xref: /linux/drivers/scsi/sd.c (revision ab475966455ce285c2c9978a3e3bfe97d75ff8d4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *      sd.c Copyright (C) 1992 Drew Eckhardt
4  *           Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
5  *
6  *      Linux scsi disk driver
7  *              Initial versions: Drew Eckhardt
8  *              Subsequent revisions: Eric Youngdale
9  *	Modification history:
10  *       - Drew Eckhardt <drew@colorado.edu> original
11  *       - Eric Youngdale <eric@andante.org> add scatter-gather, multiple
12  *         outstanding request, and other enhancements.
13  *         Support loadable low-level scsi drivers.
14  *       - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using
15  *         eight major numbers.
16  *       - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
17  *	 - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in
18  *	   sd_init and cleanups.
19  *	 - Alex Davis <letmein@erols.com> Fix problem where partition info
20  *	   not being read in sd_open. Fix problem where removable media
21  *	   could be ejected after sd_open.
22  *	 - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
23  *	 - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox
24  *	   <willy@debian.org>, Kurt Garloff <garloff@suse.de>:
25  *	   Support 32k/1M disks.
26  *
27  *	Logging policy (needs CONFIG_SCSI_LOGGING defined):
28  *	 - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
29  *	 - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
30  *	 - entering sd_ioctl: SCSI_LOG_IOCTL level 1
31  *	 - entering other commands: SCSI_LOG_HLQUEUE level 3
32  *	Note: when the logging level is set by the user, it must be greater
33  *	than the level indicated above to trigger output.
34  */
35 
36 #include <linux/module.h>
37 #include <linux/fs.h>
38 #include <linux/kernel.h>
39 #include <linux/mm.h>
40 #include <linux/bio.h>
41 #include <linux/hdreg.h>
42 #include <linux/errno.h>
43 #include <linux/idr.h>
44 #include <linux/interrupt.h>
45 #include <linux/init.h>
46 #include <linux/blkdev.h>
47 #include <linux/blkpg.h>
48 #include <linux/blk-pm.h>
49 #include <linux/delay.h>
50 #include <linux/major.h>
51 #include <linux/mutex.h>
52 #include <linux/string_helpers.h>
53 #include <linux/slab.h>
54 #include <linux/sed-opal.h>
55 #include <linux/pm_runtime.h>
56 #include <linux/pr.h>
57 #include <linux/t10-pi.h>
58 #include <linux/uaccess.h>
59 #include <asm/unaligned.h>
60 
61 #include <scsi/scsi.h>
62 #include <scsi/scsi_cmnd.h>
63 #include <scsi/scsi_dbg.h>
64 #include <scsi/scsi_device.h>
65 #include <scsi/scsi_driver.h>
66 #include <scsi/scsi_eh.h>
67 #include <scsi/scsi_host.h>
68 #include <scsi/scsi_ioctl.h>
69 #include <scsi/scsicam.h>
70 #include <scsi/scsi_common.h>
71 
72 #include "sd.h"
73 #include "scsi_priv.h"
74 #include "scsi_logging.h"
75 
76 MODULE_AUTHOR("Eric Youngdale");
77 MODULE_DESCRIPTION("SCSI disk (sd) driver");
78 MODULE_LICENSE("GPL");
79 
80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
95 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
96 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
97 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
98 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
99 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
100 
101 #define SD_MINORS	16
102 
103 static void sd_config_discard(struct scsi_disk *, unsigned int);
104 static void sd_config_write_same(struct scsi_disk *);
105 static int  sd_revalidate_disk(struct gendisk *);
106 static void sd_unlock_native_capacity(struct gendisk *disk);
107 static void sd_shutdown(struct device *);
108 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
109 static void scsi_disk_release(struct device *cdev);
110 
111 static DEFINE_IDA(sd_index_ida);
112 
113 static mempool_t *sd_page_pool;
114 static struct lock_class_key sd_bio_compl_lkclass;
115 
116 static const char *sd_cache_types[] = {
117 	"write through", "none", "write back",
118 	"write back, no read (daft)"
119 };
120 
121 static void sd_set_flush_flag(struct scsi_disk *sdkp)
122 {
123 	bool wc = false, fua = false;
124 
125 	if (sdkp->WCE) {
126 		wc = true;
127 		if (sdkp->DPOFUA)
128 			fua = true;
129 	}
130 
131 	blk_queue_write_cache(sdkp->disk->queue, wc, fua);
132 }
133 
134 static ssize_t
135 cache_type_store(struct device *dev, struct device_attribute *attr,
136 		 const char *buf, size_t count)
137 {
138 	int ct, rcd, wce, sp;
139 	struct scsi_disk *sdkp = to_scsi_disk(dev);
140 	struct scsi_device *sdp = sdkp->device;
141 	char buffer[64];
142 	char *buffer_data;
143 	struct scsi_mode_data data;
144 	struct scsi_sense_hdr sshdr;
145 	static const char temp[] = "temporary ";
146 	int len, ret;
147 
148 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
149 		/* no cache control on RBC devices; theoretically they
150 		 * can do it, but there's probably so many exceptions
151 		 * it's not worth the risk */
152 		return -EINVAL;
153 
154 	if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
155 		buf += sizeof(temp) - 1;
156 		sdkp->cache_override = 1;
157 	} else {
158 		sdkp->cache_override = 0;
159 	}
160 
161 	ct = sysfs_match_string(sd_cache_types, buf);
162 	if (ct < 0)
163 		return -EINVAL;
164 
165 	rcd = ct & 0x01 ? 1 : 0;
166 	wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
167 
168 	if (sdkp->cache_override) {
169 		sdkp->WCE = wce;
170 		sdkp->RCD = rcd;
171 		sd_set_flush_flag(sdkp);
172 		return count;
173 	}
174 
175 	if (scsi_mode_sense(sdp, 0x08, 8, 0, buffer, sizeof(buffer), SD_TIMEOUT,
176 			    sdkp->max_retries, &data, NULL))
177 		return -EINVAL;
178 	len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
179 		  data.block_descriptor_length);
180 	buffer_data = buffer + data.header_length +
181 		data.block_descriptor_length;
182 	buffer_data[2] &= ~0x05;
183 	buffer_data[2] |= wce << 2 | rcd;
184 	sp = buffer_data[0] & 0x80 ? 1 : 0;
185 	buffer_data[0] &= ~0x80;
186 
187 	/*
188 	 * Ensure WP, DPOFUA, and RESERVED fields are cleared in
189 	 * received mode parameter buffer before doing MODE SELECT.
190 	 */
191 	data.device_specific = 0;
192 
193 	ret = scsi_mode_select(sdp, 1, sp, buffer_data, len, SD_TIMEOUT,
194 			       sdkp->max_retries, &data, &sshdr);
195 	if (ret) {
196 		if (ret > 0 && scsi_sense_valid(&sshdr))
197 			sd_print_sense_hdr(sdkp, &sshdr);
198 		return -EINVAL;
199 	}
200 	sd_revalidate_disk(sdkp->disk);
201 	return count;
202 }
203 
204 static ssize_t
205 manage_start_stop_show(struct device *dev,
206 		       struct device_attribute *attr, char *buf)
207 {
208 	struct scsi_disk *sdkp = to_scsi_disk(dev);
209 	struct scsi_device *sdp = sdkp->device;
210 
211 	return sysfs_emit(buf, "%u\n",
212 			  sdp->manage_system_start_stop &&
213 			  sdp->manage_runtime_start_stop &&
214 			  sdp->manage_shutdown);
215 }
216 static DEVICE_ATTR_RO(manage_start_stop);
217 
218 static ssize_t
219 manage_system_start_stop_show(struct device *dev,
220 			      struct device_attribute *attr, char *buf)
221 {
222 	struct scsi_disk *sdkp = to_scsi_disk(dev);
223 	struct scsi_device *sdp = sdkp->device;
224 
225 	return sysfs_emit(buf, "%u\n", sdp->manage_system_start_stop);
226 }
227 
228 static ssize_t
229 manage_system_start_stop_store(struct device *dev,
230 			       struct device_attribute *attr,
231 			       const char *buf, size_t count)
232 {
233 	struct scsi_disk *sdkp = to_scsi_disk(dev);
234 	struct scsi_device *sdp = sdkp->device;
235 	bool v;
236 
237 	if (!capable(CAP_SYS_ADMIN))
238 		return -EACCES;
239 
240 	if (kstrtobool(buf, &v))
241 		return -EINVAL;
242 
243 	sdp->manage_system_start_stop = v;
244 
245 	return count;
246 }
247 static DEVICE_ATTR_RW(manage_system_start_stop);
248 
249 static ssize_t
250 manage_runtime_start_stop_show(struct device *dev,
251 			       struct device_attribute *attr, char *buf)
252 {
253 	struct scsi_disk *sdkp = to_scsi_disk(dev);
254 	struct scsi_device *sdp = sdkp->device;
255 
256 	return sysfs_emit(buf, "%u\n", sdp->manage_runtime_start_stop);
257 }
258 
259 static ssize_t
260 manage_runtime_start_stop_store(struct device *dev,
261 				struct device_attribute *attr,
262 				const char *buf, size_t count)
263 {
264 	struct scsi_disk *sdkp = to_scsi_disk(dev);
265 	struct scsi_device *sdp = sdkp->device;
266 	bool v;
267 
268 	if (!capable(CAP_SYS_ADMIN))
269 		return -EACCES;
270 
271 	if (kstrtobool(buf, &v))
272 		return -EINVAL;
273 
274 	sdp->manage_runtime_start_stop = v;
275 
276 	return count;
277 }
278 static DEVICE_ATTR_RW(manage_runtime_start_stop);
279 
280 static ssize_t manage_shutdown_show(struct device *dev,
281 				    struct device_attribute *attr, char *buf)
282 {
283 	struct scsi_disk *sdkp = to_scsi_disk(dev);
284 	struct scsi_device *sdp = sdkp->device;
285 
286 	return sysfs_emit(buf, "%u\n", sdp->manage_shutdown);
287 }
288 
289 static ssize_t manage_shutdown_store(struct device *dev,
290 				     struct device_attribute *attr,
291 				     const char *buf, size_t count)
292 {
293 	struct scsi_disk *sdkp = to_scsi_disk(dev);
294 	struct scsi_device *sdp = sdkp->device;
295 	bool v;
296 
297 	if (!capable(CAP_SYS_ADMIN))
298 		return -EACCES;
299 
300 	if (kstrtobool(buf, &v))
301 		return -EINVAL;
302 
303 	sdp->manage_shutdown = v;
304 
305 	return count;
306 }
307 static DEVICE_ATTR_RW(manage_shutdown);
308 
309 static ssize_t
310 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
311 {
312 	struct scsi_disk *sdkp = to_scsi_disk(dev);
313 
314 	return sprintf(buf, "%u\n", sdkp->device->allow_restart);
315 }
316 
317 static ssize_t
318 allow_restart_store(struct device *dev, struct device_attribute *attr,
319 		    const char *buf, size_t count)
320 {
321 	bool v;
322 	struct scsi_disk *sdkp = to_scsi_disk(dev);
323 	struct scsi_device *sdp = sdkp->device;
324 
325 	if (!capable(CAP_SYS_ADMIN))
326 		return -EACCES;
327 
328 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
329 		return -EINVAL;
330 
331 	if (kstrtobool(buf, &v))
332 		return -EINVAL;
333 
334 	sdp->allow_restart = v;
335 
336 	return count;
337 }
338 static DEVICE_ATTR_RW(allow_restart);
339 
340 static ssize_t
341 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
342 {
343 	struct scsi_disk *sdkp = to_scsi_disk(dev);
344 	int ct = sdkp->RCD + 2*sdkp->WCE;
345 
346 	return sprintf(buf, "%s\n", sd_cache_types[ct]);
347 }
348 static DEVICE_ATTR_RW(cache_type);
349 
350 static ssize_t
351 FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
352 {
353 	struct scsi_disk *sdkp = to_scsi_disk(dev);
354 
355 	return sprintf(buf, "%u\n", sdkp->DPOFUA);
356 }
357 static DEVICE_ATTR_RO(FUA);
358 
359 static ssize_t
360 protection_type_show(struct device *dev, struct device_attribute *attr,
361 		     char *buf)
362 {
363 	struct scsi_disk *sdkp = to_scsi_disk(dev);
364 
365 	return sprintf(buf, "%u\n", sdkp->protection_type);
366 }
367 
368 static ssize_t
369 protection_type_store(struct device *dev, struct device_attribute *attr,
370 		      const char *buf, size_t count)
371 {
372 	struct scsi_disk *sdkp = to_scsi_disk(dev);
373 	unsigned int val;
374 	int err;
375 
376 	if (!capable(CAP_SYS_ADMIN))
377 		return -EACCES;
378 
379 	err = kstrtouint(buf, 10, &val);
380 
381 	if (err)
382 		return err;
383 
384 	if (val <= T10_PI_TYPE3_PROTECTION)
385 		sdkp->protection_type = val;
386 
387 	return count;
388 }
389 static DEVICE_ATTR_RW(protection_type);
390 
391 static ssize_t
392 protection_mode_show(struct device *dev, struct device_attribute *attr,
393 		     char *buf)
394 {
395 	struct scsi_disk *sdkp = to_scsi_disk(dev);
396 	struct scsi_device *sdp = sdkp->device;
397 	unsigned int dif, dix;
398 
399 	dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
400 	dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
401 
402 	if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
403 		dif = 0;
404 		dix = 1;
405 	}
406 
407 	if (!dif && !dix)
408 		return sprintf(buf, "none\n");
409 
410 	return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
411 }
412 static DEVICE_ATTR_RO(protection_mode);
413 
414 static ssize_t
415 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
416 {
417 	struct scsi_disk *sdkp = to_scsi_disk(dev);
418 
419 	return sprintf(buf, "%u\n", sdkp->ATO);
420 }
421 static DEVICE_ATTR_RO(app_tag_own);
422 
423 static ssize_t
424 thin_provisioning_show(struct device *dev, struct device_attribute *attr,
425 		       char *buf)
426 {
427 	struct scsi_disk *sdkp = to_scsi_disk(dev);
428 
429 	return sprintf(buf, "%u\n", sdkp->lbpme);
430 }
431 static DEVICE_ATTR_RO(thin_provisioning);
432 
433 /* sysfs_match_string() requires dense arrays */
434 static const char *lbp_mode[] = {
435 	[SD_LBP_FULL]		= "full",
436 	[SD_LBP_UNMAP]		= "unmap",
437 	[SD_LBP_WS16]		= "writesame_16",
438 	[SD_LBP_WS10]		= "writesame_10",
439 	[SD_LBP_ZERO]		= "writesame_zero",
440 	[SD_LBP_DISABLE]	= "disabled",
441 };
442 
443 static ssize_t
444 provisioning_mode_show(struct device *dev, struct device_attribute *attr,
445 		       char *buf)
446 {
447 	struct scsi_disk *sdkp = to_scsi_disk(dev);
448 
449 	return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
450 }
451 
452 static ssize_t
453 provisioning_mode_store(struct device *dev, struct device_attribute *attr,
454 			const char *buf, size_t count)
455 {
456 	struct scsi_disk *sdkp = to_scsi_disk(dev);
457 	struct scsi_device *sdp = sdkp->device;
458 	int mode;
459 
460 	if (!capable(CAP_SYS_ADMIN))
461 		return -EACCES;
462 
463 	if (sd_is_zoned(sdkp)) {
464 		sd_config_discard(sdkp, SD_LBP_DISABLE);
465 		return count;
466 	}
467 
468 	if (sdp->type != TYPE_DISK)
469 		return -EINVAL;
470 
471 	mode = sysfs_match_string(lbp_mode, buf);
472 	if (mode < 0)
473 		return -EINVAL;
474 
475 	sd_config_discard(sdkp, mode);
476 
477 	return count;
478 }
479 static DEVICE_ATTR_RW(provisioning_mode);
480 
481 /* sysfs_match_string() requires dense arrays */
482 static const char *zeroing_mode[] = {
483 	[SD_ZERO_WRITE]		= "write",
484 	[SD_ZERO_WS]		= "writesame",
485 	[SD_ZERO_WS16_UNMAP]	= "writesame_16_unmap",
486 	[SD_ZERO_WS10_UNMAP]	= "writesame_10_unmap",
487 };
488 
489 static ssize_t
490 zeroing_mode_show(struct device *dev, struct device_attribute *attr,
491 		  char *buf)
492 {
493 	struct scsi_disk *sdkp = to_scsi_disk(dev);
494 
495 	return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
496 }
497 
498 static ssize_t
499 zeroing_mode_store(struct device *dev, struct device_attribute *attr,
500 		   const char *buf, size_t count)
501 {
502 	struct scsi_disk *sdkp = to_scsi_disk(dev);
503 	int mode;
504 
505 	if (!capable(CAP_SYS_ADMIN))
506 		return -EACCES;
507 
508 	mode = sysfs_match_string(zeroing_mode, buf);
509 	if (mode < 0)
510 		return -EINVAL;
511 
512 	sdkp->zeroing_mode = mode;
513 
514 	return count;
515 }
516 static DEVICE_ATTR_RW(zeroing_mode);
517 
518 static ssize_t
519 max_medium_access_timeouts_show(struct device *dev,
520 				struct device_attribute *attr, char *buf)
521 {
522 	struct scsi_disk *sdkp = to_scsi_disk(dev);
523 
524 	return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
525 }
526 
527 static ssize_t
528 max_medium_access_timeouts_store(struct device *dev,
529 				 struct device_attribute *attr, const char *buf,
530 				 size_t count)
531 {
532 	struct scsi_disk *sdkp = to_scsi_disk(dev);
533 	int err;
534 
535 	if (!capable(CAP_SYS_ADMIN))
536 		return -EACCES;
537 
538 	err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
539 
540 	return err ? err : count;
541 }
542 static DEVICE_ATTR_RW(max_medium_access_timeouts);
543 
544 static ssize_t
545 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
546 			   char *buf)
547 {
548 	struct scsi_disk *sdkp = to_scsi_disk(dev);
549 
550 	return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
551 }
552 
553 static ssize_t
554 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
555 			    const char *buf, size_t count)
556 {
557 	struct scsi_disk *sdkp = to_scsi_disk(dev);
558 	struct scsi_device *sdp = sdkp->device;
559 	unsigned long max;
560 	int err;
561 
562 	if (!capable(CAP_SYS_ADMIN))
563 		return -EACCES;
564 
565 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
566 		return -EINVAL;
567 
568 	err = kstrtoul(buf, 10, &max);
569 
570 	if (err)
571 		return err;
572 
573 	if (max == 0)
574 		sdp->no_write_same = 1;
575 	else if (max <= SD_MAX_WS16_BLOCKS) {
576 		sdp->no_write_same = 0;
577 		sdkp->max_ws_blocks = max;
578 	}
579 
580 	sd_config_write_same(sdkp);
581 
582 	return count;
583 }
584 static DEVICE_ATTR_RW(max_write_same_blocks);
585 
586 static ssize_t
587 zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf)
588 {
589 	struct scsi_disk *sdkp = to_scsi_disk(dev);
590 
591 	if (sdkp->device->type == TYPE_ZBC)
592 		return sprintf(buf, "host-managed\n");
593 	if (sdkp->zoned == 1)
594 		return sprintf(buf, "host-aware\n");
595 	if (sdkp->zoned == 2)
596 		return sprintf(buf, "drive-managed\n");
597 	return sprintf(buf, "none\n");
598 }
599 static DEVICE_ATTR_RO(zoned_cap);
600 
601 static ssize_t
602 max_retries_store(struct device *dev, struct device_attribute *attr,
603 		  const char *buf, size_t count)
604 {
605 	struct scsi_disk *sdkp = to_scsi_disk(dev);
606 	struct scsi_device *sdev = sdkp->device;
607 	int retries, err;
608 
609 	err = kstrtoint(buf, 10, &retries);
610 	if (err)
611 		return err;
612 
613 	if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) {
614 		sdkp->max_retries = retries;
615 		return count;
616 	}
617 
618 	sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n",
619 		    SD_MAX_RETRIES);
620 	return -EINVAL;
621 }
622 
623 static ssize_t
624 max_retries_show(struct device *dev, struct device_attribute *attr,
625 		 char *buf)
626 {
627 	struct scsi_disk *sdkp = to_scsi_disk(dev);
628 
629 	return sprintf(buf, "%d\n", sdkp->max_retries);
630 }
631 
632 static DEVICE_ATTR_RW(max_retries);
633 
634 static struct attribute *sd_disk_attrs[] = {
635 	&dev_attr_cache_type.attr,
636 	&dev_attr_FUA.attr,
637 	&dev_attr_allow_restart.attr,
638 	&dev_attr_manage_start_stop.attr,
639 	&dev_attr_manage_system_start_stop.attr,
640 	&dev_attr_manage_runtime_start_stop.attr,
641 	&dev_attr_manage_shutdown.attr,
642 	&dev_attr_protection_type.attr,
643 	&dev_attr_protection_mode.attr,
644 	&dev_attr_app_tag_own.attr,
645 	&dev_attr_thin_provisioning.attr,
646 	&dev_attr_provisioning_mode.attr,
647 	&dev_attr_zeroing_mode.attr,
648 	&dev_attr_max_write_same_blocks.attr,
649 	&dev_attr_max_medium_access_timeouts.attr,
650 	&dev_attr_zoned_cap.attr,
651 	&dev_attr_max_retries.attr,
652 	NULL,
653 };
654 ATTRIBUTE_GROUPS(sd_disk);
655 
656 static struct class sd_disk_class = {
657 	.name		= "scsi_disk",
658 	.dev_release	= scsi_disk_release,
659 	.dev_groups	= sd_disk_groups,
660 };
661 
662 /*
663  * Don't request a new module, as that could deadlock in multipath
664  * environment.
