xref: /linux/drivers/scsi/sd.c (revision a7dff3ad4787381a3aa831d558fb720b8f354435)
1 /*
2  *      sd.c Copyright (C) 1992 Drew Eckhardt
3  *           Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
4  *
5  *      Linux scsi disk driver
6  *              Initial versions: Drew Eckhardt
7  *              Subsequent revisions: Eric Youngdale
8  *	Modification history:
9  *       - Drew Eckhardt <drew@colorado.edu> original
10  *       - Eric Youngdale <eric@andante.org> add scatter-gather, multiple
11  *         outstanding request, and other enhancements.
12  *         Support loadable low-level scsi drivers.
13  *       - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using
14  *         eight major numbers.
15  *       - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
16  *	 - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in
17  *	   sd_init and cleanups.
18  *	 - Alex Davis <letmein@erols.com> Fix problem where partition info
19  *	   not being read in sd_open. Fix problem where removable media
20  *	   could be ejected after sd_open.
21  *	 - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
22  *	 - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox
23  *	   <willy@debian.org>, Kurt Garloff <garloff@suse.de>:
24  *	   Support 32k/1M disks.
25  *
26  *	Logging policy (needs CONFIG_SCSI_LOGGING defined):
27  *	 - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
28  *	 - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
29  *	 - entering sd_ioctl: SCSI_LOG_IOCTL level 1
30  *	 - entering other commands: SCSI_LOG_HLQUEUE level 3
31  *	Note: when the logging level is set by the user, it must be greater
32  *	than the level indicated above to trigger output.
33  */
34 
35 #include <linux/module.h>
36 #include <linux/fs.h>
37 #include <linux/kernel.h>
38 #include <linux/mm.h>
39 #include <linux/bio.h>
40 #include <linux/genhd.h>
41 #include <linux/hdreg.h>
42 #include <linux/errno.h>
43 #include <linux/idr.h>
44 #include <linux/interrupt.h>
45 #include <linux/init.h>
46 #include <linux/blkdev.h>
47 #include <linux/blkpg.h>
48 #include <linux/blk-pm.h>
49 #include <linux/delay.h>
50 #include <linux/mutex.h>
51 #include <linux/string_helpers.h>
52 #include <linux/async.h>
53 #include <linux/slab.h>
54 #include <linux/sed-opal.h>
55 #include <linux/pm_runtime.h>
56 #include <linux/pr.h>
57 #include <linux/t10-pi.h>
58 #include <linux/uaccess.h>
59 #include <asm/unaligned.h>
60 
61 #include <scsi/scsi.h>
62 #include <scsi/scsi_cmnd.h>
63 #include <scsi/scsi_dbg.h>
64 #include <scsi/scsi_device.h>
65 #include <scsi/scsi_driver.h>
66 #include <scsi/scsi_eh.h>
67 #include <scsi/scsi_host.h>
68 #include <scsi/scsi_ioctl.h>
69 #include <scsi/scsicam.h>
70 
71 #include "sd.h"
72 #include "scsi_priv.h"
73 #include "scsi_logging.h"
74 
75 MODULE_AUTHOR("Eric Youngdale");
76 MODULE_DESCRIPTION("SCSI disk (sd) driver");
77 MODULE_LICENSE("GPL");
78 
79 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
95 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
96 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
97 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
98 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
99 
100 #if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT)
101 #define SD_MINORS	16
102 #else
103 #define SD_MINORS	0
104 #endif
105 
106 static void sd_config_discard(struct scsi_disk *, unsigned int);
107 static void sd_config_write_same(struct scsi_disk *);
108 static int  sd_revalidate_disk(struct gendisk *);
109 static void sd_unlock_native_capacity(struct gendisk *disk);
110 static int  sd_probe(struct device *);
111 static int  sd_remove(struct device *);
112 static void sd_shutdown(struct device *);
113 static int sd_suspend_system(struct device *);
114 static int sd_suspend_runtime(struct device *);
115 static int sd_resume(struct device *);
116 static void sd_rescan(struct device *);
117 static blk_status_t sd_init_command(struct scsi_cmnd *SCpnt);
118 static void sd_uninit_command(struct scsi_cmnd *SCpnt);
119 static int sd_done(struct scsi_cmnd *);
120 static void sd_eh_reset(struct scsi_cmnd *);
121 static int sd_eh_action(struct scsi_cmnd *, int);
122 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
123 static void scsi_disk_release(struct device *cdev);
124 static void sd_print_sense_hdr(struct scsi_disk *, struct scsi_sense_hdr *);
125 static void sd_print_result(const struct scsi_disk *, const char *, int);
126 
127 static DEFINE_IDA(sd_index_ida);
128 
129 /* This semaphore is used to mediate the 0->1 reference get in the
130  * face of object destruction (i.e. we can't allow a get on an
131  * object after last put) */
132 static DEFINE_MUTEX(sd_ref_mutex);
133 
134 static struct kmem_cache *sd_cdb_cache;
135 static mempool_t *sd_cdb_pool;
136 static mempool_t *sd_page_pool;
137 
138 static const char *sd_cache_types[] = {
139 	"write through", "none", "write back",
140 	"write back, no read (daft)"
141 };
142 
143 static void sd_set_flush_flag(struct scsi_disk *sdkp)
144 {
145 	bool wc = false, fua = false;
146 
147 	if (sdkp->WCE) {
148 		wc = true;
149 		if (sdkp->DPOFUA)
150 			fua = true;
151 	}
152 
153 	blk_queue_write_cache(sdkp->disk->queue, wc, fua);
154 }
155 
156 static ssize_t
157 cache_type_store(struct device *dev, struct device_attribute *attr,
158 		 const char *buf, size_t count)
159 {
160 	int ct, rcd, wce, sp;
161 	struct scsi_disk *sdkp = to_scsi_disk(dev);
162 	struct scsi_device *sdp = sdkp->device;
163 	char buffer[64];
164 	char *buffer_data;
165 	struct scsi_mode_data data;
166 	struct scsi_sense_hdr sshdr;
167 	static const char temp[] = "temporary ";
168 	int len;
169 
170 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
171 		/* no cache control on RBC devices; theoretically they
172 		 * can do it, but there's probably so many exceptions
173 		 * it's not worth the risk */
174 		return -EINVAL;
175 
176 	if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
177 		buf += sizeof(temp) - 1;
178 		sdkp->cache_override = 1;
179 	} else {
180 		sdkp->cache_override = 0;
181 	}
182 
183 	ct = sysfs_match_string(sd_cache_types, buf);
184 	if (ct < 0)
185 		return -EINVAL;
186 
187 	rcd = ct & 0x01 ? 1 : 0;
188 	wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
189 
190 	if (sdkp->cache_override) {
191 		sdkp->WCE = wce;
192 		sdkp->RCD = rcd;
193 		sd_set_flush_flag(sdkp);
194 		return count;
195 	}
196 
197 	if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT,
198 			    SD_MAX_RETRIES, &data, NULL))
199 		return -EINVAL;
200 	len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
201 		  data.block_descriptor_length);
202 	buffer_data = buffer + data.header_length +
203 		data.block_descriptor_length;
204 	buffer_data[2] &= ~0x05;
205 	buffer_data[2] |= wce << 2 | rcd;
206 	sp = buffer_data[0] & 0x80 ? 1 : 0;
207 	buffer_data[0] &= ~0x80;
208 
209 	/*
210 	 * Ensure WP, DPOFUA, and RESERVED fields are cleared in
211 	 * received mode parameter buffer before doing MODE SELECT.
212 	 */
213 	data.device_specific = 0;
214 
215 	if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT,
216 			     SD_MAX_RETRIES, &data, &sshdr)) {
217 		if (scsi_sense_valid(&sshdr))
218 			sd_print_sense_hdr(sdkp, &sshdr);
219 		return -EINVAL;
220 	}
221 	revalidate_disk(sdkp->disk);
222 	return count;
223 }
224 
225 static ssize_t
226 manage_start_stop_show(struct device *dev, struct device_attribute *attr,
227 		       char *buf)
228 {
229 	struct scsi_disk *sdkp = to_scsi_disk(dev);
230 	struct scsi_device *sdp = sdkp->device;
231 
232 	return sprintf(buf, "%u\n", sdp->manage_start_stop);
233 }
234 
235 static ssize_t
236 manage_start_stop_store(struct device *dev, struct device_attribute *attr,
237 			const char *buf, size_t count)
238 {
239 	struct scsi_disk *sdkp = to_scsi_disk(dev);
240 	struct scsi_device *sdp = sdkp->device;
241 	bool v;
242 
243 	if (!capable(CAP_SYS_ADMIN))
244 		return -EACCES;
245 
246 	if (kstrtobool(buf, &v))
247 		return -EINVAL;
248 
249 	sdp->manage_start_stop = v;
250 
251 	return count;
252 }
253 static DEVICE_ATTR_RW(manage_start_stop);
254 
255 static ssize_t
256 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
257 {
258 	struct scsi_disk *sdkp = to_scsi_disk(dev);
259 
260 	return sprintf(buf, "%u\n", sdkp->device->allow_restart);
261 }
262 
263 static ssize_t
264 allow_restart_store(struct device *dev, struct device_attribute *attr,
265 		    const char *buf, size_t count)
266 {
267 	bool v;
268 	struct scsi_disk *sdkp = to_scsi_disk(dev);
269 	struct scsi_device *sdp = sdkp->device;
270 
271 	if (!capable(CAP_SYS_ADMIN))
272 		return -EACCES;
273 
274 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
275 		return -EINVAL;
276 
277 	if (kstrtobool(buf, &v))
278 		return -EINVAL;
279 
280 	sdp->allow_restart = v;
281 
282 	return count;
283 }
284 static DEVICE_ATTR_RW(allow_restart);
285 
286 static ssize_t
287 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
288 {
289 	struct scsi_disk *sdkp = to_scsi_disk(dev);
290 	int ct = sdkp->RCD + 2*sdkp->WCE;
291 
292 	return sprintf(buf, "%s\n", sd_cache_types[ct]);
293 }
294 static DEVICE_ATTR_RW(cache_type);
295 
296 static ssize_t
297 FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
298 {
299 	struct scsi_disk *sdkp = to_scsi_disk(dev);
300 
301 	return sprintf(buf, "%u\n", sdkp->DPOFUA);
302 }
303 static DEVICE_ATTR_RO(FUA);
304 
305 static ssize_t
306 protection_type_show(struct device *dev, struct device_attribute *attr,
307 		     char *buf)
308 {
309 	struct scsi_disk *sdkp = to_scsi_disk(dev);
310 
311 	return sprintf(buf, "%u\n", sdkp->protection_type);
312 }
313 
314 static ssize_t
315 protection_type_store(struct device *dev, struct device_attribute *attr,
316 		      const char *buf, size_t count)
317 {
318 	struct scsi_disk *sdkp = to_scsi_disk(dev);
319 	unsigned int val;
320 	int err;
321 
322 	if (!capable(CAP_SYS_ADMIN))
323 		return -EACCES;
324 
325 	err = kstrtouint(buf, 10, &val);
326 
327 	if (err)
328 		return err;
329 
330 	if (val <= T10_PI_TYPE3_PROTECTION)
331 		sdkp->protection_type = val;
332 
333 	return count;
334 }
335 static DEVICE_ATTR_RW(protection_type);
336 
337 static ssize_t
338 protection_mode_show(struct device *dev, struct device_attribute *attr,
339 		     char *buf)
340 {
341 	struct scsi_disk *sdkp = to_scsi_disk(dev);
342 	struct scsi_device *sdp = sdkp->device;
343 	unsigned int dif, dix;
344 
345 	dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
346 	dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
347 
348 	if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
349 		dif = 0;
350 		dix = 1;
351 	}
352 
353 	if (!dif && !dix)
354 		return sprintf(buf, "none\n");
355 
356 	return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
357 }
358 static DEVICE_ATTR_RO(protection_mode);
359 
360 static ssize_t
361 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
362 {
363 	struct scsi_disk *sdkp = to_scsi_disk(dev);
364 
365 	return sprintf(buf, "%u\n", sdkp->ATO);
366 }
367 static DEVICE_ATTR_RO(app_tag_own);
368 
369 static ssize_t
370 thin_provisioning_show(struct device *dev, struct device_attribute *attr,
371 		       char *buf)
372 {
373 	struct scsi_disk *sdkp = to_scsi_disk(dev);
374 
375 	return sprintf(buf, "%u\n", sdkp->lbpme);
376 }
377 static DEVICE_ATTR_RO(thin_provisioning);
378 
379 /* sysfs_match_string() requires dense arrays */
380 static const char *lbp_mode[] = {
381 	[SD_LBP_FULL]		= "full",
382 	[SD_LBP_UNMAP]		= "unmap",
383 	[SD_LBP_WS16]		= "writesame_16",
384 	[SD_LBP_WS10]		= "writesame_10",
385 	[SD_LBP_ZERO]		= "writesame_zero",
386 	[SD_LBP_DISABLE]	= "disabled",
387 };
388 
389 static ssize_t
390 provisioning_mode_show(struct device *dev, struct device_attribute *attr,
391 		       char *buf)
392 {
393 	struct scsi_disk *sdkp = to_scsi_disk(dev);
394 
395 	return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
396 }
397 
398 static ssize_t
399 provisioning_mode_store(struct device *dev, struct device_attribute *attr,
400 			const char *buf, size_t count)
401 {
402 	struct scsi_disk *sdkp = to_scsi_disk(dev);
403 	struct scsi_device *sdp = sdkp->device;
404 	int mode;
405 
406 	if (!capable(CAP_SYS_ADMIN))
407 		return -EACCES;
408 
409 	if (sd_is_zoned(sdkp)) {
410 		sd_config_discard(sdkp, SD_LBP_DISABLE);
411 		return count;
412 	}
413 
414 	if (sdp->type != TYPE_DISK)
415 		return -EINVAL;
416 
417 	mode = sysfs_match_string(lbp_mode, buf);
418 	if (mode < 0)
419 		return -EINVAL;
420 
421 	sd_config_discard(sdkp, mode);
422 
423 	return count;
424 }
425 static DEVICE_ATTR_RW(provisioning_mode);
426 
427 /* sysfs_match_string() requires dense arrays */
428 static const char *zeroing_mode[] = {
429 	[SD_ZERO_WRITE]		= "write",
430 	[SD_ZERO_WS]		= "writesame",
431 	[SD_ZERO_WS16_UNMAP]	= "writesame_16_unmap",
432 	[SD_ZERO_WS10_UNMAP]	= "writesame_10_unmap",
433 };
434 
435 static ssize_t
436 zeroing_mode_show(struct device *dev, struct device_attribute *attr,
437 		  char *buf)
438 {
439 	struct scsi_disk *sdkp = to_scsi_disk(dev);
440 
441 	return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
442 }
443 
444 static ssize_t
445 zeroing_mode_store(struct device *dev, struct device_attribute *attr,
446 		   const char *buf, size_t count)
447 {
448 	struct scsi_disk *sdkp = to_scsi_disk(dev);
449 	int mode;
450 
451 	if (!capable(CAP_SYS_ADMIN))
452 		return -EACCES;
453 
454 	mode = sysfs_match_string(zeroing_mode, buf);
455 	if (mode < 0)
456 		return -EINVAL;
457 
458 	sdkp->zeroing_mode = mode;
459 
460 	return count;
461 }
462 static DEVICE_ATTR_RW(zeroing_mode);
463 
464 static ssize_t
465 max_medium_access_timeouts_show(struct device *dev,
466 				struct device_attribute *attr, char *buf)
467 {
468 	struct scsi_disk *sdkp = to_scsi_disk(dev);
469 
470 	return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
471 }
472 
473 static ssize_t
474 max_medium_access_timeouts_store(struct device *dev,
475 				 struct device_attribute *attr, const char *buf,
476 				 size_t count)
477 {
478 	struct scsi_disk *sdkp = to_scsi_disk(dev);
479 	int err;
480 
481 	if (!capable(CAP_SYS_ADMIN))
482 		return -EACCES;
483 
484 	err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
485 
486 	return err ? err : count;
487 }
488 static DEVICE_ATTR_RW(max_medium_access_timeouts);
489 
490 static ssize_t
491 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
492 			   char *buf)
493 {
494 	struct scsi_disk *sdkp = to_scsi_disk(dev);
495 
496 	return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
497 }
498 
499 static ssize_t
500 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
501 			    const char *buf, size_t count)
502 {
503 	struct scsi_disk *sdkp = to_scsi_disk(dev);
504 	struct scsi_device *sdp = sdkp->device;
505 	unsigned long max;
506 	int err;
507 
508 	if (!capable(CAP_SYS_ADMIN))
509 		return -EACCES;
510 
511 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
512 		return -EINVAL;
513 
514 	err = kstrtoul(buf, 10, &max);
515 
516 	if (err)
517 		return err;
518 
519 	if (max == 0)
520 		sdp->no_write_same = 1;
521 	else if (max <= SD_MAX_WS16_BLOCKS) {
522 		sdp->no_write_same = 0;
523 		sdkp->max_ws_blocks = max;
524 	}
525 
526 	sd_config_write_same(sdkp);
527 
528 	return count;
529 }
530 static DEVICE_ATTR_RW(max_write_same_blocks);
531 
532 static struct attribute *sd_disk_attrs[] = {
533 	&dev_attr_cache_type.attr,
534 	&dev_attr_FUA.attr,
535 	&dev_attr_allow_restart.attr,
536 	&dev_attr_manage_start_stop.attr,
537 	&dev_attr_protection_type.attr,
538 	&dev_attr_protection_mode.attr,
539 	&dev_attr_app_tag_own.attr,
540 	&dev_attr_thin_provisioning.attr,
541 	&dev_attr_provisioning_mode.attr,
542 	&dev_attr_zeroing_mode.attr,
543 	&dev_attr_max_write_same_blocks.attr,
544 	&dev_attr_max_medium_access_timeouts.attr,
545 	NULL,
546 };
547 ATTRIBUTE_GROUPS(sd_disk);
548 
549 static struct class sd_disk_class = {
550 	.name		= "scsi_disk",
551 	.owner		= THIS_MODULE,
552 	.dev_release	= scsi_disk_release,
553 	.dev_groups	= sd_disk_groups,
554 };
555 
556 static const struct dev_pm_ops sd_pm_ops = {
557 	.suspend		= sd_suspend_system,
558 	.resume			= sd_resume,
559 	.poweroff		= sd_suspend_system,
560 	.restore		= sd_resume,
561 	.runtime_suspend	= sd_suspend_runtime,
562 	.runtime_resume		= sd_resume,
563 };
564 
565 static struct scsi_driver sd_template = {
566 	.gendrv = {
567 		.name		= "sd",
568 		.owner		= THIS_MODULE,
569 		.probe		= sd_probe,
570 		.probe_type	= PROBE_PREFER_ASYNCHRONOUS,
571 		.remove		= sd_remove,
572 		.shutdown	= sd_shutdown,
573 		.pm		= &sd_pm_ops,
574 	},
575 	.rescan			= sd_rescan,
576 	.init_command		= sd_init_command,
577 	.uninit_command		= sd_uninit_command,
578 	.done			= sd_done,
579 	.eh_action		= sd_eh_action,
580 	.eh_reset		= sd_eh_reset,
581 };
582 
583 /*
584  * Dummy kobj_map->probe function.
