xref: /linux/drivers/scsi/sd.c (revision b1d29ba82cf2bc784f4c963ddd6a2cf29e229b33)
1 /*
2  *      sd.c Copyright (C) 1992 Drew Eckhardt
3  *           Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
4  *
5  *      Linux scsi disk driver
6  *              Initial versions: Drew Eckhardt
7  *              Subsequent revisions: Eric Youngdale
8  *	Modification history:
9  *       - Drew Eckhardt <drew@colorado.edu> original
10  *       - Eric Youngdale <eric@andante.org> add scatter-gather, multiple
11  *         outstanding request, and other enhancements.
12  *         Support loadable low-level scsi drivers.
13  *       - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using
14  *         eight major numbers.
15  *       - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
16  *	 - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in
17  *	   sd_init and cleanups.
18  *	 - Alex Davis <letmein@erols.com> Fix problem where partition info
19  *	   not being read in sd_open. Fix problem where removable media
20  *	   could be ejected after sd_open.
21  *	 - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
22  *	 - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox
23  *	   <willy@debian.org>, Kurt Garloff <garloff@suse.de>:
24  *	   Support 32k/1M disks.
25  *
26  *	Logging policy (needs CONFIG_SCSI_LOGGING defined):
27  *	 - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
28  *	 - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
29  *	 - entering sd_ioctl: SCSI_LOG_IOCTL level 1
30  *	 - entering other commands: SCSI_LOG_HLQUEUE level 3
31  *	Note: when the logging level is set by the user, it must be greater
32  *	than the level indicated above to trigger output.
33  */
34 
35 #include <linux/module.h>
36 #include <linux/fs.h>
37 #include <linux/kernel.h>
38 #include <linux/mm.h>
39 #include <linux/bio.h>
40 #include <linux/genhd.h>
41 #include <linux/hdreg.h>
42 #include <linux/errno.h>
43 #include <linux/idr.h>
44 #include <linux/interrupt.h>
45 #include <linux/init.h>
46 #include <linux/blkdev.h>
47 #include <linux/blkpg.h>
48 #include <linux/blk-pm.h>
49 #include <linux/delay.h>
50 #include <linux/mutex.h>
51 #include <linux/string_helpers.h>
52 #include <linux/async.h>
53 #include <linux/slab.h>
54 #include <linux/sed-opal.h>
55 #include <linux/pm_runtime.h>
56 #include <linux/pr.h>
57 #include <linux/t10-pi.h>
58 #include <linux/uaccess.h>
59 #include <asm/unaligned.h>
60 
61 #include <scsi/scsi.h>
62 #include <scsi/scsi_cmnd.h>
63 #include <scsi/scsi_dbg.h>
64 #include <scsi/scsi_device.h>
65 #include <scsi/scsi_driver.h>
66 #include <scsi/scsi_eh.h>
67 #include <scsi/scsi_host.h>
68 #include <scsi/scsi_ioctl.h>
69 #include <scsi/scsicam.h>
70 
71 #include "sd.h"
72 #include "scsi_priv.h"
73 #include "scsi_logging.h"
74 
75 MODULE_AUTHOR("Eric Youngdale");
76 MODULE_DESCRIPTION("SCSI disk (sd) driver");
77 MODULE_LICENSE("GPL");
78 
79 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
95 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
96 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
97 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
98 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
99 
100 #if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT)
101 #define SD_MINORS	16
102 #else
103 #define SD_MINORS	0
104 #endif
105 
106 static void sd_config_discard(struct scsi_disk *, unsigned int);
107 static void sd_config_write_same(struct scsi_disk *);
108 static int  sd_revalidate_disk(struct gendisk *);
109 static void sd_unlock_native_capacity(struct gendisk *disk);
110 static int  sd_probe(struct device *);
111 static int  sd_remove(struct device *);
112 static void sd_shutdown(struct device *);
113 static int sd_suspend_system(struct device *);
114 static int sd_suspend_runtime(struct device *);
115 static int sd_resume(struct device *);
116 static void sd_rescan(struct device *);
117 static int sd_init_command(struct scsi_cmnd *SCpnt);
118 static void sd_uninit_command(struct scsi_cmnd *SCpnt);
119 static int sd_done(struct scsi_cmnd *);
120 static void sd_eh_reset(struct scsi_cmnd *);
121 static int sd_eh_action(struct scsi_cmnd *, int);
122 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
123 static void scsi_disk_release(struct device *cdev);
124 static void sd_print_sense_hdr(struct scsi_disk *, struct scsi_sense_hdr *);
125 static void sd_print_result(const struct scsi_disk *, const char *, int);
126 
127 static DEFINE_IDA(sd_index_ida);
128 
129 /* This semaphore is used to mediate the 0->1 reference get in the
130  * face of object destruction (i.e. we can't allow a get on an
131  * object after last put) */
132 static DEFINE_MUTEX(sd_ref_mutex);
133 
134 static struct kmem_cache *sd_cdb_cache;
135 static mempool_t *sd_cdb_pool;
136 
137 static const char *sd_cache_types[] = {
138 	"write through", "none", "write back",
139 	"write back, no read (daft)"
140 };
141 
142 static void sd_set_flush_flag(struct scsi_disk *sdkp)
143 {
144 	bool wc = false, fua = false;
145 
146 	if (sdkp->WCE) {
147 		wc = true;
148 		if (sdkp->DPOFUA)
149 			fua = true;
150 	}
151 
152 	blk_queue_write_cache(sdkp->disk->queue, wc, fua);
153 }
154 
155 static ssize_t
156 cache_type_store(struct device *dev, struct device_attribute *attr,
157 		 const char *buf, size_t count)
158 {
159 	int ct, rcd, wce, sp;
160 	struct scsi_disk *sdkp = to_scsi_disk(dev);
161 	struct scsi_device *sdp = sdkp->device;
162 	char buffer[64];
163 	char *buffer_data;
164 	struct scsi_mode_data data;
165 	struct scsi_sense_hdr sshdr;
166 	static const char temp[] = "temporary ";
167 	int len;
168 
169 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
170 		/* no cache control on RBC devices; theoretically they
171 		 * can do it, but there's probably so many exceptions
172 		 * it's not worth the risk */
173 		return -EINVAL;
174 
175 	if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
176 		buf += sizeof(temp) - 1;
177 		sdkp->cache_override = 1;
178 	} else {
179 		sdkp->cache_override = 0;
180 	}
181 
182 	ct = sysfs_match_string(sd_cache_types, buf);
183 	if (ct < 0)
184 		return -EINVAL;
185 
186 	rcd = ct & 0x01 ? 1 : 0;
187 	wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
188 
189 	if (sdkp->cache_override) {
190 		sdkp->WCE = wce;
191 		sdkp->RCD = rcd;
192 		sd_set_flush_flag(sdkp);
193 		return count;
194 	}
195 
196 	if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT,
197 			    SD_MAX_RETRIES, &data, NULL))
198 		return -EINVAL;
199 	len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
200 		  data.block_descriptor_length);
201 	buffer_data = buffer + data.header_length +
202 		data.block_descriptor_length;
203 	buffer_data[2] &= ~0x05;
204 	buffer_data[2] |= wce << 2 | rcd;
205 	sp = buffer_data[0] & 0x80 ? 1 : 0;
206 	buffer_data[0] &= ~0x80;
207 
208 	if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT,
209 			     SD_MAX_RETRIES, &data, &sshdr)) {
210 		if (scsi_sense_valid(&sshdr))
211 			sd_print_sense_hdr(sdkp, &sshdr);
212 		return -EINVAL;
213 	}
214 	revalidate_disk(sdkp->disk);
215 	return count;
216 }
217 
218 static ssize_t
219 manage_start_stop_show(struct device *dev, struct device_attribute *attr,
220 		       char *buf)
221 {
222 	struct scsi_disk *sdkp = to_scsi_disk(dev);
223 	struct scsi_device *sdp = sdkp->device;
224 
225 	return sprintf(buf, "%u\n", sdp->manage_start_stop);
226 }
227 
228 static ssize_t
229 manage_start_stop_store(struct device *dev, struct device_attribute *attr,
230 			const char *buf, size_t count)
231 {
232 	struct scsi_disk *sdkp = to_scsi_disk(dev);
233 	struct scsi_device *sdp = sdkp->device;
234 	bool v;
235 
236 	if (!capable(CAP_SYS_ADMIN))
237 		return -EACCES;
238 
239 	if (kstrtobool(buf, &v))
240 		return -EINVAL;
241 
242 	sdp->manage_start_stop = v;
243 
244 	return count;
245 }
246 static DEVICE_ATTR_RW(manage_start_stop);
247 
248 static ssize_t
249 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
250 {
251 	struct scsi_disk *sdkp = to_scsi_disk(dev);
252 
253 	return sprintf(buf, "%u\n", sdkp->device->allow_restart);
254 }
255 
256 static ssize_t
257 allow_restart_store(struct device *dev, struct device_attribute *attr,
258 		    const char *buf, size_t count)
259 {
260 	bool v;
261 	struct scsi_disk *sdkp = to_scsi_disk(dev);
262 	struct scsi_device *sdp = sdkp->device;
263 
264 	if (!capable(CAP_SYS_ADMIN))
265 		return -EACCES;
266 
267 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
268 		return -EINVAL;
269 
270 	if (kstrtobool(buf, &v))
271 		return -EINVAL;
272 
273 	sdp->allow_restart = v;
274 
275 	return count;
276 }
277 static DEVICE_ATTR_RW(allow_restart);
278 
279 static ssize_t
280 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
281 {
282 	struct scsi_disk *sdkp = to_scsi_disk(dev);
283 	int ct = sdkp->RCD + 2*sdkp->WCE;
284 
285 	return sprintf(buf, "%s\n", sd_cache_types[ct]);
286 }
287 static DEVICE_ATTR_RW(cache_type);
288 
289 static ssize_t
290 FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
291 {
292 	struct scsi_disk *sdkp = to_scsi_disk(dev);
293 
294 	return sprintf(buf, "%u\n", sdkp->DPOFUA);
295 }
296 static DEVICE_ATTR_RO(FUA);
297 
298 static ssize_t
299 protection_type_show(struct device *dev, struct device_attribute *attr,
300 		     char *buf)
301 {
302 	struct scsi_disk *sdkp = to_scsi_disk(dev);
303 
304 	return sprintf(buf, "%u\n", sdkp->protection_type);
305 }
306 
307 static ssize_t
308 protection_type_store(struct device *dev, struct device_attribute *attr,
309 		      const char *buf, size_t count)
310 {
311 	struct scsi_disk *sdkp = to_scsi_disk(dev);
312 	unsigned int val;
313 	int err;
314 
315 	if (!capable(CAP_SYS_ADMIN))
316 		return -EACCES;
317 
318 	err = kstrtouint(buf, 10, &val);
319 
320 	if (err)
321 		return err;
322 
323 	if (val <= T10_PI_TYPE3_PROTECTION)
324 		sdkp->protection_type = val;
325 
326 	return count;
327 }
328 static DEVICE_ATTR_RW(protection_type);
329 
330 static ssize_t
331 protection_mode_show(struct device *dev, struct device_attribute *attr,
332 		     char *buf)
333 {
334 	struct scsi_disk *sdkp = to_scsi_disk(dev);
335 	struct scsi_device *sdp = sdkp->device;
336 	unsigned int dif, dix;
337 
338 	dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
339 	dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
340 
341 	if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
342 		dif = 0;
343 		dix = 1;
344 	}
345 
346 	if (!dif && !dix)
347 		return sprintf(buf, "none\n");
348 
349 	return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
350 }
351 static DEVICE_ATTR_RO(protection_mode);
352 
353 static ssize_t
354 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
355 {
356 	struct scsi_disk *sdkp = to_scsi_disk(dev);
357 
358 	return sprintf(buf, "%u\n", sdkp->ATO);
359 }
360 static DEVICE_ATTR_RO(app_tag_own);
361 
362 static ssize_t
363 thin_provisioning_show(struct device *dev, struct device_attribute *attr,
364 		       char *buf)
365 {
366 	struct scsi_disk *sdkp = to_scsi_disk(dev);
367 
368 	return sprintf(buf, "%u\n", sdkp->lbpme);
369 }
370 static DEVICE_ATTR_RO(thin_provisioning);
371 
372 /* sysfs_match_string() requires dense arrays */
373 static const char *lbp_mode[] = {
374 	[SD_LBP_FULL]		= "full",
375 	[SD_LBP_UNMAP]		= "unmap",
376 	[SD_LBP_WS16]		= "writesame_16",
377 	[SD_LBP_WS10]		= "writesame_10",
378 	[SD_LBP_ZERO]		= "writesame_zero",
379 	[SD_LBP_DISABLE]	= "disabled",
380 };
381 
382 static ssize_t
383 provisioning_mode_show(struct device *dev, struct device_attribute *attr,
384 		       char *buf)
385 {
386 	struct scsi_disk *sdkp = to_scsi_disk(dev);
387 
388 	return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
389 }
390 
391 static ssize_t
392 provisioning_mode_store(struct device *dev, struct device_attribute *attr,
393 			const char *buf, size_t count)
394 {
395 	struct scsi_disk *sdkp = to_scsi_disk(dev);
396 	struct scsi_device *sdp = sdkp->device;
397 	int mode;
398 
399 	if (!capable(CAP_SYS_ADMIN))
400 		return -EACCES;
401 
402 	if (sd_is_zoned(sdkp)) {
403 		sd_config_discard(sdkp, SD_LBP_DISABLE);
404 		return count;
405 	}
406 
407 	if (sdp->type != TYPE_DISK)
408 		return -EINVAL;
409 
410 	mode = sysfs_match_string(lbp_mode, buf);
411 	if (mode < 0)
412 		return -EINVAL;
413 
414 	sd_config_discard(sdkp, mode);
415 
416 	return count;
417 }
418 static DEVICE_ATTR_RW(provisioning_mode);
419 
420 /* sysfs_match_string() requires dense arrays */
421 static const char *zeroing_mode[] = {
422 	[SD_ZERO_WRITE]		= "write",
423 	[SD_ZERO_WS]		= "writesame",
424 	[SD_ZERO_WS16_UNMAP]	= "writesame_16_unmap",
425 	[SD_ZERO_WS10_UNMAP]	= "writesame_10_unmap",
426 };
427 
428 static ssize_t
429 zeroing_mode_show(struct device *dev, struct device_attribute *attr,
430 		  char *buf)
431 {
432 	struct scsi_disk *sdkp = to_scsi_disk(dev);
433 
434 	return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
435 }
436 
437 static ssize_t
438 zeroing_mode_store(struct device *dev, struct device_attribute *attr,
439 		   const char *buf, size_t count)
440 {
441 	struct scsi_disk *sdkp = to_scsi_disk(dev);
442 	int mode;
443 
444 	if (!capable(CAP_SYS_ADMIN))
445 		return -EACCES;
446 
447 	mode = sysfs_match_string(zeroing_mode, buf);
448 	if (mode < 0)
449 		return -EINVAL;
450 
451 	sdkp->zeroing_mode = mode;
452 
453 	return count;
454 }
455 static DEVICE_ATTR_RW(zeroing_mode);
456 
457 static ssize_t
458 max_medium_access_timeouts_show(struct device *dev,
459 				struct device_attribute *attr, char *buf)
460 {
461 	struct scsi_disk *sdkp = to_scsi_disk(dev);
462 
463 	return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
464 }
465 
466 static ssize_t
467 max_medium_access_timeouts_store(struct device *dev,
468 				 struct device_attribute *attr, const char *buf,
469 				 size_t count)
470 {
471 	struct scsi_disk *sdkp = to_scsi_disk(dev);
472 	int err;
473 
474 	if (!capable(CAP_SYS_ADMIN))
475 		return -EACCES;
476 
477 	err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
478 
479 	return err ? err : count;
480 }
481 static DEVICE_ATTR_RW(max_medium_access_timeouts);
482 
483 static ssize_t
484 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
485 			   char *buf)
486 {
487 	struct scsi_disk *sdkp = to_scsi_disk(dev);
488 
489 	return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
490 }
491 
492 static ssize_t
493 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
494 			    const char *buf, size_t count)
495 {
496 	struct scsi_disk *sdkp = to_scsi_disk(dev);
497 	struct scsi_device *sdp = sdkp->device;
498 	unsigned long max;
499 	int err;
500 
501 	if (!capable(CAP_SYS_ADMIN))
502 		return -EACCES;
503 
504 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
505 		return -EINVAL;
506 
507 	err = kstrtoul(buf, 10, &max);
508 
509 	if (err)
510 		return err;
511 
512 	if (max == 0)
513 		sdp->no_write_same = 1;
514 	else if (max <= SD_MAX_WS16_BLOCKS) {
515 		sdp->no_write_same = 0;
516 		sdkp->max_ws_blocks = max;
517 	}
518 
519 	sd_config_write_same(sdkp);
520 
521 	return count;
522 }
523 static DEVICE_ATTR_RW(max_write_same_blocks);
524 
525 static struct attribute *sd_disk_attrs[] = {
526 	&dev_attr_cache_type.attr,
527 	&dev_attr_FUA.attr,
528 	&dev_attr_allow_restart.attr,
529 	&dev_attr_manage_start_stop.attr,
530 	&dev_attr_protection_type.attr,
531 	&dev_attr_protection_mode.attr,
532 	&dev_attr_app_tag_own.attr,
533 	&dev_attr_thin_provisioning.attr,
534 	&dev_attr_provisioning_mode.attr,
535 	&dev_attr_zeroing_mode.attr,
536 	&dev_attr_max_write_same_blocks.attr,
537 	&dev_attr_max_medium_access_timeouts.attr,
538 	NULL,
539 };
540 ATTRIBUTE_GROUPS(sd_disk);
541 
542 static struct class sd_disk_class = {
543 	.name		= "scsi_disk",
544 	.owner		= THIS_MODULE,
545 	.dev_release	= scsi_disk_release,
546 	.dev_groups	= sd_disk_groups,
547 };
548 
549 static const struct dev_pm_ops sd_pm_ops = {
550 	.suspend		= sd_suspend_system,
551 	.resume			= sd_resume,
552 	.poweroff		= sd_suspend_system,
553 	.restore		= sd_resume,
554 	.runtime_suspend	= sd_suspend_runtime,
555 	.runtime_resume		= sd_resume,
556 };
557 
558 static struct scsi_driver sd_template = {
559 	.gendrv = {
560 		.name		= "sd",
561 		.owner		= THIS_MODULE,
562 		.probe		= sd_probe,
563 		.remove		= sd_remove,
564 		.shutdown	= sd_shutdown,
565 		.pm		= &sd_pm_ops,
566 	},
567 	.rescan			= sd_rescan,
568 	.init_command		= sd_init_command,
569 	.uninit_command		= sd_uninit_command,
570 	.done			= sd_done,
571 	.eh_action		= sd_eh_action,
572 	.eh_reset		= sd_eh_reset,
573 };
574 
575 /*
576  * Dummy kobj_map->probe function.