665  */
666 static void sd_default_probe(dev_t devt)
667 {
668 }
669 
670 /*
671  * Device no to disk mapping:
672  *
673  *       major         disc2     disc  p1
674  *   |............|.............|....|....| <- dev_t
675  *    31        20 19          8 7  4 3  0
676  *
677  * Inside a major, we have 16k disks, however mapped non-
678  * contiguously. The first 16 disks are for major0, the next
679  * ones with major1, ... Disk 256 is for major0 again, disk 272
680  * for major1, ...
681  * As we stay compatible with our numbering scheme, we can reuse
682  * the well-know SCSI majors 8, 65--71, 136--143.
683  */
684 static int sd_major(int major_idx)
685 {
686 	switch (major_idx) {
687 	case 0:
688 		return SCSI_DISK0_MAJOR;
689 	case 1 ... 7:
690 		return SCSI_DISK1_MAJOR + major_idx - 1;
691 	case 8 ... 15:
692 		return SCSI_DISK8_MAJOR + major_idx - 8;
693 	default:
694 		BUG();
695 		return 0;	/* shut up gcc */
696 	}
697 }
698 
699 #ifdef CONFIG_BLK_SED_OPAL
700 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
701 		size_t len, bool send)
702 {
703 	struct scsi_disk *sdkp = data;
704 	struct scsi_device *sdev = sdkp->device;
705 	u8 cdb[12] = { 0, };
706 	const struct scsi_exec_args exec_args = {
707 		.req_flags = BLK_MQ_REQ_PM,
708 	};
709 	int ret;
710 
711 	cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
712 	cdb[1] = secp;
713 	put_unaligned_be16(spsp, &cdb[2]);
714 	put_unaligned_be32(len, &cdb[6]);
715 
716 	ret = scsi_execute_cmd(sdev, cdb, send ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN,
717 			       buffer, len, SD_TIMEOUT, sdkp->max_retries,
718 			       &exec_args);
719 	return ret <= 0 ? ret : -EIO;
720 }
721 #endif /* CONFIG_BLK_SED_OPAL */
722 
723 /*
724  * Look up the DIX operation based on whether the command is read or
725  * write and whether dix and dif are enabled.
726  */
727 static unsigned int sd_prot_op(bool write, bool dix, bool dif)
728 {
729 	/* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */
730 	static const unsigned int ops[] = {	/* wrt dix dif */
731 		SCSI_PROT_NORMAL,		/*  0	0   0  */
732 		SCSI_PROT_READ_STRIP,		/*  0	0   1  */
733 		SCSI_PROT_READ_INSERT,		/*  0	1   0  */
734 		SCSI_PROT_READ_PASS,		/*  0	1   1  */
735 		SCSI_PROT_NORMAL,		/*  1	0   0  */
736 		SCSI_PROT_WRITE_INSERT,		/*  1	0   1  */
737 		SCSI_PROT_WRITE_STRIP,		/*  1	1   0  */
738 		SCSI_PROT_WRITE_PASS,		/*  1	1   1  */
739 	};
740 
741 	return ops[write << 2 | dix << 1 | dif];
742 }
743 
744 /*
745  * Returns a mask of the protection flags that are valid for a given DIX
746  * operation.
747  */
748 static unsigned int sd_prot_flag_mask(unsigned int prot_op)
749 {
750 	static const unsigned int flag_mask[] = {
751 		[SCSI_PROT_NORMAL]		= 0,
752 
753 		[SCSI_PROT_READ_STRIP]		= SCSI_PROT_TRANSFER_PI |
754 						  SCSI_PROT_GUARD_CHECK |
755 						  SCSI_PROT_REF_CHECK |
756 						  SCSI_PROT_REF_INCREMENT,
757 
758 		[SCSI_PROT_READ_INSERT]		= SCSI_PROT_REF_INCREMENT |
759 						  SCSI_PROT_IP_CHECKSUM,
760 
761 		[SCSI_PROT_READ_PASS]		= SCSI_PROT_TRANSFER_PI |
762 						  SCSI_PROT_GUARD_CHECK |
763 						  SCSI_PROT_REF_CHECK |
764 						  SCSI_PROT_REF_INCREMENT |
765 						  SCSI_PROT_IP_CHECKSUM,
766 
767 		[SCSI_PROT_WRITE_INSERT]	= SCSI_PROT_TRANSFER_PI |
768 						  SCSI_PROT_REF_INCREMENT,
769 
770 		[SCSI_PROT_WRITE_STRIP]		= SCSI_PROT_GUARD_CHECK |
771 						  SCSI_PROT_REF_CHECK |
772 						  SCSI_PROT_REF_INCREMENT |
773 						  SCSI_PROT_IP_CHECKSUM,
774 
775 		[SCSI_PROT_WRITE_PASS]		= SCSI_PROT_TRANSFER_PI |
776 						  SCSI_PROT_GUARD_CHECK |
777 						  SCSI_PROT_REF_CHECK |
778 						  SCSI_PROT_REF_INCREMENT |
779 						  SCSI_PROT_IP_CHECKSUM,
780 	};
781 
782 	return flag_mask[prot_op];
783 }
784 
785 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
786 					   unsigned int dix, unsigned int dif)
787 {
788 	struct request *rq = scsi_cmd_to_rq(scmd);
789 	struct bio *bio = rq->bio;
790 	unsigned int prot_op = sd_prot_op(rq_data_dir(rq), dix, dif);
791 	unsigned int protect = 0;
792 
793 	if (dix) {				/* DIX Type 0, 1, 2, 3 */
794 		if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
795 			scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
796 
797 		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
798 			scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
799 	}
800 
801 	if (dif != T10_PI_TYPE3_PROTECTION) {	/* DIX/DIF Type 0, 1, 2 */
802 		scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
803 
804 		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
805 			scmd->prot_flags |= SCSI_PROT_REF_CHECK;
806 	}
807 
808 	if (dif) {				/* DIX/DIF Type 1, 2, 3 */
809 		scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
810 
811 		if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
812 			protect = 3 << 5;	/* Disable target PI checking */
813 		else
814 			protect = 1 << 5;	/* Enable target PI checking */
815 	}
816 
817 	scsi_set_prot_op(scmd, prot_op);
818 	scsi_set_prot_type(scmd, dif);
819 	scmd->prot_flags &= sd_prot_flag_mask(prot_op);
820 
821 	return protect;
822 }
823 
824 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
825 {
826 	struct request_queue *q = sdkp->disk->queue;
827 	unsigned int logical_block_size = sdkp->device->sector_size;
828 	unsigned int max_blocks = 0;
829 
830 	q->limits.discard_alignment =
831 		sdkp->unmap_alignment * logical_block_size;
832 	q->limits.discard_granularity =
833 		max(sdkp->physical_block_size,
834 		    sdkp->unmap_granularity * logical_block_size);
835 	sdkp->provisioning_mode = mode;
836 
837 	switch (mode) {
838 
839 	case SD_LBP_FULL:
840 	case SD_LBP_DISABLE:
841 		blk_queue_max_discard_sectors(q, 0);
842 		return;
843 
844 	case SD_LBP_UNMAP:
845 		max_blocks = min_not_zero(sdkp->max_unmap_blocks,
846 					  (u32)SD_MAX_WS16_BLOCKS);
847 		break;
848 
849 	case SD_LBP_WS16:
850 		if (sdkp->device->unmap_limit_for_ws)
851 			max_blocks = sdkp->max_unmap_blocks;
852 		else
853 			max_blocks = sdkp->max_ws_blocks;
854 
855 		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
856 		break;
857 
858 	case SD_LBP_WS10:
859 		if (sdkp->device->unmap_limit_for_ws)
860 			max_blocks = sdkp->max_unmap_blocks;
861 		else
862 			max_blocks = sdkp->max_ws_blocks;
863 
864 		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
865 		break;
866 
867 	case SD_LBP_ZERO:
868 		max_blocks = min_not_zero(sdkp->max_ws_blocks,
869 					  (u32)SD_MAX_WS10_BLOCKS);
870 		break;
871 	}
872 
873 	blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
874 }
875 
876 static void *sd_set_special_bvec(struct request *rq, unsigned int data_len)
877 {
878 	struct page *page;
879 
880 	page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
881 	if (!page)
882 		return NULL;
883 	clear_highpage(page);
884 	bvec_set_page(&rq->special_vec, page, data_len, 0);
885 	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
886 	return bvec_virt(&rq->special_vec);
887 }
888 
889 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
890 {
891 	struct scsi_device *sdp = cmd->device;
892 	struct request *rq = scsi_cmd_to_rq(cmd);
893 	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
894 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
895 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
896 	unsigned int data_len = 24;
897 	char *buf;
898 
899 	buf = sd_set_special_bvec(rq, data_len);
900 	if (!buf)
901 		return BLK_STS_RESOURCE;
902 
903 	cmd->cmd_len = 10;
904 	cmd->cmnd[0] = UNMAP;
905 	cmd->cmnd[8] = 24;
906 
907 	put_unaligned_be16(6 + 16, &buf[0]);
908 	put_unaligned_be16(16, &buf[2]);
909 	put_unaligned_be64(lba, &buf[8]);
910 	put_unaligned_be32(nr_blocks, &buf[16]);
911 
912 	cmd->allowed = sdkp->max_retries;
913 	cmd->transfersize = data_len;
914 	rq->timeout = SD_TIMEOUT;
915 
916 	return scsi_alloc_sgtables(cmd);
917 }
918 
919 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd,
920 		bool unmap)
921 {
922 	struct scsi_device *sdp = cmd->device;
923 	struct request *rq = scsi_cmd_to_rq(cmd);
924 	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
925 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
926 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
927 	u32 data_len = sdp->sector_size;
928 
929 	if (!sd_set_special_bvec(rq, data_len))
930 		return BLK_STS_RESOURCE;
931 
932 	cmd->cmd_len = 16;
933 	cmd->cmnd[0] = WRITE_SAME_16;
934 	if (unmap)
935 		cmd->cmnd[1] = 0x8; /* UNMAP */
936 	put_unaligned_be64(lba, &cmd->cmnd[2]);
937 	put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
938 
939 	cmd->allowed = sdkp->max_retries;
940 	cmd->transfersize = data_len;
941 	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
942 
943 	return scsi_alloc_sgtables(cmd);
944 }
945 
946 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd,
947 		bool unmap)
948 {
949 	struct scsi_device *sdp = cmd->device;
950 	struct request *rq = scsi_cmd_to_rq(cmd);
951 	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
952 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
953 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
954 	u32 data_len = sdp->sector_size;
955 
956 	if (!sd_set_special_bvec(rq, data_len))
957 		return BLK_STS_RESOURCE;
958 
959 	cmd->cmd_len = 10;
960 	cmd->cmnd[0] = WRITE_SAME;
961 	if (unmap)
962 		cmd->cmnd[1] = 0x8; /* UNMAP */
963 	put_unaligned_be32(lba, &cmd->cmnd[2]);
964 	put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
965 
966 	cmd->allowed = sdkp->max_retries;
967 	cmd->transfersize = data_len;
968 	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
969 
970 	return scsi_alloc_sgtables(cmd);
971 }
972 
973 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
974 {
975 	struct request *rq = scsi_cmd_to_rq(cmd);
976 	struct scsi_device *sdp = cmd->device;
977 	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
978 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
979 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
980 
981 	if (!(rq->cmd_flags & REQ_NOUNMAP)) {
982 		switch (sdkp->zeroing_mode) {
983 		case SD_ZERO_WS16_UNMAP:
984 			return sd_setup_write_same16_cmnd(cmd, true);
985 		case SD_ZERO_WS10_UNMAP:
986 			return sd_setup_write_same10_cmnd(cmd, true);
987 		}
988 	}
989 
990 	if (sdp->no_write_same) {
991 		rq->rq_flags |= RQF_QUIET;
992 		return BLK_STS_TARGET;
993 	}
994 
995 	if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff)
996 		return sd_setup_write_same16_cmnd(cmd, false);
997 
998 	return sd_setup_write_same10_cmnd(cmd, false);
999 }
1000 
1001 static void sd_config_write_same(struct scsi_disk *sdkp)
1002 {
1003 	struct request_queue *q = sdkp->disk->queue;
1004 	unsigned int logical_block_size = sdkp->device->sector_size;
1005 
1006 	if (sdkp->device->no_write_same) {
1007 		sdkp->max_ws_blocks = 0;
1008 		goto out;
1009 	}
1010 
1011 	/* Some devices can not handle block counts above 0xffff despite
1012 	 * supporting WRITE SAME(16). Consequently we default to 64k
1013 	 * blocks per I/O unless the device explicitly advertises a
1014 	 * bigger limit.
1015 	 */
1016 	if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
1017 		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
1018 						   (u32)SD_MAX_WS16_BLOCKS);
1019 	else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
1020 		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
1021 						   (u32)SD_MAX_WS10_BLOCKS);
1022 	else {
1023 		sdkp->device->no_write_same = 1;
1024 		sdkp->max_ws_blocks = 0;
1025 	}
1026 
1027 	if (sdkp->lbprz && sdkp->lbpws)
1028 		sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
1029 	else if (sdkp->lbprz && sdkp->lbpws10)
1030 		sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
1031 	else if (sdkp->max_ws_blocks)
1032 		sdkp->zeroing_mode = SD_ZERO_WS;
1033 	else
1034 		sdkp->zeroing_mode = SD_ZERO_WRITE;
1035 
1036 	if (sdkp->max_ws_blocks &&
1037 	    sdkp->physical_block_size > logical_block_size) {
1038 		/*
1039 		 * Reporting a maximum number of blocks that is not aligned
1040 		 * on the device physical size would cause a large write same
1041 		 * request to be split into physically unaligned chunks by
1042 		 * __blkdev_issue_write_zeroes() even if the caller of this
1043 		 * functions took care to align the large request. So make sure
1044 		 * the maximum reported is aligned to the device physical block
1045 		 * size. This is only an optional optimization for regular
1046 		 * disks, but this is mandatory to avoid failure of large write
1047 		 * same requests directed at sequential write required zones of
1048 		 * host-managed ZBC disks.
