); 94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR); 95 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR); 96 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK); 97 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD); 98 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC); 99 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC); 100 101 #define SD_MINORS 16 102 103 static void sd_config_discard(struct scsi_disk *, unsigned int); 104 static void sd_config_write_same(struct scsi_disk *); 105 static int sd_revalidate_disk(struct gendisk *); 106 static void sd_unlock_native_capacity(struct gendisk *disk); 107 static int sd_probe(struct device *); 108 static int sd_remove(struct device *); 109 static void sd_shutdown(struct device *); 110 static int sd_suspend_system(struct device *); 111 static int sd_suspend_runtime(struct device *); 112 static int sd_resume(struct device *); 113 static void sd_rescan(struct device *); 114 static blk_status_t sd_init_command(struct scsi_cmnd *SCpnt); 115 static void sd_uninit_command(struct scsi_cmnd *SCpnt); 116 static int sd_done(struct scsi_cmnd *); 117 static void sd_eh_reset(struct scsi_cmnd *); 118 static int sd_eh_action(struct scsi_cmnd *, int); 119 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer); 120 static void scsi_disk_release(struct device *cdev); 121 122 static DEFINE_IDA(sd_index_ida); 123 124 /* This semaphore is used to mediate the 0->1 reference get in the 125 * face of object destruction (i.e. we can't allow a get on an 126 * object after last put) */ 127 static DEFINE_MUTEX(sd_ref_mutex); 128 129 static struct kmem_cache *sd_cdb_cache; 130 static mempool_t *sd_cdb_pool; 131 static mempool_t *sd_page_pool; 132 static struct lock_class_key sd_bio_compl_lkclass; 133 134 static const char *sd_cache_types[] = { 135 "write through", "none", "write back", 136 "write back, no read (daft)" 137 }; 138 139 static void sd_set_flush_flag(struct scsi_disk *sdkp) 140 { 141 bool wc = false, fua = false; 142 143 if (sdkp->WCE) { 144 wc = true; 145 if (sdkp->DPOFUA) 146 fua = true; 147 } 148 149 blk_queue_write_cache(sdkp->disk->queue, wc, fua); 150 } 151 152 static ssize_t 153 cache_type_store(struct device *dev, struct device_attribute *attr, 154 const char *buf, size_t count) 155 { 156 int ct, rcd, wce, sp; 157 struct scsi_disk *sdkp = to_scsi_disk(dev); 158 struct scsi_device *sdp = sdkp->device; 159 char buffer[64]; 160 char *buffer_data; 161 struct scsi_mode_data data; 162 struct scsi_sense_hdr sshdr; 163 static const char temp[] = "temporary "; 164 int len; 165 166 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 167 /* no cache control on RBC devices; theoretically they 168 * can do it, but there's probably so many exceptions 169 * it's not worth the risk */ 170 return -EINVAL; 171 172 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) { 173 buf += sizeof(temp) - 1; 174 sdkp->cache_override = 1; 175 } else { 176 sdkp->cache_override = 0; 177 } 178 179 ct = sysfs_match_string(sd_cache_types, buf); 180 if (ct < 0) 181 return -EINVAL; 182 183 rcd = ct & 0x01 ? 1 : 0; 184 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0; 185 186 if (sdkp->cache_override) { 187 sdkp->WCE = wce; 188 sdkp->RCD = rcd; 189 sd_set_flush_flag(sdkp); 190 return count; 191 } 192 193 if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT, 194 sdkp->max_retries, &data, NULL)) 195 return -EINVAL; 196 len = min_t(size_t, sizeof(buffer), data.length - data.header_length - 197 data.block_descriptor_length); 198 buffer_data = buffer + data.header_length + 199 data.block_descriptor_length; 200 buffer_data[2] &= ~0x05; 201 buffer_data[2] |= wce << 2 | rcd; 202 sp = buffer_data[0] & 0x80 ? 1 : 0; 203 buffer_data[0] &= ~0x80; 204 205 /* 206 * Ensure WP, DPOFUA, and RESERVED fields are cleared in 207 * received mode parameter buffer before doing MODE SELECT. 208 */ 209 data.device_specific = 0; 210 211 if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT, 212 sdkp->max_retries, &data, &sshdr)) { 213 if (scsi_sense_valid(&sshdr)) 214 sd_print_sense_hdr(sdkp, &sshdr); 215 return -EINVAL; 216 } 217 sd_revalidate_disk(sdkp->disk); 218 return count; 219 } 220 221 static ssize_t 222 manage_start_stop_show(struct device *dev, struct device_attribute *attr, 223 char *buf) 224 { 225 struct scsi_disk *sdkp = to_scsi_disk(dev); 226 struct scsi_device *sdp = sdkp->device; 227 228 return sprintf(buf, "%u\n", sdp->manage_start_stop); 229 } 230 231 static ssize_t 232 manage_start_stop_store(struct device *dev, struct device_attribute *attr, 233 const char *buf, size_t count) 234 { 235 struct scsi_disk *sdkp = to_scsi_disk(dev); 236 struct scsi_device *sdp = sdkp->device; 237 bool v; 238 239 if (!capable(CAP_SYS_ADMIN)) 240 return -EACCES; 241 242 if (kstrtobool(buf, &v)) 243 return -EINVAL; 244 245 sdp->manage_start_stop = v; 246 247 return count; 248 } 249 static DEVICE_ATTR_RW(manage_start_stop); 250 251 static ssize_t 252 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf) 253 { 254 struct scsi_disk *sdkp = to_scsi_disk(dev); 255 256 return sprintf(buf, "%u\n", sdkp->device->allow_restart); 257 } 258 259 static ssize_t 260 allow_restart_store(struct device *dev, struct device_attribute *attr, 261 const char *buf, size_t count) 262 { 263 bool v; 264 struct scsi_disk *sdkp = to_scsi_disk(dev); 265 struct scsi_device *sdp = sdkp->device; 266 267 if (!capable(CAP_SYS_ADMIN)) 268 return -EACCES; 269 270 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 271 return -EINVAL; 272 273 if (kstrtobool(buf, &v)) 274 return -EINVAL; 275 276 sdp->allow_restart = v; 277 278 return count; 279 } 280 static DEVICE_ATTR_RW(allow_restart); 281 282 static ssize_t 283 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf) 284 { 285 struct scsi_disk *sdkp = to_scsi_disk(dev); 286 int ct = sdkp->RCD + 2*sdkp->WCE; 287 288 return sprintf(buf, "%s\n", sd_cache_types[ct]); 289 } 290 static DEVICE_ATTR_RW(cache_type); 291 292 static ssize_t 293 FUA_show(struct device *dev, struct device_attribute *attr, char *buf) 294 { 295 struct scsi_disk *sdkp = to_scsi_disk(dev); 296 297 return sprintf(buf, "%u\n", sdkp->DPOFUA); 298 } 299 static DEVICE_ATTR_RO(FUA); 300 301 static ssize_t 302 protection_type_show(struct device *dev, struct device_attribute *attr, 303 char *buf) 304 { 305 struct scsi_disk *sdkp = to_scsi_disk(dev); 306 307 return sprintf(buf, "%u\n", sdkp->protection_type); 308 } 309 310 static ssize_t 311 protection_type_store(struct device *dev, struct device_attribute *attr, 312 const char *buf, size_t count) 313 { 314 struct scsi_disk *sdkp = to_scsi_disk(dev); 315 unsigned int val; 316 int err; 317 318 if (!capable(CAP_SYS_ADMIN)) 319 return -EACCES; 320 321 err = kstrtouint(buf, 10, &val); 322 323 if (err) 324 return err; 325 326 if (val <= T10_PI_TYPE3_PROTECTION) 327 sdkp->protection_type = val; 328 329 return count; 330 } 331 static DEVICE_ATTR_RW(protection_type); 332 333 static ssize_t 334 protection_mode_show(struct device *dev, struct device_attribute *attr, 335 char *buf) 336 { 337 struct scsi_disk *sdkp = to_scsi_disk(dev); 338 struct scsi_device *sdp = sdkp->device; 339 unsigned int dif, dix; 340 341 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type); 342 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type); 343 344 if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) { 345 dif = 0; 346 dix = 1; 347 } 348 349 if (!dif && !dix) 350 return sprintf(buf, "none\n"); 351 352 return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif); 353 } 354 static DEVICE_ATTR_RO(protection_mode); 355 356 static ssize_t 357 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf) 358 { 359 struct scsi_disk *sdkp = to_scsi_disk(dev); 360 361 return sprintf(buf, "%u\n", sdkp->ATO); 362 } 363 static DEVICE_ATTR_RO(app_tag_own); 364 365 static ssize_t 366 thin_provisioning_show(struct device *dev, struct device_attribute *attr, 367 char *buf) 368 { 369 struct scsi_disk *sdkp = to_scsi_disk(dev); 370 371 return sprintf(buf, "%u\n", sdkp->lbpme); 372 } 373 static DEVICE_ATTR_RO(thin_provisioning); 374 375 /* sysfs_match_string() requires dense arrays */ 376 static const char *lbp_mode[] = { 377 [SD_LBP_FULL] = "full", 378 [SD_LBP_UNMAP] = "unmap", 379 [SD_LBP_WS16] = "writesame_16", 380 [SD_LBP_WS10] = "writesame_10", 381 [SD_LBP_ZERO] = "writesame_zero", 382 [SD_LBP_DISABLE] = "disabled", 383 }; 384 385 static ssize_t 386 provisioning_mode_show(struct device *dev, struct device_attribute *attr, 387 char *buf) 388 { 389 struct scsi_disk *sdkp = to_scsi_disk(dev); 390 391 return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]); 392 } 393 394 static ssize_t 395 provisioning_mode_store(struct device *dev, struct device_attribute *attr, 396 const char *buf, size_t count) 397 { 398 struct scsi_disk *sdkp = to_scsi_disk(dev); 399 struct scsi_device *sdp = sdkp->device; 400 int mode; 401 402 if (!capable(CAP_SYS_ADMIN)) 403 return -EACCES; 404 405 if (sd_is_zoned(sdkp)) { 406 sd_config_discard(sdkp, SD_LBP_DISABLE); 407 return count; 408 } 409 410 if (sdp->type != TYPE_DISK) 411 return -EINVAL; 412 413 mode = sysfs_match_string(lbp_mode, buf); 414 if (mode < 0) 415 return -EINVAL; 416 417 sd_config_discard(sdkp, mode); 418 419 return count; 420 } 421 static DEVICE_ATTR_RW(provisioning_mode); 422 423 /* sysfs_match_string() requires dense arrays */ 424 static const char *zeroing_mode[] = { 425 [SD_ZERO_WRITE] = "write", 426 [SD_ZERO_WS] = "writesame", 427 [SD_ZERO_WS16_UNMAP] = "writesame_16_unmap", 428 [SD_ZERO_WS10_UNMAP] = "writesame_10_unmap", 429 }; 430 431 static ssize_t 432 zeroing_mode_show(struct device *dev, struct device_attribute *attr, 433 char *buf) 434 { 435 struct scsi_disk *sdkp = to_scsi_disk(dev); 436 437 return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]); 438 } 439 440 static ssize_t 441 zeroing_mode_store(struct device *dev, struct device_attribute *attr, 442 const char *buf, size_t count) 443 { 444 struct scsi_disk *sdkp = to_scsi_disk(dev); 445 int mode; 446 447 if (!capable(CAP_SYS_ADMIN)) 448 return -EACCES; 449 450 mode = sysfs_match_string(zeroing_mode, buf); 451 if (mode < 0) 452 return -EINVAL; 453 454 sdkp->zeroing_mode = mode; 455 456 return count; 457 } 458 static DEVICE_ATTR_RW(zeroing_mode); 459 460 static ssize_t 461 max_medium_access_timeouts_show(struct device *dev, 462 struct device_attribute *attr, char *buf) 463 { 464 struct scsi_disk *sdkp = to_scsi_disk(dev); 465 466 return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts); 467 } 468 469 static ssize_t 470 max_medium_access_timeouts_store(struct device *dev, 471 struct device_attribute *attr, const char *buf, 472 size_t count) 473 { 474 struct scsi_disk *sdkp = to_scsi_disk(dev); 475 int err; 476 477 if (!capable(CAP_SYS_ADMIN)) 478 return -EACCES; 479 480 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts); 481 482 return err ? err : count; 483 } 484 static DEVICE_ATTR_RW(max_medium_access_timeouts); 485 486 static ssize_t 487 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr, 488 char *buf) 489 { 490 struct scsi_disk *sdkp = to_scsi_disk(dev); 491 492 return sprintf(buf, "%u\n", sdkp->max_ws_blocks); 493 } 494 495 static ssize_t 496 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr, 497 const char *buf, size_t count) 498 { 499 struct scsi_disk *sdkp = to_scsi_disk(dev); 500 struct scsi_device *sdp = sdkp->device; 501 unsigned long max; 502 int err; 503 504 if (!capable(CAP_SYS_ADMIN)) 505 return -EACCES; 506 507 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 508 return -EINVAL; 509 510 err = kstrtoul(buf, 10, &max); 511 512 if (err) 513 return err; 514 515 if (max == 0) 516 sdp->no_write_same = 1; 517 else if (max <= SD_MAX_WS16_BLOCKS) { 518 sdp->no_write_same = 0; 519 sdkp->max_ws_blocks = max; 520 } 521 522 sd_config_write_same(sdkp); 523 524 return count; 525 } 526 static DEVICE_ATTR_RW(max_write_same_blocks); 527 528 static ssize_t 529 zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf) 530 { 531 struct scsi_disk *sdkp = to_scsi_disk(dev); 532 533 if (sdkp->device->type == TYPE_ZBC) 534 return sprintf(buf, "host-managed\n"); 535 if (sdkp->zoned == 1) 536 return sprintf(buf, "host-aware\n"); 537 if (sdkp->zoned == 2) 538 return sprintf(buf, "drive-managed\n"); 539 return sprintf(buf, "none\n"); 540 } 541 static DEVICE_ATTR_RO(zoned_cap); 542 543 static ssize_t 544 max_retries_store(struct device *dev, struct device_attribute *attr, 545 const char *buf, size_t count) 546 { 547 struct scsi_disk *sdkp = to_scsi_disk(dev); 548 struct scsi_device *sdev = sdkp->device; 549 int retries, err; 550 551 err = kstrtoint(buf, 10, &retries); 552 if (err) 553 return err; 554 555 if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) { 556 sdkp->max_retries = retries; 557 return count; 558 } 559 560 sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n", 561 SD_MAX_RETRIES); 562 return -EINVAL; 563 } 564 565 static ssize_t 566 max_retries_show(struct device *dev, struct device_attribute *attr, 567 char *buf) 568 { 569 struct scsi_disk *sdkp = to_scsi_disk(dev); 570 571 return sprintf(buf, "%d\n", sdkp->max_retries); 572 } 573 574 static DEVICE_ATTR_RW(max_retries); 575 576 static struct attribute *sd_disk_attrs[] = { 577 &dev_attr_cache_type.attr, 578 &dev_attr_FUA.attr, 579 &dev_attr_allow_restart.attr, 580 &dev_attr_manage_start_stop.attr, 581 &dev_attr_protection_type.attr, 582 &dev_attr_protection_mode.attr, 583 &dev_attr_app_tag_own.attr, 584 &dev_attr_thin_provisioning.attr, 585 &dev_attr_provisioning_mode.attr, 586 &dev_attr_zeroing_mode.attr, 587 &dev_attr_max_write_same_blocks.attr, 588 &dev_attr_max_medium_access_timeouts.attr, 589 &dev_attr_zoned_cap.attr, 590 &dev_attr_max_retries.attr, 591 NULL, 592 }; 593 ATTRIBUTE_GROUPS(sd_disk); 594 595 static struct class sd_disk_class = { 596 .name = "scsi_disk", 597 .owner = THIS_MODULE, 598 .dev_release = scsi_disk_release, 599 .dev_groups = sd_disk_groups, 600 }; 601 602 static const struct dev_pm_ops sd_pm_ops = { 603 .suspend = sd_suspend_system, 604 .resume = sd_resume, 605 .poweroff = sd_suspend_system, 606 .restore = sd_resume, 607 .runtime_suspend = sd_suspend_runtime, 608 .runtime_resume = sd_resume, 609 }; 610 611 static struct scsi_driver sd_template = { 612 .gendrv = { 613 .name = "sd", 614 .owner = THIS_MODULE, 615 .probe = sd_probe, 616 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 617 .remove = sd_remove, 618 .shutdown = sd_shutdown, 619 .pm = &sd_pm_ops, 620 }, 621 .rescan = sd_rescan, 622 .init_command = sd_init_command, 623 .uninit_command = sd_uninit_command, 624 .done = sd_done, 625 .eh_action = sd_eh_action, 626 .eh_reset = sd_eh_reset, 627 }; 628 629 /* 630 * Don't request a new module, as that could deadlock in multipath 631 * environment. 