1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * sd.c Copyright (C) 1992 Drew Eckhardt 4 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale 5 * 6 * Linux scsi disk driver 7 * Initial versions: Drew Eckhardt 8 * Subsequent revisions: Eric Youngdale 9 * Modification history: 10 * - Drew Eckhardt <drew@colorado.edu> original 11 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 12 * outstanding request, and other enhancements. 13 * Support loadable low-level scsi drivers. 14 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 15 * eight major numbers. 16 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs. 17 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 18 * sd_init and cleanups. 19 * - Alex Davis <letmein@erols.com> Fix problem where partition info 20 * not being read in sd_open. Fix problem where removable media 21 * could be ejected after sd_open. 22 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x 23 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 24 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 25 * Support 32k/1M disks. 26 * 27 * Logging policy (needs CONFIG_SCSI_LOGGING defined): 28 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2 29 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1 30 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1 31 * - entering other commands: SCSI_LOG_HLQUEUE level 3 32 * Note: when the logging level is set by the user, it must be greater 33 * than the level indicated above to trigger output. 34 */ 35 36 #include <linux/module.h> 37 #include <linux/fs.h> 38 #include <linux/kernel.h> 39 #include <linux/mm.h> 40 #include <linux/bio.h> 41 #include <linux/hdreg.h> 42 #include <linux/errno.h> 43 #include <linux/idr.h> 44 #include <linux/interrupt.h> 45 #include <linux/init.h> 46 #include <linux/blkdev.h> 47 #include <linux/blkpg.h> 48 #include <linux/blk-pm.h> 49 #include <linux/delay.h> 50 #include <linux/major.h> 51 #include <linux/mutex.h> 52 #include <linux/string_helpers.h> 53 #include <linux/slab.h> 54 #include <linux/sed-opal.h> 55 #include <linux/pm_runtime.h> 56 #include <linux/pr.h> 57 #include <linux/t10-pi.h> 58 #include <linux/uaccess.h> 59 #include <asm/unaligned.h> 60 61 #include <scsi/scsi.h> 62 #include <scsi/scsi_cmnd.h> 63 #include <scsi/scsi_dbg.h> 64 #include <scsi/scsi_device.h> 65 #include <scsi/scsi_driver.h> 66 #include <scsi/scsi_eh.h> 67 #include <scsi/scsi_host.h> 68 #include <scsi/scsi_ioctl.h> 69 #include <scsi/scsicam.h> 70 71 #include "sd.h" 72 #include "scsi_priv.h" 73 #include "scsi_logging.h" 74 75 MODULE_AUTHOR("Eric Youngdale"); 76 MODULE_DESCRIPTION("SCSI disk (sd) driver"); 77 MODULE_LICENSE("GPL"); 78 79 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR); 80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR); 81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR); 82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR); 83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR); 84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR); 85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR); 86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR); 87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR); 88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR); 89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR); 90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR); 91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR); 92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR); 93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR); 94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR); 95 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK); 96 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD); 97 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC); 98 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC); 99 100 #define SD_MINORS 16 101 102 static void sd_config_discard(struct scsi_disk *, unsigned int); 103 static void sd_config_write_same(struct scsi_disk *); 104 static int sd_revalidate_disk(struct gendisk *); 105 static void sd_unlock_native_capacity(struct gendisk *disk); 106 static int sd_probe(struct device *); 107 static int sd_remove(struct device *); 108 static void sd_shutdown(struct device *); 109 static int sd_suspend_system(struct device *); 110 static int sd_suspend_runtime(struct device *); 111 static int sd_resume_system(struct device *); 112 static int sd_resume_runtime(struct device *); 113 static void sd_rescan(struct device *); 114 static blk_status_t sd_init_command(struct scsi_cmnd *SCpnt); 115 static void sd_uninit_command(struct scsi_cmnd *SCpnt); 116 static int sd_done(struct scsi_cmnd *); 117 static void sd_eh_reset(struct scsi_cmnd *); 118 static int sd_eh_action(struct scsi_cmnd *, int); 119 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer); 120 static void scsi_disk_release(struct device *cdev); 121 122 static DEFINE_IDA(sd_index_ida); 123 124 /* This semaphore is used to mediate the 0->1 reference get in the 125 * face of object destruction (i.e. we can't allow a get on an 126 * object after last put) */ 127 static DEFINE_MUTEX(sd_ref_mutex); 128 129 static struct kmem_cache *sd_cdb_cache; 130 static mempool_t *sd_cdb_pool; 131 static mempool_t *sd_page_pool; 132 static struct lock_class_key sd_bio_compl_lkclass; 133 134 static const char *sd_cache_types[] = { 135 "write through", "none", "write back", 136 "write back, no read (daft)" 137 }; 138 139 static void sd_set_flush_flag(struct scsi_disk *sdkp) 140 { 141 bool wc = false, fua = false; 142 143 if (sdkp->WCE) { 144 wc = true; 145 if (sdkp->DPOFUA) 146 fua = true; 147 } 148 149 blk_queue_write_cache(sdkp->disk->queue, wc, fua); 150 } 151 152 static ssize_t 153 cache_type_store(struct device *dev, struct device_attribute *attr, 154 const char *buf, size_t count) 155 { 156 int ct, rcd, wce, sp; 157 struct scsi_disk *sdkp = to_scsi_disk(dev); 158 struct scsi_device *sdp = sdkp->device; 159 char buffer[64]; 160 char *buffer_data; 161 struct scsi_mode_data data; 162 struct scsi_sense_hdr sshdr; 163 static const char temp[] = "temporary "; 164 int len; 165 166 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 167 /* no cache control on RBC devices; theoretically they 168 * can do it, but there's probably so many exceptions 169 * it's not worth the risk */ 170 return -EINVAL; 171 172 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) { 173 buf += sizeof(temp) - 1; 174 sdkp->cache_override = 1; 175 } else { 176 sdkp->cache_override = 0; 177 } 178 179 ct = sysfs_match_string(sd_cache_types, buf); 180 if (ct < 0) 181 return -EINVAL; 182 183 rcd = ct & 0x01 ? 1 : 0; 184 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0; 185 186 if (sdkp->cache_override) { 187 sdkp->WCE = wce; 188 sdkp->RCD = rcd; 189 sd_set_flush_flag(sdkp); 190 return count; 191 } 192 193 if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT, 194 sdkp->max_retries, &data, NULL)) 195 return -EINVAL; 196 len = min_t(size_t, sizeof(buffer), data.length - data.header_length - 197 data.block_descriptor_length); 198 buffer_data = buffer + data.header_length + 199 data.block_descriptor_length; 200 buffer_data[2] &= ~0x05; 201 buffer_data[2] |= wce << 2 | rcd; 202 sp = buffer_data[0] & 0x80 ? 1 : 0; 203 buffer_data[0] &= ~0x80; 204 205 /* 206 * Ensure WP, DPOFUA, and RESERVED fields are cleared in 207 * received mode parameter buffer before doing MODE SELECT. 