1049 		 */
1050 		sdkp->max_ws_blocks =
1051 			round_down(sdkp->max_ws_blocks,
1052 				   bytes_to_logical(sdkp->device,
1053 						    sdkp->physical_block_size));
1054 	}
1055 
1056 out:
1057 	blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks *
1058 					 (logical_block_size >> 9));
1059 }
1060 
1061 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
1062 {
1063 	struct request *rq = scsi_cmd_to_rq(cmd);
1064 	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1065 
1066 	/* flush requests don't perform I/O, zero the S/G table */
1067 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1068 
1069 	if (cmd->device->use_16_for_sync) {
1070 		cmd->cmnd[0] = SYNCHRONIZE_CACHE_16;
1071 		cmd->cmd_len = 16;
1072 	} else {
1073 		cmd->cmnd[0] = SYNCHRONIZE_CACHE;
1074 		cmd->cmd_len = 10;
1075 	}
1076 	cmd->transfersize = 0;
1077 	cmd->allowed = sdkp->max_retries;
1078 
1079 	rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
1080 	return BLK_STS_OK;
1081 }
1082 
1083 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write,
1084 				       sector_t lba, unsigned int nr_blocks,
1085 				       unsigned char flags, unsigned int dld)
1086 {
1087 	cmd->cmd_len = SD_EXT_CDB_SIZE;
1088 	cmd->cmnd[0]  = VARIABLE_LENGTH_CMD;
1089 	cmd->cmnd[7]  = 0x18; /* Additional CDB len */
1090 	cmd->cmnd[9]  = write ? WRITE_32 : READ_32;
1091 	cmd->cmnd[10] = flags;
1092 	cmd->cmnd[11] = dld & 0x07;
1093 	put_unaligned_be64(lba, &cmd->cmnd[12]);
1094 	put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */
1095 	put_unaligned_be32(nr_blocks, &cmd->cmnd[28]);
1096 
1097 	return BLK_STS_OK;
1098 }
1099 
1100 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write,
1101 				       sector_t lba, unsigned int nr_blocks,
1102 				       unsigned char flags, unsigned int dld)
1103 {
1104 	cmd->cmd_len  = 16;
1105 	cmd->cmnd[0]  = write ? WRITE_16 : READ_16;
1106 	cmd->cmnd[1]  = flags | ((dld >> 2) & 0x01);
1107 	cmd->cmnd[14] = (dld & 0x03) << 6;
1108 	cmd->cmnd[15] = 0;
1109 	put_unaligned_be64(lba, &cmd->cmnd[2]);
1110 	put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1111 
1112 	return BLK_STS_OK;
1113 }
1114 
1115 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write,
1116 				       sector_t lba, unsigned int nr_blocks,
1117 				       unsigned char flags)
1118 {
1119 	cmd->cmd_len = 10;
1120 	cmd->cmnd[0] = write ? WRITE_10 : READ_10;
1121 	cmd->cmnd[1] = flags;
1122 	cmd->cmnd[6] = 0;
1123 	cmd->cmnd[9] = 0;
1124 	put_unaligned_be32(lba, &cmd->cmnd[2]);
1125 	put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1126 
1127 	return BLK_STS_OK;
1128 }
1129 
1130 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write,
1131 				      sector_t lba, unsigned int nr_blocks,
1132 				      unsigned char flags)
1133 {
1134 	/* Avoid that 0 blocks gets translated into 256 blocks. */
1135 	if (WARN_ON_ONCE(nr_blocks == 0))
1136 		return BLK_STS_IOERR;
1137 
1138 	if (unlikely(flags & 0x8)) {
1139 		/*
1140 		 * This happens only if this drive failed 10byte rw
1141 		 * command with ILLEGAL_REQUEST during operation and
1142 		 * thus turned off use_10_for_rw.
1143 		 */
1144 		scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n");
1145 		return BLK_STS_IOERR;
1146 	}
1147 
1148 	cmd->cmd_len = 6;
1149 	cmd->cmnd[0] = write ? WRITE_6 : READ_6;
1150 	cmd->cmnd[1] = (lba >> 16) & 0x1f;
1151 	cmd->cmnd[2] = (lba >> 8) & 0xff;
1152 	cmd->cmnd[3] = lba & 0xff;
1153 	cmd->cmnd[4] = nr_blocks;
1154 	cmd->cmnd[5] = 0;
1155 
1156 	return BLK_STS_OK;
1157 }
1158 
1159 /*
1160  * Check if a command has a duration limit set. If it does, and the target
1161  * device supports CDL and the feature is enabled, return the limit
1162  * descriptor index to use. Return 0 (no limit) otherwise.
1163  */
1164 static int sd_cdl_dld(struct scsi_disk *sdkp, struct scsi_cmnd *scmd)
1165 {
1166 	struct scsi_device *sdp = sdkp->device;
1167 	int hint;
1168 
1169 	if (!sdp->cdl_supported || !sdp->cdl_enable)
1170 		return 0;
1171 
1172 	/*
1173 	 * Use "no limit" if the request ioprio does not specify a duration
1174 	 * limit hint.
1175 	 */
1176 	hint = IOPRIO_PRIO_HINT(req_get_ioprio(scsi_cmd_to_rq(scmd)));
1177 	if (hint < IOPRIO_HINT_DEV_DURATION_LIMIT_1 ||
1178 	    hint > IOPRIO_HINT_DEV_DURATION_LIMIT_7)
1179 		return 0;
1180 
1181 	return (hint - IOPRIO_HINT_DEV_DURATION_LIMIT_1) + 1;
1182 }
1183 
1184 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd)
1185 {
1186 	struct request *rq = scsi_cmd_to_rq(cmd);
1187 	struct scsi_device *sdp = cmd->device;
1188 	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1189 	sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1190 	sector_t threshold;
1191 	unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1192 	unsigned int mask = logical_to_sectors(sdp, 1) - 1;
1193 	bool write = rq_data_dir(rq) == WRITE;
1194 	unsigned char protect, fua;
1195 	unsigned int dld;
1196 	blk_status_t ret;
1197 	unsigned int dif;
1198 	bool dix;
1199 
1200 	ret = scsi_alloc_sgtables(cmd);
1201 	if (ret != BLK_STS_OK)
1202 		return ret;
1203 
1204 	ret = BLK_STS_IOERR;
1205 	if (!scsi_device_online(sdp) || sdp->changed) {
1206 		scmd_printk(KERN_ERR, cmd, "device offline or changed\n");
1207 		goto fail;
1208 	}
1209 
1210 	if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->q->disk)) {
1211 		scmd_printk(KERN_ERR, cmd, "access beyond end of device\n");
1212 		goto fail;
1213 	}
1214 
1215 	if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) {
1216 		scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n");
1217 		goto fail;
1218 	}
1219 
1220 	/*
1221 	 * Some SD card readers can't handle accesses which touch the
1222 	 * last one or two logical blocks. Split accesses as needed.
1223 	 */
1224 	threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS;
1225 
1226 	if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) {
1227 		if (lba < threshold) {
1228 			/* Access up to the threshold but not beyond */
1229 			nr_blocks = threshold - lba;
1230 		} else {
1231 			/* Access only a single logical block */
1232 			nr_blocks = 1;
1233 		}
1234 	}
1235 
1236 	if (req_op(rq) == REQ_OP_ZONE_APPEND) {
1237 		ret = sd_zbc_prepare_zone_append(cmd, &lba, nr_blocks);
1238 		if (ret)
1239 			goto fail;
1240 	}
1241 
1242 	fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0;
1243 	dix = scsi_prot_sg_count(cmd);
1244 	dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type);
1245 	dld = sd_cdl_dld(sdkp, cmd);
1246 
1247 	if (dif || dix)
1248 		protect = sd_setup_protect_cmnd(cmd, dix, dif);
1249 	else
1250 		protect = 0;
1251 
1252 	if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1253 		ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks,
1254 					 protect | fua, dld);
1255 	} else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) {
1256 		ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks,
1257 					 protect | fua, dld);
1258 	} else if ((nr_blocks > 0xff) || (lba > 0x1fffff) ||
1259 		   sdp->use_10_for_rw || protect) {
1260 		ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks,
1261 					 protect | fua);
1262 	} else {
1263 		ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks,
1264 					protect | fua);
1265 	}
1266 
1267 	if (unlikely(ret != BLK_STS_OK))
1268 		goto fail;
1269 
1270 	/*
1271 	 * We shouldn't disconnect in the middle of a sector, so with a dumb
1272 	 * host adapter, it's safe to assume that we can at least transfer
1273 	 * this many bytes between each connect / disconnect.
1274 	 */
1275 	cmd->transfersize = sdp->sector_size;
1276 	cmd->underflow = nr_blocks << 9;
1277 	cmd->allowed = sdkp->max_retries;
1278 	cmd->sdb.length = nr_blocks * sdp->sector_size;
1279 
1280 	SCSI_LOG_HLQUEUE(1,
1281 			 scmd_printk(KERN_INFO, cmd,
1282 				     "%s: block=%llu, count=%d\n", __func__,
1283 				     (unsigned long long)blk_rq_pos(rq),
1284 				     blk_rq_sectors(rq)));
1285 	SCSI_LOG_HLQUEUE(2,
1286 			 scmd_printk(KERN_INFO, cmd,
1287 				     "%s %d/%u 512 byte blocks.\n",
1288 				     write ? "writing" : "reading", nr_blocks,
1289 				     blk_rq_sectors(rq)));
1290 
1291 	/*
1292 	 * This indicates that the command is ready from our end to be queued.
1293 	 */
1294 	return BLK_STS_OK;
1295 fail:
1296 	scsi_free_sgtables(cmd);
1297 	return ret;
1298 }
1299 
1300 static blk_status_t sd_init_command(struct scsi_cmnd *cmd)
1301 {
1302 	struct request *rq = scsi_cmd_to_rq(cmd);
1303 
1304 	switch (req_op(rq)) {
1305 	case REQ_OP_DISCARD:
1306 		switch (scsi_disk(rq->q->disk)->provisioning_mode) {
1307 		case SD_LBP_UNMAP:
1308 			return sd_setup_unmap_cmnd(cmd);
1309 		case SD_LBP_WS16:
1310 			return sd_setup_write_same16_cmnd(cmd, true);
1311 		case SD_LBP_WS10:
1312 			return sd_setup_write_same10_cmnd(cmd, true);
1313 		case SD_LBP_ZERO:
1314 			return sd_setup_write_same10_cmnd(cmd, false);
1315 		default:
1316 			return BLK_STS_TARGET;
1317 		}
1318 	case REQ_OP_WRITE_ZEROES:
1319 		return sd_setup_write_zeroes_cmnd(cmd);
1320 	case REQ_OP_FLUSH:
1321 		return sd_setup_flush_cmnd(cmd);
1322 	case REQ_OP_READ:
1323 	case REQ_OP_WRITE:
1324 	case REQ_OP_ZONE_APPEND:
1325 		return sd_setup_read_write_cmnd(cmd);
1326 	case REQ_OP_ZONE_RESET:
1327 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1328 						   false);
1329 	case REQ_OP_ZONE_RESET_ALL:
1330 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1331 						   true);
1332 	case REQ_OP_ZONE_OPEN:
1333 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false);
1334 	case REQ_OP_ZONE_CLOSE:
1335 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false);
1336 	case REQ_OP_ZONE_FINISH:
1337 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false);
1338 	default:
1339 		WARN_ON_ONCE(1);
1340 		return BLK_STS_NOTSUPP;
1341 	}
1342 }
1343 
1344 static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1345 {
1346 	struct request *rq = scsi_cmd_to_rq(SCpnt);
1347 
1348 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1349 		mempool_free(rq->special_vec.bv_page, sd_page_pool);
1350 }
1351 
1352 static bool sd_need_revalidate(struct gendisk *disk, struct scsi_disk *sdkp)
1353 {
1354 	if (sdkp->device->removable || sdkp->write_prot) {
1355 		if (disk_check_media_change(disk))
1356 			return true;
1357 	}
1358 
1359 	/*
1360 	 * Force a full rescan after ioctl(BLKRRPART).  While the disk state has
1361 	 * nothing to do with partitions, BLKRRPART is used to force a full
1362 	 * revalidate after things like a format for historical reasons.
1363 	 */
1364 	return test_bit(GD_NEED_PART_SCAN, &disk->state);
1365 }
1366 
1367 /**
1368  *	sd_open - open a scsi disk device
1369  *	@disk: disk to open
1370  *	@mode: open mode
1371  *
1372  *	Returns 0 if successful. Returns a negated errno value in case
1373  *	of error.
1374  *
1375  *	Note: This can be called from a user context (e.g. fsck(1) )
1376  *	or from within the kernel (e.g. as a result of a mount(1) ).
1377  *	In the latter case @inode and @filp carry an abridged amount
1378  *	of information as noted above.
1379  *
1380  *	Locking: called with disk->open_mutex held.
1381  **/
1382 static int sd_open(struct gendisk *disk, blk_mode_t mode)
1383 {
1384 	struct scsi_disk *sdkp = scsi_disk(disk);
1385 	struct scsi_device *sdev = sdkp->device;
1386 	int retval;
1387 
1388 	if (scsi_device_get(sdev))
1389 		return -ENXIO;
1390 
1391 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1392 
1393 	/*
1394 	 * If the device is in error recovery, wait until it is done.
1395 	 * If the device is offline, then disallow any access to it.
1396 	 */
1397 	retval = -ENXIO;
1398 	if (!scsi_block_when_processing_errors(sdev))
1399 		goto error_out;
1400 
1401 	if (sd_need_revalidate(disk, sdkp))
1402 		sd_revalidate_disk(disk);
1403 
1404 	/*
1405 	 * If the drive is empty, just let the open fail.
1406 	 */
1407 	retval = -ENOMEDIUM;
1408 	if (sdev->removable && !sdkp->media_present &&
1409 	    !(mode & BLK_OPEN_NDELAY))
1410 		goto error_out;
1411 
1412 	/*
1413 	 * If the device has the write protect tab set, have the open fail
1414 	 * if the user expects to be able to write to the thing.
1415 	 */
1416 	retval = -EROFS;
1417 	if (sdkp->write_prot && (mode & BLK_OPEN_WRITE))
1418 		goto error_out;
1419 
1420 	/*
1421 	 * It is possible that the disk changing stuff resulted in
1422 	 * the device being taken offline.  If this is the case,
1423 	 * report this to the user, and don't pretend that the
1424 	 * open actually succeeded.
1425 	 */
1426 	retval = -ENXIO;
1427 	if (!scsi_device_online(sdev))
1428 		goto error_out;
1429 
1430 	if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1431 		if (scsi_block_when_processing_errors(sdev))
1432 			scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1433 	}
1434 
1435 	return 0;
1436 
1437 error_out:
1438 	scsi_device_put(sdev);
1439 	return retval;
1440 }
1441 
1442 /**
1443  *	sd_release - invoked when the (last) close(2) is called on this
1444  *	scsi disk.
1445  *	@disk: disk to release
1446  *
1447  *	Returns 0.
1448  *
1449  *	Note: may block (uninterruptible) if error recovery is underway
1450  *	on this disk.
1451  *
1452  *	Locking: called with disk->open_mutex held.
1453  **/
1454 static void sd_release(struct gendisk *disk)
1455 {
1456 	struct scsi_disk *sdkp = scsi_disk(disk);
1457 	struct scsi_device *sdev = sdkp->device;
1458 
1459 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1460 
1461 	if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1462 		if (scsi_block_when_processing_errors(sdev))
1463 			scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1464 	}
1465 
1466 	scsi_device_put(sdev);
1467 }
1468 
1469 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1470 {
1471 	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1472 	struct scsi_device *sdp = sdkp->device;
1473 	struct Scsi_Host *host = sdp->host;
1474 	sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1475 	int diskinfo[4];
1476 
1477 	/* default to most commonly used values */
1478 	diskinfo[0] = 0x40;	/* 1 << 6 */
1479 	diskinfo[1] = 0x20;	/* 1 << 5 */
1480 	diskinfo[2] = capacity >> 11;
1481 
1482 	/* override with calculated, extended default, or driver values */
1483 	if (host->hostt->bios_param)
1484 		host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1485 	else
1486 		scsicam_bios_param(bdev, capacity, diskinfo);
1487 
1488 	geo->heads = diskinfo[0];
1489 	geo->sectors = diskinfo[1];
1490 	geo->cylinders = diskinfo[2];
1491 	return 0;
1492 }
1493 
1494 /**
1495  *	sd_ioctl - process an ioctl
1496  *	@bdev: target block device
1497  *	@mode: open mode
1498  *	@cmd: ioctl command number
1499  *	@arg: this is third argument given to ioctl(2) system call.
1500  *	Often contains a pointer.
1501  *
1502  *	Returns 0 if successful (some ioctls return positive numbers on
1503  *	success as well). Returns a negated errno value in case of error.
1504  *
1505  *	Note: most ioctls are forward onto the block subsystem or further
1506  *	down in the scsi subsystem.
1507  **/
1508 static int sd_ioctl(struct block_device *bdev, blk_mode_t mode,
1509 		    unsigned int cmd, unsigned long arg)
1510 {
1511 	struct gendisk *disk = bdev->bd_disk;
1512 	struct scsi_disk *sdkp = scsi_disk(disk);
1513 	struct scsi_device *sdp = sdkp->device;
1514 	void __user *p = (void __user *)arg;
1515 	int error;
1516 
1517 	SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1518 				    "cmd=0x%x\n", disk->disk_name, cmd));
1519 
1520 	if (bdev_is_partition(bdev) && !capable(CAP_SYS_RAWIO))
1521 		return -ENOIOCTLCMD;
1522 
1523 	/*
1524 	 * If we are in the middle of error recovery, don't let anyone
1525 	 * else try and use this device.  Also, if error recovery fails, it
1526 	 * may try and take the device offline, in which case all further
1527 	 * access to the device is prohibited.
1528 	 */
1529 	error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1530 			(mode & BLK_OPEN_NDELAY));
1531 	if (error)
1532 		return error;
1533 
1534 	if (is_sed_ioctl(cmd))
1535 		return sed_ioctl(sdkp->opal_dev, cmd, p);
1536 	return scsi_ioctl(sdp, mode & BLK_OPEN_WRITE, cmd, p);
1537 }
1538 
1539 static void set_media_not_present(struct scsi_disk *sdkp)
1540 {
1541 	if (sdkp->media_present)
1542 		sdkp->device->changed = 1;
1543 
1544 	if (sdkp->device->removable) {
1545 		sdkp->media_present = 0;
1546 		sdkp->capacity = 0;
1547 	}
1548 }
1549 
1550 static int media_not_present(struct scsi_disk *sdkp,
1551 			     struct scsi_sense_hdr *sshdr)
1552 {
1553 	if (!scsi_sense_valid(sshdr))
1554 		return 0;
1555 
1556 	/* not invoked for commands that could return deferred errors */
1557 	switch (sshdr->sense_key) {
1558 	case UNIT_ATTENTION:
1559 	case NOT_READY:
1560 		/* medium not present */
1561 		if (sshdr->asc == 0x3A) {
1562 			set_media_not_present(sdkp);
1563 			return 1;
1564 		}
1565 	}
1566 	return 0;
1567 }
1568 
1569 /**
1570  *	sd_check_events - check media events
1571  *	@disk: kernel device descriptor
1572  *	@clearing: disk events currently being cleared
1573  *
1574  *	Returns mask of DISK_EVENT_*.