632 */ 633 static void sd_default_probe(dev_t devt) 634 { 635 } 636 637 /* 638 * Device no to disk mapping: 639 * 640 * major disc2 disc p1 641 * |............|.............|....|....| <- dev_t 642 * 31 20 19 8 7 4 3 0 643 * 644 * Inside a major, we have 16k disks, however mapped non- 645 * contiguously. The first 16 disks are for major0, the next 646 * ones with major1, ... Disk 256 is for major0 again, disk 272 647 * for major1, ... 648 * As we stay compatible with our numbering scheme, we can reuse 649 * the well-know SCSI majors 8, 65--71, 136--143. 650 */ 651 static int sd_major(int major_idx) 652 { 653 switch (major_idx) { 654 case 0: 655 return SCSI_DISK0_MAJOR; 656 case 1 ... 7: 657 return SCSI_DISK1_MAJOR + major_idx - 1; 658 case 8 ... 15: 659 return SCSI_DISK8_MAJOR + major_idx - 8; 660 default: 661 BUG(); 662 return 0; /* shut up gcc */ 663 } 664 } 665 666 static struct scsi_disk *scsi_disk_get(struct gendisk *disk) 667 { 668 struct scsi_disk *sdkp = NULL; 669 670 mutex_lock(&sd_ref_mutex); 671 672 if (disk->private_data) { 673 sdkp = scsi_disk(disk); 674 if (scsi_device_get(sdkp->device) == 0) 675 get_device(&sdkp->dev); 676 else 677 sdkp = NULL; 678 } 679 mutex_unlock(&sd_ref_mutex); 680 return sdkp; 681 } 682 683 static void scsi_disk_put(struct scsi_disk *sdkp) 684 { 685 struct scsi_device *sdev = sdkp->device; 686 687 mutex_lock(&sd_ref_mutex); 688 put_device(&sdkp->dev); 689 scsi_device_put(sdev); 690 mutex_unlock(&sd_ref_mutex); 691 } 692 693 #ifdef CONFIG_BLK_SED_OPAL 694 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, 695 size_t len, bool send) 696 { 697 struct scsi_disk *sdkp = data; 698 struct scsi_device *sdev = sdkp->device; 699 u8 cdb[12] = { 0, }; 700 int ret; 701 702 cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN; 703 cdb[1] = secp; 704 put_unaligned_be16(spsp, &cdb[2]); 705 put_unaligned_be32(len, &cdb[6]); 706 707 ret = scsi_execute(sdev, cdb, send ? DMA_TO_DEVICE : DMA_FROM_DEVICE, 708 buffer, len, NULL, NULL, SD_TIMEOUT, sdkp->max_retries, 0, 709 RQF_PM, NULL); 710 return ret <= 0 ? ret : -EIO; 711 } 712 #endif /* CONFIG_BLK_SED_OPAL */ 713 714 /* 715 * Look up the DIX operation based on whether the command is read or 716 * write and whether dix and dif are enabled. 717 */ 718 static unsigned int sd_prot_op(bool write, bool dix, bool dif) 719 { 720 /* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */ 721 static const unsigned int ops[] = { /* wrt dix dif */ 722 SCSI_PROT_NORMAL, /* 0 0 0 */ 723 SCSI_PROT_READ_STRIP, /* 0 0 1 */ 724 SCSI_PROT_READ_INSERT, /* 0 1 0 */ 725 SCSI_PROT_READ_PASS, /* 0 1 1 */ 726 SCSI_PROT_NORMAL, /* 1 0 0 */ 727 SCSI_PROT_WRITE_INSERT, /* 1 0 1 */ 728 SCSI_PROT_WRITE_STRIP, /* 1 1 0 */ 729 SCSI_PROT_WRITE_PASS, /* 1 1 1 */ 730 }; 731 732 return ops[write << 2 | dix << 1 | dif]; 733 } 734 735 /* 736 * Returns a mask of the protection flags that are valid for a given DIX 737 * operation. 738 */ 739 static unsigned int sd_prot_flag_mask(unsigned int prot_op) 740 { 741 static const unsigned int flag_mask[] = { 742 [SCSI_PROT_NORMAL] = 0, 743 744 [SCSI_PROT_READ_STRIP] = SCSI_PROT_TRANSFER_PI | 745 SCSI_PROT_GUARD_CHECK | 746 SCSI_PROT_REF_CHECK | 747 SCSI_PROT_REF_INCREMENT, 748 749 [SCSI_PROT_READ_INSERT] = SCSI_PROT_REF_INCREMENT | 750 SCSI_PROT_IP_CHECKSUM, 751 752 [SCSI_PROT_READ_PASS] = SCSI_PROT_TRANSFER_PI | 753 SCSI_PROT_GUARD_CHECK | 754 SCSI_PROT_REF_CHECK | 755 SCSI_PROT_REF_INCREMENT | 756 SCSI_PROT_IP_CHECKSUM, 757 758 [SCSI_PROT_WRITE_INSERT] = SCSI_PROT_TRANSFER_PI | 759 SCSI_PROT_REF_INCREMENT, 760 761 [SCSI_PROT_WRITE_STRIP] = SCSI_PROT_GUARD_CHECK | 762 SCSI_PROT_REF_CHECK | 763 SCSI_PROT_REF_INCREMENT | 764 SCSI_PROT_IP_CHECKSUM, 765 766 [SCSI_PROT_WRITE_PASS] = SCSI_PROT_TRANSFER_PI | 767 SCSI_PROT_GUARD_CHECK | 768 SCSI_PROT_REF_CHECK | 769 SCSI_PROT_REF_INCREMENT | 770 SCSI_PROT_IP_CHECKSUM, 771 }; 772 773 return flag_mask[prot_op]; 774 } 775 776 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd, 777 unsigned int dix, unsigned int dif) 778 { 779 struct bio *bio = scmd->request->bio; 780 unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif); 781 unsigned int protect = 0; 782 783 if (dix) { /* DIX Type 0, 1, 2, 3 */ 784 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM)) 785 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM; 786 787 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 788 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK; 789 } 790 791 if (dif != T10_PI_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */ 792 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT; 793 794 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 795 scmd->prot_flags |= SCSI_PROT_REF_CHECK; 796 } 797 798 if (dif) { /* DIX/DIF Type 1, 2, 3 */ 799 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI; 800 801 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK)) 802 protect = 3 << 5; /* Disable target PI checking */ 803 else 804 protect = 1 << 5; /* Enable target PI checking */ 805 } 806 807 scsi_set_prot_op(scmd, prot_op); 808 scsi_set_prot_type(scmd, dif); 809 scmd->prot_flags &= sd_prot_flag_mask(prot_op); 810 811 return protect; 812 } 813 814 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode) 815 { 816 struct request_queue *q = sdkp->disk->queue; 817 unsigned int logical_block_size = sdkp->device->sector_size; 818 unsigned int max_blocks = 0; 819 820 q->limits.discard_alignment = 821 sdkp->unmap_alignment * logical_block_size; 822 q->limits.discard_granularity = 823 max(sdkp->physical_block_size, 824 sdkp->unmap_granularity * logical_block_size); 825 sdkp->provisioning_mode = mode; 826 827 switch (mode) { 828 829 case SD_LBP_FULL: 830 case SD_LBP_DISABLE: 831 blk_queue_max_discard_sectors(q, 0); 832 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q); 833 return; 834 835 case SD_LBP_UNMAP: 836 max_blocks = min_not_zero(sdkp->max_unmap_blocks, 837 (u32)SD_MAX_WS16_BLOCKS); 838 break; 839 840 case SD_LBP_WS16: 841 if (sdkp->device->unmap_limit_for_ws) 842 max_blocks = sdkp->max_unmap_blocks; 843 else 844 max_blocks = sdkp->max_ws_blocks; 845 846 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS); 847 break; 848 849 case SD_LBP_WS10: 850 if (sdkp->device->unmap_limit_for_ws) 851 max_blocks = sdkp->max_unmap_blocks; 852 else 853 max_blocks = sdkp->max_ws_blocks; 854 855 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS); 856 break; 857 858 case SD_LBP_ZERO: 859 max_blocks = min_not_zero(sdkp->max_ws_blocks, 860 (u32)SD_MAX_WS10_BLOCKS); 861 break; 862 } 863 864 blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9)); 865 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q); 866 } 867 868 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd) 869 { 870 struct scsi_device *sdp = cmd->device; 871 struct request *rq = cmd->request; 872 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 873 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 874 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 875 unsigned int data_len = 24; 876 char *buf; 877 878 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 879 if (!rq->special_vec.bv_page) 880 return BLK_STS_RESOURCE; 881 clear_highpage(rq->special_vec.bv_page); 882 rq->special_vec.bv_offset = 0; 883 rq->special_vec.bv_len = data_len; 884 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 885 886 cmd->cmd_len = 10; 887 cmd->cmnd[0] = UNMAP; 888 cmd->cmnd[8] = 24; 889 890 buf = bvec_virt(&rq->special_vec); 891 put_unaligned_be16(6 + 16, &buf[0]); 892 put_unaligned_be16(16, &buf[2]); 893 put_unaligned_be64(lba, &buf[8]); 894 put_unaligned_be32(nr_blocks, &buf[16]); 895 896 cmd->allowed = sdkp->max_retries; 897 cmd->transfersize = data_len; 898 rq->timeout = SD_TIMEOUT; 899 900 return scsi_alloc_sgtables(cmd); 901 } 902 903 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd, 904 bool unmap) 905 { 906 struct scsi_device *sdp = cmd->device; 907 struct request *rq = cmd->request; 908 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 909 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 910 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 911 u32 data_len = sdp->sector_size; 912 913 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 914 if (!rq->special_vec.bv_page) 915 return BLK_STS_RESOURCE; 916 clear_highpage(rq->special_vec.bv_page); 917 rq->special_vec.bv_offset = 0; 918 rq->special_vec.bv_len = data_len; 919 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 920 921 cmd->cmd_len = 16; 922 cmd->cmnd[0] = WRITE_SAME_16; 923 if (unmap) 924 cmd->cmnd[1] = 0x8; /* UNMAP */ 925 put_unaligned_be64(lba, &cmd->cmnd[2]); 926 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 927 928 cmd->allowed = sdkp->max_retries; 929 cmd->transfersize = data_len; 930 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 931 932 return scsi_alloc_sgtables(cmd); 933 } 934 935 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd, 936 bool unmap) 937 { 938 struct scsi_device *sdp = cmd->device; 939 struct request *rq = cmd->request; 940 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 941 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 942 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 943 u32 data_len = sdp->sector_size; 944 945 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 946 if (!rq->special_vec.bv_page) 947 return BLK_STS_RESOURCE; 948 clear_highpage(rq->special_vec.bv_page); 949 rq->special_vec.bv_offset = 0; 950 rq->special_vec.bv_len = data_len; 951 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 952 953 cmd->cmd_len = 10; 954 cmd->cmnd[0] = WRITE_SAME; 955 if (unmap) 956 cmd->cmnd[1] = 0x8; /* UNMAP */ 957 put_unaligned_be32(lba, &cmd->cmnd[2]); 958 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 959 960 cmd->allowed = sdkp->max_retries; 961 cmd->transfersize = data_len; 962 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 963 964 return scsi_alloc_sgtables(cmd); 965 } 966 967 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd) 968 { 969 struct request *rq = cmd->request; 970 struct scsi_device *sdp = cmd->device; 971 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 972 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 973 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 974 975 if (!(rq->cmd_flags & REQ_NOUNMAP)) { 976 switch (sdkp->zeroing_mode) { 977 case SD_ZERO_WS16_UNMAP: 978 return sd_setup_write_same16_cmnd(cmd, true); 979 case SD_ZERO_WS10_UNMAP: 980 return sd_setup_write_same10_cmnd(cmd, true); 981 } 982 } 983 984 if (sdp->no_write_same) { 985 rq->rq_flags |= RQF_QUIET; 986 return BLK_STS_TARGET; 987 } 988 989 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) 990 return sd_setup_write_same16_cmnd(cmd, false); 991 992 return sd_setup_write_same10_cmnd(cmd, false); 993 } 994 995 static void sd_config_write_same(struct scsi_disk *sdkp) 996 { 997 struct request_queue *q = sdkp->disk->queue; 998 unsigned int logical_block_size = sdkp->device->sector_size; 999 1000 if (sdkp->device->no_write_same) { 1001 sdkp->max_ws_blocks = 0; 1002 goto out; 1003 } 1004 1005 /* Some devices can not handle block counts above 0xffff despite 1006 * supporting WRITE SAME(16). Consequently we default to 64k 1007 * blocks per I/O unless the device explicitly advertises a 1008 * bigger limit. 1009 */ 1010 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS) 1011 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 1012 (u32)SD_MAX_WS16_BLOCKS); 1013 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes) 1014 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 1015 (u32)SD_MAX_WS10_BLOCKS); 1016 else { 1017 sdkp->device->no_write_same = 1; 1018 sdkp->max_ws_blocks = 0; 1019 } 1020 1021 if (sdkp->lbprz && sdkp->lbpws) 1022 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP; 1023 else if (sdkp->lbprz && sdkp->lbpws10) 1024 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP; 1025 else if (sdkp->max_ws_blocks) 1026 sdkp->zeroing_mode = SD_ZERO_WS; 1027 else 1028 sdkp->zeroing_mode = SD_ZERO_WRITE; 1029 1030 if (sdkp->max_ws_blocks && 1031 sdkp->physical_block_size > logical_block_size) { 1032 /* 1033 * Reporting a maximum number of blocks that is not aligned 1034 * on the device physical size would cause a large write same 1035 * request to be split into physically unaligned chunks by 1036 * __blkdev_issue_write_zeroes() and __blkdev_issue_write_same() 1037 * even if the caller of these functions took care to align the 1038 * large request. So make sure the maximum reported is aligned 1039 * to the device physical block size. This is only an optional 1040 * optimization for regular disks, but this is mandatory to 1041 * avoid failure of large write same requests directed at 1042 * sequential write required zones of host-managed ZBC disks. 