1 /* 2 * sd.c Copyright (C) 1992 Drew Eckhardt 3 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale 4 * 5 * Linux scsi disk driver 6 * Initial versions: Drew Eckhardt 7 * Subsequent revisions: Eric Youngdale 8 * Modification history: 9 * - Drew Eckhardt <drew@colorado.edu> original 10 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 11 * outstanding request, and other enhancements. 12 * Support loadable low-level scsi drivers. 13 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 14 * eight major numbers. 15 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs. 16 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 17 * sd_init and cleanups. 18 * - Alex Davis <letmein@erols.com> Fix problem where partition info 19 * not being read in sd_open. Fix problem where removable media 20 * could be ejected after sd_open. 21 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x 22 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 23 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 24 * Support 32k/1M disks. 25 * 26 * Logging policy (needs CONFIG_SCSI_LOGGING defined): 27 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2 28 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1 29 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1 30 * - entering other commands: SCSI_LOG_HLQUEUE level 3 31 * Note: when the logging level is set by the user, it must be greater 32 * than the level indicated above to trigger output. 33 */ 34 35 #include <linux/module.h> 36 #include <linux/fs.h> 37 #include <linux/kernel.h> 38 #include <linux/mm.h> 39 #include <linux/bio.h> 40 #include <linux/genhd.h> 41 #include <linux/hdreg.h> 42 #include <linux/errno.h> 43 #include <linux/idr.h> 44 #include <linux/interrupt.h> 45 #include <linux/init.h> 46 #include <linux/blkdev.h> 47 #include <linux/blkpg.h> 48 #include <linux/blk-pm.h> 49 #include <linux/delay.h> 50 #include <linux/mutex.h> 51 #include <linux/string_helpers.h> 52 #include <linux/async.h> 53 #include <linux/slab.h> 54 #include <linux/sed-opal.h> 55 #include <linux/pm_runtime.h> 56 #include <linux/pr.h> 57 #include <linux/t10-pi.h> 58 #include <linux/uaccess.h> 59 #include <asm/unaligned.h> 60 61 #include <scsi/scsi.h> 62 #include <scsi/scsi_cmnd.h> 63 #include <scsi/scsi_dbg.h> 64 #include <scsi/scsi_device.h> 65 #include <scsi/scsi_driver.h> 66 #include <scsi/scsi_eh.h> 67 #include <scsi/scsi_host.h> 68 #include <scsi/scsi_ioctl.h> 69 #include <scsi/scsicam.h> 70 71 #include "sd.h" 72 #include "scsi_priv.h" 73 #include "scsi_logging.h" 74 75 MODULE_AUTHOR("Eric Youngdale"); 76 MODULE_DESCRIPTION("SCSI disk (sd) driver"); 77 MODULE_LICENSE("GPL"); 78 79 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR); 80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR); 81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR); 82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR); 83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR); 84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR); 85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR); 86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR); 87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR); 88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR); 89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR); 90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR); 91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR); 92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR); 93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR); 94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR); 95 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK); 96 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD); 97 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC); 98 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC); 99 100 #if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT) 101 #define SD_MINORS 16 102 #else 103 #define SD_MINORS 0 104 #endif 105 106 static void sd_config_discard(struct scsi_disk *, unsigned int); 107 static void sd_config_write_same(struct scsi_disk *); 108 static int sd_revalidate_disk(struct gendisk *); 109 static void sd_unlock_native_capacity(struct gendisk *disk); 110 static int sd_probe(struct device *); 111 static int sd_remove(struct device *); 112 static void sd_shutdown(struct device *); 113 static int sd_suspend_system(struct device *); 114 static int sd_suspend_runtime(struct device *); 115 static int sd_resume(struct device *); 116 static void sd_rescan(struct device *); 117 static int sd_init_command(struct scsi_cmnd *SCpnt); 118 static void sd_uninit_command(struct scsi_cmnd *SCpnt); 119 static int sd_done(struct scsi_cmnd *); 120 static void sd_eh_reset(struct scsi_cmnd *); 121 static int sd_eh_action(struct scsi_cmnd *, int); 122 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer); 123 static void scsi_disk_release(struct device *cdev); 124 static void sd_print_sense_hdr(struct scsi_disk *, struct scsi_sense_hdr *); 125 static void sd_print_result(const struct scsi_disk *, const char *, int); 126 127 static DEFINE_IDA(sd_index_ida); 128 129 /* This semaphore is used to mediate the 0->1 reference get in the 130 * face of object destruction (i.e. we can't allow a get on an 131 * object after last put) */ 132 static DEFINE_MUTEX(sd_ref_mutex); 133 134 static struct kmem_cache *sd_cdb_cache; 135 static mempool_t *sd_cdb_pool; 136 137 static const char *sd_cache_types[] = { 138 "write through", "none", "write back", 139 "write back, no read (daft)" 140 }; 141 142 static void sd_set_flush_flag(struct scsi_disk *sdkp) 143 { 144 bool wc = false, fua = false; 145 146 if (sdkp->WCE) { 147 wc = true; 148 if (sdkp->DPOFUA) 149 fua = true; 150 } 151 152 blk_queue_write_cache(sdkp->disk->queue, wc, fua); 153 } 154 155 static ssize_t 156 cache_type_store(struct device *dev, struct device_attribute *attr, 157 const char *buf, size_t count) 158 { 159 int ct, rcd, wce, sp; 160 struct scsi_disk *sdkp = to_scsi_disk(dev); 161 struct scsi_device *sdp = sdkp->device; 162 char buffer[64]; 163 char *buffer_data; 164 struct scsi_mode_data data; 165 struct scsi_sense_hdr sshdr; 166 static const char temp[] = "temporary "; 167 int len; 168 169 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 170 /* no cache control on RBC devices; theoretically they 171 * can do it, but there's probably so many exceptions 172 * it's not worth the risk */ 173 return -EINVAL; 174 175 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) { 176 buf += sizeof(temp) - 1; 177 sdkp->cache_override = 1; 178 } else { 179 sdkp->cache_override = 0; 180 } 181 182 ct = sysfs_match_string(sd_cache_types, buf); 183 if (ct < 0) 184 return -EINVAL; 185 186 rcd = ct & 0x01 ? 1 : 0; 187 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0; 188 189 if (sdkp->cache_override) { 190 sdkp->WCE = wce; 191 sdkp->RCD = rcd; 192 sd_set_flush_flag(sdkp); 193 return count; 194 } 195 196 if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT, 197 SD_MAX_RETRIES, &data, NULL)) 198 return -EINVAL; 199 len = min_t(size_t, sizeof(buffer), data.length - data.header_length - 200 data.block_descriptor_length); 201 buffer_data = buffer + data.header_length + 202 data.block_descriptor_length; 203 buffer_data[2] &= ~0x05; 204 buffer_data[2] |= wce << 2 | rcd; 205 sp = buffer_data[0] & 0x80 ? 1 : 0; 206 buffer_data[0] &= ~0x80; 207 208 if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT, 209 SD_MAX_RETRIES, &data, &sshdr)) { 210 if (scsi_sense_valid(&sshdr)) 211 sd_print_sense_hdr(sdkp, &sshdr); 212 return -EINVAL; 213 } 214 revalidate_disk(sdkp->disk); 215 return count; 216 } 217 218 static ssize_t 219 manage_start_stop_show(struct device *dev, struct device_attribute *attr, 220 char *buf) 221 { 222 struct scsi_disk *sdkp = to_scsi_disk(dev); 223 struct scsi_device *sdp = sdkp->device; 224 225 return sprintf(buf, "%u\n", sdp->manage_start_stop); 226 } 227 228 static ssize_t 229 manage_start_stop_store(struct device *dev, struct device_attribute *attr, 230 const char *buf, size_t count) 231 { 232 struct scsi_disk *sdkp = to_scsi_disk(dev); 233 struct scsi_device *sdp = sdkp->device; 234 bool v; 235 236 if (!capable(CAP_SYS_ADMIN)) 237 return -EACCES; 238 239 if (kstrtobool(buf, &v)) 240 return -EINVAL; 241 242 sdp->manage_start_stop = v; 243 244 return count; 245 } 246 static DEVICE_ATTR_RW(manage_start_stop); 247 248 static ssize_t 249 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf) 250 { 251 struct scsi_disk *sdkp = to_scsi_disk(dev); 252 253 return sprintf(buf, "%u\n", sdkp->device->allow_restart); 254 } 255 256 static ssize_t 257 allow_restart_store(struct device *dev, struct device_attribute *attr, 258 const char *buf, size_t count) 259 { 260 bool v; 261 struct scsi_disk *sdkp = to_scsi_disk(dev); 262 struct scsi_device *sdp = sdkp->device; 263 264 if (!capable(CAP_SYS_ADMIN)) 265 return -EACCES; 266 267 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 268 return -EINVAL; 269 270 if (kstrtobool(buf, &v)) 271 return -EINVAL; 272 273 sdp->allow_restart = v; 274 275 return count; 276 } 277 static DEVICE_ATTR_RW(allow_restart); 278 279 static ssize_t 280 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf) 281 { 282 struct scsi_disk *sdkp = to_scsi_disk(dev); 283 int ct = sdkp->RCD + 2*sdkp->WCE; 284 285 return sprintf(buf, "%s\n", sd_cache_types[ct]); 286 } 287 static DEVICE_ATTR_RW(cache_type); 288 289 static ssize_t 290 FUA_show(struct device *dev, struct device_attribute *attr, char *buf) 291 { 292 struct scsi_disk *sdkp = to_scsi_disk(dev); 293 294 return sprintf(buf, "%u\n", sdkp->DPOFUA); 295 } 296 static DEVICE_ATTR_RO(FUA); 297 298 static ssize_t 299 protection_type_show(struct device *dev, struct device_attribute *attr, 300 char *buf) 301 { 302 struct scsi_disk *sdkp = to_scsi_disk(dev); 303 304 return sprintf(buf, "%u\n", sdkp->protection_type); 305 } 306 307 static ssize_t 308 protection_type_store(struct device *dev, struct device_attribute *attr, 309 const char *buf, size_t count) 310 { 311 struct scsi_disk *sdkp = to_scsi_disk(dev); 312 unsigned int val; 313 int err; 314 315 if (!capable(CAP_SYS_ADMIN)) 316 return -EACCES; 317 318 err = kstrtouint(buf, 10, &val); 319 320 if (err) 321 return err; 322 323 if (val <= T10_PI_TYPE3_PROTECTION) 324 sdkp->protection_type = val; 325 326 return count; 327 } 328 static DEVICE_ATTR_RW(protection_type); 329 330 static ssize_t 331 protection_mode_show(struct device *dev, struct device_attribute *attr, 332 char *buf) 333 { 334 struct scsi_disk *sdkp = to_scsi_disk(dev); 335 struct scsi_device *sdp = sdkp->device; 336 unsigned int dif, dix; 337 338 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type); 339 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type); 340 341 if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) { 342 dif = 0; 343 dix = 1; 344 } 345 346 if (!dif && !dix) 347 return sprintf(buf, "none\n"); 348 349 return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif); 350 } 351 static DEVICE_ATTR_RO(protection_mode); 352 353 static ssize_t 354 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf) 355 { 356 struct scsi_disk *sdkp = to_scsi_disk(dev); 357 358 return sprintf(buf, "%u\n", sdkp->ATO); 359 } 360 static DEVICE_ATTR_RO(app_tag_own); 361 362 static ssize_t 363 thin_provisioning_show(struct device *dev, struct device_attribute *attr, 364 char *buf) 365 { 366 struct scsi_disk *sdkp = to_scsi_disk(dev); 367 368 return sprintf(buf, "%u\n", sdkp->lbpme); 369 } 370 static DEVICE_ATTR_RO(thin_provisioning); 371 372 /* sysfs_match_string() requires dense arrays */ 373 static const char *lbp_mode[] = { 374 [SD_LBP_FULL] = "full", 375 [SD_LBP_UNMAP] = "unmap", 376 [SD_LBP_WS16] = "writesame_16", 377 [SD_LBP_WS10] = "writesame_10", 378 [SD_LBP_ZERO] = "writesame_zero", 379 [SD_LBP_DISABLE] = "disabled", 380 }; 381 382 static ssize_t 383 provisioning_mode_show(struct device *dev, struct device_attribute *attr, 384 char *buf) 385 { 386 struct scsi_disk *sdkp = to_scsi_disk(dev); 387 388 return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]); 389 } 390 391 static ssize_t 392 provisioning_mode_store(struct device *dev, struct device_attribute *attr, 393 const char *buf, size_t count) 394 { 395 struct scsi_disk *sdkp = to_scsi_disk(dev); 396 struct scsi_device *sdp = sdkp->device; 397 int mode; 398 399 if (!capable(CAP_SYS_ADMIN)) 400 return -EACCES; 401 402 if (sd_is_zoned(sdkp)) { 403 sd_config_discard(sdkp, SD_LBP_DISABLE); 404 return count; 405 } 406 407 if (sdp->type != TYPE_DISK) 408 return -EINVAL; 409 410 mode = sysfs_match_string(lbp_mode, buf); 411 if (mode < 0) 412 return -EINVAL; 413 414 sd_config_discard(sdkp, mode); 415 416 return count; 417 } 418 static DEVICE_ATTR_RW(provisioning_mode); 419 420 /* sysfs_match_string() requires dense arrays */ 421 static const char *zeroing_mode[] = { 422 [SD_ZERO_WRITE] = "write", 423 [SD_ZERO_WS] = "writesame", 424 [SD_ZERO_WS16_UNMAP] = "writesame_16_unmap", 425 [SD_ZERO_WS10_UNMAP] = "writesame_10_unmap", 426 }; 427 428 static ssize_t 429 zeroing_mode_show(struct device *dev, struct device_attribute *attr, 430 char *buf) 431 { 432 struct scsi_disk *sdkp = to_scsi_disk(dev); 433 434 return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]); 435 } 436 437 static ssize_t 438 zeroing_mode_store(struct device *dev, struct device_attribute *attr, 439 const char *buf, size_t count) 440 { 441 struct scsi_disk *sdkp = to_scsi_disk(dev); 442 int mode; 443 444 if (!capable(CAP_SYS_ADMIN)) 445 return -EACCES; 446 447 mode = sysfs_match_string(zeroing_mode, buf); 448 if (mode < 0) 449 return -EINVAL; 450 451 sdkp->zeroing_mode = mode; 452 453 return count; 454 } 455 static DEVICE_ATTR_RW(zeroing_mode); 456 457 static ssize_t 458 max_medium_access_timeouts_show(struct device *dev, 459 struct device_attribute *attr, char *buf) 460 { 461 struct scsi_disk *sdkp = to_scsi_disk(dev); 462 463 return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts); 464 } 465 466 static ssize_t 467 max_medium_access_timeouts_store(struct device *dev, 468 struct device_attribute *attr, const char *buf, 469 size_t count) 470 { 471 struct scsi_disk *sdkp = to_scsi_disk(dev); 472 int err; 473 474 if (!capable(CAP_SYS_ADMIN)) 475 return -EACCES; 476 477 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts); 478 479 return err ? err : count; 480 } 481 static DEVICE_ATTR_RW(max_medium_access_timeouts); 482 483 static ssize_t 484 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr, 485 char *buf) 486 { 487 struct scsi_disk *sdkp = to_scsi_disk(dev); 488 489 return sprintf(buf, "%u\n", sdkp->max_ws_blocks); 490 } 491 492 static ssize_t 493 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr, 494 const char *buf, size_t count) 495 { 496 struct scsi_disk *sdkp = to_scsi_disk(dev); 497 struct scsi_device *sdp = sdkp->device; 498 unsigned long max; 499 int err; 500 501 if (!capable(CAP_SYS_ADMIN)) 502 return -EACCES; 503 504 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 505 return -EINVAL; 506 507 err = kstrtoul(buf, 10, &max); 508 509 if (err) 510 return err; 511 512 if (max == 0) 513 sdp->no_write_same = 1; 514 else if (max <= SD_MAX_WS16_BLOCKS) { 515 sdp->no_write_same = 0; 516 sdkp->max_ws_blocks = max; 517 } 518 519 sd_config_write_same(sdkp); 520 521 return count; 522 } 523 static DEVICE_ATTR_RW(max_write_same_blocks); 524 525 static struct attribute *sd_disk_attrs[] = { 526 &dev_attr_cache_type.attr, 527 &dev_attr_FUA.attr, 528 &dev_attr_allow_restart.attr, 529 &dev_attr_manage_start_stop.attr, 530 &dev_attr_protection_type.attr, 531 &dev_attr_protection_mode.attr, 532 &dev_attr_app_tag_own.attr, 533 &dev_attr_thin_provisioning.attr, 534 &dev_attr_provisioning_mode.attr, 535 &dev_attr_zeroing_mode.attr, 536 &dev_attr_max_write_same_blocks.attr, 537 &dev_attr_max_medium_access_timeouts.attr, 538 NULL, 539 }; 540 ATTRIBUTE_GROUPS(sd_disk); 541 542 static struct class sd_disk_class = { 543 .name = "scsi_disk", 544 .owner = THIS_MODULE, 545 .dev_release = scsi_disk_release, 546 .dev_groups = sd_disk_groups, 547 }; 548 549 static const struct dev_pm_ops sd_pm_ops = { 550 .suspend = sd_suspend_system, 551 .resume = sd_resume, 552 .poweroff = sd_suspend_system, 553 .restore = sd_resume, 554 .runtime_suspend = sd_suspend_runtime, 555 .runtime_resume = sd_resume, 556 }; 557 558 static struct scsi_driver sd_template = { 559 .gendrv = { 560 .name = "sd", 561 .owner = THIS_MODULE, 562 .probe = sd_probe, 563 .remove = sd_remove, 564 .shutdown = sd_shutdown, 565 .pm = &sd_pm_ops, 566 }, 567 .rescan = sd_rescan, 568 .init_command = sd_init_command, 569 .uninit_command = sd_uninit_command, 570 .done = sd_done, 571 .eh_action = sd_eh_action, 572 .eh_reset = sd_eh_reset, 573 }; 574 575 /* 576 * Dummy kobj_map->probe function. 577 * The default ->probe function will call modprobe, which is 578 * pointless as this module is already loaded. 579 */ 580 static struct kobject *sd_default_probe(dev_t devt, int *partno, void *data) 581 { 582 return NULL; 583 } 584 585 /* 586 * Device no to disk mapping: 587 * 588 * major disc2 disc p1 589 * |............|.............|....|....| <- dev_t 590 * 31 20 19 8 7 4 3 0 591 * 592 * Inside a major, we have 16k disks, however mapped non- 593 * contiguously. The first 16 disks are for major0, the next 594 * ones with major1, ... Disk 256 is for major0 again, disk 272 595 * for major1, ... 596 * As we stay compatible with our numbering scheme, we can reuse 597 * the well-know SCSI majors 8, 65--71, 136--143. 598 */ 599 static int sd_major(int major_idx) 600 { 601 switch (major_idx) { 602 case 0: 603 return SCSI_DISK0_MAJOR; 604 case 1 ... 7: 605 return SCSI_DISK1_MAJOR + major_idx - 1; 606 case 8 ... 15: 607 return SCSI_DISK8_MAJOR + major_idx - 8; 608 default: 609 BUG(); 610 return 0; /* shut up gcc */ 611 } 612 } 613 614 static struct scsi_disk *scsi_disk_get(struct gendisk *disk) 615 { 616 struct scsi_disk *sdkp = NULL; 617 618 mutex_lock(&sd_ref_mutex); 619 620 if (disk->private_data) { 621 sdkp = scsi_disk(disk); 622 if (scsi_device_get(sdkp->device) == 0) 623 get_device(&sdkp->dev); 624 else 625 sdkp = NULL; 626 } 627 mutex_unlock(&sd_ref_mutex); 628 return sdkp; 629 } 630 631 static void scsi_disk_put(struct scsi_disk *sdkp) 632 { 633 struct scsi_device *sdev = sdkp->device; 634 635 mutex_lock(&sd_ref_mutex); 636 put_device(&sdkp->dev); 637 scsi_device_put(sdev); 638 mutex_unlock(&sd_ref_mutex); 639 } 640 641 #ifdef CONFIG_BLK_SED_OPAL 642 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, 643 size_t len, bool send) 644 { 645 struct scsi_device *sdev = data; 646 u8 cdb[12] = { 0, }; 647 int ret; 648 649 cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN; 650 cdb[1] = secp; 651 put_unaligned_be16(spsp, &cdb[2]); 652 put_unaligned_be32(len, &cdb[6]); 653 654 ret = scsi_execute_req(sdev, cdb, 655 send ? DMA_TO_DEVICE : DMA_FROM_DEVICE, 656 buffer, len, NULL, SD_TIMEOUT, SD_MAX_RETRIES, NULL); 657 return ret <= 0 ? ret : -EIO; 658 } 659 #endif /* CONFIG_BLK_SED_OPAL */ 660 661 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd, 662 unsigned int dix, unsigned int dif) 663 { 664 struct bio *bio = scmd->request->bio; 665 unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif); 666 unsigned int protect = 0; 667 668 if (dix) { /* DIX Type 0, 1, 2, 3 */ 669 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM)) 670 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM; 671 672 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 673 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK; 674 } 675 676 if (dif != T10_PI_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */ 677 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT; 678 679 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 680 scmd->prot_flags |= SCSI_PROT_REF_CHECK; 681 } 682 683 if (dif) { /* DIX/DIF Type 1, 2, 3 */ 684 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI; 685 686 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK)) 687 protect = 3 << 5; /* Disable target PI checking */ 688 else 689 protect = 1 << 5; /* Enable target PI checking */ 690 } 691 692 scsi_set_prot_op(scmd, prot_op); 693 scsi_set_prot_type(scmd, dif); 694 scmd->prot_flags &= sd_prot_flag_mask(prot_op); 695 696 return protect; 697 } 698 699 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode) 700 { 701 struct request_queue *q = sdkp->disk->queue; 702 unsigned int logical_block_size = sdkp->device->sector_size; 703 unsigned int max_blocks = 0; 704 705 q->limits.discard_alignment = 706 sdkp->unmap_alignment * logical_block_size; 707 q->limits.discard_granularity = 708 max(sdkp->physical_block_size, 709 sdkp->unmap_granularity * logical_block_size); 710 sdkp->provisioning_mode = mode; 711 712 switch (mode) { 713 714 case SD_LBP_FULL: 715 case SD_LBP_DISABLE: 716 blk_queue_max_discard_sectors(q, 0); 717 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q); 718 return; 719 720 case SD_LBP_UNMAP: 721 max_blocks = min_not_zero(sdkp->max_unmap_blocks, 722 (u32)SD_MAX_WS16_BLOCKS); 723 break; 724 725 case SD_LBP_WS16: 726 if (sdkp->device->unmap_limit_for_ws) 727 max_blocks = sdkp->max_unmap_blocks; 728 else 729 max_blocks = sdkp->max_ws_blocks; 730 731 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS); 732 break; 733 734 case SD_LBP_WS10: 735 if (sdkp->device->unmap_limit_for_ws) 736 max_blocks = sdkp->max_unmap_blocks; 737 else 738 max_blocks = sdkp->max_ws_blocks; 739 740 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS); 741 break; 742 743 case SD_LBP_ZERO: 744 max_blocks = min_not_zero(sdkp->max_ws_blocks, 745 (u32)SD_MAX_WS10_BLOCKS); 746 break; 747 } 748 749 blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9)); 750 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q); 751 } 752 753 static int sd_setup_unmap_cmnd(struct scsi_cmnd *cmd) 754 { 755 struct scsi_device *sdp = cmd->device; 756 struct request *rq = cmd->request; 757 u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9); 758 u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9); 759 unsigned int data_len = 24; 760 char *buf; 761 762 rq->special_vec.bv_page = alloc_page(GFP_ATOMIC | __GFP_ZERO); 763 if (!rq->special_vec.bv_page) 764 return BLKPREP_DEFER; 765 rq->special_vec.bv_offset = 0; 766 rq->special_vec.bv_len = data_len; 767 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 768 769 cmd->cmd_len = 10; 770 cmd->cmnd[0] = UNMAP; 771 cmd->cmnd[8] = 24; 772 773 buf = page_address(rq->special_vec.bv_page); 774 put_unaligned_be16(6 + 16, &buf[0]); 775 put_unaligned_be16(16, &buf[2]); 776 put_unaligned_be64(sector, &buf[8]); 777 put_unaligned_be32(nr_sectors, &buf[16]); 778 779 cmd->allowed = SD_MAX_RETRIES; 780 cmd->transfersize = data_len; 781 rq->timeout = SD_TIMEOUT; 782 scsi_req(rq)->resid_len = data_len; 783 784 return scsi_init_io(cmd); 785 } 786 787 static int sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd, bool unmap) 788 { 789 struct scsi_device *sdp = cmd->device; 790 struct request *rq = cmd->request; 791 u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9); 792 u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9); 793 u32 data_len = sdp->sector_size; 794 795 rq->special_vec.bv_page = alloc_page(GFP_ATOMIC | __GFP_ZERO); 796 if (!rq->special_vec.bv_page) 797 return BLKPREP_DEFER; 798 rq->special_vec.bv_offset = 0; 799 rq->special_vec.bv_len = data_len; 800 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 801 802 cmd->cmd_len = 16; 803 cmd->cmnd[0] = WRITE_SAME_16; 804 if (unmap) 805 cmd->cmnd[1] = 0x8; /* UNMAP */ 806 put_unaligned_be64(sector, &cmd->cmnd[2]); 807 put_unaligned_be32(nr_sectors, &cmd->cmnd[10]); 808 809 cmd->allowed = SD_MAX_RETRIES; 810 cmd->transfersize = data_len; 811 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 812 scsi_req(rq)->resid_len = data_len; 813 814 return scsi_init_io(cmd); 815 } 816 817 static int sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd, bool unmap) 818 { 819 struct scsi_device *sdp = cmd->device; 820 struct request *rq = cmd->request; 821 u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9); 822 u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9); 823 u32 data_len = sdp->sector_size; 824 825 rq->special_vec.bv_page = alloc_page(GFP_ATOMIC | __GFP_ZERO); 826 if (!rq->special_vec.bv_page) 827 return BLKPREP_DEFER; 828 rq->special_vec.bv_offset = 0; 829 rq->special_vec.bv_len = data_len; 830 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 831 832 cmd->cmd_len = 10; 833 cmd->cmnd[0] = WRITE_SAME; 834 if (unmap) 835 cmd->cmnd[1] = 0x8; /* UNMAP */ 836 put_unaligned_be32(sector, &cmd->cmnd[2]); 837 put_unaligned_be16(nr_sectors, &cmd->cmnd[7]); 838 839 cmd->allowed = SD_MAX_RETRIES; 840 cmd->transfersize = data_len; 841 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 842 scsi_req(rq)->resid_len = data_len; 843 844 return scsi_init_io(cmd); 845 } 846 847 static int sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd) 848 { 849 struct request *rq = cmd->request; 850 struct scsi_device *sdp = cmd->device; 851 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 852 u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9); 853 u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9); 854 855 if (!(rq->cmd_flags & REQ_NOUNMAP)) { 856 switch (sdkp->zeroing_mode) { 857 case SD_ZERO_WS16_UNMAP: 858 return sd_setup_write_same16_cmnd(cmd, true); 859 case SD_ZERO_WS10_UNMAP: 860 return sd_setup_write_same10_cmnd(cmd, true); 861 } 862 } 863 864 if (sdp->no_write_same) 865 return BLKPREP_INVALID; 866 867 if (sdkp->ws16 || sector > 0xffffffff || nr_sectors > 0xffff) 868 return sd_setup_write_same16_cmnd(cmd, false); 869 870 return sd_setup_write_same10_cmnd(cmd, false); 871 } 872 873 static void sd_config_write_same(struct scsi_disk *sdkp) 874 { 875 struct request_queue *q = sdkp->disk->queue; 876 unsigned int logical_block_size = sdkp->device->sector_size; 877 878 if (sdkp->device->no_write_same) { 879 sdkp->max_ws_blocks = 0; 880 goto out; 881 } 882 883 /* Some devices can not handle block counts above 0xffff despite 884 * supporting WRITE SAME(16). Consequently we default to 64k 885 * blocks per I/O unless the device explicitly advertises a 886 * bigger limit. 887 */ 888 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS) 889 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 890 (u32)SD_MAX_WS16_BLOCKS); 891 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes) 892 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 893 (u32)SD_MAX_WS10_BLOCKS); 894 else { 895 sdkp->device->no_write_same = 1; 896 sdkp->max_ws_blocks = 0; 897 } 898 899 if (sdkp->lbprz && sdkp->lbpws) 900 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP; 901 else if (sdkp->lbprz && sdkp->lbpws10) 902 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP; 903 else if (sdkp->max_ws_blocks) 904 sdkp->zeroing_mode = SD_ZERO_WS; 905 else 906 sdkp->zeroing_mode = SD_ZERO_WRITE; 907 908 if (sdkp->max_ws_blocks && 909 sdkp->physical_block_size > logical_block_size) { 910 /* 911 * Reporting a maximum number of blocks that is not aligned 912 * on the device physical size would cause a large write same 913 * request to be split into physically unaligned chunks by 914 * __blkdev_issue_write_zeroes() and __blkdev_issue_write_same() 915 * even if the caller of these functions took care to align the 916 * large request. So make sure the maximum reported is aligned 917 * to the device physical block size. This is only an optional 918 * optimization for regular disks, but this is mandatory to 919 * avoid failure of large write same requests directed at 920 * sequential write required zones of host-managed ZBC disks. 