1 /* 2 * sd.c Copyright (C) 1992 Drew Eckhardt 3 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale 4 * 5 * Linux scsi disk driver 6 * Initial versions: Drew Eckhardt 7 * Subsequent revisions: Eric Youngdale 8 * Modification history: 9 * - Drew Eckhardt <drew@colorado.edu> original 10 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 11 * outstanding request, and other enhancements. 12 * Support loadable low-level scsi drivers. 13 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 14 * eight major numbers. 15 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs. 16 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 17 * sd_init and cleanups. 18 * - Alex Davis <letmein@erols.com> Fix problem where partition info 19 * not being read in sd_open. Fix problem where removable media 20 * could be ejected after sd_open. 21 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x 22 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 23 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 24 * Support 32k/1M disks. 25 * 26 * Logging policy (needs CONFIG_SCSI_LOGGING defined): 27 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2 28 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1 29 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1 30 * - entering other commands: SCSI_LOG_HLQUEUE level 3 31 * Note: when the logging level is set by the user, it must be greater 32 * than the level indicated above to trigger output. 33 */ 34 35 #include <linux/module.h> 36 #include <linux/fs.h> 37 #include <linux/kernel.h> 38 #include <linux/mm.h> 39 #include <linux/bio.h> 40 #include <linux/genhd.h> 41 #include <linux/hdreg.h> 42 #include <linux/errno.h> 43 #include <linux/idr.h> 44 #include <linux/interrupt.h> 45 #include <linux/init.h> 46 #include <linux/blkdev.h> 47 #include <linux/blkpg.h> 48 #include <linux/blk-pm.h> 49 #include <linux/delay.h> 50 #include <linux/mutex.h> 51 #include <linux/string_helpers.h> 52 #include <linux/async.h> 53 #include <linux/slab.h> 54 #include <linux/sed-opal.h> 55 #include <linux/pm_runtime.h> 56 #include <linux/pr.h> 57 #include <linux/t10-pi.h> 58 #include <linux/uaccess.h> 59 #include <asm/unaligned.h> 60 61 #include <scsi/scsi.h> 62 #include <scsi/scsi_cmnd.h> 63 #include <scsi/scsi_dbg.h> 64 #include <scsi/scsi_device.h> 65 #include <scsi/scsi_driver.h> 66 #include <scsi/scsi_eh.h> 67 #include <scsi/scsi_host.h> 68 #include <scsi/scsi_ioctl.h> 69 #include <scsi/scsicam.h> 70 71 #include "sd.h" 72 #include "scsi_priv.h" 73 #include "scsi_logging.h" 74 75 MODULE_AUTHOR("Eric Youngdale"); 76 MODULE_DESCRIPTION("SCSI disk (sd) driver"); 77 MODULE_LICENSE("GPL"); 78 79 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR); 80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR); 81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR); 82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR); 83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR); 84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR); 85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR); 86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR); 87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR); 88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR); 89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR); 90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR); 91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR); 92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR); 93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR); 94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR); 95 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK); 96 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD); 97 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC); 98 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC); 99 100 #if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT) 101 #define SD_MINORS 16 102 #else 103 #define SD_MINORS 0 104 #endif 105 106 static void sd_config_discard(struct scsi_disk *, unsigned int); 107 static void sd_config_write_same(struct scsi_disk *); 108 static int sd_revalidate_disk(struct gendisk *); 109 static void sd_unlock_native_capacity(struct gendisk *disk); 110 static int sd_probe(struct device *); 111 static int sd_remove(struct device *); 112 static void sd_shutdown(struct device *); 113 static int sd_suspend_system(struct device *); 114 static int sd_suspend_runtime(struct device *); 115 static int sd_resume(struct device *); 116 static void sd_rescan(struct device *); 117 static blk_status_t sd_init_command(struct scsi_cmnd *SCpnt); 118 static void sd_uninit_command(struct scsi_cmnd *SCpnt); 119 static int sd_done(struct scsi_cmnd *); 120 static void sd_eh_reset(struct scsi_cmnd *); 121 static int sd_eh_action(struct scsi_cmnd *, int); 122 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer); 123 static void scsi_disk_release(struct device *cdev); 124 static void sd_print_sense_hdr(struct scsi_disk *, struct scsi_sense_hdr *); 125 static void sd_print_result(const struct scsi_disk *, const char *, int); 126 127 static DEFINE_IDA(sd_index_ida); 128 129 /* This semaphore is used to mediate the 0->1 reference get in the 130 * face of object destruction (i.e. we can't allow a get on an 131 * object after last put) */ 132 static DEFINE_MUTEX(sd_ref_mutex); 133 134 static struct kmem_cache *sd_cdb_cache; 135 static mempool_t *sd_cdb_pool; 136 static mempool_t *sd_page_pool; 137 138 static const char *sd_cache_types[] = { 139 "write through", "none", "write back", 140 "write back, no read (daft)" 141 }; 142 143 static void sd_set_flush_flag(struct scsi_disk *sdkp) 144 { 145 bool wc = false, fua = false; 146 147 if (sdkp->WCE) { 148 wc = true; 149 if (sdkp->DPOFUA) 150 fua = true; 151 } 152 153 blk_queue_write_cache(sdkp->disk->queue, wc, fua); 154 } 155 156 static ssize_t 157 cache_type_store(struct device *dev, struct device_attribute *attr, 158 const char *buf, size_t count) 159 { 160 int ct, rcd, wce, sp; 161 struct scsi_disk *sdkp = to_scsi_disk(dev); 162 struct scsi_device *sdp = sdkp->device; 163 char buffer[64]; 164 char *buffer_data; 165 struct scsi_mode_data data; 166 struct scsi_sense_hdr sshdr; 167 static const char temp[] = "temporary "; 168 int len; 169 170 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 171 /* no cache control on RBC devices; theoretically they 172 * can do it, but there's probably so many exceptions 173 * it's not worth the risk */ 174 return -EINVAL; 175 176 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) { 177 buf += sizeof(temp) - 1; 178 sdkp->cache_override = 1; 179 } else { 180 sdkp->cache_override = 0; 181 } 182 183 ct = sysfs_match_string(sd_cache_types, buf); 184 if (ct < 0) 185 return -EINVAL; 186 187 rcd = ct & 0x01 ? 1 : 0; 188 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0; 189 190 if (sdkp->cache_override) { 191 sdkp->WCE = wce; 192 sdkp->RCD = rcd; 193 sd_set_flush_flag(sdkp); 194 return count; 195 } 196 197 if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT, 198 SD_MAX_RETRIES, &data, NULL)) 199 return -EINVAL; 200 len = min_t(size_t, sizeof(buffer), data.length - data.header_length - 201 data.block_descriptor_length); 202 buffer_data = buffer + data.header_length + 203 data.block_descriptor_length; 204 buffer_data[2] &= ~0x05; 205 buffer_data[2] |= wce << 2 | rcd; 206 sp = buffer_data[0] & 0x80 ? 1 : 0; 207 buffer_data[0] &= ~0x80; 208 209 /* 210 * Ensure WP, DPOFUA, and RESERVED fields are cleared in 211 * received mode parameter buffer before doing MODE SELECT. 212 */ 213 data.device_specific = 0; 214 215 if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT, 216 SD_MAX_RETRIES, &data, &sshdr)) { 217 if (scsi_sense_valid(&sshdr)) 218 sd_print_sense_hdr(sdkp, &sshdr); 219 return -EINVAL; 220 } 221 revalidate_disk(sdkp->disk); 222 return count; 223 } 224 225 static ssize_t 226 manage_start_stop_show(struct device *dev, struct device_attribute *attr, 227 char *buf) 228 { 229 struct scsi_disk *sdkp = to_scsi_disk(dev); 230 struct scsi_device *sdp = sdkp->device; 231 232 return sprintf(buf, "%u\n", sdp->manage_start_stop); 233 } 234 235 static ssize_t 236 manage_start_stop_store(struct device *dev, struct device_attribute *attr, 237 const char *buf, size_t count) 238 { 239 struct scsi_disk *sdkp = to_scsi_disk(dev); 240 struct scsi_device *sdp = sdkp->device; 241 bool v; 242 243 if (!capable(CAP_SYS_ADMIN)) 244 return -EACCES; 245 246 if (kstrtobool(buf, &v)) 247 return -EINVAL; 248 249 sdp->manage_start_stop = v; 250 251 return count; 252 } 253 static DEVICE_ATTR_RW(manage_start_stop); 254 255 static ssize_t 256 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf) 257 { 258 struct scsi_disk *sdkp = to_scsi_disk(dev); 259 260 return sprintf(buf, "%u\n", sdkp->device->allow_restart); 261 } 262 263 static ssize_t 264 allow_restart_store(struct device *dev, struct device_attribute *attr, 265 const char *buf, size_t count) 266 { 267 bool v; 268 struct scsi_disk *sdkp = to_scsi_disk(dev); 269 struct scsi_device *sdp = sdkp->device; 270 271 if (!capable(CAP_SYS_ADMIN)) 272 return -EACCES; 273 274 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 275 return -EINVAL; 276 277 if (kstrtobool(buf, &v)) 278 return -EINVAL; 279 280 sdp->allow_restart = v; 281 282 return count; 283 } 284 static DEVICE_ATTR_RW(allow_restart); 285 286 static ssize_t 287 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf) 288 { 289 struct scsi_disk *sdkp = to_scsi_disk(dev); 290 int ct = sdkp->RCD + 2*sdkp->WCE; 291 292 return sprintf(buf, "%s\n", sd_cache_types[ct]); 293 } 294 static DEVICE_ATTR_RW(cache_type); 295 296 static ssize_t 297 FUA_show(struct device *dev, struct device_attribute *attr, char *buf) 298 { 299 struct scsi_disk *sdkp = to_scsi_disk(dev); 300 301 return sprintf(buf, "%u\n", sdkp->DPOFUA); 302 } 303 static DEVICE_ATTR_RO(FUA); 304 305 static ssize_t 306 protection_type_show(struct device *dev, struct device_attribute *attr, 307 char *buf) 308 { 309 struct scsi_disk *sdkp = to_scsi_disk(dev); 310 311 return sprintf(buf, "%u\n", sdkp->protection_type); 312 } 313 314 static ssize_t 315 protection_type_store(struct device *dev, struct device_attribute *attr, 316 const char *buf, size_t count) 317 { 318 struct scsi_disk *sdkp = to_scsi_disk(dev); 319 unsigned int val; 320 int err; 321 322 if (!capable(CAP_SYS_ADMIN)) 323 return -EACCES; 324 325 err = kstrtouint(buf, 10, &val); 326 327 if (err) 328 return err; 329 330 if (val <= T10_PI_TYPE3_PROTECTION) 331 sdkp->protection_type = val; 332 333 return count; 334 } 335 static DEVICE_ATTR_RW(protection_type); 336 337 static ssize_t 338 protection_mode_show(struct device *dev, struct device_attribute *attr, 339 char *buf) 340 { 341 struct scsi_disk *sdkp = to_scsi_disk(dev); 342 struct scsi_device *sdp = sdkp->device; 343 unsigned int dif, dix; 344 345 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type); 346 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type); 347 348 if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) { 349 dif = 0; 350 dix = 1; 351 } 352 353 if (!dif && !dix) 354 return sprintf(buf, "none\n"); 355 356 return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif); 357 } 358 static DEVICE_ATTR_RO(protection_mode); 359 360 static ssize_t 361 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf) 362 { 363 struct scsi_disk *sdkp = to_scsi_disk(dev); 364 365 return sprintf(buf, "%u\n", sdkp->ATO); 366 } 367 static DEVICE_ATTR_RO(app_tag_own); 368 369 static ssize_t 370 thin_provisioning_show(struct device *dev, struct device_attribute *attr, 371 char *buf) 372 { 373 struct scsi_disk *sdkp = to_scsi_disk(dev); 374 375 return sprintf(buf, "%u\n", sdkp->lbpme); 376 } 377 static DEVICE_ATTR_RO(thin_provisioning); 378 379 /* sysfs_match_string() requires dense arrays */ 380 static const char *lbp_mode[] = { 381 [SD_LBP_FULL] = "full", 382 [SD_LBP_UNMAP] = "unmap", 383 [SD_LBP_WS16] = "writesame_16", 384 [SD_LBP_WS10] = "writesame_10", 385 [SD_LBP_ZERO] = "writesame_zero", 386 [SD_LBP_DISABLE] = "disabled", 387 }; 388 389 static ssize_t 390 provisioning_mode_show(struct device *dev, struct device_attribute *attr, 391 char *buf) 392 { 393 struct scsi_disk *sdkp = to_scsi_disk(dev); 394 395 return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]); 396 } 397 398 static ssize_t 399 provisioning_mode_store(struct device *dev, struct device_attribute *attr, 400 const char *buf, size_t count) 401 { 402 struct scsi_disk *sdkp = to_scsi_disk(dev); 403 struct scsi_device *sdp = sdkp->device; 404 int mode; 405 406 if (!capable(CAP_SYS_ADMIN)) 407 return -EACCES; 408 409 if (sd_is_zoned(sdkp)) { 410 sd_config_discard(sdkp, SD_LBP_DISABLE); 411 return count; 412 } 413 414 if (sdp->type != TYPE_DISK) 415 return -EINVAL; 416 417 mode = sysfs_match_string(lbp_mode, buf); 418 if (mode < 0) 419 return -EINVAL; 420 421 sd_config_discard(sdkp, mode); 422 423 return count; 424 } 425 static DEVICE_ATTR_RW(provisioning_mode); 426 427 /* sysfs_match_string() requires dense arrays */ 428 static const char *zeroing_mode[] = { 429 [SD_ZERO_WRITE] = "write", 430 [SD_ZERO_WS] = "writesame", 431 [SD_ZERO_WS16_UNMAP] = "writesame_16_unmap", 432 [SD_ZERO_WS10_UNMAP] = "writesame_10_unmap", 433 }; 434 435 static ssize_t 436 zeroing_mode_show(struct device *dev, struct device_attribute *attr, 437 char *buf) 438 { 439 struct scsi_disk *sdkp = to_scsi_disk(dev); 440 441 return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]); 442 } 443 444 static ssize_t 445 zeroing_mode_store(struct device *dev, struct device_attribute *attr, 446 const char *buf, size_t count) 447 { 448 struct scsi_disk *sdkp = to_scsi_disk(dev); 449 int mode; 450 451 if (!capable(CAP_SYS_ADMIN)) 452 return -EACCES; 453 454 mode = sysfs_match_string(zeroing_mode, buf); 455 if (mode < 0) 456 return -EINVAL; 457 458 sdkp->zeroing_mode = mode; 459 460 return count; 