585  * The default ->probe function will call modprobe, which is
586  * pointless as this module is already loaded.
587  */
588 static struct kobject *sd_default_probe(dev_t devt, int *partno, void *data)
589 {
590 	return NULL;
591 }
592 
593 /*
594  * Device no to disk mapping:
595  *
596  *       major         disc2     disc  p1
597  *   |............|.............|....|....| <- dev_t
598  *    31        20 19          8 7  4 3  0
599  *
600  * Inside a major, we have 16k disks, however mapped non-
601  * contiguously. The first 16 disks are for major0, the next
602  * ones with major1, ... Disk 256 is for major0 again, disk 272
603  * for major1, ...
604  * As we stay compatible with our numbering scheme, we can reuse
605  * the well-know SCSI majors 8, 65--71, 136--143.
606  */
607 static int sd_major(int major_idx)
608 {
609 	switch (major_idx) {
610 	case 0:
611 		return SCSI_DISK0_MAJOR;
612 	case 1 ... 7:
613 		return SCSI_DISK1_MAJOR + major_idx - 1;
614 	case 8 ... 15:
615 		return SCSI_DISK8_MAJOR + major_idx - 8;
616 	default:
617 		BUG();
618 		return 0;	/* shut up gcc */
619 	}
620 }
621 
622 static struct scsi_disk *scsi_disk_get(struct gendisk *disk)
623 {
624 	struct scsi_disk *sdkp = NULL;
625 
626 	mutex_lock(&sd_ref_mutex);
627 
628 	if (disk->private_data) {
629 		sdkp = scsi_disk(disk);
630 		if (scsi_device_get(sdkp->device) == 0)
631 			get_device(&sdkp->dev);
632 		else
633 			sdkp = NULL;
634 	}
635 	mutex_unlock(&sd_ref_mutex);
636 	return sdkp;
637 }
638 
639 static void scsi_disk_put(struct scsi_disk *sdkp)
640 {
641 	struct scsi_device *sdev = sdkp->device;
642 
643 	mutex_lock(&sd_ref_mutex);
644 	put_device(&sdkp->dev);
645 	scsi_device_put(sdev);
646 	mutex_unlock(&sd_ref_mutex);
647 }
648 
649 #ifdef CONFIG_BLK_SED_OPAL
650 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
651 		size_t len, bool send)
652 {
653 	struct scsi_device *sdev = data;
654 	u8 cdb[12] = { 0, };
655 	int ret;
656 
657 	cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
658 	cdb[1] = secp;
659 	put_unaligned_be16(spsp, &cdb[2]);
660 	put_unaligned_be32(len, &cdb[6]);
661 
662 	ret = scsi_execute_req(sdev, cdb,
663 			send ? DMA_TO_DEVICE : DMA_FROM_DEVICE,
664 			buffer, len, NULL, SD_TIMEOUT, SD_MAX_RETRIES, NULL);
665 	return ret <= 0 ? ret : -EIO;
666 }
667 #endif /* CONFIG_BLK_SED_OPAL */
668 
669 /*
670  * Look up the DIX operation based on whether the command is read or
671  * write and whether dix and dif are enabled.
672  */
673 static unsigned int sd_prot_op(bool write, bool dix, bool dif)
674 {
675 	/* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */
676 	static const unsigned int ops[] = {	/* wrt dix dif */
677 		SCSI_PROT_NORMAL,		/*  0	0   0  */
678 		SCSI_PROT_READ_STRIP,		/*  0	0   1  */
679 		SCSI_PROT_READ_INSERT,		/*  0	1   0  */
680 		SCSI_PROT_READ_PASS,		/*  0	1   1  */
681 		SCSI_PROT_NORMAL,		/*  1	0   0  */
682 		SCSI_PROT_WRITE_INSERT,		/*  1	0   1  */
683 		SCSI_PROT_WRITE_STRIP,		/*  1	1   0  */
684 		SCSI_PROT_WRITE_PASS,		/*  1	1   1  */
685 	};
686 
687 	return ops[write << 2 | dix << 1 | dif];
688 }
689 
690 /*
691  * Returns a mask of the protection flags that are valid for a given DIX
692  * operation.
693  */
694 static unsigned int sd_prot_flag_mask(unsigned int prot_op)
695 {
696 	static const unsigned int flag_mask[] = {
697 		[SCSI_PROT_NORMAL]		= 0,
698 
699 		[SCSI_PROT_READ_STRIP]		= SCSI_PROT_TRANSFER_PI |
700 						  SCSI_PROT_GUARD_CHECK |
701 						  SCSI_PROT_REF_CHECK |
702 						  SCSI_PROT_REF_INCREMENT,
703 
704 		[SCSI_PROT_READ_INSERT]		= SCSI_PROT_REF_INCREMENT |
705 						  SCSI_PROT_IP_CHECKSUM,
706 
707 		[SCSI_PROT_READ_PASS]		= SCSI_PROT_TRANSFER_PI |
708 						  SCSI_PROT_GUARD_CHECK |
709 						  SCSI_PROT_REF_CHECK |
710 						  SCSI_PROT_REF_INCREMENT |
711 						  SCSI_PROT_IP_CHECKSUM,
712 
713 		[SCSI_PROT_WRITE_INSERT]	= SCSI_PROT_TRANSFER_PI |
714 						  SCSI_PROT_REF_INCREMENT,
715 
716 		[SCSI_PROT_WRITE_STRIP]		= SCSI_PROT_GUARD_CHECK |
717 						  SCSI_PROT_REF_CHECK |
718 						  SCSI_PROT_REF_INCREMENT |
719 						  SCSI_PROT_IP_CHECKSUM,
720 
721 		[SCSI_PROT_WRITE_PASS]		= SCSI_PROT_TRANSFER_PI |
722 						  SCSI_PROT_GUARD_CHECK |
723 						  SCSI_PROT_REF_CHECK |
724 						  SCSI_PROT_REF_INCREMENT |
725 						  SCSI_PROT_IP_CHECKSUM,
726 	};
727 
728 	return flag_mask[prot_op];
729 }
730 
731 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
732 					   unsigned int dix, unsigned int dif)
733 {
734 	struct bio *bio = scmd->request->bio;
735 	unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif);
736 	unsigned int protect = 0;
737 
738 	if (dix) {				/* DIX Type 0, 1, 2, 3 */
739 		if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
740 			scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
741 
742 		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
743 			scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
744 	}
745 
746 	if (dif != T10_PI_TYPE3_PROTECTION) {	/* DIX/DIF Type 0, 1, 2 */
747 		scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
748 
749 		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
750 			scmd->prot_flags |= SCSI_PROT_REF_CHECK;
751 	}
752 
753 	if (dif) {				/* DIX/DIF Type 1, 2, 3 */
754 		scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
755 
756 		if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
757 			protect = 3 << 5;	/* Disable target PI checking */
758 		else
759 			protect = 1 << 5;	/* Enable target PI checking */
760 	}
761 
762 	scsi_set_prot_op(scmd, prot_op);
763 	scsi_set_prot_type(scmd, dif);
764 	scmd->prot_flags &= sd_prot_flag_mask(prot_op);
765 
766 	return protect;
767 }
768 
769 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
770 {
771 	struct request_queue *q = sdkp->disk->queue;
772 	unsigned int logical_block_size = sdkp->device->sector_size;
773 	unsigned int max_blocks = 0;
774 
775 	q->limits.discard_alignment =
776 		sdkp->unmap_alignment * logical_block_size;
777 	q->limits.discard_granularity =
778 		max(sdkp->physical_block_size,
779 		    sdkp->unmap_granularity * logical_block_size);
780 	sdkp->provisioning_mode = mode;
781 
782 	switch (mode) {
783 
784 	case SD_LBP_FULL:
785 	case SD_LBP_DISABLE:
786 		blk_queue_max_discard_sectors(q, 0);
787 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
788 		return;
789 
790 	case SD_LBP_UNMAP:
791 		max_blocks = min_not_zero(sdkp->max_unmap_blocks,
792 					  (u32)SD_MAX_WS16_BLOCKS);
793 		break;
794 
795 	case SD_LBP_WS16:
796 		if (sdkp->device->unmap_limit_for_ws)
797 			max_blocks = sdkp->max_unmap_blocks;
798 		else
799 			max_blocks = sdkp->max_ws_blocks;
800 
801 		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
802 		break;
803 
804 	case SD_LBP_WS10:
805 		if (sdkp->device->unmap_limit_for_ws)
806 			max_blocks = sdkp->max_unmap_blocks;
807 		else
808 			max_blocks = sdkp->max_ws_blocks;
809 
810 		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
811 		break;
812 
813 	case SD_LBP_ZERO:
814 		max_blocks = min_not_zero(sdkp->max_ws_blocks,
815 					  (u32)SD_MAX_WS10_BLOCKS);
816 		break;
817 	}
818 
819 	blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
820 	blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
821 }
822 
823 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
824 {
825 	struct scsi_device *sdp = cmd->device;
826 	struct request *rq = cmd->request;
827 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
828 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
829 	unsigned int data_len = 24;
830 	char *buf;
831 
832 	rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
833 	if (!rq->special_vec.bv_page)
834 		return BLK_STS_RESOURCE;
835 	clear_highpage(rq->special_vec.bv_page);
836 	rq->special_vec.bv_offset = 0;
837 	rq->special_vec.bv_len = data_len;
838 	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
839 
840 	cmd->cmd_len = 10;
841 	cmd->cmnd[0] = UNMAP;
842 	cmd->cmnd[8] = 24;
843 
844 	buf = page_address(rq->special_vec.bv_page);
845 	put_unaligned_be16(6 + 16, &buf[0]);
846 	put_unaligned_be16(16, &buf[2]);
847 	put_unaligned_be64(lba, &buf[8]);
848 	put_unaligned_be32(nr_blocks, &buf[16]);
849 
850 	cmd->allowed = SD_MAX_RETRIES;
851 	cmd->transfersize = data_len;
852 	rq->timeout = SD_TIMEOUT;
853 
854 	return scsi_init_io(cmd);
855 }
856 
857 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd,
858 		bool unmap)
859 {
860 	struct scsi_device *sdp = cmd->device;
861 	struct request *rq = cmd->request;
862 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
863 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
864 	u32 data_len = sdp->sector_size;
865 
866 	rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
867 	if (!rq->special_vec.bv_page)
868 		return BLK_STS_RESOURCE;
869 	clear_highpage(rq->special_vec.bv_page);
870 	rq->special_vec.bv_offset = 0;
871 	rq->special_vec.bv_len = data_len;
872 	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
873 
874 	cmd->cmd_len = 16;
875 	cmd->cmnd[0] = WRITE_SAME_16;
876 	if (unmap)
877 		cmd->cmnd[1] = 0x8; /* UNMAP */
878 	put_unaligned_be64(lba, &cmd->cmnd[2]);
879 	put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
880 
881 	cmd->allowed = SD_MAX_RETRIES;
882 	cmd->transfersize = data_len;
883 	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
884 
885 	return scsi_init_io(cmd);
886 }
887 
888 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd,
889 		bool unmap)
890 {
891 	struct scsi_device *sdp = cmd->device;
892 	struct request *rq = cmd->request;
893 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
894 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
895 	u32 data_len = sdp->sector_size;
896 
897 	rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
898 	if (!rq->special_vec.bv_page)
899 		return BLK_STS_RESOURCE;
900 	clear_highpage(rq->special_vec.bv_page);
901 	rq->special_vec.bv_offset = 0;
902 	rq->special_vec.bv_len = data_len;
903 	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
904 
905 	cmd->cmd_len = 10;
906 	cmd->cmnd[0] = WRITE_SAME;
907 	if (unmap)
908 		cmd->cmnd[1] = 0x8; /* UNMAP */
909 	put_unaligned_be32(lba, &cmd->cmnd[2]);
910 	put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
911 
912 	cmd->allowed = SD_MAX_RETRIES;
913 	cmd->transfersize = data_len;
914 	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
915 
916 	return scsi_init_io(cmd);
917 }
918 
919 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
920 {
921 	struct request *rq = cmd->request;
922 	struct scsi_device *sdp = cmd->device;
923 	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
924 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
925 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
926 
927 	if (!(rq->cmd_flags & REQ_NOUNMAP)) {
928 		switch (sdkp->zeroing_mode) {
929 		case SD_ZERO_WS16_UNMAP:
930 			return sd_setup_write_same16_cmnd(cmd, true);
931 		case SD_ZERO_WS10_UNMAP:
932 			return sd_setup_write_same10_cmnd(cmd, true);
933 		}
934 	}
935 
936 	if (sdp->no_write_same)
937 		return BLK_STS_TARGET;
938 
939 	if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff)
940 		return sd_setup_write_same16_cmnd(cmd, false);
941 
942 	return sd_setup_write_same10_cmnd(cmd, false);
943 }
944 
945 static void sd_config_write_same(struct scsi_disk *sdkp)
946 {
947 	struct request_queue *q = sdkp->disk->queue;
948 	unsigned int logical_block_size = sdkp->device->sector_size;
949 
950 	if (sdkp->device->no_write_same) {
951 		sdkp->max_ws_blocks = 0;
952 		goto out;
953 	}
954 
955 	/* Some devices can not handle block counts above 0xffff despite
956 	 * supporting WRITE SAME(16). Consequently we default to 64k
957 	 * blocks per I/O unless the device explicitly advertises a
958 	 * bigger limit.