1043 */ 1044 sdkp->max_ws_blocks = 1045 round_down(sdkp->max_ws_blocks, 1046 bytes_to_logical(sdkp->device, 1047 sdkp->physical_block_size)); 1048 } 1049 1050 out: 1051 blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks * 1052 (logical_block_size >> 9)); 1053 blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks * 1054 (logical_block_size >> 9)); 1055 } 1056 1057 /** 1058 * sd_setup_write_same_cmnd - write the same data to multiple blocks 1059 * @cmd: command to prepare 1060 * 1061 * Will set up either WRITE SAME(10) or WRITE SAME(16) depending on 1062 * the preference indicated by the target device. 1063 **/ 1064 static blk_status_t sd_setup_write_same_cmnd(struct scsi_cmnd *cmd) 1065 { 1066 struct request *rq = cmd->request; 1067 struct scsi_device *sdp = cmd->device; 1068 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 1069 struct bio *bio = rq->bio; 1070 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 1071 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 1072 blk_status_t ret; 1073 1074 if (sdkp->device->no_write_same) 1075 return BLK_STS_TARGET; 1076 1077 BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size); 1078 1079 rq->timeout = SD_WRITE_SAME_TIMEOUT; 1080 1081 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) { 1082 cmd->cmd_len = 16; 1083 cmd->cmnd[0] = WRITE_SAME_16; 1084 put_unaligned_be64(lba, &cmd->cmnd[2]); 1085 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 1086 } else { 1087 cmd->cmd_len = 10; 1088 cmd->cmnd[0] = WRITE_SAME; 1089 put_unaligned_be32(lba, &cmd->cmnd[2]); 1090 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 1091 } 1092 1093 cmd->transfersize = sdp->sector_size; 1094 cmd->allowed = sdkp->max_retries; 1095 1096 /* 1097 * For WRITE SAME the data transferred via the DATA OUT buffer is 1098 * different from the amount of data actually written to the target. 1099 * 1100 * We set up __data_len to the amount of data transferred via the 1101 * DATA OUT buffer so that blk_rq_map_sg sets up the proper S/G list 1102 * to transfer a single sector of data first, but then reset it to 1103 * the amount of data to be written right after so that the I/O path 1104 * knows how much to actually write. 1105 */ 1106 rq->__data_len = sdp->sector_size; 1107 ret = scsi_alloc_sgtables(cmd); 1108 rq->__data_len = blk_rq_bytes(rq); 1109 1110 return ret; 1111 } 1112 1113 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd) 1114 { 1115 struct request *rq = cmd->request; 1116 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 1117 1118 /* flush requests don't perform I/O, zero the S/G table */ 1119 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1120 1121 cmd->cmnd[0] = SYNCHRONIZE_CACHE; 1122 cmd->cmd_len = 10; 1123 cmd->transfersize = 0; 1124 cmd->allowed = sdkp->max_retries; 1125 1126 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER; 1127 return BLK_STS_OK; 1128 } 1129 1130 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write, 1131 sector_t lba, unsigned int nr_blocks, 1132 unsigned char flags) 1133 { 1134 cmd->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC); 1135 if (unlikely(cmd->cmnd == NULL)) 1136 return BLK_STS_RESOURCE; 1137 1138 cmd->cmd_len = SD_EXT_CDB_SIZE; 1139 memset(cmd->cmnd, 0, cmd->cmd_len); 1140 1141 cmd->cmnd[0] = VARIABLE_LENGTH_CMD; 1142 cmd->cmnd[7] = 0x18; /* Additional CDB len */ 1143 cmd->cmnd[9] = write ? WRITE_32 : READ_32; 1144 cmd->cmnd[10] = flags; 1145 put_unaligned_be64(lba, &cmd->cmnd[12]); 1146 put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */ 1147 put_unaligned_be32(nr_blocks, &cmd->cmnd[28]); 1148 1149 return BLK_STS_OK; 1150 } 1151 1152 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write, 1153 sector_t lba, unsigned int nr_blocks, 1154 unsigned char flags) 1155 { 1156 cmd->cmd_len = 16; 1157 cmd->cmnd[0] = write ? WRITE_16 : READ_16; 1158 cmd->cmnd[1] = flags; 1159 cmd->cmnd[14] = 0; 1160 cmd->cmnd[15] = 0; 1161 put_unaligned_be64(lba, &cmd->cmnd[2]); 1162 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 1163 1164 return BLK_STS_OK; 1165 } 1166 1167 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write, 1168 sector_t lba, unsigned int nr_blocks, 1169 unsigned char flags) 1170 { 1171 cmd->cmd_len = 10; 1172 cmd->cmnd[0] = write ? WRITE_10 : READ_10; 1173 cmd->cmnd[1] = flags; 1174 cmd->cmnd[6] = 0; 1175 cmd->cmnd[9] = 0; 1176 put_unaligned_be32(lba, &cmd->cmnd[2]); 1177 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 1178 1179 return BLK_STS_OK; 1180 } 1181 1182 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write, 1183 sector_t lba, unsigned int nr_blocks, 1184 unsigned char flags) 1185 { 1186 /* Avoid that 0 blocks gets translated into 256 blocks. */ 1187 if (WARN_ON_ONCE(nr_blocks == 0)) 1188 return BLK_STS_IOERR; 1189 1190 if (unlikely(flags & 0x8)) { 1191 /* 1192 * This happens only if this drive failed 10byte rw 1193 * command with ILLEGAL_REQUEST during operation and 1194 * thus turned off use_10_for_rw. 1195 */ 1196 scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n"); 1197 return BLK_STS_IOERR; 1198 } 1199 1200 cmd->cmd_len = 6; 1201 cmd->cmnd[0] = write ? WRITE_6 : READ_6; 1202 cmd->cmnd[1] = (lba >> 16) & 0x1f; 1203 cmd->cmnd[2] = (lba >> 8) & 0xff; 1204 cmd->cmnd[3] = lba & 0xff; 1205 cmd->cmnd[4] = nr_blocks; 1206 cmd->cmnd[5] = 0; 1207 1208 return BLK_STS_OK; 1209 } 1210 1211 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd) 1212 { 1213 struct request *rq = cmd->request; 1214 struct scsi_device *sdp = cmd->device; 1215 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 1216 sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 1217 sector_t threshold; 1218 unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 1219 unsigned int mask = logical_to_sectors(sdp, 1) - 1; 1220 bool write = rq_data_dir(rq) == WRITE; 1221 unsigned char protect, fua; 1222 blk_status_t ret; 1223 unsigned int dif; 1224 bool dix; 1225 1226 ret = scsi_alloc_sgtables(cmd); 1227 if (ret != BLK_STS_OK) 1228 return ret; 1229 1230 ret = BLK_STS_IOERR; 1231 if (!scsi_device_online(sdp) || sdp->changed) { 1232 scmd_printk(KERN_ERR, cmd, "device offline or changed\n"); 1233 goto fail; 1234 } 1235 1236 if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->rq_disk)) { 1237 scmd_printk(KERN_ERR, cmd, "access beyond end of device\n"); 1238 goto fail; 1239 } 1240 1241 if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) { 1242 scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n"); 1243 goto fail; 1244 } 1245 1246 /* 1247 * Some SD card readers can't handle accesses which touch the 1248 * last one or two logical blocks. Split accesses as needed. 1249 */ 1250 threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS; 1251 1252 if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) { 1253 if (lba < threshold) { 1254 /* Access up to the threshold but not beyond */ 1255 nr_blocks = threshold - lba; 1256 } else { 1257 /* Access only a single logical block */ 1258 nr_blocks = 1; 1259 } 1260 } 1261 1262 if (req_op(rq) == REQ_OP_ZONE_APPEND) { 1263 ret = sd_zbc_prepare_zone_append(cmd, &lba, nr_blocks); 1264 if (ret) 1265 goto fail; 1266 } 1267 1268 fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0; 1269 dix = scsi_prot_sg_count(cmd); 1270 dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type); 1271 1272 if (dif || dix) 1273 protect = sd_setup_protect_cmnd(cmd, dix, dif); 1274 else 1275 protect = 0; 1276 1277 if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) { 1278 ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks, 1279 protect | fua); 1280 } else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) { 1281 ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks, 1282 protect | fua); 1283 } else if ((nr_blocks > 0xff) || (lba > 0x1fffff) || 1284 sdp->use_10_for_rw || protect) { 1285 ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks, 1286 protect | fua); 1287 } else { 1288 ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks, 1289 protect | fua); 1290 } 1291 1292 if (unlikely(ret != BLK_STS_OK)) 1293 goto fail; 1294 1295 /* 1296 * We shouldn't disconnect in the middle of a sector, so with a dumb 1297 * host adapter, it's safe to assume that we can at least transfer 1298 * this many bytes between each connect / disconnect. 1299 */ 1300 cmd->transfersize = sdp->sector_size; 1301 cmd->underflow = nr_blocks << 9; 1302 cmd->allowed = sdkp->max_retries; 1303 cmd->sdb.length = nr_blocks * sdp->sector_size; 1304 1305 SCSI_LOG_HLQUEUE(1, 1306 scmd_printk(KERN_INFO, cmd, 1307 "%s: block=%llu, count=%d\n", __func__, 1308 (unsigned long long)blk_rq_pos(rq), 1309 blk_rq_sectors(rq))); 1310 SCSI_LOG_HLQUEUE(2, 1311 scmd_printk(KERN_INFO, cmd, 1312 "%s %d/%u 512 byte blocks.\n", 1313 write ? "writing" : "reading", nr_blocks, 1314 blk_rq_sectors(rq))); 1315 1316 /* 1317 * This indicates that the command is ready from our end to be queued. 1318 */ 1319 return BLK_STS_OK; 1320 fail: 1321 scsi_free_sgtables(cmd); 1322 return ret; 1323 } 1324 1325 static blk_status_t sd_init_command(struct scsi_cmnd *cmd) 1326 { 1327 struct request *rq = cmd->request; 1328 1329 switch (req_op(rq)) { 1330 case REQ_OP_DISCARD: 1331 switch (scsi_disk(rq->rq_disk)->provisioning_mode) { 1332 case SD_LBP_UNMAP: 1333 return sd_setup_unmap_cmnd(cmd); 1334 case SD_LBP_WS16: 1335 return sd_setup_write_same16_cmnd(cmd, true); 1336 case SD_LBP_WS10: 1337 return sd_setup_write_same10_cmnd(cmd, true); 1338 case SD_LBP_ZERO: 1339 return sd_setup_write_same10_cmnd(cmd, false); 1340 default: 1341 return BLK_STS_TARGET; 1342 } 1343 case REQ_OP_WRITE_ZEROES: 1344 return sd_setup_write_zeroes_cmnd(cmd); 1345 case REQ_OP_WRITE_SAME: 1346 return sd_setup_write_same_cmnd(cmd); 1347 case REQ_OP_FLUSH: 1348 return sd_setup_flush_cmnd(cmd); 1349 case REQ_OP_READ: 1350 case REQ_OP_WRITE: 1351 case REQ_OP_ZONE_APPEND: 1352 return sd_setup_read_write_cmnd(cmd); 1353 case REQ_OP_ZONE_RESET: 1354 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER, 1355 false); 1356 case REQ_OP_ZONE_RESET_ALL: 1357 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER, 1358 true); 1359 case REQ_OP_ZONE_OPEN: 1360 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false); 1361 case REQ_OP_ZONE_CLOSE: 1362 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false); 1363 case REQ_OP_ZONE_FINISH: 1364 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false); 1365 default: 1366 WARN_ON_ONCE(1); 1367 return BLK_STS_NOTSUPP; 1368 } 1369 } 1370 1371 static void sd_uninit_command(struct scsi_cmnd *SCpnt) 1372 { 1373 struct request *rq = SCpnt->request; 1374 u8 *cmnd; 1375 1376 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1377 mempool_free(rq->special_vec.bv_page, sd_page_pool); 1378 1379 if (SCpnt->cmnd != scsi_req(rq)->cmd) { 1380 cmnd = SCpnt->cmnd; 1381 SCpnt->cmnd = NULL; 1382 SCpnt->cmd_len = 0; 1383 mempool_free(cmnd, sd_cdb_pool); 1384 } 1385 } 1386 1387 static bool sd_need_revalidate(struct block_device *bdev, 1388 struct scsi_disk *sdkp) 1389 { 1390 if (sdkp->device->removable || sdkp->write_prot) { 1391 if (bdev_check_media_change(bdev)) 1392 return true; 1393 } 1394 1395 /* 1396 * Force a full rescan after ioctl(BLKRRPART). While the disk state has 1397 * nothing to do with partitions, BLKRRPART is used to force a full 1398 * revalidate after things like a format for historical reasons. 1399 */ 1400 return test_bit(GD_NEED_PART_SCAN, &bdev->bd_disk->state); 1401 } 1402 1403 /** 1404 * sd_open - open a scsi disk device 1405 * @bdev: Block device of the scsi disk to open 1406 * @mode: FMODE_* mask 1407 * 1408 * Returns 0 if successful. Returns a negated errno value in case 1409 * of error. 1410 * 1411 * Note: This can be called from a user context (e.g. fsck(1) ) 1412 * or from within the kernel (e.g. as a result of a mount(1) ). 1413 * In the latter case @inode and @filp carry an abridged amount 1414 * of information as noted above. 1415 * 1416 * Locking: called with bdev->bd_disk->open_mutex held. 1417 **/ 1418 static int sd_open(struct block_device *bdev, fmode_t mode) 1419 { 1420 struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk); 1421 struct scsi_device *sdev; 1422 int retval; 1423 1424 if (!sdkp) 1425 return -ENXIO; 1426 1427 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n")); 1428 1429 sdev = sdkp->device; 1430 1431 /* 1432 * If the device is in error recovery, wait until it is done. 1433 * If the device is offline, then disallow any access to it. 1434 */ 1435 retval = -ENXIO; 1436 if (!scsi_block_when_processing_errors(sdev)) 1437 goto error_out; 1438 1439 if (sd_need_revalidate(bdev, sdkp)) 1440 sd_revalidate_disk(bdev->bd_disk); 1441 1442 /* 1443 * If the drive is empty, just let the open fail. 1444 */ 1445 retval = -ENOMEDIUM; 1446 if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY)) 1447 goto error_out; 1448 1449 /* 1450 * If the device has the write protect tab set, have the open fail 1451 * if the user expects to be able to write to the thing. 1452 */ 1453 retval = -EROFS; 1454 if (sdkp->write_prot && (mode & FMODE_WRITE)) 1455 goto error_out; 1456 1457 /* 1458 * It is possible that the disk changing stuff resulted in 1459 * the device being taken offline. If this is the case, 1460 * report this to the user, and don't pretend that the 1461 * open actually succeeded. 1462 */ 1463 retval = -ENXIO; 1464 if (!scsi_device_online(sdev)) 1465 goto error_out; 1466 1467 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) { 1468 if (scsi_block_when_processing_errors(sdev)) 1469 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT); 1470 } 1471 1472 return 0; 1473 1474 error_out: 1475 scsi_disk_put(sdkp); 1476 return retval; 1477 } 1478 1479 /** 1480 * sd_release - invoked when the (last) close(2) is called on this 1481 * scsi disk. 1482 * @disk: disk to release 1483 * @mode: FMODE_* mask 1484 * 1485 * Returns 0. 