208 */ 209 data.device_specific = 0; 210 211 if (scsi_mode_select(sdp, 1, sp, buffer_data, len, SD_TIMEOUT, 212 sdkp->max_retries, &data, &sshdr)) { 213 if (scsi_sense_valid(&sshdr)) 214 sd_print_sense_hdr(sdkp, &sshdr); 215 return -EINVAL; 216 } 217 sd_revalidate_disk(sdkp->disk); 218 return count; 219 } 220 221 static ssize_t 222 manage_start_stop_show(struct device *dev, struct device_attribute *attr, 223 char *buf) 224 { 225 struct scsi_disk *sdkp = to_scsi_disk(dev); 226 struct scsi_device *sdp = sdkp->device; 227 228 return sprintf(buf, "%u\n", sdp->manage_start_stop); 229 } 230 231 static ssize_t 232 manage_start_stop_store(struct device *dev, struct device_attribute *attr, 233 const char *buf, size_t count) 234 { 235 struct scsi_disk *sdkp = to_scsi_disk(dev); 236 struct scsi_device *sdp = sdkp->device; 237 bool v; 238 239 if (!capable(CAP_SYS_ADMIN)) 240 return -EACCES; 241 242 if (kstrtobool(buf, &v)) 243 return -EINVAL; 244 245 sdp->manage_start_stop = v; 246 247 return count; 248 } 249 static DEVICE_ATTR_RW(manage_start_stop); 250 251 static ssize_t 252 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf) 253 { 254 struct scsi_disk *sdkp = to_scsi_disk(dev); 255 256 return sprintf(buf, "%u\n", sdkp->device->allow_restart); 257 } 258 259 static ssize_t 260 allow_restart_store(struct device *dev, struct device_attribute *attr, 261 const char *buf, size_t count) 262 { 263 bool v; 264 struct scsi_disk *sdkp = to_scsi_disk(dev); 265 struct scsi_device *sdp = sdkp->device; 266 267 if (!capable(CAP_SYS_ADMIN)) 268 return -EACCES; 269 270 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 271 return -EINVAL; 272 273 if (kstrtobool(buf, &v)) 274 return -EINVAL; 275 276 sdp->allow_restart = v; 277 278 return count; 279 } 280 static DEVICE_ATTR_RW(allow_restart); 281 282 static ssize_t 283 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf) 284 { 285 struct scsi_disk *sdkp = to_scsi_disk(dev); 286 int ct = sdkp->RCD + 2*sdkp->WCE; 287 288 return sprintf(buf, "%s\n", sd_cache_types[ct]); 289 } 290 static DEVICE_ATTR_RW(cache_type); 291 292 static ssize_t 293 FUA_show(struct device *dev, struct device_attribute *attr, char *buf) 294 { 295 struct scsi_disk *sdkp = to_scsi_disk(dev); 296 297 return sprintf(buf, "%u\n", sdkp->DPOFUA); 298 } 299 static DEVICE_ATTR_RO(FUA); 300 301 static ssize_t 302 protection_type_show(struct device *dev, struct device_attribute *attr, 303 char *buf) 304 { 305 struct scsi_disk *sdkp = to_scsi_disk(dev); 306 307 return sprintf(buf, "%u\n", sdkp->protection_type); 308 } 309 310 static ssize_t 311 protection_type_store(struct device *dev, struct device_attribute *attr, 312 const char *buf, size_t count) 313 { 314 struct scsi_disk *sdkp = to_scsi_disk(dev); 315 unsigned int val; 316 int err; 317 318 if (!capable(CAP_SYS_ADMIN)) 319 return -EACCES; 320 321 err = kstrtouint(buf, 10, &val); 322 323 if (err) 324 return err; 325 326 if (val <= T10_PI_TYPE3_PROTECTION) 327 sdkp->protection_type = val; 328 329 return count; 330 } 331 static DEVICE_ATTR_RW(protection_type); 332 333 static ssize_t 334 protection_mode_show(struct device *dev, struct device_attribute *attr, 335 char *buf) 336 { 337 struct scsi_disk *sdkp = to_scsi_disk(dev); 338 struct scsi_device *sdp = sdkp->device; 339 unsigned int dif, dix; 340 341 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type); 342 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type); 343 344 if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) { 345 dif = 0; 346 dix = 1; 347 } 348 349 if (!dif && !dix) 350 return sprintf(buf, "none\n"); 351 352 return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif); 353 } 354 static DEVICE_ATTR_RO(protection_mode); 355 356 static ssize_t 357 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf) 358 { 359 struct scsi_disk *sdkp = to_scsi_disk(dev); 360 361 return sprintf(buf, "%u\n", sdkp->ATO); 362 } 363 static DEVICE_ATTR_RO(app_tag_own); 364 365 static ssize_t 366 thin_provisioning_show(struct device *dev, struct device_attribute *attr, 367 char *buf) 368 { 369 struct scsi_disk *sdkp = to_scsi_disk(dev); 370 371 return sprintf(buf, "%u\n", sdkp->lbpme); 372 } 373 static DEVICE_ATTR_RO(thin_provisioning); 374 375 /* sysfs_match_string() requires dense arrays */ 376 static const char *lbp_mode[] = { 377 [SD_LBP_FULL] = "full", 378 [SD_LBP_UNMAP] = "unmap", 379 [SD_LBP_WS16] = "writesame_16", 380 [SD_LBP_WS10] = "writesame_10", 381 [SD_LBP_ZERO] = "writesame_zero", 382 [SD_LBP_DISABLE] = "disabled", 383 }; 384 385 static ssize_t 386 provisioning_mode_show(struct device *dev, struct device_attribute *attr, 387 char *buf) 388 { 389 struct scsi_disk *sdkp = to_scsi_disk(dev); 390 391 return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]); 392 } 393 394 static ssize_t 395 provisioning_mode_store(struct device *dev, struct device_attribute *attr, 396 const char *buf, size_t count) 397 { 398 struct scsi_disk *sdkp = to_scsi_disk(dev); 399 struct scsi_device *sdp = sdkp->device; 400 int mode; 401 402 if (!capable(CAP_SYS_ADMIN)) 403 return -EACCES; 404 405 if (sd_is_zoned(sdkp)) { 406 sd_config_discard(sdkp, SD_LBP_DISABLE); 407 return count; 408 } 409 410 if (sdp->type != TYPE_DISK) 411 return -EINVAL; 412 413 mode = sysfs_match_string(lbp_mode, buf); 414 if (mode < 0) 415 return -EINVAL; 416 417 sd_config_discard(sdkp, mode); 418 419 return count; 420 } 421 static DEVICE_ATTR_RW(provisioning_mode); 422 423 /* sysfs_match_string() requires dense arrays */ 424 static const char *zeroing_mode[] = { 425 [SD_ZERO_WRITE] = "write", 426 [SD_ZERO_WS] = "writesame", 427 [SD_ZERO_WS16_UNMAP] = "writesame_16_unmap", 428 [SD_ZERO_WS10_UNMAP] = "writesame_10_unmap", 429 }; 430 431 static ssize_t 432 zeroing_mode_show(struct device *dev, struct device_attribute *attr, 433 char *buf) 434 { 435 struct scsi_disk *sdkp = to_scsi_disk(dev); 436 437 return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]); 438 } 439 440 static ssize_t 441 zeroing_mode_store(struct device *dev, struct device_attribute *attr, 442 const char *buf, size_t count) 443 { 444 struct scsi_disk *sdkp = to_scsi_disk(dev); 445 int mode; 446 447 if (!capable(CAP_SYS_ADMIN)) 448 return -EACCES; 449 450 mode = sysfs_match_string(zeroing_mode, buf); 451 if (mode < 0) 452 return -EINVAL; 453 454 sdkp->zeroing_mode = mode; 455 456 return count; 457 } 458 static DEVICE_ATTR_RW(zeroing_mode); 459 460 static ssize_t 461 max_medium_access_timeouts_show(struct device *dev, 462 struct device_attribute *attr, char *buf) 463 { 464 struct scsi_disk *sdkp = to_scsi_disk(dev); 465 466 return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts); 467 } 468 469 static ssize_t 470 max_medium_access_timeouts_store(struct device *dev, 471 struct device_attribute *attr, const char *buf, 472 size_t count) 473 { 474 struct scsi_disk *sdkp = to_scsi_disk(dev); 475 int err; 476 477 if (!capable(CAP_SYS_ADMIN)) 478 return -EACCES; 479 480 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts); 481 482 return err ? err : count; 483 } 484 static DEVICE_ATTR_RW(max_medium_access_timeouts); 485 486 static ssize_t 487 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr, 488 char *buf) 489 { 490 struct scsi_disk *sdkp = to_scsi_disk(dev); 491 492 return sprintf(buf, "%u\n", sdkp->max_ws_blocks); 493 } 494 495 static ssize_t 496 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr, 497 const char *buf, size_t count) 498 { 499 struct scsi_disk *sdkp = to_scsi_disk(dev); 500 struct scsi_device *sdp = sdkp->device; 501 unsigned long max; 502 int err; 503 504 if (!capable(CAP_SYS_ADMIN)) 505 return -EACCES; 506 507 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 508 return -EINVAL; 509 510 err = kstrtoul(buf, 10, &max); 511 512 if (err) 513 return err; 514 515 if (max == 0) 516 sdp->no_write_same = 1; 517 else if (max <= SD_MAX_WS16_BLOCKS) { 518 sdp->no_write_same = 0; 519 sdkp->max_ws_blocks = max; 520 } 521 522 sd_config_write_same(sdkp); 523 524 return count; 525 } 526 static DEVICE_ATTR_RW(max_write_same_blocks); 527 528 static ssize_t 529 zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf) 530 { 531 struct scsi_disk *sdkp = to_scsi_disk(dev); 532 533 if (sdkp->device->type == TYPE_ZBC) 534 return sprintf(buf, "host-managed\n"); 535 if (sdkp->zoned == 1) 536 return sprintf(buf, "host-aware\n"); 537 if (sdkp->zoned == 2) 538 return sprintf(buf, "drive-managed\n"); 539 return sprintf(buf, "none\n"); 540 } 541 static DEVICE_ATTR_RO(zoned_cap); 542 543 static ssize_t 544 max_retries_store(struct device *dev, struct device_attribute *attr, 545 const char *buf, size_t count) 546 { 547 struct scsi_disk *sdkp = to_scsi_disk(dev); 548 struct scsi_device *sdev = sdkp->device; 549 int retries, err; 550 551 err = kstrtoint(buf, 10, &retries); 552 if (err) 553 return err; 554 555 if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) { 556 sdkp->max_retries = retries; 557 return count; 558 } 559 560 sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n", 561 SD_MAX_RETRIES); 562 return -EINVAL; 