461 } 462 static DEVICE_ATTR_RW(zeroing_mode); 463 464 static ssize_t 465 max_medium_access_timeouts_show(struct device *dev, 466 struct device_attribute *attr, char *buf) 467 { 468 struct scsi_disk *sdkp = to_scsi_disk(dev); 469 470 return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts); 471 } 472 473 static ssize_t 474 max_medium_access_timeouts_store(struct device *dev, 475 struct device_attribute *attr, const char *buf, 476 size_t count) 477 { 478 struct scsi_disk *sdkp = to_scsi_disk(dev); 479 int err; 480 481 if (!capable(CAP_SYS_ADMIN)) 482 return -EACCES; 483 484 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts); 485 486 return err ? err : count; 487 } 488 static DEVICE_ATTR_RW(max_medium_access_timeouts); 489 490 static ssize_t 491 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr, 492 char *buf) 493 { 494 struct scsi_disk *sdkp = to_scsi_disk(dev); 495 496 return sprintf(buf, "%u\n", sdkp->max_ws_blocks); 497 } 498 499 static ssize_t 500 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr, 501 const char *buf, size_t count) 502 { 503 struct scsi_disk *sdkp = to_scsi_disk(dev); 504 struct scsi_device *sdp = sdkp->device; 505 unsigned long max; 506 int err; 507 508 if (!capable(CAP_SYS_ADMIN)) 509 return -EACCES; 510 511 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 512 return -EINVAL; 513 514 err = kstrtoul(buf, 10, &max); 515 516 if (err) 517 return err; 518 519 if (max == 0) 520 sdp->no_write_same = 1; 521 else if (max <= SD_MAX_WS16_BLOCKS) { 522 sdp->no_write_same = 0; 523 sdkp->max_ws_blocks = max; 524 } 525 526 sd_config_write_same(sdkp); 527 528 return count; 529 } 530 static DEVICE_ATTR_RW(max_write_same_blocks); 531 532 static struct attribute *sd_disk_attrs[] = { 533 &dev_attr_cache_type.attr, 534 &dev_attr_FUA.attr, 535 &dev_attr_allow_restart.attr, 536 &dev_attr_manage_start_stop.attr, 537 &dev_attr_protection_type.attr, 538 &dev_attr_protection_mode.attr, 539 &dev_attr_app_tag_own.attr, 540 &dev_attr_thin_provisioning.attr, 541 &dev_attr_provisioning_mode.attr, 542 &dev_attr_zeroing_mode.attr, 543 &dev_attr_max_write_same_blocks.attr, 544 &dev_attr_max_medium_access_timeouts.attr, 545 NULL, 546 }; 547 ATTRIBUTE_GROUPS(sd_disk); 548 549 static struct class sd_disk_class = { 550 .name = "scsi_disk", 551 .owner = THIS_MODULE, 552 .dev_release = scsi_disk_release, 553 .dev_groups = sd_disk_groups, 554 }; 555 556 static const struct dev_pm_ops sd_pm_ops = { 557 .suspend = sd_suspend_system, 558 .resume = sd_resume, 559 .poweroff = sd_suspend_system, 560 .restore = sd_resume, 561 .runtime_suspend = sd_suspend_runtime, 562 .runtime_resume = sd_resume, 563 }; 564 565 static struct scsi_driver sd_template = { 566 .gendrv = { 567 .name = "sd", 568 .owner = THIS_MODULE, 569 .probe = sd_probe, 570 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 571 .remove = sd_remove, 572 .shutdown = sd_shutdown, 573 .pm = &sd_pm_ops, 574 }, 575 .rescan = sd_rescan, 576 .init_command = sd_init_command, 577 .uninit_command = sd_uninit_command, 578 .done = sd_done, 579 .eh_action = sd_eh_action, 580 .eh_reset = sd_eh_reset, 581 }; 582 583 /* 584 * Dummy kobj_map->probe function. 585 * The default ->probe function will call modprobe, which is 586 * pointless as this module is already loaded. 587 */ 588 static struct kobject *sd_default_probe(dev_t devt, int *partno, void *data) 589 { 590 return NULL; 591 } 592 593 /* 594 * Device no to disk mapping: 595 * 596 * major disc2 disc p1 597 * |............|.............|....|....| <- dev_t 598 * 31 20 19 8 7 4 3 0 599 * 600 * Inside a major, we have 16k disks, however mapped non- 601 * contiguously. The first 16 disks are for major0, the next 602 * ones with major1, ... Disk 256 is for major0 again, disk 272 603 * for major1, ... 604 * As we stay compatible with our numbering scheme, we can reuse 605 * the well-know SCSI majors 8, 65--71, 136--143. 606 */ 607 static int sd_major(int major_idx) 608 { 609 switch (major_idx) { 610 case 0: 611 return SCSI_DISK0_MAJOR; 612 case 1 ... 7: 613 return SCSI_DISK1_MAJOR + major_idx - 1; 614 case 8 ... 15: 615 return SCSI_DISK8_MAJOR + major_idx - 8; 616 default: 617 BUG(); 618 return 0; /* shut up gcc */ 619 } 620 } 621 622 static struct scsi_disk *scsi_disk_get(struct gendisk *disk) 623 { 624 struct scsi_disk *sdkp = NULL; 625 626 mutex_lock(&sd_ref_mutex); 627 628 if (disk->private_data) { 629 sdkp = scsi_disk(disk); 630 if (scsi_device_get(sdkp->device) == 0) 631 get_device(&sdkp->dev); 632 else 633 sdkp = NULL; 634 } 635 mutex_unlock(&sd_ref_mutex); 636 return sdkp; 637 } 638 639 static void scsi_disk_put(struct scsi_disk *sdkp) 640 { 641 struct scsi_device *sdev = sdkp->device; 642 643 mutex_lock(&sd_ref_mutex); 644 put_device(&sdkp->dev); 645 scsi_device_put(sdev); 646 mutex_unlock(&sd_ref_mutex); 647 } 648 649 #ifdef CONFIG_BLK_SED_OPAL 650 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, 651 size_t len, bool send) 652 { 653 struct scsi_device *sdev = data; 654 u8 cdb[12] = { 0, }; 655 int ret; 656 657 cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN; 658 cdb[1] = secp; 659 put_unaligned_be16(spsp, &cdb[2]); 660 put_unaligned_be32(len, &cdb[6]); 661 662 ret = scsi_execute_req(sdev, cdb, 663 send ? DMA_TO_DEVICE : DMA_FROM_DEVICE, 664 buffer, len, NULL, SD_TIMEOUT, SD_MAX_RETRIES, NULL); 665 return ret <= 0 ? ret : -EIO; 666 } 667 #endif /* CONFIG_BLK_SED_OPAL */ 668 669 /* 670 * Look up the DIX operation based on whether the command is read or 671 * write and whether dix and dif are enabled. 672 */ 673 static unsigned int sd_prot_op(bool write, bool dix, bool dif) 674 { 675 /* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */ 676 static const unsigned int ops[] = { /* wrt dix dif */ 677 SCSI_PROT_NORMAL, /* 0 0 0 */ 678 SCSI_PROT_READ_STRIP, /* 0 0 1 */ 679 SCSI_PROT_READ_INSERT, /* 0 1 0 */ 680 SCSI_PROT_READ_PASS, /* 0 1 1 */ 681 SCSI_PROT_NORMAL, /* 1 0 0 */ 682 SCSI_PROT_WRITE_INSERT, /* 1 0 1 */ 683 SCSI_PROT_WRITE_STRIP, /* 1 1 0 */ 684 SCSI_PROT_WRITE_PASS, /* 1 1 1 */ 685 }; 686 687 return ops[write << 2 | dix << 1 | dif]; 688 } 689 690 /* 691 * Returns a mask of the protection flags that are valid for a given DIX 692 * operation. 693 */ 694 static unsigned int sd_prot_flag_mask(unsigned int prot_op) 695 { 696 static const unsigned int flag_mask[] = { 697 [SCSI_PROT_NORMAL] = 0, 698 699 [SCSI_PROT_READ_STRIP] = SCSI_PROT_TRANSFER_PI | 700 SCSI_PROT_GUARD_CHECK | 701 SCSI_PROT_REF_CHECK | 702 SCSI_PROT_REF_INCREMENT, 703 704 [SCSI_PROT_READ_INSERT] = SCSI_PROT_REF_INCREMENT | 705 SCSI_PROT_IP_CHECKSUM, 706 707 [SCSI_PROT_READ_PASS] = SCSI_PROT_TRANSFER_PI | 708 SCSI_PROT_GUARD_CHECK | 709 SCSI_PROT_REF_CHECK | 710 SCSI_PROT_REF_INCREMENT | 711 SCSI_PROT_IP_CHECKSUM, 712 713 [SCSI_PROT_WRITE_INSERT] = SCSI_PROT_TRANSFER_PI | 714 SCSI_PROT_REF_INCREMENT, 715 716 [SCSI_PROT_WRITE_STRIP] = SCSI_PROT_GUARD_CHECK | 717 SCSI_PROT_REF_CHECK | 718 SCSI_PROT_REF_INCREMENT | 719 SCSI_PROT_IP_CHECKSUM, 720 721 [SCSI_PROT_WRITE_PASS] = SCSI_PROT_TRANSFER_PI | 722 SCSI_PROT_GUARD_CHECK | 723 SCSI_PROT_REF_CHECK | 724 SCSI_PROT_REF_INCREMENT | 725 SCSI_PROT_IP_CHECKSUM, 726 }; 727 728 return flag_mask[prot_op]; 729 } 730 731 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd, 732 unsigned int dix, unsigned int dif) 733 { 734 struct bio *bio = scmd->request->bio; 735 unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif); 736 unsigned int protect = 0; 737 738 if (dix) { /* DIX Type 0, 1, 2, 3 */ 739 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM)) 740 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM; 741 742 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 743 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK; 744 } 745 746 if (dif != T10_PI_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */ 747 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT; 748 749 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 750 scmd->prot_flags |= SCSI_PROT_REF_CHECK; 751 } 752 753 if (dif) { /* DIX/DIF Type 1, 2, 3 */ 754 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI; 755 756 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK)) 757 protect = 3 << 5; /* Disable target PI checking */ 758 else 759 protect = 1 << 5; /* Enable target PI checking */ 760 } 761 762 scsi_set_prot_op(scmd, prot_op); 763 scsi_set_prot_type(scmd, dif); 764 scmd->prot_flags &= sd_prot_flag_mask(prot_op); 765 766 return protect; 767 } 768 769 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode) 770 { 771 struct request_queue *q = sdkp->disk->queue; 772 unsigned int logical_block_size = sdkp->device->sector_size; 773 unsigned int max_blocks = 0; 774 775 q->limits.discard_alignment = 776 sdkp->unmap_alignment * logical_block_size; 777 q->limits.discard_granularity = 778 max(sdkp->physical_block_size, 779 sdkp->unmap_granularity * logical_block_size); 780 sdkp->provisioning_mode = mode; 781 782 switch (mode) { 783 784 case SD_LBP_FULL: 785 case SD_LBP_DISABLE: 786 blk_queue_max_discard_sectors(q, 0); 787 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q); 788 return; 789 790 case SD_LBP_UNMAP: 791 max_blocks = min_not_zero(sdkp->max_unmap_blocks, 792 (u32)SD_MAX_WS16_BLOCKS); 793 break; 794 795 case SD_LBP_WS16: 796 if (sdkp->device->unmap_limit_for_ws) 797 max_blocks = sdkp->max_unmap_blocks; 798 else 799 max_blocks = sdkp->max_ws_blocks; 800 801 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS); 802 break; 803 804 case SD_LBP_WS10: 805 if (sdkp->device->unmap_limit_for_ws) 806 max_blocks = sdkp->max_unmap_blocks; 807 else 808 max_blocks = sdkp->max_ws_blocks; 809 810 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS); 811 break; 812 813 case SD_LBP_ZERO: 814 max_blocks = min_not_zero(sdkp->max_ws_blocks, 815 (u32)SD_MAX_WS10_BLOCKS); 816 break; 817 } 818 819 blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9)); 820 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q); 821 } 822 823 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd) 824 { 825 struct scsi_device *sdp = cmd->device; 826 struct request *rq = cmd->request; 827 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 828 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 829 unsigned int data_len = 24; 830 char *buf; 831 832 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 833 if (!rq->special_vec.bv_page) 834 return BLK_STS_RESOURCE; 835 clear_highpage(rq->special_vec.bv_page); 836 rq->special_vec.bv_offset = 0; 837 rq->special_vec.bv_len = data_len; 838 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 839 840 cmd->cmd_len = 10; 841 cmd->cmnd[0] = UNMAP; 842 cmd->cmnd[8] = 24; 843 844 buf = page_address(rq->special_vec.bv_page); 845 put_unaligned_be16(6 + 16, &buf[0]); 846 put_unaligned_be16(16, &buf[2]); 847 put_unaligned_be64(lba, &buf[8]); 848 put_unaligned_be32(nr_blocks, &buf[16]); 849 850 cmd->allowed = SD_MAX_RETRIES; 851 cmd->transfersize = data_len; 852 rq->timeout = SD_TIMEOUT; 853 854 return scsi_init_io(cmd); 855 } 856 857 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd, 858 bool unmap) 859 { 860 struct scsi_device *sdp = cmd->device; 861 struct request *rq = cmd->request; 862 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 863 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 864 u32 data_len = sdp->sector_size; 865 866 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 867 if (!rq->special_vec.bv_page) 868 return BLK_STS_RESOURCE; 869 clear_highpage(rq->special_vec.bv_page); 870 rq->special_vec.bv_offset = 0; 871 rq->special_vec.bv_len = data_len; 872 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 873 874 cmd->cmd_len = 16; 875 cmd->cmnd[0] = WRITE_SAME_16; 876 if (unmap) 877 cmd->cmnd[1] = 0x8; /* UNMAP */ 878 put_unaligned_be64(lba, &cmd->cmnd[2]); 879 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 880 881 cmd->allowed = SD_MAX_RETRIES; 882 cmd->transfersize = data_len; 883 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 884 885 return scsi_init_io(cmd); 886 } 887 888 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd, 889 bool unmap) 890 { 891 struct scsi_device *sdp = cmd->device; 892 struct request *rq = cmd->request; 893 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 894 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 895 u32 data_len = sdp->sector_size; 896 897 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 898 if (!rq->special_vec.bv_page) 899 return BLK_STS_RESOURCE; 900 clear_highpage(rq->special_vec.bv_page); 901 rq->special_vec.bv_offset = 0; 902 rq->special_vec.bv_len = data_len; 903 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 904 905 cmd->cmd_len = 10; 906 cmd->cmnd[0] = WRITE_SAME; 907 if (unmap) 908 cmd->cmnd[1] = 0x8; /* UNMAP */ 909 put_unaligned_be32(lba, &cmd->cmnd[2]); 910 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 911 912 cmd->allowed = SD_MAX_RETRIES; 913 cmd->transfersize = data_len; 914 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 915 916 return scsi_init_io(cmd); 917 } 918 919 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd) 920 { 921 struct request *rq = cmd->request; 922 struct scsi_device *sdp = cmd->device; 923 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 924 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 925 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 926 927 if (!(rq->cmd_flags & REQ_NOUNMAP)) { 928 switch (sdkp->zeroing_mode) { 929 case SD_ZERO_WS16_UNMAP: 930 return sd_setup_write_same16_cmnd(cmd, true); 931 case SD_ZERO_WS10_UNMAP: 932 return sd_setup_write_same10_cmnd(cmd, true); 933 } 934 } 935 936 if (sdp->no_write_same) 937 return BLK_STS_TARGET; 938 939 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) 940 return sd_setup_write_same16_cmnd(cmd, false); 941 942 return sd_setup_write_same10_cmnd(cmd, false); 943 } 944 945 static void sd_config_write_same(struct scsi_disk *sdkp) 946 { 947 struct request_queue *q = sdkp->disk->queue; 948 unsigned int logical_block_size = sdkp->device->sector_size; 949 950 if (sdkp->device->no_write_same) { 951 sdkp->max_ws_blocks = 0; 952 goto out; 953 } 954 955 /* Some devices can not handle block counts above 0xffff despite 956 * supporting WRITE SAME(16). Consequently we default to 64k 957 * blocks per I/O unless the device explicitly advertises a 958 * bigger limit. 