577  * The default ->probe function will call modprobe, which is
578  * pointless as this module is already loaded.
579  */
580 static struct kobject *sd_default_probe(dev_t devt, int *partno, void *data)
581 {
582 	return NULL;
583 }
584 
585 /*
586  * Device no to disk mapping:
587  *
588  *       major         disc2     disc  p1
589  *   |............|.............|....|....| <- dev_t
590  *    31        20 19          8 7  4 3  0
591  *
592  * Inside a major, we have 16k disks, however mapped non-
593  * contiguously. The first 16 disks are for major0, the next
594  * ones with major1, ... Disk 256 is for major0 again, disk 272
595  * for major1, ...
596  * As we stay compatible with our numbering scheme, we can reuse
597  * the well-know SCSI majors 8, 65--71, 136--143.
598  */
599 static int sd_major(int major_idx)
600 {
601 	switch (major_idx) {
602 	case 0:
603 		return SCSI_DISK0_MAJOR;
604 	case 1 ... 7:
605 		return SCSI_DISK1_MAJOR + major_idx - 1;
606 	case 8 ... 15:
607 		return SCSI_DISK8_MAJOR + major_idx - 8;
608 	default:
609 		BUG();
610 		return 0;	/* shut up gcc */
611 	}
612 }
613 
614 static struct scsi_disk *scsi_disk_get(struct gendisk *disk)
615 {
616 	struct scsi_disk *sdkp = NULL;
617 
618 	mutex_lock(&sd_ref_mutex);
619 
620 	if (disk->private_data) {
621 		sdkp = scsi_disk(disk);
622 		if (scsi_device_get(sdkp->device) == 0)
623 			get_device(&sdkp->dev);
624 		else
625 			sdkp = NULL;
626 	}
627 	mutex_unlock(&sd_ref_mutex);
628 	return sdkp;
629 }
630 
631 static void scsi_disk_put(struct scsi_disk *sdkp)
632 {
633 	struct scsi_device *sdev = sdkp->device;
634 
635 	mutex_lock(&sd_ref_mutex);
636 	put_device(&sdkp->dev);
637 	scsi_device_put(sdev);
638 	mutex_unlock(&sd_ref_mutex);
639 }
640 
641 #ifdef CONFIG_BLK_SED_OPAL
642 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
643 		size_t len, bool send)
644 {
645 	struct scsi_device *sdev = data;
646 	u8 cdb[12] = { 0, };
647 	int ret;
648 
649 	cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
650 	cdb[1] = secp;
651 	put_unaligned_be16(spsp, &cdb[2]);
652 	put_unaligned_be32(len, &cdb[6]);
653 
654 	ret = scsi_execute_req(sdev, cdb,
655 			send ? DMA_TO_DEVICE : DMA_FROM_DEVICE,
656 			buffer, len, NULL, SD_TIMEOUT, SD_MAX_RETRIES, NULL);
657 	return ret <= 0 ? ret : -EIO;
658 }
659 #endif /* CONFIG_BLK_SED_OPAL */
660 
661 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
662 					   unsigned int dix, unsigned int dif)
663 {
664 	struct bio *bio = scmd->request->bio;
665 	unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif);
666 	unsigned int protect = 0;
667 
668 	if (dix) {				/* DIX Type 0, 1, 2, 3 */
669 		if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
670 			scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
671 
672 		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
673 			scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
674 	}
675 
676 	if (dif != T10_PI_TYPE3_PROTECTION) {	/* DIX/DIF Type 0, 1, 2 */
677 		scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
678 
679 		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
680 			scmd->prot_flags |= SCSI_PROT_REF_CHECK;
681 	}
682 
683 	if (dif) {				/* DIX/DIF Type 1, 2, 3 */
684 		scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
685 
686 		if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
687 			protect = 3 << 5;	/* Disable target PI checking */
688 		else
689 			protect = 1 << 5;	/* Enable target PI checking */
690 	}
691 
692 	scsi_set_prot_op(scmd, prot_op);
693 	scsi_set_prot_type(scmd, dif);
694 	scmd->prot_flags &= sd_prot_flag_mask(prot_op);
695 
696 	return protect;
697 }
698 
699 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
700 {
701 	struct request_queue *q = sdkp->disk->queue;
702 	unsigned int logical_block_size = sdkp->device->sector_size;
703 	unsigned int max_blocks = 0;
704 
705 	q->limits.discard_alignment =
706 		sdkp->unmap_alignment * logical_block_size;
707 	q->limits.discard_granularity =
708 		max(sdkp->physical_block_size,
709 		    sdkp->unmap_granularity * logical_block_size);
710 	sdkp->provisioning_mode = mode;
711 
712 	switch (mode) {
713 
714 	case SD_LBP_FULL:
715 	case SD_LBP_DISABLE:
716 		blk_queue_max_discard_sectors(q, 0);
717 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
718 		return;
719 
720 	case SD_LBP_UNMAP:
721 		max_blocks = min_not_zero(sdkp->max_unmap_blocks,
722 					  (u32)SD_MAX_WS16_BLOCKS);
723 		break;
724 
725 	case SD_LBP_WS16:
726 		if (sdkp->device->unmap_limit_for_ws)
727 			max_blocks = sdkp->max_unmap_blocks;
728 		else
729 			max_blocks = sdkp->max_ws_blocks;
730 
731 		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
732 		break;
733 
734 	case SD_LBP_WS10:
735 		if (sdkp->device->unmap_limit_for_ws)
736 			max_blocks = sdkp->max_unmap_blocks;
737 		else
738 			max_blocks = sdkp->max_ws_blocks;
739 
740 		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
741 		break;
742 
743 	case SD_LBP_ZERO:
744 		max_blocks = min_not_zero(sdkp->max_ws_blocks,
745 					  (u32)SD_MAX_WS10_BLOCKS);
746 		break;
747 	}
748 
749 	blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
750 	blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
751 }
752 
753 static int sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
754 {
755 	struct scsi_device *sdp = cmd->device;
756 	struct request *rq = cmd->request;
757 	u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
758 	u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
759 	unsigned int data_len = 24;
760 	char *buf;
761 
762 	rq->special_vec.bv_page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
763 	if (!rq->special_vec.bv_page)
764 		return BLKPREP_DEFER;
765 	rq->special_vec.bv_offset = 0;
766 	rq->special_vec.bv_len = data_len;
767 	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
768 
769 	cmd->cmd_len = 10;
770 	cmd->cmnd[0] = UNMAP;
771 	cmd->cmnd[8] = 24;
772 
773 	buf = page_address(rq->special_vec.bv_page);
774 	put_unaligned_be16(6 + 16, &buf[0]);
775 	put_unaligned_be16(16, &buf[2]);
776 	put_unaligned_be64(sector, &buf[8]);
777 	put_unaligned_be32(nr_sectors, &buf[16]);
778 
779 	cmd->allowed = SD_MAX_RETRIES;
780 	cmd->transfersize = data_len;
781 	rq->timeout = SD_TIMEOUT;
782 	scsi_req(rq)->resid_len = data_len;
783 
784 	return scsi_init_io(cmd);
785 }
786 
787 static int sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd, bool unmap)
788 {
789 	struct scsi_device *sdp = cmd->device;
790 	struct request *rq = cmd->request;
791 	u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
792 	u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
793 	u32 data_len = sdp->sector_size;
794 
795 	rq->special_vec.bv_page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
796 	if (!rq->special_vec.bv_page)
797 		return BLKPREP_DEFER;
798 	rq->special_vec.bv_offset = 0;
799 	rq->special_vec.bv_len = data_len;
800 	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
801 
802 	cmd->cmd_len = 16;
803 	cmd->cmnd[0] = WRITE_SAME_16;
804 	if (unmap)
805 		cmd->cmnd[1] = 0x8; /* UNMAP */
806 	put_unaligned_be64(sector, &cmd->cmnd[2]);
807 	put_unaligned_be32(nr_sectors, &cmd->cmnd[10]);
808 
809 	cmd->allowed = SD_MAX_RETRIES;
810 	cmd->transfersize = data_len;
811 	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
812 	scsi_req(rq)->resid_len = data_len;
813 
814 	return scsi_init_io(cmd);
815 }
816 
817 static int sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd, bool unmap)
818 {
819 	struct scsi_device *sdp = cmd->device;
820 	struct request *rq = cmd->request;
821 	u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
822 	u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
823 	u32 data_len = sdp->sector_size;
824 
825 	rq->special_vec.bv_page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
826 	if (!rq->special_vec.bv_page)
827 		return BLKPREP_DEFER;
828 	rq->special_vec.bv_offset = 0;
829 	rq->special_vec.bv_len = data_len;
830 	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
831 
832 	cmd->cmd_len = 10;
833 	cmd->cmnd[0] = WRITE_SAME;
834 	if (unmap)
835 		cmd->cmnd[1] = 0x8; /* UNMAP */
836 	put_unaligned_be32(sector, &cmd->cmnd[2]);
837 	put_unaligned_be16(nr_sectors, &cmd->cmnd[7]);
838 
839 	cmd->allowed = SD_MAX_RETRIES;
840 	cmd->transfersize = data_len;
841 	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
842 	scsi_req(rq)->resid_len = data_len;
843 
844 	return scsi_init_io(cmd);
845 }
846 
847 static int sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
848 {
849 	struct request *rq = cmd->request;
850 	struct scsi_device *sdp = cmd->device;
851 	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
852 	u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
853 	u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
854 
855 	if (!(rq->cmd_flags & REQ_NOUNMAP)) {
856 		switch (sdkp->zeroing_mode) {
857 		case SD_ZERO_WS16_UNMAP:
858 			return sd_setup_write_same16_cmnd(cmd, true);
859 		case SD_ZERO_WS10_UNMAP:
860 			return sd_setup_write_same10_cmnd(cmd, true);
861 		}
862 	}
863 
864 	if (sdp->no_write_same)
865 		return BLKPREP_INVALID;
866 
867 	if (sdkp->ws16 || sector > 0xffffffff || nr_sectors > 0xffff)
868 		return sd_setup_write_same16_cmnd(cmd, false);
869 
870 	return sd_setup_write_same10_cmnd(cmd, false);
871 }
872 
873 static void sd_config_write_same(struct scsi_disk *sdkp)
874 {
875 	struct request_queue *q = sdkp->disk->queue;
876 	unsigned int logical_block_size = sdkp->device->sector_size;
877 
878 	if (sdkp->device->no_write_same) {
879 		sdkp->max_ws_blocks = 0;
880 		goto out;
881 	}
882 
883 	/* Some devices can not handle block counts above 0xffff despite
884 	 * supporting WRITE SAME(16). Consequently we default to 64k
885 	 * blocks per I/O unless the device explicitly advertises a
886 	 * bigger limit.
887 	 */
888 	if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
889 		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
890 						   (u32)SD_MAX_WS16_BLOCKS);
891 	else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
892 		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
893 						   (u32)SD_MAX_WS10_BLOCKS);
894 	else {
895 		sdkp->device->no_write_same = 1;
896 		sdkp->max_ws_blocks = 0;
897 	}
898 
899 	if (sdkp->lbprz && sdkp->lbpws)
900 		sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
901 	else if (sdkp->lbprz && sdkp->lbpws10)
902 		sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
903 	else if (sdkp->max_ws_blocks)
904 		sdkp->zeroing_mode = SD_ZERO_WS;
905 	else
906 		sdkp->zeroing_mode = SD_ZERO_WRITE;
907 
908 	if (sdkp->max_ws_blocks &&
909 	    sdkp->physical_block_size > logical_block_size) {
910 		/*
911 		 * Reporting a maximum number of blocks that is not aligned
912 		 * on the device physical size would cause a large write same
913 		 * request to be split into physically unaligned chunks by
914 		 * __blkdev_issue_write_zeroes() and __blkdev_issue_write_same()
915 		 * even if the caller of these functions took care to align the
916 		 * large request. So make sure the maximum reported is aligned
917 		 * to the device physical block size. This is only an optional
918 		 * optimization for regular disks, but this is mandatory to
919 		 * avoid failure of large write same requests directed at
920 		 * sequential write required zones of host-managed ZBC disks.
921 		 */
922 		sdkp->max_ws_blocks =
923 			round_down(sdkp->max_ws_blocks,
924 				   bytes_to_logical(sdkp->device,
925 						    sdkp->physical_block_size));
926 	}
927 
928 out:
929 	blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks *
930 					 (logical_block_size >> 9));
931 	blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks *
932 					 (logical_block_size >> 9));
933 }
934 
935 /**
936  * sd_setup_write_same_cmnd - write the same data to multiple blocks
937  * @cmd: command to prepare
938  *
939  * Will set up either WRITE SAME(10) or WRITE SAME(16) depending on
940  * the preference indicated by the target device.
941  **/
942 static int sd_setup_write_same_cmnd(struct scsi_cmnd *cmd)
943 {
944 	struct request *rq = cmd->request;
945 	struct scsi_device *sdp = cmd->device;
946 	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
947 	struct bio *bio = rq->bio;
948 	sector_t sector = blk_rq_pos(rq);
949 	unsigned int nr_sectors = blk_rq_sectors(rq);
950 	unsigned int nr_bytes = blk_rq_bytes(rq);
951 	int ret;
952 
953 	if (sdkp->device->no_write_same)
954 		return BLKPREP_INVALID;
955 
956 	BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size);
957 
958 	sector >>= ilog2(sdp->sector_size) - 9;
959 	nr_sectors >>= ilog2(sdp->sector_size) - 9;
960 
961 	rq->timeout = SD_WRITE_SAME_TIMEOUT;
962 
963 	if (sdkp->ws16 || sector > 0xffffffff || nr_sectors > 0xffff) {
964 		cmd->cmd_len = 16;
965 		cmd->cmnd[0] = WRITE_SAME_16;
966 		put_unaligned_be64(sector, &cmd->cmnd[2]);
967 		put_unaligned_be32(nr_sectors, &cmd->cmnd[10]);
968 	} else {
969 		cmd->cmd_len = 10;
970 		cmd->cmnd[0] = WRITE_SAME;
971 		put_unaligned_be32(sector, &cmd->cmnd[2]);
972 		put_unaligned_be16(nr_sectors, &cmd->cmnd[7]);
973 	}
974 
975 	cmd->transfersize = sdp->sector_size;
976 	cmd->allowed = SD_MAX_RETRIES;
977 
978 	/*
979 	 * For WRITE SAME the data transferred via the DATA OUT buffer is
980 	 * different from the amount of data actually written to the target.