563 } 564 565 static ssize_t 566 max_retries_show(struct device *dev, struct device_attribute *attr, 567 char *buf) 568 { 569 struct scsi_disk *sdkp = to_scsi_disk(dev); 570 571 return sprintf(buf, "%d\n", sdkp->max_retries); 572 } 573 574 static DEVICE_ATTR_RW(max_retries); 575 576 static struct attribute *sd_disk_attrs[] = { 577 &dev_attr_cache_type.attr, 578 &dev_attr_FUA.attr, 579 &dev_attr_allow_restart.attr, 580 &dev_attr_manage_start_stop.attr, 581 &dev_attr_protection_type.attr, 582 &dev_attr_protection_mode.attr, 583 &dev_attr_app_tag_own.attr, 584 &dev_attr_thin_provisioning.attr, 585 &dev_attr_provisioning_mode.attr, 586 &dev_attr_zeroing_mode.attr, 587 &dev_attr_max_write_same_blocks.attr, 588 &dev_attr_max_medium_access_timeouts.attr, 589 &dev_attr_zoned_cap.attr, 590 &dev_attr_max_retries.attr, 591 NULL, 592 }; 593 ATTRIBUTE_GROUPS(sd_disk); 594 595 static struct class sd_disk_class = { 596 .name = "scsi_disk", 597 .owner = THIS_MODULE, 598 .dev_release = scsi_disk_release, 599 .dev_groups = sd_disk_groups, 600 }; 601 602 static const struct dev_pm_ops sd_pm_ops = { 603 .suspend = sd_suspend_system, 604 .resume = sd_resume_system, 605 .poweroff = sd_suspend_system, 606 .restore = sd_resume_system, 607 .runtime_suspend = sd_suspend_runtime, 608 .runtime_resume = sd_resume_runtime, 609 }; 610 611 static struct scsi_driver sd_template = { 612 .gendrv = { 613 .name = "sd", 614 .owner = THIS_MODULE, 615 .probe = sd_probe, 616 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 617 .remove = sd_remove, 618 .shutdown = sd_shutdown, 619 .pm = &sd_pm_ops, 620 }, 621 .rescan = sd_rescan, 622 .init_command = sd_init_command, 623 .uninit_command = sd_uninit_command, 624 .done = sd_done, 625 .eh_action = sd_eh_action, 626 .eh_reset = sd_eh_reset, 627 }; 628 629 /* 630 * Don't request a new module, as that could deadlock in multipath 631 * environment. 632 */ 633 static void sd_default_probe(dev_t devt) 634 { 635 } 636 637 /* 638 * Device no to disk mapping: 639 * 640 * major disc2 disc p1 641 * |............|.............|....|....| <- dev_t 642 * 31 20 19 8 7 4 3 0 643 * 644 * Inside a major, we have 16k disks, however mapped non- 645 * contiguously. The first 16 disks are for major0, the next 646 * ones with major1, ... Disk 256 is for major0 again, disk 272 647 * for major1, ... 648 * As we stay compatible with our numbering scheme, we can reuse 649 * the well-know SCSI majors 8, 65--71, 136--143. 650 */ 651 static int sd_major(int major_idx) 652 { 653 switch (major_idx) { 654 case 0: 655 return SCSI_DISK0_MAJOR; 656 case 1 ... 7: 657 return SCSI_DISK1_MAJOR + major_idx - 1; 658 case 8 ... 15: 659 return SCSI_DISK8_MAJOR + major_idx - 8; 660 default: 661 BUG(); 662 return 0; /* shut up gcc */ 663 } 664 } 665 666 static struct scsi_disk *scsi_disk_get(struct gendisk *disk) 667 { 668 struct scsi_disk *sdkp = NULL; 669 670 mutex_lock(&sd_ref_mutex); 671 672 if (disk->private_data) { 673 sdkp = scsi_disk(disk); 674 if (scsi_device_get(sdkp->device) == 0) 675 get_device(&sdkp->dev); 676 else 677 sdkp = NULL; 678 } 679 mutex_unlock(&sd_ref_mutex); 680 return sdkp; 681 } 682 683 static void scsi_disk_put(struct scsi_disk *sdkp) 684 { 685 struct scsi_device *sdev = sdkp->device; 686 687 mutex_lock(&sd_ref_mutex); 688 put_device(&sdkp->dev); 689 scsi_device_put(sdev); 690 mutex_unlock(&sd_ref_mutex); 691 } 692 693 #ifdef CONFIG_BLK_SED_OPAL 694 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, 695 size_t len, bool send) 696 { 697 struct scsi_disk *sdkp = data; 698 struct scsi_device *sdev = sdkp->device; 699 u8 cdb[12] = { 0, }; 700 int ret; 701 702 cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN; 703 cdb[1] = secp; 704 put_unaligned_be16(spsp, &cdb[2]); 705 put_unaligned_be32(len, &cdb[6]); 706 707 ret = scsi_execute(sdev, cdb, send ? DMA_TO_DEVICE : DMA_FROM_DEVICE, 708 buffer, len, NULL, NULL, SD_TIMEOUT, sdkp->max_retries, 0, 709 RQF_PM, NULL); 710 return ret <= 0 ? ret : -EIO; 711 } 712 #endif /* CONFIG_BLK_SED_OPAL */ 713 714 /* 715 * Look up the DIX operation based on whether the command is read or 716 * write and whether dix and dif are enabled. 717 */ 718 static unsigned int sd_prot_op(bool write, bool dix, bool dif) 719 { 720 /* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */ 721 static const unsigned int ops[] = { /* wrt dix dif */ 722 SCSI_PROT_NORMAL, /* 0 0 0 */ 723 SCSI_PROT_READ_STRIP, /* 0 0 1 */ 724 SCSI_PROT_READ_INSERT, /* 0 1 0 */ 725 SCSI_PROT_READ_PASS, /* 0 1 1 */ 726 SCSI_PROT_NORMAL, /* 1 0 0 */ 727 SCSI_PROT_WRITE_INSERT, /* 1 0 1 */ 728 SCSI_PROT_WRITE_STRIP, /* 1 1 0 */ 729 SCSI_PROT_WRITE_PASS, /* 1 1 1 */ 730 }; 731 732 return ops[write << 2 | dix << 1 | dif]; 733 } 734 735 /* 736 * Returns a mask of the protection flags that are valid for a given DIX 737 * operation. 738 */ 739 static unsigned int sd_prot_flag_mask(unsigned int prot_op) 740 { 741 static const unsigned int flag_mask[] = { 742 [SCSI_PROT_NORMAL] = 0, 743 744 [SCSI_PROT_READ_STRIP] = SCSI_PROT_TRANSFER_PI | 745 SCSI_PROT_GUARD_CHECK | 746 SCSI_PROT_REF_CHECK | 747 SCSI_PROT_REF_INCREMENT, 748 749 [SCSI_PROT_READ_INSERT] = SCSI_PROT_REF_INCREMENT | 750 SCSI_PROT_IP_CHECKSUM, 751 752 [SCSI_PROT_READ_PASS] = SCSI_PROT_TRANSFER_PI | 753 SCSI_PROT_GUARD_CHECK | 754 SCSI_PROT_REF_CHECK | 755 SCSI_PROT_REF_INCREMENT | 756 SCSI_PROT_IP_CHECKSUM, 757 758 [SCSI_PROT_WRITE_INSERT] = SCSI_PROT_TRANSFER_PI | 759 SCSI_PROT_REF_INCREMENT, 760 761 [SCSI_PROT_WRITE_STRIP] = SCSI_PROT_GUARD_CHECK | 762 SCSI_PROT_REF_CHECK | 763 SCSI_PROT_REF_INCREMENT | 764 SCSI_PROT_IP_CHECKSUM, 765 766 [SCSI_PROT_WRITE_PASS] = SCSI_PROT_TRANSFER_PI | 767 SCSI_PROT_GUARD_CHECK | 768 SCSI_PROT_REF_CHECK | 769 SCSI_PROT_REF_INCREMENT | 770 SCSI_PROT_IP_CHECKSUM, 771 }; 772 773 return flag_mask[prot_op]; 774 } 775 776 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd, 777 unsigned int dix, unsigned int dif) 778 { 779 struct request *rq = scsi_cmd_to_rq(scmd); 780 struct bio *bio = rq->bio; 781 unsigned int prot_op = sd_prot_op(rq_data_dir(rq), dix, dif); 782 unsigned int protect = 0; 783 784 if (dix) { /* DIX Type 0, 1, 2, 3 */ 785 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM)) 786 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM; 787 788 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 789 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK; 790 } 791 792 if (dif != T10_PI_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */ 793 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT; 794 795 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 796 scmd->prot_flags |= SCSI_PROT_REF_CHECK; 797 } 798 799 if (dif) { /* DIX/DIF Type 1, 2, 3 */ 800 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI; 801 802 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK)) 803 protect = 3 << 5; /* Disable target PI checking */ 804 else 805 protect = 1 << 5; /* Enable target PI checking */ 806 } 807 808 scsi_set_prot_op(scmd, prot_op); 809 scsi_set_prot_type(scmd, dif); 810 scmd->prot_flags &= sd_prot_flag_mask(prot_op); 811 812 return protect; 813 } 814 815 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode) 816 { 817 struct request_queue *q = sdkp->disk->queue; 818 unsigned int logical_block_size = sdkp->device->sector_size; 819 unsigned int max_blocks = 0; 820 821 q->limits.discard_alignment = 822 sdkp->unmap_alignment * logical_block_size; 823 q->limits.discard_granularity = 824 max(sdkp->physical_block_size, 825 sdkp->unmap_granularity * logical_block_size); 826 sdkp->provisioning_mode = mode; 827 828 switch (mode) { 829 830 case SD_LBP_FULL: 831 case SD_LBP_DISABLE: 832 blk_queue_max_discard_sectors(q, 0); 833 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q); 834 return; 835 836 case SD_LBP_UNMAP: 837 max_blocks = min_not_zero(sdkp->max_unmap_blocks, 838 (u32)SD_MAX_WS16_BLOCKS); 839 break; 840 841 case SD_LBP_WS16: 842 if (sdkp->device->unmap_limit_for_ws) 843 max_blocks = sdkp->max_unmap_blocks; 844 else 845 max_blocks = sdkp->max_ws_blocks; 846 847 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS); 848 break; 849 850 case SD_LBP_WS10: 851 if (sdkp->device->unmap_limit_for_ws) 852 max_blocks = sdkp->max_unmap_blocks; 853 else 854 max_blocks = sdkp->max_ws_blocks; 