921 */ 922 sdkp->max_ws_blocks = 923 round_down(sdkp->max_ws_blocks, 924 bytes_to_logical(sdkp->device, 925 sdkp->physical_block_size)); 926 } 927 928 out: 929 blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks * 930 (logical_block_size >> 9)); 931 blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks * 932 (logical_block_size >> 9)); 933 } 934 935 /** 936 * sd_setup_write_same_cmnd - write the same data to multiple blocks 937 * @cmd: command to prepare 938 * 939 * Will set up either WRITE SAME(10) or WRITE SAME(16) depending on 940 * the preference indicated by the target device. 941 **/ 942 static int sd_setup_write_same_cmnd(struct scsi_cmnd *cmd) 943 { 944 struct request *rq = cmd->request; 945 struct scsi_device *sdp = cmd->device; 946 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 947 struct bio *bio = rq->bio; 948 sector_t sector = blk_rq_pos(rq); 949 unsigned int nr_sectors = blk_rq_sectors(rq); 950 unsigned int nr_bytes = blk_rq_bytes(rq); 951 int ret; 952 953 if (sdkp->device->no_write_same) 954 return BLKPREP_INVALID; 955 956 BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size); 957 958 sector >>= ilog2(sdp->sector_size) - 9; 959 nr_sectors >>= ilog2(sdp->sector_size) - 9; 960 961 rq->timeout = SD_WRITE_SAME_TIMEOUT; 962 963 if (sdkp->ws16 || sector > 0xffffffff || nr_sectors > 0xffff) { 964 cmd->cmd_len = 16; 965 cmd->cmnd[0] = WRITE_SAME_16; 966 put_unaligned_be64(sector, &cmd->cmnd[2]); 967 put_unaligned_be32(nr_sectors, &cmd->cmnd[10]); 968 } else { 969 cmd->cmd_len = 10; 970 cmd->cmnd[0] = WRITE_SAME; 971 put_unaligned_be32(sector, &cmd->cmnd[2]); 972 put_unaligned_be16(nr_sectors, &cmd->cmnd[7]); 973 } 974 975 cmd->transfersize = sdp->sector_size; 976 cmd->allowed = SD_MAX_RETRIES; 977 978 /* 979 * For WRITE SAME the data transferred via the DATA OUT buffer is 980 * different from the amount of data actually written to the target. 981 * 982 * We set up __data_len to the amount of data transferred via the 983 * DATA OUT buffer so that blk_rq_map_sg sets up the proper S/G list 984 * to transfer a single sector of data first, but then reset it to 985 * the amount of data to be written right after so that the I/O path 986 * knows how much to actually write. 987 */ 988 rq->__data_len = sdp->sector_size; 989 ret = scsi_init_io(cmd); 990 rq->__data_len = nr_bytes; 991 992 return ret; 993 } 994 995 static int sd_setup_flush_cmnd(struct scsi_cmnd *cmd) 996 { 997 struct request *rq = cmd->request; 998 999 /* flush requests don't perform I/O, zero the S/G table */ 1000 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1001 1002 cmd->cmnd[0] = SYNCHRONIZE_CACHE; 1003 cmd->cmd_len = 10; 1004 cmd->transfersize = 0; 1005 cmd->allowed = SD_MAX_RETRIES; 1006 1007 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER; 1008 return BLKPREP_OK; 1009 } 1010 1011 static int sd_setup_read_write_cmnd(struct scsi_cmnd *SCpnt) 1012 { 1013 struct request *rq = SCpnt->request; 1014 struct scsi_device *sdp = SCpnt->device; 1015 struct gendisk *disk = rq->rq_disk; 1016 struct scsi_disk *sdkp = scsi_disk(disk); 1017 sector_t block = blk_rq_pos(rq); 1018 sector_t threshold; 1019 unsigned int this_count = blk_rq_sectors(rq); 1020 unsigned int dif, dix; 1021 int ret; 1022 unsigned char protect; 1023 1024 ret = scsi_init_io(SCpnt); 1025 if (ret != BLKPREP_OK) 1026 return ret; 1027 WARN_ON_ONCE(SCpnt != rq->special); 1028 1029 /* from here on until we're complete, any goto out 1030 * is used for a killable error condition */ 1031 ret = BLKPREP_KILL; 1032 1033 SCSI_LOG_HLQUEUE(1, 1034 scmd_printk(KERN_INFO, SCpnt, 1035 "%s: block=%llu, count=%d\n", 1036 __func__, (unsigned long long)block, this_count)); 1037 1038 if (!sdp || !scsi_device_online(sdp) || 1039 block + blk_rq_sectors(rq) > get_capacity(disk)) { 1040 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, 1041 "Finishing %u sectors\n", 1042 blk_rq_sectors(rq))); 1043 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, 1044 "Retry with 0x%p\n", SCpnt)); 1045 goto out; 1046 } 1047 1048 if (sdp->changed) { 1049 /* 1050 * quietly refuse to do anything to a changed disc until 1051 * the changed bit has been reset 1052 */ 1053 /* printk("SCSI disk has been changed or is not present. Prohibiting further I/O.\n"); */ 1054 goto out; 1055 } 1056 1057 /* 1058 * Some SD card readers can't handle multi-sector accesses which touch 1059 * the last one or two hardware sectors. Split accesses as needed. 1060 */ 1061 threshold = get_capacity(disk) - SD_LAST_BUGGY_SECTORS * 1062 (sdp->sector_size / 512); 1063 1064 if (unlikely(sdp->last_sector_bug && block + this_count > threshold)) { 1065 if (block < threshold) { 1066 /* Access up to the threshold but not beyond */ 1067 this_count = threshold - block; 1068 } else { 1069 /* Access only a single hardware sector */ 1070 this_count = sdp->sector_size / 512; 1071 } 1072 } 1073 1074 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, "block=%llu\n", 1075 (unsigned long long)block)); 1076 1077 /* 1078 * If we have a 1K hardware sectorsize, prevent access to single 1079 * 512 byte sectors. In theory we could handle this - in fact 1080 * the scsi cdrom driver must be able to handle this because 1081 * we typically use 1K blocksizes, and cdroms typically have 1082 * 2K hardware sectorsizes. Of course, things are simpler 1083 * with the cdrom, since it is read-only. For performance 1084 * reasons, the filesystems should be able to handle this 1085 * and not force the scsi disk driver to use bounce buffers 1086 * for this. 1087 */ 1088 if (sdp->sector_size == 1024) { 1089 if ((block & 1) || (blk_rq_sectors(rq) & 1)) { 1090 scmd_printk(KERN_ERR, SCpnt, 1091 "Bad block number requested\n"); 1092 goto out; 1093 } else { 1094 block = block >> 1; 1095 this_count = this_count >> 1; 1096 } 1097 } 1098 if (sdp->sector_size == 2048) { 1099 if ((block & 3) || (blk_rq_sectors(rq) & 3)) { 1100 scmd_printk(KERN_ERR, SCpnt, 1101 "Bad block number requested\n"); 1102 goto out; 1103 } else { 1104 block = block >> 2; 1105 this_count = this_count >> 2; 1106 } 1107 } 1108 if (sdp->sector_size == 4096) { 1109 if ((block & 7) || (blk_rq_sectors(rq) & 7)) { 1110 scmd_printk(KERN_ERR, SCpnt, 1111 "Bad block number requested\n"); 1112 goto out; 1113 } else { 1114 block = block >> 3; 1115 this_count = this_count >> 3; 1116 } 1117 } 1118 if (rq_data_dir(rq) == WRITE) { 1119 SCpnt->cmnd[0] = WRITE_6; 1120 1121 if (blk_integrity_rq(rq)) 1122 t10_pi_prepare(SCpnt->request, sdkp->protection_type); 1123 1124 } else if (rq_data_dir(rq) == READ) { 1125 SCpnt->cmnd[0] = READ_6; 1126 } else { 1127 scmd_printk(KERN_ERR, SCpnt, "Unknown command %d\n", req_op(rq)); 1128 goto out; 1129 } 1130 1131 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, 1132 "%s %d/%u 512 byte blocks.\n", 1133 (rq_data_dir(rq) == WRITE) ? 1134 "writing" : "reading", this_count, 1135 blk_rq_sectors(rq))); 1136 1137 dix = scsi_prot_sg_count(SCpnt); 1138 dif = scsi_host_dif_capable(SCpnt->device->host, sdkp->protection_type); 1139 1140 if (dif || dix) 1141 protect = sd_setup_protect_cmnd(SCpnt, dix, dif); 1142 else 1143 protect = 0; 1144 1145 if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) { 1146 SCpnt->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC); 1147 1148 if (unlikely(SCpnt->cmnd == NULL)) { 1149 ret = BLKPREP_DEFER; 1150 goto out; 1151 } 1152 1153 SCpnt->cmd_len = SD_EXT_CDB_SIZE; 1154 memset(SCpnt->cmnd, 0, SCpnt->cmd_len); 1155 SCpnt->cmnd[0] = VARIABLE_LENGTH_CMD; 1156 SCpnt->cmnd[7] = 0x18; 1157 SCpnt->cmnd[9] = (rq_data_dir(rq) == READ) ? READ_32 : WRITE_32; 1158 SCpnt->cmnd[10] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0); 1159 1160 /* LBA */ 1161 SCpnt->cmnd[12] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0; 1162 SCpnt->cmnd[13] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0; 1163 SCpnt->cmnd[14] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0; 1164 SCpnt->cmnd[15] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0; 1165 SCpnt->cmnd[16] = (unsigned char) (block >> 24) & 0xff; 1166 SCpnt->cmnd[17] = (unsigned char) (block >> 16) & 0xff; 1167 SCpnt->cmnd[18] = (unsigned char) (block >> 8) & 0xff; 1168 SCpnt->cmnd[19] = (unsigned char) block & 0xff; 1169 1170 /* Expected Indirect LBA */ 1171 SCpnt->cmnd[20] = (unsigned char) (block >> 24) & 0xff; 1172 SCpnt->cmnd[21] = (unsigned char) (block >> 16) & 0xff; 1173 SCpnt->cmnd[22] = (unsigned char) (block >> 8) & 0xff; 1174 SCpnt->cmnd[23] = (unsigned char) block & 0xff; 1175 1176 /* Transfer length */ 1177 SCpnt->cmnd[28] = (unsigned char) (this_count >> 24) & 0xff; 1178 SCpnt->cmnd[29] = (unsigned char) (this_count >> 16) & 0xff; 1179 SCpnt->cmnd[30] = (unsigned char) (this_count >> 8) & 0xff; 1180 SCpnt->cmnd[31] = (unsigned char) this_count & 0xff; 1181 } else if (sdp->use_16_for_rw || (this_count > 0xffff)) { 1182 SCpnt->cmnd[0] += READ_16 - READ_6; 1183 SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0); 1184 SCpnt->cmnd[2] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0; 1185 SCpnt->cmnd[3] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0; 1186 SCpnt->cmnd[4] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0; 1187 SCpnt->cmnd[5] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0; 1188 SCpnt->cmnd[6] = (unsigned char) (block >> 24) & 0xff; 1189 SCpnt->cmnd[7] = (unsigned char) (block >> 16) & 0xff; 1190 SCpnt->cmnd[8] = (unsigned char) (block >> 8) & 0xff; 1191 SCpnt->cmnd[9] = (unsigned char) block & 0xff; 1192 SCpnt->cmnd[10] = (unsigned char) (this_count >> 24) & 0xff; 1193 SCpnt->cmnd[11] = (unsigned char) (this_count >> 16) & 0xff; 1194 SCpnt->cmnd[12] = (unsigned char) (this_count >> 8) & 0xff; 1195 SCpnt->cmnd[13] = (unsigned char) this_count & 0xff; 1196 SCpnt->cmnd[14] = SCpnt->cmnd[15] = 0; 1197 } else if ((this_count > 0xff) || (block > 0x1fffff) || 1198 scsi_device_protection(SCpnt->device) || 1199 SCpnt->device->use_10_for_rw) { 1200 SCpnt->cmnd[0] += READ_10 - READ_6; 1201 SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0); 1202 SCpnt->cmnd[2] = (unsigned char) (block >> 24) & 0xff; 1203 SCpnt->cmnd[3] = (unsigned char) (block >> 16) & 0xff; 1204 SCpnt->cmnd[4] = (unsigned char) (block >> 8) & 0xff; 1205 SCpnt->cmnd[5] = (unsigned char) block & 0xff; 1206 SCpnt->cmnd[6] = SCpnt->cmnd[9] = 0; 1207 SCpnt->cmnd[7] = (unsigned char) (this_count >> 8) & 0xff; 1208 SCpnt->cmnd[8] = (unsigned char) this_count & 0xff; 1209 } else { 1210 if (unlikely(rq->cmd_flags & REQ_FUA)) { 1211 /* 1212 * This happens only if this drive failed 1213 * 10byte rw command with ILLEGAL_REQUEST 1214 * during operation and thus turned off 1215 * use_10_for_rw. 1216 */ 1217 scmd_printk(KERN_ERR, SCpnt, 1218 "FUA write on READ/WRITE(6) drive\n"); 1219 goto out; 1220 } 1221 1222 SCpnt->cmnd[1] |= (unsigned char) ((block >> 16) & 0x1f); 1223 SCpnt->cmnd[2] = (unsigned char) ((block >> 8) & 0xff); 1224 SCpnt->cmnd[3] = (unsigned char) block & 0xff; 1225 SCpnt->cmnd[4] = (unsigned char) this_count; 1226 SCpnt->cmnd[5] = 0; 1227 } 1228 SCpnt->sdb.length = this_count * sdp->sector_size; 1229 1230 /* 1231 * We shouldn't disconnect in the middle of a sector, so with a dumb 1232 * host adapter, it's safe to assume that we can at least transfer 1233 * this many bytes between each connect / disconnect. 1234 */ 1235 SCpnt->transfersize = sdp->sector_size; 1236 SCpnt->underflow = this_count << 9; 1237 SCpnt->allowed = SD_MAX_RETRIES; 1238 1239 /* 1240 * This indicates that the command is ready from our end to be 1241 * queued. 1242 */ 1243 ret = BLKPREP_OK; 1244 out: 1245 return ret; 1246 } 1247 1248 static int sd_init_command(struct scsi_cmnd *cmd) 1249 { 1250 struct request *rq = cmd->request; 1251 1252 switch (req_op(rq)) { 1253 case REQ_OP_DISCARD: 1254 switch (scsi_disk(rq->rq_disk)->provisioning_mode) { 1255 case SD_LBP_UNMAP: 1256 return sd_setup_unmap_cmnd(cmd); 1257 case SD_LBP_WS16: 1258 return sd_setup_write_same16_cmnd(cmd, true); 1259 case SD_LBP_WS10: 1260 return sd_setup_write_same10_cmnd(cmd, true); 1261 case SD_LBP_ZERO: 1262 return sd_setup_write_same10_cmnd(cmd, false); 1263 default: 1264 return BLKPREP_INVALID; 1265 } 1266 case REQ_OP_WRITE_ZEROES: 1267 return sd_setup_write_zeroes_cmnd(cmd); 1268 case REQ_OP_WRITE_SAME: 1269 return sd_setup_write_same_cmnd(cmd); 1270 case REQ_OP_FLUSH: 1271 return sd_setup_flush_cmnd(cmd); 1272 case REQ_OP_READ: 1273 case REQ_OP_WRITE: 1274 return sd_setup_read_write_cmnd(cmd); 1275 case REQ_OP_ZONE_REPORT: 1276 return sd_zbc_setup_report_cmnd(cmd); 1277 case REQ_OP_ZONE_RESET: 1278 return sd_zbc_setup_reset_cmnd(cmd); 1279 default: 1280 WARN_ON_ONCE(1); 1281 return BLKPREP_KILL; 1282 } 1283 } 1284 1285 static void sd_uninit_command(struct scsi_cmnd *SCpnt) 1286 { 1287 struct request *rq = SCpnt->request; 1288 u8 *cmnd; 1289 1290 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1291 __free_page(rq->special_vec.bv_page); 1292 1293 if (SCpnt->cmnd != scsi_req(rq)->cmd) { 1294 cmnd = SCpnt->cmnd; 1295 SCpnt->cmnd = NULL; 1296 SCpnt->cmd_len = 0; 1297 mempool_free(cmnd, sd_cdb_pool); 1298 } 1299 } 1300 1301 /** 1302 * sd_open - open a scsi disk device 1303 * @bdev: Block device of the scsi disk to open 1304 * @mode: FMODE_* mask 1305 * 1306 * Returns 0 if successful. Returns a negated errno value in case 1307 * of error. 1308 * 1309 * Note: This can be called from a user context (e.g. fsck(1) ) 1310 * or from within the kernel (e.g. as a result of a mount(1) ). 1311 * In the latter case @inode and @filp carry an abridged amount 1312 * of information as noted above. 