959 */ 960 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS) 961 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 962 (u32)SD_MAX_WS16_BLOCKS); 963 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes) 964 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 965 (u32)SD_MAX_WS10_BLOCKS); 966 else { 967 sdkp->device->no_write_same = 1; 968 sdkp->max_ws_blocks = 0; 969 } 970 971 if (sdkp->lbprz && sdkp->lbpws) 972 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP; 973 else if (sdkp->lbprz && sdkp->lbpws10) 974 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP; 975 else if (sdkp->max_ws_blocks) 976 sdkp->zeroing_mode = SD_ZERO_WS; 977 else 978 sdkp->zeroing_mode = SD_ZERO_WRITE; 979 980 if (sdkp->max_ws_blocks && 981 sdkp->physical_block_size > logical_block_size) { 982 /* 983 * Reporting a maximum number of blocks that is not aligned 984 * on the device physical size would cause a large write same 985 * request to be split into physically unaligned chunks by 986 * __blkdev_issue_write_zeroes() and __blkdev_issue_write_same() 987 * even if the caller of these functions took care to align the 988 * large request. So make sure the maximum reported is aligned 989 * to the device physical block size. This is only an optional 990 * optimization for regular disks, but this is mandatory to 991 * avoid failure of large write same requests directed at 992 * sequential write required zones of host-managed ZBC disks. 993 */ 994 sdkp->max_ws_blocks = 995 round_down(sdkp->max_ws_blocks, 996 bytes_to_logical(sdkp->device, 997 sdkp->physical_block_size)); 998 } 999 1000 out: 1001 blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks * 1002 (logical_block_size >> 9)); 1003 blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks * 1004 (logical_block_size >> 9)); 1005 } 1006 1007 /** 1008 * sd_setup_write_same_cmnd - write the same data to multiple blocks 1009 * @cmd: command to prepare 1010 * 1011 * Will set up either WRITE SAME(10) or WRITE SAME(16) depending on 1012 * the preference indicated by the target device. 1013 **/ 1014 static blk_status_t sd_setup_write_same_cmnd(struct scsi_cmnd *cmd) 1015 { 1016 struct request *rq = cmd->request; 1017 struct scsi_device *sdp = cmd->device; 1018 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 1019 struct bio *bio = rq->bio; 1020 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 1021 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 1022 blk_status_t ret; 1023 1024 if (sdkp->device->no_write_same) 1025 return BLK_STS_TARGET; 1026 1027 BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size); 1028 1029 rq->timeout = SD_WRITE_SAME_TIMEOUT; 1030 1031 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) { 1032 cmd->cmd_len = 16; 1033 cmd->cmnd[0] = WRITE_SAME_16; 1034 put_unaligned_be64(lba, &cmd->cmnd[2]); 1035 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 1036 } else { 1037 cmd->cmd_len = 10; 1038 cmd->cmnd[0] = WRITE_SAME; 1039 put_unaligned_be32(lba, &cmd->cmnd[2]); 1040 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 1041 } 1042 1043 cmd->transfersize = sdp->sector_size; 1044 cmd->allowed = SD_MAX_RETRIES; 1045 1046 /* 1047 * For WRITE SAME the data transferred via the DATA OUT buffer is 1048 * different from the amount of data actually written to the target. 1049 * 1050 * We set up __data_len to the amount of data transferred via the 1051 * DATA OUT buffer so that blk_rq_map_sg sets up the proper S/G list 1052 * to transfer a single sector of data first, but then reset it to 1053 * the amount of data to be written right after so that the I/O path 1054 * knows how much to actually write. 1055 */ 1056 rq->__data_len = sdp->sector_size; 1057 ret = scsi_init_io(cmd); 1058 rq->__data_len = blk_rq_bytes(rq); 1059 1060 return ret; 1061 } 1062 1063 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd) 1064 { 1065 struct request *rq = cmd->request; 1066 1067 /* flush requests don't perform I/O, zero the S/G table */ 1068 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1069 1070 cmd->cmnd[0] = SYNCHRONIZE_CACHE; 1071 cmd->cmd_len = 10; 1072 cmd->transfersize = 0; 1073 cmd->allowed = SD_MAX_RETRIES; 1074 1075 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER; 1076 return BLK_STS_OK; 1077 } 1078 1079 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write, 1080 sector_t lba, unsigned int nr_blocks, 1081 unsigned char flags) 1082 { 1083 cmd->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC); 1084 if (unlikely(cmd->cmnd == NULL)) 1085 return BLK_STS_RESOURCE; 1086 1087 cmd->cmd_len = SD_EXT_CDB_SIZE; 1088 memset(cmd->cmnd, 0, cmd->cmd_len); 1089 1090 cmd->cmnd[0] = VARIABLE_LENGTH_CMD; 1091 cmd->cmnd[7] = 0x18; /* Additional CDB len */ 1092 cmd->cmnd[9] = write ? WRITE_32 : READ_32; 1093 cmd->cmnd[10] = flags; 1094 put_unaligned_be64(lba, &cmd->cmnd[12]); 1095 put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */ 1096 put_unaligned_be32(nr_blocks, &cmd->cmnd[28]); 1097 1098 return BLK_STS_OK; 1099 } 1100 1101 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write, 1102 sector_t lba, unsigned int nr_blocks, 1103 unsigned char flags) 1104 { 1105 cmd->cmd_len = 16; 1106 cmd->cmnd[0] = write ? WRITE_16 : READ_16; 1107 cmd->cmnd[1] = flags; 1108 cmd->cmnd[14] = 0; 1109 cmd->cmnd[15] = 0; 1110 put_unaligned_be64(lba, &cmd->cmnd[2]); 1111 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 1112 1113 return BLK_STS_OK; 1114 } 1115 1116 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write, 1117 sector_t lba, unsigned int nr_blocks, 1118 unsigned char flags) 1119 { 1120 cmd->cmd_len = 10; 1121 cmd->cmnd[0] = write ? WRITE_10 : READ_10; 1122 cmd->cmnd[1] = flags; 1123 cmd->cmnd[6] = 0; 1124 cmd->cmnd[9] = 0; 1125 put_unaligned_be32(lba, &cmd->cmnd[2]); 1126 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 1127 1128 return BLK_STS_OK; 1129 } 1130 1131 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write, 1132 sector_t lba, unsigned int nr_blocks, 1133 unsigned char flags) 1134 { 1135 /* Avoid that 0 blocks gets translated into 256 blocks. */ 1136 if (WARN_ON_ONCE(nr_blocks == 0)) 1137 return BLK_STS_IOERR; 1138 1139 if (unlikely(flags & 0x8)) { 1140 /* 1141 * This happens only if this drive failed 10byte rw 1142 * command with ILLEGAL_REQUEST during operation and 1143 * thus turned off use_10_for_rw. 1144 */ 1145 scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n"); 1146 return BLK_STS_IOERR; 1147 } 1148 1149 cmd->cmd_len = 6; 1150 cmd->cmnd[0] = write ? WRITE_6 : READ_6; 1151 cmd->cmnd[1] = (lba >> 16) & 0x1f; 1152 cmd->cmnd[2] = (lba >> 8) & 0xff; 1153 cmd->cmnd[3] = lba & 0xff; 1154 cmd->cmnd[4] = nr_blocks; 1155 cmd->cmnd[5] = 0; 1156 1157 return BLK_STS_OK; 1158 } 1159 1160 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd) 1161 { 1162 struct request *rq = cmd->request; 1163 struct scsi_device *sdp = cmd->device; 1164 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 1165 sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 1166 sector_t threshold; 1167 unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 1168 bool dif, dix; 1169 unsigned int mask = logical_to_sectors(sdp, 1) - 1; 1170 bool write = rq_data_dir(rq) == WRITE; 1171 unsigned char protect, fua; 1172 blk_status_t ret; 1173 1174 ret = scsi_init_io(cmd); 1175 if (ret != BLK_STS_OK) 1176 return ret; 1177 1178 if (!scsi_device_online(sdp) || sdp->changed) { 1179 scmd_printk(KERN_ERR, cmd, "device offline or changed\n"); 1180 return BLK_STS_IOERR; 1181 } 1182 1183 if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->rq_disk)) { 1184 scmd_printk(KERN_ERR, cmd, "access beyond end of device\n"); 1185 return BLK_STS_IOERR; 1186 } 1187 1188 if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) { 1189 scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n"); 1190 return BLK_STS_IOERR; 1191 } 1192 1193 /* 1194 * Some SD card readers can't handle accesses which touch the 1195 * last one or two logical blocks. Split accesses as needed. 1196 */ 1197 threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS; 1198 1199 if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) { 1200 if (lba < threshold) { 1201 /* Access up to the threshold but not beyond */ 1202 nr_blocks = threshold - lba; 1203 } else { 1204 /* Access only a single logical block */ 1205 nr_blocks = 1; 1206 } 1207 } 1208 1209 fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0; 1210 dix = scsi_prot_sg_count(cmd); 1211 dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type); 1212 1213 if (write && dix) 1214 t10_pi_prepare(cmd->request, sdkp->protection_type); 1215 1216 if (dif || dix) 1217 protect = sd_setup_protect_cmnd(cmd, dix, dif); 1218 else 1219 protect = 0; 1220 1221 if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) { 1222 ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks, 1223 protect | fua); 1224 } else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) { 1225 ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks, 1226 protect | fua); 1227 } else if ((nr_blocks > 0xff) || (lba > 0x1fffff) || 1228 sdp->use_10_for_rw || protect) { 1229 ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks, 1230 protect | fua); 1231 } else { 1232 ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks, 1233 protect | fua); 1234 } 1235 1236 if (unlikely(ret != BLK_STS_OK)) 1237 return ret; 1238 1239 /* 1240 * We shouldn't disconnect in the middle of a sector, so with a dumb 1241 * host adapter, it's safe to assume that we can at least transfer 1242 * this many bytes between each connect / disconnect. 1243 */ 1244 cmd->transfersize = sdp->sector_size; 1245 cmd->underflow = nr_blocks << 9; 1246 cmd->allowed = SD_MAX_RETRIES; 1247 cmd->sdb.length = nr_blocks * sdp->sector_size; 1248 1249 SCSI_LOG_HLQUEUE(1, 1250 scmd_printk(KERN_INFO, cmd, 1251 "%s: block=%llu, count=%d\n", __func__, 1252 (unsigned long long)blk_rq_pos(rq), 1253 blk_rq_sectors(rq))); 1254 SCSI_LOG_HLQUEUE(2, 1255 scmd_printk(KERN_INFO, cmd, 1256 "%s %d/%u 512 byte blocks.\n", 1257 write ? "writing" : "reading", nr_blocks, 1258 blk_rq_sectors(rq))); 1259 1260 /* 1261 * This indicates that the command is ready from our end to be 1262 * queued. 1263 */ 1264 return BLK_STS_OK; 1265 } 1266 1267 static blk_status_t sd_init_command(struct scsi_cmnd *cmd) 1268 { 1269 struct request *rq = cmd->request; 1270 1271 switch (req_op(rq)) { 1272 case REQ_OP_DISCARD: 1273 switch (scsi_disk(rq->rq_disk)->provisioning_mode) { 1274 case SD_LBP_UNMAP: 1275 return sd_setup_unmap_cmnd(cmd); 1276 case SD_LBP_WS16: 1277 return sd_setup_write_same16_cmnd(cmd, true); 1278 case SD_LBP_WS10: 1279 return sd_setup_write_same10_cmnd(cmd, true); 1280 case SD_LBP_ZERO: 1281 return sd_setup_write_same10_cmnd(cmd, false); 1282 default: 1283 return BLK_STS_TARGET; 1284 } 1285 case REQ_OP_WRITE_ZEROES: 1286 return sd_setup_write_zeroes_cmnd(cmd); 1287 case REQ_OP_WRITE_SAME: 1288 return sd_setup_write_same_cmnd(cmd); 1289 case REQ_OP_FLUSH: 1290 return sd_setup_flush_cmnd(cmd); 1291 case REQ_OP_READ: 1292 case REQ_OP_WRITE: 1293 return sd_setup_read_write_cmnd(cmd); 1294 case REQ_OP_ZONE_RESET: 1295 return sd_zbc_setup_reset_cmnd(cmd); 1296 default: 1297 WARN_ON_ONCE(1); 1298 return BLK_STS_NOTSUPP; 1299 } 1300 } 1301 1302 static void sd_uninit_command(struct scsi_cmnd *SCpnt) 1303 { 1304 struct request *rq = SCpnt->request; 1305 u8 *cmnd; 1306 1307 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1308 mempool_free(rq->special_vec.bv_page, sd_page_pool); 1309 1310 if (SCpnt->cmnd != scsi_req(rq)->cmd) { 1311 cmnd = SCpnt->cmnd; 1312 SCpnt->cmnd = NULL; 1313 SCpnt->cmd_len = 0; 1314 mempool_free(cmnd, sd_cdb_pool); 1315 } 1316 } 1317 1318 /** 1319 * sd_open - open a scsi disk device 1320 * @bdev: Block device of the scsi disk to open 1321 * @mode: FMODE_* mask 1322 * 1323 * Returns 0 if successful. Returns a negated errno value in case 1324 * of error. 1325 * 1326 * Note: This can be called from a user context (e.g. fsck(1) ) 1327 * or from within the kernel (e.g. as a result of a mount(1) ). 1328 * In the latter case @inode and @filp carry an abridged amount 1329 * of information as noted above. 1330 * 1331 * Locking: called with bdev->bd_mutex held. 1332 **/ 1333 static int sd_open(struct block_device *bdev, fmode_t mode) 1334 { 1335 struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk); 1336 struct scsi_device *sdev; 1337 int retval; 1338 1339 if (!sdkp) 1340 return -ENXIO; 1341 1342 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n")); 1343 1344 sdev = sdkp->device; 1345 1346 /* 1347 * If the device is in error recovery, wait until it is done. 1348 * If the device is offline, then disallow any access to it. 1349 */ 1350 retval = -ENXIO; 1351 if (!scsi_block_when_processing_errors(sdev)) 1352 goto error_out; 1353 1354 if (sdev->removable || sdkp->write_prot) 1355 check_disk_change(bdev); 1356 1357 /* 1358 * If the drive is empty, just let the open fail. 1359 */ 1360 retval = -ENOMEDIUM; 1361 if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY)) 1362 goto error_out; 1363 1364 /* 1365 * If the device has the write protect tab set, have the open fail 1366 * if the user expects to be able to write to the thing. 1367 */ 1368 retval = -EROFS; 1369 if (sdkp->write_prot && (mode & FMODE_WRITE)) 1370 goto error_out; 1371 1372 /* 1373 * It is possible that the disk changing stuff resulted in 1374 * the device being taken offline. If this is the case, 1375 * report this to the user, and don't pretend that the 1376 * open actually succeeded. 