1575  *
1576  *	Note: this function is invoked from the block subsystem.
1577  **/
1578 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1579 {
1580 	struct scsi_disk *sdkp = disk->private_data;
1581 	struct scsi_device *sdp;
1582 	int retval;
1583 	bool disk_changed;
1584 
1585 	if (!sdkp)
1586 		return 0;
1587 
1588 	sdp = sdkp->device;
1589 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1590 
1591 	/*
1592 	 * If the device is offline, don't send any commands - just pretend as
1593 	 * if the command failed.  If the device ever comes back online, we
1594 	 * can deal with it then.  It is only because of unrecoverable errors
1595 	 * that we would ever take a device offline in the first place.
1596 	 */
1597 	if (!scsi_device_online(sdp)) {
1598 		set_media_not_present(sdkp);
1599 		goto out;
1600 	}
1601 
1602 	/*
1603 	 * Using TEST_UNIT_READY enables differentiation between drive with
1604 	 * no cartridge loaded - NOT READY, drive with changed cartridge -
1605 	 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1606 	 *
1607 	 * Drives that auto spin down. eg iomega jaz 1G, will be started
1608 	 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1609 	 * sd_revalidate() is called.
1610 	 */
1611 	if (scsi_block_when_processing_errors(sdp)) {
1612 		struct scsi_sense_hdr sshdr = { 0, };
1613 
1614 		retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries,
1615 					      &sshdr);
1616 
1617 		/* failed to execute TUR, assume media not present */
1618 		if (retval < 0 || host_byte(retval)) {
1619 			set_media_not_present(sdkp);
1620 			goto out;
1621 		}
1622 
1623 		if (media_not_present(sdkp, &sshdr))
1624 			goto out;
1625 	}
1626 
1627 	/*
1628 	 * For removable scsi disk we have to recognise the presence
1629 	 * of a disk in the drive.
1630 	 */
1631 	if (!sdkp->media_present)
1632 		sdp->changed = 1;
1633 	sdkp->media_present = 1;
1634 out:
1635 	/*
1636 	 * sdp->changed is set under the following conditions:
1637 	 *
1638 	 *	Medium present state has changed in either direction.
1639 	 *	Device has indicated UNIT_ATTENTION.
1640 	 */
1641 	disk_changed = sdp->changed;
1642 	sdp->changed = 0;
1643 	return disk_changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1644 }
1645 
1646 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
1647 {
1648 	int retries, res;
1649 	struct scsi_device *sdp = sdkp->device;
1650 	const int timeout = sdp->request_queue->rq_timeout
1651 		* SD_FLUSH_TIMEOUT_MULTIPLIER;
1652 	struct scsi_sense_hdr my_sshdr;
1653 	const struct scsi_exec_args exec_args = {
1654 		.req_flags = BLK_MQ_REQ_PM,
1655 		/* caller might not be interested in sense, but we need it */
1656 		.sshdr = sshdr ? : &my_sshdr,
1657 	};
1658 
1659 	if (!scsi_device_online(sdp))
1660 		return -ENODEV;
1661 
1662 	sshdr = exec_args.sshdr;
1663 
1664 	for (retries = 3; retries > 0; --retries) {
1665 		unsigned char cmd[16] = { 0 };
1666 
1667 		if (sdp->use_16_for_sync)
1668 			cmd[0] = SYNCHRONIZE_CACHE_16;
1669 		else
1670 			cmd[0] = SYNCHRONIZE_CACHE;
1671 		/*
1672 		 * Leave the rest of the command zero to indicate
1673 		 * flush everything.
1674 		 */
1675 		res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0,
1676 				       timeout, sdkp->max_retries, &exec_args);
1677 		if (res == 0)
1678 			break;
1679 	}
1680 
1681 	if (res) {
1682 		sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1683 
1684 		if (res < 0)
1685 			return res;
1686 
1687 		if (scsi_status_is_check_condition(res) &&
1688 		    scsi_sense_valid(sshdr)) {
1689 			sd_print_sense_hdr(sdkp, sshdr);
1690 
1691 			/* we need to evaluate the error return  */
1692 			if (sshdr->asc == 0x3a ||	/* medium not present */
1693 			    sshdr->asc == 0x20 ||	/* invalid command */
1694 			    (sshdr->asc == 0x74 && sshdr->ascq == 0x71))	/* drive is password locked */
1695 				/* this is no error here */
1696 				return 0;
1697 		}
1698 
1699 		switch (host_byte(res)) {
1700 		/* ignore errors due to racing a disconnection */
1701 		case DID_BAD_TARGET:
1702 		case DID_NO_CONNECT:
1703 			return 0;
1704 		/* signal the upper layer it might try again */
1705 		case DID_BUS_BUSY:
1706 		case DID_IMM_RETRY:
1707 		case DID_REQUEUE:
1708 		case DID_SOFT_ERROR:
1709 			return -EBUSY;
1710 		default:
1711 			return -EIO;
1712 		}
1713 	}
1714 	return 0;
1715 }
1716 
1717 static void sd_rescan(struct device *dev)
1718 {
1719 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
1720 
1721 	sd_revalidate_disk(sdkp->disk);
1722 }
1723 
1724 static int sd_get_unique_id(struct gendisk *disk, u8 id[16],
1725 		enum blk_unique_id type)
1726 {
1727 	struct scsi_device *sdev = scsi_disk(disk)->device;
1728 	const struct scsi_vpd *vpd;
1729 	const unsigned char *d;
1730 	int ret = -ENXIO, len;
1731 
1732 	rcu_read_lock();
1733 	vpd = rcu_dereference(sdev->vpd_pg83);
1734 	if (!vpd)
1735 		goto out_unlock;
1736 
1737 	ret = -EINVAL;
1738 	for (d = vpd->data + 4; d < vpd->data + vpd->len; d += d[3] + 4) {
1739 		/* we only care about designators with LU association */
1740 		if (((d[1] >> 4) & 0x3) != 0x00)
1741 			continue;
1742 		if ((d[1] & 0xf) != type)
1743 			continue;
1744 
1745 		/*
1746 		 * Only exit early if a 16-byte descriptor was found.  Otherwise
1747 		 * keep looking as one with more entropy might still show up.
1748 		 */
1749 		len = d[3];
1750 		if (len != 8 && len != 12 && len != 16)
1751 			continue;
1752 		ret = len;
1753 		memcpy(id, d + 4, len);
1754 		if (len == 16)
1755 			break;
1756 	}
1757 out_unlock:
1758 	rcu_read_unlock();
1759 	return ret;
1760 }
1761 
1762 static int sd_scsi_to_pr_err(struct scsi_sense_hdr *sshdr, int result)
1763 {
1764 	switch (host_byte(result)) {
1765 	case DID_TRANSPORT_MARGINAL:
1766 	case DID_TRANSPORT_DISRUPTED:
1767 	case DID_BUS_BUSY:
1768 		return PR_STS_RETRY_PATH_FAILURE;
1769 	case DID_NO_CONNECT:
1770 		return PR_STS_PATH_FAILED;
1771 	case DID_TRANSPORT_FAILFAST:
1772 		return PR_STS_PATH_FAST_FAILED;
1773 	}
1774 
1775 	switch (status_byte(result)) {
1776 	case SAM_STAT_RESERVATION_CONFLICT:
1777 		return PR_STS_RESERVATION_CONFLICT;
1778 	case SAM_STAT_CHECK_CONDITION:
1779 		if (!scsi_sense_valid(sshdr))
1780 			return PR_STS_IOERR;
1781 
1782 		if (sshdr->sense_key == ILLEGAL_REQUEST &&
1783 		    (sshdr->asc == 0x26 || sshdr->asc == 0x24))
1784 			return -EINVAL;
1785 
1786 		fallthrough;
1787 	default:
1788 		return PR_STS_IOERR;
1789 	}
1790 }
1791 
1792 static int sd_pr_in_command(struct block_device *bdev, u8 sa,
1793 			    unsigned char *data, int data_len)
1794 {
1795 	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1796 	struct scsi_device *sdev = sdkp->device;
1797 	struct scsi_sense_hdr sshdr;
1798 	u8 cmd[10] = { PERSISTENT_RESERVE_IN, sa };
1799 	const struct scsi_exec_args exec_args = {
1800 		.sshdr = &sshdr,
1801 	};
1802 	int result;
1803 
1804 	put_unaligned_be16(data_len, &cmd[7]);
1805 
1806 	result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, data, data_len,
1807 				  SD_TIMEOUT, sdkp->max_retries, &exec_args);
1808 	if (scsi_status_is_check_condition(result) &&
1809 	    scsi_sense_valid(&sshdr)) {
1810 		sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1811 		scsi_print_sense_hdr(sdev, NULL, &sshdr);
1812 	}
1813 
1814 	if (result <= 0)
1815 		return result;
1816 
1817 	return sd_scsi_to_pr_err(&sshdr, result);
1818 }
1819 
1820 static int sd_pr_read_keys(struct block_device *bdev, struct pr_keys *keys_info)
1821 {
1822 	int result, i, data_offset, num_copy_keys;
1823 	u32 num_keys = keys_info->num_keys;
1824 	int data_len = num_keys * 8 + 8;
1825 	u8 *data;
1826 
1827 	data = kzalloc(data_len, GFP_KERNEL);
1828 	if (!data)
1829 		return -ENOMEM;
1830 
1831 	result = sd_pr_in_command(bdev, READ_KEYS, data, data_len);
1832 	if (result)
1833 		goto free_data;
1834 
1835 	keys_info->generation = get_unaligned_be32(&data[0]);
1836 	keys_info->num_keys = get_unaligned_be32(&data[4]) / 8;
1837 
1838 	data_offset = 8;
1839 	num_copy_keys = min(num_keys, keys_info->num_keys);
1840 
1841 	for (i = 0; i < num_copy_keys; i++) {
1842 		keys_info->keys[i] = get_unaligned_be64(&data[data_offset]);
1843 		data_offset += 8;
1844 	}
1845 
1846 free_data:
1847 	kfree(data);
1848 	return result;
1849 }
1850 
1851 static int sd_pr_read_reservation(struct block_device *bdev,
1852 				  struct pr_held_reservation *rsv)
1853 {
1854 	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1855 	struct scsi_device *sdev = sdkp->device;
1856 	u8 data[24] = { };
1857 	int result, len;
1858 
1859 	result = sd_pr_in_command(bdev, READ_RESERVATION, data, sizeof(data));
1860 	if (result)
1861 		return result;
1862 
1863 	len = get_unaligned_be32(&data[4]);
1864 	if (!len)
1865 		return 0;
1866 
1867 	/* Make sure we have at least the key and type */
1868 	if (len < 14) {
1869 		sdev_printk(KERN_INFO, sdev,
1870 			    "READ RESERVATION failed due to short return buffer of %d bytes\n",
1871 			    len);
1872 		return -EINVAL;
1873 	}
1874 
1875 	rsv->generation = get_unaligned_be32(&data[0]);
1876 	rsv->key = get_unaligned_be64(&data[8]);
1877 	rsv->type = scsi_pr_type_to_block(data[21] & 0x0f);
1878 	return 0;
1879 }
1880 
1881 static int sd_pr_out_command(struct block_device *bdev, u8 sa, u64 key,
1882 			     u64 sa_key, enum scsi_pr_type type, u8 flags)
1883 {
1884 	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1885 	struct scsi_device *sdev = sdkp->device;
1886 	struct scsi_sense_hdr sshdr;
1887 	const struct scsi_exec_args exec_args = {
1888 		.sshdr = &sshdr,
1889 	};
1890 	int result;
1891 	u8 cmd[16] = { 0, };
1892 	u8 data[24] = { 0, };
1893 
1894 	cmd[0] = PERSISTENT_RESERVE_OUT;
1895 	cmd[1] = sa;
1896 	cmd[2] = type;
1897 	put_unaligned_be32(sizeof(data), &cmd[5]);
1898 
1899 	put_unaligned_be64(key, &data[0]);
1900 	put_unaligned_be64(sa_key, &data[8]);
1901 	data[20] = flags;
1902 
1903 	result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, &data,
1904 				  sizeof(data), SD_TIMEOUT, sdkp->max_retries,
1905 				  &exec_args);
1906 
1907 	if (scsi_status_is_check_condition(result) &&
1908 	    scsi_sense_valid(&sshdr)) {
1909 		sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1910 		scsi_print_sense_hdr(sdev, NULL, &sshdr);
1911 	}
1912 
1913 	if (result <= 0)
1914 		return result;
1915 
1916 	return sd_scsi_to_pr_err(&sshdr, result);
1917 }
1918 
1919 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1920 		u32 flags)
1921 {
1922 	if (flags & ~PR_FL_IGNORE_KEY)
1923 		return -EOPNOTSUPP;
1924 	return sd_pr_out_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1925 			old_key, new_key, 0,
1926 			(1 << 0) /* APTPL */);
1927 }
1928 
1929 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1930 		u32 flags)
1931 {
1932 	if (flags)
1933 		return -EOPNOTSUPP;
1934 	return sd_pr_out_command(bdev, 0x01, key, 0,
1935 				 block_pr_type_to_scsi(type), 0);
1936 }
1937 
1938 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1939 {
1940 	return sd_pr_out_command(bdev, 0x02, key, 0,
1941 				 block_pr_type_to_scsi(type), 0);
1942 }
1943 
1944 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1945 		enum pr_type type, bool abort)
1946 {
1947 	return sd_pr_out_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
1948 				 block_pr_type_to_scsi(type), 0);
1949 }
1950 
1951 static int sd_pr_clear(struct block_device *bdev, u64 key)
1952 {
1953 	return sd_pr_out_command(bdev, 0x03, key, 0, 0, 0);
1954 }
1955 
1956 static const struct pr_ops sd_pr_ops = {
1957 	.pr_register	= sd_pr_register,
1958 	.pr_reserve	= sd_pr_reserve,
1959 	.pr_release	= sd_pr_release,
1960 	.pr_preempt	= sd_pr_preempt,
1961 	.pr_clear	= sd_pr_clear,
1962 	.pr_read_keys	= sd_pr_read_keys,
1963 	.pr_read_reservation = sd_pr_read_reservation,
1964 };
1965 
1966 static void scsi_disk_free_disk(struct gendisk *disk)
1967 {
1968 	struct scsi_disk *sdkp = scsi_disk(disk);
1969 
1970 	put_device(&sdkp->disk_dev);
1971 }
1972 
1973 static const struct block_device_operations sd_fops = {
1974 	.owner			= THIS_MODULE,
1975 	.open			= sd_open,
1976 	.release		= sd_release,
1977 	.ioctl			= sd_ioctl,
1978 	.getgeo			= sd_getgeo,
1979 	.compat_ioctl		= blkdev_compat_ptr_ioctl,
1980 	.check_events		= sd_check_events,
1981 	.unlock_native_capacity	= sd_unlock_native_capacity,
1982 	.report_zones		= sd_zbc_report_zones,
1983 	.get_unique_id		= sd_get_unique_id,
1984 	.free_disk		= scsi_disk_free_disk,
1985 	.pr_ops			= &sd_pr_ops,
1986 };
1987 
1988 /**
1989  *	sd_eh_reset - reset error handling callback
1990  *	@scmd:		sd-issued command that has failed
1991  *
1992  *	This function is called by the SCSI midlayer before starting
1993  *	SCSI EH. When counting medium access failures we have to be
1994  *	careful to register it only only once per device and SCSI EH run;
1995  *	there might be several timed out commands which will cause the
1996  *	'max_medium_access_timeouts' counter to trigger after the first
1997  *	SCSI EH run already and set the device to offline.
1998  *	So this function resets the internal counter before starting SCSI EH.
1999  **/
2000 static void sd_eh_reset(struct scsi_cmnd *scmd)
2001 {
2002 	struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk);
2003 
2004 	/* New SCSI EH run, reset gate variable */
2005 	sdkp->ignore_medium_access_errors = false;
2006 }
2007 
2008 /**
2009  *	sd_eh_action - error handling callback
2010  *	@scmd:		sd-issued command that has failed
2011  *	@eh_disp:	The recovery disposition suggested by the midlayer
2012  *
2013  *	This function is called by the SCSI midlayer upon completion of an
2014  *	error test command (currently TEST UNIT READY). The result of sending
2015  *	the eh command is passed in eh_disp.  We're looking for devices that
2016  *	fail medium access commands but are OK with non access commands like
2017  *	test unit ready (so wrongly see the device as having a successful
2018  *	recovery)
2019  **/
2020 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
2021 {
2022 	struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk);
2023 	struct scsi_device *sdev = scmd->device;
2024 
2025 	if (!scsi_device_online(sdev) ||
2026 	    !scsi_medium_access_command(scmd) ||
2027 	    host_byte(scmd->result) != DID_TIME_OUT ||
2028 	    eh_disp != SUCCESS)
2029 		return eh_disp;
2030 
2031 	/*
2032 	 * The device has timed out executing a medium access command.
2033 	 * However, the TEST UNIT READY command sent during error
2034 	 * handling completed successfully. Either the device is in the
2035 	 * process of recovering or has it suffered an internal failure
2036 	 * that prevents access to the storage medium.
2037 	 */
2038 	if (!sdkp->ignore_medium_access_errors) {
2039 		sdkp->medium_access_timed_out++;
2040 		sdkp->ignore_medium_access_errors = true;
2041 	}
2042 
2043 	/*
2044 	 * If the device keeps failing read/write commands but TEST UNIT
2045 	 * READY always completes successfully we assume that medium
2046 	 * access is no longer possible and take the device offline.