1486 * 1487 * Note: may block (uninterruptible) if error recovery is underway 1488 * on this disk. 1489 * 1490 * Locking: called with bdev->bd_disk->open_mutex held. 1491 **/ 1492 static void sd_release(struct gendisk *disk, fmode_t mode) 1493 { 1494 struct scsi_disk *sdkp = scsi_disk(disk); 1495 struct scsi_device *sdev = sdkp->device; 1496 1497 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n")); 1498 1499 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) { 1500 if (scsi_block_when_processing_errors(sdev)) 1501 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW); 1502 } 1503 1504 scsi_disk_put(sdkp); 1505 } 1506 1507 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1508 { 1509 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1510 struct scsi_device *sdp = sdkp->device; 1511 struct Scsi_Host *host = sdp->host; 1512 sector_t capacity = logical_to_sectors(sdp, sdkp->capacity); 1513 int diskinfo[4]; 1514 1515 /* default to most commonly used values */ 1516 diskinfo[0] = 0x40; /* 1 << 6 */ 1517 diskinfo[1] = 0x20; /* 1 << 5 */ 1518 diskinfo[2] = capacity >> 11; 1519 1520 /* override with calculated, extended default, or driver values */ 1521 if (host->hostt->bios_param) 1522 host->hostt->bios_param(sdp, bdev, capacity, diskinfo); 1523 else 1524 scsicam_bios_param(bdev, capacity, diskinfo); 1525 1526 geo->heads = diskinfo[0]; 1527 geo->sectors = diskinfo[1]; 1528 geo->cylinders = diskinfo[2]; 1529 return 0; 1530 } 1531 1532 /** 1533 * sd_ioctl_common - process an ioctl 1534 * @bdev: target block device 1535 * @mode: FMODE_* mask 1536 * @cmd: ioctl command number 1537 * @p: this is third argument given to ioctl(2) system call. 1538 * Often contains a pointer. 1539 * 1540 * Returns 0 if successful (some ioctls return positive numbers on 1541 * success as well). Returns a negated errno value in case of error. 1542 * 1543 * Note: most ioctls are forward onto the block subsystem or further 1544 * down in the scsi subsystem. 1545 **/ 1546 static int sd_ioctl_common(struct block_device *bdev, fmode_t mode, 1547 unsigned int cmd, void __user *p) 1548 { 1549 struct gendisk *disk = bdev->bd_disk; 1550 struct scsi_disk *sdkp = scsi_disk(disk); 1551 struct scsi_device *sdp = sdkp->device; 1552 int error; 1553 1554 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, " 1555 "cmd=0x%x\n", disk->disk_name, cmd)); 1556 1557 error = scsi_verify_blk_ioctl(bdev, cmd); 1558 if (error < 0) 1559 return error; 1560 1561 /* 1562 * If we are in the middle of error recovery, don't let anyone 1563 * else try and use this device. Also, if error recovery fails, it 1564 * may try and take the device offline, in which case all further 1565 * access to the device is prohibited. 1566 */ 1567 error = scsi_ioctl_block_when_processing_errors(sdp, cmd, 1568 (mode & FMODE_NDELAY) != 0); 1569 if (error) 1570 goto out; 1571 1572 if (is_sed_ioctl(cmd)) 1573 return sed_ioctl(sdkp->opal_dev, cmd, p); 1574 1575 /* 1576 * Send SCSI addressing ioctls directly to mid level, send other 1577 * ioctls to block level and then onto mid level if they can't be 1578 * resolved. 1579 */ 1580 switch (cmd) { 1581 case SCSI_IOCTL_GET_IDLUN: 1582 case SCSI_IOCTL_GET_BUS_NUMBER: 1583 error = scsi_ioctl(sdp, cmd, p); 1584 break; 1585 default: 1586 error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p); 1587 break; 1588 } 1589 out: 1590 return error; 1591 } 1592 1593 static void set_media_not_present(struct scsi_disk *sdkp) 1594 { 1595 if (sdkp->media_present) 1596 sdkp->device->changed = 1; 1597 1598 if (sdkp->device->removable) { 1599 sdkp->media_present = 0; 1600 sdkp->capacity = 0; 1601 } 1602 } 1603 1604 static int media_not_present(struct scsi_disk *sdkp, 1605 struct scsi_sense_hdr *sshdr) 1606 { 1607 if (!scsi_sense_valid(sshdr)) 1608 return 0; 1609 1610 /* not invoked for commands that could return deferred errors */ 1611 switch (sshdr->sense_key) { 1612 case UNIT_ATTENTION: 1613 case NOT_READY: 1614 /* medium not present */ 1615 if (sshdr->asc == 0x3A) { 1616 set_media_not_present(sdkp); 1617 return 1; 1618 } 1619 } 1620 return 0; 1621 } 1622 1623 /** 1624 * sd_check_events - check media events 1625 * @disk: kernel device descriptor 1626 * @clearing: disk events currently being cleared 1627 * 1628 * Returns mask of DISK_EVENT_*. 1629 * 1630 * Note: this function is invoked from the block subsystem. 1631 **/ 1632 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing) 1633 { 1634 struct scsi_disk *sdkp = scsi_disk_get(disk); 1635 struct scsi_device *sdp; 1636 int retval; 1637 bool disk_changed; 1638 1639 if (!sdkp) 1640 return 0; 1641 1642 sdp = sdkp->device; 1643 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n")); 1644 1645 /* 1646 * If the device is offline, don't send any commands - just pretend as 1647 * if the command failed. If the device ever comes back online, we 1648 * can deal with it then. It is only because of unrecoverable errors 1649 * that we would ever take a device offline in the first place. 1650 */ 1651 if (!scsi_device_online(sdp)) { 1652 set_media_not_present(sdkp); 1653 goto out; 1654 } 1655 1656 /* 1657 * Using TEST_UNIT_READY enables differentiation between drive with 1658 * no cartridge loaded - NOT READY, drive with changed cartridge - 1659 * UNIT ATTENTION, or with same cartridge - GOOD STATUS. 1660 * 1661 * Drives that auto spin down. eg iomega jaz 1G, will be started 1662 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever 1663 * sd_revalidate() is called. 1664 */ 1665 if (scsi_block_when_processing_errors(sdp)) { 1666 struct scsi_sense_hdr sshdr = { 0, }; 1667 1668 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries, 1669 &sshdr); 1670 1671 /* failed to execute TUR, assume media not present */ 1672 if (retval < 0 || host_byte(retval)) { 1673 set_media_not_present(sdkp); 1674 goto out; 1675 } 1676 1677 if (media_not_present(sdkp, &sshdr)) 1678 goto out; 1679 } 1680 1681 /* 1682 * For removable scsi disk we have to recognise the presence 1683 * of a disk in the drive. 1684 */ 1685 if (!sdkp->media_present) 1686 sdp->changed = 1; 1687 sdkp->media_present = 1; 1688 out: 1689 /* 1690 * sdp->changed is set under the following conditions: 1691 * 1692 * Medium present state has changed in either direction. 1693 * Device has indicated UNIT_ATTENTION. 1694 */ 1695 disk_changed = sdp->changed; 1696 sdp->changed = 0; 1697 scsi_disk_put(sdkp); 1698 return disk_changed ? DISK_EVENT_MEDIA_CHANGE : 0; 1699 } 1700 1701 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr) 1702 { 1703 int retries, res; 1704 struct scsi_device *sdp = sdkp->device; 1705 const int timeout = sdp->request_queue->rq_timeout 1706 * SD_FLUSH_TIMEOUT_MULTIPLIER; 1707 struct scsi_sense_hdr my_sshdr; 1708 1709 if (!scsi_device_online(sdp)) 1710 return -ENODEV; 1711 1712 /* caller might not be interested in sense, but we need it */ 1713 if (!sshdr) 1714 sshdr = &my_sshdr; 1715 1716 for (retries = 3; retries > 0; --retries) { 1717 unsigned char cmd[10] = { 0 }; 1718 1719 cmd[0] = SYNCHRONIZE_CACHE; 1720 /* 1721 * Leave the rest of the command zero to indicate 1722 * flush everything. 1723 */ 1724 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr, 1725 timeout, sdkp->max_retries, 0, RQF_PM, NULL); 1726 if (res == 0) 1727 break; 1728 } 1729 1730 if (res) { 1731 sd_print_result(sdkp, "Synchronize Cache(10) failed", res); 1732 1733 if (res < 0) 1734 return res; 1735 1736 if (scsi_status_is_check_condition(res) && 1737 scsi_sense_valid(sshdr)) { 1738 sd_print_sense_hdr(sdkp, sshdr); 1739 1740 /* we need to evaluate the error return */ 1741 if (sshdr->asc == 0x3a || /* medium not present */ 1742 sshdr->asc == 0x20 || /* invalid command */ 1743 (sshdr->asc == 0x74 && sshdr->ascq == 0x71)) /* drive is password locked */ 1744 /* this is no error here */ 1745 return 0; 1746 } 1747 1748 switch (host_byte(res)) { 1749 /* ignore errors due to racing a disconnection */ 1750 case DID_BAD_TARGET: 1751 case DID_NO_CONNECT: 1752 return 0; 1753 /* signal the upper layer it might try again */ 1754 case DID_BUS_BUSY: 1755 case DID_IMM_RETRY: 1756 case DID_REQUEUE: 1757 case DID_SOFT_ERROR: 1758 return -EBUSY; 1759 default: 1760 return -EIO; 1761 } 1762 } 1763 return 0; 1764 } 1765 1766 static void sd_rescan(struct device *dev) 1767 { 1768 struct scsi_disk *sdkp = dev_get_drvdata(dev); 1769 1770 sd_revalidate_disk(sdkp->disk); 1771 } 1772 1773 static int sd_ioctl(struct block_device *bdev, fmode_t mode, 1774 unsigned int cmd, unsigned long arg) 1775 { 1776 void __user *p = (void __user *)arg; 1777 int ret; 1778 1779 ret = sd_ioctl_common(bdev, mode, cmd, p); 1780 if (ret != -ENOTTY) 1781 return ret; 1782 1783 return scsi_ioctl(scsi_disk(bdev->bd_disk)->device, cmd, p); 1784 } 1785 1786 #ifdef CONFIG_COMPAT 1787 static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode, 1788 unsigned int cmd, unsigned long arg) 1789 { 1790 void __user *p = compat_ptr(arg); 1791 int ret; 1792 1793 ret = sd_ioctl_common(bdev, mode, cmd, p); 1794 if (ret != -ENOTTY) 1795 return ret; 1796 1797 return scsi_compat_ioctl(scsi_disk(bdev->bd_disk)->device, cmd, p); 1798 } 1799 #endif 1800 1801 static char sd_pr_type(enum pr_type type) 1802 { 1803 switch (type) { 1804 case PR_WRITE_EXCLUSIVE: 1805 return 0x01; 1806 case PR_EXCLUSIVE_ACCESS: 1807 return 0x03; 1808 case PR_WRITE_EXCLUSIVE_REG_ONLY: 1809 return 0x05; 1810 case PR_EXCLUSIVE_ACCESS_REG_ONLY: 1811 return 0x06; 1812 case PR_WRITE_EXCLUSIVE_ALL_REGS: 1813 return 0x07; 1814 case PR_EXCLUSIVE_ACCESS_ALL_REGS: 1815 return 0x08; 1816 default: 1817 return 0; 1818 } 1819 }; 1820 1821 static int sd_pr_command(struct block_device *bdev, u8 sa, 1822 u64 key, u64 sa_key, u8 type, u8 flags) 1823 { 1824 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1825 struct scsi_device *sdev = sdkp->device; 1826 struct scsi_sense_hdr sshdr; 1827 int result; 1828 u8 cmd[16] = { 0, }; 1829 u8 data[24] = { 0, }; 1830 1831 cmd[0] = PERSISTENT_RESERVE_OUT; 1832 cmd[1] = sa; 1833 cmd[2] = type; 1834 put_unaligned_be32(sizeof(data), &cmd[5]); 1835 1836 put_unaligned_be64(key, &data[0]); 1837 put_unaligned_be64(sa_key, &data[8]); 1838 data[20] = flags; 1839 1840 result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data), 1841 &sshdr, SD_TIMEOUT, sdkp->max_retries, NULL); 1842 1843 if (scsi_status_is_check_condition(result) && 1844 scsi_sense_valid(&sshdr)) { 1845 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result); 1846 scsi_print_sense_hdr(sdev, NULL, &sshdr); 1847 } 1848 1849 return result; 1850 } 1851 1852 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 1853 u32 flags) 1854 { 1855 if (flags & ~PR_FL_IGNORE_KEY) 1856 return -EOPNOTSUPP; 1857 return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00, 1858 old_key, new_key, 0, 1859 (1 << 0) /* APTPL */); 1860 } 1861 1862 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 1863 u32 flags) 1864 { 1865 if (flags) 1866 return -EOPNOTSUPP; 1867 return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0); 1868 } 1869 1870 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 1871 { 1872 return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0); 1873 } 1874 1875 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 1876 enum pr_type type, bool abort) 1877 { 1878 return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key, 1879 sd_pr_type(type), 0); 1880 } 1881 1882 static int sd_pr_clear(struct block_device *bdev, u64 key) 1883 { 1884 return sd_pr_command(bdev, 0x03, key, 0, 0, 0); 1885 } 1886 1887 static const struct pr_ops sd_pr_ops = { 1888 .pr_register = sd_pr_register, 1889 .pr_reserve = sd_pr_reserve, 1890 .pr_release = sd_pr_release, 1891 .pr_preempt = sd_pr_preempt, 1892 .pr_clear = sd_pr_clear, 1893 }; 1894 1895 static const struct block_device_operations sd_fops = { 1896 .owner = THIS_MODULE, 1897 .open = sd_open, 1898 .release = sd_release, 1899 .ioctl = sd_ioctl, 1900 .getgeo = sd_getgeo, 1901 #ifdef CONFIG_COMPAT 1902 .compat_ioctl = sd_compat_ioctl, 1903 #endif 1904 .check_events = sd_check_events, 1905 .unlock_native_capacity = sd_unlock_native_capacity, 1906 .report_zones = sd_zbc_report_zones, 1907 .pr_ops = &sd_pr_ops, 1908 }; 1909 1910 /** 1911 * sd_eh_reset - reset error handling callback 1912 * @scmd: sd-issued command that has failed 1913 * 1914 * This function is called by the SCSI midlayer before starting 1915 * SCSI EH. When counting medium access failures we have to be 1916 * careful to register it only only once per device and SCSI EH run; 1917 * there might be several timed out commands which will cause the 1918 * 'max_medium_access_timeouts' counter to trigger after the first 1919 * SCSI EH run already and set the device to offline. 1920 * So this function resets the internal counter before starting SCSI EH. 1921 **/ 1922 static void sd_eh_reset(struct scsi_cmnd *scmd) 1923 { 1924 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk); 1925 1926 /* New SCSI EH run, reset gate variable */ 1927 sdkp->ignore_medium_access_errors = false; 1928 } 1929 1930 /** 1931 * sd_eh_action - error handling callback 1932 * @scmd: sd-issued command that has failed 1933 * @eh_disp: The recovery disposition suggested by the midlayer 1934 * 1935 * This function is called by the SCSI midlayer upon completion of an 1936 * error test command (currently TEST UNIT READY). The result of sending 1937 * the eh command is passed in eh_disp. We're looking for devices that 1938 * fail medium access commands but are OK with non access commands like 1939 * test unit ready (so wrongly see the device as having a successful 1940 * recovery) 1941 **/ 1942 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp) 1943 { 1944 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk); 1945 struct scsi_device *sdev = scmd->device; 1946 1947 if (!scsi_device_online(sdev) || 1948 !scsi_medium_access_command(scmd) || 1949 host_byte(scmd->result) != DID_TIME_OUT || 1950 eh_disp != SUCCESS) 1951 return eh_disp; 1952 1953 /* 1954 * The device has timed out executing a medium access command. 