1377 */ 1378 retval = -ENXIO; 1379 if (!scsi_device_online(sdev)) 1380 goto error_out; 1381 1382 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) { 1383 if (scsi_block_when_processing_errors(sdev)) 1384 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT); 1385 } 1386 1387 return 0; 1388 1389 error_out: 1390 scsi_disk_put(sdkp); 1391 return retval; 1392 } 1393 1394 /** 1395 * sd_release - invoked when the (last) close(2) is called on this 1396 * scsi disk. 1397 * @disk: disk to release 1398 * @mode: FMODE_* mask 1399 * 1400 * Returns 0. 1401 * 1402 * Note: may block (uninterruptible) if error recovery is underway 1403 * on this disk. 1404 * 1405 * Locking: called with bdev->bd_mutex held. 1406 **/ 1407 static void sd_release(struct gendisk *disk, fmode_t mode) 1408 { 1409 struct scsi_disk *sdkp = scsi_disk(disk); 1410 struct scsi_device *sdev = sdkp->device; 1411 1412 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n")); 1413 1414 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) { 1415 if (scsi_block_when_processing_errors(sdev)) 1416 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW); 1417 } 1418 1419 /* 1420 * XXX and what if there are packets in flight and this close() 1421 * XXX is followed by a "rmmod sd_mod"? 1422 */ 1423 1424 scsi_disk_put(sdkp); 1425 } 1426 1427 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1428 { 1429 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1430 struct scsi_device *sdp = sdkp->device; 1431 struct Scsi_Host *host = sdp->host; 1432 sector_t capacity = logical_to_sectors(sdp, sdkp->capacity); 1433 int diskinfo[4]; 1434 1435 /* default to most commonly used values */ 1436 diskinfo[0] = 0x40; /* 1 << 6 */ 1437 diskinfo[1] = 0x20; /* 1 << 5 */ 1438 diskinfo[2] = capacity >> 11; 1439 1440 /* override with calculated, extended default, or driver values */ 1441 if (host->hostt->bios_param) 1442 host->hostt->bios_param(sdp, bdev, capacity, diskinfo); 1443 else 1444 scsicam_bios_param(bdev, capacity, diskinfo); 1445 1446 geo->heads = diskinfo[0]; 1447 geo->sectors = diskinfo[1]; 1448 geo->cylinders = diskinfo[2]; 1449 return 0; 1450 } 1451 1452 /** 1453 * sd_ioctl - process an ioctl 1454 * @bdev: target block device 1455 * @mode: FMODE_* mask 1456 * @cmd: ioctl command number 1457 * @arg: this is third argument given to ioctl(2) system call. 1458 * Often contains a pointer. 1459 * 1460 * Returns 0 if successful (some ioctls return positive numbers on 1461 * success as well). Returns a negated errno value in case of error. 1462 * 1463 * Note: most ioctls are forward onto the block subsystem or further 1464 * down in the scsi subsystem. 1465 **/ 1466 static int sd_ioctl(struct block_device *bdev, fmode_t mode, 1467 unsigned int cmd, unsigned long arg) 1468 { 1469 struct gendisk *disk = bdev->bd_disk; 1470 struct scsi_disk *sdkp = scsi_disk(disk); 1471 struct scsi_device *sdp = sdkp->device; 1472 void __user *p = (void __user *)arg; 1473 int error; 1474 1475 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, " 1476 "cmd=0x%x\n", disk->disk_name, cmd)); 1477 1478 error = scsi_verify_blk_ioctl(bdev, cmd); 1479 if (error < 0) 1480 return error; 1481 1482 /* 1483 * If we are in the middle of error recovery, don't let anyone 1484 * else try and use this device. Also, if error recovery fails, it 1485 * may try and take the device offline, in which case all further 1486 * access to the device is prohibited. 1487 */ 1488 error = scsi_ioctl_block_when_processing_errors(sdp, cmd, 1489 (mode & FMODE_NDELAY) != 0); 1490 if (error) 1491 goto out; 1492 1493 if (is_sed_ioctl(cmd)) 1494 return sed_ioctl(sdkp->opal_dev, cmd, p); 1495 1496 /* 1497 * Send SCSI addressing ioctls directly to mid level, send other 1498 * ioctls to block level and then onto mid level if they can't be 1499 * resolved. 1500 */ 1501 switch (cmd) { 1502 case SCSI_IOCTL_GET_IDLUN: 1503 case SCSI_IOCTL_GET_BUS_NUMBER: 1504 error = scsi_ioctl(sdp, cmd, p); 1505 break; 1506 default: 1507 error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p); 1508 if (error != -ENOTTY) 1509 break; 1510 error = scsi_ioctl(sdp, cmd, p); 1511 break; 1512 } 1513 out: 1514 return error; 1515 } 1516 1517 static void set_media_not_present(struct scsi_disk *sdkp) 1518 { 1519 if (sdkp->media_present) 1520 sdkp->device->changed = 1; 1521 1522 if (sdkp->device->removable) { 1523 sdkp->media_present = 0; 1524 sdkp->capacity = 0; 1525 } 1526 } 1527 1528 static int media_not_present(struct scsi_disk *sdkp, 1529 struct scsi_sense_hdr *sshdr) 1530 { 1531 if (!scsi_sense_valid(sshdr)) 1532 return 0; 1533 1534 /* not invoked for commands that could return deferred errors */ 1535 switch (sshdr->sense_key) { 1536 case UNIT_ATTENTION: 1537 case NOT_READY: 1538 /* medium not present */ 1539 if (sshdr->asc == 0x3A) { 1540 set_media_not_present(sdkp); 1541 return 1; 1542 } 1543 } 1544 return 0; 1545 } 1546 1547 /** 1548 * sd_check_events - check media events 1549 * @disk: kernel device descriptor 1550 * @clearing: disk events currently being cleared 1551 * 1552 * Returns mask of DISK_EVENT_*. 1553 * 1554 * Note: this function is invoked from the block subsystem. 1555 **/ 1556 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing) 1557 { 1558 struct scsi_disk *sdkp = scsi_disk_get(disk); 1559 struct scsi_device *sdp; 1560 int retval; 1561 1562 if (!sdkp) 1563 return 0; 1564 1565 sdp = sdkp->device; 1566 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n")); 1567 1568 /* 1569 * If the device is offline, don't send any commands - just pretend as 1570 * if the command failed. If the device ever comes back online, we 1571 * can deal with it then. It is only because of unrecoverable errors 1572 * that we would ever take a device offline in the first place. 1573 */ 1574 if (!scsi_device_online(sdp)) { 1575 set_media_not_present(sdkp); 1576 goto out; 1577 } 1578 1579 /* 1580 * Using TEST_UNIT_READY enables differentiation between drive with 1581 * no cartridge loaded - NOT READY, drive with changed cartridge - 1582 * UNIT ATTENTION, or with same cartridge - GOOD STATUS. 1583 * 1584 * Drives that auto spin down. eg iomega jaz 1G, will be started 1585 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever 1586 * sd_revalidate() is called. 1587 */ 1588 if (scsi_block_when_processing_errors(sdp)) { 1589 struct scsi_sense_hdr sshdr = { 0, }; 1590 1591 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, SD_MAX_RETRIES, 1592 &sshdr); 1593 1594 /* failed to execute TUR, assume media not present */ 1595 if (host_byte(retval)) { 1596 set_media_not_present(sdkp); 1597 goto out; 1598 } 1599 1600 if (media_not_present(sdkp, &sshdr)) 1601 goto out; 1602 } 1603 1604 /* 1605 * For removable scsi disk we have to recognise the presence 1606 * of a disk in the drive. 1607 */ 1608 if (!sdkp->media_present) 1609 sdp->changed = 1; 1610 sdkp->media_present = 1; 1611 out: 1612 /* 1613 * sdp->changed is set under the following conditions: 1614 * 1615 * Medium present state has changed in either direction. 1616 * Device has indicated UNIT_ATTENTION. 1617 */ 1618 retval = sdp->changed ? DISK_EVENT_MEDIA_CHANGE : 0; 1619 sdp->changed = 0; 1620 scsi_disk_put(sdkp); 1621 return retval; 1622 } 1623 1624 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr) 1625 { 1626 int retries, res; 1627 struct scsi_device *sdp = sdkp->device; 1628 const int timeout = sdp->request_queue->rq_timeout 1629 * SD_FLUSH_TIMEOUT_MULTIPLIER; 1630 struct scsi_sense_hdr my_sshdr; 1631 1632 if (!scsi_device_online(sdp)) 1633 return -ENODEV; 1634 1635 /* caller might not be interested in sense, but we need it */ 1636 if (!sshdr) 1637 sshdr = &my_sshdr; 1638 1639 for (retries = 3; retries > 0; --retries) { 1640 unsigned char cmd[10] = { 0 }; 1641 1642 cmd[0] = SYNCHRONIZE_CACHE; 1643 /* 1644 * Leave the rest of the command zero to indicate 1645 * flush everything. 1646 */ 1647 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr, 1648 timeout, SD_MAX_RETRIES, 0, RQF_PM, NULL); 1649 if (res == 0) 1650 break; 1651 } 1652 1653 if (res) { 1654 sd_print_result(sdkp, "Synchronize Cache(10) failed", res); 1655 1656 if (driver_byte(res) == DRIVER_SENSE) 1657 sd_print_sense_hdr(sdkp, sshdr); 1658 1659 /* we need to evaluate the error return */ 1660 if (scsi_sense_valid(sshdr) && 1661 (sshdr->asc == 0x3a || /* medium not present */ 1662 sshdr->asc == 0x20)) /* invalid command */ 1663 /* this is no error here */ 1664 return 0; 1665 1666 switch (host_byte(res)) { 1667 /* ignore errors due to racing a disconnection */ 1668 case DID_BAD_TARGET: 1669 case DID_NO_CONNECT: 1670 return 0; 1671 /* signal the upper layer it might try again */ 1672 case DID_BUS_BUSY: 1673 case DID_IMM_RETRY: 1674 case DID_REQUEUE: 1675 case DID_SOFT_ERROR: 1676 return -EBUSY; 1677 default: 1678 return -EIO; 1679 } 1680 } 1681 return 0; 1682 } 1683 1684 static void sd_rescan(struct device *dev) 1685 { 1686 struct scsi_disk *sdkp = dev_get_drvdata(dev); 1687 1688 revalidate_disk(sdkp->disk); 1689 } 1690 1691 1692 #ifdef CONFIG_COMPAT 1693 /* 1694 * This gets directly called from VFS. When the ioctl 1695 * is not recognized we go back to the other translation paths. 1696 */ 1697 static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode, 1698 unsigned int cmd, unsigned long arg) 1699 { 1700 struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device; 1701 int error; 1702 1703 error = scsi_ioctl_block_when_processing_errors(sdev, cmd, 1704 (mode & FMODE_NDELAY) != 0); 1705 if (error) 1706 return error; 1707 1708 /* 1709 * Let the static ioctl translation table take care of it. 1710 */ 1711 if (!sdev->host->hostt->compat_ioctl) 1712 return -ENOIOCTLCMD; 1713 return sdev->host->hostt->compat_ioctl(sdev, cmd, (void __user *)arg); 1714 } 1715 #endif 1716 1717 static char sd_pr_type(enum pr_type type) 1718 { 1719 switch (type) { 1720 case PR_WRITE_EXCLUSIVE: 1721 return 0x01; 1722 case PR_EXCLUSIVE_ACCESS: 1723 return 0x03; 1724 case PR_WRITE_EXCLUSIVE_REG_ONLY: 1725 return 0x05; 1726 case PR_EXCLUSIVE_ACCESS_REG_ONLY: 1727 return 0x06; 1728 case PR_WRITE_EXCLUSIVE_ALL_REGS: 1729 return 0x07; 1730 case PR_EXCLUSIVE_ACCESS_ALL_REGS: 1731 return 0x08; 1732 default: 1733 return 0; 1734 } 1735 }; 1736 1737 static int sd_pr_command(struct block_device *bdev, u8 sa, 1738 u64 key, u64 sa_key, u8 type, u8 flags) 1739 { 1740 struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device; 1741 struct scsi_sense_hdr sshdr; 1742 int result; 1743 u8 cmd[16] = { 0, }; 1744 u8 data[24] = { 0, }; 1745 1746 cmd[0] = PERSISTENT_RESERVE_OUT; 1747 cmd[1] = sa; 1748 cmd[2] = type; 1749 put_unaligned_be32(sizeof(data), &cmd[5]); 1750 1751 put_unaligned_be64(key, &data[0]); 1752 put_unaligned_be64(sa_key, &data[8]); 1753 data[20] = flags; 1754 1755 result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data), 1756 &sshdr, SD_TIMEOUT, SD_MAX_RETRIES, NULL); 1757 1758 if (driver_byte(result) == DRIVER_SENSE && 1759 scsi_sense_valid(&sshdr)) { 1760 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result); 1761 scsi_print_sense_hdr(sdev, NULL, &sshdr); 1762 } 1763 1764 return result; 1765 } 1766 1767 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 1768 u32 flags) 1769 { 1770 if (flags & ~PR_FL_IGNORE_KEY) 1771 return -EOPNOTSUPP; 1772 return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00, 1773 old_key, new_key, 0, 1774 (1 << 0) /* APTPL */); 1775 } 1776 1777 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 1778 u32 flags) 1779 { 1780 if (flags) 1781 return -EOPNOTSUPP; 1782 return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0); 1783 } 1784 1785 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 1786 { 1787 return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0); 1788 } 1789 1790 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 1791 enum pr_type type, bool abort) 1792 { 1793 return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key, 1794 sd_pr_type(type), 0); 1795 } 1796 1797 static int sd_pr_clear(struct block_device *bdev, u64 key) 1798 { 1799 return sd_pr_command(bdev, 0x03, key, 0, 0, 0); 1800 } 1801 1802 static const struct pr_ops sd_pr_ops = { 1803 .pr_register = sd_pr_register, 1804 .pr_reserve = sd_pr_reserve, 1805 .pr_release = sd_pr_release, 1806 .pr_preempt = sd_pr_preempt, 1807 .pr_clear = sd_pr_clear, 1808 }; 1809 1810 static const struct block_device_operations sd_fops = { 1811 .owner = THIS_MODULE, 1812 .open = sd_open, 1813 .release = sd_release, 1814 .ioctl = sd_ioctl, 1815 .getgeo = sd_getgeo, 1816 #ifdef CONFIG_COMPAT 1817 .compat_ioctl = sd_compat_ioctl, 1818 #endif 1819 .check_events = sd_check_events, 1820 .revalidate_disk = sd_revalidate_disk, 1821 .unlock_native_capacity = sd_unlock_native_capacity, 1822 .report_zones = sd_zbc_report_zones, 1823 .pr_ops = &sd_pr_ops, 1824 }; 1825 1826 /** 1827 * sd_eh_reset - reset error handling callback 1828 * @scmd: sd-issued command that has failed 1829 * 1830 * This function is called by the SCSI midlayer before starting 1831 * SCSI EH. When counting medium access failures we have to be 1832 * careful to register it only only once per device and SCSI EH run; 1833 * there might be several timed out commands which will cause the 1834 * 'max_medium_access_timeouts' counter to trigger after the first 1835 * SCSI EH run already and set the device to offline. 