981 	 *
982 	 * We set up __data_len to the amount of data transferred via the
983 	 * DATA OUT buffer so that blk_rq_map_sg sets up the proper S/G list
984 	 * to transfer a single sector of data first, but then reset it to
985 	 * the amount of data to be written right after so that the I/O path
986 	 * knows how much to actually write.
987 	 */
988 	rq->__data_len = sdp->sector_size;
989 	ret = scsi_init_io(cmd);
990 	rq->__data_len = nr_bytes;
991 
992 	return ret;
993 }
994 
995 static int sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
996 {
997 	struct request *rq = cmd->request;
998 
999 	/* flush requests don't perform I/O, zero the S/G table */
1000 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1001 
1002 	cmd->cmnd[0] = SYNCHRONIZE_CACHE;
1003 	cmd->cmd_len = 10;
1004 	cmd->transfersize = 0;
1005 	cmd->allowed = SD_MAX_RETRIES;
1006 
1007 	rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
1008 	return BLKPREP_OK;
1009 }
1010 
1011 static int sd_setup_read_write_cmnd(struct scsi_cmnd *SCpnt)
1012 {
1013 	struct request *rq = SCpnt->request;
1014 	struct scsi_device *sdp = SCpnt->device;
1015 	struct gendisk *disk = rq->rq_disk;
1016 	struct scsi_disk *sdkp = scsi_disk(disk);
1017 	sector_t block = blk_rq_pos(rq);
1018 	sector_t threshold;
1019 	unsigned int this_count = blk_rq_sectors(rq);
1020 	unsigned int dif, dix;
1021 	int ret;
1022 	unsigned char protect;
1023 
1024 	ret = scsi_init_io(SCpnt);
1025 	if (ret != BLKPREP_OK)
1026 		return ret;
1027 	WARN_ON_ONCE(SCpnt != rq->special);
1028 
1029 	/* from here on until we're complete, any goto out
1030 	 * is used for a killable error condition */
1031 	ret = BLKPREP_KILL;
1032 
1033 	SCSI_LOG_HLQUEUE(1,
1034 		scmd_printk(KERN_INFO, SCpnt,
1035 			"%s: block=%llu, count=%d\n",
1036 			__func__, (unsigned long long)block, this_count));
1037 
1038 	if (!sdp || !scsi_device_online(sdp) ||
1039 	    block + blk_rq_sectors(rq) > get_capacity(disk)) {
1040 		SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
1041 						"Finishing %u sectors\n",
1042 						blk_rq_sectors(rq)));
1043 		SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
1044 						"Retry with 0x%p\n", SCpnt));
1045 		goto out;
1046 	}
1047 
1048 	if (sdp->changed) {
1049 		/*
1050 		 * quietly refuse to do anything to a changed disc until
1051 		 * the changed bit has been reset
1052 		 */
1053 		/* printk("SCSI disk has been changed or is not present. Prohibiting further I/O.\n"); */
1054 		goto out;
1055 	}
1056 
1057 	/*
1058 	 * Some SD card readers can't handle multi-sector accesses which touch
1059 	 * the last one or two hardware sectors.  Split accesses as needed.
1060 	 */
1061 	threshold = get_capacity(disk) - SD_LAST_BUGGY_SECTORS *
1062 		(sdp->sector_size / 512);
1063 
1064 	if (unlikely(sdp->last_sector_bug && block + this_count > threshold)) {
1065 		if (block < threshold) {
1066 			/* Access up to the threshold but not beyond */
1067 			this_count = threshold - block;
1068 		} else {
1069 			/* Access only a single hardware sector */
1070 			this_count = sdp->sector_size / 512;
1071 		}
1072 	}
1073 
1074 	SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, "block=%llu\n",
1075 					(unsigned long long)block));
1076 
1077 	/*
1078 	 * If we have a 1K hardware sectorsize, prevent access to single
1079 	 * 512 byte sectors.  In theory we could handle this - in fact
1080 	 * the scsi cdrom driver must be able to handle this because
1081 	 * we typically use 1K blocksizes, and cdroms typically have
1082 	 * 2K hardware sectorsizes.  Of course, things are simpler
1083 	 * with the cdrom, since it is read-only.  For performance
1084 	 * reasons, the filesystems should be able to handle this
1085 	 * and not force the scsi disk driver to use bounce buffers
1086 	 * for this.
1087 	 */
1088 	if (sdp->sector_size == 1024) {
1089 		if ((block & 1) || (blk_rq_sectors(rq) & 1)) {
1090 			scmd_printk(KERN_ERR, SCpnt,
1091 				    "Bad block number requested\n");
1092 			goto out;
1093 		} else {
1094 			block = block >> 1;
1095 			this_count = this_count >> 1;
1096 		}
1097 	}
1098 	if (sdp->sector_size == 2048) {
1099 		if ((block & 3) || (blk_rq_sectors(rq) & 3)) {
1100 			scmd_printk(KERN_ERR, SCpnt,
1101 				    "Bad block number requested\n");
1102 			goto out;
1103 		} else {
1104 			block = block >> 2;
1105 			this_count = this_count >> 2;
1106 		}
1107 	}
1108 	if (sdp->sector_size == 4096) {
1109 		if ((block & 7) || (blk_rq_sectors(rq) & 7)) {
1110 			scmd_printk(KERN_ERR, SCpnt,
1111 				    "Bad block number requested\n");
1112 			goto out;
1113 		} else {
1114 			block = block >> 3;
1115 			this_count = this_count >> 3;
1116 		}
1117 	}
1118 	if (rq_data_dir(rq) == WRITE) {
1119 		SCpnt->cmnd[0] = WRITE_6;
1120 
1121 		if (blk_integrity_rq(rq))
1122 			t10_pi_prepare(SCpnt->request, sdkp->protection_type);
1123 
1124 	} else if (rq_data_dir(rq) == READ) {
1125 		SCpnt->cmnd[0] = READ_6;
1126 	} else {
1127 		scmd_printk(KERN_ERR, SCpnt, "Unknown command %d\n", req_op(rq));
1128 		goto out;
1129 	}
1130 
1131 	SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
1132 					"%s %d/%u 512 byte blocks.\n",
1133 					(rq_data_dir(rq) == WRITE) ?
1134 					"writing" : "reading", this_count,
1135 					blk_rq_sectors(rq)));
1136 
1137 	dix = scsi_prot_sg_count(SCpnt);
1138 	dif = scsi_host_dif_capable(SCpnt->device->host, sdkp->protection_type);
1139 
1140 	if (dif || dix)
1141 		protect = sd_setup_protect_cmnd(SCpnt, dix, dif);
1142 	else
1143 		protect = 0;
1144 
1145 	if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1146 		SCpnt->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC);
1147 
1148 		if (unlikely(SCpnt->cmnd == NULL)) {
1149 			ret = BLKPREP_DEFER;
1150 			goto out;
1151 		}
1152 
1153 		SCpnt->cmd_len = SD_EXT_CDB_SIZE;
1154 		memset(SCpnt->cmnd, 0, SCpnt->cmd_len);
1155 		SCpnt->cmnd[0] = VARIABLE_LENGTH_CMD;
1156 		SCpnt->cmnd[7] = 0x18;
1157 		SCpnt->cmnd[9] = (rq_data_dir(rq) == READ) ? READ_32 : WRITE_32;
1158 		SCpnt->cmnd[10] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1159 
1160 		/* LBA */
1161 		SCpnt->cmnd[12] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0;
1162 		SCpnt->cmnd[13] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0;
1163 		SCpnt->cmnd[14] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0;
1164 		SCpnt->cmnd[15] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0;
1165 		SCpnt->cmnd[16] = (unsigned char) (block >> 24) & 0xff;
1166 		SCpnt->cmnd[17] = (unsigned char) (block >> 16) & 0xff;
1167 		SCpnt->cmnd[18] = (unsigned char) (block >> 8) & 0xff;
1168 		SCpnt->cmnd[19] = (unsigned char) block & 0xff;
1169 
1170 		/* Expected Indirect LBA */
1171 		SCpnt->cmnd[20] = (unsigned char) (block >> 24) & 0xff;
1172 		SCpnt->cmnd[21] = (unsigned char) (block >> 16) & 0xff;
1173 		SCpnt->cmnd[22] = (unsigned char) (block >> 8) & 0xff;
1174 		SCpnt->cmnd[23] = (unsigned char) block & 0xff;
1175 
1176 		/* Transfer length */
1177 		SCpnt->cmnd[28] = (unsigned char) (this_count >> 24) & 0xff;
1178 		SCpnt->cmnd[29] = (unsigned char) (this_count >> 16) & 0xff;
1179 		SCpnt->cmnd[30] = (unsigned char) (this_count >> 8) & 0xff;
1180 		SCpnt->cmnd[31] = (unsigned char) this_count & 0xff;
1181 	} else if (sdp->use_16_for_rw || (this_count > 0xffff)) {
1182 		SCpnt->cmnd[0] += READ_16 - READ_6;
1183 		SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1184 		SCpnt->cmnd[2] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0;
1185 		SCpnt->cmnd[3] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0;
1186 		SCpnt->cmnd[4] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0;
1187 		SCpnt->cmnd[5] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0;
1188 		SCpnt->cmnd[6] = (unsigned char) (block >> 24) & 0xff;
1189 		SCpnt->cmnd[7] = (unsigned char) (block >> 16) & 0xff;
1190 		SCpnt->cmnd[8] = (unsigned char) (block >> 8) & 0xff;
1191 		SCpnt->cmnd[9] = (unsigned char) block & 0xff;
1192 		SCpnt->cmnd[10] = (unsigned char) (this_count >> 24) & 0xff;
1193 		SCpnt->cmnd[11] = (unsigned char) (this_count >> 16) & 0xff;
1194 		SCpnt->cmnd[12] = (unsigned char) (this_count >> 8) & 0xff;
1195 		SCpnt->cmnd[13] = (unsigned char) this_count & 0xff;
1196 		SCpnt->cmnd[14] = SCpnt->cmnd[15] = 0;
1197 	} else if ((this_count > 0xff) || (block > 0x1fffff) ||
1198 		   scsi_device_protection(SCpnt->device) ||
1199 		   SCpnt->device->use_10_for_rw) {
1200 		SCpnt->cmnd[0] += READ_10 - READ_6;
1201 		SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1202 		SCpnt->cmnd[2] = (unsigned char) (block >> 24) & 0xff;
1203 		SCpnt->cmnd[3] = (unsigned char) (block >> 16) & 0xff;
1204 		SCpnt->cmnd[4] = (unsigned char) (block >> 8) & 0xff;
1205 		SCpnt->cmnd[5] = (unsigned char) block & 0xff;
1206 		SCpnt->cmnd[6] = SCpnt->cmnd[9] = 0;
1207 		SCpnt->cmnd[7] = (unsigned char) (this_count >> 8) & 0xff;
1208 		SCpnt->cmnd[8] = (unsigned char) this_count & 0xff;
1209 	} else {
1210 		if (unlikely(rq->cmd_flags & REQ_FUA)) {
1211 			/*
1212 			 * This happens only if this drive failed
1213 			 * 10byte rw command with ILLEGAL_REQUEST
1214 			 * during operation and thus turned off
1215 			 * use_10_for_rw.
1216 			 */
1217 			scmd_printk(KERN_ERR, SCpnt,
1218 				    "FUA write on READ/WRITE(6) drive\n");
1219 			goto out;
1220 		}
1221 
1222 		SCpnt->cmnd[1] |= (unsigned char) ((block >> 16) & 0x1f);
1223 		SCpnt->cmnd[2] = (unsigned char) ((block >> 8) & 0xff);
1224 		SCpnt->cmnd[3] = (unsigned char) block & 0xff;
1225 		SCpnt->cmnd[4] = (unsigned char) this_count;
1226 		SCpnt->cmnd[5] = 0;
1227 	}
1228 	SCpnt->sdb.length = this_count * sdp->sector_size;
1229 
1230 	/*
1231 	 * We shouldn't disconnect in the middle of a sector, so with a dumb
1232 	 * host adapter, it's safe to assume that we can at least transfer
1233 	 * this many bytes between each connect / disconnect.
1234 	 */
1235 	SCpnt->transfersize = sdp->sector_size;
1236 	SCpnt->underflow = this_count << 9;
1237 	SCpnt->allowed = SD_MAX_RETRIES;
1238 
1239 	/*
1240 	 * This indicates that the command is ready from our end to be
1241 	 * queued.
1242 	 */
1243 	ret = BLKPREP_OK;
1244  out:
1245 	return ret;
1246 }
1247 
1248 static int sd_init_command(struct scsi_cmnd *cmd)
1249 {
1250 	struct request *rq = cmd->request;
1251 
1252 	switch (req_op(rq)) {
1253 	case REQ_OP_DISCARD:
1254 		switch (scsi_disk(rq->rq_disk)->provisioning_mode) {
1255 		case SD_LBP_UNMAP:
1256 			return sd_setup_unmap_cmnd(cmd);
1257 		case SD_LBP_WS16:
1258 			return sd_setup_write_same16_cmnd(cmd, true);
1259 		case SD_LBP_WS10:
1260 			return sd_setup_write_same10_cmnd(cmd, true);
1261 		case SD_LBP_ZERO:
1262 			return sd_setup_write_same10_cmnd(cmd, false);
1263 		default:
1264 			return BLKPREP_INVALID;
1265 		}
1266 	case REQ_OP_WRITE_ZEROES:
1267 		return sd_setup_write_zeroes_cmnd(cmd);
1268 	case REQ_OP_WRITE_SAME:
1269 		return sd_setup_write_same_cmnd(cmd);
1270 	case REQ_OP_FLUSH:
1271 		return sd_setup_flush_cmnd(cmd);
1272 	case REQ_OP_READ:
1273 	case REQ_OP_WRITE:
1274 		return sd_setup_read_write_cmnd(cmd);
1275 	case REQ_OP_ZONE_REPORT:
1276 		return sd_zbc_setup_report_cmnd(cmd);
1277 	case REQ_OP_ZONE_RESET:
1278 		return sd_zbc_setup_reset_cmnd(cmd);
1279 	default:
1280 		WARN_ON_ONCE(1);
1281 		return BLKPREP_KILL;
1282 	}
1283 }
1284 
1285 static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1286 {
1287 	struct request *rq = SCpnt->request;
1288 	u8 *cmnd;
1289 
1290 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1291 		__free_page(rq->special_vec.bv_page);
1292 
1293 	if (SCpnt->cmnd != scsi_req(rq)->cmd) {
1294 		cmnd = SCpnt->cmnd;
1295 		SCpnt->cmnd = NULL;
1296 		SCpnt->cmd_len = 0;
1297 		mempool_free(cmnd, sd_cdb_pool);
1298 	}
1299 }
1300 
1301 /**
1302  *	sd_open - open a scsi disk device
1303  *	@bdev: Block device of the scsi disk to open
1304  *	@mode: FMODE_* mask
1305  *
1306  *	Returns 0 if successful. Returns a negated errno value in case
1307  *	of error.
1308  *
1309  *	Note: This can be called from a user context (e.g. fsck(1) )
1310  *	or from within the kernel (e.g. as a result of a mount(1) ).
1311  *	In the latter case @inode and @filp carry an abridged amount
1312  *	of information as noted above.
1313  *
1314  *	Locking: called with bdev->bd_mutex held.
1315  **/
1316 static int sd_open(struct block_device *bdev, fmode_t mode)
1317 {
1318 	struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk);
1319 	struct scsi_device *sdev;
1320 	int retval;
1321 
1322 	if (!sdkp)
1323 		return -ENXIO;
1324 
1325 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1326 
1327 	sdev = sdkp->device;
1328 
1329 	/*
1330 	 * If the device is in error recovery, wait until it is done.
1331 	 * If the device is offline, then disallow any access to it.
1332 	 */
1333 	retval = -ENXIO;
1334 	if (!scsi_block_when_processing_errors(sdev))
1335 		goto error_out;
1336 
1337 	if (sdev->removable || sdkp->write_prot)
1338 		check_disk_change(bdev);
1339 
1340 	/*
1341 	 * If the drive is empty, just let the open fail.