1955 * However, the TEST UNIT READY command sent during error 1956 * handling completed successfully. Either the device is in the 1957 * process of recovering or has it suffered an internal failure 1958 * that prevents access to the storage medium. 1959 */ 1960 if (!sdkp->ignore_medium_access_errors) { 1961 sdkp->medium_access_timed_out++; 1962 sdkp->ignore_medium_access_errors = true; 1963 } 1964 1965 /* 1966 * If the device keeps failing read/write commands but TEST UNIT 1967 * READY always completes successfully we assume that medium 1968 * access is no longer possible and take the device offline. 1969 */ 1970 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) { 1971 scmd_printk(KERN_ERR, scmd, 1972 "Medium access timeout failure. Offlining disk!\n"); 1973 mutex_lock(&sdev->state_mutex); 1974 scsi_device_set_state(sdev, SDEV_OFFLINE); 1975 mutex_unlock(&sdev->state_mutex); 1976 1977 return SUCCESS; 1978 } 1979 1980 return eh_disp; 1981 } 1982 1983 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd) 1984 { 1985 struct request *req = scmd->request; 1986 struct scsi_device *sdev = scmd->device; 1987 unsigned int transferred, good_bytes; 1988 u64 start_lba, end_lba, bad_lba; 1989 1990 /* 1991 * Some commands have a payload smaller than the device logical 1992 * block size (e.g. INQUIRY on a 4K disk). 1993 */ 1994 if (scsi_bufflen(scmd) <= sdev->sector_size) 1995 return 0; 1996 1997 /* Check if we have a 'bad_lba' information */ 1998 if (!scsi_get_sense_info_fld(scmd->sense_buffer, 1999 SCSI_SENSE_BUFFERSIZE, 2000 &bad_lba)) 2001 return 0; 2002 2003 /* 2004 * If the bad lba was reported incorrectly, we have no idea where 2005 * the error is. 2006 */ 2007 start_lba = sectors_to_logical(sdev, blk_rq_pos(req)); 2008 end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd)); 2009 if (bad_lba < start_lba || bad_lba >= end_lba) 2010 return 0; 2011 2012 /* 2013 * resid is optional but mostly filled in. When it's unused, 2014 * its value is zero, so we assume the whole buffer transferred 2015 */ 2016 transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd); 2017 2018 /* This computation should always be done in terms of the 2019 * resolution of the device's medium. 2020 */ 2021 good_bytes = logical_to_bytes(sdev, bad_lba - start_lba); 2022 2023 return min(good_bytes, transferred); 2024 } 2025 2026 /** 2027 * sd_done - bottom half handler: called when the lower level 2028 * driver has completed (successfully or otherwise) a scsi command. 2029 * @SCpnt: mid-level's per command structure. 2030 * 2031 * Note: potentially run from within an ISR. Must not block. 2032 **/ 2033 static int sd_done(struct scsi_cmnd *SCpnt) 2034 { 2035 int result = SCpnt->result; 2036 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt); 2037 unsigned int sector_size = SCpnt->device->sector_size; 2038 unsigned int resid; 2039 struct scsi_sense_hdr sshdr; 2040 struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk); 2041 struct request *req = SCpnt->request; 2042 int sense_valid = 0; 2043 int sense_deferred = 0; 2044 2045 switch (req_op(req)) { 2046 case REQ_OP_DISCARD: 2047 case REQ_OP_WRITE_ZEROES: 2048 case REQ_OP_WRITE_SAME: 2049 case REQ_OP_ZONE_RESET: 2050 case REQ_OP_ZONE_RESET_ALL: 2051 case REQ_OP_ZONE_OPEN: 2052 case REQ_OP_ZONE_CLOSE: 2053 case REQ_OP_ZONE_FINISH: 2054 if (!result) { 2055 good_bytes = blk_rq_bytes(req); 2056 scsi_set_resid(SCpnt, 0); 2057 } else { 2058 good_bytes = 0; 2059 scsi_set_resid(SCpnt, blk_rq_bytes(req)); 2060 } 2061 break; 2062 default: 2063 /* 2064 * In case of bogus fw or device, we could end up having 2065 * an unaligned partial completion. Check this here and force 2066 * alignment. 2067 */ 2068 resid = scsi_get_resid(SCpnt); 2069 if (resid & (sector_size - 1)) { 2070 sd_printk(KERN_INFO, sdkp, 2071 "Unaligned partial completion (resid=%u, sector_sz=%u)\n", 2072 resid, sector_size); 2073 scsi_print_command(SCpnt); 2074 resid = min(scsi_bufflen(SCpnt), 2075 round_up(resid, sector_size)); 2076 scsi_set_resid(SCpnt, resid); 2077 } 2078 } 2079 2080 if (result) { 2081 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr); 2082 if (sense_valid) 2083 sense_deferred = scsi_sense_is_deferred(&sshdr); 2084 } 2085 sdkp->medium_access_timed_out = 0; 2086 2087 if (!scsi_status_is_check_condition(result) && 2088 (!sense_valid || sense_deferred)) 2089 goto out; 2090 2091 switch (sshdr.sense_key) { 2092 case HARDWARE_ERROR: 2093 case MEDIUM_ERROR: 2094 good_bytes = sd_completed_bytes(SCpnt); 2095 break; 2096 case RECOVERED_ERROR: 2097 good_bytes = scsi_bufflen(SCpnt); 2098 break; 2099 case NO_SENSE: 2100 /* This indicates a false check condition, so ignore it. An 2101 * unknown amount of data was transferred so treat it as an 2102 * error. 2103 */ 2104 SCpnt->result = 0; 2105 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 2106 break; 2107 case ABORTED_COMMAND: 2108 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */ 2109 good_bytes = sd_completed_bytes(SCpnt); 2110 break; 2111 case ILLEGAL_REQUEST: 2112 switch (sshdr.asc) { 2113 case 0x10: /* DIX: Host detected corruption */ 2114 good_bytes = sd_completed_bytes(SCpnt); 2115 break; 2116 case 0x20: /* INVALID COMMAND OPCODE */ 2117 case 0x24: /* INVALID FIELD IN CDB */ 2118 switch (SCpnt->cmnd[0]) { 2119 case UNMAP: 2120 sd_config_discard(sdkp, SD_LBP_DISABLE); 2121 break; 2122 case WRITE_SAME_16: 2123 case WRITE_SAME: 2124 if (SCpnt->cmnd[1] & 8) { /* UNMAP */ 2125 sd_config_discard(sdkp, SD_LBP_DISABLE); 2126 } else { 2127 sdkp->device->no_write_same = 1; 2128 sd_config_write_same(sdkp); 2129 req->rq_flags |= RQF_QUIET; 2130 } 2131 break; 2132 } 2133 } 2134 break; 2135 default: 2136 break; 2137 } 2138 2139 out: 2140 if (sd_is_zoned(sdkp)) 2141 good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr); 2142 2143 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt, 2144 "sd_done: completed %d of %d bytes\n", 2145 good_bytes, scsi_bufflen(SCpnt))); 2146 2147 return good_bytes; 2148 } 2149 2150 /* 2151 * spinup disk - called only in sd_revalidate_disk() 2152 */ 2153 static void 2154 sd_spinup_disk(struct scsi_disk *sdkp) 2155 { 2156 unsigned char cmd[10]; 2157 unsigned long spintime_expire = 0; 2158 int retries, spintime; 2159 unsigned int the_result; 2160 struct scsi_sense_hdr sshdr; 2161 int sense_valid = 0; 2162 2163 spintime = 0; 2164 2165 /* Spin up drives, as required. Only do this at boot time */ 2166 /* Spinup needs to be done for module loads too. */ 2167 do { 2168 retries = 0; 2169 2170 do { 2171 cmd[0] = TEST_UNIT_READY; 2172 memset((void *) &cmd[1], 0, 9); 2173 2174 the_result = scsi_execute_req(sdkp->device, cmd, 2175 DMA_NONE, NULL, 0, 2176 &sshdr, SD_TIMEOUT, 2177 sdkp->max_retries, NULL); 2178 2179 /* 2180 * If the drive has indicated to us that it 2181 * doesn't have any media in it, don't bother 2182 * with any more polling. 2183 */ 2184 if (media_not_present(sdkp, &sshdr)) 2185 return; 2186 2187 if (the_result) 2188 sense_valid = scsi_sense_valid(&sshdr); 2189 retries++; 2190 } while (retries < 3 && 2191 (!scsi_status_is_good(the_result) || 2192 (scsi_status_is_check_condition(the_result) && 2193 sense_valid && sshdr.sense_key == UNIT_ATTENTION))); 2194 2195 if (!scsi_status_is_check_condition(the_result)) { 2196 /* no sense, TUR either succeeded or failed 2197 * with a status error */ 2198 if(!spintime && !scsi_status_is_good(the_result)) { 2199 sd_print_result(sdkp, "Test Unit Ready failed", 2200 the_result); 2201 } 2202 break; 2203 } 2204 2205 /* 2206 * The device does not want the automatic start to be issued. 2207 */ 2208 if (sdkp->device->no_start_on_add) 2209 break; 2210 2211 if (sense_valid && sshdr.sense_key == NOT_READY) { 2212 if (sshdr.asc == 4 && sshdr.ascq == 3) 2213 break; /* manual intervention required */ 2214 if (sshdr.asc == 4 && sshdr.ascq == 0xb) 2215 break; /* standby */ 2216 if (sshdr.asc == 4 && sshdr.ascq == 0xc) 2217 break; /* unavailable */ 2218 if (sshdr.asc == 4 && sshdr.ascq == 0x1b) 2219 break; /* sanitize in progress */ 2220 /* 2221 * Issue command to spin up drive when not ready 2222 */ 2223 if (!spintime) { 2224 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk..."); 2225 cmd[0] = START_STOP; 2226 cmd[1] = 1; /* Return immediately */ 2227 memset((void *) &cmd[2], 0, 8); 2228 cmd[4] = 1; /* Start spin cycle */ 2229 if (sdkp->device->start_stop_pwr_cond) 2230 cmd[4] |= 1 << 4; 2231 scsi_execute_req(sdkp->device, cmd, DMA_NONE, 2232 NULL, 0, &sshdr, 2233 SD_TIMEOUT, sdkp->max_retries, 2234 NULL); 2235 spintime_expire = jiffies + 100 * HZ; 2236 spintime = 1; 2237 } 2238 /* Wait 1 second for next try */ 2239 msleep(1000); 2240 printk(KERN_CONT "."); 2241 2242 /* 2243 * Wait for USB flash devices with slow firmware. 2244 * Yes, this sense key/ASC combination shouldn't 2245 * occur here. It's characteristic of these devices. 2246 */ 2247 } else if (sense_valid && 2248 sshdr.sense_key == UNIT_ATTENTION && 2249 sshdr.asc == 0x28) { 2250 if (!spintime) { 2251 spintime_expire = jiffies + 5 * HZ; 2252 spintime = 1; 2253 } 2254 /* Wait 1 second for next try */ 2255 msleep(1000); 2256 } else { 2257 /* we don't understand the sense code, so it's 2258 * probably pointless to loop */ 2259 if(!spintime) { 2260 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n"); 2261 sd_print_sense_hdr(sdkp, &sshdr); 2262 } 2263 break; 2264 } 2265 2266 } while (spintime && time_before_eq(jiffies, spintime_expire)); 2267 2268 if (spintime) { 2269 if (scsi_status_is_good(the_result)) 2270 printk(KERN_CONT "ready\n"); 2271 else 2272 printk(KERN_CONT "not responding...\n"); 2273 } 2274 } 2275 2276 /* 2277 * Determine whether disk supports Data Integrity Field. 2278 */ 2279 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer) 2280 { 2281 struct scsi_device *sdp = sdkp->device; 2282 u8 type; 2283 int ret = 0; 2284 2285 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) { 2286 sdkp->protection_type = 0; 2287 return ret; 2288 } 2289 2290 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */ 2291 2292 if (type > T10_PI_TYPE3_PROTECTION) 2293 ret = -ENODEV; 2294 else if (scsi_host_dif_capable(sdp->host, type)) 2295 ret = 1; 2296 2297 if (sdkp->first_scan || type != sdkp->protection_type) 2298 switch (ret) { 2299 case -ENODEV: 2300 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \ 2301 " protection type %u. Disabling disk!\n", 2302 type); 2303 break; 2304 case 1: 2305 sd_printk(KERN_NOTICE, sdkp, 2306 "Enabling DIF Type %u protection\n", type); 2307 break; 2308 case 0: 2309 sd_printk(KERN_NOTICE, sdkp, 2310 "Disabling DIF Type %u protection\n", type); 2311 break; 2312 } 2313 2314 sdkp->protection_type = type; 2315 2316 return ret; 2317 } 2318 2319 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp, 2320 struct scsi_sense_hdr *sshdr, int sense_valid, 2321 int the_result) 2322 { 2323 if (sense_valid) 2324 sd_print_sense_hdr(sdkp, sshdr); 2325 else 2326 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n"); 2327 2328 /* 2329 * Set dirty bit for removable devices if not ready - 2330 * sometimes drives will not report this properly. 2331 */ 2332 if (sdp->removable && 2333 sense_valid && sshdr->sense_key == NOT_READY) 2334 set_media_not_present(sdkp); 2335 2336 /* 2337 * We used to set media_present to 0 here to indicate no media 2338 * in the drive, but some drives fail read capacity even with 2339 * media present, so we can't do that. 2340 */ 2341 sdkp->capacity = 0; /* unknown mapped to zero - as usual */ 2342 } 2343 2344 #define RC16_LEN 32 2345 #if RC16_LEN > SD_BUF_SIZE 2346 #error RC16_LEN must not be more than SD_BUF_SIZE 2347 #endif 2348 2349 #define READ_CAPACITY_RETRIES_ON_RESET 10 2350 2351 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp, 2352 unsigned char *buffer) 2353 { 2354 unsigned char cmd[16]; 2355 struct scsi_sense_hdr sshdr; 2356 int sense_valid = 0; 2357 int the_result; 2358 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2359 unsigned int alignment; 2360 unsigned long long lba; 2361 unsigned sector_size; 2362 2363 if (sdp->no_read_capacity_16) 2364 return -EINVAL; 2365 2366 do { 2367 memset(cmd, 0, 16); 2368 cmd[0] = SERVICE_ACTION_IN_16; 2369 cmd[1] = SAI_READ_CAPACITY_16; 2370 cmd[13] = RC16_LEN; 2371 memset(buffer, 0, RC16_LEN); 2372 2373 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, 2374 buffer, RC16_LEN, &sshdr, 2375 SD_TIMEOUT, sdkp->max_retries, NULL); 2376 2377 if (media_not_present(sdkp, &sshdr)) 2378 return -ENODEV; 2379 2380 if (the_result > 0) { 2381 sense_valid = scsi_sense_valid(&sshdr); 2382 if (sense_valid && 2383 sshdr.sense_key == ILLEGAL_REQUEST && 2384 (sshdr.asc == 0x20 || sshdr.asc == 0x24) && 2385 sshdr.ascq == 0x00) 2386 /* Invalid Command Operation Code or 2387 * Invalid Field in CDB, just retry 2388 * silently with RC10 */ 2389 return -EINVAL; 2390 if (sense_valid && 2391 sshdr.sense_key == UNIT_ATTENTION && 2392 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2393 /* Device reset might occur several times, 2394 * give it one more chance */ 2395 if (--reset_retries > 0) 2396 continue; 2397 } 2398 retries--; 2399 2400 } while (the_result && retries); 2401 2402 if (the_result) { 2403 sd_print_result(sdkp, "Read Capacity(16) failed", the_result); 2404 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2405 return -EINVAL; 2406 } 2407 2408 sector_size = get_unaligned_be32(&buffer[8]); 2409 lba = get_unaligned_be64(&buffer[0]); 2410 2411 if (sd_read_protection_type(sdkp, buffer) < 0) { 2412 sdkp->capacity = 0; 2413 return -ENODEV; 2414 } 2415 2416 /* Logical blocks per physical block exponent */ 2417 