855 856 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS); 857 break; 858 859 case SD_LBP_ZERO: 860 max_blocks = min_not_zero(sdkp->max_ws_blocks, 861 (u32)SD_MAX_WS10_BLOCKS); 862 break; 863 } 864 865 blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9)); 866 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q); 867 } 868 869 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd) 870 { 871 struct scsi_device *sdp = cmd->device; 872 struct request *rq = scsi_cmd_to_rq(cmd); 873 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 874 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 875 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 876 unsigned int data_len = 24; 877 char *buf; 878 879 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 880 if (!rq->special_vec.bv_page) 881 return BLK_STS_RESOURCE; 882 clear_highpage(rq->special_vec.bv_page); 883 rq->special_vec.bv_offset = 0; 884 rq->special_vec.bv_len = data_len; 885 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 886 887 cmd->cmd_len = 10; 888 cmd->cmnd[0] = UNMAP; 889 cmd->cmnd[8] = 24; 890 891 buf = bvec_virt(&rq->special_vec); 892 put_unaligned_be16(6 + 16, &buf[0]); 893 put_unaligned_be16(16, &buf[2]); 894 put_unaligned_be64(lba, &buf[8]); 895 put_unaligned_be32(nr_blocks, &buf[16]); 896 897 cmd->allowed = sdkp->max_retries; 898 cmd->transfersize = data_len; 899 rq->timeout = SD_TIMEOUT; 900 901 return scsi_alloc_sgtables(cmd); 902 } 903 904 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd, 905 bool unmap) 906 { 907 struct scsi_device *sdp = cmd->device; 908 struct request *rq = scsi_cmd_to_rq(cmd); 909 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 910 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 911 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 912 u32 data_len = sdp->sector_size; 913 914 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 915 if (!rq->special_vec.bv_page) 916 return BLK_STS_RESOURCE; 917 clear_highpage(rq->special_vec.bv_page); 918 rq->special_vec.bv_offset = 0; 919 rq->special_vec.bv_len = data_len; 920 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 921 922 cmd->cmd_len = 16; 923 cmd->cmnd[0] = WRITE_SAME_16; 924 if (unmap) 925 cmd->cmnd[1] = 0x8; /* UNMAP */ 926 put_unaligned_be64(lba, &cmd->cmnd[2]); 927 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 928 929 cmd->allowed = sdkp->max_retries; 930 cmd->transfersize = data_len; 931 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 932 933 return scsi_alloc_sgtables(cmd); 934 } 935 936 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd, 937 bool unmap) 938 { 939 struct scsi_device *sdp = cmd->device; 940 struct request *rq = scsi_cmd_to_rq(cmd); 941 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 942 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 943 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 944 u32 data_len = sdp->sector_size; 945 946 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 947 if (!rq->special_vec.bv_page) 948 return BLK_STS_RESOURCE; 949 clear_highpage(rq->special_vec.bv_page); 950 rq->special_vec.bv_offset = 0; 951 rq->special_vec.bv_len = data_len; 952 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 953 954 cmd->cmd_len = 10; 955 cmd->cmnd[0] = WRITE_SAME; 956 if (unmap) 957 cmd->cmnd[1] = 0x8; /* UNMAP */ 958 put_unaligned_be32(lba, &cmd->cmnd[2]); 959 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 960 961 cmd->allowed = sdkp->max_retries; 962 cmd->transfersize = data_len; 963 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 964 965 return scsi_alloc_sgtables(cmd); 966 } 967 968 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd) 969 { 970 struct request *rq = scsi_cmd_to_rq(cmd); 971 struct scsi_device *sdp = cmd->device; 972 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 973 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 974 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 975 976 if (!(rq->cmd_flags & REQ_NOUNMAP)) { 977 switch (sdkp->zeroing_mode) { 978 case SD_ZERO_WS16_UNMAP: 979 return sd_setup_write_same16_cmnd(cmd, true); 980 case SD_ZERO_WS10_UNMAP: 981 return sd_setup_write_same10_cmnd(cmd, true); 982 } 983 } 984 985 if (sdp->no_write_same) { 986 rq->rq_flags |= RQF_QUIET; 987 return BLK_STS_TARGET; 988 } 989 990 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) 991 return sd_setup_write_same16_cmnd(cmd, false); 992 993 return sd_setup_write_same10_cmnd(cmd, false); 994 } 995 996 static void sd_config_write_same(struct scsi_disk *sdkp) 997 { 998 struct request_queue *q = sdkp->disk->queue; 999 unsigned int logical_block_size = sdkp->device->sector_size; 1000 1001 if (sdkp->device->no_write_same) { 1002 sdkp->max_ws_blocks = 0; 1003 goto out; 1004 } 1005 1006 /* Some devices can not handle block counts above 0xffff despite 1007 * supporting WRITE SAME(16). Consequently we default to 64k 1008 * blocks per I/O unless the device explicitly advertises a 1009 * bigger limit. 1010 */ 1011 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS) 1012 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 1013 (u32)SD_MAX_WS16_BLOCKS); 1014 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes) 1015 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 1016 (u32)SD_MAX_WS10_BLOCKS); 1017 else { 1018 sdkp->device->no_write_same = 1; 1019 sdkp->max_ws_blocks = 0; 1020 } 1021 1022 if (sdkp->lbprz && sdkp->lbpws) 1023 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP; 1024 else if (sdkp->lbprz && sdkp->lbpws10) 1025 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP; 1026 else if (sdkp->max_ws_blocks) 1027 sdkp->zeroing_mode = SD_ZERO_WS; 1028 else 1029 sdkp->zeroing_mode = SD_ZERO_WRITE; 1030 1031 if (sdkp->max_ws_blocks && 1032 sdkp->physical_block_size > logical_block_size) { 1033 /* 1034 * Reporting a maximum number of blocks that is not aligned 1035 * on the device physical size would cause a large write same 1036 * request to be split into physically unaligned chunks by 1037 * __blkdev_issue_write_zeroes() and __blkdev_issue_write_same() 1038 * even if the caller of these functions took care to align the 1039 * large request. So make sure the maximum reported is aligned 1040 * to the device physical block size. This is only an optional 1041 * optimization for regular disks, but this is mandatory to 1042 * avoid failure of large write same requests directed at 1043 * sequential write required zones of host-managed ZBC disks. 1044 */ 1045 sdkp->max_ws_blocks = 1046 round_down(sdkp->max_ws_blocks, 1047 bytes_to_logical(sdkp->device, 1048 sdkp->physical_block_size)); 1049 } 1050 1051 out: 1052 blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks * 1053 (logical_block_size >> 9)); 1054 blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks * 1055 (logical_block_size >> 9)); 1056 } 1057 1058 /** 1059 * sd_setup_write_same_cmnd - write the same data to multiple blocks 1060 * @cmd: command to prepare 1061 * 1062 * Will set up either WRITE SAME(10) or WRITE SAME(16) depending on 1063 * the preference indicated by the target device. 1064 **/ 1065 static blk_status_t sd_setup_write_same_cmnd(struct scsi_cmnd *cmd) 1066 { 1067 struct request *rq = scsi_cmd_to_rq(cmd); 1068 struct scsi_device *sdp = cmd->device; 1069 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 1070 struct bio *bio = rq->bio; 1071 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 1072 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 1073 blk_status_t ret; 1074 1075 if (sdkp->device->no_write_same) 1076 return BLK_STS_TARGET; 1077 1078 BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size); 1079 1080 rq->timeout = SD_WRITE_SAME_TIMEOUT; 1081 1082 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) { 1083 cmd->cmd_len = 16; 1084 cmd->cmnd[0] = WRITE_SAME_16; 1085 put_unaligned_be64(lba, &cmd->cmnd[2]); 1086 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 1087 } else { 1088 cmd->cmd_len = 10; 1089 cmd->cmnd[0] = WRITE_SAME; 1090 put_unaligned_be32(lba, &cmd->cmnd[2]); 1091 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 1092 } 1093 1094 cmd->transfersize = sdp->sector_size; 1095 cmd->allowed = sdkp->max_retries; 1096 1097 /* 1098 * For WRITE SAME the data transferred via the DATA OUT buffer is 1099 * different from the amount of data actually written to the target. 