959 	 */
960 	if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
961 		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
962 						   (u32)SD_MAX_WS16_BLOCKS);
963 	else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
964 		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
965 						   (u32)SD_MAX_WS10_BLOCKS);
966 	else {
967 		sdkp->device->no_write_same = 1;
968 		sdkp->max_ws_blocks = 0;
969 	}
970 
971 	if (sdkp->lbprz && sdkp->lbpws)
972 		sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
973 	else if (sdkp->lbprz && sdkp->lbpws10)
974 		sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
975 	else if (sdkp->max_ws_blocks)
976 		sdkp->zeroing_mode = SD_ZERO_WS;
977 	else
978 		sdkp->zeroing_mode = SD_ZERO_WRITE;
979 
980 	if (sdkp->max_ws_blocks &&
981 	    sdkp->physical_block_size > logical_block_size) {
982 		/*
983 		 * Reporting a maximum number of blocks that is not aligned
984 		 * on the device physical size would cause a large write same
985 		 * request to be split into physically unaligned chunks by
986 		 * __blkdev_issue_write_zeroes() and __blkdev_issue_write_same()
987 		 * even if the caller of these functions took care to align the
988 		 * large request. So make sure the maximum reported is aligned
989 		 * to the device physical block size. This is only an optional
990 		 * optimization for regular disks, but this is mandatory to
991 		 * avoid failure of large write same requests directed at
992 		 * sequential write required zones of host-managed ZBC disks.
993 		 */
994 		sdkp->max_ws_blocks =
995 			round_down(sdkp->max_ws_blocks,
996 				   bytes_to_logical(sdkp->device,
997 						    sdkp->physical_block_size));
998 	}
999 
1000 out:
1001 	blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks *
1002 					 (logical_block_size >> 9));
1003 	blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks *
1004 					 (logical_block_size >> 9));
1005 }
1006 
1007 /**
1008  * sd_setup_write_same_cmnd - write the same data to multiple blocks
1009  * @cmd: command to prepare
1010  *
1011  * Will set up either WRITE SAME(10) or WRITE SAME(16) depending on
1012  * the preference indicated by the target device.
1013  **/
1014 static blk_status_t sd_setup_write_same_cmnd(struct scsi_cmnd *cmd)
1015 {
1016 	struct request *rq = cmd->request;
1017 	struct scsi_device *sdp = cmd->device;
1018 	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
1019 	struct bio *bio = rq->bio;
1020 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1021 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1022 	blk_status_t ret;
1023 
1024 	if (sdkp->device->no_write_same)
1025 		return BLK_STS_TARGET;
1026 
1027 	BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size);
1028 
1029 	rq->timeout = SD_WRITE_SAME_TIMEOUT;
1030 
1031 	if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) {
1032 		cmd->cmd_len = 16;
1033 		cmd->cmnd[0] = WRITE_SAME_16;
1034 		put_unaligned_be64(lba, &cmd->cmnd[2]);
1035 		put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1036 	} else {
1037 		cmd->cmd_len = 10;
1038 		cmd->cmnd[0] = WRITE_SAME;
1039 		put_unaligned_be32(lba, &cmd->cmnd[2]);
1040 		put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1041 	}
1042 
1043 	cmd->transfersize = sdp->sector_size;
1044 	cmd->allowed = SD_MAX_RETRIES;
1045 
1046 	/*
1047 	 * For WRITE SAME the data transferred via the DATA OUT buffer is
1048 	 * different from the amount of data actually written to the target.
1049 	 *
1050 	 * We set up __data_len to the amount of data transferred via the
1051 	 * DATA OUT buffer so that blk_rq_map_sg sets up the proper S/G list
1052 	 * to transfer a single sector of data first, but then reset it to
1053 	 * the amount of data to be written right after so that the I/O path
1054 	 * knows how much to actually write.
1055 	 */
1056 	rq->__data_len = sdp->sector_size;
1057 	ret = scsi_init_io(cmd);
1058 	rq->__data_len = blk_rq_bytes(rq);
1059 
1060 	return ret;
1061 }
1062 
1063 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
1064 {
1065 	struct request *rq = cmd->request;
1066 
1067 	/* flush requests don't perform I/O, zero the S/G table */
1068 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1069 
1070 	cmd->cmnd[0] = SYNCHRONIZE_CACHE;
1071 	cmd->cmd_len = 10;
1072 	cmd->transfersize = 0;
1073 	cmd->allowed = SD_MAX_RETRIES;
1074 
1075 	rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
1076 	return BLK_STS_OK;
1077 }
1078 
1079 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write,
1080 				       sector_t lba, unsigned int nr_blocks,
1081 				       unsigned char flags)
1082 {
1083 	cmd->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC);
1084 	if (unlikely(cmd->cmnd == NULL))
1085 		return BLK_STS_RESOURCE;
1086 
1087 	cmd->cmd_len = SD_EXT_CDB_SIZE;
1088 	memset(cmd->cmnd, 0, cmd->cmd_len);
1089 
1090 	cmd->cmnd[0]  = VARIABLE_LENGTH_CMD;
1091 	cmd->cmnd[7]  = 0x18; /* Additional CDB len */
1092 	cmd->cmnd[9]  = write ? WRITE_32 : READ_32;
1093 	cmd->cmnd[10] = flags;
1094 	put_unaligned_be64(lba, &cmd->cmnd[12]);
1095 	put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */
1096 	put_unaligned_be32(nr_blocks, &cmd->cmnd[28]);
1097 
1098 	return BLK_STS_OK;
1099 }
1100 
1101 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write,
1102 				       sector_t lba, unsigned int nr_blocks,
1103 				       unsigned char flags)
1104 {
1105 	cmd->cmd_len  = 16;
1106 	cmd->cmnd[0]  = write ? WRITE_16 : READ_16;
1107 	cmd->cmnd[1]  = flags;
1108 	cmd->cmnd[14] = 0;
1109 	cmd->cmnd[15] = 0;
1110 	put_unaligned_be64(lba, &cmd->cmnd[2]);
1111 	put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1112 
1113 	return BLK_STS_OK;
1114 }
1115 
1116 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write,
1117 				       sector_t lba, unsigned int nr_blocks,
1118 				       unsigned char flags)
1119 {
1120 	cmd->cmd_len = 10;
1121 	cmd->cmnd[0] = write ? WRITE_10 : READ_10;
1122 	cmd->cmnd[1] = flags;
1123 	cmd->cmnd[6] = 0;
1124 	cmd->cmnd[9] = 0;
1125 	put_unaligned_be32(lba, &cmd->cmnd[2]);
1126 	put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1127 
1128 	return BLK_STS_OK;
1129 }
1130 
1131 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write,
1132 				      sector_t lba, unsigned int nr_blocks,
1133 				      unsigned char flags)
1134 {
1135 	/* Avoid that 0 blocks gets translated into 256 blocks. */
1136 	if (WARN_ON_ONCE(nr_blocks == 0))
1137 		return BLK_STS_IOERR;
1138 
1139 	if (unlikely(flags & 0x8)) {
1140 		/*
1141 		 * This happens only if this drive failed 10byte rw
1142 		 * command with ILLEGAL_REQUEST during operation and
1143 		 * thus turned off use_10_for_rw.
1144 		 */
1145 		scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n");
1146 		return BLK_STS_IOERR;
1147 	}
1148 
1149 	cmd->cmd_len = 6;
1150 	cmd->cmnd[0] = write ? WRITE_6 : READ_6;
1151 	cmd->cmnd[1] = (lba >> 16) & 0x1f;
1152 	cmd->cmnd[2] = (lba >> 8) & 0xff;
1153 	cmd->cmnd[3] = lba & 0xff;
1154 	cmd->cmnd[4] = nr_blocks;
1155 	cmd->cmnd[5] = 0;
1156 
1157 	return BLK_STS_OK;
1158 }
1159 
1160 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd)
1161 {
1162 	struct request *rq = cmd->request;
1163 	struct scsi_device *sdp = cmd->device;
1164 	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
1165 	sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1166 	sector_t threshold;
1167 	unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1168 	bool dif, dix;
1169 	unsigned int mask = logical_to_sectors(sdp, 1) - 1;
1170 	bool write = rq_data_dir(rq) == WRITE;
1171 	unsigned char protect, fua;
1172 	blk_status_t ret;
1173 
1174 	ret = scsi_init_io(cmd);
1175 	if (ret != BLK_STS_OK)
1176 		return ret;
1177 
1178 	if (!scsi_device_online(sdp) || sdp->changed) {
1179 		scmd_printk(KERN_ERR, cmd, "device offline or changed\n");
1180 		return BLK_STS_IOERR;
1181 	}
1182 
1183 	if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->rq_disk)) {
1184 		scmd_printk(KERN_ERR, cmd, "access beyond end of device\n");
1185 		return BLK_STS_IOERR;
1186 	}
1187 
1188 	if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) {
1189 		scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n");
1190 		return BLK_STS_IOERR;
1191 	}
1192 
1193 	/*
1194 	 * Some SD card readers can't handle accesses which touch the
1195 	 * last one or two logical blocks. Split accesses as needed.
1196 	 */
1197 	threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS;
1198 
1199 	if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) {
1200 		if (lba < threshold) {
1201 			/* Access up to the threshold but not beyond */
1202 			nr_blocks = threshold - lba;
1203 		} else {
1204 			/* Access only a single logical block */
1205 			nr_blocks = 1;
1206 		}
1207 	}
1208 
1209 	fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0;
1210 	dix = scsi_prot_sg_count(cmd);
1211 	dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type);
1212 
1213 	if (write && dix)
1214 		t10_pi_prepare(cmd->request, sdkp->protection_type);
1215 
1216 	if (dif || dix)
1217 		protect = sd_setup_protect_cmnd(cmd, dix, dif);
1218 	else
1219 		protect = 0;
1220 
1221 	if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1222 		ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks,
1223 					 protect | fua);
1224 	} else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) {
1225 		ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks,
1226 					 protect | fua);
1227 	} else if ((nr_blocks > 0xff) || (lba > 0x1fffff) ||
1228 		   sdp->use_10_for_rw || protect) {
1229 		ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks,
1230 					 protect | fua);
1231 	} else {
1232 		ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks,
1233 					protect | fua);
1234 	}
1235 
1236 	if (unlikely(ret != BLK_STS_OK))
1237 		return ret;
1238 
1239 	/*
1240 	 * We shouldn't disconnect in the middle of a sector, so with a dumb
1241 	 * host adapter, it's safe to assume that we can at least transfer
1242 	 * this many bytes between each connect / disconnect.
1243 	 */
1244 	cmd->transfersize = sdp->sector_size;
1245 	cmd->underflow = nr_blocks << 9;
1246 	cmd->allowed = SD_MAX_RETRIES;
1247 	cmd->sdb.length = nr_blocks * sdp->sector_size;
1248 
1249 	SCSI_LOG_HLQUEUE(1,
1250 			 scmd_printk(KERN_INFO, cmd,
1251 				     "%s: block=%llu, count=%d\n", __func__,
1252 				     (unsigned long long)blk_rq_pos(rq),
1253 				     blk_rq_sectors(rq)));
1254 	SCSI_LOG_HLQUEUE(2,
1255 			 scmd_printk(KERN_INFO, cmd,
1256 				     "%s %d/%u 512 byte blocks.\n",
1257 				     write ? "writing" : "reading", nr_blocks,
1258 				     blk_rq_sectors(rq)));
1259 
1260 	/*
1261 	 * This indicates that the command is ready from our end to be
1262 	 * queued.
1263 	 */
1264 	return BLK_STS_OK;
1265 }
1266 
1267 static blk_status_t sd_init_command(struct scsi_cmnd *cmd)
1268 {
1269 	struct request *rq = cmd->request;
1270 
1271 	switch (req_op(rq)) {
1272 	case REQ_OP_DISCARD:
1273 		switch (scsi_disk(rq->rq_disk)->provisioning_mode) {
1274 		case SD_LBP_UNMAP:
1275 			return sd_setup_unmap_cmnd(cmd);
1276 		case SD_LBP_WS16:
1277 			return sd_setup_write_same16_cmnd(cmd, true);
1278 		case SD_LBP_WS10:
1279 			return sd_setup_write_same10_cmnd(cmd, true);
1280 		case SD_LBP_ZERO:
1281 			return sd_setup_write_same10_cmnd(cmd, false);
1282 		default:
1283 			return BLK_STS_TARGET;
1284 		}
1285 	case REQ_OP_WRITE_ZEROES:
1286 		return sd_setup_write_zeroes_cmnd(cmd);
1287 	case REQ_OP_WRITE_SAME:
1288 		return sd_setup_write_same_cmnd(cmd);
1289 	case REQ_OP_FLUSH:
1290 		return sd_setup_flush_cmnd(cmd);
1291 	case REQ_OP_READ:
1292 	case REQ_OP_WRITE:
1293 		return sd_setup_read_write_cmnd(cmd);
1294 	case REQ_OP_ZONE_RESET:
1295 		return sd_zbc_setup_reset_cmnd(cmd);
1296 	default:
1297 		WARN_ON_ONCE(1);
1298 		return BLK_STS_NOTSUPP;
1299 	}
1300 }
1301 
1302 static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1303 {
1304 	struct request *rq = SCpnt->request;
1305 	u8 *cmnd;
1306 
1307 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1308 		mempool_free(rq->special_vec.bv_page, sd_page_pool);
1309 
1310 	if (SCpnt->cmnd != scsi_req(rq)->cmd) {
1311 		cmnd = SCpnt->cmnd;
1312 		SCpnt->cmnd = NULL;
1313 		SCpnt->cmd_len = 0;
1314 		mempool_free(cmnd, sd_cdb_pool);
1315 	}
1316 }
1317 
1318 /**
1319  *	sd_open - open a scsi disk device
1320  *	@bdev: Block device of the scsi disk to open
1321  *	@mode: FMODE_* mask
1322  *
1323  *	Returns 0 if successful. Returns a negated errno value in case
1324  *	of error.
1325  *
1326  *	Note: This can be called from a user context (e.g. fsck(1) )
1327  *	or from within the kernel (e.g. as a result of a mount(1) ).
1328  *	In the latter case @inode and @filp carry an abridged amount
1329  *	of information as noted above.
1330  *
1331  *	Locking: called with bdev->bd_mutex held.
1332  **/
1333 static int sd_open(struct block_device *bdev, fmode_t mode)
1334 {
1335 	struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk);
1336 	struct scsi_device *sdev;
1337 	int retval;
1338 
1339 	if (!sdkp)
1340 		return -ENXIO;
1341 
1342 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1343 
1344 	sdev = sdkp->device;
1345 
1346 	/*
1347 	 * If the device is in error recovery, wait until it is done.
1348 	 * If the device is offline, then disallow any access to it.
1349 	 */
1350 	retval = -ENXIO;
1351 	if (!scsi_block_when_processing_errors(sdev))
1352 		goto error_out;
1353 
1354 	if (sdev->removable || sdkp->write_prot)
1355 		check_disk_change(bdev);
1356 
1357 	/*
1358 	 * If the drive is empty, just let the open fail.
1359 	 */
1360 	retval = -ENOMEDIUM;
1361 	if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY))
1362 		goto error_out;
1363 
1364 	/*
1365 	 * If the device has the write protect tab set, have the open fail
1366 	 * if the user expects to be able to write to the thing.
1367 	 */
1368 	retval = -EROFS;
1369 	if (sdkp->write_prot && (mode & FMODE_WRITE))
1370 		goto error_out;
1371 
1372 	/*
1373 	 * It is possible that the disk changing stuff resulted in
1374 	 * the device being taken offline.  If this is the case,
1375 	 * report this to the user, and don't pretend that the
1376 	 * open actually succeeded.
1377 	 */
1378 	retval = -ENXIO;
1379 	if (!scsi_device_online(sdev))
1380 		goto error_out;
1381 
1382 	if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1383 		if (scsi_block_when_processing_errors(sdev))
1384 			scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1385 	}
1386 
1387 	return 0;
1388 
1389 error_out:
1390 	scsi_disk_put(sdkp);
1391 	return retval;
1392 }
1393 
1394 /**
1395  *	sd_release - invoked when the (last) close(2) is called on this
1396  *	scsi disk.
1397  *	@disk: disk to release
1398  *	@mode: FMODE_* mask
1399  *
1400  *	Returns 0.
1401  *
1402  *	Note: may block (uninterruptible) if error recovery is underway
1403  *	on this disk.