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size; 2418 2419 /* RC basis */ 2420 sdkp->rc_basis = (buffer[12] >> 4) & 0x3; 2421 2422 /* Lowest aligned logical block */ 2423 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size; 2424 blk_queue_alignment_offset(sdp->request_queue, alignment); 2425 if (alignment && sdkp->first_scan) 2426 sd_printk(KERN_NOTICE, sdkp, 2427 "physical block alignment offset: %u\n", alignment); 2428 2429 if (buffer[14] & 0x80) { /* LBPME */ 2430 sdkp->lbpme = 1; 2431 2432 if (buffer[14] & 0x40) /* LBPRZ */ 2433 sdkp->lbprz = 1; 2434 2435 sd_config_discard(sdkp, SD_LBP_WS16); 2436 } 2437 2438 sdkp->capacity = lba + 1; 2439 return sector_size; 2440 } 2441 2442 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp, 2443 unsigned char *buffer) 2444 { 2445 unsigned char cmd[16]; 2446 struct scsi_sense_hdr sshdr; 2447 int sense_valid = 0; 2448 int the_result; 2449 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2450 sector_t lba; 2451 unsigned sector_size; 2452 2453 do { 2454 cmd[0] = READ_CAPACITY; 2455 memset(&cmd[1], 0, 9); 2456 memset(buffer, 0, 8); 2457 2458 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, 2459 buffer, 8, &sshdr, 2460 SD_TIMEOUT, sdkp->max_retries, NULL); 2461 2462 if (media_not_present(sdkp, &sshdr)) 2463 return -ENODEV; 2464 2465 if (the_result > 0) { 2466 sense_valid = scsi_sense_valid(&sshdr); 2467 if (sense_valid && 2468 sshdr.sense_key == UNIT_ATTENTION && 2469 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2470 /* Device reset might occur several times, 2471 * give it one more chance */ 2472 if (--reset_retries > 0) 2473 continue; 2474 } 2475 retries--; 2476 2477 } while (the_result && retries); 2478 2479 if (the_result) { 2480 sd_print_result(sdkp, "Read Capacity(10) failed", the_result); 2481 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2482 return -EINVAL; 2483 } 2484 2485 sector_size = get_unaligned_be32(&buffer[4]); 2486 lba = get_unaligned_be32(&buffer[0]); 2487 2488 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) { 2489 /* Some buggy (usb cardreader) devices return an lba of 2490 0xffffffff when the want to report a size of 0 (with 2491 which they really mean no media is present) */ 2492 sdkp->capacity = 0; 2493 sdkp->physical_block_size = sector_size; 2494 return sector_size; 2495 } 2496 2497 sdkp->capacity = lba + 1; 2498 sdkp->physical_block_size = sector_size; 2499 return sector_size; 2500 } 2501 2502 static int sd_try_rc16_first(struct scsi_device *sdp) 2503 { 2504 if (sdp->host->max_cmd_len < 16) 2505 return 0; 2506 if (sdp->try_rc_10_first) 2507 return 0; 2508 if (sdp->scsi_level > SCSI_SPC_2) 2509 return 1; 2510 if (scsi_device_protection(sdp)) 2511 return 1; 2512 return 0; 2513 } 2514 2515 /* 2516 * read disk capacity 2517 */ 2518 static void 2519 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer) 2520 { 2521 int sector_size; 2522 struct scsi_device *sdp = sdkp->device; 2523 2524 if (sd_try_rc16_first(sdp)) { 2525 sector_size = read_capacity_16(sdkp, sdp, buffer); 2526 if (sector_size == -EOVERFLOW) 2527 goto got_data; 2528 if (sector_size == -ENODEV) 2529 return; 2530 if (sector_size < 0) 2531 sector_size = read_capacity_10(sdkp, sdp, buffer); 2532 if (sector_size < 0) 2533 return; 2534 } else { 2535 sector_size = read_capacity_10(sdkp, sdp, buffer); 2536 if (sector_size == -EOVERFLOW) 2537 goto got_data; 2538 if (sector_size < 0) 2539 return; 2540 if ((sizeof(sdkp->capacity) > 4) && 2541 (sdkp->capacity > 0xffffffffULL)) { 2542 int old_sector_size = sector_size; 2543 sd_printk(KERN_NOTICE, sdkp, "Very big device. " 2544 "Trying to use READ CAPACITY(16).\n"); 2545 sector_size = read_capacity_16(sdkp, sdp, buffer); 2546 if (sector_size < 0) { 2547 sd_printk(KERN_NOTICE, sdkp, 2548 "Using 0xffffffff as device size\n"); 2549 sdkp->capacity = 1 + (sector_t) 0xffffffff; 2550 sector_size = old_sector_size; 2551 goto got_data; 2552 } 2553 /* Remember that READ CAPACITY(16) succeeded */ 2554 sdp->try_rc_10_first = 0; 2555 } 2556 } 2557 2558 /* Some devices are known to return the total number of blocks, 2559 * not the highest block number. Some devices have versions 2560 * which do this and others which do not. Some devices we might 2561 * suspect of doing this but we don't know for certain. 2562 * 2563 * If we know the reported capacity is wrong, decrement it. If 2564 * we can only guess, then assume the number of blocks is even 2565 * (usually true but not always) and err on the side of lowering 2566 * the capacity. 2567 */ 2568 if (sdp->fix_capacity || 2569 (sdp->guess_capacity && (sdkp->capacity & 0x01))) { 2570 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count " 2571 "from its reported value: %llu\n", 2572 (unsigned long long) sdkp->capacity); 2573 --sdkp->capacity; 2574 } 2575 2576 got_data: 2577 if (sector_size == 0) { 2578 sector_size = 512; 2579 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, " 2580 "assuming 512.\n"); 2581 } 2582 2583 if (sector_size != 512 && 2584 sector_size != 1024 && 2585 sector_size != 2048 && 2586 sector_size != 4096) { 2587 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n", 2588 sector_size); 2589 /* 2590 * The user might want to re-format the drive with 2591 * a supported sectorsize. Once this happens, it 2592 * would be relatively trivial to set the thing up. 2593 * For this reason, we leave the thing in the table. 2594 */ 2595 sdkp->capacity = 0; 2596 /* 2597 * set a bogus sector size so the normal read/write 2598 * logic in the block layer will eventually refuse any 2599 * request on this device without tripping over power 2600 * of two sector size assumptions 2601 */ 2602 sector_size = 512; 2603 } 2604 blk_queue_logical_block_size(sdp->request_queue, sector_size); 2605 blk_queue_physical_block_size(sdp->request_queue, 2606 sdkp->physical_block_size); 2607 sdkp->device->sector_size = sector_size; 2608 2609 if (sdkp->capacity > 0xffffffff) 2610 sdp->use_16_for_rw = 1; 2611 2612 } 2613 2614 /* 2615 * Print disk capacity 2616 */ 2617 static void 2618 sd_print_capacity(struct scsi_disk *sdkp, 2619 sector_t old_capacity) 2620 { 2621 int sector_size = sdkp->device->sector_size; 2622 char cap_str_2[10], cap_str_10[10]; 2623 2624 if (!sdkp->first_scan && old_capacity == sdkp->capacity) 2625 return; 2626 2627 string_get_size(sdkp->capacity, sector_size, 2628 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2)); 2629 string_get_size(sdkp->capacity, sector_size, 2630 STRING_UNITS_10, cap_str_10, sizeof(cap_str_10)); 2631 2632 sd_printk(KERN_NOTICE, sdkp, 2633 "%llu %d-byte logical blocks: (%s/%s)\n", 2634 (unsigned long long)sdkp->capacity, 2635 sector_size, cap_str_10, cap_str_2); 2636 2637 if (sdkp->physical_block_size != sector_size) 2638 sd_printk(KERN_NOTICE, sdkp, 2639 "%u-byte physical blocks\n", 2640 sdkp->physical_block_size); 2641 } 2642 2643 /* called with buffer of length 512 */ 2644 static inline int 2645 sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage, 2646 unsigned char *buffer, int len, struct scsi_mode_data *data, 2647 struct scsi_sense_hdr *sshdr) 2648 { 2649 return scsi_mode_sense(sdkp->device, dbd, modepage, buffer, len, 2650 SD_TIMEOUT, sdkp->max_retries, data, 2651 sshdr); 2652 } 2653 2654 /* 2655 * read write protect setting, if possible - called only in sd_revalidate_disk() 2656 * called with buffer of length SD_BUF_SIZE 2657 */ 2658 static void 2659 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer) 2660 { 2661 int res; 2662 struct scsi_device *sdp = sdkp->device; 2663 struct scsi_mode_data data; 2664 int old_wp = sdkp->write_prot; 2665 2666 set_disk_ro(sdkp->disk, 0); 2667 if (sdp->skip_ms_page_3f) { 2668 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n"); 2669 return; 2670 } 2671 2672 if (sdp->use_192_bytes_for_3f) { 2673 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL); 2674 } else { 2675 /* 2676 * First attempt: ask for all pages (0x3F), but only 4 bytes. 2677 * We have to start carefully: some devices hang if we ask 2678 * for more than is available. 2679 */ 2680 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL); 2681 2682 /* 2683 * Second attempt: ask for page 0 When only page 0 is 2684 * implemented, a request for page 3F may return Sense Key 2685 * 5: Illegal Request, Sense Code 24: Invalid field in 2686 * CDB. 2687 */ 2688 if (res < 0) 2689 res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL); 2690 2691 /* 2692 * Third attempt: ask 255 bytes, as we did earlier. 2693 */ 2694 if (res < 0) 2695 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255, 2696 &data, NULL); 2697 } 2698 2699 if (res < 0) { 2700 sd_first_printk(KERN_WARNING, sdkp, 2701 "Test WP failed, assume Write Enabled\n"); 2702 } else { 2703 sdkp->write_prot = ((data.device_specific & 0x80) != 0); 2704 set_disk_ro(sdkp->disk, sdkp->write_prot); 2705 if (sdkp->first_scan || old_wp != sdkp->write_prot) { 2706 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n", 2707 sdkp->write_prot ? "on" : "off"); 2708 sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer); 2709 } 2710 } 2711 } 2712 2713 /* 2714 * sd_read_cache_type - called only from sd_revalidate_disk() 2715 * called with buffer of length SD_BUF_SIZE 2716 */ 2717 static void 2718 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer) 2719 { 2720 int len = 0, res; 2721 struct scsi_device *sdp = sdkp->device; 2722 2723 int dbd; 2724 int modepage; 2725 int first_len; 2726 struct scsi_mode_data data; 2727 struct scsi_sense_hdr sshdr; 2728 int old_wce = sdkp->WCE; 2729 int old_rcd = sdkp->RCD; 2730 int old_dpofua = sdkp->DPOFUA; 2731 2732 2733 if (sdkp->cache_override) 2734 return; 2735 2736 first_len = 4; 2737 if (sdp->skip_ms_page_8) { 2738 if (sdp->type == TYPE_RBC) 2739 goto defaults; 2740 else { 2741 if (sdp->skip_ms_page_3f) 2742 goto defaults; 2743 modepage = 0x3F; 2744 if (sdp->use_192_bytes_for_3f) 2745 first_len = 192; 2746 dbd = 0; 2747 } 2748 } else if (sdp->type == TYPE_RBC) { 2749 modepage = 6; 2750 dbd = 8; 2751 } else { 2752 modepage = 8; 2753 dbd = 0; 2754 } 2755 2756 /* cautiously ask */ 2757 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len, 2758 &data, &sshdr); 2759 2760 if (res < 0) 2761 goto bad_sense; 2762 2763 if (!data.header_length) { 2764 modepage = 6; 2765 first_len = 0; 2766 sd_first_printk(KERN_ERR, sdkp, 2767 "Missing header in MODE_SENSE response\n"); 2768 } 2769 2770 /* that went OK, now ask for the proper length */ 2771 len = data.length; 2772 2773 /* 2774 * We're only interested in the first three bytes, actually. 2775 * But the data cache page is defined for the first 20. 2776 */ 2777 if (len < 3) 2778 goto bad_sense; 2779 else if (len > SD_BUF_SIZE) { 2780 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter " 2781 "data from %d to %d bytes\n", len, SD_BUF_SIZE); 2782 len = SD_BUF_SIZE; 2783 } 2784 if (modepage == 0x3F && sdp->use_192_bytes_for_3f) 2785 len = 192; 2786 2787 /* Get the data */ 2788 if (len > first_len) 2789 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len, 2790 &data, &sshdr); 2791 2792 if (!res) { 2793 int offset = data.header_length + data.block_descriptor_length; 2794 2795 while (offset < len) { 2796 u8 page_code = buffer[offset] & 0x3F; 2797 u8 spf = buffer[offset] & 0x40; 2798 2799 if (page_code == 8 || page_code == 6) { 2800 /* We're interested only in the first 3 bytes. 2801 */ 2802 if (len - offset <= 2) { 2803 sd_first_printk(KERN_ERR, sdkp, 2804 "Incomplete mode parameter " 2805 "data\n"); 2806 goto defaults; 2807 } else { 2808 modepage = page_code; 2809 goto Page_found; 2810 } 2811 } else { 2812 /* Go to the next page */ 2813 if (spf && len - offset > 3) 2814 offset += 4 + (buffer[offset+2] << 8) + 2815 buffer[offset+3]; 2816 else if (!spf && len - offset > 1) 2817 offset += 2 + buffer[offset+1]; 2818 else { 2819 sd_first_printk(KERN_ERR, sdkp, 2820 "Incomplete mode " 2821 "parameter data\n"); 2822 goto defaults; 2823 } 2824 } 2825 } 2826 2827 sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n"); 2828 goto defaults; 2829 2830 Page_found: 2831 if (modepage == 8) { 2832 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0); 2833 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0); 2834 } else { 2835 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0); 2836 sdkp->RCD = 0; 2837 } 2838 2839 sdkp->DPOFUA = (data.device_specific & 0x10) != 0; 2840 if (sdp->broken_fua) { 2841 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n"); 2842 sdkp->DPOFUA = 0; 2843 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw && 2844 !sdkp->device->use_16_for_rw) { 2845 sd_first_printk(KERN_NOTICE, sdkp, 2846 "Uses READ/WRITE(6), disabling FUA\n"); 2847 sdkp->DPOFUA = 0; 2848 } 2849 2850 /* No cache flush allowed for write protected devices */ 2851 if (sdkp->WCE && sdkp->write_prot) 2852 sdkp->WCE = 0; 2853 2854 if (sdkp->first_scan || old_wce != sdkp->WCE || 2855 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA) 2856 sd_printk(KERN_NOTICE, sdkp, 2857 "Write cache: %s, read cache: %s, %s\n", 2858 sdkp->WCE ? "enabled" : "disabled", 2859 sdkp->RCD ? "disabled" : "enabled", 2860 sdkp->DPOFUA ? "supports DPO and FUA" 2861 : "doesn't support DPO or FUA"); 2862 2863 return; 2864 } 2865 2866 bad_sense: 2867 if (scsi_sense_valid(&sshdr) && 2868 sshdr.sense_key == ILLEGAL_REQUEST && 2869 sshdr.asc == 0x24 && sshdr.ascq == 0x0) 2870 /* Invalid field in CDB */ 2871 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n"); 2872 else 2873 sd_first_printk(KERN_ERR, sdkp, 2874 "Asking for cache data failed\n"); 2875 2876 defaults: 2877 if (sdp->wce_default_on) { 2878 sd_first_printk(KERN_NOTICE, sdkp, 2879 "Assuming drive cache: write back\n"); 2880 sdkp->WCE = 1; 2881 } else { 2882 sd_first_printk(KERN_ERR, sdkp, 2883 "Assuming drive cache: write through\n"); 2884 sdkp->WCE = 0; 2885 } 2886 sdkp->RCD = 0; 2887 sdkp->DPOFUA = 0; 2888 } 2889 2890 /* 2891 * The ATO bit indicates whether the DIF application tag is available 2892 * for use by the operating system. 