1100 * 1101 * We set up __data_len to the amount of data transferred via the 1102 * DATA OUT buffer so that blk_rq_map_sg sets up the proper S/G list 1103 * to transfer a single sector of data first, but then reset it to 1104 * the amount of data to be written right after so that the I/O path 1105 * knows how much to actually write. 1106 */ 1107 rq->__data_len = sdp->sector_size; 1108 ret = scsi_alloc_sgtables(cmd); 1109 rq->__data_len = blk_rq_bytes(rq); 1110 1111 return ret; 1112 } 1113 1114 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd) 1115 { 1116 struct request *rq = scsi_cmd_to_rq(cmd); 1117 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 1118 1119 /* flush requests don't perform I/O, zero the S/G table */ 1120 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1121 1122 cmd->cmnd[0] = SYNCHRONIZE_CACHE; 1123 cmd->cmd_len = 10; 1124 cmd->transfersize = 0; 1125 cmd->allowed = sdkp->max_retries; 1126 1127 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER; 1128 return BLK_STS_OK; 1129 } 1130 1131 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write, 1132 sector_t lba, unsigned int nr_blocks, 1133 unsigned char flags) 1134 { 1135 cmd->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC); 1136 if (unlikely(cmd->cmnd == NULL)) 1137 return BLK_STS_RESOURCE; 1138 1139 cmd->cmd_len = SD_EXT_CDB_SIZE; 1140 memset(cmd->cmnd, 0, cmd->cmd_len); 1141 1142 cmd->cmnd[0] = VARIABLE_LENGTH_CMD; 1143 cmd->cmnd[7] = 0x18; /* Additional CDB len */ 1144 cmd->cmnd[9] = write ? WRITE_32 : READ_32; 1145 cmd->cmnd[10] = flags; 1146 put_unaligned_be64(lba, &cmd->cmnd[12]); 1147 put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */ 1148 put_unaligned_be32(nr_blocks, &cmd->cmnd[28]); 1149 1150 return BLK_STS_OK; 1151 } 1152 1153 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write, 1154 sector_t lba, unsigned int nr_blocks, 1155 unsigned char flags) 1156 { 1157 cmd->cmd_len = 16; 1158 cmd->cmnd[0] = write ? WRITE_16 : READ_16; 1159 cmd->cmnd[1] = flags; 1160 cmd->cmnd[14] = 0; 1161 cmd->cmnd[15] = 0; 1162 put_unaligned_be64(lba, &cmd->cmnd[2]); 1163 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 1164 1165 return BLK_STS_OK; 1166 } 1167 1168 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write, 1169 sector_t lba, unsigned int nr_blocks, 1170 unsigned char flags) 1171 { 1172 cmd->cmd_len = 10; 1173 cmd->cmnd[0] = write ? WRITE_10 : READ_10; 1174 cmd->cmnd[1] = flags; 1175 cmd->cmnd[6] = 0; 1176 cmd->cmnd[9] = 0; 1177 put_unaligned_be32(lba, &cmd->cmnd[2]); 1178 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 1179 1180 return BLK_STS_OK; 1181 } 1182 1183 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write, 1184 sector_t lba, unsigned int nr_blocks, 1185 unsigned char flags) 1186 { 1187 /* Avoid that 0 blocks gets translated into 256 blocks. */ 1188 if (WARN_ON_ONCE(nr_blocks == 0)) 1189 return BLK_STS_IOERR; 1190 1191 if (unlikely(flags & 0x8)) { 1192 /* 1193 * This happens only if this drive failed 10byte rw 1194 * command with ILLEGAL_REQUEST during operation and 1195 * thus turned off use_10_for_rw. 1196 */ 1197 scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n"); 1198 return BLK_STS_IOERR; 1199 } 1200 1201 cmd->cmd_len = 6; 1202 cmd->cmnd[0] = write ? WRITE_6 : READ_6; 1203 cmd->cmnd[1] = (lba >> 16) & 0x1f; 1204 cmd->cmnd[2] = (lba >> 8) & 0xff; 1205 cmd->cmnd[3] = lba & 0xff; 1206 cmd->cmnd[4] = nr_blocks; 1207 cmd->cmnd[5] = 0; 1208 1209 return BLK_STS_OK; 1210 } 1211 1212 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd) 1213 { 1214 struct request *rq = scsi_cmd_to_rq(cmd); 1215 struct scsi_device *sdp = cmd->device; 1216 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 1217 sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 1218 sector_t threshold; 1219 unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 1220 unsigned int mask = logical_to_sectors(sdp, 1) - 1; 1221 bool write = rq_data_dir(rq) == WRITE; 1222 unsigned char protect, fua; 1223 blk_status_t ret; 1224 unsigned int dif; 1225 bool dix; 1226 1227 ret = scsi_alloc_sgtables(cmd); 1228 if (ret != BLK_STS_OK) 1229 return ret; 1230 1231 ret = BLK_STS_IOERR; 1232 if (!scsi_device_online(sdp) || sdp->changed) { 1233 scmd_printk(KERN_ERR, cmd, "device offline or changed\n"); 1234 goto fail; 1235 } 1236 1237 if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->q->disk)) { 1238 scmd_printk(KERN_ERR, cmd, "access beyond end of device\n"); 1239 goto fail; 1240 } 1241 1242 if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) { 1243 scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n"); 1244 goto fail; 1245 } 1246 1247 /* 1248 * Some SD card readers can't handle accesses which touch the 1249 * last one or two logical blocks. Split accesses as needed. 1250 */ 1251 threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS; 1252 1253 if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) { 1254 if (lba < threshold) { 1255 /* Access up to the threshold but not beyond */ 1256 nr_blocks = threshold - lba; 1257 } else { 1258 /* Access only a single logical block */ 1259 nr_blocks = 1; 1260 } 1261 } 1262 1263 if (req_op(rq) == REQ_OP_ZONE_APPEND) { 1264 ret = sd_zbc_prepare_zone_append(cmd, &lba, nr_blocks); 1265 if (ret) 1266 goto fail; 1267 } 1268 1269 fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0; 1270 dix = scsi_prot_sg_count(cmd); 1271 dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type); 1272 1273 if (dif || dix) 1274 protect = sd_setup_protect_cmnd(cmd, dix, dif); 1275 else 1276 protect = 0; 1277 1278 if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) { 1279 ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks, 1280 protect | fua); 1281 } else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) { 1282 ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks, 1283 protect | fua); 1284 } else if ((nr_blocks > 0xff) || (lba > 0x1fffff) || 1285 sdp->use_10_for_rw || protect) { 1286 ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks, 1287 protect | fua); 1288 } else { 1289 ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks, 1290 protect | fua); 1291 } 1292 1293 if (unlikely(ret != BLK_STS_OK)) 1294 goto fail; 1295 1296 /* 1297 * We shouldn't disconnect in the middle of a sector, so with a dumb 1298 * host adapter, it's safe to assume that we can at least transfer 1299 * this many bytes between each connect / disconnect. 1300 */ 1301 cmd->transfersize = sdp->sector_size; 1302 cmd->underflow = nr_blocks << 9; 1303 cmd->allowed = sdkp->max_retries; 1304 cmd->sdb.length = nr_blocks * sdp->sector_size; 1305 1306 SCSI_LOG_HLQUEUE(1, 1307 scmd_printk(KERN_INFO, cmd, 1308 "%s: block=%llu, count=%d\n", __func__, 1309 (unsigned long long)blk_rq_pos(rq), 1310 blk_rq_sectors(rq))); 1311 SCSI_LOG_HLQUEUE(2, 1312 scmd_printk(KERN_INFO, cmd, 1313 "%s %d/%u 512 byte blocks.\n", 1314 write ? "writing" : "reading", nr_blocks, 1315 blk_rq_sectors(rq))); 1316 1317 /* 1318 * This indicates that the command is ready from our end to be queued. 