1404  *
1405  *	Locking: called with bdev->bd_mutex held.
1406  **/
1407 static void sd_release(struct gendisk *disk, fmode_t mode)
1408 {
1409 	struct scsi_disk *sdkp = scsi_disk(disk);
1410 	struct scsi_device *sdev = sdkp->device;
1411 
1412 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1413 
1414 	if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1415 		if (scsi_block_when_processing_errors(sdev))
1416 			scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1417 	}
1418 
1419 	/*
1420 	 * XXX and what if there are packets in flight and this close()
1421 	 * XXX is followed by a "rmmod sd_mod"?
1422 	 */
1423 
1424 	scsi_disk_put(sdkp);
1425 }
1426 
1427 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1428 {
1429 	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1430 	struct scsi_device *sdp = sdkp->device;
1431 	struct Scsi_Host *host = sdp->host;
1432 	sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1433 	int diskinfo[4];
1434 
1435 	/* default to most commonly used values */
1436 	diskinfo[0] = 0x40;	/* 1 << 6 */
1437 	diskinfo[1] = 0x20;	/* 1 << 5 */
1438 	diskinfo[2] = capacity >> 11;
1439 
1440 	/* override with calculated, extended default, or driver values */
1441 	if (host->hostt->bios_param)
1442 		host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1443 	else
1444 		scsicam_bios_param(bdev, capacity, diskinfo);
1445 
1446 	geo->heads = diskinfo[0];
1447 	geo->sectors = diskinfo[1];
1448 	geo->cylinders = diskinfo[2];
1449 	return 0;
1450 }
1451 
1452 /**
1453  *	sd_ioctl - process an ioctl
1454  *	@bdev: target block device
1455  *	@mode: FMODE_* mask
1456  *	@cmd: ioctl command number
1457  *	@arg: this is third argument given to ioctl(2) system call.
1458  *	Often contains a pointer.
1459  *
1460  *	Returns 0 if successful (some ioctls return positive numbers on
1461  *	success as well). Returns a negated errno value in case of error.
1462  *
1463  *	Note: most ioctls are forward onto the block subsystem or further
1464  *	down in the scsi subsystem.
1465  **/
1466 static int sd_ioctl(struct block_device *bdev, fmode_t mode,
1467 		    unsigned int cmd, unsigned long arg)
1468 {
1469 	struct gendisk *disk = bdev->bd_disk;
1470 	struct scsi_disk *sdkp = scsi_disk(disk);
1471 	struct scsi_device *sdp = sdkp->device;
1472 	void __user *p = (void __user *)arg;
1473 	int error;
1474 
1475 	SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1476 				    "cmd=0x%x\n", disk->disk_name, cmd));
1477 
1478 	error = scsi_verify_blk_ioctl(bdev, cmd);
1479 	if (error < 0)
1480 		return error;
1481 
1482 	/*
1483 	 * If we are in the middle of error recovery, don't let anyone
1484 	 * else try and use this device.  Also, if error recovery fails, it
1485 	 * may try and take the device offline, in which case all further
1486 	 * access to the device is prohibited.
1487 	 */
1488 	error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1489 			(mode & FMODE_NDELAY) != 0);
1490 	if (error)
1491 		goto out;
1492 
1493 	if (is_sed_ioctl(cmd))
1494 		return sed_ioctl(sdkp->opal_dev, cmd, p);
1495 
1496 	/*
1497 	 * Send SCSI addressing ioctls directly to mid level, send other
1498 	 * ioctls to block level and then onto mid level if they can't be
1499 	 * resolved.
1500 	 */
1501 	switch (cmd) {
1502 		case SCSI_IOCTL_GET_IDLUN:
1503 		case SCSI_IOCTL_GET_BUS_NUMBER:
1504 			error = scsi_ioctl(sdp, cmd, p);
1505 			break;
1506 		default:
1507 			error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p);
1508 			if (error != -ENOTTY)
1509 				break;
1510 			error = scsi_ioctl(sdp, cmd, p);
1511 			break;
1512 	}
1513 out:
1514 	return error;
1515 }
1516 
1517 static void set_media_not_present(struct scsi_disk *sdkp)
1518 {
1519 	if (sdkp->media_present)
1520 		sdkp->device->changed = 1;
1521 
1522 	if (sdkp->device->removable) {
1523 		sdkp->media_present = 0;
1524 		sdkp->capacity = 0;
1525 	}
1526 }
1527 
1528 static int media_not_present(struct scsi_disk *sdkp,
1529 			     struct scsi_sense_hdr *sshdr)
1530 {
1531 	if (!scsi_sense_valid(sshdr))
1532 		return 0;
1533 
1534 	/* not invoked for commands that could return deferred errors */
1535 	switch (sshdr->sense_key) {
1536 	case UNIT_ATTENTION:
1537 	case NOT_READY:
1538 		/* medium not present */
1539 		if (sshdr->asc == 0x3A) {
1540 			set_media_not_present(sdkp);
1541 			return 1;
1542 		}
1543 	}
1544 	return 0;
1545 }
1546 
1547 /**
1548  *	sd_check_events - check media events
1549  *	@disk: kernel device descriptor
1550  *	@clearing: disk events currently being cleared
1551  *
1552  *	Returns mask of DISK_EVENT_*.
1553  *
1554  *	Note: this function is invoked from the block subsystem.
1555  **/
1556 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1557 {
1558 	struct scsi_disk *sdkp = scsi_disk_get(disk);
1559 	struct scsi_device *sdp;
1560 	int retval;
1561 
1562 	if (!sdkp)
1563 		return 0;
1564 
1565 	sdp = sdkp->device;
1566 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1567 
1568 	/*
1569 	 * If the device is offline, don't send any commands - just pretend as
1570 	 * if the command failed.  If the device ever comes back online, we
1571 	 * can deal with it then.  It is only because of unrecoverable errors
1572 	 * that we would ever take a device offline in the first place.
1573 	 */
1574 	if (!scsi_device_online(sdp)) {
1575 		set_media_not_present(sdkp);
1576 		goto out;
1577 	}
1578 
1579 	/*
1580 	 * Using TEST_UNIT_READY enables differentiation between drive with
1581 	 * no cartridge loaded - NOT READY, drive with changed cartridge -
1582 	 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1583 	 *
1584 	 * Drives that auto spin down. eg iomega jaz 1G, will be started
1585 	 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1586 	 * sd_revalidate() is called.
1587 	 */
1588 	if (scsi_block_when_processing_errors(sdp)) {
1589 		struct scsi_sense_hdr sshdr = { 0, };
1590 
1591 		retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, SD_MAX_RETRIES,
1592 					      &sshdr);
1593 
1594 		/* failed to execute TUR, assume media not present */
1595 		if (host_byte(retval)) {
1596 			set_media_not_present(sdkp);
1597 			goto out;
1598 		}
1599 
1600 		if (media_not_present(sdkp, &sshdr))
1601 			goto out;
1602 	}
1603 
1604 	/*
1605 	 * For removable scsi disk we have to recognise the presence
1606 	 * of a disk in the drive.
1607 	 */
1608 	if (!sdkp->media_present)
1609 		sdp->changed = 1;
1610 	sdkp->media_present = 1;
1611 out:
1612 	/*
1613 	 * sdp->changed is set under the following conditions:
1614 	 *
1615 	 *	Medium present state has changed in either direction.
1616 	 *	Device has indicated UNIT_ATTENTION.
1617 	 */
1618 	retval = sdp->changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1619 	sdp->changed = 0;
1620 	scsi_disk_put(sdkp);
1621 	return retval;
1622 }
1623 
1624 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
1625 {
1626 	int retries, res;
1627 	struct scsi_device *sdp = sdkp->device;
1628 	const int timeout = sdp->request_queue->rq_timeout
1629 		* SD_FLUSH_TIMEOUT_MULTIPLIER;
1630 	struct scsi_sense_hdr my_sshdr;
1631 
1632 	if (!scsi_device_online(sdp))
1633 		return -ENODEV;
1634 
1635 	/* caller might not be interested in sense, but we need it */
1636 	if (!sshdr)
1637 		sshdr = &my_sshdr;
1638 
1639 	for (retries = 3; retries > 0; --retries) {
1640 		unsigned char cmd[10] = { 0 };
1641 
1642 		cmd[0] = SYNCHRONIZE_CACHE;
1643 		/*
1644 		 * Leave the rest of the command zero to indicate
1645 		 * flush everything.
1646 		 */
1647 		res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr,
1648 				timeout, SD_MAX_RETRIES, 0, RQF_PM, NULL);
1649 		if (res == 0)
1650 			break;
1651 	}
1652 
1653 	if (res) {
1654 		sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1655 
1656 		if (driver_byte(res) == DRIVER_SENSE)
1657 			sd_print_sense_hdr(sdkp, sshdr);
1658 
1659 		/* we need to evaluate the error return  */
1660 		if (scsi_sense_valid(sshdr) &&
1661 			(sshdr->asc == 0x3a ||	/* medium not present */
1662 			 sshdr->asc == 0x20))	/* invalid command */
1663 				/* this is no error here */
1664 				return 0;
1665 
1666 		switch (host_byte(res)) {
1667 		/* ignore errors due to racing a disconnection */
1668 		case DID_BAD_TARGET:
1669 		case DID_NO_CONNECT:
1670 			return 0;
1671 		/* signal the upper layer it might try again */
1672 		case DID_BUS_BUSY:
1673 		case DID_IMM_RETRY:
1674 		case DID_REQUEUE:
1675 		case DID_SOFT_ERROR:
1676 			return -EBUSY;
1677 		default:
1678 			return -EIO;
1679 		}
1680 	}
1681 	return 0;
1682 }
1683 
1684 static void sd_rescan(struct device *dev)
1685 {
1686 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
1687 
1688 	revalidate_disk(sdkp->disk);
1689 }
1690 
1691 
1692 #ifdef CONFIG_COMPAT
1693 /*
1694  * This gets directly called from VFS. When the ioctl
1695  * is not recognized we go back to the other translation paths.
1696  */
1697 static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode,
1698 			   unsigned int cmd, unsigned long arg)
1699 {
1700 	struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
1701 	int error;
1702 
1703 	error = scsi_ioctl_block_when_processing_errors(sdev, cmd,
1704 			(mode & FMODE_NDELAY) != 0);
1705 	if (error)
1706 		return error;
1707 
1708 	/*
1709 	 * Let the static ioctl translation table take care of it.
1710 	 */
1711 	if (!sdev->host->hostt->compat_ioctl)
1712 		return -ENOIOCTLCMD;
1713 	return sdev->host->hostt->compat_ioctl(sdev, cmd, (void __user *)arg);
1714 }
1715 #endif
1716 
1717 static char sd_pr_type(enum pr_type type)
1718 {
1719 	switch (type) {
1720 	case PR_WRITE_EXCLUSIVE:
1721 		return 0x01;
1722 	case PR_EXCLUSIVE_ACCESS:
1723 		return 0x03;
1724 	case PR_WRITE_EXCLUSIVE_REG_ONLY:
1725 		return 0x05;
1726 	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1727 		return 0x06;
1728 	case PR_WRITE_EXCLUSIVE_ALL_REGS:
1729 		return 0x07;
1730 	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1731 		return 0x08;
1732 	default:
1733 		return 0;
1734 	}
1735 };
1736 
1737 static int sd_pr_command(struct block_device *bdev, u8 sa,
1738 		u64 key, u64 sa_key, u8 type, u8 flags)
1739 {
1740 	struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
1741 	struct scsi_sense_hdr sshdr;
1742 	int result;
1743 	u8 cmd[16] = { 0, };
1744 	u8 data[24] = { 0, };
1745 
1746 	cmd[0] = PERSISTENT_RESERVE_OUT;
1747 	cmd[1] = sa;
1748 	cmd[2] = type;
1749 	put_unaligned_be32(sizeof(data), &cmd[5]);
1750 
1751 	put_unaligned_be64(key, &data[0]);
1752 	put_unaligned_be64(sa_key, &data[8]);
1753 	data[20] = flags;
1754 
1755 	result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data),
1756 			&sshdr, SD_TIMEOUT, SD_MAX_RETRIES, NULL);
1757 
1758 	if (driver_byte(result) == DRIVER_SENSE &&
1759 	    scsi_sense_valid(&sshdr)) {
1760 		sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1761 		scsi_print_sense_hdr(sdev, NULL, &sshdr);
1762 	}
1763 
1764 	return result;
1765 }
1766 
1767 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1768 		u32 flags)
1769 {
1770 	if (flags & ~PR_FL_IGNORE_KEY)
1771 		return -EOPNOTSUPP;
1772 	return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1773 			old_key, new_key, 0,
1774 			(1 << 0) /* APTPL */);
1775 }
1776 
1777 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1778 		u32 flags)
1779 {
1780 	if (flags)
1781 		return -EOPNOTSUPP;
1782 	return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0);
1783 }
1784 
1785 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1786 {
1787 	return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0);
1788 }
1789 
1790 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1791 		enum pr_type type, bool abort)
1792 {
1793 	return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
1794 			     sd_pr_type(type), 0);
1795 }
1796 
1797 static int sd_pr_clear(struct block_device *bdev, u64 key)
1798 {
1799 	return sd_pr_command(bdev, 0x03, key, 0, 0, 0);
1800 }
1801 
1802 static const struct pr_ops sd_pr_ops = {
1803 	.pr_register	= sd_pr_register,
1804 	.pr_reserve	= sd_pr_reserve,
1805 	.pr_release	= sd_pr_release,
1806 	.pr_preempt	= sd_pr_preempt,
1807 	.pr_clear	= sd_pr_clear,
1808 };
1809 
1810 static const struct block_device_operations sd_fops = {
1811 	.owner			= THIS_MODULE,
1812 	.open			= sd_open,
1813 	.release		= sd_release,
1814 	.ioctl			= sd_ioctl,
1815 	.getgeo			= sd_getgeo,
1816 #ifdef CONFIG_COMPAT
1817 	.compat_ioctl		= sd_compat_ioctl,
1818 #endif
1819 	.check_events		= sd_check_events,
1820 	.revalidate_disk	= sd_revalidate_disk,
1821 	.unlock_native_capacity	= sd_unlock_native_capacity,
1822 	.report_zones		= sd_zbc_report_zones,
1823 	.pr_ops			= &sd_pr_ops,
1824 };
1825 
1826 /**
1827  *	sd_eh_reset - reset error handling callback
1828  *	@scmd:		sd-issued command that has failed
1829  *
1830  *	This function is called by the SCSI midlayer before starting
1831  *	SCSI EH. When counting medium access failures we have to be
1832  *	careful to register it only only once per device and SCSI EH run;
1833  *	there might be several timed out commands which will cause the
1834  *	'max_medium_access_timeouts' counter to trigger after the first
1835  *	SCSI EH run already and set the device to offline.
1836  *	So this function resets the internal counter before starting SCSI EH.
1837  **/
1838 static void sd_eh_reset(struct scsi_cmnd *scmd)
1839 {
1840 	struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1841 
1842 	/* New SCSI EH run, reset gate variable */
1843 	sdkp->ignore_medium_access_errors = false;
1844 }
1845 
1846 /**
1847  *	sd_eh_action - error handling callback
1848  *	@scmd:		sd-issued command that has failed
1849  *	@eh_disp:	The recovery disposition suggested by the midlayer
1850  *
1851  *	This function is called by the SCSI midlayer upon completion of an
1852  *	error test command (currently TEST UNIT READY). The result of sending
1853  *	the eh command is passed in eh_disp.  We're looking for devices that
1854  *	fail medium access commands but are OK with non access commands like
1855  *	test unit ready (so wrongly see the device as having a successful
1856  *	recovery)
1857  **/
1858 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
1859 {
1860 	struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1861 	struct scsi_device *sdev = scmd->device;
1862 
1863 	if (!scsi_device_online(sdev) ||
1864 	    !scsi_medium_access_command(scmd) ||
1865 	    host_byte(scmd->result) != DID_TIME_OUT ||
1866 	    eh_disp != SUCCESS)
1867 		return eh_disp;
1868 
1869 	/*
1870 	 * The device has timed out executing a medium access command.
1871 	 * However, the TEST UNIT READY command sent during error
1872 	 * handling completed successfully. Either the device is in the
1873 	 * process of recovering or has it suffered an internal failure
1874 	 * that prevents access to the storage medium.