1342 	 */
1343 	retval = -ENOMEDIUM;
1344 	if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY))
1345 		goto error_out;
1346 
1347 	/*
1348 	 * If the device has the write protect tab set, have the open fail
1349 	 * if the user expects to be able to write to the thing.
1350 	 */
1351 	retval = -EROFS;
1352 	if (sdkp->write_prot && (mode & FMODE_WRITE))
1353 		goto error_out;
1354 
1355 	/*
1356 	 * It is possible that the disk changing stuff resulted in
1357 	 * the device being taken offline.  If this is the case,
1358 	 * report this to the user, and don't pretend that the
1359 	 * open actually succeeded.
1360 	 */
1361 	retval = -ENXIO;
1362 	if (!scsi_device_online(sdev))
1363 		goto error_out;
1364 
1365 	if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1366 		if (scsi_block_when_processing_errors(sdev))
1367 			scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1368 	}
1369 
1370 	return 0;
1371 
1372 error_out:
1373 	scsi_disk_put(sdkp);
1374 	return retval;
1375 }
1376 
1377 /**
1378  *	sd_release - invoked when the (last) close(2) is called on this
1379  *	scsi disk.
1380  *	@disk: disk to release
1381  *	@mode: FMODE_* mask
1382  *
1383  *	Returns 0.
1384  *
1385  *	Note: may block (uninterruptible) if error recovery is underway
1386  *	on this disk.
1387  *
1388  *	Locking: called with bdev->bd_mutex held.
1389  **/
1390 static void sd_release(struct gendisk *disk, fmode_t mode)
1391 {
1392 	struct scsi_disk *sdkp = scsi_disk(disk);
1393 	struct scsi_device *sdev = sdkp->device;
1394 
1395 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1396 
1397 	if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1398 		if (scsi_block_when_processing_errors(sdev))
1399 			scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1400 	}
1401 
1402 	/*
1403 	 * XXX and what if there are packets in flight and this close()
1404 	 * XXX is followed by a "rmmod sd_mod"?
1405 	 */
1406 
1407 	scsi_disk_put(sdkp);
1408 }
1409 
1410 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1411 {
1412 	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1413 	struct scsi_device *sdp = sdkp->device;
1414 	struct Scsi_Host *host = sdp->host;
1415 	sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1416 	int diskinfo[4];
1417 
1418 	/* default to most commonly used values */
1419 	diskinfo[0] = 0x40;	/* 1 << 6 */
1420 	diskinfo[1] = 0x20;	/* 1 << 5 */
1421 	diskinfo[2] = capacity >> 11;
1422 
1423 	/* override with calculated, extended default, or driver values */
1424 	if (host->hostt->bios_param)
1425 		host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1426 	else
1427 		scsicam_bios_param(bdev, capacity, diskinfo);
1428 
1429 	geo->heads = diskinfo[0];
1430 	geo->sectors = diskinfo[1];
1431 	geo->cylinders = diskinfo[2];
1432 	return 0;
1433 }
1434 
1435 /**
1436  *	sd_ioctl - process an ioctl
1437  *	@bdev: target block device
1438  *	@mode: FMODE_* mask
1439  *	@cmd: ioctl command number
1440  *	@arg: this is third argument given to ioctl(2) system call.
1441  *	Often contains a pointer.
1442  *
1443  *	Returns 0 if successful (some ioctls return positive numbers on
1444  *	success as well). Returns a negated errno value in case of error.
1445  *
1446  *	Note: most ioctls are forward onto the block subsystem or further
1447  *	down in the scsi subsystem.
1448  **/
1449 static int sd_ioctl(struct block_device *bdev, fmode_t mode,
1450 		    unsigned int cmd, unsigned long arg)
1451 {
1452 	struct gendisk *disk = bdev->bd_disk;
1453 	struct scsi_disk *sdkp = scsi_disk(disk);
1454 	struct scsi_device *sdp = sdkp->device;
1455 	void __user *p = (void __user *)arg;
1456 	int error;
1457 
1458 	SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1459 				    "cmd=0x%x\n", disk->disk_name, cmd));
1460 
1461 	error = scsi_verify_blk_ioctl(bdev, cmd);
1462 	if (error < 0)
1463 		return error;
1464 
1465 	/*
1466 	 * If we are in the middle of error recovery, don't let anyone
1467 	 * else try and use this device.  Also, if error recovery fails, it
1468 	 * may try and take the device offline, in which case all further
1469 	 * access to the device is prohibited.
1470 	 */
1471 	error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1472 			(mode & FMODE_NDELAY) != 0);
1473 	if (error)
1474 		goto out;
1475 
1476 	if (is_sed_ioctl(cmd))
1477 		return sed_ioctl(sdkp->opal_dev, cmd, p);
1478 
1479 	/*
1480 	 * Send SCSI addressing ioctls directly to mid level, send other
1481 	 * ioctls to block level and then onto mid level if they can't be
1482 	 * resolved.
1483 	 */
1484 	switch (cmd) {
1485 		case SCSI_IOCTL_GET_IDLUN:
1486 		case SCSI_IOCTL_GET_BUS_NUMBER:
1487 			error = scsi_ioctl(sdp, cmd, p);
1488 			break;
1489 		default:
1490 			error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p);
1491 			if (error != -ENOTTY)
1492 				break;
1493 			error = scsi_ioctl(sdp, cmd, p);
1494 			break;
1495 	}
1496 out:
1497 	return error;
1498 }
1499 
1500 static void set_media_not_present(struct scsi_disk *sdkp)
1501 {
1502 	if (sdkp->media_present)
1503 		sdkp->device->changed = 1;
1504 
1505 	if (sdkp->device->removable) {
1506 		sdkp->media_present = 0;
1507 		sdkp->capacity = 0;
1508 	}
1509 }
1510 
1511 static int media_not_present(struct scsi_disk *sdkp,
1512 			     struct scsi_sense_hdr *sshdr)
1513 {
1514 	if (!scsi_sense_valid(sshdr))
1515 		return 0;
1516 
1517 	/* not invoked for commands that could return deferred errors */
1518 	switch (sshdr->sense_key) {
1519 	case UNIT_ATTENTION:
1520 	case NOT_READY:
1521 		/* medium not present */
1522 		if (sshdr->asc == 0x3A) {
1523 			set_media_not_present(sdkp);
1524 			return 1;
1525 		}
1526 	}
1527 	return 0;
1528 }
1529 
1530 /**
1531  *	sd_check_events - check media events
1532  *	@disk: kernel device descriptor
1533  *	@clearing: disk events currently being cleared
1534  *
1535  *	Returns mask of DISK_EVENT_*.
1536  *
1537  *	Note: this function is invoked from the block subsystem.
1538  **/
1539 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1540 {
1541 	struct scsi_disk *sdkp = scsi_disk_get(disk);
1542 	struct scsi_device *sdp;
1543 	int retval;
1544 
1545 	if (!sdkp)
1546 		return 0;
1547 
1548 	sdp = sdkp->device;
1549 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1550 
1551 	/*
1552 	 * If the device is offline, don't send any commands - just pretend as
1553 	 * if the command failed.  If the device ever comes back online, we
1554 	 * can deal with it then.  It is only because of unrecoverable errors
1555 	 * that we would ever take a device offline in the first place.
1556 	 */
1557 	if (!scsi_device_online(sdp)) {
1558 		set_media_not_present(sdkp);
1559 		goto out;
1560 	}
1561 
1562 	/*
1563 	 * Using TEST_UNIT_READY enables differentiation between drive with
1564 	 * no cartridge loaded - NOT READY, drive with changed cartridge -
1565 	 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1566 	 *
1567 	 * Drives that auto spin down. eg iomega jaz 1G, will be started
1568 	 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1569 	 * sd_revalidate() is called.
1570 	 */
1571 	if (scsi_block_when_processing_errors(sdp)) {
1572 		struct scsi_sense_hdr sshdr = { 0, };
1573 
1574 		retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, SD_MAX_RETRIES,
1575 					      &sshdr);
1576 
1577 		/* failed to execute TUR, assume media not present */
1578 		if (host_byte(retval)) {
1579 			set_media_not_present(sdkp);
1580 			goto out;
1581 		}
1582 
1583 		if (media_not_present(sdkp, &sshdr))
1584 			goto out;
1585 	}
1586 
1587 	/*
1588 	 * For removable scsi disk we have to recognise the presence
1589 	 * of a disk in the drive.
1590 	 */
1591 	if (!sdkp->media_present)
1592 		sdp->changed = 1;
1593 	sdkp->media_present = 1;
1594 out:
1595 	/*
1596 	 * sdp->changed is set under the following conditions:
1597 	 *
1598 	 *	Medium present state has changed in either direction.
1599 	 *	Device has indicated UNIT_ATTENTION.
1600 	 */
1601 	retval = sdp->changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1602 	sdp->changed = 0;
1603 	scsi_disk_put(sdkp);
1604 	return retval;
1605 }
1606 
1607 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
1608 {
1609 	int retries, res;
1610 	struct scsi_device *sdp = sdkp->device;
1611 	const int timeout = sdp->request_queue->rq_timeout
1612 		* SD_FLUSH_TIMEOUT_MULTIPLIER;
1613 	struct scsi_sense_hdr my_sshdr;
1614 
1615 	if (!scsi_device_online(sdp))
1616 		return -ENODEV;
1617 
1618 	/* caller might not be interested in sense, but we need it */
1619 	if (!sshdr)
1620 		sshdr = &my_sshdr;
1621 
1622 	for (retries = 3; retries > 0; --retries) {
1623 		unsigned char cmd[10] = { 0 };
1624 
1625 		cmd[0] = SYNCHRONIZE_CACHE;
1626 		/*
1627 		 * Leave the rest of the command zero to indicate
1628 		 * flush everything.
1629 		 */
1630 		res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr,
1631 				timeout, SD_MAX_RETRIES, 0, RQF_PM, NULL);
1632 		if (res == 0)
1633 			break;
1634 	}
1635 
1636 	if (res) {
1637 		sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1638 
1639 		if (driver_byte(res) == DRIVER_SENSE)
1640 			sd_print_sense_hdr(sdkp, sshdr);
1641 
1642 		/* we need to evaluate the error return  */
1643 		if (scsi_sense_valid(sshdr) &&
1644 			(sshdr->asc == 0x3a ||	/* medium not present */
1645 			 sshdr->asc == 0x20))	/* invalid command */
1646 				/* this is no error here */
1647 				return 0;
1648 
1649 		switch (host_byte(res)) {
1650 		/* ignore errors due to racing a disconnection */
1651 		case DID_BAD_TARGET:
1652 		case DID_NO_CONNECT:
1653 			return 0;
1654 		/* signal the upper layer it might try again */
1655 		case DID_BUS_BUSY:
1656 		case DID_IMM_RETRY:
1657 		case DID_REQUEUE:
1658 		case DID_SOFT_ERROR:
1659 			return -EBUSY;
1660 		default:
1661 			return -EIO;
1662 		}
1663 	}
1664 	return 0;
1665 }
1666 
1667 static void sd_rescan(struct device *dev)
1668 {
1669 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
1670 
1671 	revalidate_disk(sdkp->disk);
1672 }
1673 
1674 
1675 #ifdef CONFIG_COMPAT
1676 /*
1677  * This gets directly called from VFS. When the ioctl
1678  * is not recognized we go back to the other translation paths.
1679  */
1680 static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode,
1681 			   unsigned int cmd, unsigned long arg)
1682 {
1683 	struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
1684 	int error;
1685 
1686 	error = scsi_ioctl_block_when_processing_errors(sdev, cmd,
1687 			(mode & FMODE_NDELAY) != 0);
1688 	if (error)
1689 		return error;
1690 
1691 	/*
1692 	 * Let the static ioctl translation table take care of it.
1693 	 */
1694 	if (!sdev->host->hostt->compat_ioctl)
1695 		return -ENOIOCTLCMD;
1696 	return sdev->host->hostt->compat_ioctl(sdev, cmd, (void __user *)arg);
1697 }
1698 #endif
1699 
1700 static char sd_pr_type(enum pr_type type)
1701 {
1702 	switch (type) {
1703 	case PR_WRITE_EXCLUSIVE:
1704 		return 0x01;
1705 	case PR_EXCLUSIVE_ACCESS:
1706 		return 0x03;
1707 	case PR_WRITE_EXCLUSIVE_REG_ONLY:
1708 		return 0x05;
1709 	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1710 		return 0x06;
1711 	case PR_WRITE_EXCLUSIVE_ALL_REGS:
1712 		return 0x07;
1713 	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1714 		return 0x08;
1715 	default:
1716 		return 0;
1717 	}
1718 };
1719 
1720 static int sd_pr_command(struct block_device *bdev, u8 sa,
1721 		u64 key, u64 sa_key, u8 type, u8 flags)
1722 {
1723 	struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
1724 	struct scsi_sense_hdr sshdr;
1725 	int result;
1726 	u8 cmd[16] = { 0, };
1727 	u8 data[24] = { 0, };
1728 
1729 	cmd[0] = PERSISTENT_RESERVE_OUT;
1730 	cmd[1] = sa;
1731 	cmd[2] = type;
1732 	put_unaligned_be32(sizeof(data), &cmd[5]);
1733 
1734 	put_unaligned_be64(key, &data[0]);
1735 	put_unaligned_be64(sa_key, &data[8]);
1736 	data[20] = flags;
1737 
1738 	result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data),
1739 			&sshdr, SD_TIMEOUT, SD_MAX_RETRIES, NULL);
1740 
1741 	if (driver_byte(result) == DRIVER_SENSE &&
1742 	    scsi_sense_valid(&sshdr)) {
1743 		sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1744 		scsi_print_sense_hdr(sdev, NULL, &sshdr);
1745 	}
1746 
1747 	return result;
1748 }
1749 
1750 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1751 		u32 flags)
1752 {
1753 	if (flags & ~PR_FL_IGNORE_KEY)
1754 		return -EOPNOTSUPP;
1755 	return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1756 			old_key, new_key, 0,
1757 			(1 << 0) /* APTPL */);
1758 }
1759 
1760 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1761 		u32 flags)
1762 {
1763 	if (flags)
1764 		return -EOPNOTSUPP;
1765 	return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0);
1766 }
1767 
1768 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1769 {
1770 	return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0);
1771 }
1772 
1773 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1774 		enum pr_type type, bool abort)
1775 {
1776 	return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
1777 			     sd_pr_type(type), 0);
1778 }
1779 
1780 static int sd_pr_clear(struct block_device *bdev, u64 key)
1781 {
1782 	return sd_pr_command(bdev, 0x03, key, 0, 0, 0);
1783 }
1784 
1785 static const struct pr_ops sd_pr_ops = {
1786 	.pr_register	= sd_pr_register,
1787 	.pr_reserve	= sd_pr_reserve,
1788 	.pr_release	= sd_pr_release,
1789 	.pr_preempt	= sd_pr_preempt,
1790 	.pr_clear	= sd_pr_clear,
1791 };
1792 
1793 static const struct block_device_operations sd_fops = {
1794 	.owner			= THIS_MODULE,
1795 	.open			= sd_open,
1796 	.release		= sd_release,
1797 	.ioctl			= sd_ioctl,
1798 	.getgeo			= sd_getgeo,
1799 #ifdef CONFIG_COMPAT
1800 	.compat_ioctl		= sd_compat_ioctl,
1801 #endif
1802 	.check_events		= sd_check_events,
1803 	.revalidate_disk	= sd_revalidate_disk,
1804 	.unlock_native_capacity	= sd_unlock_native_capacity,
1805 	.pr_ops			= &sd_pr_ops,
1806 };
1807 
1808 /**
1809  *	sd_eh_reset - reset error handling callback
1810  *	@scmd:		sd-issued command that has failed
1811  *
1812  *	This function is called by the SCSI midlayer before starting
1813  *	SCSI EH. When counting medium access failures we have to be
1814  *	careful to register it only only once per device and SCSI EH run;
1815  *	there might be several timed out commands which will cause the
1816  *	'max_medium_access_timeouts' counter to trigger after the first
1817  *	SCSI EH run already and set the device to offline.
1818  *	So this function resets the internal counter before starting SCSI EH.