1319 */ 1320 return BLK_STS_OK; 1321 fail: 1322 scsi_free_sgtables(cmd); 1323 return ret; 1324 } 1325 1326 static blk_status_t sd_init_command(struct scsi_cmnd *cmd) 1327 { 1328 struct request *rq = scsi_cmd_to_rq(cmd); 1329 1330 switch (req_op(rq)) { 1331 case REQ_OP_DISCARD: 1332 switch (scsi_disk(rq->q->disk)->provisioning_mode) { 1333 case SD_LBP_UNMAP: 1334 return sd_setup_unmap_cmnd(cmd); 1335 case SD_LBP_WS16: 1336 return sd_setup_write_same16_cmnd(cmd, true); 1337 case SD_LBP_WS10: 1338 return sd_setup_write_same10_cmnd(cmd, true); 1339 case SD_LBP_ZERO: 1340 return sd_setup_write_same10_cmnd(cmd, false); 1341 default: 1342 return BLK_STS_TARGET; 1343 } 1344 case REQ_OP_WRITE_ZEROES: 1345 return sd_setup_write_zeroes_cmnd(cmd); 1346 case REQ_OP_WRITE_SAME: 1347 return sd_setup_write_same_cmnd(cmd); 1348 case REQ_OP_FLUSH: 1349 return sd_setup_flush_cmnd(cmd); 1350 case REQ_OP_READ: 1351 case REQ_OP_WRITE: 1352 case REQ_OP_ZONE_APPEND: 1353 return sd_setup_read_write_cmnd(cmd); 1354 case REQ_OP_ZONE_RESET: 1355 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER, 1356 false); 1357 case REQ_OP_ZONE_RESET_ALL: 1358 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER, 1359 true); 1360 case REQ_OP_ZONE_OPEN: 1361 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false); 1362 case REQ_OP_ZONE_CLOSE: 1363 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false); 1364 case REQ_OP_ZONE_FINISH: 1365 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false); 1366 default: 1367 WARN_ON_ONCE(1); 1368 return BLK_STS_NOTSUPP; 1369 } 1370 } 1371 1372 static void sd_uninit_command(struct scsi_cmnd *SCpnt) 1373 { 1374 struct request *rq = scsi_cmd_to_rq(SCpnt); 1375 u8 *cmnd; 1376 1377 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1378 mempool_free(rq->special_vec.bv_page, sd_page_pool); 1379 1380 if (SCpnt->cmnd != scsi_req(rq)->cmd) { 1381 cmnd = SCpnt->cmnd; 1382 SCpnt->cmnd = NULL; 1383 SCpnt->cmd_len = 0; 1384 mempool_free(cmnd, sd_cdb_pool); 1385 } 1386 } 1387 1388 static bool sd_need_revalidate(struct block_device *bdev, 1389 struct scsi_disk *sdkp) 1390 { 1391 if (sdkp->device->removable || sdkp->write_prot) { 1392 if (bdev_check_media_change(bdev)) 1393 return true; 1394 } 1395 1396 /* 1397 * Force a full rescan after ioctl(BLKRRPART). While the disk state has 1398 * nothing to do with partitions, BLKRRPART is used to force a full 1399 * revalidate after things like a format for historical reasons. 1400 */ 1401 return test_bit(GD_NEED_PART_SCAN, &bdev->bd_disk->state); 1402 } 1403 1404 /** 1405 * sd_open - open a scsi disk device 1406 * @bdev: Block device of the scsi disk to open 1407 * @mode: FMODE_* mask 1408 * 1409 * Returns 0 if successful. Returns a negated errno value in case 1410 * of error. 1411 * 1412 * Note: This can be called from a user context (e.g. fsck(1) ) 1413 * or from within the kernel (e.g. as a result of a mount(1) ). 1414 * In the latter case @inode and @filp carry an abridged amount 1415 * of information as noted above. 1416 * 1417 * Locking: called with bdev->bd_disk->open_mutex held. 1418 **/ 1419 static int sd_open(struct block_device *bdev, fmode_t mode) 1420 { 1421 struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk); 1422 struct scsi_device *sdev; 1423 int retval; 1424 1425 if (!sdkp) 1426 return -ENXIO; 1427 1428 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n")); 1429 1430 sdev = sdkp->device; 1431 1432 /* 1433 * If the device is in error recovery, wait until it is done. 1434 * If the device is offline, then disallow any access to it. 1435 */ 1436 retval = -ENXIO; 1437 if (!scsi_block_when_processing_errors(sdev)) 1438 goto error_out; 1439 1440 if (sd_need_revalidate(bdev, sdkp)) 1441 sd_revalidate_disk(bdev->bd_disk); 1442 1443 /* 1444 * If the drive is empty, just let the open fail. 1445 */ 1446 retval = -ENOMEDIUM; 1447 if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY)) 1448 goto error_out; 1449 1450 /* 1451 * If the device has the write protect tab set, have the open fail 1452 * if the user expects to be able to write to the thing. 1453 */ 1454 retval = -EROFS; 1455 if (sdkp->write_prot && (mode & FMODE_WRITE)) 1456 goto error_out; 1457 1458 /* 1459 * It is possible that the disk changing stuff resulted in 1460 * the device being taken offline. If this is the case, 1461 * report this to the user, and don't pretend that the 1462 * open actually succeeded. 1463 */ 1464 retval = -ENXIO; 1465 if (!scsi_device_online(sdev)) 1466 goto error_out; 1467 1468 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) { 1469 if (scsi_block_when_processing_errors(sdev)) 1470 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT); 1471 } 1472 1473 return 0; 1474 1475 error_out: 1476 scsi_disk_put(sdkp); 1477 return retval; 1478 } 1479 1480 /** 1481 * sd_release - invoked when the (last) close(2) is called on this 1482 * scsi disk. 1483 * @disk: disk to release 1484 * @mode: FMODE_* mask 1485 * 1486 * Returns 0. 1487 * 1488 * Note: may block (uninterruptible) if error recovery is underway 1489 * on this disk. 1490 * 1491 * Locking: called with bdev->bd_disk->open_mutex held. 1492 **/ 1493 static void sd_release(struct gendisk *disk, fmode_t mode) 1494 { 1495 struct scsi_disk *sdkp = scsi_disk(disk); 1496 struct scsi_device *sdev = sdkp->device; 1497 1498 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n")); 1499 1500 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) { 1501 if (scsi_block_when_processing_errors(sdev)) 1502 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW); 1503 } 1504 1505 scsi_disk_put(sdkp); 1506 } 1507 1508 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1509 { 1510 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1511 struct scsi_device *sdp = sdkp->device; 1512 struct Scsi_Host *host = sdp->host; 1513 sector_t capacity = logical_to_sectors(sdp, sdkp->capacity); 1514 int diskinfo[4]; 1515 1516 /* default to most commonly used values */ 1517 diskinfo[0] = 0x40; /* 1 << 6 */ 1518 diskinfo[1] = 0x20; /* 1 << 5 */ 1519 diskinfo[2] = capacity >> 11; 1520 1521 /* override with calculated, extended default, or driver values */ 1522 if (host->hostt->bios_param) 1523 host->hostt->bios_param(sdp, bdev, capacity, diskinfo); 1524 else 1525 scsicam_bios_param(bdev, capacity, diskinfo); 1526 1527 geo->heads = diskinfo[0]; 1528 geo->sectors = diskinfo[1]; 1529 geo->cylinders = diskinfo[2]; 1530 return 0; 1531 } 1532 1533 /** 1534 * sd_ioctl - process an ioctl 1535 * @bdev: target block device 1536 * @mode: FMODE_* mask 1537 * @cmd: ioctl command number 1538 * @arg: this is third argument given to ioctl(2) system call. 1539 * Often contains a pointer. 1540 * 1541 * Returns 0 if successful (some ioctls return positive numbers on 1542 * success as well). Returns a negated errno value in case of error. 1543 * 1544 * Note: most ioctls are forward onto the block subsystem or further 1545 * down in the scsi subsystem. 1546 **/ 1547 static int sd_ioctl(struct block_device *bdev, fmode_t mode, 1548 unsigned int cmd, unsigned long arg) 1549 { 1550 struct gendisk *disk = bdev->bd_disk; 1551 struct scsi_disk *sdkp = scsi_disk(disk); 1552 struct scsi_device *sdp = sdkp->device; 1553 void __user *p = (void __user *)arg; 1554 int error; 1555 1556 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, " 1557 "cmd=0x%x\n", disk->disk_name, cmd)); 1558 1559 if (bdev_is_partition(bdev) && !capable(CAP_SYS_RAWIO)) 1560 return -ENOIOCTLCMD; 1561 1562 /* 1563 * If we are in the middle of error recovery, don't let anyone 1564 * else try and use this device. Also, if error recovery fails, it 1565 * may try and take the device offline, in which case all further 1566 * access to the device is prohibited. 1567 */ 1568 error = scsi_ioctl_block_when_processing_errors(sdp, cmd, 1569 (mode & FMODE_NDELAY) != 0); 1570 if (error) 1571 return error; 1572 1573 if (is_sed_ioctl(cmd)) 1574 return sed_ioctl(sdkp->opal_dev, cmd, p); 1575 return scsi_ioctl(sdp, mode, cmd, p); 1576 } 1577 1578 static void set_media_not_present(struct scsi_disk *sdkp) 1579 { 1580 if (sdkp->media_present) 1581 sdkp->device->changed = 1; 1582 1583 if (sdkp->device->removable) { 1584 sdkp->media_present = 0; 1585 sdkp->capacity = 0; 1586 } 1587 } 1588 1589 static int media_not_present(struct scsi_disk *sdkp, 1590 struct scsi_sense_hdr *sshdr) 1591 { 1592 if (!scsi_sense_valid(sshdr)) 1593 return 0; 1594 1595 /* not invoked for commands that could return deferred errors */ 1596 switch (sshdr->sense_key) { 1597 case UNIT_ATTENTION: 1598 case NOT_READY: 1599 /* medium not present */ 1600 if (sshdr->asc == 0x3A) { 1601 set_media_not_present(sdkp); 1602 return 1; 1603 } 1604 } 1605 return 0; 1606 } 1607 1608 /** 1609 * sd_check_events - check media events 1610 * @disk: kernel device descriptor 1611 * @clearing: disk events currently being cleared 1612 * 1613 * Returns mask of DISK_EVENT_*. 1614 * 1615 * Note: this function is invoked from the block subsystem. 1616 **/ 1617 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing) 1618 { 1619 struct scsi_disk *sdkp = scsi_disk_get(disk); 1620 struct scsi_device *sdp; 1621 int retval; 1622 bool disk_changed; 1623 1624 if (!sdkp) 1625 return 0; 1626 1627 sdp = sdkp->device; 1628 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n")); 1629 1630 /* 1631 * If the device is offline, don't send any commands - just pretend as 1632 * if the command failed. If the device ever comes back online, we 1633 * can deal with it then. It is only because of unrecoverable errors 1634 * that we would ever take a device offline in the first place. 