1313 * 1314 * Locking: called with bdev->bd_mutex held. 1315 **/ 1316 static int sd_open(struct block_device *bdev, fmode_t mode) 1317 { 1318 struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk); 1319 struct scsi_device *sdev; 1320 int retval; 1321 1322 if (!sdkp) 1323 return -ENXIO; 1324 1325 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n")); 1326 1327 sdev = sdkp->device; 1328 1329 /* 1330 * If the device is in error recovery, wait until it is done. 1331 * If the device is offline, then disallow any access to it. 1332 */ 1333 retval = -ENXIO; 1334 if (!scsi_block_when_processing_errors(sdev)) 1335 goto error_out; 1336 1337 if (sdev->removable || sdkp->write_prot) 1338 check_disk_change(bdev); 1339 1340 /* 1341 * If the drive is empty, just let the open fail. 1342 */ 1343 retval = -ENOMEDIUM; 1344 if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY)) 1345 goto error_out; 1346 1347 /* 1348 * If the device has the write protect tab set, have the open fail 1349 * if the user expects to be able to write to the thing. 1350 */ 1351 retval = -EROFS; 1352 if (sdkp->write_prot && (mode & FMODE_WRITE)) 1353 goto error_out; 1354 1355 /* 1356 * It is possible that the disk changing stuff resulted in 1357 * the device being taken offline. If this is the case, 1358 * report this to the user, and don't pretend that the 1359 * open actually succeeded. 1360 */ 1361 retval = -ENXIO; 1362 if (!scsi_device_online(sdev)) 1363 goto error_out; 1364 1365 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) { 1366 if (scsi_block_when_processing_errors(sdev)) 1367 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT); 1368 } 1369 1370 return 0; 1371 1372 error_out: 1373 scsi_disk_put(sdkp); 1374 return retval; 1375 } 1376 1377 /** 1378 * sd_release - invoked when the (last) close(2) is called on this 1379 * scsi disk. 1380 * @disk: disk to release 1381 * @mode: FMODE_* mask 1382 * 1383 * Returns 0. 1384 * 1385 * Note: may block (uninterruptible) if error recovery is underway 1386 * on this disk. 1387 * 1388 * Locking: called with bdev->bd_mutex held. 1389 **/ 1390 static void sd_release(struct gendisk *disk, fmode_t mode) 1391 { 1392 struct scsi_disk *sdkp = scsi_disk(disk); 1393 struct scsi_device *sdev = sdkp->device; 1394 1395 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n")); 1396 1397 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) { 1398 if (scsi_block_when_processing_errors(sdev)) 1399 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW); 1400 } 1401 1402 /* 1403 * XXX and what if there are packets in flight and this close() 1404 * XXX is followed by a "rmmod sd_mod"? 1405 */ 1406 1407 scsi_disk_put(sdkp); 1408 } 1409 1410 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1411 { 1412 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1413 struct scsi_device *sdp = sdkp->device; 1414 struct Scsi_Host *host = sdp->host; 1415 sector_t capacity = logical_to_sectors(sdp, sdkp->capacity); 1416 int diskinfo[4]; 1417 1418 /* default to most commonly used values */ 1419 diskinfo[0] = 0x40; /* 1 << 6 */ 1420 diskinfo[1] = 0x20; /* 1 << 5 */ 1421 diskinfo[2] = capacity >> 11; 1422 1423 /* override with calculated, extended default, or driver values */ 1424 if (host->hostt->bios_param) 1425 host->hostt->bios_param(sdp, bdev, capacity, diskinfo); 1426 else 1427 scsicam_bios_param(bdev, capacity, diskinfo); 1428 1429 geo->heads = diskinfo[0]; 1430 geo->sectors = diskinfo[1]; 1431 geo->cylinders = diskinfo[2]; 1432 return 0; 1433 } 1434 1435 /** 1436 * sd_ioctl - process an ioctl 1437 * @bdev: target block device 1438 * @mode: FMODE_* mask 1439 * @cmd: ioctl command number 1440 * @arg: this is third argument given to ioctl(2) system call. 1441 * Often contains a pointer. 1442 * 1443 * Returns 0 if successful (some ioctls return positive numbers on 1444 * success as well). Returns a negated errno value in case of error. 1445 * 1446 * Note: most ioctls are forward onto the block subsystem or further 1447 * down in the scsi subsystem. 1448 **/ 1449 static int sd_ioctl(struct block_device *bdev, fmode_t mode, 1450 unsigned int cmd, unsigned long arg) 1451 { 1452 struct gendisk *disk = bdev->bd_disk; 1453 struct scsi_disk *sdkp = scsi_disk(disk); 1454 struct scsi_device *sdp = sdkp->device; 1455 void __user *p = (void __user *)arg; 1456 int error; 1457 1458 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, " 1459 "cmd=0x%x\n", disk->disk_name, cmd)); 1460 1461 error = scsi_verify_blk_ioctl(bdev, cmd); 1462 if (error < 0) 1463 return error; 1464 1465 /* 1466 * If we are in the middle of error recovery, don't let anyone 1467 * else try and use this device. Also, if error recovery fails, it 1468 * may try and take the device offline, in which case all further 1469 * access to the device is prohibited. 1470 */ 1471 error = scsi_ioctl_block_when_processing_errors(sdp, cmd, 1472 (mode & FMODE_NDELAY) != 0); 1473 if (error) 1474 goto out; 1475 1476 if (is_sed_ioctl(cmd)) 1477 return sed_ioctl(sdkp->opal_dev, cmd, p); 1478 1479 /* 1480 * Send SCSI addressing ioctls directly to mid level, send other 1481 * ioctls to block level and then onto mid level if they can't be 1482 * resolved. 1483 */ 1484 switch (cmd) { 1485 case SCSI_IOCTL_GET_IDLUN: 1486 case SCSI_IOCTL_GET_BUS_NUMBER: 1487 error = scsi_ioctl(sdp, cmd, p); 1488 break; 1489 default: 1490 error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p); 1491 if (error != -ENOTTY) 1492 break; 1493 error = scsi_ioctl(sdp, cmd, p); 1494 break; 1495 } 1496 out: 1497 return error; 1498 } 1499 1500 static void set_media_not_present(struct scsi_disk *sdkp) 1501 { 1502 if (sdkp->media_present) 1503 sdkp->device->changed = 1; 1504 1505 if (sdkp->device->removable) { 1506 sdkp->media_present = 0; 1507 sdkp->capacity = 0; 1508 } 1509 } 1510 1511 static int media_not_present(struct scsi_disk *sdkp, 1512 struct scsi_sense_hdr *sshdr) 1513 { 1514 if (!scsi_sense_valid(sshdr)) 1515 return 0; 1516 1517 /* not invoked for commands that could return deferred errors */ 1518 switch (sshdr->sense_key) { 1519 case UNIT_ATTENTION: 1520 case NOT_READY: 1521 /* medium not present */ 1522 if (sshdr->asc == 0x3A) { 1523 set_media_not_present(sdkp); 1524 return 1; 1525 } 1526 } 1527 return 0; 1528 } 1529 1530 /** 1531 * sd_check_events - check media events 1532 * @disk: kernel device descriptor 1533 * @clearing: disk events currently being cleared 1534 * 1535 * Returns mask of DISK_EVENT_*. 1536 * 1537 * Note: this function is invoked from the block subsystem. 1538 **/ 1539 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing) 1540 { 1541 struct scsi_disk *sdkp = scsi_disk_get(disk); 1542 struct scsi_device *sdp; 1543 int retval; 1544 1545 if (!sdkp) 1546 return 0; 1547 1548 sdp = sdkp->device; 1549 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n")); 1550 1551 /* 1552 * If the device is offline, don't send any commands - just pretend as 1553 * if the command failed. If the device ever comes back online, we 1554 * can deal with it then. It is only because of unrecoverable errors 1555 * that we would ever take a device offline in the first place. 1556 */ 1557 if (!scsi_device_online(sdp)) { 1558 set_media_not_present(sdkp); 1559 goto out; 1560 } 1561 1562 /* 1563 * Using TEST_UNIT_READY enables differentiation between drive with 1564 * no cartridge loaded - NOT READY, drive with changed cartridge - 1565 * UNIT ATTENTION, or with same cartridge - GOOD STATUS. 1566 * 1567 * Drives that auto spin down. eg iomega jaz 1G, will be started 1568 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever 1569 * sd_revalidate() is called. 1570 */ 1571 if (scsi_block_when_processing_errors(sdp)) { 1572 struct scsi_sense_hdr sshdr = { 0, }; 1573 1574 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, SD_MAX_RETRIES, 1575 &sshdr); 1576 1577 /* failed to execute TUR, assume media not present */ 1578 if (host_byte(retval)) { 1579 set_media_not_present(sdkp); 1580 goto out; 1581 } 1582 1583 if (media_not_present(sdkp, &sshdr)) 1584 goto out; 1585 } 1586 1587 /* 1588 * For removable scsi disk we have to recognise the presence 1589 * of a disk in the drive. 1590 */ 1591 if (!sdkp->media_present) 1592 sdp->changed = 1; 1593 sdkp->media_present = 1; 1594 out: 1595 /* 1596 * sdp->changed is set under the following conditions: 1597 * 1598 * Medium present state has changed in either direction. 1599 * Device has indicated UNIT_ATTENTION. 1600 */ 1601 retval = sdp->changed ? DISK_EVENT_MEDIA_CHANGE : 0; 1602 sdp->changed = 0; 1603 scsi_disk_put(sdkp); 1604 return retval; 1605 } 1606 1607 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr) 1608 { 1609 int retries, res; 1610 struct scsi_device *sdp = sdkp->device; 1611 const int timeout = sdp->request_queue->rq_timeout 1612 * SD_FLUSH_TIMEOUT_MULTIPLIER; 1613 struct scsi_sense_hdr my_sshdr; 1614 1615 if (!scsi_device_online(sdp)) 1616 return -ENODEV; 1617 1618 /* caller might not be interested in sense, but we need it */ 1619 if (!sshdr) 1620 sshdr = &my_sshdr; 1621 1622 for (retries = 3; retries > 0; --retries) { 1623 unsigned char cmd[10] = { 0 }; 1624 1625 cmd[0] = SYNCHRONIZE_CACHE; 1626 /* 1627 * Leave the rest of the command zero to indicate 1628 * flush everything. 1629 */ 1630 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr, 1631 timeout, SD_MAX_RETRIES, 0, RQF_PM, NULL); 1632 if (res == 0) 1633 break; 1634 } 1635 1636 if (res) { 1637 sd_print_result(sdkp, "Synchronize Cache(10) failed", res); 1638 1639 if (driver_byte(res) == DRIVER_SENSE) 1640 sd_print_sense_hdr(sdkp, sshdr); 1641 1642 /* we need to evaluate the error return */ 1643 if (scsi_sense_valid(sshdr) && 1644 (sshdr->asc == 0x3a || /* medium not present */ 1645 sshdr->asc == 0x20)) /* invalid command */ 1646 /* this is no error here */ 1647 return 0; 1648 1649 switch (host_byte(res)) { 1650 /* ignore errors due to racing a disconnection */ 1651 case DID_BAD_TARGET: 1652 case DID_NO_CONNECT: 1653 return 0; 1654 /* signal the upper layer it might try again */ 1655 case DID_BUS_BUSY: 1656 case DID_IMM_RETRY: 1657 case DID_REQUEUE: 1658 case DID_SOFT_ERROR: 1659 return -EBUSY; 1660 default: 1661 return -EIO; 1662 } 1663 } 1664 return 0; 1665 } 1666 1667 static void sd_rescan(struct device *dev) 1668 { 1669 struct scsi_disk *sdkp = dev_get_drvdata(dev); 1670 1671 revalidate_disk(sdkp->disk); 1672 } 1673 1674 1675 #ifdef CONFIG_COMPAT 1676 /* 1677 * This gets directly called from VFS. When the ioctl 1678 * is not recognized we go back to the other translation paths. 1679 */ 1680 static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode, 1681 unsigned int cmd, unsigned long arg) 1682 { 1683 struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device; 1684 int error; 1685 1686 error = scsi_ioctl_block_when_processing_errors(sdev, cmd, 1687 (mode & FMODE_NDELAY) != 0); 1688 if (error) 1689 return error; 1690 1691 /* 1692 * Let the static ioctl translation table take care of it. 1693 */ 1694 if (!sdev->host->hostt->compat_ioctl) 1695 return -ENOIOCTLCMD; 1696 return sdev->host->hostt->compat_ioctl(sdev, cmd, (void __user *)arg); 1697 } 1698 #endif 1699 1700 static char sd_pr_type(enum pr_type type) 1701 { 1702 switch (type) { 1703 case PR_WRITE_EXCLUSIVE: 1704 return 0x01; 1705 case PR_EXCLUSIVE_ACCESS: 1706 return 0x03; 1707 case PR_WRITE_EXCLUSIVE_REG_ONLY: 1708 return 0x05; 1709 case PR_EXCLUSIVE_ACCESS_REG_ONLY: 1710 return 0x06; 1711 case PR_WRITE_EXCLUSIVE_ALL_REGS: 1712 return 0x07; 1713 case PR_EXCLUSIVE_ACCESS_ALL_REGS: 1714 return 0x08; 1715 default: 1716 return 0; 1717 } 1718 }; 1719 1720 static int sd_pr_command(struct block_device *bdev, u8 sa, 1721 u64 key, u64 sa_key, u8 type, u8 flags) 1722 { 1723 struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device; 1724 struct scsi_sense_hdr sshdr; 1725 int result; 1726 u8 cmd[16] = { 0, }; 1727 u8 data[24] = { 0, }; 1728 1729 cmd[0] = PERSISTENT_RESERVE_OUT; 1730 cmd[1] = sa; 1731 cmd[2] = type; 1732 put_unaligned_be32(sizeof(data), &cmd[5]); 1733 1734 put_unaligned_be64(key, &data[0]); 1735 put_unaligned_be64(sa_key, &data[8]); 1736 data[20] = flags; 1737 1738 result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data), 1739 &sshdr, SD_TIMEOUT, SD_MAX_RETRIES, NULL); 1740 1741 if (driver_byte(result) == DRIVER_SENSE && 1742 scsi_sense_valid(&sshdr)) { 1743 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result); 1744 scsi_print_sense_hdr(sdev, NULL, &sshdr); 1745 } 1746 1747 return result; 1748 } 1749 1750 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 1751 u32 flags) 1752 { 1753 if (flags & ~PR_FL_IGNORE_KEY) 1754 return -EOPNOTSUPP; 1755 return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00, 1756 old_key, new_key, 0, 1757 (1 << 0) /* APTPL */); 1758 } 1759 1760 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 1761 u32 flags) 1762 { 1763 if (flags) 1764 return -EOPNOTSUPP; 1765 return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0); 1766 } 1767 1768 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 1769 { 1770 return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0); 1771 } 1772 1773 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 1774 enum pr_type type, bool abort) 1775 { 1776 return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key, 1777 sd_pr_type(type), 0); 1778 } 1779 1780 static int sd_pr_clear(struct block_device *bdev, u64 key) 1781 { 1782 return sd_pr_command(bdev, 0x03, key, 0, 0, 0); 1783 } 1784 1785 static const struct pr_ops sd_pr_ops = { 1786 .pr_register = sd_pr_register, 1787 .pr_reserve = sd_pr_reserve, 1788 .pr_release = sd_pr_release, 1789 .pr_preempt = sd_pr_preempt, 1790 .pr_clear = sd_pr_clear, 1791 }; 1792 1793 static const struct block_device_operations sd_fops = { 1794 .owner = THIS_MODULE, 1795 .open = sd_open, 1796 .release = sd_release, 1797 .ioctl = sd_ioctl, 1798 .getgeo = sd_getgeo, 1799 #ifdef CONFIG_COMPAT 1800 .compat_ioctl = sd_compat_ioctl, 1801 #endif 1802 .check_events = sd_check_events, 1803 .revalidate_disk = sd_revalidate_disk, 1804 .unlock_native_capacity = sd_unlock_native_capacity, 1805 .pr_ops = &sd_pr_ops, 1806 }; 1807 1808 /** 1809 * sd_eh_reset - reset error handling callback 1810 * @scmd: sd-issued command that has failed 1811 * 1812 * This function is called by the SCSI midlayer before starting 1813 * SCSI EH. When counting medium access failures we have to be 1814 * careful to register it only only once per device and SCSI EH run; 1815 * there might be several timed out commands which will cause the 1816 * 'max_medium_access_timeouts' counter to trigger after the first 1817 * SCSI EH run already and set the device to offline. 