2047 	 */
2048 	if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
2049 		scmd_printk(KERN_ERR, scmd,
2050 			    "Medium access timeout failure. Offlining disk!\n");
2051 		mutex_lock(&sdev->state_mutex);
2052 		scsi_device_set_state(sdev, SDEV_OFFLINE);
2053 		mutex_unlock(&sdev->state_mutex);
2054 
2055 		return SUCCESS;
2056 	}
2057 
2058 	return eh_disp;
2059 }
2060 
2061 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
2062 {
2063 	struct request *req = scsi_cmd_to_rq(scmd);
2064 	struct scsi_device *sdev = scmd->device;
2065 	unsigned int transferred, good_bytes;
2066 	u64 start_lba, end_lba, bad_lba;
2067 
2068 	/*
2069 	 * Some commands have a payload smaller than the device logical
2070 	 * block size (e.g. INQUIRY on a 4K disk).
2071 	 */
2072 	if (scsi_bufflen(scmd) <= sdev->sector_size)
2073 		return 0;
2074 
2075 	/* Check if we have a 'bad_lba' information */
2076 	if (!scsi_get_sense_info_fld(scmd->sense_buffer,
2077 				     SCSI_SENSE_BUFFERSIZE,
2078 				     &bad_lba))
2079 		return 0;
2080 
2081 	/*
2082 	 * If the bad lba was reported incorrectly, we have no idea where
2083 	 * the error is.
2084 	 */
2085 	start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
2086 	end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
2087 	if (bad_lba < start_lba || bad_lba >= end_lba)
2088 		return 0;
2089 
2090 	/*
2091 	 * resid is optional but mostly filled in.  When it's unused,
2092 	 * its value is zero, so we assume the whole buffer transferred
2093 	 */
2094 	transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
2095 
2096 	/* This computation should always be done in terms of the
2097 	 * resolution of the device's medium.
2098 	 */
2099 	good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
2100 
2101 	return min(good_bytes, transferred);
2102 }
2103 
2104 /**
2105  *	sd_done - bottom half handler: called when the lower level
2106  *	driver has completed (successfully or otherwise) a scsi command.
2107  *	@SCpnt: mid-level's per command structure.
2108  *
2109  *	Note: potentially run from within an ISR. Must not block.
2110  **/
2111 static int sd_done(struct scsi_cmnd *SCpnt)
2112 {
2113 	int result = SCpnt->result;
2114 	unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
2115 	unsigned int sector_size = SCpnt->device->sector_size;
2116 	unsigned int resid;
2117 	struct scsi_sense_hdr sshdr;
2118 	struct request *req = scsi_cmd_to_rq(SCpnt);
2119 	struct scsi_disk *sdkp = scsi_disk(req->q->disk);
2120 	int sense_valid = 0;
2121 	int sense_deferred = 0;
2122 
2123 	switch (req_op(req)) {
2124 	case REQ_OP_DISCARD:
2125 	case REQ_OP_WRITE_ZEROES:
2126 	case REQ_OP_ZONE_RESET:
2127 	case REQ_OP_ZONE_RESET_ALL:
2128 	case REQ_OP_ZONE_OPEN:
2129 	case REQ_OP_ZONE_CLOSE:
2130 	case REQ_OP_ZONE_FINISH:
2131 		if (!result) {
2132 			good_bytes = blk_rq_bytes(req);
2133 			scsi_set_resid(SCpnt, 0);
2134 		} else {
2135 			good_bytes = 0;
2136 			scsi_set_resid(SCpnt, blk_rq_bytes(req));
2137 		}
2138 		break;
2139 	default:
2140 		/*
2141 		 * In case of bogus fw or device, we could end up having
2142 		 * an unaligned partial completion. Check this here and force
2143 		 * alignment.
2144 		 */
2145 		resid = scsi_get_resid(SCpnt);
2146 		if (resid & (sector_size - 1)) {
2147 			sd_printk(KERN_INFO, sdkp,
2148 				"Unaligned partial completion (resid=%u, sector_sz=%u)\n",
2149 				resid, sector_size);
2150 			scsi_print_command(SCpnt);
2151 			resid = min(scsi_bufflen(SCpnt),
2152 				    round_up(resid, sector_size));
2153 			scsi_set_resid(SCpnt, resid);
2154 		}
2155 	}
2156 
2157 	if (result) {
2158 		sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
2159 		if (sense_valid)
2160 			sense_deferred = scsi_sense_is_deferred(&sshdr);
2161 	}
2162 	sdkp->medium_access_timed_out = 0;
2163 
2164 	if (!scsi_status_is_check_condition(result) &&
2165 	    (!sense_valid || sense_deferred))
2166 		goto out;
2167 
2168 	switch (sshdr.sense_key) {
2169 	case HARDWARE_ERROR:
2170 	case MEDIUM_ERROR:
2171 		good_bytes = sd_completed_bytes(SCpnt);
2172 		break;
2173 	case RECOVERED_ERROR:
2174 		good_bytes = scsi_bufflen(SCpnt);
2175 		break;
2176 	case NO_SENSE:
2177 		/* This indicates a false check condition, so ignore it.  An
2178 		 * unknown amount of data was transferred so treat it as an
2179 		 * error.
2180 		 */
2181 		SCpnt->result = 0;
2182 		memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
2183 		break;
2184 	case ABORTED_COMMAND:
2185 		if (sshdr.asc == 0x10)  /* DIF: Target detected corruption */
2186 			good_bytes = sd_completed_bytes(SCpnt);
2187 		break;
2188 	case ILLEGAL_REQUEST:
2189 		switch (sshdr.asc) {
2190 		case 0x10:	/* DIX: Host detected corruption */
2191 			good_bytes = sd_completed_bytes(SCpnt);
2192 			break;
2193 		case 0x20:	/* INVALID COMMAND OPCODE */
2194 		case 0x24:	/* INVALID FIELD IN CDB */
2195 			switch (SCpnt->cmnd[0]) {
2196 			case UNMAP:
2197 				sd_config_discard(sdkp, SD_LBP_DISABLE);
2198 				break;
2199 			case WRITE_SAME_16:
2200 			case WRITE_SAME:
2201 				if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2202 					sd_config_discard(sdkp, SD_LBP_DISABLE);
2203 				} else {
2204 					sdkp->device->no_write_same = 1;
2205 					sd_config_write_same(sdkp);
2206 					req->rq_flags |= RQF_QUIET;
2207 				}
2208 				break;
2209 			}
2210 		}
2211 		break;
2212 	default:
2213 		break;
2214 	}
2215 
2216  out:
2217 	if (sd_is_zoned(sdkp))
2218 		good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2219 
2220 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2221 					   "sd_done: completed %d of %d bytes\n",
2222 					   good_bytes, scsi_bufflen(SCpnt)));
2223 
2224 	return good_bytes;
2225 }
2226 
2227 /*
2228  * spinup disk - called only in sd_revalidate_disk()
2229  */
2230 static void
2231 sd_spinup_disk(struct scsi_disk *sdkp)
2232 {
2233 	unsigned char cmd[10];
2234 	unsigned long spintime_expire = 0;
2235 	int retries, spintime;
2236 	unsigned int the_result;
2237 	struct scsi_sense_hdr sshdr;
2238 	const struct scsi_exec_args exec_args = {
2239 		.sshdr = &sshdr,
2240 	};
2241 	int sense_valid = 0;
2242 
2243 	spintime = 0;
2244 
2245 	/* Spin up drives, as required.  Only do this at boot time */
2246 	/* Spinup needs to be done for module loads too. */
2247 	do {
2248 		retries = 0;
2249 
2250 		do {
2251 			bool media_was_present = sdkp->media_present;
2252 
2253 			cmd[0] = TEST_UNIT_READY;
2254 			memset((void *) &cmd[1], 0, 9);
2255 
2256 			the_result = scsi_execute_cmd(sdkp->device, cmd,
2257 						      REQ_OP_DRV_IN, NULL, 0,
2258 						      SD_TIMEOUT,
2259 						      sdkp->max_retries,
2260 						      &exec_args);
2261 
2262 			if (the_result > 0) {
2263 				/*
2264 				 * If the drive has indicated to us that it
2265 				 * doesn't have any media in it, don't bother
2266 				 * with any more polling.
2267 				 */
2268 				if (media_not_present(sdkp, &sshdr)) {
2269 					if (media_was_present)
2270 						sd_printk(KERN_NOTICE, sdkp,
2271 							  "Media removed, stopped polling\n");
2272 					return;
2273 				}
2274 
2275 				sense_valid = scsi_sense_valid(&sshdr);
2276 			}
2277 			retries++;
2278 		} while (retries < 3 &&
2279 			 (!scsi_status_is_good(the_result) ||
2280 			  (scsi_status_is_check_condition(the_result) &&
2281 			  sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
2282 
2283 		if (!scsi_status_is_check_condition(the_result)) {
2284 			/* no sense, TUR either succeeded or failed
2285 			 * with a status error */
2286 			if(!spintime && !scsi_status_is_good(the_result)) {
2287 				sd_print_result(sdkp, "Test Unit Ready failed",
2288 						the_result);
2289 			}
2290 			break;
2291 		}
2292 
2293 		/*
2294 		 * The device does not want the automatic start to be issued.
2295 		 */
2296 		if (sdkp->device->no_start_on_add)
2297 			break;
2298 
2299 		if (sense_valid && sshdr.sense_key == NOT_READY) {
2300 			if (sshdr.asc == 4 && sshdr.ascq == 3)
2301 				break;	/* manual intervention required */
2302 			if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2303 				break;	/* standby */
2304 			if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2305 				break;	/* unavailable */
2306 			if (sshdr.asc == 4 && sshdr.ascq == 0x1b)
2307 				break;	/* sanitize in progress */
2308 			if (sshdr.asc == 4 && sshdr.ascq == 0x24)
2309 				break;	/* depopulation in progress */
2310 			if (sshdr.asc == 4 && sshdr.ascq == 0x25)
2311 				break;	/* depopulation restoration in progress */
2312 			/*
2313 			 * Issue command to spin up drive when not ready
2314 			 */
2315 			if (!spintime) {
2316 				sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2317 				cmd[0] = START_STOP;
2318 				cmd[1] = 1;	/* Return immediately */
2319 				memset((void *) &cmd[2], 0, 8);
2320 				cmd[4] = 1;	/* Start spin cycle */
2321 				if (sdkp->device->start_stop_pwr_cond)
2322 					cmd[4] |= 1 << 4;
2323 				scsi_execute_cmd(sdkp->device, cmd,
2324 						 REQ_OP_DRV_IN, NULL, 0,
2325 						 SD_TIMEOUT, sdkp->max_retries,
2326 						 &exec_args);
2327 				spintime_expire = jiffies + 100 * HZ;
2328 				spintime = 1;
2329 			}
2330 			/* Wait 1 second for next try */
2331 			msleep(1000);
2332 			printk(KERN_CONT ".");
2333 
2334 		/*
2335 		 * Wait for USB flash devices with slow firmware.
2336 		 * Yes, this sense key/ASC combination shouldn't
2337 		 * occur here.  It's characteristic of these devices.
2338 		 */
2339 		} else if (sense_valid &&
2340 				sshdr.sense_key == UNIT_ATTENTION &&
2341 				sshdr.asc == 0x28) {
2342 			if (!spintime) {
2343 				spintime_expire = jiffies + 5 * HZ;
2344 				spintime = 1;
2345 			}
2346 			/* Wait 1 second for next try */
2347 			msleep(1000);
2348 		} else {
2349 			/* we don't understand the sense code, so it's
2350 			 * probably pointless to loop */
2351 			if(!spintime) {
2352 				sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2353 				sd_print_sense_hdr(sdkp, &sshdr);
2354 			}
2355 			break;
2356 		}
2357 
2358 	} while (spintime && time_before_eq(jiffies, spintime_expire));
2359 
2360 	if (spintime) {
2361 		if (scsi_status_is_good(the_result))
2362 			printk(KERN_CONT "ready\n");
2363 		else
2364 			printk(KERN_CONT "not responding...\n");
2365 	}
2366 }
2367 
2368 /*
2369  * Determine whether disk supports Data Integrity Field.
2370  */
2371 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2372 {
2373 	struct scsi_device *sdp = sdkp->device;
2374 	u8 type;
2375 
2376 	if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) {
2377 		sdkp->protection_type = 0;
2378 		return 0;
2379 	}
2380 
2381 	type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2382 
2383 	if (type > T10_PI_TYPE3_PROTECTION) {
2384 		sd_printk(KERN_ERR, sdkp, "formatted with unsupported"	\
2385 			  " protection type %u. Disabling disk!\n",
2386 			  type);
2387 		sdkp->protection_type = 0;
2388 		return -ENODEV;
2389 	}
2390 
2391 	sdkp->protection_type = type;
2392 
2393 	return 0;
2394 }
2395 
2396 static void sd_config_protection(struct scsi_disk *sdkp)
2397 {
2398 	struct scsi_device *sdp = sdkp->device;
2399 
2400 	sd_dif_config_host(sdkp);
2401 
2402 	if (!sdkp->protection_type)
2403 		return;
2404 
2405 	if (!scsi_host_dif_capable(sdp->host, sdkp->protection_type)) {
2406 		sd_first_printk(KERN_NOTICE, sdkp,
2407 				"Disabling DIF Type %u protection\n",
2408 				sdkp->protection_type);
2409 		sdkp->protection_type = 0;
2410 	}
2411 
2412 	sd_first_printk(KERN_NOTICE, sdkp, "Enabling DIF Type %u protection\n",
2413 			sdkp->protection_type);
2414 }
2415 
2416 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2417 			struct scsi_sense_hdr *sshdr, int sense_valid,
2418 			int the_result)
2419 {
2420 	if (sense_valid)
2421 		sd_print_sense_hdr(sdkp, sshdr);
2422 	else
2423 		sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2424 
2425 	/*
2426 	 * Set dirty bit for removable devices if not ready -
2427 	 * sometimes drives will not report this properly.
2428 	 */
2429 	if (sdp->removable &&
2430 	    sense_valid && sshdr->sense_key == NOT_READY)
2431 		set_media_not_present(sdkp);
2432 
2433 	/*
2434 	 * We used to set media_present to 0 here to indicate no media
2435 	 * in the drive, but some drives fail read capacity even with
2436 	 * media present, so we can't do that.
2437 	 */
2438 	sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2439 }
2440 
2441 #define RC16_LEN 32
2442 #if RC16_LEN > SD_BUF_SIZE
2443 #error RC16_LEN must not be more than SD_BUF_SIZE
2444 #endif
2445 
2446 #define READ_CAPACITY_RETRIES_ON_RESET	10
2447 
2448 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2449 						unsigned char *buffer)
2450 {
2451 	unsigned char cmd[16];
2452 	struct scsi_sense_hdr sshdr;
2453 	const struct scsi_exec_args exec_args = {
2454 		.sshdr = &sshdr,
2455 	};
2456 	int sense_valid = 0;
2457 	int the_result;
2458 	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2459 	unsigned int alignment;
2460 	unsigned long long lba;
2461 	unsigned sector_size;
2462 
2463 	if (sdp->no_read_capacity_16)
2464 		return -EINVAL;
2465 
2466 	do {
2467 		memset(cmd, 0, 16);
2468 		cmd[0] = SERVICE_ACTION_IN_16;
2469 		cmd[1] = SAI_READ_CAPACITY_16;
2470 		cmd[13] = RC16_LEN;
2471 		memset(buffer, 0, RC16_LEN);
2472 
2473 		the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN,
2474 					      buffer, RC16_LEN, SD_TIMEOUT,
2475 					      sdkp->max_retries, &exec_args);
2476 		if (the_result > 0) {
2477 			if (media_not_present(sdkp, &sshdr))
2478 				return -ENODEV;
2479 
2480 			sense_valid = scsi_sense_valid(&sshdr);
2481 			if (sense_valid &&
2482 			    sshdr.sense_key == ILLEGAL_REQUEST &&
2483 			    (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2484 			    sshdr.ascq == 0x00)
2485 				/* Invalid Command Operation Code or
2486 				 * Invalid Field in CDB, just retry
2487 				 * silently with RC10 */
2488 				return -EINVAL;
2489 			if (sense_valid &&
2490 			    sshdr.sense_key == UNIT_ATTENTION &&
2491 			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2492 				/* Device reset might occur several times,
2493 				 * give it one more chance */
2494 				if (--reset_retries > 0)
2495 					continue;
2496 		}
2497 		retries--;
2498 
2499 	} while (the_result && retries);
2500 
2501 	if (the_result) {
2502 		sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2503 		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2504 		return -EINVAL;
2505 	}
2506 
2507 	sector_size = get_unaligned_be32(&buffer[8]);
2508 	lba = get_unaligned_be64(&buffer[0]);
2509 
2510 	if (sd_read_protection_type(sdkp, buffer) < 0) {
2511 		sdkp->capacity = 0;
2512 		return -ENODEV;
2513 	}
2514 
2515 	/* Logical blocks per physical block exponent */
2516 	sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2517 
2518 	/* RC basis */
2519 	sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2520 
2521 	/* Lowest aligned logical block */
2522 	alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2523 	blk_queue_alignment_offset(sdp->request_queue, alignment);
2524 	if (alignment && sdkp->first_scan)
2525 		sd_printk(KERN_NOTICE, sdkp,
2526 			  "physical block alignment offset: %u\n", alignment);
2527 
2528 	if (buffer[14] & 0x80) { /* LBPME */
2529 		sdkp->lbpme = 1;
2530 
2531 		if (buffer[14] & 0x40) /* LBPRZ */
2532 			sdkp->lbprz = 1;
2533 
2534 		sd_config_discard(sdkp, SD_LBP_WS16);
2535 	}
2536 
2537 	sdkp->capacity = lba + 1;
2538 	return sector_size;
2539 }
2540 
2541 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2542 						unsigned char *buffer)
2543 {
2544 	unsigned char cmd[16];
2545 	struct scsi_sense_hdr sshdr;
2546 	const struct scsi_exec_args exec_args = {
2547 		.sshdr = &sshdr,
2548 	};
2549 	int sense_valid = 0;
2550 	int the_result;
2551 	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2552 	sector_t lba;
2553 	unsigned sector_size;
2554 
2555 	do {
2556 		cmd[0] = READ_CAPACITY;
2557 		memset(&cmd[1], 0, 9);
2558 		memset(buffer, 0, 8);
2559 
2560 		the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, buffer,
2561 					      8, SD_TIMEOUT, sdkp->max_retries,
2562 					      &exec_args);
2563 
2564 		if (media_not_present(sdkp, &sshdr))
2565 			return -ENODEV;
2566 
2567 		if (the_result > 0) {
2568 			sense_valid = scsi_sense_valid(&sshdr);
2569 			if (sense_valid &&
2570 			    sshdr.sense_key == UNIT_ATTENTION &&
2571 			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2572 				/* Device reset might occur several times,
2573 				 * give it one more chance */
2574 				if (--reset_retries > 0)
2575 					continue;
2576 		}
2577 		retries--;
2578 
2579 	} while (the_result && retries);
2580 
2581 	if (the_result) {
2582 		sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2583 		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2584 		return -EINVAL;
2585 	}
2586 
2587 	sector_size = get_unaligned_be32(&buffer[4]);
2588 	lba = get_unaligned_be32(&buffer[0]);
2589 
2590 	if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2591 		/* Some buggy (usb cardreader) devices return an lba of
2592 		   0xffffffff when the want to report a size of 0 (with
2593 		   which they really mean no media is present) */
2594 		sdkp->capacity = 0;
2595 		sdkp->physical_block_size = sector_size;
2596 		return sector_size;
2597 	}
2598 
2599 	sdkp->capacity = lba + 1;
2600 	sdkp->physical_block_size = sector_size;
2601 	return sector_size;
2602 }
2603 
2604 static int sd_try_rc16_first(struct scsi_device *sdp)
2605 {
2606 	if (sdp->host->max_cmd_len < 16)
2607 		return 0;
2608 	if (sdp->try_rc_10_first)
2609 		return 0;
2610 	if (sdp->scsi_level > SCSI_SPC_2)
2611 		return 1;
2612 	if (scsi_device_protection(sdp))
2613 		return 1;
2614 	return 0;
2615 }
2616 
2617 /*
2618  * read disk capacity
2619  */
2620 static void
2621 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2622 {
2623 	int sector_size;
2624 	struct scsi_device *sdp = sdkp->device;
2625 
2626 	if (sd_try_rc16_first(sdp)) {
2627 		sector_size = read_capacity_16(sdkp, sdp, buffer);
2628 		if (sector_size == -EOVERFLOW)
2629 			goto got_data;
2630 		if (sector_size == -ENODEV)
2631 			return;
2632 		if (sector_size < 0)
2633 			sector_size = read_capacity_10(sdkp, sdp, buffer);
2634 		if (sector_size < 0)
2635 			return;
2636 	} else {
2637 		sector_size = read_capacity_10(sdkp, sdp, buffer);
2638 		if (sector_size == -EOVERFLOW)
2639 			goto got_data;
2640 		if (sector_size < 0)
2641 			return;
2642 		if ((sizeof(sdkp->capacity) > 4) &&
2643 		    (sdkp->capacity > 0xffffffffULL)) {
2644 			int old_sector_size = sector_size;
2645 			sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2646 					"Trying to use READ CAPACITY(16).\n");
2647 			sector_size = read_capacity_16(sdkp, sdp, buffer);
2648 			if (sector_size < 0) {
2649 				sd_printk(KERN_NOTICE, sdkp,
2650 					"Using 0xffffffff as device size\n");
2651 				sdkp->capacity = 1 + (sector_t) 0xffffffff;
2652 				sector_size = old_sector_size;
2653 				goto got_data;
2654 			}
2655 			/* Remember that READ CAPACITY(16) succeeded */
2656 			sdp->try_rc_10_first = 0;
2657 		}
2658 	}
2659 
2660 	/* Some devices are known to return the total number of blocks,
2661 	 * not the highest block number.  Some devices have versions
2662 	 * which do this and others which do not.  Some devices we might
2663 	 * suspect of doing this but we don't know for certain.