1836 * So this function resets the internal counter before starting SCSI EH. 1837 **/ 1838 static void sd_eh_reset(struct scsi_cmnd *scmd) 1839 { 1840 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk); 1841 1842 /* New SCSI EH run, reset gate variable */ 1843 sdkp->ignore_medium_access_errors = false; 1844 } 1845 1846 /** 1847 * sd_eh_action - error handling callback 1848 * @scmd: sd-issued command that has failed 1849 * @eh_disp: The recovery disposition suggested by the midlayer 1850 * 1851 * This function is called by the SCSI midlayer upon completion of an 1852 * error test command (currently TEST UNIT READY). The result of sending 1853 * the eh command is passed in eh_disp. We're looking for devices that 1854 * fail medium access commands but are OK with non access commands like 1855 * test unit ready (so wrongly see the device as having a successful 1856 * recovery) 1857 **/ 1858 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp) 1859 { 1860 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk); 1861 struct scsi_device *sdev = scmd->device; 1862 1863 if (!scsi_device_online(sdev) || 1864 !scsi_medium_access_command(scmd) || 1865 host_byte(scmd->result) != DID_TIME_OUT || 1866 eh_disp != SUCCESS) 1867 return eh_disp; 1868 1869 /* 1870 * The device has timed out executing a medium access command. 1871 * However, the TEST UNIT READY command sent during error 1872 * handling completed successfully. Either the device is in the 1873 * process of recovering or has it suffered an internal failure 1874 * that prevents access to the storage medium. 1875 */ 1876 if (!sdkp->ignore_medium_access_errors) { 1877 sdkp->medium_access_timed_out++; 1878 sdkp->ignore_medium_access_errors = true; 1879 } 1880 1881 /* 1882 * If the device keeps failing read/write commands but TEST UNIT 1883 * READY always completes successfully we assume that medium 1884 * access is no longer possible and take the device offline. 1885 */ 1886 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) { 1887 scmd_printk(KERN_ERR, scmd, 1888 "Medium access timeout failure. Offlining disk!\n"); 1889 mutex_lock(&sdev->state_mutex); 1890 scsi_device_set_state(sdev, SDEV_OFFLINE); 1891 mutex_unlock(&sdev->state_mutex); 1892 1893 return SUCCESS; 1894 } 1895 1896 return eh_disp; 1897 } 1898 1899 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd) 1900 { 1901 struct request *req = scmd->request; 1902 struct scsi_device *sdev = scmd->device; 1903 unsigned int transferred, good_bytes; 1904 u64 start_lba, end_lba, bad_lba; 1905 1906 /* 1907 * Some commands have a payload smaller than the device logical 1908 * block size (e.g. INQUIRY on a 4K disk). 1909 */ 1910 if (scsi_bufflen(scmd) <= sdev->sector_size) 1911 return 0; 1912 1913 /* Check if we have a 'bad_lba' information */ 1914 if (!scsi_get_sense_info_fld(scmd->sense_buffer, 1915 SCSI_SENSE_BUFFERSIZE, 1916 &bad_lba)) 1917 return 0; 1918 1919 /* 1920 * If the bad lba was reported incorrectly, we have no idea where 1921 * the error is. 1922 */ 1923 start_lba = sectors_to_logical(sdev, blk_rq_pos(req)); 1924 end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd)); 1925 if (bad_lba < start_lba || bad_lba >= end_lba) 1926 return 0; 1927 1928 /* 1929 * resid is optional but mostly filled in. When it's unused, 1930 * its value is zero, so we assume the whole buffer transferred 1931 */ 1932 transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd); 1933 1934 /* This computation should always be done in terms of the 1935 * resolution of the device's medium. 1936 */ 1937 good_bytes = logical_to_bytes(sdev, bad_lba - start_lba); 1938 1939 return min(good_bytes, transferred); 1940 } 1941 1942 /** 1943 * sd_done - bottom half handler: called when the lower level 1944 * driver has completed (successfully or otherwise) a scsi command. 1945 * @SCpnt: mid-level's per command structure. 1946 * 1947 * Note: potentially run from within an ISR. Must not block. 1948 **/ 1949 static int sd_done(struct scsi_cmnd *SCpnt) 1950 { 1951 int result = SCpnt->result; 1952 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt); 1953 unsigned int sector_size = SCpnt->device->sector_size; 1954 unsigned int resid; 1955 struct scsi_sense_hdr sshdr; 1956 struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk); 1957 struct request *req = SCpnt->request; 1958 int sense_valid = 0; 1959 int sense_deferred = 0; 1960 1961 switch (req_op(req)) { 1962 case REQ_OP_DISCARD: 1963 case REQ_OP_WRITE_ZEROES: 1964 case REQ_OP_WRITE_SAME: 1965 case REQ_OP_ZONE_RESET: 1966 if (!result) { 1967 good_bytes = blk_rq_bytes(req); 1968 scsi_set_resid(SCpnt, 0); 1969 } else { 1970 good_bytes = 0; 1971 scsi_set_resid(SCpnt, blk_rq_bytes(req)); 1972 } 1973 break; 1974 default: 1975 /* 1976 * In case of bogus fw or device, we could end up having 1977 * an unaligned partial completion. Check this here and force 1978 * alignment. 1979 */ 1980 resid = scsi_get_resid(SCpnt); 1981 if (resid & (sector_size - 1)) { 1982 sd_printk(KERN_INFO, sdkp, 1983 "Unaligned partial completion (resid=%u, sector_sz=%u)\n", 1984 resid, sector_size); 1985 resid = min(scsi_bufflen(SCpnt), 1986 round_up(resid, sector_size)); 1987 scsi_set_resid(SCpnt, resid); 1988 } 1989 } 1990 1991 if (result) { 1992 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr); 1993 if (sense_valid) 1994 sense_deferred = scsi_sense_is_deferred(&sshdr); 1995 } 1996 sdkp->medium_access_timed_out = 0; 1997 1998 if (driver_byte(result) != DRIVER_SENSE && 1999 (!sense_valid || sense_deferred)) 2000 goto out; 2001 2002 switch (sshdr.sense_key) { 2003 case HARDWARE_ERROR: 2004 case MEDIUM_ERROR: 2005 good_bytes = sd_completed_bytes(SCpnt); 2006 break; 2007 case RECOVERED_ERROR: 2008 good_bytes = scsi_bufflen(SCpnt); 2009 break; 2010 case NO_SENSE: 2011 /* This indicates a false check condition, so ignore it. An 2012 * unknown amount of data was transferred so treat it as an 2013 * error. 2014 */ 2015 SCpnt->result = 0; 2016 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 2017 break; 2018 case ABORTED_COMMAND: 2019 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */ 2020 good_bytes = sd_completed_bytes(SCpnt); 2021 break; 2022 case ILLEGAL_REQUEST: 2023 switch (sshdr.asc) { 2024 case 0x10: /* DIX: Host detected corruption */ 2025 good_bytes = sd_completed_bytes(SCpnt); 2026 break; 2027 case 0x20: /* INVALID COMMAND OPCODE */ 2028 case 0x24: /* INVALID FIELD IN CDB */ 2029 switch (SCpnt->cmnd[0]) { 2030 case UNMAP: 2031 sd_config_discard(sdkp, SD_LBP_DISABLE); 2032 break; 2033 case WRITE_SAME_16: 2034 case WRITE_SAME: 2035 if (SCpnt->cmnd[1] & 8) { /* UNMAP */ 2036 sd_config_discard(sdkp, SD_LBP_DISABLE); 2037 } else { 2038 sdkp->device->no_write_same = 1; 2039 sd_config_write_same(sdkp); 2040 req->rq_flags |= RQF_QUIET; 2041 } 2042 break; 2043 } 2044 } 2045 break; 2046 default: 2047 break; 2048 } 2049 2050 out: 2051 if (sd_is_zoned(sdkp)) 2052 sd_zbc_complete(SCpnt, good_bytes, &sshdr); 2053 2054 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt, 2055 "sd_done: completed %d of %d bytes\n", 2056 good_bytes, scsi_bufflen(SCpnt))); 2057 2058 if (rq_data_dir(SCpnt->request) == READ && scsi_prot_sg_count(SCpnt) && 2059 good_bytes) 2060 t10_pi_complete(SCpnt->request, sdkp->protection_type, 2061 good_bytes / scsi_prot_interval(SCpnt)); 2062 2063 return good_bytes; 2064 } 2065 2066 /* 2067 * spinup disk - called only in sd_revalidate_disk() 2068 */ 2069 static void 2070 sd_spinup_disk(struct scsi_disk *sdkp) 2071 { 2072 unsigned char cmd[10]; 2073 unsigned long spintime_expire = 0; 2074 int retries, spintime; 2075 unsigned int the_result; 2076 struct scsi_sense_hdr sshdr; 2077 int sense_valid = 0; 2078 2079 spintime = 0; 2080 2081 /* Spin up drives, as required. Only do this at boot time */ 2082 /* Spinup needs to be done for module loads too. */ 2083 do { 2084 retries = 0; 2085 2086 do { 2087 cmd[0] = TEST_UNIT_READY; 2088 memset((void *) &cmd[1], 0, 9); 2089 2090 the_result = scsi_execute_req(sdkp->device, cmd, 2091 DMA_NONE, NULL, 0, 2092 &sshdr, SD_TIMEOUT, 2093 SD_MAX_RETRIES, NULL); 2094 2095 /* 2096 * If the drive has indicated to us that it 2097 * doesn't have any media in it, don't bother 2098 * with any more polling. 2099 */ 2100 if (media_not_present(sdkp, &sshdr)) 2101 return; 2102 2103 if (the_result) 2104 sense_valid = scsi_sense_valid(&sshdr); 2105 retries++; 2106 } while (retries < 3 && 2107 (!scsi_status_is_good(the_result) || 2108 ((driver_byte(the_result) == DRIVER_SENSE) && 2109 sense_valid && sshdr.sense_key == UNIT_ATTENTION))); 2110 2111 if (driver_byte(the_result) != DRIVER_SENSE) { 2112 /* no sense, TUR either succeeded or failed 2113 * with a status error */ 2114 if(!spintime && !scsi_status_is_good(the_result)) { 2115 sd_print_result(sdkp, "Test Unit Ready failed", 2116 the_result); 2117 } 2118 break; 2119 } 2120 2121 /* 2122 * The device does not want the automatic start to be issued. 2123 */ 2124 if (sdkp->device->no_start_on_add) 2125 break; 2126 2127 if (sense_valid && sshdr.sense_key == NOT_READY) { 2128 if (sshdr.asc == 4 && sshdr.ascq == 3) 2129 break; /* manual intervention required */ 2130 if (sshdr.asc == 4 && sshdr.ascq == 0xb) 2131 break; /* standby */ 2132 if (sshdr.asc == 4 && sshdr.ascq == 0xc) 2133 break; /* unavailable */ 2134 if (sshdr.asc == 4 && sshdr.ascq == 0x1b) 2135 break; /* sanitize in progress */ 2136 /* 2137 * Issue command to spin up drive when not ready 2138 */ 2139 if (!spintime) { 2140 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk..."); 2141 cmd[0] = START_STOP; 2142 cmd[1] = 1; /* Return immediately */ 2143 memset((void *) &cmd[2], 0, 8); 2144 cmd[4] = 1; /* Start spin cycle */ 2145 if (sdkp->device->start_stop_pwr_cond) 2146 cmd[4] |= 1 << 4; 2147 scsi_execute_req(sdkp->device, cmd, DMA_NONE, 2148 NULL, 0, &sshdr, 2149 SD_TIMEOUT, SD_MAX_RETRIES, 2150 NULL); 2151 spintime_expire = jiffies + 100 * HZ; 2152 spintime = 1; 2153 } 2154 /* Wait 1 second for next try */ 2155 msleep(1000); 2156 printk(KERN_CONT "."); 2157 2158 /* 2159 * Wait for USB flash devices with slow firmware. 2160 * Yes, this sense key/ASC combination shouldn't 2161 * occur here. It's characteristic of these devices. 2162 */ 2163 } else if (sense_valid && 2164 sshdr.sense_key == UNIT_ATTENTION && 2165 sshdr.asc == 0x28) { 2166 if (!spintime) { 2167 spintime_expire = jiffies + 5 * HZ; 2168 spintime = 1; 2169 } 2170 /* Wait 1 second for next try */ 2171 msleep(1000); 2172 } else { 2173 /* we don't understand the sense code, so it's 2174 * probably pointless to loop */ 2175 if(!spintime) { 2176 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n"); 2177 sd_print_sense_hdr(sdkp, &sshdr); 2178 } 2179 break; 2180 } 2181 2182 } while (spintime && time_before_eq(jiffies, spintime_expire)); 2183 2184 if (spintime) { 2185 if (scsi_status_is_good(the_result)) 2186 printk(KERN_CONT "ready\n"); 2187 else 2188 printk(KERN_CONT "not responding...\n"); 2189 } 2190 } 2191 2192 /* 2193 * Determine whether disk supports Data Integrity Field. 2194 */ 2195 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer) 2196 { 2197 struct scsi_device *sdp = sdkp->device; 2198 u8 type; 2199 int ret = 0; 2200 2201 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) 2202 return ret; 2203 2204 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */ 2205 2206 if (type > T10_PI_TYPE3_PROTECTION) 2207 ret = -ENODEV; 2208 else if (scsi_host_dif_capable(sdp->host, type)) 2209 ret = 1; 2210 2211 if (sdkp->first_scan || type != sdkp->protection_type) 2212 switch (ret) { 2213 case -ENODEV: 2214 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \ 2215 " protection type %u. Disabling disk!\n", 2216 type); 2217 break; 2218 case 1: 2219 sd_printk(KERN_NOTICE, sdkp, 2220 "Enabling DIF Type %u protection\n", type); 2221 break; 2222 case 0: 2223 sd_printk(KERN_NOTICE, sdkp, 2224 "Disabling DIF Type %u protection\n", type); 2225 break; 2226 } 2227 2228 sdkp->protection_type = type; 2229 2230 return ret; 2231 } 2232 2233 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp, 2234 struct scsi_sense_hdr *sshdr, int sense_valid, 2235 int the_result) 2236 { 2237 if (driver_byte(the_result) == DRIVER_SENSE) 2238 sd_print_sense_hdr(sdkp, sshdr); 2239 else 2240 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n"); 2241 2242 /* 2243 * Set dirty bit for removable devices if not ready - 2244 * sometimes drives will not report this properly. 2245 */ 2246 if (sdp->removable && 2247 sense_valid && sshdr->sense_key == NOT_READY) 2248 set_media_not_present(sdkp); 2249 2250 /* 2251 * We used to set media_present to 0 here to indicate no media 2252 * in the drive, but some drives fail read capacity even with 2253 * media present, so we can't do that. 2254 */ 2255 sdkp->capacity = 0; /* unknown mapped to zero - as usual */ 2256 } 2257 2258 #define RC16_LEN 32 2259 #if RC16_LEN > SD_BUF_SIZE 2260 #error RC16_LEN must not be more than SD_BUF_SIZE 2261 #endif 2262 2263 #define READ_CAPACITY_RETRIES_ON_RESET 10 2264 2265 /* 2266 * Ensure that we don't overflow sector_t when CONFIG_LBDAF is not set 2267 * and the reported logical block size is bigger than 512 bytes. Note 2268 * that last_sector is a u64 and therefore logical_to_sectors() is not 2269 * applicable. 2270 */ 2271 static bool sd_addressable_capacity(u64 lba, unsigned int sector_size) 2272 { 2273 u64 last_sector = (lba + 1ULL) << (ilog2(sector_size) - 9); 2274 2275 if (sizeof(sector_t) == 4 && last_sector > U32_MAX) 2276 return false; 2277 2278 return true; 2279 } 2280 2281 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp, 2282 unsigned char *buffer) 2283 { 2284 unsigned char cmd[16]; 2285 struct scsi_sense_hdr sshdr; 2286 int sense_valid = 0; 2287 int the_result; 2288 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2289 unsigned int alignment; 2290 unsigned long long lba; 2291 unsigned sector_size; 2292 2293 if (sdp->no_read_capacity_16) 2294 return -EINVAL; 2295 2296 do { 2297 memset(cmd, 0, 16); 2298 cmd[0] = SERVICE_ACTION_IN_16; 2299 cmd[1] = SAI_READ_CAPACITY_16; 2300 cmd[13] = RC16_LEN; 2301 memset(buffer, 0, RC16_LEN); 2302 2303 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, 2304 buffer, RC16_LEN, &sshdr, 2305 SD_TIMEOUT, SD_MAX_RETRIES, NULL); 2306 2307 if (media_not_present(sdkp, &sshdr)) 2308 return -ENODEV; 2309 2310 if (the_result) { 2311 sense_valid = scsi_sense_valid(&sshdr); 2312 if (sense_valid && 2313 sshdr.sense_key == ILLEGAL_REQUEST && 2314 (sshdr.asc == 0x20 || sshdr.asc == 0x24) && 2315 sshdr.ascq == 0x00) 2316 /* Invalid Command Operation Code or 2317 * Invalid Field in CDB, just retry 2318 * silently with RC10 */ 2319 return -EINVAL; 2320 if (sense_valid && 2321 sshdr.sense_key == UNIT_ATTENTION && 2322 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2323 /* Device reset might occur several times, 2324 * give it one more chance */ 2325 if (--reset_retries > 0) 2326 continue; 2327 } 2328 retries--; 2329 2330 } while (the_result && retries); 2331 2332 if (the_result) { 2333 sd_print_result(sdkp, "Read Capacity(16) failed", the_result); 2334 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2335 return -EINVAL; 2336 } 2337 2338 sector_size = get_unaligned_be32(&buffer[8]); 2339 lba = get_unaligned_be64(&buffer[0]); 2340 2341 if (sd_read_protection_type(sdkp, buffer) < 0) { 2342 sdkp->capacity = 0; 2343 return -ENODEV; 2344 } 2345 2346 if (!sd_addressable_capacity(lba, sector_size)) { 2347 sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a " 2348 "kernel compiled with support for large block " 2349 "devices.