1818 * So this function resets the internal counter before starting SCSI EH. 1819 **/ 1820 static void sd_eh_reset(struct scsi_cmnd *scmd) 1821 { 1822 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk); 1823 1824 /* New SCSI EH run, reset gate variable */ 1825 sdkp->ignore_medium_access_errors = false; 1826 } 1827 1828 /** 1829 * sd_eh_action - error handling callback 1830 * @scmd: sd-issued command that has failed 1831 * @eh_disp: The recovery disposition suggested by the midlayer 1832 * 1833 * This function is called by the SCSI midlayer upon completion of an 1834 * error test command (currently TEST UNIT READY). The result of sending 1835 * the eh command is passed in eh_disp. We're looking for devices that 1836 * fail medium access commands but are OK with non access commands like 1837 * test unit ready (so wrongly see the device as having a successful 1838 * recovery) 1839 **/ 1840 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp) 1841 { 1842 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk); 1843 struct scsi_device *sdev = scmd->device; 1844 1845 if (!scsi_device_online(sdev) || 1846 !scsi_medium_access_command(scmd) || 1847 host_byte(scmd->result) != DID_TIME_OUT || 1848 eh_disp != SUCCESS) 1849 return eh_disp; 1850 1851 /* 1852 * The device has timed out executing a medium access command. 1853 * However, the TEST UNIT READY command sent during error 1854 * handling completed successfully. Either the device is in the 1855 * process of recovering or has it suffered an internal failure 1856 * that prevents access to the storage medium. 1857 */ 1858 if (!sdkp->ignore_medium_access_errors) { 1859 sdkp->medium_access_timed_out++; 1860 sdkp->ignore_medium_access_errors = true; 1861 } 1862 1863 /* 1864 * If the device keeps failing read/write commands but TEST UNIT 1865 * READY always completes successfully we assume that medium 1866 * access is no longer possible and take the device offline. 1867 */ 1868 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) { 1869 scmd_printk(KERN_ERR, scmd, 1870 "Medium access timeout failure. Offlining disk!\n"); 1871 mutex_lock(&sdev->state_mutex); 1872 scsi_device_set_state(sdev, SDEV_OFFLINE); 1873 mutex_unlock(&sdev->state_mutex); 1874 1875 return SUCCESS; 1876 } 1877 1878 return eh_disp; 1879 } 1880 1881 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd) 1882 { 1883 struct request *req = scmd->request; 1884 struct scsi_device *sdev = scmd->device; 1885 unsigned int transferred, good_bytes; 1886 u64 start_lba, end_lba, bad_lba; 1887 1888 /* 1889 * Some commands have a payload smaller than the device logical 1890 * block size (e.g. INQUIRY on a 4K disk). 1891 */ 1892 if (scsi_bufflen(scmd) <= sdev->sector_size) 1893 return 0; 1894 1895 /* Check if we have a 'bad_lba' information */ 1896 if (!scsi_get_sense_info_fld(scmd->sense_buffer, 1897 SCSI_SENSE_BUFFERSIZE, 1898 &bad_lba)) 1899 return 0; 1900 1901 /* 1902 * If the bad lba was reported incorrectly, we have no idea where 1903 * the error is. 1904 */ 1905 start_lba = sectors_to_logical(sdev, blk_rq_pos(req)); 1906 end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd)); 1907 if (bad_lba < start_lba || bad_lba >= end_lba) 1908 return 0; 1909 1910 /* 1911 * resid is optional but mostly filled in. When it's unused, 1912 * its value is zero, so we assume the whole buffer transferred 1913 */ 1914 transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd); 1915 1916 /* This computation should always be done in terms of the 1917 * resolution of the device's medium. 1918 */ 1919 good_bytes = logical_to_bytes(sdev, bad_lba - start_lba); 1920 1921 return min(good_bytes, transferred); 1922 } 1923 1924 /** 1925 * sd_done - bottom half handler: called when the lower level 1926 * driver has completed (successfully or otherwise) a scsi command. 1927 * @SCpnt: mid-level's per command structure. 1928 * 1929 * Note: potentially run from within an ISR. Must not block. 1930 **/ 1931 static int sd_done(struct scsi_cmnd *SCpnt) 1932 { 1933 int result = SCpnt->result; 1934 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt); 1935 unsigned int sector_size = SCpnt->device->sector_size; 1936 unsigned int resid; 1937 struct scsi_sense_hdr sshdr; 1938 struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk); 1939 struct request *req = SCpnt->request; 1940 int sense_valid = 0; 1941 int sense_deferred = 0; 1942 1943 switch (req_op(req)) { 1944 case REQ_OP_DISCARD: 1945 case REQ_OP_WRITE_ZEROES: 1946 case REQ_OP_WRITE_SAME: 1947 case REQ_OP_ZONE_RESET: 1948 if (!result) { 1949 good_bytes = blk_rq_bytes(req); 1950 scsi_set_resid(SCpnt, 0); 1951 } else { 1952 good_bytes = 0; 1953 scsi_set_resid(SCpnt, blk_rq_bytes(req)); 1954 } 1955 break; 1956 case REQ_OP_ZONE_REPORT: 1957 if (!result) { 1958 good_bytes = scsi_bufflen(SCpnt) 1959 - scsi_get_resid(SCpnt); 1960 scsi_set_resid(SCpnt, 0); 1961 } else { 1962 good_bytes = 0; 1963 scsi_set_resid(SCpnt, blk_rq_bytes(req)); 1964 } 1965 break; 1966 default: 1967 /* 1968 * In case of bogus fw or device, we could end up having 1969 * an unaligned partial completion. Check this here and force 1970 * alignment. 1971 */ 1972 resid = scsi_get_resid(SCpnt); 1973 if (resid & (sector_size - 1)) { 1974 sd_printk(KERN_INFO, sdkp, 1975 "Unaligned partial completion (resid=%u, sector_sz=%u)\n", 1976 resid, sector_size); 1977 resid = min(scsi_bufflen(SCpnt), 1978 round_up(resid, sector_size)); 1979 scsi_set_resid(SCpnt, resid); 1980 } 1981 } 1982 1983 if (result) { 1984 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr); 1985 if (sense_valid) 1986 sense_deferred = scsi_sense_is_deferred(&sshdr); 1987 } 1988 sdkp->medium_access_timed_out = 0; 1989 1990 if (driver_byte(result) != DRIVER_SENSE && 1991 (!sense_valid || sense_deferred)) 1992 goto out; 1993 1994 switch (sshdr.sense_key) { 1995 case HARDWARE_ERROR: 1996 case MEDIUM_ERROR: 1997 good_bytes = sd_completed_bytes(SCpnt); 1998 break; 1999 case RECOVERED_ERROR: 2000 good_bytes = scsi_bufflen(SCpnt); 2001 break; 2002 case NO_SENSE: 2003 /* This indicates a false check condition, so ignore it. An 2004 * unknown amount of data was transferred so treat it as an 2005 * error. 2006 */ 2007 SCpnt->result = 0; 2008 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 2009 break; 2010 case ABORTED_COMMAND: 2011 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */ 2012 good_bytes = sd_completed_bytes(SCpnt); 2013 break; 2014 case ILLEGAL_REQUEST: 2015 switch (sshdr.asc) { 2016 case 0x10: /* DIX: Host detected corruption */ 2017 good_bytes = sd_completed_bytes(SCpnt); 2018 break; 2019 case 0x20: /* INVALID COMMAND OPCODE */ 2020 case 0x24: /* INVALID FIELD IN CDB */ 2021 switch (SCpnt->cmnd[0]) { 2022 case UNMAP: 2023 sd_config_discard(sdkp, SD_LBP_DISABLE); 2024 break; 2025 case WRITE_SAME_16: 2026 case WRITE_SAME: 2027 if (SCpnt->cmnd[1] & 8) { /* UNMAP */ 2028 sd_config_discard(sdkp, SD_LBP_DISABLE); 2029 } else { 2030 sdkp->device->no_write_same = 1; 2031 sd_config_write_same(sdkp); 2032 req->rq_flags |= RQF_QUIET; 2033 } 2034 break; 2035 } 2036 } 2037 break; 2038 default: 2039 break; 2040 } 2041 2042 out: 2043 if (sd_is_zoned(sdkp)) 2044 sd_zbc_complete(SCpnt, good_bytes, &sshdr); 2045 2046 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt, 2047 "sd_done: completed %d of %d bytes\n", 2048 good_bytes, scsi_bufflen(SCpnt))); 2049 2050 if (rq_data_dir(SCpnt->request) == READ && scsi_prot_sg_count(SCpnt) && 2051 good_bytes) 2052 t10_pi_complete(SCpnt->request, sdkp->protection_type, 2053 good_bytes / scsi_prot_interval(SCpnt)); 2054 2055 return good_bytes; 2056 } 2057 2058 /* 2059 * spinup disk - called only in sd_revalidate_disk() 2060 */ 2061 static void 2062 sd_spinup_disk(struct scsi_disk *sdkp) 2063 { 2064 unsigned char cmd[10]; 2065 unsigned long spintime_expire = 0; 2066 int retries, spintime; 2067 unsigned int the_result; 2068 struct scsi_sense_hdr sshdr; 2069 int sense_valid = 0; 2070 2071 spintime = 0; 2072 2073 /* Spin up drives, as required. Only do this at boot time */ 2074 /* Spinup needs to be done for module loads too. */ 2075 do { 2076 retries = 0; 2077 2078 do { 2079 cmd[0] = TEST_UNIT_READY; 2080 memset((void *) &cmd[1], 0, 9); 2081 2082 the_result = scsi_execute_req(sdkp->device, cmd, 2083 DMA_NONE, NULL, 0, 2084 &sshdr, SD_TIMEOUT, 2085 SD_MAX_RETRIES, NULL); 2086 2087 /* 2088 * If the drive has indicated to us that it 2089 * doesn't have any media in it, don't bother 2090 * with any more polling. 2091 */ 2092 if (media_not_present(sdkp, &sshdr)) 2093 return; 2094 2095 if (the_result) 2096 sense_valid = scsi_sense_valid(&sshdr); 2097 retries++; 2098 } while (retries < 3 && 2099 (!scsi_status_is_good(the_result) || 2100 ((driver_byte(the_result) == DRIVER_SENSE) && 2101 sense_valid && sshdr.sense_key == UNIT_ATTENTION))); 2102 2103 if (driver_byte(the_result) != DRIVER_SENSE) { 2104 /* no sense, TUR either succeeded or failed 2105 * with a status error */ 2106 if(!spintime && !scsi_status_is_good(the_result)) { 2107 sd_print_result(sdkp, "Test Unit Ready failed", 2108 the_result); 2109 } 2110 break; 2111 } 2112 2113 /* 2114 * The device does not want the automatic start to be issued. 2115 */ 2116 if (sdkp->device->no_start_on_add) 2117 break; 2118 2119 if (sense_valid && sshdr.sense_key == NOT_READY) { 2120 if (sshdr.asc == 4 && sshdr.ascq == 3) 2121 break; /* manual intervention required */ 2122 if (sshdr.asc == 4 && sshdr.ascq == 0xb) 2123 break; /* standby */ 2124 if (sshdr.asc == 4 && sshdr.ascq == 0xc) 2125 break; /* unavailable */ 2126 if (sshdr.asc == 4 && sshdr.ascq == 0x1b) 2127 break; /* sanitize in progress */ 2128 /* 2129 * Issue command to spin up drive when not ready 2130 */ 2131 if (!spintime) { 2132 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk..."); 2133 cmd[0] = START_STOP; 2134 cmd[1] = 1; /* Return immediately */ 2135 memset((void *) &cmd[2], 0, 8); 2136 cmd[4] = 1; /* Start spin cycle */ 2137 if (sdkp->device->start_stop_pwr_cond) 2138 cmd[4] |= 1 << 4; 2139 scsi_execute_req(sdkp->device, cmd, DMA_NONE, 2140 NULL, 0, &sshdr, 2141 SD_TIMEOUT, SD_MAX_RETRIES, 2142 NULL); 2143 spintime_expire = jiffies + 100 * HZ; 2144 spintime = 1; 2145 } 2146 /* Wait 1 second for next try */ 2147 msleep(1000); 2148 printk(KERN_CONT "."); 2149 2150 /* 2151 * Wait for USB flash devices with slow firmware. 2152 * Yes, this sense key/ASC combination shouldn't 2153 * occur here. It's characteristic of these devices. 2154 */ 2155 } else if (sense_valid && 2156 sshdr.sense_key == UNIT_ATTENTION && 2157 sshdr.asc == 0x28) { 2158 if (!spintime) { 2159 spintime_expire = jiffies + 5 * HZ; 2160 spintime = 1; 2161 } 2162 /* Wait 1 second for next try */ 2163 msleep(1000); 2164 } else { 2165 /* we don't understand the sense code, so it's 2166 * probably pointless to loop */ 2167 if(!spintime) { 2168 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n"); 2169 sd_print_sense_hdr(sdkp, &sshdr); 2170 } 2171 break; 2172 } 2173 2174 } while (spintime && time_before_eq(jiffies, spintime_expire)); 2175 2176 if (spintime) { 2177 if (scsi_status_is_good(the_result)) 2178 printk(KERN_CONT "ready\n"); 2179 else 2180 printk(KERN_CONT "not responding...\n"); 2181 } 2182 } 2183 2184 /* 2185 * Determine whether disk supports Data Integrity Field. 2186 */ 2187 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer) 2188 { 2189 struct scsi_device *sdp = sdkp->device; 2190 u8 type; 2191 int ret = 0; 2192 2193 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) 2194 return ret; 2195 2196 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */ 2197 2198 if (type > T10_PI_TYPE3_PROTECTION) 2199 ret = -ENODEV; 2200 else if (scsi_host_dif_capable(sdp->host, type)) 2201 ret = 1; 2202 2203 if (sdkp->first_scan || type != sdkp->protection_type) 2204 switch (ret) { 2205 case -ENODEV: 2206 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \ 2207 " protection type %u. Disabling disk!\n", 2208 type); 2209 break; 2210 case 1: 2211 sd_printk(KERN_NOTICE, sdkp, 2212 "Enabling DIF Type %u protection\n", type); 2213 break; 2214 case 0: 2215 sd_printk(KERN_NOTICE, sdkp, 2216 "Disabling DIF Type %u protection\n", type); 2217 break; 2218 } 2219 2220 sdkp->protection_type = type; 2221 2222 return ret; 2223 } 2224 2225 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp, 2226 struct scsi_sense_hdr *sshdr, int sense_valid, 2227 int the_result) 2228 { 2229 if (driver_byte(the_result) == DRIVER_SENSE) 2230 sd_print_sense_hdr(sdkp, sshdr); 2231 else 2232 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n"); 2233 2234 /* 2235 * Set dirty bit for removable devices if not ready - 2236 * sometimes drives will not report this properly. 2237 */ 2238 if (sdp->removable && 2239 sense_valid && sshdr->sense_key == NOT_READY) 2240 set_media_not_present(sdkp); 2241 2242 /* 2243 * We used to set media_present to 0 here to indicate no media 2244 * in the drive, but some drives fail read capacity even with 2245 * media present, so we can't do that. 2246 */ 2247 sdkp->capacity = 0; /* unknown mapped to zero - as usual */ 2248 } 2249 2250 #define RC16_LEN 32 2251 #if RC16_LEN > SD_BUF_SIZE 2252 #error RC16_LEN must not be more than SD_BUF_SIZE 2253 #endif 2254 2255 #define READ_CAPACITY_RETRIES_ON_RESET 10 2256 2257 /* 2258 * Ensure that we don't overflow sector_t when CONFIG_LBDAF is not set 2259 * and the reported logical block size is bigger than 512 bytes. Note 2260 * that last_sector is a u64 and therefore logical_to_sectors() is not 2261 * applicable. 