2893 */ 2894 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer) 2895 { 2896 int res, offset; 2897 struct scsi_device *sdp = sdkp->device; 2898 struct scsi_mode_data data; 2899 struct scsi_sense_hdr sshdr; 2900 2901 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 2902 return; 2903 2904 if (sdkp->protection_type == 0) 2905 return; 2906 2907 res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT, 2908 sdkp->max_retries, &data, &sshdr); 2909 2910 if (res < 0 || !data.header_length || 2911 data.length < 6) { 2912 sd_first_printk(KERN_WARNING, sdkp, 2913 "getting Control mode page failed, assume no ATO\n"); 2914 2915 if (scsi_sense_valid(&sshdr)) 2916 sd_print_sense_hdr(sdkp, &sshdr); 2917 2918 return; 2919 } 2920 2921 offset = data.header_length + data.block_descriptor_length; 2922 2923 if ((buffer[offset] & 0x3f) != 0x0a) { 2924 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n"); 2925 return; 2926 } 2927 2928 if ((buffer[offset + 5] & 0x80) == 0) 2929 return; 2930 2931 sdkp->ATO = 1; 2932 2933 return; 2934 } 2935 2936 /** 2937 * sd_read_block_limits - Query disk device for preferred I/O sizes. 2938 * @sdkp: disk to query 2939 */ 2940 static void sd_read_block_limits(struct scsi_disk *sdkp) 2941 { 2942 unsigned int sector_sz = sdkp->device->sector_size; 2943 const int vpd_len = 64; 2944 unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL); 2945 2946 if (!buffer || 2947 /* Block Limits VPD */ 2948 scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len)) 2949 goto out; 2950 2951 blk_queue_io_min(sdkp->disk->queue, 2952 get_unaligned_be16(&buffer[6]) * sector_sz); 2953 2954 sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]); 2955 sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]); 2956 2957 if (buffer[3] == 0x3c) { 2958 unsigned int lba_count, desc_count; 2959 2960 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]); 2961 2962 if (!sdkp->lbpme) 2963 goto out; 2964 2965 lba_count = get_unaligned_be32(&buffer[20]); 2966 desc_count = get_unaligned_be32(&buffer[24]); 2967 2968 if (lba_count && desc_count) 2969 sdkp->max_unmap_blocks = lba_count; 2970 2971 sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]); 2972 2973 if (buffer[32] & 0x80) 2974 sdkp->unmap_alignment = 2975 get_unaligned_be32(&buffer[32]) & ~(1 << 31); 2976 2977 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */ 2978 2979 if (sdkp->max_unmap_blocks) 2980 sd_config_discard(sdkp, SD_LBP_UNMAP); 2981 else 2982 sd_config_discard(sdkp, SD_LBP_WS16); 2983 2984 } else { /* LBP VPD page tells us what to use */ 2985 if (sdkp->lbpu && sdkp->max_unmap_blocks) 2986 sd_config_discard(sdkp, SD_LBP_UNMAP); 2987 else if (sdkp->lbpws) 2988 sd_config_discard(sdkp, SD_LBP_WS16); 2989 else if (sdkp->lbpws10) 2990 sd_config_discard(sdkp, SD_LBP_WS10); 2991 else 2992 sd_config_discard(sdkp, SD_LBP_DISABLE); 2993 } 2994 } 2995 2996 out: 2997 kfree(buffer); 2998 } 2999 3000 /** 3001 * sd_read_block_characteristics - Query block dev. characteristics 3002 * @sdkp: disk to query 3003 */ 3004 static void sd_read_block_characteristics(struct scsi_disk *sdkp) 3005 { 3006 struct request_queue *q = sdkp->disk->queue; 3007 unsigned char *buffer; 3008 u16 rot; 3009 const int vpd_len = 64; 3010 3011 buffer = kmalloc(vpd_len, GFP_KERNEL); 3012 3013 if (!buffer || 3014 /* Block Device Characteristics VPD */ 3015 scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len)) 3016 goto out; 3017 3018 rot = get_unaligned_be16(&buffer[4]); 3019 3020 if (rot == 1) { 3021 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 3022 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q); 3023 } 3024 3025 if (sdkp->device->type == TYPE_ZBC) { 3026 /* Host-managed */ 3027 blk_queue_set_zoned(sdkp->disk, BLK_ZONED_HM); 3028 } else { 3029 sdkp->zoned = (buffer[8] >> 4) & 3; 3030 if (sdkp->zoned == 1) { 3031 /* Host-aware */ 3032 blk_queue_set_zoned(sdkp->disk, BLK_ZONED_HA); 3033 } else { 3034 /* Regular disk or drive managed disk */ 3035 blk_queue_set_zoned(sdkp->disk, BLK_ZONED_NONE); 3036 } 3037 } 3038 3039 if (!sdkp->first_scan) 3040 goto out; 3041 3042 if (blk_queue_is_zoned(q)) { 3043 sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n", 3044 q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware"); 3045 } else { 3046 if (sdkp->zoned == 1) 3047 sd_printk(KERN_NOTICE, sdkp, 3048 "Host-aware SMR disk used as regular disk\n"); 3049 else if (sdkp->zoned == 2) 3050 sd_printk(KERN_NOTICE, sdkp, 3051 "Drive-managed SMR disk\n"); 3052 } 3053 3054 out: 3055 kfree(buffer); 3056 } 3057 3058 /** 3059 * sd_read_block_provisioning - Query provisioning VPD page 3060 * @sdkp: disk to query 3061 */ 3062 static void sd_read_block_provisioning(struct scsi_disk *sdkp) 3063 { 3064 unsigned char *buffer; 3065 const int vpd_len = 8; 3066 3067 if (sdkp->lbpme == 0) 3068 return; 3069 3070 buffer = kmalloc(vpd_len, GFP_KERNEL); 3071 3072 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len)) 3073 goto out; 3074 3075 sdkp->lbpvpd = 1; 3076 sdkp->lbpu = (buffer[5] >> 7) & 1; /* UNMAP */ 3077 sdkp->lbpws = (buffer[5] >> 6) & 1; /* WRITE SAME(16) with UNMAP */ 3078 sdkp->lbpws10 = (buffer[5] >> 5) & 1; /* WRITE SAME(10) with UNMAP */ 3079 3080 out: 3081 kfree(buffer); 3082 } 3083 3084 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer) 3085 { 3086 struct scsi_device *sdev = sdkp->device; 3087 3088 if (sdev->host->no_write_same) { 3089 sdev->no_write_same = 1; 3090 3091 return; 3092 } 3093 3094 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) { 3095 /* too large values might cause issues with arcmsr */ 3096 int vpd_buf_len = 64; 3097 3098 sdev->no_report_opcodes = 1; 3099 3100 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION 3101 * CODES is unsupported and the device has an ATA 3102 * Information VPD page (SAT). 3103 */ 3104 if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len)) 3105 sdev->no_write_same = 1; 3106 } 3107 3108 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1) 3109 sdkp->ws16 = 1; 3110 3111 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1) 3112 sdkp->ws10 = 1; 3113 } 3114 3115 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer) 3116 { 3117 struct scsi_device *sdev = sdkp->device; 3118 3119 if (!sdev->security_supported) 3120 return; 3121 3122 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3123 SECURITY_PROTOCOL_IN) == 1 && 3124 scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3125 SECURITY_PROTOCOL_OUT) == 1) 3126 sdkp->security = 1; 3127 } 3128 3129 /* 3130 * Determine the device's preferred I/O size for reads and writes 3131 * unless the reported value is unreasonably small, large, not a 3132 * multiple of the physical block size, or simply garbage. 3133 */ 3134 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp, 3135 unsigned int dev_max) 3136 { 3137 struct scsi_device *sdp = sdkp->device; 3138 unsigned int opt_xfer_bytes = 3139 logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 3140 3141 if (sdkp->opt_xfer_blocks == 0) 3142 return false; 3143 3144 if (sdkp->opt_xfer_blocks > dev_max) { 3145 sd_first_printk(KERN_WARNING, sdkp, 3146 "Optimal transfer size %u logical blocks " \ 3147 "> dev_max (%u logical blocks)\n", 3148 sdkp->opt_xfer_blocks, dev_max); 3149 return false; 3150 } 3151 3152 if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) { 3153 sd_first_printk(KERN_WARNING, sdkp, 3154 "Optimal transfer size %u logical blocks " \ 3155 "> sd driver limit (%u logical blocks)\n", 3156 sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS); 3157 return false; 3158 } 3159 3160 if (opt_xfer_bytes < PAGE_SIZE) { 3161 sd_first_printk(KERN_WARNING, sdkp, 3162 "Optimal transfer size %u bytes < " \ 3163 "PAGE_SIZE (%u bytes)\n", 3164 opt_xfer_bytes, (unsigned int)PAGE_SIZE); 3165 return false; 3166 } 3167 3168 if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) { 3169 sd_first_printk(KERN_WARNING, sdkp, 3170 "Optimal transfer size %u bytes not a " \ 3171 "multiple of physical block size (%u bytes)\n", 3172 opt_xfer_bytes, sdkp->physical_block_size); 3173 return false; 3174 } 3175 3176 sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n", 3177 opt_xfer_bytes); 3178 return true; 3179 } 3180 3181 /** 3182 * sd_revalidate_disk - called the first time a new disk is seen, 3183 * performs disk spin up, read_capacity, etc. 3184 * @disk: struct gendisk we care about 3185 **/ 3186 static int sd_revalidate_disk(struct gendisk *disk) 3187 { 3188 struct scsi_disk *sdkp = scsi_disk(disk); 3189 struct scsi_device *sdp = sdkp->device; 3190 struct request_queue *q = sdkp->disk->queue; 3191 sector_t old_capacity = sdkp->capacity; 3192 unsigned char *buffer; 3193 unsigned int dev_max, rw_max; 3194 3195 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, 3196 "sd_revalidate_disk\n")); 3197 3198 /* 3199 * If the device is offline, don't try and read capacity or any 3200 * of the other niceties. 3201 */ 3202 if (!scsi_device_online(sdp)) 3203 goto out; 3204 3205 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL); 3206 if (!buffer) { 3207 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory " 3208 "allocation failure.\n"); 3209 goto out; 3210 } 3211 3212 sd_spinup_disk(sdkp); 3213 3214 /* 3215 * Without media there is no reason to ask; moreover, some devices 3216 * react badly if we do. 3217 */ 3218 if (sdkp->media_present) { 3219 sd_read_capacity(sdkp, buffer); 3220 3221 /* 3222 * set the default to rotational. All non-rotational devices 3223 * support the block characteristics VPD page, which will 3224 * cause this to be updated correctly and any device which 3225 * doesn't support it should be treated as rotational. 3226 */ 3227 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q); 3228 blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q); 3229 3230 if (scsi_device_supports_vpd(sdp)) { 3231 sd_read_block_provisioning(sdkp); 3232 sd_read_block_limits(sdkp); 3233 sd_read_block_characteristics(sdkp); 3234 sd_zbc_read_zones(sdkp, buffer); 3235 } 3236 3237 sd_print_capacity(sdkp, old_capacity); 3238 3239 sd_read_write_protect_flag(sdkp, buffer); 3240 sd_read_cache_type(sdkp, buffer); 3241 sd_read_app_tag_own(sdkp, buffer); 3242 sd_read_write_same(sdkp, buffer); 3243 sd_read_security(sdkp, buffer); 3244 } 3245 3246 /* 3247 * We now have all cache related info, determine how we deal 3248 * with flush requests. 3249 */ 3250 sd_set_flush_flag(sdkp); 3251 3252 /* Initial block count limit based on CDB TRANSFER LENGTH field size. */ 3253 dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS; 3254 3255 /* Some devices report a maximum block count for READ/WRITE requests. */ 3256 dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks); 3257 q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max); 3258 3259 if (sd_validate_opt_xfer_size(sdkp, dev_max)) { 3260 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 3261 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks); 3262 } else { 3263 q->limits.io_opt = 0; 3264 rw_max = min_not_zero(logical_to_sectors(sdp, dev_max), 3265 (sector_t)BLK_DEF_MAX_SECTORS); 3266 } 3267 3268 /* Do not exceed controller limit */ 3269 rw_max = min(rw_max, queue_max_hw_sectors(q)); 3270 3271 /* 3272 * Only update max_sectors if previously unset or if the current value 3273 * exceeds the capabilities of the hardware. 3274 */ 3275 if (sdkp->first_scan || 3276 q->limits.max_sectors > q->limits.max_dev_sectors || 3277 q->limits.max_sectors > q->limits.max_hw_sectors) 3278 q->limits.max_sectors = rw_max; 3279 3280 sdkp->first_scan = 0; 3281 3282 set_capacity_and_notify(disk, logical_to_sectors(sdp, sdkp->capacity)); 3283 sd_config_write_same(sdkp); 3284 kfree(buffer); 3285 3286 /* 3287 * For a zoned drive, revalidating the zones can be done only once 3288 * the gendisk capacity is set. So if this fails, set back the gendisk 3289 * capacity to 0. 3290 */ 3291 if (sd_zbc_revalidate_zones(sdkp)) 3292 set_capacity_and_notify(disk, 0); 3293 3294 out: 3295 return 0; 3296 } 3297 3298 /** 3299 * sd_unlock_native_capacity - unlock native capacity 3300 * @disk: struct gendisk to set capacity for 3301 * 3302 * Block layer calls this function if it detects that partitions 3303 * on @disk reach beyond the end of the device. If the SCSI host 3304 * implements ->unlock_native_capacity() method, it's invoked to 3305 * give it a chance to adjust the device capacity. 3306 * 3307 * CONTEXT: 3308 * Defined by block layer. Might sleep. 3309 */ 3310 static void sd_unlock_native_capacity(struct gendisk *disk) 3311 { 3312 struct scsi_device *sdev = scsi_disk(disk)->device; 3313 3314 if (sdev->host->hostt->unlock_native_capacity) 3315 sdev->host->hostt->unlock_native_capacity(sdev); 3316 } 3317 3318 /** 3319 * sd_format_disk_name - format disk name 3320 * @prefix: name prefix - ie. "sd" for SCSI disks 3321 * @index: index of the disk to format name for 3322 * @buf: output buffer 3323 * @buflen: length of the output buffer 3324 * 3325 * SCSI disk names starts at sda. The 26th device is sdz and the 3326 * 27th is sdaa. The last one for two lettered suffix is sdzz 3327 * which is followed by sdaaa. 3328 * 3329 * This is basically 26 base counting with one extra 'nil' entry 3330 * at the beginning from the second digit on and can be 3331 * determined using similar method as 26 base conversion with the 3332 * index shifted -1 after each digit is computed. 3333 * 3334 * CONTEXT: 3335 * Don't care. 3336 * 3337 * RETURNS: 3338 * 0 on success, -errno on failure. 