1819  **/
1820 static void sd_eh_reset(struct scsi_cmnd *scmd)
1821 {
1822 	struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1823 
1824 	/* New SCSI EH run, reset gate variable */
1825 	sdkp->ignore_medium_access_errors = false;
1826 }
1827 
1828 /**
1829  *	sd_eh_action - error handling callback
1830  *	@scmd:		sd-issued command that has failed
1831  *	@eh_disp:	The recovery disposition suggested by the midlayer
1832  *
1833  *	This function is called by the SCSI midlayer upon completion of an
1834  *	error test command (currently TEST UNIT READY). The result of sending
1835  *	the eh command is passed in eh_disp.  We're looking for devices that
1836  *	fail medium access commands but are OK with non access commands like
1837  *	test unit ready (so wrongly see the device as having a successful
1838  *	recovery)
1839  **/
1840 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
1841 {
1842 	struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1843 	struct scsi_device *sdev = scmd->device;
1844 
1845 	if (!scsi_device_online(sdev) ||
1846 	    !scsi_medium_access_command(scmd) ||
1847 	    host_byte(scmd->result) != DID_TIME_OUT ||
1848 	    eh_disp != SUCCESS)
1849 		return eh_disp;
1850 
1851 	/*
1852 	 * The device has timed out executing a medium access command.
1853 	 * However, the TEST UNIT READY command sent during error
1854 	 * handling completed successfully. Either the device is in the
1855 	 * process of recovering or has it suffered an internal failure
1856 	 * that prevents access to the storage medium.
1857 	 */
1858 	if (!sdkp->ignore_medium_access_errors) {
1859 		sdkp->medium_access_timed_out++;
1860 		sdkp->ignore_medium_access_errors = true;
1861 	}
1862 
1863 	/*
1864 	 * If the device keeps failing read/write commands but TEST UNIT
1865 	 * READY always completes successfully we assume that medium
1866 	 * access is no longer possible and take the device offline.
1867 	 */
1868 	if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
1869 		scmd_printk(KERN_ERR, scmd,
1870 			    "Medium access timeout failure. Offlining disk!\n");
1871 		mutex_lock(&sdev->state_mutex);
1872 		scsi_device_set_state(sdev, SDEV_OFFLINE);
1873 		mutex_unlock(&sdev->state_mutex);
1874 
1875 		return SUCCESS;
1876 	}
1877 
1878 	return eh_disp;
1879 }
1880 
1881 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
1882 {
1883 	struct request *req = scmd->request;
1884 	struct scsi_device *sdev = scmd->device;
1885 	unsigned int transferred, good_bytes;
1886 	u64 start_lba, end_lba, bad_lba;
1887 
1888 	/*
1889 	 * Some commands have a payload smaller than the device logical
1890 	 * block size (e.g. INQUIRY on a 4K disk).
1891 	 */
1892 	if (scsi_bufflen(scmd) <= sdev->sector_size)
1893 		return 0;
1894 
1895 	/* Check if we have a 'bad_lba' information */
1896 	if (!scsi_get_sense_info_fld(scmd->sense_buffer,
1897 				     SCSI_SENSE_BUFFERSIZE,
1898 				     &bad_lba))
1899 		return 0;
1900 
1901 	/*
1902 	 * If the bad lba was reported incorrectly, we have no idea where
1903 	 * the error is.
1904 	 */
1905 	start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
1906 	end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
1907 	if (bad_lba < start_lba || bad_lba >= end_lba)
1908 		return 0;
1909 
1910 	/*
1911 	 * resid is optional but mostly filled in.  When it's unused,
1912 	 * its value is zero, so we assume the whole buffer transferred
1913 	 */
1914 	transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
1915 
1916 	/* This computation should always be done in terms of the
1917 	 * resolution of the device's medium.
1918 	 */
1919 	good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
1920 
1921 	return min(good_bytes, transferred);
1922 }
1923 
1924 /**
1925  *	sd_done - bottom half handler: called when the lower level
1926  *	driver has completed (successfully or otherwise) a scsi command.
1927  *	@SCpnt: mid-level's per command structure.
1928  *
1929  *	Note: potentially run from within an ISR. Must not block.
1930  **/
1931 static int sd_done(struct scsi_cmnd *SCpnt)
1932 {
1933 	int result = SCpnt->result;
1934 	unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
1935 	unsigned int sector_size = SCpnt->device->sector_size;
1936 	unsigned int resid;
1937 	struct scsi_sense_hdr sshdr;
1938 	struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk);
1939 	struct request *req = SCpnt->request;
1940 	int sense_valid = 0;
1941 	int sense_deferred = 0;
1942 
1943 	switch (req_op(req)) {
1944 	case REQ_OP_DISCARD:
1945 	case REQ_OP_WRITE_ZEROES:
1946 	case REQ_OP_WRITE_SAME:
1947 	case REQ_OP_ZONE_RESET:
1948 		if (!result) {
1949 			good_bytes = blk_rq_bytes(req);
1950 			scsi_set_resid(SCpnt, 0);
1951 		} else {
1952 			good_bytes = 0;
1953 			scsi_set_resid(SCpnt, blk_rq_bytes(req));
1954 		}
1955 		break;
1956 	case REQ_OP_ZONE_REPORT:
1957 		if (!result) {
1958 			good_bytes = scsi_bufflen(SCpnt)
1959 				- scsi_get_resid(SCpnt);
1960 			scsi_set_resid(SCpnt, 0);
1961 		} else {
1962 			good_bytes = 0;
1963 			scsi_set_resid(SCpnt, blk_rq_bytes(req));
1964 		}
1965 		break;
1966 	default:
1967 		/*
1968 		 * In case of bogus fw or device, we could end up having
1969 		 * an unaligned partial completion. Check this here and force
1970 		 * alignment.
1971 		 */
1972 		resid = scsi_get_resid(SCpnt);
1973 		if (resid & (sector_size - 1)) {
1974 			sd_printk(KERN_INFO, sdkp,
1975 				"Unaligned partial completion (resid=%u, sector_sz=%u)\n",
1976 				resid, sector_size);
1977 			resid = min(scsi_bufflen(SCpnt),
1978 				    round_up(resid, sector_size));
1979 			scsi_set_resid(SCpnt, resid);
1980 		}
1981 	}
1982 
1983 	if (result) {
1984 		sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
1985 		if (sense_valid)
1986 			sense_deferred = scsi_sense_is_deferred(&sshdr);
1987 	}
1988 	sdkp->medium_access_timed_out = 0;
1989 
1990 	if (driver_byte(result) != DRIVER_SENSE &&
1991 	    (!sense_valid || sense_deferred))
1992 		goto out;
1993 
1994 	switch (sshdr.sense_key) {
1995 	case HARDWARE_ERROR:
1996 	case MEDIUM_ERROR:
1997 		good_bytes = sd_completed_bytes(SCpnt);
1998 		break;
1999 	case RECOVERED_ERROR:
2000 		good_bytes = scsi_bufflen(SCpnt);
2001 		break;
2002 	case NO_SENSE:
2003 		/* This indicates a false check condition, so ignore it.  An
2004 		 * unknown amount of data was transferred so treat it as an
2005 		 * error.
2006 		 */
2007 		SCpnt->result = 0;
2008 		memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
2009 		break;
2010 	case ABORTED_COMMAND:
2011 		if (sshdr.asc == 0x10)  /* DIF: Target detected corruption */
2012 			good_bytes = sd_completed_bytes(SCpnt);
2013 		break;
2014 	case ILLEGAL_REQUEST:
2015 		switch (sshdr.asc) {
2016 		case 0x10:	/* DIX: Host detected corruption */
2017 			good_bytes = sd_completed_bytes(SCpnt);
2018 			break;
2019 		case 0x20:	/* INVALID COMMAND OPCODE */
2020 		case 0x24:	/* INVALID FIELD IN CDB */
2021 			switch (SCpnt->cmnd[0]) {
2022 			case UNMAP:
2023 				sd_config_discard(sdkp, SD_LBP_DISABLE);
2024 				break;
2025 			case WRITE_SAME_16:
2026 			case WRITE_SAME:
2027 				if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2028 					sd_config_discard(sdkp, SD_LBP_DISABLE);
2029 				} else {
2030 					sdkp->device->no_write_same = 1;
2031 					sd_config_write_same(sdkp);
2032 					req->rq_flags |= RQF_QUIET;
2033 				}
2034 				break;
2035 			}
2036 		}
2037 		break;
2038 	default:
2039 		break;
2040 	}
2041 
2042  out:
2043 	if (sd_is_zoned(sdkp))
2044 		sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2045 
2046 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2047 					   "sd_done: completed %d of %d bytes\n",
2048 					   good_bytes, scsi_bufflen(SCpnt)));
2049 
2050 	if (rq_data_dir(SCpnt->request) == READ && scsi_prot_sg_count(SCpnt) &&
2051 	    good_bytes)
2052 		t10_pi_complete(SCpnt->request, sdkp->protection_type,
2053 				good_bytes / scsi_prot_interval(SCpnt));
2054 
2055 	return good_bytes;
2056 }
2057 
2058 /*
2059  * spinup disk - called only in sd_revalidate_disk()
2060  */
2061 static void
2062 sd_spinup_disk(struct scsi_disk *sdkp)
2063 {
2064 	unsigned char cmd[10];
2065 	unsigned long spintime_expire = 0;
2066 	int retries, spintime;
2067 	unsigned int the_result;
2068 	struct scsi_sense_hdr sshdr;
2069 	int sense_valid = 0;
2070 
2071 	spintime = 0;
2072 
2073 	/* Spin up drives, as required.  Only do this at boot time */
2074 	/* Spinup needs to be done for module loads too. */
2075 	do {
2076 		retries = 0;
2077 
2078 		do {
2079 			cmd[0] = TEST_UNIT_READY;
2080 			memset((void *) &cmd[1], 0, 9);
2081 
2082 			the_result = scsi_execute_req(sdkp->device, cmd,
2083 						      DMA_NONE, NULL, 0,
2084 						      &sshdr, SD_TIMEOUT,
2085 						      SD_MAX_RETRIES, NULL);
2086 
2087 			/*
2088 			 * If the drive has indicated to us that it
2089 			 * doesn't have any media in it, don't bother
2090 			 * with any more polling.
2091 			 */
2092 			if (media_not_present(sdkp, &sshdr))
2093 				return;
2094 
2095 			if (the_result)
2096 				sense_valid = scsi_sense_valid(&sshdr);
2097 			retries++;
2098 		} while (retries < 3 &&
2099 			 (!scsi_status_is_good(the_result) ||
2100 			  ((driver_byte(the_result) == DRIVER_SENSE) &&
2101 			  sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
2102 
2103 		if (driver_byte(the_result) != DRIVER_SENSE) {
2104 			/* no sense, TUR either succeeded or failed
2105 			 * with a status error */
2106 			if(!spintime && !scsi_status_is_good(the_result)) {
2107 				sd_print_result(sdkp, "Test Unit Ready failed",
2108 						the_result);
2109 			}
2110 			break;
2111 		}
2112 
2113 		/*
2114 		 * The device does not want the automatic start to be issued.
2115 		 */
2116 		if (sdkp->device->no_start_on_add)
2117 			break;
2118 
2119 		if (sense_valid && sshdr.sense_key == NOT_READY) {
2120 			if (sshdr.asc == 4 && sshdr.ascq == 3)
2121 				break;	/* manual intervention required */
2122 			if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2123 				break;	/* standby */
2124 			if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2125 				break;	/* unavailable */
2126 			if (sshdr.asc == 4 && sshdr.ascq == 0x1b)
2127 				break;	/* sanitize in progress */
2128 			/*
2129 			 * Issue command to spin up drive when not ready
2130 			 */
2131 			if (!spintime) {
2132 				sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2133 				cmd[0] = START_STOP;
2134 				cmd[1] = 1;	/* Return immediately */
2135 				memset((void *) &cmd[2], 0, 8);
2136 				cmd[4] = 1;	/* Start spin cycle */
2137 				if (sdkp->device->start_stop_pwr_cond)
2138 					cmd[4] |= 1 << 4;
2139 				scsi_execute_req(sdkp->device, cmd, DMA_NONE,
2140 						 NULL, 0, &sshdr,
2141 						 SD_TIMEOUT, SD_MAX_RETRIES,
2142 						 NULL);
2143 				spintime_expire = jiffies + 100 * HZ;
2144 				spintime = 1;
2145 			}
2146 			/* Wait 1 second for next try */
2147 			msleep(1000);
2148 			printk(KERN_CONT ".");
2149 
2150 		/*
2151 		 * Wait for USB flash devices with slow firmware.
2152 		 * Yes, this sense key/ASC combination shouldn't
2153 		 * occur here.  It's characteristic of these devices.
2154 		 */
2155 		} else if (sense_valid &&
2156 				sshdr.sense_key == UNIT_ATTENTION &&
2157 				sshdr.asc == 0x28) {
2158 			if (!spintime) {
2159 				spintime_expire = jiffies + 5 * HZ;
2160 				spintime = 1;
2161 			}
2162 			/* Wait 1 second for next try */
2163 			msleep(1000);
2164 		} else {
2165 			/* we don't understand the sense code, so it's
2166 			 * probably pointless to loop */
2167 			if(!spintime) {
2168 				sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2169 				sd_print_sense_hdr(sdkp, &sshdr);
2170 			}
2171 			break;
2172 		}
2173 
2174 	} while (spintime && time_before_eq(jiffies, spintime_expire));
2175 
2176 	if (spintime) {
2177 		if (scsi_status_is_good(the_result))
2178 			printk(KERN_CONT "ready\n");
2179 		else
2180 			printk(KERN_CONT "not responding...\n");
2181 	}
2182 }
2183 
2184 /*
2185  * Determine whether disk supports Data Integrity Field.
2186  */
2187 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2188 {
2189 	struct scsi_device *sdp = sdkp->device;
2190 	u8 type;
2191 	int ret = 0;
2192 
2193 	if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0)
2194 		return ret;
2195 
2196 	type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2197 
2198 	if (type > T10_PI_TYPE3_PROTECTION)
2199 		ret = -ENODEV;
2200 	else if (scsi_host_dif_capable(sdp->host, type))
2201 		ret = 1;
2202 
2203 	if (sdkp->first_scan || type != sdkp->protection_type)
2204 		switch (ret) {
2205 		case -ENODEV:
2206 			sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \
2207 				  " protection type %u. Disabling disk!\n",
2208 				  type);
2209 			break;
2210 		case 1:
2211 			sd_printk(KERN_NOTICE, sdkp,
2212 				  "Enabling DIF Type %u protection\n", type);
2213 			break;
2214 		case 0:
2215 			sd_printk(KERN_NOTICE, sdkp,
2216 				  "Disabling DIF Type %u protection\n", type);
2217 			break;
2218 		}
2219 
2220 	sdkp->protection_type = type;
2221 
2222 	return ret;
2223 }
2224 
2225 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2226 			struct scsi_sense_hdr *sshdr, int sense_valid,
2227 			int the_result)
2228 {
2229 	if (driver_byte(the_result) == DRIVER_SENSE)
2230 		sd_print_sense_hdr(sdkp, sshdr);
2231 	else
2232 		sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2233 
2234 	/*
2235 	 * Set dirty bit for removable devices if not ready -
2236 	 * sometimes drives will not report this properly.
2237 	 */
2238 	if (sdp->removable &&
2239 	    sense_valid && sshdr->sense_key == NOT_READY)
2240 		set_media_not_present(sdkp);
2241 
2242 	/*
2243 	 * We used to set media_present to 0 here to indicate no media
2244 	 * in the drive, but some drives fail read capacity even with
2245 	 * media present, so we can't do that.
2246 	 */
2247 	sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2248 }
2249 
2250 #define RC16_LEN 32
2251 #if RC16_LEN > SD_BUF_SIZE
2252 #error RC16_LEN must not be more than SD_BUF_SIZE
2253 #endif
2254 
2255 #define READ_CAPACITY_RETRIES_ON_RESET	10
2256 
2257 /*
2258  * Ensure that we don't overflow sector_t when CONFIG_LBDAF is not set
2259  * and the reported logical block size is bigger than 512 bytes. Note
2260  * that last_sector is a u64 and therefore logical_to_sectors() is not
2261  * applicable.