\n"); 2350 sdkp->capacity = 0; 2351 return -EOVERFLOW; 2352 } 2353 2354 /* Logical blocks per physical block exponent */ 2355 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size; 2356 2357 /* RC basis */ 2358 sdkp->rc_basis = (buffer[12] >> 4) & 0x3; 2359 2360 /* Lowest aligned logical block */ 2361 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size; 2362 blk_queue_alignment_offset(sdp->request_queue, alignment); 2363 if (alignment && sdkp->first_scan) 2364 sd_printk(KERN_NOTICE, sdkp, 2365 "physical block alignment offset: %u\n", alignment); 2366 2367 if (buffer[14] & 0x80) { /* LBPME */ 2368 sdkp->lbpme = 1; 2369 2370 if (buffer[14] & 0x40) /* LBPRZ */ 2371 sdkp->lbprz = 1; 2372 2373 sd_config_discard(sdkp, SD_LBP_WS16); 2374 } 2375 2376 sdkp->capacity = lba + 1; 2377 return sector_size; 2378 } 2379 2380 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp, 2381 unsigned char *buffer) 2382 { 2383 unsigned char cmd[16]; 2384 struct scsi_sense_hdr sshdr; 2385 int sense_valid = 0; 2386 int the_result; 2387 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2388 sector_t lba; 2389 unsigned sector_size; 2390 2391 do { 2392 cmd[0] = READ_CAPACITY; 2393 memset(&cmd[1], 0, 9); 2394 memset(buffer, 0, 8); 2395 2396 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, 2397 buffer, 8, &sshdr, 2398 SD_TIMEOUT, SD_MAX_RETRIES, NULL); 2399 2400 if (media_not_present(sdkp, &sshdr)) 2401 return -ENODEV; 2402 2403 if (the_result) { 2404 sense_valid = scsi_sense_valid(&sshdr); 2405 if (sense_valid && 2406 sshdr.sense_key == UNIT_ATTENTION && 2407 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2408 /* Device reset might occur several times, 2409 * give it one more chance */ 2410 if (--reset_retries > 0) 2411 continue; 2412 } 2413 retries--; 2414 2415 } while (the_result && retries); 2416 2417 if (the_result) { 2418 sd_print_result(sdkp, "Read Capacity(10) failed", the_result); 2419 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2420 return -EINVAL; 2421 } 2422 2423 sector_size = get_unaligned_be32(&buffer[4]); 2424 lba = get_unaligned_be32(&buffer[0]); 2425 2426 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) { 2427 /* Some buggy (usb cardreader) devices return an lba of 2428 0xffffffff when the want to report a size of 0 (with 2429 which they really mean no media is present) */ 2430 sdkp->capacity = 0; 2431 sdkp->physical_block_size = sector_size; 2432 return sector_size; 2433 } 2434 2435 if (!sd_addressable_capacity(lba, sector_size)) { 2436 sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a " 2437 "kernel compiled with support for large block " 2438 "devices.\n"); 2439 sdkp->capacity = 0; 2440 return -EOVERFLOW; 2441 } 2442 2443 sdkp->capacity = lba + 1; 2444 sdkp->physical_block_size = sector_size; 2445 return sector_size; 2446 } 2447 2448 static int sd_try_rc16_first(struct scsi_device *sdp) 2449 { 2450 if (sdp->host->max_cmd_len < 16) 2451 return 0; 2452 if (sdp->try_rc_10_first) 2453 return 0; 2454 if (sdp->scsi_level > SCSI_SPC_2) 2455 return 1; 2456 if (scsi_device_protection(sdp)) 2457 return 1; 2458 return 0; 2459 } 2460 2461 /* 2462 * read disk capacity 2463 */ 2464 static void 2465 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer) 2466 { 2467 int sector_size; 2468 struct scsi_device *sdp = sdkp->device; 2469 2470 if (sd_try_rc16_first(sdp)) { 2471 sector_size = read_capacity_16(sdkp, sdp, buffer); 2472 if (sector_size == -EOVERFLOW) 2473 goto got_data; 2474 if (sector_size == -ENODEV) 2475 return; 2476 if (sector_size < 0) 2477 sector_size = read_capacity_10(sdkp, sdp, buffer); 2478 if (sector_size < 0) 2479 return; 2480 } else { 2481 sector_size = read_capacity_10(sdkp, sdp, buffer); 2482 if (sector_size == -EOVERFLOW) 2483 goto got_data; 2484 if (sector_size < 0) 2485 return; 2486 if ((sizeof(sdkp->capacity) > 4) && 2487 (sdkp->capacity > 0xffffffffULL)) { 2488 int old_sector_size = sector_size; 2489 sd_printk(KERN_NOTICE, sdkp, "Very big device. " 2490 "Trying to use READ CAPACITY(16).\n"); 2491 sector_size = read_capacity_16(sdkp, sdp, buffer); 2492 if (sector_size < 0) { 2493 sd_printk(KERN_NOTICE, sdkp, 2494 "Using 0xffffffff as device size\n"); 2495 sdkp->capacity = 1 + (sector_t) 0xffffffff; 2496 sector_size = old_sector_size; 2497 goto got_data; 2498 } 2499 /* Remember that READ CAPACITY(16) succeeded */ 2500 sdp->try_rc_10_first = 0; 2501 } 2502 } 2503 2504 /* Some devices are known to return the total number of blocks, 2505 * not the highest block number. Some devices have versions 2506 * which do this and others which do not. Some devices we might 2507 * suspect of doing this but we don't know for certain. 2508 * 2509 * If we know the reported capacity is wrong, decrement it. If 2510 * we can only guess, then assume the number of blocks is even 2511 * (usually true but not always) and err on the side of lowering 2512 * the capacity. 2513 */ 2514 if (sdp->fix_capacity || 2515 (sdp->guess_capacity && (sdkp->capacity & 0x01))) { 2516 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count " 2517 "from its reported value: %llu\n", 2518 (unsigned long long) sdkp->capacity); 2519 --sdkp->capacity; 2520 } 2521 2522 got_data: 2523 if (sector_size == 0) { 2524 sector_size = 512; 2525 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, " 2526 "assuming 512.\n"); 2527 } 2528 2529 if (sector_size != 512 && 2530 sector_size != 1024 && 2531 sector_size != 2048 && 2532 sector_size != 4096) { 2533 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n", 2534 sector_size); 2535 /* 2536 * The user might want to re-format the drive with 2537 * a supported sectorsize. Once this happens, it 2538 * would be relatively trivial to set the thing up. 2539 * For this reason, we leave the thing in the table. 2540 */ 2541 sdkp->capacity = 0; 2542 /* 2543 * set a bogus sector size so the normal read/write 2544 * logic in the block layer will eventually refuse any 2545 * request on this device without tripping over power 2546 * of two sector size assumptions 2547 */ 2548 sector_size = 512; 2549 } 2550 blk_queue_logical_block_size(sdp->request_queue, sector_size); 2551 blk_queue_physical_block_size(sdp->request_queue, 2552 sdkp->physical_block_size); 2553 sdkp->device->sector_size = sector_size; 2554 2555 if (sdkp->capacity > 0xffffffff) 2556 sdp->use_16_for_rw = 1; 2557 2558 } 2559 2560 /* 2561 * Print disk capacity 2562 */ 2563 static void 2564 sd_print_capacity(struct scsi_disk *sdkp, 2565 sector_t old_capacity) 2566 { 2567 int sector_size = sdkp->device->sector_size; 2568 char cap_str_2[10], cap_str_10[10]; 2569 2570 if (!sdkp->first_scan && old_capacity == sdkp->capacity) 2571 return; 2572 2573 string_get_size(sdkp->capacity, sector_size, 2574 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2)); 2575 string_get_size(sdkp->capacity, sector_size, 2576 STRING_UNITS_10, cap_str_10, sizeof(cap_str_10)); 2577 2578 sd_printk(KERN_NOTICE, sdkp, 2579 "%llu %d-byte logical blocks: (%s/%s)\n", 2580 (unsigned long long)sdkp->capacity, 2581 sector_size, cap_str_10, cap_str_2); 2582 2583 if (sdkp->physical_block_size != sector_size) 2584 sd_printk(KERN_NOTICE, sdkp, 2585 "%u-byte physical blocks\n", 2586 sdkp->physical_block_size); 2587 2588 sd_zbc_print_zones(sdkp); 2589 } 2590 2591 /* called with buffer of length 512 */ 2592 static inline int 2593 sd_do_mode_sense(struct scsi_device *sdp, int dbd, int modepage, 2594 unsigned char *buffer, int len, struct scsi_mode_data *data, 2595 struct scsi_sense_hdr *sshdr) 2596 { 2597 return scsi_mode_sense(sdp, dbd, modepage, buffer, len, 2598 SD_TIMEOUT, SD_MAX_RETRIES, data, 2599 sshdr); 2600 } 2601 2602 /* 2603 * read write protect setting, if possible - called only in sd_revalidate_disk() 2604 * called with buffer of length SD_BUF_SIZE 2605 */ 2606 static void 2607 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer) 2608 { 2609 int res; 2610 struct scsi_device *sdp = sdkp->device; 2611 struct scsi_mode_data data; 2612 int disk_ro = get_disk_ro(sdkp->disk); 2613 int old_wp = sdkp->write_prot; 2614 2615 set_disk_ro(sdkp->disk, 0); 2616 if (sdp->skip_ms_page_3f) { 2617 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n"); 2618 return; 2619 } 2620 2621 if (sdp->use_192_bytes_for_3f) { 2622 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 192, &data, NULL); 2623 } else { 2624 /* 2625 * First attempt: ask for all pages (0x3F), but only 4 bytes. 2626 * We have to start carefully: some devices hang if we ask 2627 * for more than is available. 2628 */ 2629 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 4, &data, NULL); 2630 2631 /* 2632 * Second attempt: ask for page 0 When only page 0 is 2633 * implemented, a request for page 3F may return Sense Key 2634 * 5: Illegal Request, Sense Code 24: Invalid field in 2635 * CDB. 2636 */ 2637 if (!scsi_status_is_good(res)) 2638 res = sd_do_mode_sense(sdp, 0, 0, buffer, 4, &data, NULL); 2639 2640 /* 2641 * Third attempt: ask 255 bytes, as we did earlier. 2642 */ 2643 if (!scsi_status_is_good(res)) 2644 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 255, 2645 &data, NULL); 2646 } 2647 2648 if (!scsi_status_is_good(res)) { 2649 sd_first_printk(KERN_WARNING, sdkp, 2650 "Test WP failed, assume Write Enabled\n"); 2651 } else { 2652 sdkp->write_prot = ((data.device_specific & 0x80) != 0); 2653 set_disk_ro(sdkp->disk, sdkp->write_prot || disk_ro); 2654 if (sdkp->first_scan || old_wp != sdkp->write_prot) { 2655 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n", 2656 sdkp->write_prot ? "on" : "off"); 2657 sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer); 2658 } 2659 } 2660 } 2661 2662 /* 2663 * sd_read_cache_type - called only from sd_revalidate_disk() 2664 * called with buffer of length SD_BUF_SIZE 2665 */ 2666 static void 2667 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer) 2668 { 2669 int len = 0, res; 2670 struct scsi_device *sdp = sdkp->device; 2671 2672 int dbd; 2673 int modepage; 2674 int first_len; 2675 struct scsi_mode_data data; 2676 struct scsi_sense_hdr sshdr; 2677 int old_wce = sdkp->WCE; 2678 int old_rcd = sdkp->RCD; 2679 int old_dpofua = sdkp->DPOFUA; 2680 2681 2682 if (sdkp->cache_override) 2683 return; 2684 2685 first_len = 4; 2686 if (sdp->skip_ms_page_8) { 2687 if (sdp->type == TYPE_RBC) 2688 goto defaults; 2689 else { 2690 if (sdp->skip_ms_page_3f) 2691 goto defaults; 2692 modepage = 0x3F; 2693 if (sdp->use_192_bytes_for_3f) 2694 first_len = 192; 2695 dbd = 0; 2696 } 2697 } else if (sdp->type == TYPE_RBC) { 2698 modepage = 6; 2699 dbd = 8; 2700 } else { 2701 modepage = 8; 2702 dbd = 0; 2703 } 2704 2705 /* cautiously ask */ 2706 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, first_len, 2707 &data, &sshdr); 2708 2709 if (!scsi_status_is_good(res)) 2710 goto bad_sense; 2711 2712 if (!data.header_length) { 2713 modepage = 6; 2714 first_len = 0; 2715 sd_first_printk(KERN_ERR, sdkp, 2716 "Missing header in MODE_SENSE response\n"); 2717 } 2718 2719 /* that went OK, now ask for the proper length */ 2720 len = data.length; 2721 2722 /* 2723 * We're only interested in the first three bytes, actually. 2724 * But the data cache page is defined for the first 20. 2725 */ 2726 if (len < 3) 2727 goto bad_sense; 2728 else if (len > SD_BUF_SIZE) { 2729 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter " 2730 "data from %d to %d bytes\n", len, SD_BUF_SIZE); 2731 len = SD_BUF_SIZE; 2732 } 2733 if (modepage == 0x3F && sdp->use_192_bytes_for_3f) 2734 len = 192; 2735 2736 /* Get the data */ 2737 if (len > first_len) 2738 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, len, 2739 &data, &sshdr); 2740 2741 if (scsi_status_is_good(res)) { 2742 int offset = data.header_length + data.block_descriptor_length; 2743 2744 while (offset < len) { 2745 u8 page_code = buffer[offset] & 0x3F; 2746 u8 spf = buffer[offset] & 0x40; 2747 2748 if (page_code == 8 || page_code == 6) { 2749 /* We're interested only in the first 3 bytes. 