2664 	 *
2665 	 * If we know the reported capacity is wrong, decrement it.  If
2666 	 * we can only guess, then assume the number of blocks is even
2667 	 * (usually true but not always) and err on the side of lowering
2668 	 * the capacity.
2669 	 */
2670 	if (sdp->fix_capacity ||
2671 	    (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2672 		sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2673 				"from its reported value: %llu\n",
2674 				(unsigned long long) sdkp->capacity);
2675 		--sdkp->capacity;
2676 	}
2677 
2678 got_data:
2679 	if (sector_size == 0) {
2680 		sector_size = 512;
2681 		sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2682 			  "assuming 512.\n");
2683 	}
2684 
2685 	if (sector_size != 512 &&
2686 	    sector_size != 1024 &&
2687 	    sector_size != 2048 &&
2688 	    sector_size != 4096) {
2689 		sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2690 			  sector_size);
2691 		/*
2692 		 * The user might want to re-format the drive with
2693 		 * a supported sectorsize.  Once this happens, it
2694 		 * would be relatively trivial to set the thing up.
2695 		 * For this reason, we leave the thing in the table.
2696 		 */
2697 		sdkp->capacity = 0;
2698 		/*
2699 		 * set a bogus sector size so the normal read/write
2700 		 * logic in the block layer will eventually refuse any
2701 		 * request on this device without tripping over power
2702 		 * of two sector size assumptions
2703 		 */
2704 		sector_size = 512;
2705 	}
2706 	blk_queue_logical_block_size(sdp->request_queue, sector_size);
2707 	blk_queue_physical_block_size(sdp->request_queue,
2708 				      sdkp->physical_block_size);
2709 	sdkp->device->sector_size = sector_size;
2710 
2711 	if (sdkp->capacity > 0xffffffff)
2712 		sdp->use_16_for_rw = 1;
2713 
2714 }
2715 
2716 /*
2717  * Print disk capacity
2718  */
2719 static void
2720 sd_print_capacity(struct scsi_disk *sdkp,
2721 		  sector_t old_capacity)
2722 {
2723 	int sector_size = sdkp->device->sector_size;
2724 	char cap_str_2[10], cap_str_10[10];
2725 
2726 	if (!sdkp->first_scan && old_capacity == sdkp->capacity)
2727 		return;
2728 
2729 	string_get_size(sdkp->capacity, sector_size,
2730 			STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2731 	string_get_size(sdkp->capacity, sector_size,
2732 			STRING_UNITS_10, cap_str_10, sizeof(cap_str_10));
2733 
2734 	sd_printk(KERN_NOTICE, sdkp,
2735 		  "%llu %d-byte logical blocks: (%s/%s)\n",
2736 		  (unsigned long long)sdkp->capacity,
2737 		  sector_size, cap_str_10, cap_str_2);
2738 
2739 	if (sdkp->physical_block_size != sector_size)
2740 		sd_printk(KERN_NOTICE, sdkp,
2741 			  "%u-byte physical blocks\n",
2742 			  sdkp->physical_block_size);
2743 }
2744 
2745 /* called with buffer of length 512 */
2746 static inline int
2747 sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage,
2748 		 unsigned char *buffer, int len, struct scsi_mode_data *data,
2749 		 struct scsi_sense_hdr *sshdr)
2750 {
2751 	/*
2752 	 * If we must use MODE SENSE(10), make sure that the buffer length
2753 	 * is at least 8 bytes so that the mode sense header fits.
2754 	 */
2755 	if (sdkp->device->use_10_for_ms && len < 8)
2756 		len = 8;
2757 
2758 	return scsi_mode_sense(sdkp->device, dbd, modepage, 0, buffer, len,
2759 			       SD_TIMEOUT, sdkp->max_retries, data, sshdr);
2760 }
2761 
2762 /*
2763  * read write protect setting, if possible - called only in sd_revalidate_disk()
2764  * called with buffer of length SD_BUF_SIZE
2765  */
2766 static void
2767 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2768 {
2769 	int res;
2770 	struct scsi_device *sdp = sdkp->device;
2771 	struct scsi_mode_data data;
2772 	int old_wp = sdkp->write_prot;
2773 
2774 	set_disk_ro(sdkp->disk, 0);
2775 	if (sdp->skip_ms_page_3f) {
2776 		sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2777 		return;
2778 	}
2779 
2780 	if (sdp->use_192_bytes_for_3f) {
2781 		res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL);
2782 	} else {
2783 		/*
2784 		 * First attempt: ask for all pages (0x3F), but only 4 bytes.
2785 		 * We have to start carefully: some devices hang if we ask
2786 		 * for more than is available.
2787 		 */
2788 		res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL);
2789 
2790 		/*
2791 		 * Second attempt: ask for page 0 When only page 0 is
2792 		 * implemented, a request for page 3F may return Sense Key
2793 		 * 5: Illegal Request, Sense Code 24: Invalid field in
2794 		 * CDB.
2795 		 */
2796 		if (res < 0)
2797 			res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL);
2798 
2799 		/*
2800 		 * Third attempt: ask 255 bytes, as we did earlier.
2801 		 */
2802 		if (res < 0)
2803 			res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255,
2804 					       &data, NULL);
2805 	}
2806 
2807 	if (res < 0) {
2808 		sd_first_printk(KERN_WARNING, sdkp,
2809 			  "Test WP failed, assume Write Enabled\n");
2810 	} else {
2811 		sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2812 		set_disk_ro(sdkp->disk, sdkp->write_prot);
2813 		if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2814 			sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2815 				  sdkp->write_prot ? "on" : "off");
2816 			sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
2817 		}
2818 	}
2819 }
2820 
2821 /*
2822  * sd_read_cache_type - called only from sd_revalidate_disk()
2823  * called with buffer of length SD_BUF_SIZE
2824  */
2825 static void
2826 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2827 {
2828 	int len = 0, res;
2829 	struct scsi_device *sdp = sdkp->device;
2830 
2831 	int dbd;
2832 	int modepage;
2833 	int first_len;
2834 	struct scsi_mode_data data;
2835 	struct scsi_sense_hdr sshdr;
2836 	int old_wce = sdkp->WCE;
2837 	int old_rcd = sdkp->RCD;
2838 	int old_dpofua = sdkp->DPOFUA;
2839 
2840 
2841 	if (sdkp->cache_override)
2842 		return;
2843 
2844 	first_len = 4;
2845 	if (sdp->skip_ms_page_8) {
2846 		if (sdp->type == TYPE_RBC)
2847 			goto defaults;
2848 		else {
2849 			if (sdp->skip_ms_page_3f)
2850 				goto defaults;
2851 			modepage = 0x3F;
2852 			if (sdp->use_192_bytes_for_3f)
2853 				first_len = 192;
2854 			dbd = 0;
2855 		}
2856 	} else if (sdp->type == TYPE_RBC) {
2857 		modepage = 6;
2858 		dbd = 8;
2859 	} else {
2860 		modepage = 8;
2861 		dbd = 0;
2862 	}
2863 
2864 	/* cautiously ask */
2865 	res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len,
2866 			&data, &sshdr);
2867 
2868 	if (res < 0)
2869 		goto bad_sense;
2870 
2871 	if (!data.header_length) {
2872 		modepage = 6;
2873 		first_len = 0;
2874 		sd_first_printk(KERN_ERR, sdkp,
2875 				"Missing header in MODE_SENSE response\n");
2876 	}
2877 
2878 	/* that went OK, now ask for the proper length */
2879 	len = data.length;
2880 
2881 	/*
2882 	 * We're only interested in the first three bytes, actually.
2883 	 * But the data cache page is defined for the first 20.
2884 	 */
2885 	if (len < 3)
2886 		goto bad_sense;
2887 	else if (len > SD_BUF_SIZE) {
2888 		sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2889 			  "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2890 		len = SD_BUF_SIZE;
2891 	}
2892 	if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2893 		len = 192;
2894 
2895 	/* Get the data */
2896 	if (len > first_len)
2897 		res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len,
2898 				&data, &sshdr);
2899 
2900 	if (!res) {
2901 		int offset = data.header_length + data.block_descriptor_length;
2902 
2903 		while (offset < len) {
2904 			u8 page_code = buffer[offset] & 0x3F;
2905 			u8 spf       = buffer[offset] & 0x40;
2906 
2907 			if (page_code == 8 || page_code == 6) {
2908 				/* We're interested only in the first 3 bytes.
2909 				 */
2910 				if (len - offset <= 2) {
2911 					sd_first_printk(KERN_ERR, sdkp,
2912 						"Incomplete mode parameter "
2913 							"data\n");
2914 					goto defaults;
2915 				} else {
2916 					modepage = page_code;
2917 					goto Page_found;
2918 				}
2919 			} else {
2920 				/* Go to the next page */
2921 				if (spf && len - offset > 3)
2922 					offset += 4 + (buffer[offset+2] << 8) +
2923 						buffer[offset+3];
2924 				else if (!spf && len - offset > 1)
2925 					offset += 2 + buffer[offset+1];
2926 				else {
2927 					sd_first_printk(KERN_ERR, sdkp,
2928 							"Incomplete mode "
2929 							"parameter data\n");
2930 					goto defaults;
2931 				}
2932 			}
2933 		}
2934 
2935 		sd_first_printk(KERN_WARNING, sdkp,
2936 				"No Caching mode page found\n");
2937 		goto defaults;
2938 
2939 	Page_found:
2940 		if (modepage == 8) {
2941 			sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2942 			sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2943 		} else {
2944 			sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2945 			sdkp->RCD = 0;
2946 		}
2947 
2948 		sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2949 		if (sdp->broken_fua) {
2950 			sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2951 			sdkp->DPOFUA = 0;
2952 		} else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
2953 			   !sdkp->device->use_16_for_rw) {
2954 			sd_first_printk(KERN_NOTICE, sdkp,
2955 				  "Uses READ/WRITE(6), disabling FUA\n");
2956 			sdkp->DPOFUA = 0;
2957 		}
2958 
2959 		/* No cache flush allowed for write protected devices */
2960 		if (sdkp->WCE && sdkp->write_prot)
2961 			sdkp->WCE = 0;
2962 
2963 		if (sdkp->first_scan || old_wce != sdkp->WCE ||
2964 		    old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2965 			sd_printk(KERN_NOTICE, sdkp,
2966 				  "Write cache: %s, read cache: %s, %s\n",
2967 				  sdkp->WCE ? "enabled" : "disabled",
2968 				  sdkp->RCD ? "disabled" : "enabled",
2969 				  sdkp->DPOFUA ? "supports DPO and FUA"
2970 				  : "doesn't support DPO or FUA");
2971 
2972 		return;
2973 	}
2974 
2975 bad_sense:
2976 	if (res == -EIO && scsi_sense_valid(&sshdr) &&
2977 	    sshdr.sense_key == ILLEGAL_REQUEST &&
2978 	    sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2979 		/* Invalid field in CDB */
2980 		sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2981 	else
2982 		sd_first_printk(KERN_ERR, sdkp,
2983 				"Asking for cache data failed\n");
2984 
2985 defaults:
2986 	if (sdp->wce_default_on) {
2987 		sd_first_printk(KERN_NOTICE, sdkp,
2988 				"Assuming drive cache: write back\n");
2989 		sdkp->WCE = 1;
2990 	} else {
2991 		sd_first_printk(KERN_WARNING, sdkp,
2992 				"Assuming drive cache: write through\n");
2993 		sdkp->WCE = 0;
2994 	}
2995 	sdkp->RCD = 0;
2996 	sdkp->DPOFUA = 0;
2997 }
2998 
2999 /*
3000  * The ATO bit indicates whether the DIF application tag is available
3001  * for use by the operating system.
3002  */
3003 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
3004 {
3005 	int res, offset;
3006 	struct scsi_device *sdp = sdkp->device;
3007 	struct scsi_mode_data data;
3008 	struct scsi_sense_hdr sshdr;
3009 
3010 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
3011 		return;
3012 
3013 	if (sdkp->protection_type == 0)
3014 		return;
3015 
3016 	res = scsi_mode_sense(sdp, 1, 0x0a, 0, buffer, 36, SD_TIMEOUT,
3017 			      sdkp->max_retries, &data, &sshdr);
3018 
3019 	if (res < 0 || !data.header_length ||
3020 	    data.length < 6) {
3021 		sd_first_printk(KERN_WARNING, sdkp,
3022 			  "getting Control mode page failed, assume no ATO\n");
3023 
3024 		if (res == -EIO && scsi_sense_valid(&sshdr))
3025 			sd_print_sense_hdr(sdkp, &sshdr);
3026 
3027 		return;
3028 	}
3029 
3030 	offset = data.header_length + data.block_descriptor_length;
3031 
3032 	if ((buffer[offset] & 0x3f) != 0x0a) {
3033 		sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
3034 		return;
3035 	}
3036 
3037 	if ((buffer[offset + 5] & 0x80) == 0)
3038 		return;
3039 
3040 	sdkp->ATO = 1;
3041 
3042 	return;
3043 }
3044 
3045 /**
3046  * sd_read_block_limits - Query disk device for preferred I/O sizes.