2262  */
2263 static bool sd_addressable_capacity(u64 lba, unsigned int sector_size)
2264 {
2265 	u64 last_sector = (lba + 1ULL) << (ilog2(sector_size) - 9);
2266 
2267 	if (sizeof(sector_t) == 4 && last_sector > U32_MAX)
2268 		return false;
2269 
2270 	return true;
2271 }
2272 
2273 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2274 						unsigned char *buffer)
2275 {
2276 	unsigned char cmd[16];
2277 	struct scsi_sense_hdr sshdr;
2278 	int sense_valid = 0;
2279 	int the_result;
2280 	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2281 	unsigned int alignment;
2282 	unsigned long long lba;
2283 	unsigned sector_size;
2284 
2285 	if (sdp->no_read_capacity_16)
2286 		return -EINVAL;
2287 
2288 	do {
2289 		memset(cmd, 0, 16);
2290 		cmd[0] = SERVICE_ACTION_IN_16;
2291 		cmd[1] = SAI_READ_CAPACITY_16;
2292 		cmd[13] = RC16_LEN;
2293 		memset(buffer, 0, RC16_LEN);
2294 
2295 		the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2296 					buffer, RC16_LEN, &sshdr,
2297 					SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2298 
2299 		if (media_not_present(sdkp, &sshdr))
2300 			return -ENODEV;
2301 
2302 		if (the_result) {
2303 			sense_valid = scsi_sense_valid(&sshdr);
2304 			if (sense_valid &&
2305 			    sshdr.sense_key == ILLEGAL_REQUEST &&
2306 			    (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2307 			    sshdr.ascq == 0x00)
2308 				/* Invalid Command Operation Code or
2309 				 * Invalid Field in CDB, just retry
2310 				 * silently with RC10 */
2311 				return -EINVAL;
2312 			if (sense_valid &&
2313 			    sshdr.sense_key == UNIT_ATTENTION &&
2314 			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2315 				/* Device reset might occur several times,
2316 				 * give it one more chance */
2317 				if (--reset_retries > 0)
2318 					continue;
2319 		}
2320 		retries--;
2321 
2322 	} while (the_result && retries);
2323 
2324 	if (the_result) {
2325 		sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2326 		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2327 		return -EINVAL;
2328 	}
2329 
2330 	sector_size = get_unaligned_be32(&buffer[8]);
2331 	lba = get_unaligned_be64(&buffer[0]);
2332 
2333 	if (sd_read_protection_type(sdkp, buffer) < 0) {
2334 		sdkp->capacity = 0;
2335 		return -ENODEV;
2336 	}
2337 
2338 	if (!sd_addressable_capacity(lba, sector_size)) {
2339 		sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a "
2340 			"kernel compiled with support for large block "
2341 			"devices.\n");
2342 		sdkp->capacity = 0;
2343 		return -EOVERFLOW;
2344 	}
2345 
2346 	/* Logical blocks per physical block exponent */
2347 	sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2348 
2349 	/* RC basis */
2350 	sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2351 
2352 	/* Lowest aligned logical block */
2353 	alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2354 	blk_queue_alignment_offset(sdp->request_queue, alignment);
2355 	if (alignment && sdkp->first_scan)
2356 		sd_printk(KERN_NOTICE, sdkp,
2357 			  "physical block alignment offset: %u\n", alignment);
2358 
2359 	if (buffer[14] & 0x80) { /* LBPME */
2360 		sdkp->lbpme = 1;
2361 
2362 		if (buffer[14] & 0x40) /* LBPRZ */
2363 			sdkp->lbprz = 1;
2364 
2365 		sd_config_discard(sdkp, SD_LBP_WS16);
2366 	}
2367 
2368 	sdkp->capacity = lba + 1;
2369 	return sector_size;
2370 }
2371 
2372 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2373 						unsigned char *buffer)
2374 {
2375 	unsigned char cmd[16];
2376 	struct scsi_sense_hdr sshdr;
2377 	int sense_valid = 0;
2378 	int the_result;
2379 	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2380 	sector_t lba;
2381 	unsigned sector_size;
2382 
2383 	do {
2384 		cmd[0] = READ_CAPACITY;
2385 		memset(&cmd[1], 0, 9);
2386 		memset(buffer, 0, 8);
2387 
2388 		the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2389 					buffer, 8, &sshdr,
2390 					SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2391 
2392 		if (media_not_present(sdkp, &sshdr))
2393 			return -ENODEV;
2394 
2395 		if (the_result) {
2396 			sense_valid = scsi_sense_valid(&sshdr);
2397 			if (sense_valid &&
2398 			    sshdr.sense_key == UNIT_ATTENTION &&
2399 			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2400 				/* Device reset might occur several times,
2401 				 * give it one more chance */
2402 				if (--reset_retries > 0)
2403 					continue;
2404 		}
2405 		retries--;
2406 
2407 	} while (the_result && retries);
2408 
2409 	if (the_result) {
2410 		sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2411 		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2412 		return -EINVAL;
2413 	}
2414 
2415 	sector_size = get_unaligned_be32(&buffer[4]);
2416 	lba = get_unaligned_be32(&buffer[0]);
2417 
2418 	if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2419 		/* Some buggy (usb cardreader) devices return an lba of
2420 		   0xffffffff when the want to report a size of 0 (with
2421 		   which they really mean no media is present) */
2422 		sdkp->capacity = 0;
2423 		sdkp->physical_block_size = sector_size;
2424 		return sector_size;
2425 	}
2426 
2427 	if (!sd_addressable_capacity(lba, sector_size)) {
2428 		sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a "
2429 			"kernel compiled with support for large block "
2430 			"devices.\n");
2431 		sdkp->capacity = 0;
2432 		return -EOVERFLOW;
2433 	}
2434 
2435 	sdkp->capacity = lba + 1;
2436 	sdkp->physical_block_size = sector_size;
2437 	return sector_size;
2438 }
2439 
2440 static int sd_try_rc16_first(struct scsi_device *sdp)
2441 {
2442 	if (sdp->host->max_cmd_len < 16)
2443 		return 0;
2444 	if (sdp->try_rc_10_first)
2445 		return 0;
2446 	if (sdp->scsi_level > SCSI_SPC_2)
2447 		return 1;
2448 	if (scsi_device_protection(sdp))
2449 		return 1;
2450 	return 0;
2451 }
2452 
2453 /*
2454  * read disk capacity
2455  */
2456 static void
2457 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2458 {
2459 	int sector_size;
2460 	struct scsi_device *sdp = sdkp->device;
2461 
2462 	if (sd_try_rc16_first(sdp)) {
2463 		sector_size = read_capacity_16(sdkp, sdp, buffer);
2464 		if (sector_size == -EOVERFLOW)
2465 			goto got_data;
2466 		if (sector_size == -ENODEV)
2467 			return;
2468 		if (sector_size < 0)
2469 			sector_size = read_capacity_10(sdkp, sdp, buffer);
2470 		if (sector_size < 0)
2471 			return;
2472 	} else {
2473 		sector_size = read_capacity_10(sdkp, sdp, buffer);
2474 		if (sector_size == -EOVERFLOW)
2475 			goto got_data;
2476 		if (sector_size < 0)
2477 			return;
2478 		if ((sizeof(sdkp->capacity) > 4) &&
2479 		    (sdkp->capacity > 0xffffffffULL)) {
2480 			int old_sector_size = sector_size;
2481 			sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2482 					"Trying to use READ CAPACITY(16).\n");
2483 			sector_size = read_capacity_16(sdkp, sdp, buffer);
2484 			if (sector_size < 0) {
2485 				sd_printk(KERN_NOTICE, sdkp,
2486 					"Using 0xffffffff as device size\n");
2487 				sdkp->capacity = 1 + (sector_t) 0xffffffff;
2488 				sector_size = old_sector_size;
2489 				goto got_data;
2490 			}
2491 			/* Remember that READ CAPACITY(16) succeeded */
2492 			sdp->try_rc_10_first = 0;
2493 		}
2494 	}
2495 
2496 	/* Some devices are known to return the total number of blocks,
2497 	 * not the highest block number.  Some devices have versions
2498 	 * which do this and others which do not.  Some devices we might
2499 	 * suspect of doing this but we don't know for certain.
2500 	 *
2501 	 * If we know the reported capacity is wrong, decrement it.  If
2502 	 * we can only guess, then assume the number of blocks is even
2503 	 * (usually true but not always) and err on the side of lowering
2504 	 * the capacity.
2505 	 */
2506 	if (sdp->fix_capacity ||
2507 	    (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2508 		sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2509 				"from its reported value: %llu\n",
2510 				(unsigned long long) sdkp->capacity);
2511 		--sdkp->capacity;
2512 	}
2513 
2514 got_data:
2515 	if (sector_size == 0) {
2516 		sector_size = 512;
2517 		sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2518 			  "assuming 512.\n");
2519 	}
2520 
2521 	if (sector_size != 512 &&
2522 	    sector_size != 1024 &&
2523 	    sector_size != 2048 &&
2524 	    sector_size != 4096) {
2525 		sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2526 			  sector_size);
2527 		/*
2528 		 * The user might want to re-format the drive with
2529 		 * a supported sectorsize.  Once this happens, it
2530 		 * would be relatively trivial to set the thing up.
2531 		 * For this reason, we leave the thing in the table.
2532 		 */
2533 		sdkp->capacity = 0;
2534 		/*
2535 		 * set a bogus sector size so the normal read/write
2536 		 * logic in the block layer will eventually refuse any
2537 		 * request on this device without tripping over power
2538 		 * of two sector size assumptions
2539 		 */
2540 		sector_size = 512;
2541 	}
2542 	blk_queue_logical_block_size(sdp->request_queue, sector_size);
2543 	blk_queue_physical_block_size(sdp->request_queue,
2544 				      sdkp->physical_block_size);
2545 	sdkp->device->sector_size = sector_size;
2546 
2547 	if (sdkp->capacity > 0xffffffff)
2548 		sdp->use_16_for_rw = 1;
2549 
2550 }
2551 
2552 /*
2553  * Print disk capacity
2554  */
2555 static void
2556 sd_print_capacity(struct scsi_disk *sdkp,
2557 		  sector_t old_capacity)
2558 {
2559 	int sector_size = sdkp->device->sector_size;
2560 	char cap_str_2[10], cap_str_10[10];
2561 
2562 	string_get_size(sdkp->capacity, sector_size,
2563 			STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2564 	string_get_size(sdkp->capacity, sector_size,
2565 			STRING_UNITS_10, cap_str_10,
2566 			sizeof(cap_str_10));
2567 
2568 	if (sdkp->first_scan || old_capacity != sdkp->capacity) {
2569 		sd_printk(KERN_NOTICE, sdkp,
2570 			  "%llu %d-byte logical blocks: (%s/%s)\n",
2571 			  (unsigned long long)sdkp->capacity,
2572 			  sector_size, cap_str_10, cap_str_2);
2573 
2574 		if (sdkp->physical_block_size != sector_size)
2575 			sd_printk(KERN_NOTICE, sdkp,
2576 				  "%u-byte physical blocks\n",
2577 				  sdkp->physical_block_size);
2578 
2579 		sd_zbc_print_zones(sdkp);
2580 	}
2581 }
2582 
2583 /* called with buffer of length 512 */
2584 static inline int
2585 sd_do_mode_sense(struct scsi_device *sdp, int dbd, int modepage,
2586 		 unsigned char *buffer, int len, struct scsi_mode_data *data,
2587 		 struct scsi_sense_hdr *sshdr)
2588 {
2589 	return scsi_mode_sense(sdp, dbd, modepage, buffer, len,
2590 			       SD_TIMEOUT, SD_MAX_RETRIES, data,
2591 			       sshdr);
2592 }
2593 
2594 /*
2595  * read write protect setting, if possible - called only in sd_revalidate_disk()
2596  * called with buffer of length SD_BUF_SIZE
2597  */
2598 static void
2599 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2600 {
2601 	int res;
2602 	struct scsi_device *sdp = sdkp->device;
2603 	struct scsi_mode_data data;
2604 	int disk_ro = get_disk_ro(sdkp->disk);
2605 	int old_wp = sdkp->write_prot;
2606 
2607 	set_disk_ro(sdkp->disk, 0);
2608 	if (sdp->skip_ms_page_3f) {
2609 		sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2610 		return;
2611 	}
2612 
2613 	if (sdp->use_192_bytes_for_3f) {
2614 		res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 192, &data, NULL);
2615 	} else {
2616 		/*
2617 		 * First attempt: ask for all pages (0x3F), but only 4 bytes.
2618 		 * We have to start carefully: some devices hang if we ask
2619 		 * for more than is available.
2620 		 */
2621 		res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 4, &data, NULL);
2622 
2623 		/*
2624 		 * Second attempt: ask for page 0 When only page 0 is
2625 		 * implemented, a request for page 3F may return Sense Key
2626 		 * 5: Illegal Request, Sense Code 24: Invalid field in
2627 		 * CDB.
2628 		 */
2629 		if (!scsi_status_is_good(res))
2630 			res = sd_do_mode_sense(sdp, 0, 0, buffer, 4, &data, NULL);
2631 
2632 		/*
2633 		 * Third attempt: ask 255 bytes, as we did earlier.
2634 		 */
2635 		if (!scsi_status_is_good(res))
2636 			res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 255,
2637 					       &data, NULL);
2638 	}
2639 
2640 	if (!scsi_status_is_good(res)) {
2641 		sd_first_printk(KERN_WARNING, sdkp,
2642 			  "Test WP failed, assume Write Enabled\n");
2643 	} else {
2644 		sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2645 		set_disk_ro(sdkp->disk, sdkp->write_prot || disk_ro);
2646 		if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2647 			sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2648 				  sdkp->write_prot ? "on" : "off");
2649 			sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
2650 		}
2651 	}
2652 }
2653 
2654 /*
2655  * sd_read_cache_type - called only from sd_revalidate_disk()
2656  * called with buffer of length SD_BUF_SIZE
2657  */
2658 static void
2659 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2660 {
2661 	int len = 0, res;
2662 	struct scsi_device *sdp = sdkp->device;
2663 
2664 	int dbd;
2665 	int modepage;
2666 	int first_len;
2667 	struct scsi_mode_data data;
2668 	struct scsi_sense_hdr sshdr;
2669 	int old_wce = sdkp->WCE;
2670 	int old_rcd = sdkp->RCD;
2671 	int old_dpofua = sdkp->DPOFUA;
2672 
2673 
2674 	if (sdkp->cache_override)
2675 		return;
2676 
2677 	first_len = 4;
2678 	if (sdp->skip_ms_page_8) {
2679 		if (sdp->type == TYPE_RBC)
2680 			goto defaults;
2681 		else {
2682 			if (sdp->skip_ms_page_3f)
2683 				goto defaults;
2684 			modepage = 0x3F;
2685 			if (sdp->use_192_bytes_for_3f)
2686 				first_len = 192;
2687 			dbd = 0;
2688 		}
2689 	} else if (sdp->type == TYPE_RBC) {
2690 		modepage = 6;
2691 		dbd = 8;
2692 	} else {
2693 		modepage = 8;
2694 		dbd = 0;
2695 	}
2696 
2697 	/* cautiously ask */
2698 	res = sd_do_mode_sense(sdp, dbd, modepage, buffer, first_len,
2699 			&data, &sshdr);
2700 
2701 	if (!scsi_status_is_good(res))
2702 		goto bad_sense;
2703 
2704 	if (!data.header_length) {
2705 		modepage = 6;
2706 		first_len = 0;
2707 		sd_first_printk(KERN_ERR, sdkp,
2708 				"Missing header in MODE_SENSE response\n");
2709 	}
2710 
2711 	/* that went OK, now ask for the proper length */
2712 	len = data.length;
2713 
2714 	/*
2715 	 * We're only interested in the first three bytes, actually.
2716 	 * But the data cache page is defined for the first 20.
2717 	 */
2718 	if (len < 3)
2719 		goto bad_sense;
2720 	else if (len > SD_BUF_SIZE) {
2721 		sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2722 			  "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2723 		len = SD_BUF_SIZE;
2724 	}
2725 	if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2726 		len = 192;
2727 
2728 	/* Get the data */
2729 	if (len > first_len)
2730 		res = sd_do_mode_sense(sdp, dbd, modepage, buffer, len,
2731 				&data, &sshdr);
2732 
2733 	if (scsi_status_is_good(res)) {
2734 		int offset = data.header_length + data.block_descriptor_length;
2735 
2736 		while (offset < len) {
2737 			u8 page_code = buffer[offset] & 0x3F;
2738 			u8 spf       = buffer[offset] & 0x40;
2739 
2740 			if (page_code == 8 || page_code == 6) {
2741 				/* We're interested only in the first 3 bytes.