1635 */ 1636 if (!scsi_device_online(sdp)) { 1637 set_media_not_present(sdkp); 1638 goto out; 1639 } 1640 1641 /* 1642 * Using TEST_UNIT_READY enables differentiation between drive with 1643 * no cartridge loaded - NOT READY, drive with changed cartridge - 1644 * UNIT ATTENTION, or with same cartridge - GOOD STATUS. 1645 * 1646 * Drives that auto spin down. eg iomega jaz 1G, will be started 1647 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever 1648 * sd_revalidate() is called. 1649 */ 1650 if (scsi_block_when_processing_errors(sdp)) { 1651 struct scsi_sense_hdr sshdr = { 0, }; 1652 1653 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries, 1654 &sshdr); 1655 1656 /* failed to execute TUR, assume media not present */ 1657 if (retval < 0 || host_byte(retval)) { 1658 set_media_not_present(sdkp); 1659 goto out; 1660 } 1661 1662 if (media_not_present(sdkp, &sshdr)) 1663 goto out; 1664 } 1665 1666 /* 1667 * For removable scsi disk we have to recognise the presence 1668 * of a disk in the drive. 1669 */ 1670 if (!sdkp->media_present) 1671 sdp->changed = 1; 1672 sdkp->media_present = 1; 1673 out: 1674 /* 1675 * sdp->changed is set under the following conditions: 1676 * 1677 * Medium present state has changed in either direction. 1678 * Device has indicated UNIT_ATTENTION. 1679 */ 1680 disk_changed = sdp->changed; 1681 sdp->changed = 0; 1682 scsi_disk_put(sdkp); 1683 return disk_changed ? DISK_EVENT_MEDIA_CHANGE : 0; 1684 } 1685 1686 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr) 1687 { 1688 int retries, res; 1689 struct scsi_device *sdp = sdkp->device; 1690 const int timeout = sdp->request_queue->rq_timeout 1691 * SD_FLUSH_TIMEOUT_MULTIPLIER; 1692 struct scsi_sense_hdr my_sshdr; 1693 1694 if (!scsi_device_online(sdp)) 1695 return -ENODEV; 1696 1697 /* caller might not be interested in sense, but we need it */ 1698 if (!sshdr) 1699 sshdr = &my_sshdr; 1700 1701 for (retries = 3; retries > 0; --retries) { 1702 unsigned char cmd[10] = { 0 }; 1703 1704 cmd[0] = SYNCHRONIZE_CACHE; 1705 /* 1706 * Leave the rest of the command zero to indicate 1707 * flush everything. 1708 */ 1709 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr, 1710 timeout, sdkp->max_retries, 0, RQF_PM, NULL); 1711 if (res == 0) 1712 break; 1713 } 1714 1715 if (res) { 1716 sd_print_result(sdkp, "Synchronize Cache(10) failed", res); 1717 1718 if (res < 0) 1719 return res; 1720 1721 if (scsi_status_is_check_condition(res) && 1722 scsi_sense_valid(sshdr)) { 1723 sd_print_sense_hdr(sdkp, sshdr); 1724 1725 /* we need to evaluate the error return */ 1726 if (sshdr->asc == 0x3a || /* medium not present */ 1727 sshdr->asc == 0x20 || /* invalid command */ 1728 (sshdr->asc == 0x74 && sshdr->ascq == 0x71)) /* drive is password locked */ 1729 /* this is no error here */ 1730 return 0; 1731 } 1732 1733 switch (host_byte(res)) { 1734 /* ignore errors due to racing a disconnection */ 1735 case DID_BAD_TARGET: 1736 case DID_NO_CONNECT: 1737 return 0; 1738 /* signal the upper layer it might try again */ 1739 case DID_BUS_BUSY: 1740 case DID_IMM_RETRY: 1741 case DID_REQUEUE: 1742 case DID_SOFT_ERROR: 1743 return -EBUSY; 1744 default: 1745 return -EIO; 1746 } 1747 } 1748 return 0; 1749 } 1750 1751 static void sd_rescan(struct device *dev) 1752 { 1753 struct scsi_disk *sdkp = dev_get_drvdata(dev); 1754 1755 sd_revalidate_disk(sdkp->disk); 1756 } 1757 1758 static int sd_get_unique_id(struct gendisk *disk, u8 id[16], 1759 enum blk_unique_id type) 1760 { 1761 struct scsi_device *sdev = scsi_disk(disk)->device; 1762 const struct scsi_vpd *vpd; 1763 const unsigned char *d; 1764 int ret = -ENXIO, len; 1765 1766 rcu_read_lock(); 1767 vpd = rcu_dereference(sdev->vpd_pg83); 1768 if (!vpd) 1769 goto out_unlock; 1770 1771 ret = -EINVAL; 1772 for (d = vpd->data + 4; d < vpd->data + vpd->len; d += d[3] + 4) { 1773 /* we only care about designators with LU association */ 1774 if (((d[1] >> 4) & 0x3) != 0x00) 1775 continue; 1776 if ((d[1] & 0xf) != type) 1777 continue; 1778 1779 /* 1780 * Only exit early if a 16-byte descriptor was found. Otherwise 1781 * keep looking as one with more entropy might still show up. 1782 */ 1783 len = d[3]; 1784 if (len != 8 && len != 12 && len != 16) 1785 continue; 1786 ret = len; 1787 memcpy(id, d + 4, len); 1788 if (len == 16) 1789 break; 1790 } 1791 out_unlock: 1792 rcu_read_unlock(); 1793 return ret; 1794 } 1795 1796 static char sd_pr_type(enum pr_type type) 1797 { 1798 switch (type) { 1799 case PR_WRITE_EXCLUSIVE: 1800 return 0x01; 1801 case PR_EXCLUSIVE_ACCESS: 1802 return 0x03; 1803 case PR_WRITE_EXCLUSIVE_REG_ONLY: 1804 return 0x05; 1805 case PR_EXCLUSIVE_ACCESS_REG_ONLY: 1806 return 0x06; 1807 case PR_WRITE_EXCLUSIVE_ALL_REGS: 1808 return 0x07; 1809 case PR_EXCLUSIVE_ACCESS_ALL_REGS: 1810 return 0x08; 1811 default: 1812 return 0; 1813 } 1814 }; 1815 1816 static int sd_pr_command(struct block_device *bdev, u8 sa, 1817 u64 key, u64 sa_key, u8 type, u8 flags) 1818 { 1819 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1820 struct scsi_device *sdev = sdkp->device; 1821 struct scsi_sense_hdr sshdr; 1822 int result; 1823 u8 cmd[16] = { 0, }; 1824 u8 data[24] = { 0, }; 1825 1826 cmd[0] = PERSISTENT_RESERVE_OUT; 1827 cmd[1] = sa; 1828 cmd[2] = type; 1829 put_unaligned_be32(sizeof(data), &cmd[5]); 1830 1831 put_unaligned_be64(key, &data[0]); 1832 put_unaligned_be64(sa_key, &data[8]); 1833 data[20] = flags; 1834 1835 result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data), 1836 &sshdr, SD_TIMEOUT, sdkp->max_retries, NULL); 1837 1838 if (scsi_status_is_check_condition(result) && 1839 scsi_sense_valid(&sshdr)) { 1840 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result); 1841 scsi_print_sense_hdr(sdev, NULL, &sshdr); 1842 } 1843 1844 return result; 1845 } 1846 1847 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 1848 u32 flags) 1849 { 1850 if (flags & ~PR_FL_IGNORE_KEY) 1851 return -EOPNOTSUPP; 1852 return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00, 1853 old_key, new_key, 0, 1854 (1 << 0) /* APTPL */); 1855 } 1856 1857 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 1858 u32 flags) 1859 { 1860 if (flags) 1861 return -EOPNOTSUPP; 1862 return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0); 1863 } 1864 1865 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 1866 { 1867 return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0); 1868 } 1869 1870 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 1871 enum pr_type type, bool abort) 1872 { 1873 return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key, 1874 sd_pr_type(type), 0); 1875 } 1876 1877 static int sd_pr_clear(struct block_device *bdev, u64 key) 1878 { 1879 return sd_pr_command(bdev, 0x03, key, 0, 0, 0); 1880 } 1881 1882 static const struct pr_ops sd_pr_ops = { 1883 .pr_register = sd_pr_register, 1884 .pr_reserve = sd_pr_reserve, 1885 .pr_release = sd_pr_release, 1886 .pr_preempt = sd_pr_preempt, 1887 .pr_clear = sd_pr_clear, 1888 }; 1889 1890 static const struct block_device_operations sd_fops = { 1891 .owner = THIS_MODULE, 1892 .open = sd_open, 1893 .release = sd_release, 1894 .ioctl = sd_ioctl, 1895 .getgeo = sd_getgeo, 1896 .compat_ioctl = blkdev_compat_ptr_ioctl, 1897 .check_events = sd_check_events, 1898 .unlock_native_capacity = sd_unlock_native_capacity, 1899 .report_zones = sd_zbc_report_zones, 1900 .get_unique_id = sd_get_unique_id, 1901 .pr_ops = &sd_pr_ops, 1902 }; 1903 1904 /** 1905 * sd_eh_reset - reset error handling callback 1906 * @scmd: sd-issued command that has failed 1907 * 1908 * This function is called by the SCSI midlayer before starting 1909 * SCSI EH. When counting medium access failures we have to be 1910 * careful to register it only only once per device and SCSI EH run; 1911 * there might be several timed out commands which will cause the 1912 * 'max_medium_access_timeouts' counter to trigger after the first 1913 * SCSI EH run already and set the device to offline. 