2262 */ 2263 static bool sd_addressable_capacity(u64 lba, unsigned int sector_size) 2264 { 2265 u64 last_sector = (lba + 1ULL) << (ilog2(sector_size) - 9); 2266 2267 if (sizeof(sector_t) == 4 && last_sector > U32_MAX) 2268 return false; 2269 2270 return true; 2271 } 2272 2273 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp, 2274 unsigned char *buffer) 2275 { 2276 unsigned char cmd[16]; 2277 struct scsi_sense_hdr sshdr; 2278 int sense_valid = 0; 2279 int the_result; 2280 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2281 unsigned int alignment; 2282 unsigned long long lba; 2283 unsigned sector_size; 2284 2285 if (sdp->no_read_capacity_16) 2286 return -EINVAL; 2287 2288 do { 2289 memset(cmd, 0, 16); 2290 cmd[0] = SERVICE_ACTION_IN_16; 2291 cmd[1] = SAI_READ_CAPACITY_16; 2292 cmd[13] = RC16_LEN; 2293 memset(buffer, 0, RC16_LEN); 2294 2295 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, 2296 buffer, RC16_LEN, &sshdr, 2297 SD_TIMEOUT, SD_MAX_RETRIES, NULL); 2298 2299 if (media_not_present(sdkp, &sshdr)) 2300 return -ENODEV; 2301 2302 if (the_result) { 2303 sense_valid = scsi_sense_valid(&sshdr); 2304 if (sense_valid && 2305 sshdr.sense_key == ILLEGAL_REQUEST && 2306 (sshdr.asc == 0x20 || sshdr.asc == 0x24) && 2307 sshdr.ascq == 0x00) 2308 /* Invalid Command Operation Code or 2309 * Invalid Field in CDB, just retry 2310 * silently with RC10 */ 2311 return -EINVAL; 2312 if (sense_valid && 2313 sshdr.sense_key == UNIT_ATTENTION && 2314 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2315 /* Device reset might occur several times, 2316 * give it one more chance */ 2317 if (--reset_retries > 0) 2318 continue; 2319 } 2320 retries--; 2321 2322 } while (the_result && retries); 2323 2324 if (the_result) { 2325 sd_print_result(sdkp, "Read Capacity(16) failed", the_result); 2326 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2327 return -EINVAL; 2328 } 2329 2330 sector_size = get_unaligned_be32(&buffer[8]); 2331 lba = get_unaligned_be64(&buffer[0]); 2332 2333 if (sd_read_protection_type(sdkp, buffer) < 0) { 2334 sdkp->capacity = 0; 2335 return -ENODEV; 2336 } 2337 2338 if (!sd_addressable_capacity(lba, sector_size)) { 2339 sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a " 2340 "kernel compiled with support for large block " 2341 "devices.\n"); 2342 sdkp->capacity = 0; 2343 return -EOVERFLOW; 2344 } 2345 2346 /* Logical blocks per physical block exponent */ 2347 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size; 2348 2349 /* RC basis */ 2350 sdkp->rc_basis = (buffer[12] >> 4) & 0x3; 2351 2352 /* Lowest aligned logical block */ 2353 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size; 2354 blk_queue_alignment_offset(sdp->request_queue, alignment); 2355 if (alignment && sdkp->first_scan) 2356 sd_printk(KERN_NOTICE, sdkp, 2357 "physical block alignment offset: %u\n", alignment); 2358 2359 if (buffer[14] & 0x80) { /* LBPME */ 2360 sdkp->lbpme = 1; 2361 2362 if (buffer[14] & 0x40) /* LBPRZ */ 2363 sdkp->lbprz = 1; 2364 2365 sd_config_discard(sdkp, SD_LBP_WS16); 2366 } 2367 2368 sdkp->capacity = lba + 1; 2369 return sector_size; 2370 } 2371 2372 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp, 2373 unsigned char *buffer) 2374 { 2375 unsigned char cmd[16]; 2376 struct scsi_sense_hdr sshdr; 2377 int sense_valid = 0; 2378 int the_result; 2379 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2380 sector_t lba; 2381 unsigned sector_size; 2382 2383 do { 2384 cmd[0] = READ_CAPACITY; 2385 memset(&cmd[1], 0, 9); 2386 memset(buffer, 0, 8); 2387 2388 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, 2389 buffer, 8, &sshdr, 2390 SD_TIMEOUT, SD_MAX_RETRIES, NULL); 2391 2392 if (media_not_present(sdkp, &sshdr)) 2393 return -ENODEV; 2394 2395 if (the_result) { 2396 sense_valid = scsi_sense_valid(&sshdr); 2397 if (sense_valid && 2398 sshdr.sense_key == UNIT_ATTENTION && 2399 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2400 /* Device reset might occur several times, 2401 * give it one more chance */ 2402 if (--reset_retries > 0) 2403 continue; 2404 } 2405 retries--; 2406 2407 } while (the_result && retries); 2408 2409 if (the_result) { 2410 sd_print_result(sdkp, "Read Capacity(10) failed", the_result); 2411 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2412 return -EINVAL; 2413 } 2414 2415 sector_size = get_unaligned_be32(&buffer[4]); 2416 lba = get_unaligned_be32(&buffer[0]); 2417 2418 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) { 2419 /* Some buggy (usb cardreader) devices return an lba of 2420 0xffffffff when the want to report a size of 0 (with 2421 which they really mean no media is present) */ 2422 sdkp->capacity = 0; 2423 sdkp->physical_block_size = sector_size; 2424 return sector_size; 2425 } 2426 2427 if (!sd_addressable_capacity(lba, sector_size)) { 2428 sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a " 2429 "kernel compiled with support for large block " 2430 "devices.\n"); 2431 sdkp->capacity = 0; 2432 return -EOVERFLOW; 2433 } 2434 2435 sdkp->capacity = lba + 1; 2436 sdkp->physical_block_size = sector_size; 2437 return sector_size; 2438 } 2439 2440 static int sd_try_rc16_first(struct scsi_device *sdp) 2441 { 2442 if (sdp->host->max_cmd_len < 16) 2443 return 0; 2444 if (sdp->try_rc_10_first) 2445 return 0; 2446 if (sdp->scsi_level > SCSI_SPC_2) 2447 return 1; 2448 if (scsi_device_protection(sdp)) 2449 return 1; 2450 return 0; 2451 } 2452 2453 /* 2454 * read disk capacity 2455 */ 2456 static void 2457 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer) 2458 { 2459 int sector_size; 2460 struct scsi_device *sdp = sdkp->device; 2461 2462 if (sd_try_rc16_first(sdp)) { 2463 sector_size = read_capacity_16(sdkp, sdp, buffer); 2464 if (sector_size == -EOVERFLOW) 2465 goto got_data; 2466 if (sector_size == -ENODEV) 2467 return; 2468 if (sector_size < 0) 2469 sector_size = read_capacity_10(sdkp, sdp, buffer); 2470 if (sector_size < 0) 2471 return; 2472 } else { 2473 sector_size = read_capacity_10(sdkp, sdp, buffer); 2474 if (sector_size == -EOVERFLOW) 2475 goto got_data; 2476 if (sector_size < 0) 2477 return; 2478 if ((sizeof(sdkp->capacity) > 4) && 2479 (sdkp->capacity > 0xffffffffULL)) { 2480 int old_sector_size = sector_size; 2481 sd_printk(KERN_NOTICE, sdkp, "Very big device. " 2482 "Trying to use READ CAPACITY(16).\n"); 2483 sector_size = read_capacity_16(sdkp, sdp, buffer); 2484 if (sector_size < 0) { 2485 sd_printk(KERN_NOTICE, sdkp, 2486 "Using 0xffffffff as device size\n"); 2487 sdkp->capacity = 1 + (sector_t) 0xffffffff; 2488 sector_size = old_sector_size; 2489 goto got_data; 2490 } 2491 /* Remember that READ CAPACITY(16) succeeded */ 2492 sdp->try_rc_10_first = 0; 2493 } 2494 } 2495 2496 /* Some devices are known to return the total number of blocks, 2497 * not the highest block number. Some devices have versions 2498 * which do this and others which do not. Some devices we might 2499 * suspect of doing this but we don't know for certain. 2500 * 2501 * If we know the reported capacity is wrong, decrement it. If 2502 * we can only guess, then assume the number of blocks is even 2503 * (usually true but not always) and err on the side of lowering 2504 * the capacity. 2505 */ 2506 if (sdp->fix_capacity || 2507 (sdp->guess_capacity && (sdkp->capacity & 0x01))) { 2508 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count " 2509 "from its reported value: %llu\n", 2510 (unsigned long long) sdkp->capacity); 2511 --sdkp->capacity; 2512 } 2513 2514 got_data: 2515 if (sector_size == 0) { 2516 sector_size = 512; 2517 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, " 2518 "assuming 512.\n"); 2519 } 2520 2521 if (sector_size != 512 && 2522 sector_size != 1024 && 2523 sector_size != 2048 && 2524 sector_size != 4096) { 2525 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n", 2526 sector_size); 2527 /* 2528 * The user might want to re-format the drive with 2529 * a supported sectorsize. Once this happens, it 2530 * would be relatively trivial to set the thing up. 2531 * For this reason, we leave the thing in the table. 2532 */ 2533 sdkp->capacity = 0; 2534 /* 2535 * set a bogus sector size so the normal read/write 2536 * logic in the block layer will eventually refuse any 2537 * request on this device without tripping over power 2538 * of two sector size assumptions 2539 */ 2540 sector_size = 512; 2541 } 2542 blk_queue_logical_block_size(sdp->request_queue, sector_size); 2543 blk_queue_physical_block_size(sdp->request_queue, 2544 sdkp->physical_block_size); 2545 sdkp->device->sector_size = sector_size; 2546 2547 if (sdkp->capacity > 0xffffffff) 2548 sdp->use_16_for_rw = 1; 2549 2550 } 2551 2552 /* 2553 * Print disk capacity 2554 */ 2555 static void 2556 sd_print_capacity(struct scsi_disk *sdkp, 2557 sector_t old_capacity) 2558 { 2559 int sector_size = sdkp->device->sector_size; 2560 char cap_str_2[10], cap_str_10[10]; 2561 2562 string_get_size(sdkp->capacity, sector_size, 2563 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2)); 2564 string_get_size(sdkp->capacity, sector_size, 2565 STRING_UNITS_10, cap_str_10, 2566 sizeof(cap_str_10)); 2567 2568 if (sdkp->first_scan || old_capacity != sdkp->capacity) { 2569 sd_printk(KERN_NOTICE, sdkp, 2570 "%llu %d-byte logical blocks: (%s/%s)\n", 2571 (unsigned long long)sdkp->capacity, 2572 sector_size, cap_str_10, cap_str_2); 2573 2574 if (sdkp->physical_block_size != sector_size) 2575 sd_printk(KERN_NOTICE, sdkp, 2576 "%u-byte physical blocks\n", 2577 sdkp->physical_block_size); 2578 2579 sd_zbc_print_zones(sdkp); 2580 } 2581 } 2582 2583 /* called with buffer of length 512 */ 2584 static inline int 2585 sd_do_mode_sense(struct scsi_device *sdp, int dbd, int modepage, 2586 unsigned char *buffer, int len, struct scsi_mode_data *data, 2587 struct scsi_sense_hdr *sshdr) 2588 { 2589 return scsi_mode_sense(sdp, dbd, modepage, buffer, len, 2590 SD_TIMEOUT, SD_MAX_RETRIES, data, 2591 sshdr); 2592 } 2593 2594 /* 2595 * read write protect setting, if possible - called only in sd_revalidate_disk() 2596 * called with buffer of length SD_BUF_SIZE 2597 */ 2598 static void 2599 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer) 2600 { 2601 int res; 2602 struct scsi_device *sdp = sdkp->device; 2603 struct scsi_mode_data data; 2604 int disk_ro = get_disk_ro(sdkp->disk); 2605 int old_wp = sdkp->write_prot; 2606 2607 set_disk_ro(sdkp->disk, 0); 2608 if (sdp->skip_ms_page_3f) { 2609 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n"); 2610 return; 2611 } 2612 2613 if (sdp->use_192_bytes_for_3f) { 2614 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 192, &data, NULL); 2615 } else { 2616 /* 2617 * First attempt: ask for all pages (0x3F), but only 4 bytes. 2618 * We have to start carefully: some devices hang if we ask 2619 * for more than is available. 2620 */ 2621 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 4, &data, NULL); 2622 2623 /* 2624 * Second attempt: ask for page 0 When only page 0 is 2625 * implemented, a request for page 3F may return Sense Key 2626 * 5: Illegal Request, Sense Code 24: Invalid field in 2627 * CDB. 2628 */ 2629 if (!scsi_status_is_good(res)) 2630 res = sd_do_mode_sense(sdp, 0, 0, buffer, 4, &data, NULL); 2631 2632 /* 2633 * Third attempt: ask 255 bytes, as we did earlier. 2634 */ 2635 if (!scsi_status_is_good(res)) 2636 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 255, 2637 &data, NULL); 2638 } 2639 2640 if (!scsi_status_is_good(res)) { 2641 sd_first_printk(KERN_WARNING, sdkp, 2642 "Test WP failed, assume Write Enabled\n"); 2643 } else { 2644 sdkp->write_prot = ((data.device_specific & 0x80) != 0); 2645 set_disk_ro(sdkp->disk, sdkp->write_prot || disk_ro); 2646 if (sdkp->first_scan || old_wp != sdkp->write_prot) { 2647 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n", 2648 sdkp->write_prot ? "on" : "off"); 2649 sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer); 2650 } 2651 } 2652 } 2653 2654 /* 2655 * sd_read_cache_type - called only from sd_revalidate_disk() 2656 * called with buffer of length SD_BUF_SIZE 2657 */ 2658 static void 2659 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer) 2660 { 2661 int len = 0, res; 2662 struct scsi_device *sdp = sdkp->device; 2663 2664 int dbd; 2665 int modepage; 2666 int first_len; 2667 struct scsi_mode_data data; 2668 struct scsi_sense_hdr sshdr; 2669 int old_wce = sdkp->WCE; 2670 int old_rcd = sdkp->RCD; 2671 int old_dpofua = sdkp->DPOFUA; 2672 2673 2674 if (sdkp->cache_override) 2675 return; 2676 2677 first_len = 4; 2678 if (sdp->skip_ms_page_8) { 2679 if (sdp->type == TYPE_RBC) 2680 goto defaults; 2681 else { 2682 if (sdp->skip_ms_page_3f) 2683 goto defaults; 2684 modepage = 0x3F; 2685 if (sdp->use_192_bytes_for_3f) 2686 first_len = 192; 2687 dbd = 0; 2688 } 2689 } else if (sdp->type == TYPE_RBC) { 2690 modepage = 6; 2691 dbd = 8; 2692 } else { 2693 modepage = 8; 2694 dbd = 0; 2695 } 2696 2697 /* cautiously ask */ 2698 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, first_len, 2699 &data, &sshdr); 2700 2701 if (!scsi_status_is_good(res)) 2702 goto bad_sense; 2703 2704 if (!data.header_length) { 2705 modepage = 6; 2706 first_len = 0; 2707 sd_first_printk(KERN_ERR, sdkp, 2708 "Missing header in MODE_SENSE response\n"); 2709 } 2710 2711 /* that went OK, now ask for the proper length */ 2712 len = data.length; 2713 2714 /* 2715 * We're only interested in the first three bytes, actually. 2716 * But the data cache page is defined for the first 20. 2717 */ 2718 if (len < 3) 2719 goto bad_sense; 2720 else if (len > SD_BUF_SIZE) { 2721 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter " 2722 "data from %d to %d bytes\n", len, SD_BUF_SIZE); 2723 len = SD_BUF_SIZE; 2724 } 2725 if (modepage == 0x3F && sdp->use_192_bytes_for_3f) 2726 len = 192; 2727 2728 /* Get the data */ 2729 if (len > first_len) 2730 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, len, 2731 &data, &sshdr); 2732 2733 if (scsi_status_is_good(res)) { 2734 int offset = data.header_length + data.block_descriptor_length; 2735 2736 while (offset < len) { 2737 u8 page_code = buffer[offset] & 0x3F; 2738 u8 spf = buffer[offset] & 0x40; 2739 2740 if (page_code == 8 || page_code == 6) { 2741 /* We're interested only in the first 3 bytes. 