2742 				 */
2743 				if (len - offset <= 2) {
2744 					sd_first_printk(KERN_ERR, sdkp,
2745 						"Incomplete mode parameter "
2746 							"data\n");
2747 					goto defaults;
2748 				} else {
2749 					modepage = page_code;
2750 					goto Page_found;
2751 				}
2752 			} else {
2753 				/* Go to the next page */
2754 				if (spf && len - offset > 3)
2755 					offset += 4 + (buffer[offset+2] << 8) +
2756 						buffer[offset+3];
2757 				else if (!spf && len - offset > 1)
2758 					offset += 2 + buffer[offset+1];
2759 				else {
2760 					sd_first_printk(KERN_ERR, sdkp,
2761 							"Incomplete mode "
2762 							"parameter data\n");
2763 					goto defaults;
2764 				}
2765 			}
2766 		}
2767 
2768 		sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n");
2769 		goto defaults;
2770 
2771 	Page_found:
2772 		if (modepage == 8) {
2773 			sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2774 			sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2775 		} else {
2776 			sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2777 			sdkp->RCD = 0;
2778 		}
2779 
2780 		sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2781 		if (sdp->broken_fua) {
2782 			sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2783 			sdkp->DPOFUA = 0;
2784 		} else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
2785 			   !sdkp->device->use_16_for_rw) {
2786 			sd_first_printk(KERN_NOTICE, sdkp,
2787 				  "Uses READ/WRITE(6), disabling FUA\n");
2788 			sdkp->DPOFUA = 0;
2789 		}
2790 
2791 		/* No cache flush allowed for write protected devices */
2792 		if (sdkp->WCE && sdkp->write_prot)
2793 			sdkp->WCE = 0;
2794 
2795 		if (sdkp->first_scan || old_wce != sdkp->WCE ||
2796 		    old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2797 			sd_printk(KERN_NOTICE, sdkp,
2798 				  "Write cache: %s, read cache: %s, %s\n",
2799 				  sdkp->WCE ? "enabled" : "disabled",
2800 				  sdkp->RCD ? "disabled" : "enabled",
2801 				  sdkp->DPOFUA ? "supports DPO and FUA"
2802 				  : "doesn't support DPO or FUA");
2803 
2804 		return;
2805 	}
2806 
2807 bad_sense:
2808 	if (scsi_sense_valid(&sshdr) &&
2809 	    sshdr.sense_key == ILLEGAL_REQUEST &&
2810 	    sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2811 		/* Invalid field in CDB */
2812 		sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2813 	else
2814 		sd_first_printk(KERN_ERR, sdkp,
2815 				"Asking for cache data failed\n");
2816 
2817 defaults:
2818 	if (sdp->wce_default_on) {
2819 		sd_first_printk(KERN_NOTICE, sdkp,
2820 				"Assuming drive cache: write back\n");
2821 		sdkp->WCE = 1;
2822 	} else {
2823 		sd_first_printk(KERN_ERR, sdkp,
2824 				"Assuming drive cache: write through\n");
2825 		sdkp->WCE = 0;
2826 	}
2827 	sdkp->RCD = 0;
2828 	sdkp->DPOFUA = 0;
2829 }
2830 
2831 /*
2832  * The ATO bit indicates whether the DIF application tag is available
2833  * for use by the operating system.
2834  */
2835 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
2836 {
2837 	int res, offset;
2838 	struct scsi_device *sdp = sdkp->device;
2839 	struct scsi_mode_data data;
2840 	struct scsi_sense_hdr sshdr;
2841 
2842 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
2843 		return;
2844 
2845 	if (sdkp->protection_type == 0)
2846 		return;
2847 
2848 	res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT,
2849 			      SD_MAX_RETRIES, &data, &sshdr);
2850 
2851 	if (!scsi_status_is_good(res) || !data.header_length ||
2852 	    data.length < 6) {
2853 		sd_first_printk(KERN_WARNING, sdkp,
2854 			  "getting Control mode page failed, assume no ATO\n");
2855 
2856 		if (scsi_sense_valid(&sshdr))
2857 			sd_print_sense_hdr(sdkp, &sshdr);
2858 
2859 		return;
2860 	}
2861 
2862 	offset = data.header_length + data.block_descriptor_length;
2863 
2864 	if ((buffer[offset] & 0x3f) != 0x0a) {
2865 		sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
2866 		return;
2867 	}
2868 
2869 	if ((buffer[offset + 5] & 0x80) == 0)
2870 		return;
2871 
2872 	sdkp->ATO = 1;
2873 
2874 	return;
2875 }
2876 
2877 /**
2878  * sd_read_block_limits - Query disk device for preferred I/O sizes.
2879  * @sdkp: disk to query
2880  */
2881 static void sd_read_block_limits(struct scsi_disk *sdkp)
2882 {
2883 	unsigned int sector_sz = sdkp->device->sector_size;
2884 	const int vpd_len = 64;
2885 	unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL);
2886 
2887 	if (!buffer ||
2888 	    /* Block Limits VPD */
2889 	    scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len))
2890 		goto out;
2891 
2892 	blk_queue_io_min(sdkp->disk->queue,
2893 			 get_unaligned_be16(&buffer[6]) * sector_sz);
2894 
2895 	sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]);
2896 	sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]);
2897 
2898 	if (buffer[3] == 0x3c) {
2899 		unsigned int lba_count, desc_count;
2900 
2901 		sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]);
2902 
2903 		if (!sdkp->lbpme)
2904 			goto out;
2905 
2906 		lba_count = get_unaligned_be32(&buffer[20]);
2907 		desc_count = get_unaligned_be32(&buffer[24]);
2908 
2909 		if (lba_count && desc_count)
2910 			sdkp->max_unmap_blocks = lba_count;
2911 
2912 		sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]);
2913 
2914 		if (buffer[32] & 0x80)
2915 			sdkp->unmap_alignment =
2916 				get_unaligned_be32(&buffer[32]) & ~(1 << 31);
2917 
2918 		if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
2919 
2920 			if (sdkp->max_unmap_blocks)
2921 				sd_config_discard(sdkp, SD_LBP_UNMAP);
2922 			else
2923 				sd_config_discard(sdkp, SD_LBP_WS16);
2924 
2925 		} else {	/* LBP VPD page tells us what to use */
2926 			if (sdkp->lbpu && sdkp->max_unmap_blocks)
2927 				sd_config_discard(sdkp, SD_LBP_UNMAP);
2928 			else if (sdkp->lbpws)
2929 				sd_config_discard(sdkp, SD_LBP_WS16);
2930 			else if (sdkp->lbpws10)
2931 				sd_config_discard(sdkp, SD_LBP_WS10);
2932 			else
2933 				sd_config_discard(sdkp, SD_LBP_DISABLE);
2934 		}
2935 	}
2936 
2937  out:
2938 	kfree(buffer);
2939 }
2940 
2941 /**
2942  * sd_read_block_characteristics - Query block dev. characteristics
2943  * @sdkp: disk to query
2944  */
2945 static void sd_read_block_characteristics(struct scsi_disk *sdkp)
2946 {
2947 	struct request_queue *q = sdkp->disk->queue;
2948 	unsigned char *buffer;
2949 	u16 rot;
2950 	const int vpd_len = 64;
2951 
2952 	buffer = kmalloc(vpd_len, GFP_KERNEL);
2953 
2954 	if (!buffer ||
2955 	    /* Block Device Characteristics VPD */
2956 	    scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len))
2957 		goto out;
2958 
2959 	rot = get_unaligned_be16(&buffer[4]);
2960 
2961 	if (rot == 1) {
2962 		blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
2963 		blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
2964 	} else {
2965 		blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
2966 		blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q);
2967 	}
2968 
2969 	if (sdkp->device->type == TYPE_ZBC) {
2970 		/* Host-managed */
2971 		q->limits.zoned = BLK_ZONED_HM;
2972 	} else {
2973 		sdkp->zoned = (buffer[8] >> 4) & 3;
2974 		if (sdkp->zoned == 1)
2975 			/* Host-aware */
2976 			q->limits.zoned = BLK_ZONED_HA;
2977 		else
2978 			/*
2979 			 * Treat drive-managed devices as
2980 			 * regular block devices.
2981 			 */
2982 			q->limits.zoned = BLK_ZONED_NONE;
2983 	}
2984 	if (blk_queue_is_zoned(q) && sdkp->first_scan)
2985 		sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n",
2986 		      q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware");
2987 
2988  out:
2989 	kfree(buffer);
2990 }
2991 
2992 /**
2993  * sd_read_block_provisioning - Query provisioning VPD page
2994  * @sdkp: disk to query
2995  */
2996 static void sd_read_block_provisioning(struct scsi_disk *sdkp)
2997 {
2998 	unsigned char *buffer;
2999 	const int vpd_len = 8;
3000 
3001 	if (sdkp->lbpme == 0)
3002 		return;
3003 
3004 	buffer = kmalloc(vpd_len, GFP_KERNEL);
3005 
3006 	if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len))
3007 		goto out;
3008 
3009 	sdkp->lbpvpd	= 1;
3010 	sdkp->lbpu	= (buffer[5] >> 7) & 1;	/* UNMAP */
3011 	sdkp->lbpws	= (buffer[5] >> 6) & 1;	/* WRITE SAME(16) with UNMAP */
3012 	sdkp->lbpws10	= (buffer[5] >> 5) & 1;	/* WRITE SAME(10) with UNMAP */
3013 
3014  out:
3015 	kfree(buffer);
3016 }
3017 
3018 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
3019 {
3020 	struct scsi_device *sdev = sdkp->device;
3021 
3022 	if (sdev->host->no_write_same) {
3023 		sdev->no_write_same = 1;
3024 
3025 		return;
3026 	}
3027 
3028 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) {
3029 		/* too large values might cause issues with arcmsr */
3030 		int vpd_buf_len = 64;
3031 
3032 		sdev->no_report_opcodes = 1;
3033 
3034 		/* Disable WRITE SAME if REPORT SUPPORTED OPERATION
3035 		 * CODES is unsupported and the device has an ATA
3036 		 * Information VPD page (SAT).
3037 		 */
3038 		if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len))
3039 			sdev->no_write_same = 1;
3040 	}
3041 
3042 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1)
3043 		sdkp->ws16 = 1;
3044 
3045 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1)
3046 		sdkp->ws10 = 1;
3047 }
3048 
3049 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3050 {
3051 	struct scsi_device *sdev = sdkp->device;
3052 
3053 	if (!sdev->security_supported)
3054 		return;
3055 
3056 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3057 			SECURITY_PROTOCOL_IN) == 1 &&
3058 	    scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3059 			SECURITY_PROTOCOL_OUT) == 1)
3060 		sdkp->security = 1;
3061 }
3062 
3063 /**
3064  *	sd_revalidate_disk - called the first time a new disk is seen,
3065  *	performs disk spin up, read_capacity, etc.
3066  *	@disk: struct gendisk we care about
3067  **/
3068 static int sd_revalidate_disk(struct gendisk *disk)
3069 {
3070 	struct scsi_disk *sdkp = scsi_disk(disk);
3071 	struct scsi_device *sdp = sdkp->device;
3072 	struct request_queue *q = sdkp->disk->queue;
3073 	sector_t old_capacity = sdkp->capacity;
3074 	unsigned char *buffer;
3075 	unsigned int dev_max, rw_max;
3076 
3077 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3078 				      "sd_revalidate_disk\n"));
3079 
3080 	/*
3081 	 * If the device is offline, don't try and read capacity or any
3082 	 * of the other niceties.
3083 	 */
3084 	if (!scsi_device_online(sdp))
3085 		goto out;
3086 
3087 	buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3088 	if (!buffer) {
3089 		sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3090 			  "allocation failure.\n");
3091 		goto out;
3092 	}
3093 
3094 	sd_spinup_disk(sdkp);
3095 
3096 	/*
3097 	 * Without media there is no reason to ask; moreover, some devices
3098 	 * react badly if we do.
3099 	 */
3100 	if (sdkp->media_present) {
3101 		sd_read_capacity(sdkp, buffer);
3102 
3103 		if (scsi_device_supports_vpd(sdp)) {
3104 			sd_read_block_provisioning(sdkp);
3105 			sd_read_block_limits(sdkp);
3106 			sd_read_block_characteristics(sdkp);
3107 			sd_zbc_read_zones(sdkp, buffer);
3108 		}
3109 
3110 		sd_print_capacity(sdkp, old_capacity);
3111 
3112 		sd_read_write_protect_flag(sdkp, buffer);
3113 		sd_read_cache_type(sdkp, buffer);
3114 		sd_read_app_tag_own(sdkp, buffer);
3115 		sd_read_write_same(sdkp, buffer);
3116 		sd_read_security(sdkp, buffer);
3117 	}
3118 
3119 	/*
3120 	 * We now have all cache related info, determine how we deal
3121 	 * with flush requests.
3122 	 */
3123 	sd_set_flush_flag(sdkp);
3124 
3125 	/* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3126 	dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3127 
3128 	/* Some devices report a maximum block count for READ/WRITE requests. */
3129 	dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3130 	q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3131 
3132 	/*
3133 	 * Determine the device's preferred I/O size for reads and writes
3134 	 * unless the reported value is unreasonably small, large, or
3135 	 * garbage.
3136 	 */
3137 	if (sdkp->opt_xfer_blocks &&
3138 	    sdkp->opt_xfer_blocks <= dev_max &&
3139 	    sdkp->opt_xfer_blocks <= SD_DEF_XFER_BLOCKS &&
3140 	    logical_to_bytes(sdp, sdkp->opt_xfer_blocks) >= PAGE_SIZE) {
3141 		q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3142 		rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
3143 	} else
3144 		rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
3145 				      (sector_t)BLK_DEF_MAX_SECTORS);
3146 
3147 	/* Do not exceed controller limit */
3148 	rw_max = min(rw_max, queue_max_hw_sectors(q));
3149 
3150 	/*
3151 	 * Only update max_sectors if previously unset or if the current value
3152 	 * exceeds the capabilities of the hardware.
3153 	 */
3154 	if (sdkp->first_scan ||
3155 	    q->limits.max_sectors > q->limits.max_dev_sectors ||
3156 	    q->limits.max_sectors > q->limits.max_hw_sectors)
3157 		q->limits.max_sectors = rw_max;
3158 
3159 	sdkp->first_scan = 0;
3160 
3161 	set_capacity(disk, logical_to_sectors(sdp, sdkp->capacity));
3162 	sd_config_write_same(sdkp);
3163 	kfree(buffer);
3164 
3165  out:
3166 	return 0;
3167 }
3168 
3169 /**
3170  *	sd_unlock_native_capacity - unlock native capacity
3171  *	@disk: struct gendisk to set capacity for
3172  *
3173  *	Block layer calls this function if it detects that partitions
3174  *	on @disk reach beyond the end of the device.  If the SCSI host
3175  *	implements ->unlock_native_capacity() method, it's invoked to
3176  *	give it a chance to adjust the device capacity.
3177  *
3178  *	CONTEXT:
3179  *	Defined by block layer.  Might sleep.
3180  */
3181 static void sd_unlock_native_capacity(struct gendisk *disk)
3182 {
3183 	struct scsi_device *sdev = scsi_disk(disk)->device;
3184 
3185 	if (sdev->host->hostt->unlock_native_capacity)
3186 		sdev->host->hostt->unlock_native_capacity(sdev);
3187 }
3188 
3189 /**
3190  *	sd_format_disk_name - format disk name
3191  *	@prefix: name prefix - ie. "sd" for SCSI disks
3192  *	@index: index of the disk to format name for
3193  *	@buf: output buffer
3194  *	@buflen: length of the output buffer
3195  *
3196  *	SCSI disk names starts at sda.  The 26th device is sdz and the
3197  *	27th is sdaa.  The last one for two lettered suffix is sdzz
3198  *	which is followed by sdaaa.
3199  *
3200  *	This is basically 26 base counting with one extra 'nil' entry
3201  *	at the beginning from the second digit on and can be
3202  *	determined using similar method as 26 base conversion with the
3203  *	index shifted -1 after each digit is computed.
3204  *
3205  *	CONTEXT:
3206  *	Don't care.
3207  *
3208  *	RETURNS:
3209  *	0 on success, -errno on failure.