2750 */ 2751 if (len - offset <= 2) { 2752 sd_first_printk(KERN_ERR, sdkp, 2753 "Incomplete mode parameter " 2754 "data\n"); 2755 goto defaults; 2756 } else { 2757 modepage = page_code; 2758 goto Page_found; 2759 } 2760 } else { 2761 /* Go to the next page */ 2762 if (spf && len - offset > 3) 2763 offset += 4 + (buffer[offset+2] << 8) + 2764 buffer[offset+3]; 2765 else if (!spf && len - offset > 1) 2766 offset += 2 + buffer[offset+1]; 2767 else { 2768 sd_first_printk(KERN_ERR, sdkp, 2769 "Incomplete mode " 2770 "parameter data\n"); 2771 goto defaults; 2772 } 2773 } 2774 } 2775 2776 sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n"); 2777 goto defaults; 2778 2779 Page_found: 2780 if (modepage == 8) { 2781 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0); 2782 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0); 2783 } else { 2784 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0); 2785 sdkp->RCD = 0; 2786 } 2787 2788 sdkp->DPOFUA = (data.device_specific & 0x10) != 0; 2789 if (sdp->broken_fua) { 2790 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n"); 2791 sdkp->DPOFUA = 0; 2792 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw && 2793 !sdkp->device->use_16_for_rw) { 2794 sd_first_printk(KERN_NOTICE, sdkp, 2795 "Uses READ/WRITE(6), disabling FUA\n"); 2796 sdkp->DPOFUA = 0; 2797 } 2798 2799 /* No cache flush allowed for write protected devices */ 2800 if (sdkp->WCE && sdkp->write_prot) 2801 sdkp->WCE = 0; 2802 2803 if (sdkp->first_scan || old_wce != sdkp->WCE || 2804 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA) 2805 sd_printk(KERN_NOTICE, sdkp, 2806 "Write cache: %s, read cache: %s, %s\n", 2807 sdkp->WCE ? "enabled" : "disabled", 2808 sdkp->RCD ? "disabled" : "enabled", 2809 sdkp->DPOFUA ? "supports DPO and FUA" 2810 : "doesn't support DPO or FUA"); 2811 2812 return; 2813 } 2814 2815 bad_sense: 2816 if (scsi_sense_valid(&sshdr) && 2817 sshdr.sense_key == ILLEGAL_REQUEST && 2818 sshdr.asc == 0x24 && sshdr.ascq == 0x0) 2819 /* Invalid field in CDB */ 2820 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n"); 2821 else 2822 sd_first_printk(KERN_ERR, sdkp, 2823 "Asking for cache data failed\n"); 2824 2825 defaults: 2826 if (sdp->wce_default_on) { 2827 sd_first_printk(KERN_NOTICE, sdkp, 2828 "Assuming drive cache: write back\n"); 2829 sdkp->WCE = 1; 2830 } else { 2831 sd_first_printk(KERN_ERR, sdkp, 2832 "Assuming drive cache: write through\n"); 2833 sdkp->WCE = 0; 2834 } 2835 sdkp->RCD = 0; 2836 sdkp->DPOFUA = 0; 2837 } 2838 2839 /* 2840 * The ATO bit indicates whether the DIF application tag is available 2841 * for use by the operating system. 2842 */ 2843 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer) 2844 { 2845 int res, offset; 2846 struct scsi_device *sdp = sdkp->device; 2847 struct scsi_mode_data data; 2848 struct scsi_sense_hdr sshdr; 2849 2850 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 2851 return; 2852 2853 if (sdkp->protection_type == 0) 2854 return; 2855 2856 res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT, 2857 SD_MAX_RETRIES, &data, &sshdr); 2858 2859 if (!scsi_status_is_good(res) || !data.header_length || 2860 data.length < 6) { 2861 sd_first_printk(KERN_WARNING, sdkp, 2862 "getting Control mode page failed, assume no ATO\n"); 2863 2864 if (scsi_sense_valid(&sshdr)) 2865 sd_print_sense_hdr(sdkp, &sshdr); 2866 2867 return; 2868 } 2869 2870 offset = data.header_length + data.block_descriptor_length; 2871 2872 if ((buffer[offset] & 0x3f) != 0x0a) { 2873 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n"); 2874 return; 2875 } 2876 2877 if ((buffer[offset + 5] & 0x80) == 0) 2878 return; 2879 2880 sdkp->ATO = 1; 2881 2882 return; 2883 } 2884 2885 /** 2886 * sd_read_block_limits - Query disk device for preferred I/O sizes. 2887 * @sdkp: disk to query 2888 */ 2889 static void sd_read_block_limits(struct scsi_disk *sdkp) 2890 { 2891 unsigned int sector_sz = sdkp->device->sector_size; 2892 const int vpd_len = 64; 2893 unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL); 2894 2895 if (!buffer || 2896 /* Block Limits VPD */ 2897 scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len)) 2898 goto out; 2899 2900 blk_queue_io_min(sdkp->disk->queue, 2901 get_unaligned_be16(&buffer[6]) * sector_sz); 2902 2903 sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]); 2904 sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]); 2905 2906 if (buffer[3] == 0x3c) { 2907 unsigned int lba_count, desc_count; 2908 2909 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]); 2910 2911 if (!sdkp->lbpme) 2912 goto out; 2913 2914 lba_count = get_unaligned_be32(&buffer[20]); 2915 desc_count = get_unaligned_be32(&buffer[24]); 2916 2917 if (lba_count && desc_count) 2918 sdkp->max_unmap_blocks = lba_count; 2919 2920 sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]); 2921 2922 if (buffer[32] & 0x80) 2923 sdkp->unmap_alignment = 2924 get_unaligned_be32(&buffer[32]) & ~(1 << 31); 2925 2926 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */ 2927 2928 if (sdkp->max_unmap_blocks) 2929 sd_config_discard(sdkp, SD_LBP_UNMAP); 2930 else 2931 sd_config_discard(sdkp, SD_LBP_WS16); 2932 2933 } else { /* LBP VPD page tells us what to use */ 2934 if (sdkp->lbpu && sdkp->max_unmap_blocks) 2935 sd_config_discard(sdkp, SD_LBP_UNMAP); 2936 else if (sdkp->lbpws) 2937 sd_config_discard(sdkp, SD_LBP_WS16); 2938 else if (sdkp->lbpws10) 2939 sd_config_discard(sdkp, SD_LBP_WS10); 2940 else 2941 sd_config_discard(sdkp, SD_LBP_DISABLE); 2942 } 2943 } 2944 2945 out: 2946 kfree(buffer); 2947 } 2948 2949 /** 2950 * sd_read_block_characteristics - Query block dev. characteristics 2951 * @sdkp: disk to query 2952 */ 2953 static void sd_read_block_characteristics(struct scsi_disk *sdkp) 2954 { 2955 struct request_queue *q = sdkp->disk->queue; 2956 unsigned char *buffer; 2957 u16 rot; 2958 const int vpd_len = 64; 2959 2960 buffer = kmalloc(vpd_len, GFP_KERNEL); 2961 2962 if (!buffer || 2963 /* Block Device Characteristics VPD */ 2964 scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len)) 2965 goto out; 2966 2967 rot = get_unaligned_be16(&buffer[4]); 2968 2969 if (rot == 1) { 2970 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 2971 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q); 2972 } 2973 2974 if (sdkp->device->type == TYPE_ZBC) { 2975 /* Host-managed */ 2976 q->limits.zoned = BLK_ZONED_HM; 2977 } else { 2978 sdkp->zoned = (buffer[8] >> 4) & 3; 2979 if (sdkp->zoned == 1) 2980 /* Host-aware */ 2981 q->limits.zoned = BLK_ZONED_HA; 2982 else 2983 /* 2984 * Treat drive-managed devices as 2985 * regular block devices. 2986 */ 2987 q->limits.zoned = BLK_ZONED_NONE; 2988 } 2989 if (blk_queue_is_zoned(q) && sdkp->first_scan) 2990 sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n", 2991 q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware"); 2992 2993 out: 2994 kfree(buffer); 2995 } 2996 2997 /** 2998 * sd_read_block_provisioning - Query provisioning VPD page 2999 * @sdkp: disk to query 3000 */ 3001 static void sd_read_block_provisioning(struct scsi_disk *sdkp) 3002 { 3003 unsigned char *buffer; 3004 const int vpd_len = 8; 3005 3006 if (sdkp->lbpme == 0) 3007 return; 3008 3009 buffer = kmalloc(vpd_len, GFP_KERNEL); 3010 3011 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len)) 3012 goto out; 3013 3014 sdkp->lbpvpd = 1; 3015 sdkp->lbpu = (buffer[5] >> 7) & 1; /* UNMAP */ 3016 sdkp->lbpws = (buffer[5] >> 6) & 1; /* WRITE SAME(16) with UNMAP */ 3017 sdkp->lbpws10 = (buffer[5] >> 5) & 1; /* WRITE SAME(10) with UNMAP */ 3018 3019 out: 3020 kfree(buffer); 3021 } 3022 3023 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer) 3024 { 3025 struct scsi_device *sdev = sdkp->device; 3026 3027 if (sdev->host->no_write_same) { 3028 sdev->no_write_same = 1; 3029 3030 return; 3031 } 3032 3033 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) { 3034 /* too large values might cause issues with arcmsr */ 3035 int vpd_buf_len = 64; 3036 3037 sdev->no_report_opcodes = 1; 3038 3039 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION 3040 * CODES is unsupported and the device has an ATA 3041 * Information VPD page (SAT). 3042 */ 3043 if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len)) 3044 sdev->no_write_same = 1; 3045 } 3046 3047 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1) 3048 sdkp->ws16 = 1; 3049 3050 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1) 3051 sdkp->ws10 = 1; 3052 } 3053 3054 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer) 3055 { 3056 struct scsi_device *sdev = sdkp->device; 3057 3058 if (!sdev->security_supported) 3059 return; 3060 3061 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3062 SECURITY_PROTOCOL_IN) == 1 && 3063 scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3064 SECURITY_PROTOCOL_OUT) == 1) 3065 sdkp->security = 1; 3066 } 3067 3068 /* 3069 * Determine the device's preferred I/O size for reads and writes 3070 * unless the reported value is unreasonably small, large, not a 3071 * multiple of the physical block size, or simply garbage. 3072 */ 3073 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp, 3074 unsigned int dev_max) 3075 { 3076 struct scsi_device *sdp = sdkp->device; 3077 unsigned int opt_xfer_bytes = 3078 logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 3079 3080 if (sdkp->opt_xfer_blocks > dev_max) { 3081 sd_first_printk(KERN_WARNING, sdkp, 3082 "Optimal transfer size %u logical blocks " \ 3083 "> dev_max (%u logical blocks)\n", 3084 sdkp->opt_xfer_blocks, dev_max); 3085 return false; 3086 } 3087 3088 if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) { 3089 sd_first_printk(KERN_WARNING, sdkp, 3090 "Optimal transfer size %u logical blocks " \ 3091 "> sd driver limit (%u logical blocks)\n", 3092 sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS); 3093 return false; 3094 } 3095 3096 if (opt_xfer_bytes < PAGE_SIZE) { 3097 sd_first_printk(KERN_WARNING, sdkp, 3098 "Optimal transfer size %u bytes < " \ 3099 "PAGE_SIZE (%u bytes)\n", 3100 opt_xfer_bytes, (unsigned int)PAGE_SIZE); 3101 return false; 3102 } 3103 3104 if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) { 3105 sd_first_printk(KERN_WARNING, sdkp, 3106 "Optimal transfer size %u bytes not a " \ 3107 "multiple of physical block size (%u bytes)\n", 3108 opt_xfer_bytes, sdkp->physical_block_size); 3109 return false; 3110 } 3111 3112 sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n", 3113 opt_xfer_bytes); 3114 return true; 3115 } 3116 3117 /** 3118 * sd_revalidate_disk - called the first time a new disk is seen, 3119 * performs disk spin up, read_capacity, etc. 3120 * @disk: struct gendisk we care about 3121 **/ 3122 static int sd_revalidate_disk(struct gendisk *disk) 3123 { 3124 struct scsi_disk *sdkp = scsi_disk(disk); 3125 struct scsi_device *sdp = sdkp->device; 3126 struct request_queue *q = sdkp->disk->queue; 3127 sector_t old_capacity = sdkp->capacity; 3128 unsigned char *buffer; 3129 unsigned int dev_max, rw_max; 3130 3131 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, 3132 "sd_revalidate_disk\n")); 3133 3134 /* 3135 * If the device is offline, don't try and read capacity or any 3136 * of the other niceties. 3137 */ 3138 if (!scsi_device_online(sdp)) 3139 goto out; 3140 3141 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL); 3142 if (!buffer) { 3143 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory " 3144 "allocation failure.\n"); 3145 goto out; 3146 } 3147 3148 sd_spinup_disk(sdkp); 3149 3150 /* 3151 * Without media there is no reason to ask; moreover, some devices 3152 * react badly if we do. 3153 */ 3154 if (sdkp->media_present) { 3155 sd_read_capacity(sdkp, buffer); 3156 3157 /* 3158 * set the default to rotational. All non-rotational devices 3159 * support the block characteristics VPD page, which will 3160 * cause this to be updated correctly and any device which 3161 * doesn't support it should be treated as rotational. 3162 */ 3163 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q); 3164 blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q); 3165 3166 if (scsi_device_supports_vpd(sdp)) { 3167 sd_read_block_provisioning(sdkp); 3168 sd_read_block_limits(sdkp); 3169 sd_read_block_characteristics(sdkp); 3170 sd_zbc_read_zones(sdkp, buffer); 3171 } 3172 3173 sd_print_capacity(sdkp, old_capacity); 3174 3175 sd_read_write_protect_flag(sdkp, buffer); 3176 sd_read_cache_type(sdkp, buffer); 3177 sd_read_app_tag_own(sdkp, buffer); 3178 sd_read_write_same(sdkp, buffer); 3179 sd_read_security(sdkp, buffer); 3180 } 3181 3182 /* 3183 * We now have all cache related info, determine how we deal 3184 * with flush requests. 3185 */ 3186 sd_set_flush_flag(sdkp); 3187 3188 /* Initial block count limit based on CDB TRANSFER LENGTH field size. */ 3189 dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS; 3190 3191 /* Some devices report a maximum block count for READ/WRITE requests. */ 3192 dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks); 3193 q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max); 3194 3195 if (sd_validate_opt_xfer_size(sdkp, dev_max)) { 3196 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 3197 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks); 3198 } else 3199 rw_max = min_not_zero(logical_to_sectors(sdp, dev_max), 3200 (sector_t)BLK_DEF_MAX_SECTORS); 3201 3202 /* Do not exceed controller limit */ 3203 rw_max = min(rw_max, queue_max_hw_sectors(q)); 3204 3205 /* 3206 * Only update max_sectors if previously unset or if the current value 3207 * exceeds the capabilities of the hardware. 3208 */ 3209 if (sdkp->first_scan || 3210 q->limits.max_sectors > q->limits.max_dev_sectors || 3211 q->limits.max_sectors > q->limits.max_hw_sectors) 3212 q->limits.max_sectors = rw_max; 3213 3214 sdkp->first_scan = 0; 3215 3216 set_capacity(disk, logical_to_sectors(sdp, sdkp->capacity)); 3217 sd_config_write_same(sdkp); 3218 kfree(buffer); 3219 3220 out: 3221 return 0; 3222 } 3223 3224 /** 3225 * sd_unlock_native_capacity - unlock native capacity 3226 * @disk: struct gendisk to set capacity for 3227 * 3228 * Block layer calls this function if it detects that partitions 3229 * on @disk reach beyond the end of the device. If the SCSI host 3230 * implements ->unlock_native_capacity() method, it's invoked to 3231 * give it a chance to adjust the device capacity. 3232 * 3233 * CONTEXT: 3234 * Defined by block layer. Might sleep. 3235 */ 3236 static void sd_unlock_native_capacity(struct gendisk *disk) 3237 { 3238 struct scsi_device *sdev = scsi_disk(disk)->device; 3239 3240 if (sdev->host->hostt->unlock_native_capacity) 3241 sdev->host->hostt->unlock_native_capacity(sdev); 3242 } 3243 3244 /** 3245 * sd_format_disk_name - format disk name 3246 * @prefix: name prefix - ie. "sd" for SCSI disks 3247 * @index: index of the disk to format name for 3248 * @buf: output buffer 3249 * @buflen: length of the output buffer 3250 * 3251 * SCSI disk names starts at sda. The 26th device is sdz and the 3252 * 27th is sdaa. The last one for two lettered suffix is sdzz 3253 * which is followed by sdaaa. 