1875 	 */
1876 	if (!sdkp->ignore_medium_access_errors) {
1877 		sdkp->medium_access_timed_out++;
1878 		sdkp->ignore_medium_access_errors = true;
1879 	}
1880 
1881 	/*
1882 	 * If the device keeps failing read/write commands but TEST UNIT
1883 	 * READY always completes successfully we assume that medium
1884 	 * access is no longer possible and take the device offline.
1885 	 */
1886 	if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
1887 		scmd_printk(KERN_ERR, scmd,
1888 			    "Medium access timeout failure. Offlining disk!\n");
1889 		mutex_lock(&sdev->state_mutex);
1890 		scsi_device_set_state(sdev, SDEV_OFFLINE);
1891 		mutex_unlock(&sdev->state_mutex);
1892 
1893 		return SUCCESS;
1894 	}
1895 
1896 	return eh_disp;
1897 }
1898 
1899 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
1900 {
1901 	struct request *req = scmd->request;
1902 	struct scsi_device *sdev = scmd->device;
1903 	unsigned int transferred, good_bytes;
1904 	u64 start_lba, end_lba, bad_lba;
1905 
1906 	/*
1907 	 * Some commands have a payload smaller than the device logical
1908 	 * block size (e.g. INQUIRY on a 4K disk).
1909 	 */
1910 	if (scsi_bufflen(scmd) <= sdev->sector_size)
1911 		return 0;
1912 
1913 	/* Check if we have a 'bad_lba' information */
1914 	if (!scsi_get_sense_info_fld(scmd->sense_buffer,
1915 				     SCSI_SENSE_BUFFERSIZE,
1916 				     &bad_lba))
1917 		return 0;
1918 
1919 	/*
1920 	 * If the bad lba was reported incorrectly, we have no idea where
1921 	 * the error is.
1922 	 */
1923 	start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
1924 	end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
1925 	if (bad_lba < start_lba || bad_lba >= end_lba)
1926 		return 0;
1927 
1928 	/*
1929 	 * resid is optional but mostly filled in.  When it's unused,
1930 	 * its value is zero, so we assume the whole buffer transferred
1931 	 */
1932 	transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
1933 
1934 	/* This computation should always be done in terms of the
1935 	 * resolution of the device's medium.
1936 	 */
1937 	good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
1938 
1939 	return min(good_bytes, transferred);
1940 }
1941 
1942 /**
1943  *	sd_done - bottom half handler: called when the lower level
1944  *	driver has completed (successfully or otherwise) a scsi command.
1945  *	@SCpnt: mid-level's per command structure.
1946  *
1947  *	Note: potentially run from within an ISR. Must not block.
1948  **/
1949 static int sd_done(struct scsi_cmnd *SCpnt)
1950 {
1951 	int result = SCpnt->result;
1952 	unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
1953 	unsigned int sector_size = SCpnt->device->sector_size;
1954 	unsigned int resid;
1955 	struct scsi_sense_hdr sshdr;
1956 	struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk);
1957 	struct request *req = SCpnt->request;
1958 	int sense_valid = 0;
1959 	int sense_deferred = 0;
1960 
1961 	switch (req_op(req)) {
1962 	case REQ_OP_DISCARD:
1963 	case REQ_OP_WRITE_ZEROES:
1964 	case REQ_OP_WRITE_SAME:
1965 	case REQ_OP_ZONE_RESET:
1966 		if (!result) {
1967 			good_bytes = blk_rq_bytes(req);
1968 			scsi_set_resid(SCpnt, 0);
1969 		} else {
1970 			good_bytes = 0;
1971 			scsi_set_resid(SCpnt, blk_rq_bytes(req));
1972 		}
1973 		break;
1974 	default:
1975 		/*
1976 		 * In case of bogus fw or device, we could end up having
1977 		 * an unaligned partial completion. Check this here and force
1978 		 * alignment.
1979 		 */
1980 		resid = scsi_get_resid(SCpnt);
1981 		if (resid & (sector_size - 1)) {
1982 			sd_printk(KERN_INFO, sdkp,
1983 				"Unaligned partial completion (resid=%u, sector_sz=%u)\n",
1984 				resid, sector_size);
1985 			resid = min(scsi_bufflen(SCpnt),
1986 				    round_up(resid, sector_size));
1987 			scsi_set_resid(SCpnt, resid);
1988 		}
1989 	}
1990 
1991 	if (result) {
1992 		sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
1993 		if (sense_valid)
1994 			sense_deferred = scsi_sense_is_deferred(&sshdr);
1995 	}
1996 	sdkp->medium_access_timed_out = 0;
1997 
1998 	if (driver_byte(result) != DRIVER_SENSE &&
1999 	    (!sense_valid || sense_deferred))
2000 		goto out;
2001 
2002 	switch (sshdr.sense_key) {
2003 	case HARDWARE_ERROR:
2004 	case MEDIUM_ERROR:
2005 		good_bytes = sd_completed_bytes(SCpnt);
2006 		break;
2007 	case RECOVERED_ERROR:
2008 		good_bytes = scsi_bufflen(SCpnt);
2009 		break;
2010 	case NO_SENSE:
2011 		/* This indicates a false check condition, so ignore it.  An
2012 		 * unknown amount of data was transferred so treat it as an
2013 		 * error.
2014 		 */
2015 		SCpnt->result = 0;
2016 		memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
2017 		break;
2018 	case ABORTED_COMMAND:
2019 		if (sshdr.asc == 0x10)  /* DIF: Target detected corruption */
2020 			good_bytes = sd_completed_bytes(SCpnt);
2021 		break;
2022 	case ILLEGAL_REQUEST:
2023 		switch (sshdr.asc) {
2024 		case 0x10:	/* DIX: Host detected corruption */
2025 			good_bytes = sd_completed_bytes(SCpnt);
2026 			break;
2027 		case 0x20:	/* INVALID COMMAND OPCODE */
2028 		case 0x24:	/* INVALID FIELD IN CDB */
2029 			switch (SCpnt->cmnd[0]) {
2030 			case UNMAP:
2031 				sd_config_discard(sdkp, SD_LBP_DISABLE);
2032 				break;
2033 			case WRITE_SAME_16:
2034 			case WRITE_SAME:
2035 				if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2036 					sd_config_discard(sdkp, SD_LBP_DISABLE);
2037 				} else {
2038 					sdkp->device->no_write_same = 1;
2039 					sd_config_write_same(sdkp);
2040 					req->rq_flags |= RQF_QUIET;
2041 				}
2042 				break;
2043 			}
2044 		}
2045 		break;
2046 	default:
2047 		break;
2048 	}
2049 
2050  out:
2051 	if (sd_is_zoned(sdkp))
2052 		sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2053 
2054 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2055 					   "sd_done: completed %d of %d bytes\n",
2056 					   good_bytes, scsi_bufflen(SCpnt)));
2057 
2058 	if (rq_data_dir(SCpnt->request) == READ && scsi_prot_sg_count(SCpnt) &&
2059 	    good_bytes)
2060 		t10_pi_complete(SCpnt->request, sdkp->protection_type,
2061 				good_bytes / scsi_prot_interval(SCpnt));
2062 
2063 	return good_bytes;
2064 }
2065 
2066 /*
2067  * spinup disk - called only in sd_revalidate_disk()
2068  */
2069 static void
2070 sd_spinup_disk(struct scsi_disk *sdkp)
2071 {
2072 	unsigned char cmd[10];
2073 	unsigned long spintime_expire = 0;
2074 	int retries, spintime;
2075 	unsigned int the_result;
2076 	struct scsi_sense_hdr sshdr;
2077 	int sense_valid = 0;
2078 
2079 	spintime = 0;
2080 
2081 	/* Spin up drives, as required.  Only do this at boot time */
2082 	/* Spinup needs to be done for module loads too. */
2083 	do {
2084 		retries = 0;
2085 
2086 		do {
2087 			cmd[0] = TEST_UNIT_READY;
2088 			memset((void *) &cmd[1], 0, 9);
2089 
2090 			the_result = scsi_execute_req(sdkp->device, cmd,
2091 						      DMA_NONE, NULL, 0,
2092 						      &sshdr, SD_TIMEOUT,
2093 						      SD_MAX_RETRIES, NULL);
2094 
2095 			/*
2096 			 * If the drive has indicated to us that it
2097 			 * doesn't have any media in it, don't bother
2098 			 * with any more polling.
2099 			 */
2100 			if (media_not_present(sdkp, &sshdr))
2101 				return;
2102 
2103 			if (the_result)
2104 				sense_valid = scsi_sense_valid(&sshdr);
2105 			retries++;
2106 		} while (retries < 3 &&
2107 			 (!scsi_status_is_good(the_result) ||
2108 			  ((driver_byte(the_result) == DRIVER_SENSE) &&
2109 			  sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
2110 
2111 		if (driver_byte(the_result) != DRIVER_SENSE) {
2112 			/* no sense, TUR either succeeded or failed
2113 			 * with a status error */
2114 			if(!spintime && !scsi_status_is_good(the_result)) {
2115 				sd_print_result(sdkp, "Test Unit Ready failed",
2116 						the_result);
2117 			}
2118 			break;
2119 		}
2120 
2121 		/*
2122 		 * The device does not want the automatic start to be issued.
2123 		 */
2124 		if (sdkp->device->no_start_on_add)
2125 			break;
2126 
2127 		if (sense_valid && sshdr.sense_key == NOT_READY) {
2128 			if (sshdr.asc == 4 && sshdr.ascq == 3)
2129 				break;	/* manual intervention required */
2130 			if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2131 				break;	/* standby */
2132 			if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2133 				break;	/* unavailable */
2134 			if (sshdr.asc == 4 && sshdr.ascq == 0x1b)
2135 				break;	/* sanitize in progress */
2136 			/*
2137 			 * Issue command to spin up drive when not ready
2138 			 */
2139 			if (!spintime) {
2140 				sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2141 				cmd[0] = START_STOP;
2142 				cmd[1] = 1;	/* Return immediately */
2143 				memset((void *) &cmd[2], 0, 8);
2144 				cmd[4] = 1;	/* Start spin cycle */
2145 				if (sdkp->device->start_stop_pwr_cond)
2146 					cmd[4] |= 1 << 4;
2147 				scsi_execute_req(sdkp->device, cmd, DMA_NONE,
2148 						 NULL, 0, &sshdr,
2149 						 SD_TIMEOUT, SD_MAX_RETRIES,
2150 						 NULL);
2151 				spintime_expire = jiffies + 100 * HZ;
2152 				spintime = 1;
2153 			}
2154 			/* Wait 1 second for next try */
2155 			msleep(1000);
2156 			printk(KERN_CONT ".");
2157 
2158 		/*
2159 		 * Wait for USB flash devices with slow firmware.
2160 		 * Yes, this sense key/ASC combination shouldn't
2161 		 * occur here.  It's characteristic of these devices.
2162 		 */
2163 		} else if (sense_valid &&
2164 				sshdr.sense_key == UNIT_ATTENTION &&
2165 				sshdr.asc == 0x28) {
2166 			if (!spintime) {
2167 				spintime_expire = jiffies + 5 * HZ;
2168 				spintime = 1;
2169 			}
2170 			/* Wait 1 second for next try */
2171 			msleep(1000);
2172 		} else {
2173 			/* we don't understand the sense code, so it's
2174 			 * probably pointless to loop */
2175 			if(!spintime) {
2176 				sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2177 				sd_print_sense_hdr(sdkp, &sshdr);
2178 			}
2179 			break;
2180 		}
2181 
2182 	} while (spintime && time_before_eq(jiffies, spintime_expire));
2183 
2184 	if (spintime) {
2185 		if (scsi_status_is_good(the_result))
2186 			printk(KERN_CONT "ready\n");
2187 		else
2188 			printk(KERN_CONT "not responding...\n");
2189 	}
2190 }
2191 
2192 /*
2193  * Determine whether disk supports Data Integrity Field.
2194  */
2195 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2196 {
2197 	struct scsi_device *sdp = sdkp->device;
2198 	u8 type;
2199 	int ret = 0;
2200 
2201 	if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0)
2202 		return ret;
2203 
2204 	type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2205 
2206 	if (type > T10_PI_TYPE3_PROTECTION)
2207 		ret = -ENODEV;
2208 	else if (scsi_host_dif_capable(sdp->host, type))
2209 		ret = 1;
2210 
2211 	if (sdkp->first_scan || type != sdkp->protection_type)
2212 		switch (ret) {
2213 		case -ENODEV:
2214 			sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \
2215 				  " protection type %u. Disabling disk!\n",
2216 				  type);
2217 			break;
2218 		case 1:
2219 			sd_printk(KERN_NOTICE, sdkp,
2220 				  "Enabling DIF Type %u protection\n", type);
2221 			break;
2222 		case 0:
2223 			sd_printk(KERN_NOTICE, sdkp,
2224 				  "Disabling DIF Type %u protection\n", type);
2225 			break;
2226 		}
2227 
2228 	sdkp->protection_type = type;
2229 
2230 	return ret;
2231 }
2232 
2233 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2234 			struct scsi_sense_hdr *sshdr, int sense_valid,
2235 			int the_result)
2236 {
2237 	if (driver_byte(the_result) == DRIVER_SENSE)
2238 		sd_print_sense_hdr(sdkp, sshdr);
2239 	else
2240 		sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2241 
2242 	/*
2243 	 * Set dirty bit for removable devices if not ready -
2244 	 * sometimes drives will not report this properly.
2245 	 */
2246 	if (sdp->removable &&
2247 	    sense_valid && sshdr->sense_key == NOT_READY)
2248 		set_media_not_present(sdkp);
2249 
2250 	/*
2251 	 * We used to set media_present to 0 here to indicate no media
2252 	 * in the drive, but some drives fail read capacity even with
2253 	 * media present, so we can't do that.
2254 	 */
2255 	sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2256 }
2257 
2258 #define RC16_LEN 32
2259 #if RC16_LEN > SD_BUF_SIZE
2260 #error RC16_LEN must not be more than SD_BUF_SIZE
2261 #endif
2262 
2263 #define READ_CAPACITY_RETRIES_ON_RESET	10
2264 
2265 /*
2266  * Ensure that we don't overflow sector_t when CONFIG_LBDAF is not set
2267  * and the reported logical block size is bigger than 512 bytes. Note
2268  * that last_sector is a u64 and therefore logical_to_sectors() is not
2269  * applicable.