3047  * @sdkp: disk to query
3048  */
3049 static void sd_read_block_limits(struct scsi_disk *sdkp)
3050 {
3051 	struct scsi_vpd *vpd;
3052 
3053 	rcu_read_lock();
3054 
3055 	vpd = rcu_dereference(sdkp->device->vpd_pgb0);
3056 	if (!vpd || vpd->len < 16)
3057 		goto out;
3058 
3059 	sdkp->min_xfer_blocks = get_unaligned_be16(&vpd->data[6]);
3060 	sdkp->max_xfer_blocks = get_unaligned_be32(&vpd->data[8]);
3061 	sdkp->opt_xfer_blocks = get_unaligned_be32(&vpd->data[12]);
3062 
3063 	if (vpd->len >= 64) {
3064 		unsigned int lba_count, desc_count;
3065 
3066 		sdkp->max_ws_blocks = (u32)get_unaligned_be64(&vpd->data[36]);
3067 
3068 		if (!sdkp->lbpme)
3069 			goto out;
3070 
3071 		lba_count = get_unaligned_be32(&vpd->data[20]);
3072 		desc_count = get_unaligned_be32(&vpd->data[24]);
3073 
3074 		if (lba_count && desc_count)
3075 			sdkp->max_unmap_blocks = lba_count;
3076 
3077 		sdkp->unmap_granularity = get_unaligned_be32(&vpd->data[28]);
3078 
3079 		if (vpd->data[32] & 0x80)
3080 			sdkp->unmap_alignment =
3081 				get_unaligned_be32(&vpd->data[32]) & ~(1 << 31);
3082 
3083 		if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
3084 
3085 			if (sdkp->max_unmap_blocks)
3086 				sd_config_discard(sdkp, SD_LBP_UNMAP);
3087 			else
3088 				sd_config_discard(sdkp, SD_LBP_WS16);
3089 
3090 		} else {	/* LBP VPD page tells us what to use */
3091 			if (sdkp->lbpu && sdkp->max_unmap_blocks)
3092 				sd_config_discard(sdkp, SD_LBP_UNMAP);
3093 			else if (sdkp->lbpws)
3094 				sd_config_discard(sdkp, SD_LBP_WS16);
3095 			else if (sdkp->lbpws10)
3096 				sd_config_discard(sdkp, SD_LBP_WS10);
3097 			else
3098 				sd_config_discard(sdkp, SD_LBP_DISABLE);
3099 		}
3100 	}
3101 
3102  out:
3103 	rcu_read_unlock();
3104 }
3105 
3106 /**
3107  * sd_read_block_characteristics - Query block dev. characteristics
3108  * @sdkp: disk to query
3109  */
3110 static void sd_read_block_characteristics(struct scsi_disk *sdkp)
3111 {
3112 	struct request_queue *q = sdkp->disk->queue;
3113 	struct scsi_vpd *vpd;
3114 	u16 rot;
3115 	u8 zoned;
3116 
3117 	rcu_read_lock();
3118 	vpd = rcu_dereference(sdkp->device->vpd_pgb1);
3119 
3120 	if (!vpd || vpd->len < 8) {
3121 		rcu_read_unlock();
3122 	        return;
3123 	}
3124 
3125 	rot = get_unaligned_be16(&vpd->data[4]);
3126 	zoned = (vpd->data[8] >> 4) & 3;
3127 	rcu_read_unlock();
3128 
3129 	if (rot == 1) {
3130 		blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
3131 		blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
3132 	}
3133 
3134 	if (sdkp->device->type == TYPE_ZBC) {
3135 		/*
3136 		 * Host-managed: Per ZBC and ZAC specifications, writes in
3137 		 * sequential write required zones of host-managed devices must
3138 		 * be aligned to the device physical block size.
3139 		 */
3140 		disk_set_zoned(sdkp->disk, BLK_ZONED_HM);
3141 		blk_queue_zone_write_granularity(q, sdkp->physical_block_size);
3142 	} else {
3143 		sdkp->zoned = zoned;
3144 		if (sdkp->zoned == 1) {
3145 			/* Host-aware */
3146 			disk_set_zoned(sdkp->disk, BLK_ZONED_HA);
3147 		} else {
3148 			/* Regular disk or drive managed disk */
3149 			disk_set_zoned(sdkp->disk, BLK_ZONED_NONE);
3150 		}
3151 	}
3152 
3153 	if (!sdkp->first_scan)
3154 		return;
3155 
3156 	if (blk_queue_is_zoned(q)) {
3157 		sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n",
3158 		      q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware");
3159 	} else {
3160 		if (sdkp->zoned == 1)
3161 			sd_printk(KERN_NOTICE, sdkp,
3162 				  "Host-aware SMR disk used as regular disk\n");
3163 		else if (sdkp->zoned == 2)
3164 			sd_printk(KERN_NOTICE, sdkp,
3165 				  "Drive-managed SMR disk\n");
3166 	}
3167 }
3168 
3169 /**
3170  * sd_read_block_provisioning - Query provisioning VPD page
3171  * @sdkp: disk to query
3172  */
3173 static void sd_read_block_provisioning(struct scsi_disk *sdkp)
3174 {
3175 	struct scsi_vpd *vpd;
3176 
3177 	if (sdkp->lbpme == 0)
3178 		return;
3179 
3180 	rcu_read_lock();
3181 	vpd = rcu_dereference(sdkp->device->vpd_pgb2);
3182 
3183 	if (!vpd || vpd->len < 8) {
3184 		rcu_read_unlock();
3185 		return;
3186 	}
3187 
3188 	sdkp->lbpvpd	= 1;
3189 	sdkp->lbpu	= (vpd->data[5] >> 7) & 1; /* UNMAP */
3190 	sdkp->lbpws	= (vpd->data[5] >> 6) & 1; /* WRITE SAME(16) w/ UNMAP */
3191 	sdkp->lbpws10	= (vpd->data[5] >> 5) & 1; /* WRITE SAME(10) w/ UNMAP */
3192 	rcu_read_unlock();
3193 }
3194 
3195 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
3196 {
3197 	struct scsi_device *sdev = sdkp->device;
3198 
3199 	if (sdev->host->no_write_same) {
3200 		sdev->no_write_same = 1;
3201 
3202 		return;
3203 	}
3204 
3205 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY, 0) < 0) {
3206 		struct scsi_vpd *vpd;
3207 
3208 		sdev->no_report_opcodes = 1;
3209 
3210 		/* Disable WRITE SAME if REPORT SUPPORTED OPERATION
3211 		 * CODES is unsupported and the device has an ATA
3212 		 * Information VPD page (SAT).
3213 		 */
3214 		rcu_read_lock();
3215 		vpd = rcu_dereference(sdev->vpd_pg89);
3216 		if (vpd)
3217 			sdev->no_write_same = 1;
3218 		rcu_read_unlock();
3219 	}
3220 
3221 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16, 0) == 1)
3222 		sdkp->ws16 = 1;
3223 
3224 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME, 0) == 1)
3225 		sdkp->ws10 = 1;
3226 }
3227 
3228 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3229 {
3230 	struct scsi_device *sdev = sdkp->device;
3231 
3232 	if (!sdev->security_supported)
3233 		return;
3234 
3235 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3236 			SECURITY_PROTOCOL_IN, 0) == 1 &&
3237 	    scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3238 			SECURITY_PROTOCOL_OUT, 0) == 1)
3239 		sdkp->security = 1;
3240 }
3241 
3242 static inline sector_t sd64_to_sectors(struct scsi_disk *sdkp, u8 *buf)
3243 {
3244 	return logical_to_sectors(sdkp->device, get_unaligned_be64(buf));
3245 }
3246 
3247 /**
3248  * sd_read_cpr - Query concurrent positioning ranges
3249  * @sdkp:	disk to query
3250  */
3251 static void sd_read_cpr(struct scsi_disk *sdkp)
3252 {
3253 	struct blk_independent_access_ranges *iars = NULL;
3254 	unsigned char *buffer = NULL;
3255 	unsigned int nr_cpr = 0;
3256 	int i, vpd_len, buf_len = SD_BUF_SIZE;
3257 	u8 *desc;
3258 
3259 	/*
3260 	 * We need to have the capacity set first for the block layer to be
3261 	 * able to check the ranges.
3262 	 */
3263 	if (sdkp->first_scan)
3264 		return;
3265 
3266 	if (!sdkp->capacity)
3267 		goto out;
3268 
3269 	/*
3270 	 * Concurrent Positioning Ranges VPD: there can be at most 256 ranges,
3271 	 * leading to a maximum page size of 64 + 256*32 bytes.
3272 	 */
3273 	buf_len = 64 + 256*32;
3274 	buffer = kmalloc(buf_len, GFP_KERNEL);
3275 	if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb9, buffer, buf_len))
3276 		goto out;
3277 
3278 	/* We must have at least a 64B header and one 32B range descriptor */
3279 	vpd_len = get_unaligned_be16(&buffer[2]) + 4;
3280 	if (vpd_len > buf_len || vpd_len < 64 + 32 || (vpd_len & 31)) {
3281 		sd_printk(KERN_ERR, sdkp,
3282 			  "Invalid Concurrent Positioning Ranges VPD page\n");
3283 		goto out;
3284 	}
3285 
3286 	nr_cpr = (vpd_len - 64) / 32;
3287 	if (nr_cpr == 1) {
3288 		nr_cpr = 0;
3289 		goto out;
3290 	}
3291 
3292 	iars = disk_alloc_independent_access_ranges(sdkp->disk, nr_cpr);
3293 	if (!iars) {
3294 		nr_cpr = 0;
3295 		goto out;
3296 	}
3297 
3298 	desc = &buffer[64];
3299 	for (i = 0; i < nr_cpr; i++, desc += 32) {
3300 		if (desc[0] != i) {
3301 			sd_printk(KERN_ERR, sdkp,
3302 				"Invalid Concurrent Positioning Range number\n");
3303 			nr_cpr = 0;
3304 			break;
3305 		}
3306 
3307 		iars->ia_range[i].sector = sd64_to_sectors(sdkp, desc + 8);
3308 		iars->ia_range[i].nr_sectors = sd64_to_sectors(sdkp, desc + 16);
3309 	}
3310 
3311 out:
3312 	disk_set_independent_access_ranges(sdkp->disk, iars);
3313 	if (nr_cpr && sdkp->nr_actuators != nr_cpr) {
3314 		sd_printk(KERN_NOTICE, sdkp,
3315 			  "%u concurrent positioning ranges\n", nr_cpr);
3316 		sdkp->nr_actuators = nr_cpr;
3317 	}
3318 
3319 	kfree(buffer);
3320 }
3321 
3322 static bool sd_validate_min_xfer_size(struct scsi_disk *sdkp)
3323 {
3324 	struct scsi_device *sdp = sdkp->device;
3325 	unsigned int min_xfer_bytes =
3326 		logical_to_bytes(sdp, sdkp->min_xfer_blocks);
3327 
3328 	if (sdkp->min_xfer_blocks == 0)
3329 		return false;
3330 
3331 	if (min_xfer_bytes & (sdkp->physical_block_size - 1)) {
3332 		sd_first_printk(KERN_WARNING, sdkp,
3333 				"Preferred minimum I/O size %u bytes not a " \
3334 				"multiple of physical block size (%u bytes)\n",
3335 				min_xfer_bytes, sdkp->physical_block_size);
3336 		sdkp->min_xfer_blocks = 0;
3337 		return false;
3338 	}
3339 
3340 	sd_first_printk(KERN_INFO, sdkp, "Preferred minimum I/O size %u bytes\n",
3341 			min_xfer_bytes);
3342 	return true;
3343 }
3344 
3345 /*
3346  * Determine the device's preferred I/O size for reads and writes
3347  * unless the reported value is unreasonably small, large, not a
3348  * multiple of the physical block size, or simply garbage.
3349  */
3350 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp,
3351 				      unsigned int dev_max)
3352 {
3353 	struct scsi_device *sdp = sdkp->device;
3354 	unsigned int opt_xfer_bytes =
3355 		logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3356 	unsigned int min_xfer_bytes =
3357 		logical_to_bytes(sdp, sdkp->min_xfer_blocks);
3358 
3359 	if (sdkp->opt_xfer_blocks == 0)
3360 		return false;
3361 
3362 	if (sdkp->opt_xfer_blocks > dev_max) {
3363 		sd_first_printk(KERN_WARNING, sdkp,
3364 				"Optimal transfer size %u logical blocks " \
3365 				"> dev_max (%u logical blocks)\n",
3366 				sdkp->opt_xfer_blocks, dev_max);
3367 		return false;
3368 	}
3369 
3370 	if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) {
3371 		sd_first_printk(KERN_WARNING, sdkp,
3372 				"Optimal transfer size %u logical blocks " \
3373 				"> sd driver limit (%u logical blocks)\n",
3374 				sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS);
3375 		return false;
3376 	}
3377 
3378 	if (opt_xfer_bytes < PAGE_SIZE) {
3379 		sd_first_printk(KERN_WARNING, sdkp,
3380 				"Optimal transfer size %u bytes < " \
3381 				"PAGE_SIZE (%u bytes)\n",
3382 				opt_xfer_bytes, (unsigned int)PAGE_SIZE);
3383 		return false;
3384 	}
3385 
3386 	if (min_xfer_bytes && opt_xfer_bytes % min_xfer_bytes) {
3387 		sd_first_printk(KERN_WARNING, sdkp,
3388 				"Optimal transfer size %u bytes not a " \
3389 				"multiple of preferred minimum block " \
3390 				"size (%u bytes)\n",
3391 				opt_xfer_bytes, min_xfer_bytes);
3392 		return false;
3393 	}
3394 
3395 	if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) {
3396 		sd_first_printk(KERN_WARNING, sdkp,
3397 				"Optimal transfer size %u bytes not a " \
3398 				"multiple of physical block size (%u bytes)\n",
3399 				opt_xfer_bytes, sdkp->physical_block_size);
3400 		return false;
3401 	}
3402 
3403 	sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n",
3404 			opt_xfer_bytes);
3405 	return true;
3406 }
3407 
3408 /**
3409  *	sd_revalidate_disk - called the first time a new disk is seen,
3410  *	performs disk spin up, read_capacity, etc.
3411  *	@disk: struct gendisk we care about
3412  **/
3413 static int sd_revalidate_disk(struct gendisk *disk)
3414 {
3415 	struct scsi_disk *sdkp = scsi_disk(disk);
3416 	struct scsi_device *sdp = sdkp->device;
3417 	struct request_queue *q = sdkp->disk->queue;
3418 	sector_t old_capacity = sdkp->capacity;
3419 	unsigned char *buffer;
3420 	unsigned int dev_max, rw_max;
3421 
3422 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3423 				      "sd_revalidate_disk\n"));
3424 
3425 	/*
3426 	 * If the device is offline, don't try and read capacity or any
3427 	 * of the other niceties.
3428 	 */
3429 	if (!scsi_device_online(sdp))
3430 		goto out;
3431 
3432 	buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3433 	if (!buffer) {
3434 		sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3435 			  "allocation failure.\n");
3436 		goto out;
3437 	}
3438 
3439 	sd_spinup_disk(sdkp);
3440 
3441 	/*
3442 	 * Without media there is no reason to ask; moreover, some devices
3443 	 * react badly if we do.
3444 	 */
3445 	if (sdkp->media_present) {
3446 		sd_read_capacity(sdkp, buffer);
3447 
3448 		/*
3449 		 * set the default to rotational.  All non-rotational devices
3450 		 * support the block characteristics VPD page, which will
3451 		 * cause this to be updated correctly and any device which
3452 		 * doesn't support it should be treated as rotational.
3453 		 */
3454 		blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
3455 		blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q);
3456 
3457 		if (scsi_device_supports_vpd(sdp)) {
3458 			sd_read_block_provisioning(sdkp);
3459 			sd_read_block_limits(sdkp);
3460 			sd_read_block_characteristics(sdkp);
3461 			sd_zbc_read_zones(sdkp, buffer);
3462 			sd_read_cpr(sdkp);
3463 		}
3464 
3465 		sd_print_capacity(sdkp, old_capacity);
3466 
3467 		sd_read_write_protect_flag(sdkp, buffer);
3468 		sd_read_cache_type(sdkp, buffer);
3469 		sd_read_app_tag_own(sdkp, buffer);
3470 		sd_read_write_same(sdkp, buffer);
3471 		sd_read_security(sdkp, buffer);
3472 		sd_config_protection(sdkp);
3473 	}
3474 
3475 	/*
3476 	 * We now have all cache related info, determine how we deal
3477 	 * with flush requests.
3478 	 */
3479 	sd_set_flush_flag(sdkp);
3480 
3481 	/* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3482 	dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3483 
3484 	/* Some devices report a maximum block count for READ/WRITE requests. */
3485 	dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3486 	q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3487 
3488 	if (sd_validate_min_xfer_size(sdkp))
3489 		blk_queue_io_min(sdkp->disk->queue,
3490 				 logical_to_bytes(sdp, sdkp->min_xfer_blocks));
3491 	else
3492 		blk_queue_io_min(sdkp->disk->queue, 0);
3493 
3494 	if (sd_validate_opt_xfer_size(sdkp, dev_max)) {
3495 		q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3496 		rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
3497 	} else {
3498 		q->limits.io_opt = 0;
3499 		rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
3500 				      (sector_t)BLK_DEF_MAX_SECTORS);
3501 	}
3502 
3503 	/*
3504 	 * Limit default to SCSI host optimal sector limit if set. There may be
3505 	 * an impact on performance for when the size of a request exceeds this
3506 	 * host limit.
3507 	 */
3508 	rw_max = min_not_zero(rw_max, sdp->host->opt_sectors);
3509 
3510 	/* Do not exceed controller limit */
3511 	rw_max = min(rw_max, queue_max_hw_sectors(q));
3512 
3513 	/*
3514 	 * Only update max_sectors if previously unset or if the current value
3515 	 * exceeds the capabilities of the hardware.
3516 	 */
3517 	if (sdkp->first_scan ||
3518 	    q->limits.max_sectors > q->limits.max_dev_sectors ||
3519 	    q->limits.max_sectors > q->limits.max_hw_sectors)
3520 		q->limits.max_sectors = rw_max;
3521 
3522 	sdkp->first_scan = 0;
3523 
3524 	set_capacity_and_notify(disk, logical_to_sectors(sdp, sdkp->capacity));
3525 	sd_config_write_same(sdkp);
3526 	kfree(buffer);
3527 
3528 	/*
3529 	 * For a zoned drive, revalidating the zones can be done only once
3530 	 * the gendisk capacity is set. So if this fails, set back the gendisk
3531 	 * capacity to 0.
3532 	 */
3533 	if (sd_zbc_revalidate_zones(sdkp))
3534 		set_capacity_and_notify(disk, 0);
3535 
3536  out:
3537 	return 0;
3538 }
3539 
3540 /**
3541  *	sd_unlock_native_capacity - unlock native capacity
3542  *	@disk: struct gendisk to set capacity for
3543  *
3544  *	Block layer calls this function if it detects that partitions
3545  *	on @disk reach beyond the end of the device.  If the SCSI host
3546  *	implements ->unlock_native_capacity() method, it's invoked to
3547  *	give it a chance to adjust the device capacity.
3548  *
3549  *	CONTEXT:
3550  *	Defined by block layer.  Might sleep.
3551  */
3552 static void sd_unlock_native_capacity(struct gendisk *disk)
3553 {
3554 	struct scsi_device *sdev = scsi_disk(disk)->device;
3555 
3556 	if (sdev->host->hostt->unlock_native_capacity)
3557 		sdev->host->hostt->unlock_native_capacity(sdev);
3558 }
3559 
3560 /**
3561  *	sd_format_disk_name - format disk name
3562  *	@prefix: name prefix - ie. "sd" for SCSI disks
3563  *	@index: index of the disk to format name for
3564  *	@buf: output buffer
3565  *	@buflen: length of the output buffer
3566  *
3567  *	SCSI disk names starts at sda.  The 26th device is sdz and the
3568  *	27th is sdaa.  The last one for two lettered suffix is sdzz
3569  *	which is followed by sdaaa.