3210  */
3211 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3212 {
3213 	const int base = 'z' - 'a' + 1;
3214 	char *begin = buf + strlen(prefix);
3215 	char *end = buf + buflen;
3216 	char *p;
3217 	int unit;
3218 
3219 	p = end - 1;
3220 	*p = '\0';
3221 	unit = base;
3222 	do {
3223 		if (p == begin)
3224 			return -EINVAL;
3225 		*--p = 'a' + (index % unit);
3226 		index = (index / unit) - 1;
3227 	} while (index >= 0);
3228 
3229 	memmove(begin, p, end - p);
3230 	memcpy(buf, prefix, strlen(prefix));
3231 
3232 	return 0;
3233 }
3234 
3235 /*
3236  * The asynchronous part of sd_probe
3237  */
3238 static void sd_probe_async(void *data, async_cookie_t cookie)
3239 {
3240 	struct scsi_disk *sdkp = data;
3241 	struct scsi_device *sdp;
3242 	struct gendisk *gd;
3243 	u32 index;
3244 	struct device *dev;
3245 
3246 	sdp = sdkp->device;
3247 	gd = sdkp->disk;
3248 	index = sdkp->index;
3249 	dev = &sdp->sdev_gendev;
3250 
3251 	gd->major = sd_major((index & 0xf0) >> 4);
3252 	gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3253 
3254 	gd->fops = &sd_fops;
3255 	gd->private_data = &sdkp->driver;
3256 	gd->queue = sdkp->device->request_queue;
3257 
3258 	/* defaults, until the device tells us otherwise */
3259 	sdp->sector_size = 512;
3260 	sdkp->capacity = 0;
3261 	sdkp->media_present = 1;
3262 	sdkp->write_prot = 0;
3263 	sdkp->cache_override = 0;
3264 	sdkp->WCE = 0;
3265 	sdkp->RCD = 0;
3266 	sdkp->ATO = 0;
3267 	sdkp->first_scan = 1;
3268 	sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3269 
3270 	sd_revalidate_disk(gd);
3271 
3272 	gd->flags = GENHD_FL_EXT_DEVT;
3273 	if (sdp->removable) {
3274 		gd->flags |= GENHD_FL_REMOVABLE;
3275 		gd->events |= DISK_EVENT_MEDIA_CHANGE;
3276 	}
3277 
3278 	blk_pm_runtime_init(sdp->request_queue, dev);
3279 	device_add_disk(dev, gd, NULL);
3280 	if (sdkp->capacity)
3281 		sd_dif_config_host(sdkp);
3282 
3283 	sd_revalidate_disk(gd);
3284 
3285 	if (sdkp->security) {
3286 		sdkp->opal_dev = init_opal_dev(sdp, &sd_sec_submit);
3287 		if (sdkp->opal_dev)
3288 			sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
3289 	}
3290 
3291 	sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3292 		  sdp->removable ? "removable " : "");
3293 	scsi_autopm_put_device(sdp);
3294 	put_device(&sdkp->dev);
3295 }
3296 
3297 /**
3298  *	sd_probe - called during driver initialization and whenever a
3299  *	new scsi device is attached to the system. It is called once
3300  *	for each scsi device (not just disks) present.
3301  *	@dev: pointer to device object
3302  *
3303  *	Returns 0 if successful (or not interested in this scsi device
3304  *	(e.g. scanner)); 1 when there is an error.
3305  *
3306  *	Note: this function is invoked from the scsi mid-level.
3307  *	This function sets up the mapping between a given
3308  *	<host,channel,id,lun> (found in sdp) and new device name
3309  *	(e.g. /dev/sda). More precisely it is the block device major
3310  *	and minor number that is chosen here.
3311  *
3312  *	Assume sd_probe is not re-entrant (for time being)
3313  *	Also think about sd_probe() and sd_remove() running coincidentally.
3314  **/
3315 static int sd_probe(struct device *dev)
3316 {
3317 	struct scsi_device *sdp = to_scsi_device(dev);
3318 	struct scsi_disk *sdkp;
3319 	struct gendisk *gd;
3320 	int index;
3321 	int error;
3322 
3323 	scsi_autopm_get_device(sdp);
3324 	error = -ENODEV;
3325 	if (sdp->type != TYPE_DISK &&
3326 	    sdp->type != TYPE_ZBC &&
3327 	    sdp->type != TYPE_MOD &&
3328 	    sdp->type != TYPE_RBC)
3329 		goto out;
3330 
3331 #ifndef CONFIG_BLK_DEV_ZONED
3332 	if (sdp->type == TYPE_ZBC)
3333 		goto out;
3334 #endif
3335 	SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3336 					"sd_probe\n"));
3337 
3338 	error = -ENOMEM;
3339 	sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3340 	if (!sdkp)
3341 		goto out;
3342 
3343 	gd = alloc_disk(SD_MINORS);
3344 	if (!gd)
3345 		goto out_free;
3346 
3347 	index = ida_alloc(&sd_index_ida, GFP_KERNEL);
3348 	if (index < 0) {
3349 		sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3350 		goto out_put;
3351 	}
3352 
3353 	error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3354 	if (error) {
3355 		sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3356 		goto out_free_index;
3357 	}
3358 
3359 	sdkp->device = sdp;
3360 	sdkp->driver = &sd_template;
3361 	sdkp->disk = gd;
3362 	sdkp->index = index;
3363 	atomic_set(&sdkp->openers, 0);
3364 	atomic_set(&sdkp->device->ioerr_cnt, 0);
3365 
3366 	if (!sdp->request_queue->rq_timeout) {
3367 		if (sdp->type != TYPE_MOD)
3368 			blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3369 		else
3370 			blk_queue_rq_timeout(sdp->request_queue,
3371 					     SD_MOD_TIMEOUT);
3372 	}
3373 
3374 	device_initialize(&sdkp->dev);
3375 	sdkp->dev.parent = dev;
3376 	sdkp->dev.class = &sd_disk_class;
3377 	dev_set_name(&sdkp->dev, "%s", dev_name(dev));
3378 
3379 	error = device_add(&sdkp->dev);
3380 	if (error)
3381 		goto out_free_index;
3382 
3383 	get_device(dev);
3384 	dev_set_drvdata(dev, sdkp);
3385 
3386 	get_device(&sdkp->dev);	/* prevent release before async_schedule */
3387 	async_schedule_domain(sd_probe_async, sdkp, &scsi_sd_probe_domain);
3388 
3389 	return 0;
3390 
3391  out_free_index:
3392 	ida_free(&sd_index_ida, index);
3393  out_put:
3394 	put_disk(gd);
3395  out_free:
3396 	kfree(sdkp);
3397  out:
3398 	scsi_autopm_put_device(sdp);
3399 	return error;
3400 }
3401 
3402 /**
3403  *	sd_remove - called whenever a scsi disk (previously recognized by
3404  *	sd_probe) is detached from the system. It is called (potentially
3405  *	multiple times) during sd module unload.
3406  *	@dev: pointer to device object
3407  *
3408  *	Note: this function is invoked from the scsi mid-level.
3409  *	This function potentially frees up a device name (e.g. /dev/sdc)
3410  *	that could be re-used by a subsequent sd_probe().
3411  *	This function is not called when the built-in sd driver is "exit-ed".
3412  **/
3413 static int sd_remove(struct device *dev)
3414 {
3415 	struct scsi_disk *sdkp;
3416 	dev_t devt;
3417 
3418 	sdkp = dev_get_drvdata(dev);
3419 	devt = disk_devt(sdkp->disk);
3420 	scsi_autopm_get_device(sdkp->device);
3421 
3422 	async_synchronize_full_domain(&scsi_sd_pm_domain);
3423 	async_synchronize_full_domain(&scsi_sd_probe_domain);
3424 	device_del(&sdkp->dev);
3425 	del_gendisk(sdkp->disk);
3426 	sd_shutdown(dev);
3427 
3428 	sd_zbc_remove(sdkp);
3429 
3430 	free_opal_dev(sdkp->opal_dev);
3431 
3432 	blk_register_region(devt, SD_MINORS, NULL,
3433 			    sd_default_probe, NULL, NULL);
3434 
3435 	mutex_lock(&sd_ref_mutex);
3436 	dev_set_drvdata(dev, NULL);
3437 	put_device(&sdkp->dev);
3438 	mutex_unlock(&sd_ref_mutex);
3439 
3440 	return 0;
3441 }
3442 
3443 /**
3444  *	scsi_disk_release - Called to free the scsi_disk structure
3445  *	@dev: pointer to embedded class device
3446  *
3447  *	sd_ref_mutex must be held entering this routine.  Because it is
3448  *	called on last put, you should always use the scsi_disk_get()
3449  *	scsi_disk_put() helpers which manipulate the semaphore directly
3450  *	and never do a direct put_device.
3451  **/
3452 static void scsi_disk_release(struct device *dev)
3453 {
3454 	struct scsi_disk *sdkp = to_scsi_disk(dev);
3455 	struct gendisk *disk = sdkp->disk;
3456 
3457 	ida_free(&sd_index_ida, sdkp->index);
3458 
3459 	disk->private_data = NULL;
3460 	put_disk(disk);
3461 	put_device(&sdkp->device->sdev_gendev);
3462 
3463 	kfree(sdkp);
3464 }
3465 
3466 static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3467 {
3468 	unsigned char cmd[6] = { START_STOP };	/* START_VALID */
3469 	struct scsi_sense_hdr sshdr;
3470 	struct scsi_device *sdp = sdkp->device;
3471 	int res;
3472 
3473 	if (start)
3474 		cmd[4] |= 1;	/* START */
3475 
3476 	if (sdp->start_stop_pwr_cond)
3477 		cmd[4] |= start ? 1 << 4 : 3 << 4;	/* Active or Standby */
3478 
3479 	if (!scsi_device_online(sdp))
3480 		return -ENODEV;
3481 
3482 	res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr,
3483 			SD_TIMEOUT, SD_MAX_RETRIES, 0, RQF_PM, NULL);
3484 	if (res) {
3485 		sd_print_result(sdkp, "Start/Stop Unit failed", res);
3486 		if (driver_byte(res) == DRIVER_SENSE)
3487 			sd_print_sense_hdr(sdkp, &sshdr);
3488 		if (scsi_sense_valid(&sshdr) &&
3489 			/* 0x3a is medium not present */
3490 			sshdr.asc == 0x3a)
3491 			res = 0;
3492 	}
3493 
3494 	/* SCSI error codes must not go to the generic layer */
3495 	if (res)
3496 		return -EIO;
3497 
3498 	return 0;
3499 }
3500 
3501 /*
3502  * Send a SYNCHRONIZE CACHE instruction down to the device through
3503  * the normal SCSI command structure.  Wait for the command to
3504  * complete.
3505  */
3506 static void sd_shutdown(struct device *dev)
3507 {
3508 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3509 
3510 	if (!sdkp)
3511 		return;         /* this can happen */
3512 
3513 	if (pm_runtime_suspended(dev))
3514 		return;
3515 
3516 	if (sdkp->WCE && sdkp->media_present) {
3517 		sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3518 		sd_sync_cache(sdkp, NULL);
3519 	}
3520 
3521 	if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) {
3522 		sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3523 		sd_start_stop_device(sdkp, 0);
3524 	}
3525 }
3526 
3527 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors)
3528 {
3529 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3530 	struct scsi_sense_hdr sshdr;
3531 	int ret = 0;
3532 
3533 	if (!sdkp)	/* E.g.: runtime suspend following sd_remove() */
3534 		return 0;
3535 
3536 	if (sdkp->WCE && sdkp->media_present) {
3537 		sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3538 		ret = sd_sync_cache(sdkp, &sshdr);
3539 
3540 		if (ret) {
3541 			/* ignore OFFLINE device */
3542 			if (ret == -ENODEV)
3543 				return 0;
3544 
3545 			if (!scsi_sense_valid(&sshdr) ||
3546 			    sshdr.sense_key != ILLEGAL_REQUEST)
3547 				return ret;
3548 
3549 			/*
3550 			 * sshdr.sense_key == ILLEGAL_REQUEST means this drive
3551 			 * doesn't support sync. There's not much to do and
3552 			 * suspend shouldn't fail.
3553 			 */
3554 			ret = 0;
3555 		}
3556 	}
3557 
3558 	if (sdkp->device->manage_start_stop) {
3559 		sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3560 		/* an error is not worth aborting a system sleep */
3561 		ret = sd_start_stop_device(sdkp, 0);
3562 		if (ignore_stop_errors)
3563 			ret = 0;
3564 	}
3565 
3566 	return ret;
3567 }
3568 
3569 static int sd_suspend_system(struct device *dev)
3570 {
3571 	return sd_suspend_common(dev, true);
3572 }
3573 
3574 static int sd_suspend_runtime(struct device *dev)
3575 {
3576 	return sd_suspend_common(dev, false);
3577 }
3578 
3579 static int sd_resume(struct device *dev)
3580 {
3581 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3582 	int ret;
3583 
3584 	if (!sdkp)	/* E.g.: runtime resume at the start of sd_probe() */
3585 		return 0;
3586 
3587 	if (!sdkp->device->manage_start_stop)
3588 		return 0;
3589 
3590 	sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3591 	ret = sd_start_stop_device(sdkp, 1);
3592 	if (!ret)
3593 		opal_unlock_from_suspend(sdkp->opal_dev);
3594 	return ret;
3595 }
3596 
3597 /**
3598  *	init_sd - entry point for this driver (both when built in or when
3599  *	a module).
3600  *
3601  *	Note: this function registers this driver with the scsi mid-level.
3602  **/
3603 static int __init init_sd(void)
3604 {
3605 	int majors = 0, i, err;
3606 
3607 	SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
3608 
3609 	for (i = 0; i < SD_MAJORS; i++) {
3610 		if (register_blkdev(sd_major(i), "sd") != 0)
3611 			continue;
3612 		majors++;
3613 		blk_register_region(sd_major(i), SD_MINORS, NULL,
3614 				    sd_default_probe, NULL, NULL);
3615 	}
3616 
3617 	if (!majors)
3618 		return -ENODEV;
3619 
3620 	err = class_register(&sd_disk_class);
3621 	if (err)
3622 		goto err_out;
3623 
3624 	sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE,
3625 					 0, 0, NULL);
3626 	if (!sd_cdb_cache) {
3627 		printk(KERN_ERR "sd: can't init extended cdb cache\n");
3628 		err = -ENOMEM;
3629 		goto err_out_class;
3630 	}
3631 
3632 	sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache);
3633 	if (!sd_cdb_pool) {
3634 		printk(KERN_ERR "sd: can't init extended cdb pool\n");
3635 		err = -ENOMEM;
3636 		goto err_out_cache;
3637 	}
3638 
3639 	err = scsi_register_driver(&sd_template.gendrv);
3640 	if (err)
3641 		goto err_out_driver;
3642 
3643 	return 0;
3644 
3645 err_out_driver:
3646 	mempool_destroy(sd_cdb_pool);
3647 
3648 err_out_cache:
3649 	kmem_cache_destroy(sd_cdb_cache);
3650 
3651 err_out_class:
3652 	class_unregister(&sd_disk_class);
3653 err_out:
3654 	for (i = 0; i < SD_MAJORS; i++)
3655 		unregister_blkdev(sd_major(i), "sd");
3656 	return err;
3657 }
3658 
3659 /**
3660  *	exit_sd - exit point for this driver (when it is a module).
3661  *
3662  *	Note: this function unregisters this driver from the scsi mid-level.
3663  **/
3664 static void __exit exit_sd(void)
3665 {
3666 	int i;
3667 
3668 	SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
3669 
3670 	scsi_unregister_driver(&sd_template.gendrv);
3671 	mempool_destroy(sd_cdb_pool);
3672 	kmem_cache_destroy(sd_cdb_cache);
3673 
3674 	class_unregister(&sd_disk_class);
3675 
3676 	for (i = 0; i < SD_MAJORS; i++) {
3677 		blk_unregister_region(sd_major(i), SD_MINORS);
3678 		unregister_blkdev(sd_major(i), "sd");
3679 	}
3680 }
3681 
3682 module_init(init_sd);
3683 module_exit(exit_sd);
3684 
3685 static void sd_print_sense_hdr(struct scsi_disk *sdkp,
3686 			       struct scsi_sense_hdr *sshdr)
3687 {
3688 	scsi_print_sense_hdr(sdkp->device,
3689 			     sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
3690 }
3691 
3692 static void sd_print_result(const struct scsi_disk *sdkp, const char *msg,
3693 			    int result)
3694 {
3695 	const char *hb_string = scsi_hostbyte_string(result);
3696 	const char *db_string = scsi_driverbyte_string(result);
3697 
3698 	if (hb_string || db_string)
3699 		sd_printk(KERN_INFO, sdkp,
3700 			  "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
3701 			  hb_string ? hb_string : "invalid",
3702 			  db_string ? db_string : "invalid");
3703 	else
3704 		sd_printk(KERN_INFO, sdkp,
3705 			  "%s: Result: hostbyte=0x%02x driverbyte=0x%02x\n",
3706 			  msg, host_byte(result), driver_byte(result));
3707 }
3708 
3709