2742 */ 2743 if (len - offset <= 2) { 2744 sd_first_printk(KERN_ERR, sdkp, 2745 "Incomplete mode parameter " 2746 "data\n"); 2747 goto defaults; 2748 } else { 2749 modepage = page_code; 2750 goto Page_found; 2751 } 2752 } else { 2753 /* Go to the next page */ 2754 if (spf && len - offset > 3) 2755 offset += 4 + (buffer[offset+2] << 8) + 2756 buffer[offset+3]; 2757 else if (!spf && len - offset > 1) 2758 offset += 2 + buffer[offset+1]; 2759 else { 2760 sd_first_printk(KERN_ERR, sdkp, 2761 "Incomplete mode " 2762 "parameter data\n"); 2763 goto defaults; 2764 } 2765 } 2766 } 2767 2768 sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n"); 2769 goto defaults; 2770 2771 Page_found: 2772 if (modepage == 8) { 2773 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0); 2774 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0); 2775 } else { 2776 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0); 2777 sdkp->RCD = 0; 2778 } 2779 2780 sdkp->DPOFUA = (data.device_specific & 0x10) != 0; 2781 if (sdp->broken_fua) { 2782 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n"); 2783 sdkp->DPOFUA = 0; 2784 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw && 2785 !sdkp->device->use_16_for_rw) { 2786 sd_first_printk(KERN_NOTICE, sdkp, 2787 "Uses READ/WRITE(6), disabling FUA\n"); 2788 sdkp->DPOFUA = 0; 2789 } 2790 2791 /* No cache flush allowed for write protected devices */ 2792 if (sdkp->WCE && sdkp->write_prot) 2793 sdkp->WCE = 0; 2794 2795 if (sdkp->first_scan || old_wce != sdkp->WCE || 2796 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA) 2797 sd_printk(KERN_NOTICE, sdkp, 2798 "Write cache: %s, read cache: %s, %s\n", 2799 sdkp->WCE ? "enabled" : "disabled", 2800 sdkp->RCD ? "disabled" : "enabled", 2801 sdkp->DPOFUA ? "supports DPO and FUA" 2802 : "doesn't support DPO or FUA"); 2803 2804 return; 2805 } 2806 2807 bad_sense: 2808 if (scsi_sense_valid(&sshdr) && 2809 sshdr.sense_key == ILLEGAL_REQUEST && 2810 sshdr.asc == 0x24 && sshdr.ascq == 0x0) 2811 /* Invalid field in CDB */ 2812 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n"); 2813 else 2814 sd_first_printk(KERN_ERR, sdkp, 2815 "Asking for cache data failed\n"); 2816 2817 defaults: 2818 if (sdp->wce_default_on) { 2819 sd_first_printk(KERN_NOTICE, sdkp, 2820 "Assuming drive cache: write back\n"); 2821 sdkp->WCE = 1; 2822 } else { 2823 sd_first_printk(KERN_ERR, sdkp, 2824 "Assuming drive cache: write through\n"); 2825 sdkp->WCE = 0; 2826 } 2827 sdkp->RCD = 0; 2828 sdkp->DPOFUA = 0; 2829 } 2830 2831 /* 2832 * The ATO bit indicates whether the DIF application tag is available 2833 * for use by the operating system. 2834 */ 2835 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer) 2836 { 2837 int res, offset; 2838 struct scsi_device *sdp = sdkp->device; 2839 struct scsi_mode_data data; 2840 struct scsi_sense_hdr sshdr; 2841 2842 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 2843 return; 2844 2845 if (sdkp->protection_type == 0) 2846 return; 2847 2848 res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT, 2849 SD_MAX_RETRIES, &data, &sshdr); 2850 2851 if (!scsi_status_is_good(res) || !data.header_length || 2852 data.length < 6) { 2853 sd_first_printk(KERN_WARNING, sdkp, 2854 "getting Control mode page failed, assume no ATO\n"); 2855 2856 if (scsi_sense_valid(&sshdr)) 2857 sd_print_sense_hdr(sdkp, &sshdr); 2858 2859 return; 2860 } 2861 2862 offset = data.header_length + data.block_descriptor_length; 2863 2864 if ((buffer[offset] & 0x3f) != 0x0a) { 2865 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n"); 2866 return; 2867 } 2868 2869 if ((buffer[offset + 5] & 0x80) == 0) 2870 return; 2871 2872 sdkp->ATO = 1; 2873 2874 return; 2875 } 2876 2877 /** 2878 * sd_read_block_limits - Query disk device for preferred I/O sizes. 2879 * @sdkp: disk to query 2880 */ 2881 static void sd_read_block_limits(struct scsi_disk *sdkp) 2882 { 2883 unsigned int sector_sz = sdkp->device->sector_size; 2884 const int vpd_len = 64; 2885 unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL); 2886 2887 if (!buffer || 2888 /* Block Limits VPD */ 2889 scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len)) 2890 goto out; 2891 2892 blk_queue_io_min(sdkp->disk->queue, 2893 get_unaligned_be16(&buffer[6]) * sector_sz); 2894 2895 sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]); 2896 sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]); 2897 2898 if (buffer[3] == 0x3c) { 2899 unsigned int lba_count, desc_count; 2900 2901 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]); 2902 2903 if (!sdkp->lbpme) 2904 goto out; 2905 2906 lba_count = get_unaligned_be32(&buffer[20]); 2907 desc_count = get_unaligned_be32(&buffer[24]); 2908 2909 if (lba_count && desc_count) 2910 sdkp->max_unmap_blocks = lba_count; 2911 2912 sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]); 2913 2914 if (buffer[32] & 0x80) 2915 sdkp->unmap_alignment = 2916 get_unaligned_be32(&buffer[32]) & ~(1 << 31); 2917 2918 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */ 2919 2920 if (sdkp->max_unmap_blocks) 2921 sd_config_discard(sdkp, SD_LBP_UNMAP); 2922 else 2923 sd_config_discard(sdkp, SD_LBP_WS16); 2924 2925 } else { /* LBP VPD page tells us what to use */ 2926 if (sdkp->lbpu && sdkp->max_unmap_blocks) 2927 sd_config_discard(sdkp, SD_LBP_UNMAP); 2928 else if (sdkp->lbpws) 2929 sd_config_discard(sdkp, SD_LBP_WS16); 2930 else if (sdkp->lbpws10) 2931 sd_config_discard(sdkp, SD_LBP_WS10); 2932 else 2933 sd_config_discard(sdkp, SD_LBP_DISABLE); 2934 } 2935 } 2936 2937 out: 2938 kfree(buffer); 2939 } 2940 2941 /** 2942 * sd_read_block_characteristics - Query block dev. characteristics 2943 * @sdkp: disk to query 2944 */ 2945 static void sd_read_block_characteristics(struct scsi_disk *sdkp) 2946 { 2947 struct request_queue *q = sdkp->disk->queue; 2948 unsigned char *buffer; 2949 u16 rot; 2950 const int vpd_len = 64; 2951 2952 buffer = kmalloc(vpd_len, GFP_KERNEL); 2953 2954 if (!buffer || 2955 /* Block Device Characteristics VPD */ 2956 scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len)) 2957 goto out; 2958 2959 rot = get_unaligned_be16(&buffer[4]); 2960 2961 if (rot == 1) { 2962 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 2963 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q); 2964 } else { 2965 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q); 2966 blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q); 2967 } 2968 2969 if (sdkp->device->type == TYPE_ZBC) { 2970 /* Host-managed */ 2971 q->limits.zoned = BLK_ZONED_HM; 2972 } else { 2973 sdkp->zoned = (buffer[8] >> 4) & 3; 2974 if (sdkp->zoned == 1) 2975 /* Host-aware */ 2976 q->limits.zoned = BLK_ZONED_HA; 2977 else 2978 /* 2979 * Treat drive-managed devices as 2980 * regular block devices. 2981 */ 2982 q->limits.zoned = BLK_ZONED_NONE; 2983 } 2984 if (blk_queue_is_zoned(q) && sdkp->first_scan) 2985 sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n", 2986 q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware"); 2987 2988 out: 2989 kfree(buffer); 2990 } 2991 2992 /** 2993 * sd_read_block_provisioning - Query provisioning VPD page 2994 * @sdkp: disk to query 2995 */ 2996 static void sd_read_block_provisioning(struct scsi_disk *sdkp) 2997 { 2998 unsigned char *buffer; 2999 const int vpd_len = 8; 3000 3001 if (sdkp->lbpme == 0) 3002 return; 3003 3004 buffer = kmalloc(vpd_len, GFP_KERNEL); 3005 3006 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len)) 3007 goto out; 3008 3009 sdkp->lbpvpd = 1; 3010 sdkp->lbpu = (buffer[5] >> 7) & 1; /* UNMAP */ 3011 sdkp->lbpws = (buffer[5] >> 6) & 1; /* WRITE SAME(16) with UNMAP */ 3012 sdkp->lbpws10 = (buffer[5] >> 5) & 1; /* WRITE SAME(10) with UNMAP */ 3013 3014 out: 3015 kfree(buffer); 3016 } 3017 3018 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer) 3019 { 3020 struct scsi_device *sdev = sdkp->device; 3021 3022 if (sdev->host->no_write_same) { 3023 sdev->no_write_same = 1; 3024 3025 return; 3026 } 3027 3028 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) { 3029 /* too large values might cause issues with arcmsr */ 3030 int vpd_buf_len = 64; 3031 3032 sdev->no_report_opcodes = 1; 3033 3034 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION 3035 * CODES is unsupported and the device has an ATA 3036 * Information VPD page (SAT). 3037 */ 3038 if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len)) 3039 sdev->no_write_same = 1; 3040 } 3041 3042 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1) 3043 sdkp->ws16 = 1; 3044 3045 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1) 3046 sdkp->ws10 = 1; 3047 } 3048 3049 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer) 3050 { 3051 struct scsi_device *sdev = sdkp->device; 3052 3053 if (!sdev->security_supported) 3054 return; 3055 3056 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3057 SECURITY_PROTOCOL_IN) == 1 && 3058 scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3059 SECURITY_PROTOCOL_OUT) == 1) 3060 sdkp->security = 1; 3061 } 3062 3063 /** 3064 * sd_revalidate_disk - called the first time a new disk is seen, 3065 * performs disk spin up, read_capacity, etc. 3066 * @disk: struct gendisk we care about 3067 **/ 3068 static int sd_revalidate_disk(struct gendisk *disk) 3069 { 3070 struct scsi_disk *sdkp = scsi_disk(disk); 3071 struct scsi_device *sdp = sdkp->device; 3072 struct request_queue *q = sdkp->disk->queue; 3073 sector_t old_capacity = sdkp->capacity; 3074 unsigned char *buffer; 3075 unsigned int dev_max, rw_max; 3076 3077 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, 3078 "sd_revalidate_disk\n")); 3079 3080 /* 3081 * If the device is offline, don't try and read capacity or any 3082 * of the other niceties. 3083 */ 3084 if (!scsi_device_online(sdp)) 3085 goto out; 3086 3087 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL); 3088 if (!buffer) { 3089 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory " 3090 "allocation failure.\n"); 3091 goto out; 3092 } 3093 3094 sd_spinup_disk(sdkp); 3095 3096 /* 3097 * Without media there is no reason to ask; moreover, some devices 3098 * react badly if we do. 3099 */ 3100 if (sdkp->media_present) { 3101 sd_read_capacity(sdkp, buffer); 3102 3103 if (scsi_device_supports_vpd(sdp)) { 3104 sd_read_block_provisioning(sdkp); 3105 sd_read_block_limits(sdkp); 3106 sd_read_block_characteristics(sdkp); 3107 sd_zbc_read_zones(sdkp, buffer); 3108 } 3109 3110 sd_print_capacity(sdkp, old_capacity); 3111 3112 sd_read_write_protect_flag(sdkp, buffer); 3113 sd_read_cache_type(sdkp, buffer); 3114 sd_read_app_tag_own(sdkp, buffer); 3115 sd_read_write_same(sdkp, buffer); 3116 sd_read_security(sdkp, buffer); 3117 } 3118 3119 /* 3120 * We now have all cache related info, determine how we deal 3121 * with flush requests. 3122 */ 3123 sd_set_flush_flag(sdkp); 3124 3125 /* Initial block count limit based on CDB TRANSFER LENGTH field size. */ 3126 dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS; 3127 3128 /* Some devices report a maximum block count for READ/WRITE requests. */ 3129 dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks); 3130 q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max); 3131 3132 /* 3133 * Determine the device's preferred I/O size for reads and writes 3134 * unless the reported value is unreasonably small, large, or 3135 * garbage. 3136 */ 3137 if (sdkp->opt_xfer_blocks && 3138 sdkp->opt_xfer_blocks <= dev_max && 3139 sdkp->opt_xfer_blocks <= SD_DEF_XFER_BLOCKS && 3140 logical_to_bytes(sdp, sdkp->opt_xfer_blocks) >= PAGE_SIZE) { 3141 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 3142 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks); 3143 } else 3144 rw_max = min_not_zero(logical_to_sectors(sdp, dev_max), 3145 (sector_t)BLK_DEF_MAX_SECTORS); 3146 3147 /* Do not exceed controller limit */ 3148 rw_max = min(rw_max, queue_max_hw_sectors(q)); 3149 3150 /* 3151 * Only update max_sectors if previously unset or if the current value 3152 * exceeds the capabilities of the hardware. 3153 */ 3154 if (sdkp->first_scan || 3155 q->limits.max_sectors > q->limits.max_dev_sectors || 3156 q->limits.max_sectors > q->limits.max_hw_sectors) 3157 q->limits.max_sectors = rw_max; 3158 3159 sdkp->first_scan = 0; 3160 3161 set_capacity(disk, logical_to_sectors(sdp, sdkp->capacity)); 3162 sd_config_write_same(sdkp); 3163 kfree(buffer); 3164 3165 out: 3166 return 0; 3167 } 3168 3169 /** 3170 * sd_unlock_native_capacity - unlock native capacity 3171 * @disk: struct gendisk to set capacity for 3172 * 3173 * Block layer calls this function if it detects that partitions 3174 * on @disk reach beyond the end of the device. If the SCSI host 3175 * implements ->unlock_native_capacity() method, it's invoked to 3176 * give it a chance to adjust the device capacity. 3177 * 3178 * CONTEXT: 3179 * Defined by block layer. Might sleep. 3180 */ 3181 static void sd_unlock_native_capacity(struct gendisk *disk) 3182 { 3183 struct scsi_device *sdev = scsi_disk(disk)->device; 3184 3185 if (sdev->host->hostt->unlock_native_capacity) 3186 sdev->host->hostt->unlock_native_capacity(sdev); 3187 } 3188 3189 /** 3190 * sd_format_disk_name - format disk name 3191 * @prefix: name prefix - ie. "sd" for SCSI disks 3192 * @index: index of the disk to format name for 3193 * @buf: output buffer 3194 * @buflen: length of the output buffer 3195 * 3196 * SCSI disk names starts at sda. The 26th device is sdz and the 3197 * 27th is sdaa. The last one for two lettered suffix is sdzz 3198 * which is followed by sdaaa. 3199 * 3200 * This is basically 26 base counting with one extra 'nil' entry 3201 * at the beginning from the second digit on and can be 3202 * determined using similar method as 26 base conversion with the 3203 * index shifted -1 after each digit is computed. 