3339 */ 3340 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen) 3341 { 3342 const int base = 'z' - 'a' + 1; 3343 char *begin = buf + strlen(prefix); 3344 char *end = buf + buflen; 3345 char *p; 3346 int unit; 3347 3348 p = end - 1; 3349 *p = '\0'; 3350 unit = base; 3351 do { 3352 if (p == begin) 3353 return -EINVAL; 3354 *--p = 'a' + (index % unit); 3355 index = (index / unit) - 1; 3356 } while (index >= 0); 3357 3358 memmove(begin, p, end - p); 3359 memcpy(buf, prefix, strlen(prefix)); 3360 3361 return 0; 3362 } 3363 3364 /** 3365 * sd_probe - called during driver initialization and whenever a 3366 * new scsi device is attached to the system. It is called once 3367 * for each scsi device (not just disks) present. 3368 * @dev: pointer to device object 3369 * 3370 * Returns 0 if successful (or not interested in this scsi device 3371 * (e.g. scanner)); 1 when there is an error. 3372 * 3373 * Note: this function is invoked from the scsi mid-level. 3374 * This function sets up the mapping between a given 3375 * <host,channel,id,lun> (found in sdp) and new device name 3376 * (e.g. /dev/sda). More precisely it is the block device major 3377 * and minor number that is chosen here. 3378 * 3379 * Assume sd_probe is not re-entrant (for time being) 3380 * Also think about sd_probe() and sd_remove() running coincidentally. 3381 **/ 3382 static int sd_probe(struct device *dev) 3383 { 3384 struct scsi_device *sdp = to_scsi_device(dev); 3385 struct scsi_disk *sdkp; 3386 struct gendisk *gd; 3387 int index; 3388 int error; 3389 3390 scsi_autopm_get_device(sdp); 3391 error = -ENODEV; 3392 if (sdp->type != TYPE_DISK && 3393 sdp->type != TYPE_ZBC && 3394 sdp->type != TYPE_MOD && 3395 sdp->type != TYPE_RBC) 3396 goto out; 3397 3398 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) && sdp->type == TYPE_ZBC) { 3399 sdev_printk(KERN_WARNING, sdp, 3400 "Unsupported ZBC host-managed device.\n"); 3401 goto out; 3402 } 3403 3404 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp, 3405 "sd_probe\n")); 3406 3407 error = -ENOMEM; 3408 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL); 3409 if (!sdkp) 3410 goto out; 3411 3412 gd = __alloc_disk_node(sdp->request_queue, NUMA_NO_NODE, 3413 &sd_bio_compl_lkclass); 3414 if (!gd) 3415 goto out_free; 3416 3417 index = ida_alloc(&sd_index_ida, GFP_KERNEL); 3418 if (index < 0) { 3419 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n"); 3420 goto out_put; 3421 } 3422 3423 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN); 3424 if (error) { 3425 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n"); 3426 goto out_free_index; 3427 } 3428 3429 sdkp->device = sdp; 3430 sdkp->driver = &sd_template; 3431 sdkp->disk = gd; 3432 sdkp->index = index; 3433 sdkp->max_retries = SD_MAX_RETRIES; 3434 atomic_set(&sdkp->openers, 0); 3435 atomic_set(&sdkp->device->ioerr_cnt, 0); 3436 3437 if (!sdp->request_queue->rq_timeout) { 3438 if (sdp->type != TYPE_MOD) 3439 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT); 3440 else 3441 blk_queue_rq_timeout(sdp->request_queue, 3442 SD_MOD_TIMEOUT); 3443 } 3444 3445 device_initialize(&sdkp->dev); 3446 sdkp->dev.parent = dev; 3447 sdkp->dev.class = &sd_disk_class; 3448 dev_set_name(&sdkp->dev, "%s", dev_name(dev)); 3449 3450 error = device_add(&sdkp->dev); 3451 if (error) 3452 goto out_free_index; 3453 3454 get_device(dev); 3455 dev_set_drvdata(dev, sdkp); 3456 3457 gd->major = sd_major((index & 0xf0) >> 4); 3458 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00); 3459 gd->minors = SD_MINORS; 3460 3461 gd->fops = &sd_fops; 3462 gd->private_data = &sdkp->driver; 3463 3464 /* defaults, until the device tells us otherwise */ 3465 sdp->sector_size = 512; 3466 sdkp->capacity = 0; 3467 sdkp->media_present = 1; 3468 sdkp->write_prot = 0; 3469 sdkp->cache_override = 0; 3470 sdkp->WCE = 0; 3471 sdkp->RCD = 0; 3472 sdkp->ATO = 0; 3473 sdkp->first_scan = 1; 3474 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS; 3475 3476 sd_revalidate_disk(gd); 3477 3478 gd->flags = GENHD_FL_EXT_DEVT; 3479 if (sdp->removable) { 3480 gd->flags |= GENHD_FL_REMOVABLE; 3481 gd->events |= DISK_EVENT_MEDIA_CHANGE; 3482 gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT; 3483 } 3484 3485 blk_pm_runtime_init(sdp->request_queue, dev); 3486 if (sdp->rpm_autosuspend) { 3487 pm_runtime_set_autosuspend_delay(dev, 3488 sdp->host->hostt->rpm_autosuspend_delay); 3489 } 3490 device_add_disk(dev, gd, NULL); 3491 if (sdkp->capacity) 3492 sd_dif_config_host(sdkp); 3493 3494 sd_revalidate_disk(gd); 3495 3496 if (sdkp->security) { 3497 sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit); 3498 if (sdkp->opal_dev) 3499 sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n"); 3500 } 3501 3502 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n", 3503 sdp->removable ? "removable " : ""); 3504 scsi_autopm_put_device(sdp); 3505 3506 return 0; 3507 3508 out_free_index: 3509 ida_free(&sd_index_ida, index); 3510 out_put: 3511 put_disk(gd); 3512 out_free: 3513 sd_zbc_release_disk(sdkp); 3514 kfree(sdkp); 3515 out: 3516 scsi_autopm_put_device(sdp); 3517 return error; 3518 } 3519 3520 /** 3521 * sd_remove - called whenever a scsi disk (previously recognized by 3522 * sd_probe) is detached from the system. It is called (potentially 3523 * multiple times) during sd module unload. 3524 * @dev: pointer to device object 3525 * 3526 * Note: this function is invoked from the scsi mid-level. 3527 * This function potentially frees up a device name (e.g. /dev/sdc) 3528 * that could be re-used by a subsequent sd_probe(). 3529 * This function is not called when the built-in sd driver is "exit-ed". 3530 **/ 3531 static int sd_remove(struct device *dev) 3532 { 3533 struct scsi_disk *sdkp; 3534 3535 sdkp = dev_get_drvdata(dev); 3536 scsi_autopm_get_device(sdkp->device); 3537 3538 async_synchronize_full_domain(&scsi_sd_pm_domain); 3539 device_del(&sdkp->dev); 3540 del_gendisk(sdkp->disk); 3541 sd_shutdown(dev); 3542 3543 free_opal_dev(sdkp->opal_dev); 3544 3545 mutex_lock(&sd_ref_mutex); 3546 dev_set_drvdata(dev, NULL); 3547 put_device(&sdkp->dev); 3548 mutex_unlock(&sd_ref_mutex); 3549 3550 return 0; 3551 } 3552 3553 /** 3554 * scsi_disk_release - Called to free the scsi_disk structure 3555 * @dev: pointer to embedded class device 3556 * 3557 * sd_ref_mutex must be held entering this routine. Because it is 3558 * called on last put, you should always use the scsi_disk_get() 3559 * scsi_disk_put() helpers which manipulate the semaphore directly 3560 * and never do a direct put_device. 3561 **/ 3562 static void scsi_disk_release(struct device *dev) 3563 { 3564 struct scsi_disk *sdkp = to_scsi_disk(dev); 3565 struct gendisk *disk = sdkp->disk; 3566 struct request_queue *q = disk->queue; 3567 3568 ida_free(&sd_index_ida, sdkp->index); 3569 3570 /* 3571 * Wait until all requests that are in progress have completed. 3572 * This is necessary to avoid that e.g. scsi_end_request() crashes 3573 * due to clearing the disk->private_data pointer. Wait from inside 3574 * scsi_disk_release() instead of from sd_release() to avoid that 3575 * freezing and unfreezing the request queue affects user space I/O 3576 * in case multiple processes open a /dev/sd... node concurrently. 3577 */ 3578 blk_mq_freeze_queue(q); 3579 blk_mq_unfreeze_queue(q); 3580 3581 disk->private_data = NULL; 3582 put_disk(disk); 3583 put_device(&sdkp->device->sdev_gendev); 3584 3585 sd_zbc_release_disk(sdkp); 3586 3587 kfree(sdkp); 3588 } 3589 3590 static int sd_start_stop_device(struct scsi_disk *sdkp, int start) 3591 { 3592 unsigned char cmd[6] = { START_STOP }; /* START_VALID */ 3593 struct scsi_sense_hdr sshdr; 3594 struct scsi_device *sdp = sdkp->device; 3595 int res; 3596 3597 if (start) 3598 cmd[4] |= 1; /* START */ 3599 3600 if (sdp->start_stop_pwr_cond) 3601 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */ 3602 3603 if (!scsi_device_online(sdp)) 3604 return -ENODEV; 3605 3606 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr, 3607 SD_TIMEOUT, sdkp->max_retries, 0, RQF_PM, NULL); 3608 if (res) { 3609 sd_print_result(sdkp, "Start/Stop Unit failed", res); 3610 if (res > 0 && scsi_sense_valid(&sshdr)) { 3611 sd_print_sense_hdr(sdkp, &sshdr); 3612 /* 0x3a is medium not present */ 3613 if (sshdr.asc == 0x3a) 3614 res = 0; 3615 } 3616 } 3617 3618 /* SCSI error codes must not go to the generic layer */ 3619 if (res) 3620 return -EIO; 3621 3622 return 0; 3623 } 3624 3625 /* 3626 * Send a SYNCHRONIZE CACHE instruction down to the device through 3627 * the normal SCSI command structure. Wait for the command to 3628 * complete. 3629 */ 3630 static void sd_shutdown(struct device *dev) 3631 { 3632 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3633 3634 if (!sdkp) 3635 return; /* this can happen */ 3636 3637 if (pm_runtime_suspended(dev)) 3638 return; 3639 3640 if (sdkp->WCE && sdkp->media_present) { 3641 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3642 sd_sync_cache(sdkp, NULL); 3643 } 3644 3645 if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) { 3646 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3647 sd_start_stop_device(sdkp, 0); 3648 } 3649 } 3650 3651 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors) 3652 { 3653 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3654 struct scsi_sense_hdr sshdr; 3655 int ret = 0; 3656 3657 if (!sdkp) /* E.g.: runtime suspend following sd_remove() */ 3658 return 0; 3659 3660 if (sdkp->WCE && sdkp->media_present) { 3661 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3662 ret = sd_sync_cache(sdkp, &sshdr); 3663 3664 if (ret) { 3665 /* ignore OFFLINE device */ 3666 if (ret == -ENODEV) 3667 return 0; 3668 3669 if (!scsi_sense_valid(&sshdr) || 3670 sshdr.sense_key != ILLEGAL_REQUEST) 3671 return ret; 3672 3673 /* 3674 * sshdr.sense_key == ILLEGAL_REQUEST means this drive 3675 * doesn't support sync. There's not much to do and 3676 * suspend shouldn't fail. 3677 */ 3678 ret = 0; 3679 } 3680 } 3681 3682 if (sdkp->device->manage_start_stop) { 3683 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3684 /* an error is not worth aborting a system sleep */ 3685 ret = sd_start_stop_device(sdkp, 0); 3686 if (ignore_stop_errors) 3687 ret = 0; 3688 } 3689 3690 return ret; 3691 } 3692 3693 static int sd_suspend_system(struct device *dev) 3694 { 3695 return sd_suspend_common(dev, true); 3696 } 3697 3698 static int sd_suspend_runtime(struct device *dev) 3699 { 3700 return sd_suspend_common(dev, false); 3701 } 3702 3703 static int sd_resume(struct device *dev) 3704 { 3705 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3706 int ret; 3707 3708 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */ 3709 return 0; 3710 3711 if (!sdkp->device->manage_start_stop) 3712 return 0; 3713 3714 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n"); 3715 ret = sd_start_stop_device(sdkp, 1); 3716 if (!ret) 3717 opal_unlock_from_suspend(sdkp->opal_dev); 3718 return ret; 3719 } 3720 3721 /** 3722 * init_sd - entry point for this driver (both when built in or when 3723 * a module). 3724 * 3725 * Note: this function registers this driver with the scsi mid-level. 3726 **/ 3727 static int __init init_sd(void) 3728 { 3729 int majors = 0, i, err; 3730 3731 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n")); 3732 3733 for (i = 0; i < SD_MAJORS; i++) { 3734 if (__register_blkdev(sd_major(i), "sd", sd_default_probe)) 3735 continue; 3736 majors++; 3737 } 3738 3739 if (!majors) 3740 return -ENODEV; 3741 3742 err = class_register(&sd_disk_class); 3743 if (err) 3744 goto err_out; 3745 3746 sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE, 3747 0, 0, NULL); 3748 if (!sd_cdb_cache) { 3749 printk(KERN_ERR "sd: can't init extended cdb cache\n"); 3750 err = -ENOMEM; 3751 goto err_out_class; 3752 } 3753 3754 sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache); 3755 if (!sd_cdb_pool) { 3756 printk(KERN_ERR "sd: can't init extended cdb pool\n"); 3757 err = -ENOMEM; 3758 goto err_out_cache; 3759 } 3760 3761 sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0); 3762 if (!sd_page_pool) { 3763 printk(KERN_ERR "sd: can't init discard page pool\n"); 3764 err = -ENOMEM; 3765 goto err_out_ppool; 3766 } 3767 3768 err = scsi_register_driver(&sd_template.gendrv); 3769 if (err) 3770 goto err_out_driver; 3771 3772 return 0; 3773 3774 err_out_driver: 3775 mempool_destroy(sd_page_pool); 3776 3777 err_out_ppool: 3778 mempool_destroy(sd_cdb_pool); 3779 3780 err_out_cache: 3781 kmem_cache_destroy(sd_cdb_cache); 3782 3783 err_out_class: 3784 class_unregister(&sd_disk_class); 3785 err_out: 3786 for (i = 0; i < SD_MAJORS; i++) 3787 unregister_blkdev(sd_major(i), "sd"); 3788 return err; 3789 } 3790 3791 /** 3792 * exit_sd - exit point for this driver (when it is a module). 3793 * 3794 * Note: this function unregisters this driver from the scsi mid-level. 3795 **/ 3796 static void __exit exit_sd(void) 3797 { 3798 int i; 3799 3800 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n")); 3801 3802 scsi_unregister_driver(&sd_template.gendrv); 3803 mempool_destroy(sd_cdb_pool); 3804 mempool_destroy(sd_page_pool); 3805 kmem_cache_destroy(sd_cdb_cache); 3806 3807 class_unregister(&sd_disk_class); 3808 3809 for (i = 0; i < SD_MAJORS; i++) 3810 unregister_blkdev(sd_major(i), "sd"); 3811 } 3812 3813 module_init(init_sd); 3814 module_exit(exit_sd); 3815 3816 void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr) 3817 { 3818 scsi_print_sense_hdr(sdkp->device, 3819 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr); 3820 } 3821 3822 void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result) 3823 { 3824 const char *hb_string = scsi_hostbyte_string(result); 3825 3826 if (hb_string) 3827 sd_printk(KERN_INFO, sdkp, 3828 "%s: Result: hostbyte=%s driverbyte=%s\n", msg, 3829 hb_string ? hb_string : "invalid", 3830 "DRIVER_OK"); 3831 else 3832 sd_printk(KERN_INFO, sdkp, 3833 "%s: Result: hostbyte=0x%02x driverbyte=%s\n", 3834 msg, host_byte(result), "DRIVER_OK"); 3835 } 3836