2270  */
2271 static bool sd_addressable_capacity(u64 lba, unsigned int sector_size)
2272 {
2273 	u64 last_sector = (lba + 1ULL) << (ilog2(sector_size) - 9);
2274 
2275 	if (sizeof(sector_t) == 4 && last_sector > U32_MAX)
2276 		return false;
2277 
2278 	return true;
2279 }
2280 
2281 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2282 						unsigned char *buffer)
2283 {
2284 	unsigned char cmd[16];
2285 	struct scsi_sense_hdr sshdr;
2286 	int sense_valid = 0;
2287 	int the_result;
2288 	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2289 	unsigned int alignment;
2290 	unsigned long long lba;
2291 	unsigned sector_size;
2292 
2293 	if (sdp->no_read_capacity_16)
2294 		return -EINVAL;
2295 
2296 	do {
2297 		memset(cmd, 0, 16);
2298 		cmd[0] = SERVICE_ACTION_IN_16;
2299 		cmd[1] = SAI_READ_CAPACITY_16;
2300 		cmd[13] = RC16_LEN;
2301 		memset(buffer, 0, RC16_LEN);
2302 
2303 		the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2304 					buffer, RC16_LEN, &sshdr,
2305 					SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2306 
2307 		if (media_not_present(sdkp, &sshdr))
2308 			return -ENODEV;
2309 
2310 		if (the_result) {
2311 			sense_valid = scsi_sense_valid(&sshdr);
2312 			if (sense_valid &&
2313 			    sshdr.sense_key == ILLEGAL_REQUEST &&
2314 			    (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2315 			    sshdr.ascq == 0x00)
2316 				/* Invalid Command Operation Code or
2317 				 * Invalid Field in CDB, just retry
2318 				 * silently with RC10 */
2319 				return -EINVAL;
2320 			if (sense_valid &&
2321 			    sshdr.sense_key == UNIT_ATTENTION &&
2322 			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2323 				/* Device reset might occur several times,
2324 				 * give it one more chance */
2325 				if (--reset_retries > 0)
2326 					continue;
2327 		}
2328 		retries--;
2329 
2330 	} while (the_result && retries);
2331 
2332 	if (the_result) {
2333 		sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2334 		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2335 		return -EINVAL;
2336 	}
2337 
2338 	sector_size = get_unaligned_be32(&buffer[8]);
2339 	lba = get_unaligned_be64(&buffer[0]);
2340 
2341 	if (sd_read_protection_type(sdkp, buffer) < 0) {
2342 		sdkp->capacity = 0;
2343 		return -ENODEV;
2344 	}
2345 
2346 	if (!sd_addressable_capacity(lba, sector_size)) {
2347 		sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a "
2348 			"kernel compiled with support for large block "
2349 			"devices.\n");
2350 		sdkp->capacity = 0;
2351 		return -EOVERFLOW;
2352 	}
2353 
2354 	/* Logical blocks per physical block exponent */
2355 	sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2356 
2357 	/* RC basis */
2358 	sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2359 
2360 	/* Lowest aligned logical block */
2361 	alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2362 	blk_queue_alignment_offset(sdp->request_queue, alignment);
2363 	if (alignment && sdkp->first_scan)
2364 		sd_printk(KERN_NOTICE, sdkp,
2365 			  "physical block alignment offset: %u\n", alignment);
2366 
2367 	if (buffer[14] & 0x80) { /* LBPME */
2368 		sdkp->lbpme = 1;
2369 
2370 		if (buffer[14] & 0x40) /* LBPRZ */
2371 			sdkp->lbprz = 1;
2372 
2373 		sd_config_discard(sdkp, SD_LBP_WS16);
2374 	}
2375 
2376 	sdkp->capacity = lba + 1;
2377 	return sector_size;
2378 }
2379 
2380 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2381 						unsigned char *buffer)
2382 {
2383 	unsigned char cmd[16];
2384 	struct scsi_sense_hdr sshdr;
2385 	int sense_valid = 0;
2386 	int the_result;
2387 	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2388 	sector_t lba;
2389 	unsigned sector_size;
2390 
2391 	do {
2392 		cmd[0] = READ_CAPACITY;
2393 		memset(&cmd[1], 0, 9);
2394 		memset(buffer, 0, 8);
2395 
2396 		the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2397 					buffer, 8, &sshdr,
2398 					SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2399 
2400 		if (media_not_present(sdkp, &sshdr))
2401 			return -ENODEV;
2402 
2403 		if (the_result) {
2404 			sense_valid = scsi_sense_valid(&sshdr);
2405 			if (sense_valid &&
2406 			    sshdr.sense_key == UNIT_ATTENTION &&
2407 			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2408 				/* Device reset might occur several times,
2409 				 * give it one more chance */
2410 				if (--reset_retries > 0)
2411 					continue;
2412 		}
2413 		retries--;
2414 
2415 	} while (the_result && retries);
2416 
2417 	if (the_result) {
2418 		sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2419 		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2420 		return -EINVAL;
2421 	}
2422 
2423 	sector_size = get_unaligned_be32(&buffer[4]);
2424 	lba = get_unaligned_be32(&buffer[0]);
2425 
2426 	if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2427 		/* Some buggy (usb cardreader) devices return an lba of
2428 		   0xffffffff when the want to report a size of 0 (with
2429 		   which they really mean no media is present) */
2430 		sdkp->capacity = 0;
2431 		sdkp->physical_block_size = sector_size;
2432 		return sector_size;
2433 	}
2434 
2435 	if (!sd_addressable_capacity(lba, sector_size)) {
2436 		sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a "
2437 			"kernel compiled with support for large block "
2438 			"devices.\n");
2439 		sdkp->capacity = 0;
2440 		return -EOVERFLOW;
2441 	}
2442 
2443 	sdkp->capacity = lba + 1;
2444 	sdkp->physical_block_size = sector_size;
2445 	return sector_size;
2446 }
2447 
2448 static int sd_try_rc16_first(struct scsi_device *sdp)
2449 {
2450 	if (sdp->host->max_cmd_len < 16)
2451 		return 0;
2452 	if (sdp->try_rc_10_first)
2453 		return 0;
2454 	if (sdp->scsi_level > SCSI_SPC_2)
2455 		return 1;
2456 	if (scsi_device_protection(sdp))
2457 		return 1;
2458 	return 0;
2459 }
2460 
2461 /*
2462  * read disk capacity
2463  */
2464 static void
2465 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2466 {
2467 	int sector_size;
2468 	struct scsi_device *sdp = sdkp->device;
2469 
2470 	if (sd_try_rc16_first(sdp)) {
2471 		sector_size = read_capacity_16(sdkp, sdp, buffer);
2472 		if (sector_size == -EOVERFLOW)
2473 			goto got_data;
2474 		if (sector_size == -ENODEV)
2475 			return;
2476 		if (sector_size < 0)
2477 			sector_size = read_capacity_10(sdkp, sdp, buffer);
2478 		if (sector_size < 0)
2479 			return;
2480 	} else {
2481 		sector_size = read_capacity_10(sdkp, sdp, buffer);
2482 		if (sector_size == -EOVERFLOW)
2483 			goto got_data;
2484 		if (sector_size < 0)
2485 			return;
2486 		if ((sizeof(sdkp->capacity) > 4) &&
2487 		    (sdkp->capacity > 0xffffffffULL)) {
2488 			int old_sector_size = sector_size;
2489 			sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2490 					"Trying to use READ CAPACITY(16).\n");
2491 			sector_size = read_capacity_16(sdkp, sdp, buffer);
2492 			if (sector_size < 0) {
2493 				sd_printk(KERN_NOTICE, sdkp,
2494 					"Using 0xffffffff as device size\n");
2495 				sdkp->capacity = 1 + (sector_t) 0xffffffff;
2496 				sector_size = old_sector_size;
2497 				goto got_data;
2498 			}
2499 			/* Remember that READ CAPACITY(16) succeeded */
2500 			sdp->try_rc_10_first = 0;
2501 		}
2502 	}
2503 
2504 	/* Some devices are known to return the total number of blocks,
2505 	 * not the highest block number.  Some devices have versions
2506 	 * which do this and others which do not.  Some devices we might
2507 	 * suspect of doing this but we don't know for certain.
2508 	 *
2509 	 * If we know the reported capacity is wrong, decrement it.  If
2510 	 * we can only guess, then assume the number of blocks is even
2511 	 * (usually true but not always) and err on the side of lowering
2512 	 * the capacity.
2513 	 */
2514 	if (sdp->fix_capacity ||
2515 	    (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2516 		sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2517 				"from its reported value: %llu\n",
2518 				(unsigned long long) sdkp->capacity);
2519 		--sdkp->capacity;
2520 	}
2521 
2522 got_data:
2523 	if (sector_size == 0) {
2524 		sector_size = 512;
2525 		sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2526 			  "assuming 512.\n");
2527 	}
2528 
2529 	if (sector_size != 512 &&
2530 	    sector_size != 1024 &&
2531 	    sector_size != 2048 &&
2532 	    sector_size != 4096) {
2533 		sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2534 			  sector_size);
2535 		/*
2536 		 * The user might want to re-format the drive with
2537 		 * a supported sectorsize.  Once this happens, it
2538 		 * would be relatively trivial to set the thing up.
2539 		 * For this reason, we leave the thing in the table.
2540 		 */
2541 		sdkp->capacity = 0;
2542 		/*
2543 		 * set a bogus sector size so the normal read/write
2544 		 * logic in the block layer will eventually refuse any
2545 		 * request on this device without tripping over power
2546 		 * of two sector size assumptions
2547 		 */
2548 		sector_size = 512;
2549 	}
2550 	blk_queue_logical_block_size(sdp->request_queue, sector_size);
2551 	blk_queue_physical_block_size(sdp->request_queue,
2552 				      sdkp->physical_block_size);
2553 	sdkp->device->sector_size = sector_size;
2554 
2555 	if (sdkp->capacity > 0xffffffff)
2556 		sdp->use_16_for_rw = 1;
2557 
2558 }
2559 
2560 /*
2561  * Print disk capacity
2562  */
2563 static void
2564 sd_print_capacity(struct scsi_disk *sdkp,
2565 		  sector_t old_capacity)
2566 {
2567 	int sector_size = sdkp->device->sector_size;
2568 	char cap_str_2[10], cap_str_10[10];
2569 
2570 	if (!sdkp->first_scan && old_capacity == sdkp->capacity)
2571 		return;
2572 
2573 	string_get_size(sdkp->capacity, sector_size,
2574 			STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2575 	string_get_size(sdkp->capacity, sector_size,
2576 			STRING_UNITS_10, cap_str_10, sizeof(cap_str_10));
2577 
2578 	sd_printk(KERN_NOTICE, sdkp,
2579 		  "%llu %d-byte logical blocks: (%s/%s)\n",
2580 		  (unsigned long long)sdkp->capacity,
2581 		  sector_size, cap_str_10, cap_str_2);
2582 
2583 	if (sdkp->physical_block_size != sector_size)
2584 		sd_printk(KERN_NOTICE, sdkp,
2585 			  "%u-byte physical blocks\n",
2586 			  sdkp->physical_block_size);
2587 
2588 	sd_zbc_print_zones(sdkp);
2589 }
2590 
2591 /* called with buffer of length 512 */
2592 static inline int
2593 sd_do_mode_sense(struct scsi_device *sdp, int dbd, int modepage,
2594 		 unsigned char *buffer, int len, struct scsi_mode_data *data,
2595 		 struct scsi_sense_hdr *sshdr)
2596 {
2597 	return scsi_mode_sense(sdp, dbd, modepage, buffer, len,
2598 			       SD_TIMEOUT, SD_MAX_RETRIES, data,
2599 			       sshdr);
2600 }
2601 
2602 /*
2603  * read write protect setting, if possible - called only in sd_revalidate_disk()
2604  * called with buffer of length SD_BUF_SIZE
2605  */
2606 static void
2607 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2608 {
2609 	int res;
2610 	struct scsi_device *sdp = sdkp->device;
2611 	struct scsi_mode_data data;
2612 	int disk_ro = get_disk_ro(sdkp->disk);
2613 	int old_wp = sdkp->write_prot;
2614 
2615 	set_disk_ro(sdkp->disk, 0);
2616 	if (sdp->skip_ms_page_3f) {
2617 		sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2618 		return;
2619 	}
2620 
2621 	if (sdp->use_192_bytes_for_3f) {
2622 		res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 192, &data, NULL);
2623 	} else {
2624 		/*
2625 		 * First attempt: ask for all pages (0x3F), but only 4 bytes.
2626 		 * We have to start carefully: some devices hang if we ask
2627 		 * for more than is available.
2628 		 */
2629 		res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 4, &data, NULL);
2630 
2631 		/*
2632 		 * Second attempt: ask for page 0 When only page 0 is
2633 		 * implemented, a request for page 3F may return Sense Key
2634 		 * 5: Illegal Request, Sense Code 24: Invalid field in
2635 		 * CDB.
2636 		 */
2637 		if (!scsi_status_is_good(res))
2638 			res = sd_do_mode_sense(sdp, 0, 0, buffer, 4, &data, NULL);
2639 
2640 		/*
2641 		 * Third attempt: ask 255 bytes, as we did earlier.
2642 		 */
2643 		if (!scsi_status_is_good(res))
2644 			res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 255,
2645 					       &data, NULL);
2646 	}
2647 
2648 	if (!scsi_status_is_good(res)) {
2649 		sd_first_printk(KERN_WARNING, sdkp,
2650 			  "Test WP failed, assume Write Enabled\n");
2651 	} else {
2652 		sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2653 		set_disk_ro(sdkp->disk, sdkp->write_prot || disk_ro);
2654 		if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2655 			sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2656 				  sdkp->write_prot ? "on" : "off");
2657 			sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
2658 		}
2659 	}
2660 }
2661 
2662 /*
2663  * sd_read_cache_type - called only from sd_revalidate_disk()
2664  * called with buffer of length SD_BUF_SIZE
2665  */
2666 static void
2667 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2668 {
2669 	int len = 0, res;
2670 	struct scsi_device *sdp = sdkp->device;
2671 
2672 	int dbd;
2673 	int modepage;
2674 	int first_len;
2675 	struct scsi_mode_data data;
2676 	struct scsi_sense_hdr sshdr;
2677 	int old_wce = sdkp->WCE;
2678 	int old_rcd = sdkp->RCD;
2679 	int old_dpofua = sdkp->DPOFUA;
2680 
2681 
2682 	if (sdkp->cache_override)
2683 		return;
2684 
2685 	first_len = 4;
2686 	if (sdp->skip_ms_page_8) {
2687 		if (sdp->type == TYPE_RBC)
2688 			goto defaults;
2689 		else {
2690 			if (sdp->skip_ms_page_3f)
2691 				goto defaults;
2692 			modepage = 0x3F;
2693 			if (sdp->use_192_bytes_for_3f)
2694 				first_len = 192;
2695 			dbd = 0;
2696 		}
2697 	} else if (sdp->type == TYPE_RBC) {
2698 		modepage = 6;
2699 		dbd = 8;
2700 	} else {
2701 		modepage = 8;
2702 		dbd = 0;
2703 	}
2704 
2705 	/* cautiously ask */
2706 	res = sd_do_mode_sense(sdp, dbd, modepage, buffer, first_len,
2707 			&data, &sshdr);
2708 
2709 	if (!scsi_status_is_good(res))
2710 		goto bad_sense;
2711 
2712 	if (!data.header_length) {
2713 		modepage = 6;
2714 		first_len = 0;
2715 		sd_first_printk(KERN_ERR, sdkp,
2716 				"Missing header in MODE_SENSE response\n");
2717 	}
2718 
2719 	/* that went OK, now ask for the proper length */
2720 	len = data.length;
2721 
2722 	/*
2723 	 * We're only interested in the first three bytes, actually.
2724 	 * But the data cache page is defined for the first 20.
2725 	 */
2726 	if (len < 3)
2727 		goto bad_sense;
2728 	else if (len > SD_BUF_SIZE) {
2729 		sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2730 			  "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2731 		len = SD_BUF_SIZE;
2732 	}
2733 	if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2734 		len = 192;
2735 
2736 	/* Get the data */
2737 	if (len > first_len)
2738 		res = sd_do_mode_sense(sdp, dbd, modepage, buffer, len,
2739 				&data, &sshdr);
2740 
2741 	if (scsi_status_is_good(res)) {
2742 		int offset = data.header_length + data.block_descriptor_length;
2743 
2744 		while (offset < len) {
2745 			u8 page_code = buffer[offset] & 0x3F;
2746 			u8 spf       = buffer[offset] & 0x40;
2747 
2748 			if (page_code == 8 || page_code == 6) {
2749 				/* We're interested only in the first 3 bytes.
2750 				 */
2751 				if (len - offset <= 2) {
2752 					sd_first_printk(KERN_ERR, sdkp,
2753 						"Incomplete mode parameter "
2754 							"data\n");
2755 					goto defaults;
2756 				} else {
2757 					modepage = page_code;
2758 					goto Page_found;
2759 				}
2760 			} else {
2761 				/* Go to the next page */
2762 				if (spf && len - offset > 3)
2763 					offset += 4 + (buffer[offset+2] << 8) +
2764 						buffer[offset+3];
2765 				else if (!spf && len - offset > 1)
2766 					offset += 2 + buffer[offset+1];
2767 				else {
2768 					sd_first_printk(KERN_ERR, sdkp,
2769 							"Incomplete mode "
2770 							"parameter data\n");
2771 					goto defaults;
2772 				}
2773 			}
2774 		}
2775 
2776 		sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n");
2777 		goto defaults;
2778 
2779 	Page_found:
2780 		if (modepage == 8) {
2781 			sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2782 			sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2783 		} else {
2784 			sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2785 			sdkp->RCD = 0;
2786 		}
2787 
2788 		sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2789 		if (sdp->broken_fua) {
2790 			sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2791 			sdkp->DPOFUA = 0;
2792 		} else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
2793 			   !sdkp->device->use_16_for_rw) {
2794 			sd_first_printk(KERN_NOTICE, sdkp,
2795 				  "Uses READ/WRITE(6), disabling FUA\n");
2796 			sdkp->DPOFUA = 0;
2797 		}
2798 
2799 		/* No cache flush allowed for write protected devices */
2800 		if (sdkp->WCE && sdkp->write_prot)
2801 			sdkp->WCE = 0;
2802 
2803 		if (sdkp->first_scan || old_wce != sdkp->WCE ||
2804 		    old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2805 			sd_printk(KERN_NOTICE, sdkp,
2806 				  "Write cache: %s, read cache: %s, %s\n",
2807 				  sdkp->WCE ? "enabled" : "disabled",
2808 				  sdkp->RCD ? "disabled" : "enabled",
2809 				  sdkp->DPOFUA ? "supports DPO and FUA"
2810 				  : "doesn't support DPO or FUA");
2811 
2812 		return;
2813 	}
2814 
2815 bad_sense:
2816 	if (scsi_sense_valid(&sshdr) &&
2817 	    sshdr.sense_key == ILLEGAL_REQUEST &&
2818 	    sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2819 		/* Invalid field in CDB */
2820 		sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2821 	else
2822 		sd_first_printk(KERN_ERR, sdkp,
2823 				"Asking for cache data failed\n");
2824 
2825 defaults:
2826 	if (sdp->wce_default_on) {
2827 		sd_first_printk(KERN_NOTICE, sdkp,
2828 				"Assuming drive cache: write back\n");
2829 		sdkp->WCE = 1;
2830 	} else {
2831 		sd_first_printk(KERN_ERR, sdkp,
2832 				"Assuming drive cache: write through\n");
2833 		sdkp->WCE = 0;
2834 	}
2835 	sdkp->RCD = 0;
2836 	sdkp->DPOFUA = 0;
2837 }
2838 
2839 /*
2840  * The ATO bit indicates whether the DIF application tag is available
2841  * for use by the operating system.