3254 * 3255 * This is basically 26 base counting with one extra 'nil' entry 3256 * at the beginning from the second digit on and can be 3257 * determined using similar method as 26 base conversion with the 3258 * index shifted -1 after each digit is computed. 3259 * 3260 * CONTEXT: 3261 * Don't care. 3262 * 3263 * RETURNS: 3264 * 0 on success, -errno on failure. 3265 */ 3266 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen) 3267 { 3268 const int base = 'z' - 'a' + 1; 3269 char *begin = buf + strlen(prefix); 3270 char *end = buf + buflen; 3271 char *p; 3272 int unit; 3273 3274 p = end - 1; 3275 *p = '\0'; 3276 unit = base; 3277 do { 3278 if (p == begin) 3279 return -EINVAL; 3280 *--p = 'a' + (index % unit); 3281 index = (index / unit) - 1; 3282 } while (index >= 0); 3283 3284 memmove(begin, p, end - p); 3285 memcpy(buf, prefix, strlen(prefix)); 3286 3287 return 0; 3288 } 3289 3290 /** 3291 * sd_probe - called during driver initialization and whenever a 3292 * new scsi device is attached to the system. It is called once 3293 * for each scsi device (not just disks) present. 3294 * @dev: pointer to device object 3295 * 3296 * Returns 0 if successful (or not interested in this scsi device 3297 * (e.g. scanner)); 1 when there is an error. 3298 * 3299 * Note: this function is invoked from the scsi mid-level. 3300 * This function sets up the mapping between a given 3301 * <host,channel,id,lun> (found in sdp) and new device name 3302 * (e.g. /dev/sda). More precisely it is the block device major 3303 * and minor number that is chosen here. 3304 * 3305 * Assume sd_probe is not re-entrant (for time being) 3306 * Also think about sd_probe() and sd_remove() running coincidentally. 3307 **/ 3308 static int sd_probe(struct device *dev) 3309 { 3310 struct scsi_device *sdp = to_scsi_device(dev); 3311 struct scsi_disk *sdkp; 3312 struct gendisk *gd; 3313 int index; 3314 int error; 3315 3316 scsi_autopm_get_device(sdp); 3317 error = -ENODEV; 3318 if (sdp->type != TYPE_DISK && 3319 sdp->type != TYPE_ZBC && 3320 sdp->type != TYPE_MOD && 3321 sdp->type != TYPE_RBC) 3322 goto out; 3323 3324 #ifndef CONFIG_BLK_DEV_ZONED 3325 if (sdp->type == TYPE_ZBC) 3326 goto out; 3327 #endif 3328 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp, 3329 "sd_probe\n")); 3330 3331 error = -ENOMEM; 3332 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL); 3333 if (!sdkp) 3334 goto out; 3335 3336 gd = alloc_disk(SD_MINORS); 3337 if (!gd) 3338 goto out_free; 3339 3340 index = ida_alloc(&sd_index_ida, GFP_KERNEL); 3341 if (index < 0) { 3342 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n"); 3343 goto out_put; 3344 } 3345 3346 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN); 3347 if (error) { 3348 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n"); 3349 goto out_free_index; 3350 } 3351 3352 sdkp->device = sdp; 3353 sdkp->driver = &sd_template; 3354 sdkp->disk = gd; 3355 sdkp->index = index; 3356 atomic_set(&sdkp->openers, 0); 3357 atomic_set(&sdkp->device->ioerr_cnt, 0); 3358 3359 if (!sdp->request_queue->rq_timeout) { 3360 if (sdp->type != TYPE_MOD) 3361 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT); 3362 else 3363 blk_queue_rq_timeout(sdp->request_queue, 3364 SD_MOD_TIMEOUT); 3365 } 3366 3367 device_initialize(&sdkp->dev); 3368 sdkp->dev.parent = dev; 3369 sdkp->dev.class = &sd_disk_class; 3370 dev_set_name(&sdkp->dev, "%s", dev_name(dev)); 3371 3372 error = device_add(&sdkp->dev); 3373 if (error) 3374 goto out_free_index; 3375 3376 get_device(dev); 3377 dev_set_drvdata(dev, sdkp); 3378 3379 gd->major = sd_major((index & 0xf0) >> 4); 3380 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00); 3381 3382 gd->fops = &sd_fops; 3383 gd->private_data = &sdkp->driver; 3384 gd->queue = sdkp->device->request_queue; 3385 3386 /* defaults, until the device tells us otherwise */ 3387 sdp->sector_size = 512; 3388 sdkp->capacity = 0; 3389 sdkp->media_present = 1; 3390 sdkp->write_prot = 0; 3391 sdkp->cache_override = 0; 3392 sdkp->WCE = 0; 3393 sdkp->RCD = 0; 3394 sdkp->ATO = 0; 3395 sdkp->first_scan = 1; 3396 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS; 3397 3398 sd_revalidate_disk(gd); 3399 3400 gd->flags = GENHD_FL_EXT_DEVT; 3401 if (sdp->removable) { 3402 gd->flags |= GENHD_FL_REMOVABLE; 3403 gd->events |= DISK_EVENT_MEDIA_CHANGE; 3404 } 3405 3406 blk_pm_runtime_init(sdp->request_queue, dev); 3407 device_add_disk(dev, gd, NULL); 3408 if (sdkp->capacity) 3409 sd_dif_config_host(sdkp); 3410 3411 sd_revalidate_disk(gd); 3412 3413 if (sdkp->security) { 3414 sdkp->opal_dev = init_opal_dev(sdp, &sd_sec_submit); 3415 if (sdkp->opal_dev) 3416 sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n"); 3417 } 3418 3419 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n", 3420 sdp->removable ? "removable " : ""); 3421 scsi_autopm_put_device(sdp); 3422 3423 return 0; 3424 3425 out_free_index: 3426 ida_free(&sd_index_ida, index); 3427 out_put: 3428 put_disk(gd); 3429 out_free: 3430 kfree(sdkp); 3431 out: 3432 scsi_autopm_put_device(sdp); 3433 return error; 3434 } 3435 3436 /** 3437 * sd_remove - called whenever a scsi disk (previously recognized by 3438 * sd_probe) is detached from the system. It is called (potentially 3439 * multiple times) during sd module unload. 3440 * @dev: pointer to device object 3441 * 3442 * Note: this function is invoked from the scsi mid-level. 3443 * This function potentially frees up a device name (e.g. /dev/sdc) 3444 * that could be re-used by a subsequent sd_probe(). 3445 * This function is not called when the built-in sd driver is "exit-ed". 3446 **/ 3447 static int sd_remove(struct device *dev) 3448 { 3449 struct scsi_disk *sdkp; 3450 dev_t devt; 3451 3452 sdkp = dev_get_drvdata(dev); 3453 devt = disk_devt(sdkp->disk); 3454 scsi_autopm_get_device(sdkp->device); 3455 3456 device_del(&sdkp->dev); 3457 del_gendisk(sdkp->disk); 3458 sd_shutdown(dev); 3459 3460 free_opal_dev(sdkp->opal_dev); 3461 3462 blk_register_region(devt, SD_MINORS, NULL, 3463 sd_default_probe, NULL, NULL); 3464 3465 mutex_lock(&sd_ref_mutex); 3466 dev_set_drvdata(dev, NULL); 3467 put_device(&sdkp->dev); 3468 mutex_unlock(&sd_ref_mutex); 3469 3470 return 0; 3471 } 3472 3473 /** 3474 * scsi_disk_release - Called to free the scsi_disk structure 3475 * @dev: pointer to embedded class device 3476 * 3477 * sd_ref_mutex must be held entering this routine. Because it is 3478 * called on last put, you should always use the scsi_disk_get() 3479 * scsi_disk_put() helpers which manipulate the semaphore directly 3480 * and never do a direct put_device. 3481 **/ 3482 static void scsi_disk_release(struct device *dev) 3483 { 3484 struct scsi_disk *sdkp = to_scsi_disk(dev); 3485 struct gendisk *disk = sdkp->disk; 3486 3487 ida_free(&sd_index_ida, sdkp->index); 3488 3489 disk->private_data = NULL; 3490 put_disk(disk); 3491 put_device(&sdkp->device->sdev_gendev); 3492 3493 kfree(sdkp); 3494 } 3495 3496 static int sd_start_stop_device(struct scsi_disk *sdkp, int start) 3497 { 3498 unsigned char cmd[6] = { START_STOP }; /* START_VALID */ 3499 struct scsi_sense_hdr sshdr; 3500 struct scsi_device *sdp = sdkp->device; 3501 int res; 3502 3503 if (start) 3504 cmd[4] |= 1; /* START */ 3505 3506 if (sdp->start_stop_pwr_cond) 3507 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */ 3508 3509 if (!scsi_device_online(sdp)) 3510 return -ENODEV; 3511 3512 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr, 3513 SD_TIMEOUT, SD_MAX_RETRIES, 0, RQF_PM, NULL); 3514 if (res) { 3515 sd_print_result(sdkp, "Start/Stop Unit failed", res); 3516 if (driver_byte(res) == DRIVER_SENSE) 3517 sd_print_sense_hdr(sdkp, &sshdr); 3518 if (scsi_sense_valid(&sshdr) && 3519 /* 0x3a is medium not present */ 3520 sshdr.asc == 0x3a) 3521 res = 0; 3522 } 3523 3524 /* SCSI error codes must not go to the generic layer */ 3525 if (res) 3526 return -EIO; 3527 3528 return 0; 3529 } 3530 3531 /* 3532 * Send a SYNCHRONIZE CACHE instruction down to the device through 3533 * the normal SCSI command structure. Wait for the command to 3534 * complete. 3535 */ 3536 static void sd_shutdown(struct device *dev) 3537 { 3538 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3539 3540 if (!sdkp) 3541 return; /* this can happen */ 3542 3543 if (pm_runtime_suspended(dev)) 3544 return; 3545 3546 if (sdkp->WCE && sdkp->media_present) { 3547 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3548 sd_sync_cache(sdkp, NULL); 3549 } 3550 3551 if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) { 3552 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3553 sd_start_stop_device(sdkp, 0); 3554 } 3555 } 3556 3557 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors) 3558 { 3559 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3560 struct scsi_sense_hdr sshdr; 3561 int ret = 0; 3562 3563 if (!sdkp) /* E.g.: runtime suspend following sd_remove() */ 3564 return 0; 3565 3566 if (sdkp->WCE && sdkp->media_present) { 3567 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3568 ret = sd_sync_cache(sdkp, &sshdr); 3569 3570 if (ret) { 3571 /* ignore OFFLINE device */ 3572 if (ret == -ENODEV) 3573 return 0; 3574 3575 if (!scsi_sense_valid(&sshdr) || 3576 sshdr.sense_key != ILLEGAL_REQUEST) 3577 return ret; 3578 3579 /* 3580 * sshdr.sense_key == ILLEGAL_REQUEST means this drive 3581 * doesn't support sync. There's not much to do and 3582 * suspend shouldn't fail. 3583 */ 3584 ret = 0; 3585 } 3586 } 3587 3588 if (sdkp->device->manage_start_stop) { 3589 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3590 /* an error is not worth aborting a system sleep */ 3591 ret = sd_start_stop_device(sdkp, 0); 3592 if (ignore_stop_errors) 3593 ret = 0; 3594 } 3595 3596 return ret; 3597 } 3598 3599 static int sd_suspend_system(struct device *dev) 3600 { 3601 return sd_suspend_common(dev, true); 3602 } 3603 3604 static int sd_suspend_runtime(struct device *dev) 3605 { 3606 return sd_suspend_common(dev, false); 3607 } 3608 3609 static int sd_resume(struct device *dev) 3610 { 3611 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3612 int ret; 3613 3614 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */ 3615 return 0; 3616 3617 if (!sdkp->device->manage_start_stop) 3618 return 0; 3619 3620 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n"); 3621 ret = sd_start_stop_device(sdkp, 1); 3622 if (!ret) 3623 opal_unlock_from_suspend(sdkp->opal_dev); 3624 return ret; 3625 } 3626 3627 /** 3628 * init_sd - entry point for this driver (both when built in or when 3629 * a module). 3630 * 3631 * Note: this function registers this driver with the scsi mid-level. 3632 **/ 3633 static int __init init_sd(void) 3634 { 3635 int majors = 0, i, err; 3636 3637 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n")); 3638 3639 for (i = 0; i < SD_MAJORS; i++) { 3640 if (register_blkdev(sd_major(i), "sd") != 0) 3641 continue; 3642 majors++; 3643 blk_register_region(sd_major(i), SD_MINORS, NULL, 3644 sd_default_probe, NULL, NULL); 3645 } 3646 3647 if (!majors) 3648 return -ENODEV; 3649 3650 err = class_register(&sd_disk_class); 3651 if (err) 3652 goto err_out; 3653 3654 sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE, 3655 0, 0, NULL); 3656 if (!sd_cdb_cache) { 3657 printk(KERN_ERR "sd: can't init extended cdb cache\n"); 3658 err = -ENOMEM; 3659 goto err_out_class; 3660 } 3661 3662 sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache); 3663 if (!sd_cdb_pool) { 3664 printk(KERN_ERR "sd: can't init extended cdb pool\n"); 3665 err = -ENOMEM; 3666 goto err_out_cache; 3667 } 3668 3669 sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0); 3670 if (!sd_page_pool) { 3671 printk(KERN_ERR "sd: can't init discard page pool\n"); 3672 err = -ENOMEM; 3673 goto err_out_ppool; 3674 } 3675 3676 err = scsi_register_driver(&sd_template.gendrv); 3677 if (err) 3678 goto err_out_driver; 3679 3680 return 0; 3681 3682 err_out_driver: 3683 mempool_destroy(sd_page_pool); 3684 3685 err_out_ppool: 3686 mempool_destroy(sd_cdb_pool); 3687 3688 err_out_cache: 3689 kmem_cache_destroy(sd_cdb_cache); 3690 3691 err_out_class: 3692 class_unregister(&sd_disk_class); 3693 err_out: 3694 for (i = 0; i < SD_MAJORS; i++) 3695 unregister_blkdev(sd_major(i), "sd"); 3696 return err; 3697 } 3698 3699 /** 3700 * exit_sd - exit point for this driver (when it is a module). 3701 * 3702 * Note: this function unregisters this driver from the scsi mid-level. 3703 **/ 3704 static void __exit exit_sd(void) 3705 { 3706 int i; 3707 3708 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n")); 3709 3710 scsi_unregister_driver(&sd_template.gendrv); 3711 mempool_destroy(sd_cdb_pool); 3712 mempool_destroy(sd_page_pool); 3713 kmem_cache_destroy(sd_cdb_cache); 3714 3715 class_unregister(&sd_disk_class); 3716 3717 for (i = 0; i < SD_MAJORS; i++) { 3718 blk_unregister_region(sd_major(i), SD_MINORS); 3719 unregister_blkdev(sd_major(i), "sd"); 3720 } 3721 } 3722 3723 module_init(init_sd); 3724 module_exit(exit_sd); 3725 3726 static void sd_print_sense_hdr(struct scsi_disk *sdkp, 3727 struct scsi_sense_hdr *sshdr) 3728 { 3729 scsi_print_sense_hdr(sdkp->device, 3730 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr); 3731 } 3732 3733 static void sd_print_result(const struct scsi_disk *sdkp, const char *msg, 3734 int result) 3735 { 3736 const char *hb_string = scsi_hostbyte_string(result); 3737 const char *db_string = scsi_driverbyte_string(result); 3738 3739 if (hb_string || db_string) 3740 sd_printk(KERN_INFO, sdkp, 3741 "%s: Result: hostbyte=%s driverbyte=%s\n", msg, 3742 hb_string ? hb_string : "invalid", 3743 db_string ? db_string : "invalid"); 3744 else 3745 sd_printk(KERN_INFO, sdkp, 3746 "%s: Result: hostbyte=0x%02x driverbyte=0x%02x\n", 3747 msg, host_byte(result), driver_byte(result)); 3748 } 3749 3750