3570  *
3571  *	This is basically 26 base counting with one extra 'nil' entry
3572  *	at the beginning from the second digit on and can be
3573  *	determined using similar method as 26 base conversion with the
3574  *	index shifted -1 after each digit is computed.
3575  *
3576  *	CONTEXT:
3577  *	Don't care.
3578  *
3579  *	RETURNS:
3580  *	0 on success, -errno on failure.
3581  */
3582 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3583 {
3584 	const int base = 'z' - 'a' + 1;
3585 	char *begin = buf + strlen(prefix);
3586 	char *end = buf + buflen;
3587 	char *p;
3588 	int unit;
3589 
3590 	p = end - 1;
3591 	*p = '\0';
3592 	unit = base;
3593 	do {
3594 		if (p == begin)
3595 			return -EINVAL;
3596 		*--p = 'a' + (index % unit);
3597 		index = (index / unit) - 1;
3598 	} while (index >= 0);
3599 
3600 	memmove(begin, p, end - p);
3601 	memcpy(buf, prefix, strlen(prefix));
3602 
3603 	return 0;
3604 }
3605 
3606 /**
3607  *	sd_probe - called during driver initialization and whenever a
3608  *	new scsi device is attached to the system. It is called once
3609  *	for each scsi device (not just disks) present.
3610  *	@dev: pointer to device object
3611  *
3612  *	Returns 0 if successful (or not interested in this scsi device
3613  *	(e.g. scanner)); 1 when there is an error.
3614  *
3615  *	Note: this function is invoked from the scsi mid-level.
3616  *	This function sets up the mapping between a given
3617  *	<host,channel,id,lun> (found in sdp) and new device name
3618  *	(e.g. /dev/sda). More precisely it is the block device major
3619  *	and minor number that is chosen here.
3620  *
3621  *	Assume sd_probe is not re-entrant (for time being)
3622  *	Also think about sd_probe() and sd_remove() running coincidentally.
3623  **/
3624 static int sd_probe(struct device *dev)
3625 {
3626 	struct scsi_device *sdp = to_scsi_device(dev);
3627 	struct scsi_disk *sdkp;
3628 	struct gendisk *gd;
3629 	int index;
3630 	int error;
3631 
3632 	scsi_autopm_get_device(sdp);
3633 	error = -ENODEV;
3634 	if (sdp->type != TYPE_DISK &&
3635 	    sdp->type != TYPE_ZBC &&
3636 	    sdp->type != TYPE_MOD &&
3637 	    sdp->type != TYPE_RBC)
3638 		goto out;
3639 
3640 	if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) && sdp->type == TYPE_ZBC) {
3641 		sdev_printk(KERN_WARNING, sdp,
3642 			    "Unsupported ZBC host-managed device.\n");
3643 		goto out;
3644 	}
3645 
3646 	SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3647 					"sd_probe\n"));
3648 
3649 	error = -ENOMEM;
3650 	sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3651 	if (!sdkp)
3652 		goto out;
3653 
3654 	gd = blk_mq_alloc_disk_for_queue(sdp->request_queue,
3655 					 &sd_bio_compl_lkclass);
3656 	if (!gd)
3657 		goto out_free;
3658 
3659 	index = ida_alloc(&sd_index_ida, GFP_KERNEL);
3660 	if (index < 0) {
3661 		sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3662 		goto out_put;
3663 	}
3664 
3665 	error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3666 	if (error) {
3667 		sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3668 		goto out_free_index;
3669 	}
3670 
3671 	sdkp->device = sdp;
3672 	sdkp->disk = gd;
3673 	sdkp->index = index;
3674 	sdkp->max_retries = SD_MAX_RETRIES;
3675 	atomic_set(&sdkp->openers, 0);
3676 	atomic_set(&sdkp->device->ioerr_cnt, 0);
3677 
3678 	if (!sdp->request_queue->rq_timeout) {
3679 		if (sdp->type != TYPE_MOD)
3680 			blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3681 		else
3682 			blk_queue_rq_timeout(sdp->request_queue,
3683 					     SD_MOD_TIMEOUT);
3684 	}
3685 
3686 	device_initialize(&sdkp->disk_dev);
3687 	sdkp->disk_dev.parent = get_device(dev);
3688 	sdkp->disk_dev.class = &sd_disk_class;
3689 	dev_set_name(&sdkp->disk_dev, "%s", dev_name(dev));
3690 
3691 	error = device_add(&sdkp->disk_dev);
3692 	if (error) {
3693 		put_device(&sdkp->disk_dev);
3694 		goto out;
3695 	}
3696 
3697 	dev_set_drvdata(dev, sdkp);
3698 
3699 	gd->major = sd_major((index & 0xf0) >> 4);
3700 	gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3701 	gd->minors = SD_MINORS;
3702 
3703 	gd->fops = &sd_fops;
3704 	gd->private_data = sdkp;
3705 
3706 	/* defaults, until the device tells us otherwise */
3707 	sdp->sector_size = 512;
3708 	sdkp->capacity = 0;
3709 	sdkp->media_present = 1;
3710 	sdkp->write_prot = 0;
3711 	sdkp->cache_override = 0;
3712 	sdkp->WCE = 0;
3713 	sdkp->RCD = 0;
3714 	sdkp->ATO = 0;
3715 	sdkp->first_scan = 1;
3716 	sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3717 
3718 	sd_revalidate_disk(gd);
3719 
3720 	if (sdp->removable) {
3721 		gd->flags |= GENHD_FL_REMOVABLE;
3722 		gd->events |= DISK_EVENT_MEDIA_CHANGE;
3723 		gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT;
3724 	}
3725 
3726 	blk_pm_runtime_init(sdp->request_queue, dev);
3727 	if (sdp->rpm_autosuspend) {
3728 		pm_runtime_set_autosuspend_delay(dev,
3729 			sdp->host->hostt->rpm_autosuspend_delay);
3730 	}
3731 
3732 	error = device_add_disk(dev, gd, NULL);
3733 	if (error) {
3734 		put_device(&sdkp->disk_dev);
3735 		put_disk(gd);
3736 		goto out;
3737 	}
3738 
3739 	if (sdkp->security) {
3740 		sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit);
3741 		if (sdkp->opal_dev)
3742 			sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
3743 	}
3744 
3745 	sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3746 		  sdp->removable ? "removable " : "");
3747 	scsi_autopm_put_device(sdp);
3748 
3749 	return 0;
3750 
3751  out_free_index:
3752 	ida_free(&sd_index_ida, index);
3753  out_put:
3754 	put_disk(gd);
3755  out_free:
3756 	kfree(sdkp);
3757  out:
3758 	scsi_autopm_put_device(sdp);
3759 	return error;
3760 }
3761 
3762 /**
3763  *	sd_remove - called whenever a scsi disk (previously recognized by
3764  *	sd_probe) is detached from the system. It is called (potentially
3765  *	multiple times) during sd module unload.
3766  *	@dev: pointer to device object
3767  *
3768  *	Note: this function is invoked from the scsi mid-level.
3769  *	This function potentially frees up a device name (e.g. /dev/sdc)
3770  *	that could be re-used by a subsequent sd_probe().
3771  *	This function is not called when the built-in sd driver is "exit-ed".
3772  **/
3773 static int sd_remove(struct device *dev)
3774 {
3775 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3776 
3777 	scsi_autopm_get_device(sdkp->device);
3778 
3779 	device_del(&sdkp->disk_dev);
3780 	del_gendisk(sdkp->disk);
3781 	if (!sdkp->suspended)
3782 		sd_shutdown(dev);
3783 
3784 	put_disk(sdkp->disk);
3785 	return 0;
3786 }
3787 
3788 static void scsi_disk_release(struct device *dev)
3789 {
3790 	struct scsi_disk *sdkp = to_scsi_disk(dev);
3791 
3792 	ida_free(&sd_index_ida, sdkp->index);
3793 	sd_zbc_free_zone_info(sdkp);
3794 	put_device(&sdkp->device->sdev_gendev);
3795 	free_opal_dev(sdkp->opal_dev);
3796 
3797 	kfree(sdkp);
3798 }
3799 
3800 static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3801 {
3802 	unsigned char cmd[6] = { START_STOP };	/* START_VALID */
3803 	struct scsi_sense_hdr sshdr;
3804 	const struct scsi_exec_args exec_args = {
3805 		.sshdr = &sshdr,
3806 		.req_flags = BLK_MQ_REQ_PM,
3807 	};
3808 	struct scsi_device *sdp = sdkp->device;
3809 	int res;
3810 
3811 	if (start)
3812 		cmd[4] |= 1;	/* START */
3813 
3814 	if (sdp->start_stop_pwr_cond)
3815 		cmd[4] |= start ? 1 << 4 : 3 << 4;	/* Active or Standby */
3816 
3817 	if (!scsi_device_online(sdp))
3818 		return -ENODEV;
3819 
3820 	res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, SD_TIMEOUT,
3821 			       sdkp->max_retries, &exec_args);
3822 	if (res) {
3823 		sd_print_result(sdkp, "Start/Stop Unit failed", res);
3824 		if (res > 0 && scsi_sense_valid(&sshdr)) {
3825 			sd_print_sense_hdr(sdkp, &sshdr);
3826 			/* 0x3a is medium not present */
3827 			if (sshdr.asc == 0x3a)
3828 				res = 0;
3829 		}
3830 	}
3831 
3832 	/* SCSI error codes must not go to the generic layer */
3833 	if (res)
3834 		return -EIO;
3835 
3836 	return 0;
3837 }
3838 
3839 /*
3840  * Send a SYNCHRONIZE CACHE instruction down to the device through
3841  * the normal SCSI command structure.  Wait for the command to
3842  * complete.
3843  */
3844 static void sd_shutdown(struct device *dev)
3845 {
3846 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3847 
3848 	if (!sdkp)
3849 		return;         /* this can happen */
3850 
3851 	if (pm_runtime_suspended(dev))
3852 		return;
3853 
3854 	if (sdkp->WCE && sdkp->media_present) {
3855 		sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3856 		sd_sync_cache(sdkp, NULL);
3857 	}
3858 
3859 	if ((system_state != SYSTEM_RESTART &&
3860 	     sdkp->device->manage_system_start_stop) ||
3861 	    (system_state == SYSTEM_POWER_OFF &&
3862 	     sdkp->device->manage_shutdown)) {
3863 		sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3864 		sd_start_stop_device(sdkp, 0);
3865 	}
3866 }
3867 
3868 static inline bool sd_do_start_stop(struct scsi_device *sdev, bool runtime)
3869 {
3870 	return (sdev->manage_system_start_stop && !runtime) ||
3871 		(sdev->manage_runtime_start_stop && runtime);
3872 }
3873 
3874 static int sd_suspend_common(struct device *dev, bool runtime)
3875 {
3876 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3877 	struct scsi_sense_hdr sshdr;
3878 	int ret = 0;
3879 
3880 	if (!sdkp)	/* E.g.: runtime suspend following sd_remove() */
3881 		return 0;
3882 
3883 	if (sdkp->WCE && sdkp->media_present) {
3884 		if (!sdkp->device->silence_suspend)
3885 			sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3886 		ret = sd_sync_cache(sdkp, &sshdr);
3887 
3888 		if (ret) {
3889 			/* ignore OFFLINE device */
3890 			if (ret == -ENODEV)
3891 				return 0;
3892 
3893 			if (!scsi_sense_valid(&sshdr) ||
3894 			    sshdr.sense_key != ILLEGAL_REQUEST)
3895 				return ret;
3896 
3897 			/*
3898 			 * sshdr.sense_key == ILLEGAL_REQUEST means this drive
3899 			 * doesn't support sync. There's not much to do and
3900 			 * suspend shouldn't fail.
3901 			 */
3902 			ret = 0;
3903 		}
3904 	}
3905 
3906 	if (sd_do_start_stop(sdkp->device, runtime)) {
3907 		if (!sdkp->device->silence_suspend)
3908 			sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3909 		/* an error is not worth aborting a system sleep */
3910 		ret = sd_start_stop_device(sdkp, 0);
3911 		if (!runtime)
3912 			ret = 0;
3913 	}
3914 
3915 	if (!ret)
3916 		sdkp->suspended = true;
3917 
3918 	return ret;
3919 }
3920 
3921 static int sd_suspend_system(struct device *dev)
3922 {
3923 	if (pm_runtime_suspended(dev))
3924 		return 0;
3925 
3926 	return sd_suspend_common(dev, false);
3927 }
3928 
3929 static int sd_suspend_runtime(struct device *dev)
3930 {
3931 	return sd_suspend_common(dev, true);
3932 }
3933 
3934 static int sd_resume(struct device *dev, bool runtime)
3935 {
3936 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3937 	int ret;
3938 
3939 	if (!sdkp)	/* E.g.: runtime resume at the start of sd_probe() */
3940 		return 0;
3941 
3942 	if (!sd_do_start_stop(sdkp->device, runtime)) {
3943 		sdkp->suspended = false;
3944 		return 0;
3945 	}
3946 
3947 	sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3948 	ret = sd_start_stop_device(sdkp, 1);
3949 	if (!ret) {
3950 		opal_unlock_from_suspend(sdkp->opal_dev);
3951 		sdkp->suspended = false;
3952 	}
3953 
3954 	return ret;
3955 }
3956 
3957 static int sd_resume_system(struct device *dev)
3958 {
3959 	if (pm_runtime_suspended(dev))
3960 		return 0;
3961 
3962 	return sd_resume(dev, false);
3963 }
3964 
3965 static int sd_resume_runtime(struct device *dev)
3966 {
3967 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3968 	struct scsi_device *sdp;
3969 
3970 	if (!sdkp)	/* E.g.: runtime resume at the start of sd_probe() */
3971 		return 0;
3972 
3973 	sdp = sdkp->device;
3974 
3975 	if (sdp->ignore_media_change) {
3976 		/* clear the device's sense data */
3977 		static const u8 cmd[10] = { REQUEST_SENSE };
3978 		const struct scsi_exec_args exec_args = {
3979 			.req_flags = BLK_MQ_REQ_PM,
3980 		};
3981 
3982 		if (scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0,
3983 				     sdp->request_queue->rq_timeout, 1,
3984 				     &exec_args))
3985 			sd_printk(KERN_NOTICE, sdkp,
3986 				  "Failed to clear sense data\n");
3987 	}
3988 
3989 	return sd_resume(dev, true);
3990 }
3991 
3992 static const struct dev_pm_ops sd_pm_ops = {
3993 	.suspend		= sd_suspend_system,
3994 	.resume			= sd_resume_system,
3995 	.poweroff		= sd_suspend_system,
3996 	.restore		= sd_resume_system,
3997 	.runtime_suspend	= sd_suspend_runtime,
3998 	.runtime_resume		= sd_resume_runtime,
3999 };
4000 
4001 static struct scsi_driver sd_template = {
4002 	.gendrv = {
4003 		.name		= "sd",
4004 		.owner		= THIS_MODULE,
4005 		.probe		= sd_probe,
4006 		.probe_type	= PROBE_PREFER_ASYNCHRONOUS,
4007 		.remove		= sd_remove,
4008 		.shutdown	= sd_shutdown,
4009 		.pm		= &sd_pm_ops,
4010 	},
4011 	.rescan			= sd_rescan,
4012 	.init_command		= sd_init_command,
4013 	.uninit_command		= sd_uninit_command,
4014 	.done			= sd_done,
4015 	.eh_action		= sd_eh_action,
4016 	.eh_reset		= sd_eh_reset,
4017 };
4018 
4019 /**
4020  *	init_sd - entry point for this driver (both when built in or when
4021  *	a module).
4022  *
4023  *	Note: this function registers this driver with the scsi mid-level.
4024  **/
4025 static int __init init_sd(void)
4026 {
4027 	int majors = 0, i, err;
4028 
4029 	SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
4030 
4031 	for (i = 0; i < SD_MAJORS; i++) {
4032 		if (__register_blkdev(sd_major(i), "sd", sd_default_probe))
4033 			continue;
4034 		majors++;
4035 	}
4036 
4037 	if (!majors)
4038 		return -ENODEV;
4039 
4040 	err = class_register(&sd_disk_class);
4041 	if (err)
4042 		goto err_out;
4043 
4044 	sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0);
4045 	if (!sd_page_pool) {
4046 		printk(KERN_ERR "sd: can't init discard page pool\n");
4047 		err = -ENOMEM;
4048 		goto err_out_class;
4049 	}
4050 
4051 	err = scsi_register_driver(&sd_template.gendrv);
4052 	if (err)
4053 		goto err_out_driver;
4054 
4055 	return 0;
4056 
4057 err_out_driver:
4058 	mempool_destroy(sd_page_pool);
4059 err_out_class:
4060 	class_unregister(&sd_disk_class);
4061 err_out:
4062 	for (i = 0; i < SD_MAJORS; i++)
4063 		unregister_blkdev(sd_major(i), "sd");
4064 	return err;
4065 }
4066 
4067 /**
4068  *	exit_sd - exit point for this driver (when it is a module).
4069  *
4070  *	Note: this function unregisters this driver from the scsi mid-level.
4071  **/
4072 static void __exit exit_sd(void)
4073 {
4074 	int i;
4075 
4076 	SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
4077 
4078 	scsi_unregister_driver(&sd_template.gendrv);
4079 	mempool_destroy(sd_page_pool);
4080 
4081 	class_unregister(&sd_disk_class);
4082 
4083 	for (i = 0; i < SD_MAJORS; i++)
4084 		unregister_blkdev(sd_major(i), "sd");
4085 }
4086 
4087 module_init(init_sd);
4088 module_exit(exit_sd);
4089 
4090 void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
4091 {
4092 	scsi_print_sense_hdr(sdkp->device,
4093 			     sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
4094 }
4095 
4096 void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result)
4097 {
4098 	const char *hb_string = scsi_hostbyte_string(result);
4099 
4100 	if (hb_string)
4101 		sd_printk(KERN_INFO, sdkp,
4102 			  "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
4103 			  hb_string ? hb_string : "invalid",
4104 			  "DRIVER_OK");
4105 	else
4106 		sd_printk(KERN_INFO, sdkp,
4107 			  "%s: Result: hostbyte=0x%02x driverbyte=%s\n",
4108 			  msg, host_byte(result), "DRIVER_OK");
4109 }
4110