2842  */
2843 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
2844 {
2845 	int res, offset;
2846 	struct scsi_device *sdp = sdkp->device;
2847 	struct scsi_mode_data data;
2848 	struct scsi_sense_hdr sshdr;
2849 
2850 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
2851 		return;
2852 
2853 	if (sdkp->protection_type == 0)
2854 		return;
2855 
2856 	res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT,
2857 			      SD_MAX_RETRIES, &data, &sshdr);
2858 
2859 	if (!scsi_status_is_good(res) || !data.header_length ||
2860 	    data.length < 6) {
2861 		sd_first_printk(KERN_WARNING, sdkp,
2862 			  "getting Control mode page failed, assume no ATO\n");
2863 
2864 		if (scsi_sense_valid(&sshdr))
2865 			sd_print_sense_hdr(sdkp, &sshdr);
2866 
2867 		return;
2868 	}
2869 
2870 	offset = data.header_length + data.block_descriptor_length;
2871 
2872 	if ((buffer[offset] & 0x3f) != 0x0a) {
2873 		sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
2874 		return;
2875 	}
2876 
2877 	if ((buffer[offset + 5] & 0x80) == 0)
2878 		return;
2879 
2880 	sdkp->ATO = 1;
2881 
2882 	return;
2883 }
2884 
2885 /**
2886  * sd_read_block_limits - Query disk device for preferred I/O sizes.
2887  * @sdkp: disk to query
2888  */
2889 static void sd_read_block_limits(struct scsi_disk *sdkp)
2890 {
2891 	unsigned int sector_sz = sdkp->device->sector_size;
2892 	const int vpd_len = 64;
2893 	unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL);
2894 
2895 	if (!buffer ||
2896 	    /* Block Limits VPD */
2897 	    scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len))
2898 		goto out;
2899 
2900 	blk_queue_io_min(sdkp->disk->queue,
2901 			 get_unaligned_be16(&buffer[6]) * sector_sz);
2902 
2903 	sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]);
2904 	sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]);
2905 
2906 	if (buffer[3] == 0x3c) {
2907 		unsigned int lba_count, desc_count;
2908 
2909 		sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]);
2910 
2911 		if (!sdkp->lbpme)
2912 			goto out;
2913 
2914 		lba_count = get_unaligned_be32(&buffer[20]);
2915 		desc_count = get_unaligned_be32(&buffer[24]);
2916 
2917 		if (lba_count && desc_count)
2918 			sdkp->max_unmap_blocks = lba_count;
2919 
2920 		sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]);
2921 
2922 		if (buffer[32] & 0x80)
2923 			sdkp->unmap_alignment =
2924 				get_unaligned_be32(&buffer[32]) & ~(1 << 31);
2925 
2926 		if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
2927 
2928 			if (sdkp->max_unmap_blocks)
2929 				sd_config_discard(sdkp, SD_LBP_UNMAP);
2930 			else
2931 				sd_config_discard(sdkp, SD_LBP_WS16);
2932 
2933 		} else {	/* LBP VPD page tells us what to use */
2934 			if (sdkp->lbpu && sdkp->max_unmap_blocks)
2935 				sd_config_discard(sdkp, SD_LBP_UNMAP);
2936 			else if (sdkp->lbpws)
2937 				sd_config_discard(sdkp, SD_LBP_WS16);
2938 			else if (sdkp->lbpws10)
2939 				sd_config_discard(sdkp, SD_LBP_WS10);
2940 			else
2941 				sd_config_discard(sdkp, SD_LBP_DISABLE);
2942 		}
2943 	}
2944 
2945  out:
2946 	kfree(buffer);
2947 }
2948 
2949 /**
2950  * sd_read_block_characteristics - Query block dev. characteristics
2951  * @sdkp: disk to query
2952  */
2953 static void sd_read_block_characteristics(struct scsi_disk *sdkp)
2954 {
2955 	struct request_queue *q = sdkp->disk->queue;
2956 	unsigned char *buffer;
2957 	u16 rot;
2958 	const int vpd_len = 64;
2959 
2960 	buffer = kmalloc(vpd_len, GFP_KERNEL);
2961 
2962 	if (!buffer ||
2963 	    /* Block Device Characteristics VPD */
2964 	    scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len))
2965 		goto out;
2966 
2967 	rot = get_unaligned_be16(&buffer[4]);
2968 
2969 	if (rot == 1) {
2970 		blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
2971 		blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
2972 	}
2973 
2974 	if (sdkp->device->type == TYPE_ZBC) {
2975 		/* Host-managed */
2976 		q->limits.zoned = BLK_ZONED_HM;
2977 	} else {
2978 		sdkp->zoned = (buffer[8] >> 4) & 3;
2979 		if (sdkp->zoned == 1)
2980 			/* Host-aware */
2981 			q->limits.zoned = BLK_ZONED_HA;
2982 		else
2983 			/*
2984 			 * Treat drive-managed devices as
2985 			 * regular block devices.
2986 			 */
2987 			q->limits.zoned = BLK_ZONED_NONE;
2988 	}
2989 	if (blk_queue_is_zoned(q) && sdkp->first_scan)
2990 		sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n",
2991 		      q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware");
2992 
2993  out:
2994 	kfree(buffer);
2995 }
2996 
2997 /**
2998  * sd_read_block_provisioning - Query provisioning VPD page
2999  * @sdkp: disk to query
3000  */
3001 static void sd_read_block_provisioning(struct scsi_disk *sdkp)
3002 {
3003 	unsigned char *buffer;
3004 	const int vpd_len = 8;
3005 
3006 	if (sdkp->lbpme == 0)
3007 		return;
3008 
3009 	buffer = kmalloc(vpd_len, GFP_KERNEL);
3010 
3011 	if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len))
3012 		goto out;
3013 
3014 	sdkp->lbpvpd	= 1;
3015 	sdkp->lbpu	= (buffer[5] >> 7) & 1;	/* UNMAP */
3016 	sdkp->lbpws	= (buffer[5] >> 6) & 1;	/* WRITE SAME(16) with UNMAP */
3017 	sdkp->lbpws10	= (buffer[5] >> 5) & 1;	/* WRITE SAME(10) with UNMAP */
3018 
3019  out:
3020 	kfree(buffer);
3021 }
3022 
3023 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
3024 {
3025 	struct scsi_device *sdev = sdkp->device;
3026 
3027 	if (sdev->host->no_write_same) {
3028 		sdev->no_write_same = 1;
3029 
3030 		return;
3031 	}
3032 
3033 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) {
3034 		/* too large values might cause issues with arcmsr */
3035 		int vpd_buf_len = 64;
3036 
3037 		sdev->no_report_opcodes = 1;
3038 
3039 		/* Disable WRITE SAME if REPORT SUPPORTED OPERATION
3040 		 * CODES is unsupported and the device has an ATA
3041 		 * Information VPD page (SAT).
3042 		 */
3043 		if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len))
3044 			sdev->no_write_same = 1;
3045 	}
3046 
3047 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1)
3048 		sdkp->ws16 = 1;
3049 
3050 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1)
3051 		sdkp->ws10 = 1;
3052 }
3053 
3054 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3055 {
3056 	struct scsi_device *sdev = sdkp->device;
3057 
3058 	if (!sdev->security_supported)
3059 		return;
3060 
3061 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3062 			SECURITY_PROTOCOL_IN) == 1 &&
3063 	    scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3064 			SECURITY_PROTOCOL_OUT) == 1)
3065 		sdkp->security = 1;
3066 }
3067 
3068 /*
3069  * Determine the device's preferred I/O size for reads and writes
3070  * unless the reported value is unreasonably small, large, not a
3071  * multiple of the physical block size, or simply garbage.
3072  */
3073 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp,
3074 				      unsigned int dev_max)
3075 {
3076 	struct scsi_device *sdp = sdkp->device;
3077 	unsigned int opt_xfer_bytes =
3078 		logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3079 
3080 	if (sdkp->opt_xfer_blocks > dev_max) {
3081 		sd_first_printk(KERN_WARNING, sdkp,
3082 				"Optimal transfer size %u logical blocks " \
3083 				"> dev_max (%u logical blocks)\n",
3084 				sdkp->opt_xfer_blocks, dev_max);
3085 		return false;
3086 	}
3087 
3088 	if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) {
3089 		sd_first_printk(KERN_WARNING, sdkp,
3090 				"Optimal transfer size %u logical blocks " \
3091 				"> sd driver limit (%u logical blocks)\n",
3092 				sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS);
3093 		return false;
3094 	}
3095 
3096 	if (opt_xfer_bytes < PAGE_SIZE) {
3097 		sd_first_printk(KERN_WARNING, sdkp,
3098 				"Optimal transfer size %u bytes < " \
3099 				"PAGE_SIZE (%u bytes)\n",
3100 				opt_xfer_bytes, (unsigned int)PAGE_SIZE);
3101 		return false;
3102 	}
3103 
3104 	if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) {
3105 		sd_first_printk(KERN_WARNING, sdkp,
3106 				"Optimal transfer size %u bytes not a " \
3107 				"multiple of physical block size (%u bytes)\n",
3108 				opt_xfer_bytes, sdkp->physical_block_size);
3109 		return false;
3110 	}
3111 
3112 	sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n",
3113 			opt_xfer_bytes);
3114 	return true;
3115 }
3116 
3117 /**
3118  *	sd_revalidate_disk - called the first time a new disk is seen,
3119  *	performs disk spin up, read_capacity, etc.
3120  *	@disk: struct gendisk we care about
3121  **/
3122 static int sd_revalidate_disk(struct gendisk *disk)
3123 {
3124 	struct scsi_disk *sdkp = scsi_disk(disk);
3125 	struct scsi_device *sdp = sdkp->device;
3126 	struct request_queue *q = sdkp->disk->queue;
3127 	sector_t old_capacity = sdkp->capacity;
3128 	unsigned char *buffer;
3129 	unsigned int dev_max, rw_max;
3130 
3131 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3132 				      "sd_revalidate_disk\n"));
3133 
3134 	/*
3135 	 * If the device is offline, don't try and read capacity or any
3136 	 * of the other niceties.
3137 	 */
3138 	if (!scsi_device_online(sdp))
3139 		goto out;
3140 
3141 	buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3142 	if (!buffer) {
3143 		sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3144 			  "allocation failure.\n");
3145 		goto out;
3146 	}
3147 
3148 	sd_spinup_disk(sdkp);
3149 
3150 	/*
3151 	 * Without media there is no reason to ask; moreover, some devices
3152 	 * react badly if we do.
3153 	 */
3154 	if (sdkp->media_present) {
3155 		sd_read_capacity(sdkp, buffer);
3156 
3157 		/*
3158 		 * set the default to rotational.  All non-rotational devices
3159 		 * support the block characteristics VPD page, which will
3160 		 * cause this to be updated correctly and any device which
3161 		 * doesn't support it should be treated as rotational.
3162 		 */
3163 		blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
3164 		blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q);
3165 
3166 		if (scsi_device_supports_vpd(sdp)) {
3167 			sd_read_block_provisioning(sdkp);
3168 			sd_read_block_limits(sdkp);
3169 			sd_read_block_characteristics(sdkp);
3170 			sd_zbc_read_zones(sdkp, buffer);
3171 		}
3172 
3173 		sd_print_capacity(sdkp, old_capacity);
3174 
3175 		sd_read_write_protect_flag(sdkp, buffer);
3176 		sd_read_cache_type(sdkp, buffer);
3177 		sd_read_app_tag_own(sdkp, buffer);
3178 		sd_read_write_same(sdkp, buffer);
3179 		sd_read_security(sdkp, buffer);
3180 	}
3181 
3182 	/*
3183 	 * We now have all cache related info, determine how we deal
3184 	 * with flush requests.
3185 	 */
3186 	sd_set_flush_flag(sdkp);
3187 
3188 	/* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3189 	dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3190 
3191 	/* Some devices report a maximum block count for READ/WRITE requests. */
3192 	dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3193 	q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3194 
3195 	if (sd_validate_opt_xfer_size(sdkp, dev_max)) {
3196 		q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3197 		rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
3198 	} else
3199 		rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
3200 				      (sector_t)BLK_DEF_MAX_SECTORS);
3201 
3202 	/* Do not exceed controller limit */
3203 	rw_max = min(rw_max, queue_max_hw_sectors(q));
3204 
3205 	/*
3206 	 * Only update max_sectors if previously unset or if the current value
3207 	 * exceeds the capabilities of the hardware.
3208 	 */
3209 	if (sdkp->first_scan ||
3210 	    q->limits.max_sectors > q->limits.max_dev_sectors ||
3211 	    q->limits.max_sectors > q->limits.max_hw_sectors)
3212 		q->limits.max_sectors = rw_max;
3213 
3214 	sdkp->first_scan = 0;
3215 
3216 	set_capacity(disk, logical_to_sectors(sdp, sdkp->capacity));
3217 	sd_config_write_same(sdkp);
3218 	kfree(buffer);
3219 
3220  out:
3221 	return 0;
3222 }
3223 
3224 /**
3225  *	sd_unlock_native_capacity - unlock native capacity
3226  *	@disk: struct gendisk to set capacity for
3227  *
3228  *	Block layer calls this function if it detects that partitions
3229  *	on @disk reach beyond the end of the device.  If the SCSI host
3230  *	implements ->unlock_native_capacity() method, it's invoked to
3231  *	give it a chance to adjust the device capacity.
3232  *
3233  *	CONTEXT:
3234  *	Defined by block layer.  Might sleep.
3235  */
3236 static void sd_unlock_native_capacity(struct gendisk *disk)
3237 {
3238 	struct scsi_device *sdev = scsi_disk(disk)->device;
3239 
3240 	if (sdev->host->hostt->unlock_native_capacity)
3241 		sdev->host->hostt->unlock_native_capacity(sdev);
3242 }
3243 
3244 /**
3245  *	sd_format_disk_name - format disk name
3246  *	@prefix: name prefix - ie. "sd" for SCSI disks
3247  *	@index: index of the disk to format name for
3248  *	@buf: output buffer
3249  *	@buflen: length of the output buffer
3250  *
3251  *	SCSI disk names starts at sda.  The 26th device is sdz and the
3252  *	27th is sdaa.  The last one for two lettered suffix is sdzz
3253  *	which is followed by sdaaa.
3254  *
3255  *	This is basically 26 base counting with one extra 'nil' entry
3256  *	at the beginning from the second digit on and can be
3257  *	determined using similar method as 26 base conversion with the
3258  *	index shifted -1 after each digit is computed.
3259  *
3260  *	CONTEXT:
3261  *	Don't care.
3262  *
3263  *	RETURNS:
3264  *	0 on success, -errno on failure.