3204 * 3205 * CONTEXT: 3206 * Don't care. 3207 * 3208 * RETURNS: 3209 * 0 on success, -errno on failure. 3210 */ 3211 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen) 3212 { 3213 const int base = 'z' - 'a' + 1; 3214 char *begin = buf + strlen(prefix); 3215 char *end = buf + buflen; 3216 char *p; 3217 int unit; 3218 3219 p = end - 1; 3220 *p = '\0'; 3221 unit = base; 3222 do { 3223 if (p == begin) 3224 return -EINVAL; 3225 *--p = 'a' + (index % unit); 3226 index = (index / unit) - 1; 3227 } while (index >= 0); 3228 3229 memmove(begin, p, end - p); 3230 memcpy(buf, prefix, strlen(prefix)); 3231 3232 return 0; 3233 } 3234 3235 /* 3236 * The asynchronous part of sd_probe 3237 */ 3238 static void sd_probe_async(void *data, async_cookie_t cookie) 3239 { 3240 struct scsi_disk *sdkp = data; 3241 struct scsi_device *sdp; 3242 struct gendisk *gd; 3243 u32 index; 3244 struct device *dev; 3245 3246 sdp = sdkp->device; 3247 gd = sdkp->disk; 3248 index = sdkp->index; 3249 dev = &sdp->sdev_gendev; 3250 3251 gd->major = sd_major((index & 0xf0) >> 4); 3252 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00); 3253 3254 gd->fops = &sd_fops; 3255 gd->private_data = &sdkp->driver; 3256 gd->queue = sdkp->device->request_queue; 3257 3258 /* defaults, until the device tells us otherwise */ 3259 sdp->sector_size = 512; 3260 sdkp->capacity = 0; 3261 sdkp->media_present = 1; 3262 sdkp->write_prot = 0; 3263 sdkp->cache_override = 0; 3264 sdkp->WCE = 0; 3265 sdkp->RCD = 0; 3266 sdkp->ATO = 0; 3267 sdkp->first_scan = 1; 3268 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS; 3269 3270 sd_revalidate_disk(gd); 3271 3272 gd->flags = GENHD_FL_EXT_DEVT; 3273 if (sdp->removable) { 3274 gd->flags |= GENHD_FL_REMOVABLE; 3275 gd->events |= DISK_EVENT_MEDIA_CHANGE; 3276 } 3277 3278 blk_pm_runtime_init(sdp->request_queue, dev); 3279 device_add_disk(dev, gd, NULL); 3280 if (sdkp->capacity) 3281 sd_dif_config_host(sdkp); 3282 3283 sd_revalidate_disk(gd); 3284 3285 if (sdkp->security) { 3286 sdkp->opal_dev = init_opal_dev(sdp, &sd_sec_submit); 3287 if (sdkp->opal_dev) 3288 sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n"); 3289 } 3290 3291 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n", 3292 sdp->removable ? "removable " : ""); 3293 scsi_autopm_put_device(sdp); 3294 put_device(&sdkp->dev); 3295 } 3296 3297 /** 3298 * sd_probe - called during driver initialization and whenever a 3299 * new scsi device is attached to the system. It is called once 3300 * for each scsi device (not just disks) present. 3301 * @dev: pointer to device object 3302 * 3303 * Returns 0 if successful (or not interested in this scsi device 3304 * (e.g. scanner)); 1 when there is an error. 3305 * 3306 * Note: this function is invoked from the scsi mid-level. 3307 * This function sets up the mapping between a given 3308 * <host,channel,id,lun> (found in sdp) and new device name 3309 * (e.g. /dev/sda). More precisely it is the block device major 3310 * and minor number that is chosen here. 3311 * 3312 * Assume sd_probe is not re-entrant (for time being) 3313 * Also think about sd_probe() and sd_remove() running coincidentally. 3314 **/ 3315 static int sd_probe(struct device *dev) 3316 { 3317 struct scsi_device *sdp = to_scsi_device(dev); 3318 struct scsi_disk *sdkp; 3319 struct gendisk *gd; 3320 int index; 3321 int error; 3322 3323 scsi_autopm_get_device(sdp); 3324 error = -ENODEV; 3325 if (sdp->type != TYPE_DISK && 3326 sdp->type != TYPE_ZBC && 3327 sdp->type != TYPE_MOD && 3328 sdp->type != TYPE_RBC) 3329 goto out; 3330 3331 #ifndef CONFIG_BLK_DEV_ZONED 3332 if (sdp->type == TYPE_ZBC) 3333 goto out; 3334 #endif 3335 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp, 3336 "sd_probe\n")); 3337 3338 error = -ENOMEM; 3339 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL); 3340 if (!sdkp) 3341 goto out; 3342 3343 gd = alloc_disk(SD_MINORS); 3344 if (!gd) 3345 goto out_free; 3346 3347 index = ida_alloc(&sd_index_ida, GFP_KERNEL); 3348 if (index < 0) { 3349 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n"); 3350 goto out_put; 3351 } 3352 3353 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN); 3354 if (error) { 3355 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n"); 3356 goto out_free_index; 3357 } 3358 3359 sdkp->device = sdp; 3360 sdkp->driver = &sd_template; 3361 sdkp->disk = gd; 3362 sdkp->index = index; 3363 atomic_set(&sdkp->openers, 0); 3364 atomic_set(&sdkp->device->ioerr_cnt, 0); 3365 3366 if (!sdp->request_queue->rq_timeout) { 3367 if (sdp->type != TYPE_MOD) 3368 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT); 3369 else 3370 blk_queue_rq_timeout(sdp->request_queue, 3371 SD_MOD_TIMEOUT); 3372 } 3373 3374 device_initialize(&sdkp->dev); 3375 sdkp->dev.parent = dev; 3376 sdkp->dev.class = &sd_disk_class; 3377 dev_set_name(&sdkp->dev, "%s", dev_name(dev)); 3378 3379 error = device_add(&sdkp->dev); 3380 if (error) 3381 goto out_free_index; 3382 3383 get_device(dev); 3384 dev_set_drvdata(dev, sdkp); 3385 3386 get_device(&sdkp->dev); /* prevent release before async_schedule */ 3387 async_schedule_domain(sd_probe_async, sdkp, &scsi_sd_probe_domain); 3388 3389 return 0; 3390 3391 out_free_index: 3392 ida_free(&sd_index_ida, index); 3393 out_put: 3394 put_disk(gd); 3395 out_free: 3396 kfree(sdkp); 3397 out: 3398 scsi_autopm_put_device(sdp); 3399 return error; 3400 } 3401 3402 /** 3403 * sd_remove - called whenever a scsi disk (previously recognized by 3404 * sd_probe) is detached from the system. It is called (potentially 3405 * multiple times) during sd module unload. 3406 * @dev: pointer to device object 3407 * 3408 * Note: this function is invoked from the scsi mid-level. 3409 * This function potentially frees up a device name (e.g. /dev/sdc) 3410 * that could be re-used by a subsequent sd_probe(). 3411 * This function is not called when the built-in sd driver is "exit-ed". 3412 **/ 3413 static int sd_remove(struct device *dev) 3414 { 3415 struct scsi_disk *sdkp; 3416 dev_t devt; 3417 3418 sdkp = dev_get_drvdata(dev); 3419 devt = disk_devt(sdkp->disk); 3420 scsi_autopm_get_device(sdkp->device); 3421 3422 async_synchronize_full_domain(&scsi_sd_pm_domain); 3423 async_synchronize_full_domain(&scsi_sd_probe_domain); 3424 device_del(&sdkp->dev); 3425 del_gendisk(sdkp->disk); 3426 sd_shutdown(dev); 3427 3428 sd_zbc_remove(sdkp); 3429 3430 free_opal_dev(sdkp->opal_dev); 3431 3432 blk_register_region(devt, SD_MINORS, NULL, 3433 sd_default_probe, NULL, NULL); 3434 3435 mutex_lock(&sd_ref_mutex); 3436 dev_set_drvdata(dev, NULL); 3437 put_device(&sdkp->dev); 3438 mutex_unlock(&sd_ref_mutex); 3439 3440 return 0; 3441 } 3442 3443 /** 3444 * scsi_disk_release - Called to free the scsi_disk structure 3445 * @dev: pointer to embedded class device 3446 * 3447 * sd_ref_mutex must be held entering this routine. Because it is 3448 * called on last put, you should always use the scsi_disk_get() 3449 * scsi_disk_put() helpers which manipulate the semaphore directly 3450 * and never do a direct put_device. 3451 **/ 3452 static void scsi_disk_release(struct device *dev) 3453 { 3454 struct scsi_disk *sdkp = to_scsi_disk(dev); 3455 struct gendisk *disk = sdkp->disk; 3456 3457 ida_free(&sd_index_ida, sdkp->index); 3458 3459 disk->private_data = NULL; 3460 put_disk(disk); 3461 put_device(&sdkp->device->sdev_gendev); 3462 3463 kfree(sdkp); 3464 } 3465 3466 static int sd_start_stop_device(struct scsi_disk *sdkp, int start) 3467 { 3468 unsigned char cmd[6] = { START_STOP }; /* START_VALID */ 3469 struct scsi_sense_hdr sshdr; 3470 struct scsi_device *sdp = sdkp->device; 3471 int res; 3472 3473 if (start) 3474 cmd[4] |= 1; /* START */ 3475 3476 if (sdp->start_stop_pwr_cond) 3477 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */ 3478 3479 if (!scsi_device_online(sdp)) 3480 return -ENODEV; 3481 3482 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr, 3483 SD_TIMEOUT, SD_MAX_RETRIES, 0, RQF_PM, NULL); 3484 if (res) { 3485 sd_print_result(sdkp, "Start/Stop Unit failed", res); 3486 if (driver_byte(res) == DRIVER_SENSE) 3487 sd_print_sense_hdr(sdkp, &sshdr); 3488 if (scsi_sense_valid(&sshdr) && 3489 /* 0x3a is medium not present */ 3490 sshdr.asc == 0x3a) 3491 res = 0; 3492 } 3493 3494 /* SCSI error codes must not go to the generic layer */ 3495 if (res) 3496 return -EIO; 3497 3498 return 0; 3499 } 3500 3501 /* 3502 * Send a SYNCHRONIZE CACHE instruction down to the device through 3503 * the normal SCSI command structure. Wait for the command to 3504 * complete. 3505 */ 3506 static void sd_shutdown(struct device *dev) 3507 { 3508 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3509 3510 if (!sdkp) 3511 return; /* this can happen */ 3512 3513 if (pm_runtime_suspended(dev)) 3514 return; 3515 3516 if (sdkp->WCE && sdkp->media_present) { 3517 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3518 sd_sync_cache(sdkp, NULL); 3519 } 3520 3521 if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) { 3522 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3523 sd_start_stop_device(sdkp, 0); 3524 } 3525 } 3526 3527 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors) 3528 { 3529 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3530 struct scsi_sense_hdr sshdr; 3531 int ret = 0; 3532 3533 if (!sdkp) /* E.g.: runtime suspend following sd_remove() */ 3534 return 0; 3535 3536 if (sdkp->WCE && sdkp->media_present) { 3537 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3538 ret = sd_sync_cache(sdkp, &sshdr); 3539 3540 if (ret) { 3541 /* ignore OFFLINE device */ 3542 if (ret == -ENODEV) 3543 return 0; 3544 3545 if (!scsi_sense_valid(&sshdr) || 3546 sshdr.sense_key != ILLEGAL_REQUEST) 3547 return ret; 3548 3549 /* 3550 * sshdr.sense_key == ILLEGAL_REQUEST means this drive 3551 * doesn't support sync. There's not much to do and 3552 * suspend shouldn't fail. 3553 */ 3554 ret = 0; 3555 } 3556 } 3557 3558 if (sdkp->device->manage_start_stop) { 3559 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3560 /* an error is not worth aborting a system sleep */ 3561 ret = sd_start_stop_device(sdkp, 0); 3562 if (ignore_stop_errors) 3563 ret = 0; 3564 } 3565 3566 return ret; 3567 } 3568 3569 static int sd_suspend_system(struct device *dev) 3570 { 3571 return sd_suspend_common(dev, true); 3572 } 3573 3574 static int sd_suspend_runtime(struct device *dev) 3575 { 3576 return sd_suspend_common(dev, false); 3577 } 3578 3579 static int sd_resume(struct device *dev) 3580 { 3581 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3582 int ret; 3583 3584 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */ 3585 return 0; 3586 3587 if (!sdkp->device->manage_start_stop) 3588 return 0; 3589 3590 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n"); 3591 ret = sd_start_stop_device(sdkp, 1); 3592 if (!ret) 3593 opal_unlock_from_suspend(sdkp->opal_dev); 3594 return ret; 3595 } 3596 3597 /** 3598 * init_sd - entry point for this driver (both when built in or when 3599 * a module). 3600 * 3601 * Note: this function registers this driver with the scsi mid-level. 3602 **/ 3603 static int __init init_sd(void) 3604 { 3605 int majors = 0, i, err; 3606 3607 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n")); 3608 3609 for (i = 0; i < SD_MAJORS; i++) { 3610 if (register_blkdev(sd_major(i), "sd") != 0) 3611 continue; 3612 majors++; 3613 blk_register_region(sd_major(i), SD_MINORS, NULL, 3614 sd_default_probe, NULL, NULL); 3615 } 3616 3617 if (!majors) 3618 return -ENODEV; 3619 3620 err = class_register(&sd_disk_class); 3621 if (err) 3622 goto err_out; 3623 3624 sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE, 3625 0, 0, NULL); 3626 if (!sd_cdb_cache) { 3627 printk(KERN_ERR "sd: can't init extended cdb cache\n"); 3628 err = -ENOMEM; 3629 goto err_out_class; 3630 } 3631 3632 sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache); 3633 if (!sd_cdb_pool) { 3634 printk(KERN_ERR "sd: can't init extended cdb pool\n"); 3635 err = -ENOMEM; 3636 goto err_out_cache; 3637 } 3638 3639 err = scsi_register_driver(&sd_template.gendrv); 3640 if (err) 3641 goto err_out_driver; 3642 3643 return 0; 3644 3645 err_out_driver: 3646 mempool_destroy(sd_cdb_pool); 3647 3648 err_out_cache: 3649 kmem_cache_destroy(sd_cdb_cache); 3650 3651 err_out_class: 3652 class_unregister(&sd_disk_class); 3653 err_out: 3654 for (i = 0; i < SD_MAJORS; i++) 3655 unregister_blkdev(sd_major(i), "sd"); 3656 return err; 3657 } 3658 3659 /** 3660 * exit_sd - exit point for this driver (when it is a module). 3661 * 3662 * Note: this function unregisters this driver from the scsi mid-level. 3663 **/ 3664 static void __exit exit_sd(void) 3665 { 3666 int i; 3667 3668 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n")); 3669 3670 scsi_unregister_driver(&sd_template.gendrv); 3671 mempool_destroy(sd_cdb_pool); 3672 kmem_cache_destroy(sd_cdb_cache); 3673 3674 class_unregister(&sd_disk_class); 3675 3676 for (i = 0; i < SD_MAJORS; i++) { 3677 blk_unregister_region(sd_major(i), SD_MINORS); 3678 unregister_blkdev(sd_major(i), "sd"); 3679 } 3680 } 3681 3682 module_init(init_sd); 3683 module_exit(exit_sd); 3684 3685 static void sd_print_sense_hdr(struct scsi_disk *sdkp, 3686 struct scsi_sense_hdr *sshdr) 3687 { 3688 scsi_print_sense_hdr(sdkp->device, 3689 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr); 3690 } 3691 3692 static void sd_print_result(const struct scsi_disk *sdkp, const char *msg, 3693 int result) 3694 { 3695 const char *hb_string = scsi_hostbyte_string(result); 3696 const char *db_string = scsi_driverbyte_string(result); 3697 3698 if (hb_string || db_string) 3699 sd_printk(KERN_INFO, sdkp, 3700 "%s: Result: hostbyte=%s driverbyte=%s\n", msg, 3701 hb_string ? hb_string : "invalid", 3702 db_string ? db_string : "invalid"); 3703 else 3704 sd_printk(KERN_INFO, sdkp, 3705 "%s: Result: hostbyte=0x%02x driverbyte=0x%02x\n", 3706 msg, host_byte(result), driver_byte(result)); 3707 } 3708 3709