3265  */
3266 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3267 {
3268 	const int base = 'z' - 'a' + 1;
3269 	char *begin = buf + strlen(prefix);
3270 	char *end = buf + buflen;
3271 	char *p;
3272 	int unit;
3273 
3274 	p = end - 1;
3275 	*p = '\0';
3276 	unit = base;
3277 	do {
3278 		if (p == begin)
3279 			return -EINVAL;
3280 		*--p = 'a' + (index % unit);
3281 		index = (index / unit) - 1;
3282 	} while (index >= 0);
3283 
3284 	memmove(begin, p, end - p);
3285 	memcpy(buf, prefix, strlen(prefix));
3286 
3287 	return 0;
3288 }
3289 
3290 /**
3291  *	sd_probe - called during driver initialization and whenever a
3292  *	new scsi device is attached to the system. It is called once
3293  *	for each scsi device (not just disks) present.
3294  *	@dev: pointer to device object
3295  *
3296  *	Returns 0 if successful (or not interested in this scsi device
3297  *	(e.g. scanner)); 1 when there is an error.
3298  *
3299  *	Note: this function is invoked from the scsi mid-level.
3300  *	This function sets up the mapping between a given
3301  *	<host,channel,id,lun> (found in sdp) and new device name
3302  *	(e.g. /dev/sda). More precisely it is the block device major
3303  *	and minor number that is chosen here.
3304  *
3305  *	Assume sd_probe is not re-entrant (for time being)
3306  *	Also think about sd_probe() and sd_remove() running coincidentally.
3307  **/
3308 static int sd_probe(struct device *dev)
3309 {
3310 	struct scsi_device *sdp = to_scsi_device(dev);
3311 	struct scsi_disk *sdkp;
3312 	struct gendisk *gd;
3313 	int index;
3314 	int error;
3315 
3316 	scsi_autopm_get_device(sdp);
3317 	error = -ENODEV;
3318 	if (sdp->type != TYPE_DISK &&
3319 	    sdp->type != TYPE_ZBC &&
3320 	    sdp->type != TYPE_MOD &&
3321 	    sdp->type != TYPE_RBC)
3322 		goto out;
3323 
3324 #ifndef CONFIG_BLK_DEV_ZONED
3325 	if (sdp->type == TYPE_ZBC)
3326 		goto out;
3327 #endif
3328 	SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3329 					"sd_probe\n"));
3330 
3331 	error = -ENOMEM;
3332 	sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3333 	if (!sdkp)
3334 		goto out;
3335 
3336 	gd = alloc_disk(SD_MINORS);
3337 	if (!gd)
3338 		goto out_free;
3339 
3340 	index = ida_alloc(&sd_index_ida, GFP_KERNEL);
3341 	if (index < 0) {
3342 		sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3343 		goto out_put;
3344 	}
3345 
3346 	error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3347 	if (error) {
3348 		sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3349 		goto out_free_index;
3350 	}
3351 
3352 	sdkp->device = sdp;
3353 	sdkp->driver = &sd_template;
3354 	sdkp->disk = gd;
3355 	sdkp->index = index;
3356 	atomic_set(&sdkp->openers, 0);
3357 	atomic_set(&sdkp->device->ioerr_cnt, 0);
3358 
3359 	if (!sdp->request_queue->rq_timeout) {
3360 		if (sdp->type != TYPE_MOD)
3361 			blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3362 		else
3363 			blk_queue_rq_timeout(sdp->request_queue,
3364 					     SD_MOD_TIMEOUT);
3365 	}
3366 
3367 	device_initialize(&sdkp->dev);
3368 	sdkp->dev.parent = dev;
3369 	sdkp->dev.class = &sd_disk_class;
3370 	dev_set_name(&sdkp->dev, "%s", dev_name(dev));
3371 
3372 	error = device_add(&sdkp->dev);
3373 	if (error)
3374 		goto out_free_index;
3375 
3376 	get_device(dev);
3377 	dev_set_drvdata(dev, sdkp);
3378 
3379 	gd->major = sd_major((index & 0xf0) >> 4);
3380 	gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3381 
3382 	gd->fops = &sd_fops;
3383 	gd->private_data = &sdkp->driver;
3384 	gd->queue = sdkp->device->request_queue;
3385 
3386 	/* defaults, until the device tells us otherwise */
3387 	sdp->sector_size = 512;
3388 	sdkp->capacity = 0;
3389 	sdkp->media_present = 1;
3390 	sdkp->write_prot = 0;
3391 	sdkp->cache_override = 0;
3392 	sdkp->WCE = 0;
3393 	sdkp->RCD = 0;
3394 	sdkp->ATO = 0;
3395 	sdkp->first_scan = 1;
3396 	sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3397 
3398 	sd_revalidate_disk(gd);
3399 
3400 	gd->flags = GENHD_FL_EXT_DEVT;
3401 	if (sdp->removable) {
3402 		gd->flags |= GENHD_FL_REMOVABLE;
3403 		gd->events |= DISK_EVENT_MEDIA_CHANGE;
3404 	}
3405 
3406 	blk_pm_runtime_init(sdp->request_queue, dev);
3407 	device_add_disk(dev, gd, NULL);
3408 	if (sdkp->capacity)
3409 		sd_dif_config_host(sdkp);
3410 
3411 	sd_revalidate_disk(gd);
3412 
3413 	if (sdkp->security) {
3414 		sdkp->opal_dev = init_opal_dev(sdp, &sd_sec_submit);
3415 		if (sdkp->opal_dev)
3416 			sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
3417 	}
3418 
3419 	sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3420 		  sdp->removable ? "removable " : "");
3421 	scsi_autopm_put_device(sdp);
3422 
3423 	return 0;
3424 
3425  out_free_index:
3426 	ida_free(&sd_index_ida, index);
3427  out_put:
3428 	put_disk(gd);
3429  out_free:
3430 	kfree(sdkp);
3431  out:
3432 	scsi_autopm_put_device(sdp);
3433 	return error;
3434 }
3435 
3436 /**
3437  *	sd_remove - called whenever a scsi disk (previously recognized by
3438  *	sd_probe) is detached from the system. It is called (potentially
3439  *	multiple times) during sd module unload.
3440  *	@dev: pointer to device object
3441  *
3442  *	Note: this function is invoked from the scsi mid-level.
3443  *	This function potentially frees up a device name (e.g. /dev/sdc)
3444  *	that could be re-used by a subsequent sd_probe().
3445  *	This function is not called when the built-in sd driver is "exit-ed".
3446  **/
3447 static int sd_remove(struct device *dev)
3448 {
3449 	struct scsi_disk *sdkp;
3450 	dev_t devt;
3451 
3452 	sdkp = dev_get_drvdata(dev);
3453 	devt = disk_devt(sdkp->disk);
3454 	scsi_autopm_get_device(sdkp->device);
3455 
3456 	device_del(&sdkp->dev);
3457 	del_gendisk(sdkp->disk);
3458 	sd_shutdown(dev);
3459 
3460 	free_opal_dev(sdkp->opal_dev);
3461 
3462 	blk_register_region(devt, SD_MINORS, NULL,
3463 			    sd_default_probe, NULL, NULL);
3464 
3465 	mutex_lock(&sd_ref_mutex);
3466 	dev_set_drvdata(dev, NULL);
3467 	put_device(&sdkp->dev);
3468 	mutex_unlock(&sd_ref_mutex);
3469 
3470 	return 0;
3471 }
3472 
3473 /**
3474  *	scsi_disk_release - Called to free the scsi_disk structure
3475  *	@dev: pointer to embedded class device
3476  *
3477  *	sd_ref_mutex must be held entering this routine.  Because it is
3478  *	called on last put, you should always use the scsi_disk_get()
3479  *	scsi_disk_put() helpers which manipulate the semaphore directly
3480  *	and never do a direct put_device.
3481  **/
3482 static void scsi_disk_release(struct device *dev)
3483 {
3484 	struct scsi_disk *sdkp = to_scsi_disk(dev);
3485 	struct gendisk *disk = sdkp->disk;
3486 
3487 	ida_free(&sd_index_ida, sdkp->index);
3488 
3489 	disk->private_data = NULL;
3490 	put_disk(disk);
3491 	put_device(&sdkp->device->sdev_gendev);
3492 
3493 	kfree(sdkp);
3494 }
3495 
3496 static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3497 {
3498 	unsigned char cmd[6] = { START_STOP };	/* START_VALID */
3499 	struct scsi_sense_hdr sshdr;
3500 	struct scsi_device *sdp = sdkp->device;
3501 	int res;
3502 
3503 	if (start)
3504 		cmd[4] |= 1;	/* START */
3505 
3506 	if (sdp->start_stop_pwr_cond)
3507 		cmd[4] |= start ? 1 << 4 : 3 << 4;	/* Active or Standby */
3508 
3509 	if (!scsi_device_online(sdp))
3510 		return -ENODEV;
3511 
3512 	res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr,
3513 			SD_TIMEOUT, SD_MAX_RETRIES, 0, RQF_PM, NULL);
3514 	if (res) {
3515 		sd_print_result(sdkp, "Start/Stop Unit failed", res);
3516 		if (driver_byte(res) == DRIVER_SENSE)
3517 			sd_print_sense_hdr(sdkp, &sshdr);
3518 		if (scsi_sense_valid(&sshdr) &&
3519 			/* 0x3a is medium not present */
3520 			sshdr.asc == 0x3a)
3521 			res = 0;
3522 	}
3523 
3524 	/* SCSI error codes must not go to the generic layer */
3525 	if (res)
3526 		return -EIO;
3527 
3528 	return 0;
3529 }
3530 
3531 /*
3532  * Send a SYNCHRONIZE CACHE instruction down to the device through
3533  * the normal SCSI command structure.  Wait for the command to
3534  * complete.
3535  */
3536 static void sd_shutdown(struct device *dev)
3537 {
3538 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3539 
3540 	if (!sdkp)
3541 		return;         /* this can happen */
3542 
3543 	if (pm_runtime_suspended(dev))
3544 		return;
3545 
3546 	if (sdkp->WCE && sdkp->media_present) {
3547 		sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3548 		sd_sync_cache(sdkp, NULL);
3549 	}
3550 
3551 	if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) {
3552 		sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3553 		sd_start_stop_device(sdkp, 0);
3554 	}
3555 }
3556 
3557 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors)
3558 {
3559 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3560 	struct scsi_sense_hdr sshdr;
3561 	int ret = 0;
3562 
3563 	if (!sdkp)	/* E.g.: runtime suspend following sd_remove() */
3564 		return 0;
3565 
3566 	if (sdkp->WCE && sdkp->media_present) {
3567 		sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3568 		ret = sd_sync_cache(sdkp, &sshdr);
3569 
3570 		if (ret) {
3571 			/* ignore OFFLINE device */
3572 			if (ret == -ENODEV)
3573 				return 0;
3574 
3575 			if (!scsi_sense_valid(&sshdr) ||
3576 			    sshdr.sense_key != ILLEGAL_REQUEST)
3577 				return ret;
3578 
3579 			/*
3580 			 * sshdr.sense_key == ILLEGAL_REQUEST means this drive
3581 			 * doesn't support sync. There's not much to do and
3582 			 * suspend shouldn't fail.
3583 			 */
3584 			ret = 0;
3585 		}
3586 	}
3587 
3588 	if (sdkp->device->manage_start_stop) {
3589 		sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3590 		/* an error is not worth aborting a system sleep */
3591 		ret = sd_start_stop_device(sdkp, 0);
3592 		if (ignore_stop_errors)
3593 			ret = 0;
3594 	}
3595 
3596 	return ret;
3597 }
3598 
3599 static int sd_suspend_system(struct device *dev)
3600 {
3601 	return sd_suspend_common(dev, true);
3602 }
3603 
3604 static int sd_suspend_runtime(struct device *dev)
3605 {
3606 	return sd_suspend_common(dev, false);
3607 }
3608 
3609 static int sd_resume(struct device *dev)
3610 {
3611 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3612 	int ret;
3613 
3614 	if (!sdkp)	/* E.g.: runtime resume at the start of sd_probe() */
3615 		return 0;
3616 
3617 	if (!sdkp->device->manage_start_stop)
3618 		return 0;
3619 
3620 	sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3621 	ret = sd_start_stop_device(sdkp, 1);
3622 	if (!ret)
3623 		opal_unlock_from_suspend(sdkp->opal_dev);
3624 	return ret;
3625 }
3626 
3627 /**
3628  *	init_sd - entry point for this driver (both when built in or when
3629  *	a module).
3630  *
3631  *	Note: this function registers this driver with the scsi mid-level.
3632  **/
3633 static int __init init_sd(void)
3634 {
3635 	int majors = 0, i, err;
3636 
3637 	SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
3638 
3639 	for (i = 0; i < SD_MAJORS; i++) {
3640 		if (register_blkdev(sd_major(i), "sd") != 0)
3641 			continue;
3642 		majors++;
3643 		blk_register_region(sd_major(i), SD_MINORS, NULL,
3644 				    sd_default_probe, NULL, NULL);
3645 	}
3646 
3647 	if (!majors)
3648 		return -ENODEV;
3649 
3650 	err = class_register(&sd_disk_class);
3651 	if (err)
3652 		goto err_out;
3653 
3654 	sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE,
3655 					 0, 0, NULL);
3656 	if (!sd_cdb_cache) {
3657 		printk(KERN_ERR "sd: can't init extended cdb cache\n");
3658 		err = -ENOMEM;
3659 		goto err_out_class;
3660 	}
3661 
3662 	sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache);
3663 	if (!sd_cdb_pool) {
3664 		printk(KERN_ERR "sd: can't init extended cdb pool\n");
3665 		err = -ENOMEM;
3666 		goto err_out_cache;
3667 	}
3668 
3669 	sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0);
3670 	if (!sd_page_pool) {
3671 		printk(KERN_ERR "sd: can't init discard page pool\n");
3672 		err = -ENOMEM;
3673 		goto err_out_ppool;
3674 	}
3675 
3676 	err = scsi_register_driver(&sd_template.gendrv);
3677 	if (err)
3678 		goto err_out_driver;
3679 
3680 	return 0;
3681 
3682 err_out_driver:
3683 	mempool_destroy(sd_page_pool);
3684 
3685 err_out_ppool:
3686 	mempool_destroy(sd_cdb_pool);
3687 
3688 err_out_cache:
3689 	kmem_cache_destroy(sd_cdb_cache);
3690 
3691 err_out_class:
3692 	class_unregister(&sd_disk_class);
3693 err_out:
3694 	for (i = 0; i < SD_MAJORS; i++)
3695 		unregister_blkdev(sd_major(i), "sd");
3696 	return err;
3697 }
3698 
3699 /**
3700  *	exit_sd - exit point for this driver (when it is a module).
3701  *
3702  *	Note: this function unregisters this driver from the scsi mid-level.
3703  **/
3704 static void __exit exit_sd(void)
3705 {
3706 	int i;
3707 
3708 	SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
3709 
3710 	scsi_unregister_driver(&sd_template.gendrv);
3711 	mempool_destroy(sd_cdb_pool);
3712 	mempool_destroy(sd_page_pool);
3713 	kmem_cache_destroy(sd_cdb_cache);
3714 
3715 	class_unregister(&sd_disk_class);
3716 
3717 	for (i = 0; i < SD_MAJORS; i++) {
3718 		blk_unregister_region(sd_major(i), SD_MINORS);
3719 		unregister_blkdev(sd_major(i), "sd");
3720 	}
3721 }
3722 
3723 module_init(init_sd);
3724 module_exit(exit_sd);
3725 
3726 static void sd_print_sense_hdr(struct scsi_disk *sdkp,
3727 			       struct scsi_sense_hdr *sshdr)
3728 {
3729 	scsi_print_sense_hdr(sdkp->device,
3730 			     sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
3731 }
3732 
3733 static void sd_print_result(const struct scsi_disk *sdkp, const char *msg,
3734 			    int result)
3735 {
3736 	const char *hb_string = scsi_hostbyte_string(result);
3737 	const char *db_string = scsi_driverbyte_string(result);
3738 
3739 	if (hb_string || db_string)
3740 		sd_printk(KERN_INFO, sdkp,
3741 			  "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
3742 			  hb_string ? hb_string : "invalid",
3743 			  db_string ? db_string : "invalid");
3744 	else
3745 		sd_printk(KERN_INFO, sdkp,
3746 			  "%s: Result: hostbyte=0x%02x driverbyte=0x%02x\n",
3747 			  msg, host_byte(result), driver_byte(result));
3748 }
3749 
3750