1914 * So this function resets the internal counter before starting SCSI EH. 1915 **/ 1916 static void sd_eh_reset(struct scsi_cmnd *scmd) 1917 { 1918 struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk); 1919 1920 /* New SCSI EH run, reset gate variable */ 1921 sdkp->ignore_medium_access_errors = false; 1922 } 1923 1924 /** 1925 * sd_eh_action - error handling callback 1926 * @scmd: sd-issued command that has failed 1927 * @eh_disp: The recovery disposition suggested by the midlayer 1928 * 1929 * This function is called by the SCSI midlayer upon completion of an 1930 * error test command (currently TEST UNIT READY). The result of sending 1931 * the eh command is passed in eh_disp. We're looking for devices that 1932 * fail medium access commands but are OK with non access commands like 1933 * test unit ready (so wrongly see the device as having a successful 1934 * recovery) 1935 **/ 1936 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp) 1937 { 1938 struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk); 1939 struct scsi_device *sdev = scmd->device; 1940 1941 if (!scsi_device_online(sdev) || 1942 !scsi_medium_access_command(scmd) || 1943 host_byte(scmd->result) != DID_TIME_OUT || 1944 eh_disp != SUCCESS) 1945 return eh_disp; 1946 1947 /* 1948 * The device has timed out executing a medium access command. 1949 * However, the TEST UNIT READY command sent during error 1950 * handling completed successfully. Either the device is in the 1951 * process of recovering or has it suffered an internal failure 1952 * that prevents access to the storage medium. 1953 */ 1954 if (!sdkp->ignore_medium_access_errors) { 1955 sdkp->medium_access_timed_out++; 1956 sdkp->ignore_medium_access_errors = true; 1957 } 1958 1959 /* 1960 * If the device keeps failing read/write commands but TEST UNIT 1961 * READY always completes successfully we assume that medium 1962 * access is no longer possible and take the device offline. 1963 */ 1964 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) { 1965 scmd_printk(KERN_ERR, scmd, 1966 "Medium access timeout failure. Offlining disk!\n"); 1967 mutex_lock(&sdev->state_mutex); 1968 scsi_device_set_state(sdev, SDEV_OFFLINE); 1969 mutex_unlock(&sdev->state_mutex); 1970 1971 return SUCCESS; 1972 } 1973 1974 return eh_disp; 1975 } 1976 1977 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd) 1978 { 1979 struct request *req = scsi_cmd_to_rq(scmd); 1980 struct scsi_device *sdev = scmd->device; 1981 unsigned int transferred, good_bytes; 1982 u64 start_lba, end_lba, bad_lba; 1983 1984 /* 1985 * Some commands have a payload smaller than the device logical 1986 * block size (e.g. INQUIRY on a 4K disk). 1987 */ 1988 if (scsi_bufflen(scmd) <= sdev->sector_size) 1989 return 0; 1990 1991 /* Check if we have a 'bad_lba' information */ 1992 if (!scsi_get_sense_info_fld(scmd->sense_buffer, 1993 SCSI_SENSE_BUFFERSIZE, 1994 &bad_lba)) 1995 return 0; 1996 1997 /* 1998 * If the bad lba was reported incorrectly, we have no idea where 1999 * the error is. 2000 */ 2001 start_lba = sectors_to_logical(sdev, blk_rq_pos(req)); 2002 end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd)); 2003 if (bad_lba < start_lba || bad_lba >= end_lba) 2004 return 0; 2005 2006 /* 2007 * resid is optional but mostly filled in. When it's unused, 2008 * its value is zero, so we assume the whole buffer transferred 2009 */ 2010 transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd); 2011 2012 /* This computation should always be done in terms of the 2013 * resolution of the device's medium. 2014 */ 2015 good_bytes = logical_to_bytes(sdev, bad_lba - start_lba); 2016 2017 return min(good_bytes, transferred); 2018 } 2019 2020 /** 2021 * sd_done - bottom half handler: called when the lower level 2022 * driver has completed (successfully or otherwise) a scsi command. 2023 * @SCpnt: mid-level's per command structure. 2024 * 2025 * Note: potentially run from within an ISR. Must not block. 2026 **/ 2027 static int sd_done(struct scsi_cmnd *SCpnt) 2028 { 2029 int result = SCpnt->result; 2030 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt); 2031 unsigned int sector_size = SCpnt->device->sector_size; 2032 unsigned int resid; 2033 struct scsi_sense_hdr sshdr; 2034 struct request *req = scsi_cmd_to_rq(SCpnt); 2035 struct scsi_disk *sdkp = scsi_disk(req->q->disk); 2036 int sense_valid = 0; 2037 int sense_deferred = 0; 2038 2039 switch (req_op(req)) { 2040 case REQ_OP_DISCARD: 2041 case REQ_OP_WRITE_ZEROES: 2042 case REQ_OP_WRITE_SAME: 2043 case REQ_OP_ZONE_RESET: 2044 case REQ_OP_ZONE_RESET_ALL: 2045 case REQ_OP_ZONE_OPEN: 2046 case REQ_OP_ZONE_CLOSE: 2047 case REQ_OP_ZONE_FINISH: 2048 if (!result) { 2049 good_bytes = blk_rq_bytes(req); 2050 scsi_set_resid(SCpnt, 0); 2051 } else { 2052 good_bytes = 0; 2053 scsi_set_resid(SCpnt, blk_rq_bytes(req)); 2054 } 2055 break; 2056 default: 2057 /* 2058 * In case of bogus fw or device, we could end up having 2059 * an unaligned partial completion. Check this here and force 2060 * alignment. 2061 */ 2062 resid = scsi_get_resid(SCpnt); 2063 if (resid & (sector_size - 1)) { 2064 sd_printk(KERN_INFO, sdkp, 2065 "Unaligned partial completion (resid=%u, sector_sz=%u)\n", 2066 resid, sector_size); 2067 scsi_print_command(SCpnt); 2068 resid = min(scsi_bufflen(SCpnt), 2069 round_up(resid, sector_size)); 2070 scsi_set_resid(SCpnt, resid); 2071 } 2072 } 2073 2074 if (result) { 2075 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr); 2076 if (sense_valid) 2077 sense_deferred = scsi_sense_is_deferred(&sshdr); 2078 } 2079 sdkp->medium_access_timed_out = 0; 2080 2081 if (!scsi_status_is_check_condition(result) && 2082 (!sense_valid || sense_deferred)) 2083 goto out; 2084 2085 switch (sshdr.sense_key) { 2086 case HARDWARE_ERROR: 2087 case MEDIUM_ERROR: 2088 good_bytes = sd_completed_bytes(SCpnt); 2089 break; 2090 case RECOVERED_ERROR: 2091 good_bytes = scsi_bufflen(SCpnt); 2092 break; 2093 case NO_SENSE: 2094 /* This indicates a false check condition, so ignore it. An 2095 * unknown amount of data was transferred so treat it as an 2096 * error. 2097 */ 2098 SCpnt->result = 0; 2099 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 2100 break; 2101 case ABORTED_COMMAND: 2102 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */ 2103 good_bytes = sd_completed_bytes(SCpnt); 2104 break; 2105 case ILLEGAL_REQUEST: 2106 switch (sshdr.asc) { 2107 case 0x10: /* DIX: Host detected corruption */ 2108 good_bytes = sd_completed_bytes(SCpnt); 2109 break; 2110 case 0x20: /* INVALID COMMAND OPCODE */ 2111 case 0x24: /* INVALID FIELD IN CDB */ 2112 switch (SCpnt->cmnd[0]) { 2113 case UNMAP: 2114 sd_config_discard(sdkp, SD_LBP_DISABLE); 2115 break; 2116 case WRITE_SAME_16: 2117 case WRITE_SAME: 2118 if (SCpnt->cmnd[1] & 8) { /* UNMAP */ 2119 sd_config_discard(sdkp, SD_LBP_DISABLE); 2120 } else { 2121 sdkp->device->no_write_same = 1; 2122 sd_config_write_same(sdkp); 2123 req->rq_flags |= RQF_QUIET; 2124 } 2125 break; 2126 } 2127 } 2128 break; 2129 default: 2130 break; 2131 } 2132 2133 out: 2134 if (sd_is_zoned(sdkp)) 2135 good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr); 2136 2137 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt, 2138 "sd_done: completed %d of %d bytes\n", 2139 good_bytes, scsi_bufflen(SCpnt))); 2140 2141 return good_bytes; 2142 } 2143 2144 /* 2145 * spinup disk - called only in sd_revalidate_disk() 2146 */ 2147 static void 2148 sd_spinup_disk(struct scsi_disk *sdkp) 2149 { 2150 unsigned char cmd[10]; 2151 unsigned long spintime_expire = 0; 2152 int retries, spintime; 2153 unsigned int the_result; 2154 struct scsi_sense_hdr sshdr; 2155 int sense_valid = 0; 2156 2157 spintime = 0; 2158 2159 /* Spin up drives, as required. Only do this at boot time */ 2160 /* Spinup needs to be done for module loads too. */ 2161 do { 2162 retries = 0; 2163 2164 do { 2165 bool media_was_present = sdkp->media_present; 2166 2167 cmd[0] = TEST_UNIT_READY; 2168 memset((void *) &cmd[1], 0, 9); 2169 2170 the_result = scsi_execute_req(sdkp->device, cmd, 2171 DMA_NONE, NULL, 0, 2172 &sshdr, SD_TIMEOUT, 2173 sdkp->max_retries, NULL); 2174 2175 /* 2176 * If the drive has indicated to us that it 2177 * doesn't have any media in it, don't bother 2178 * with any more polling. 2179 */ 2180 if (media_not_present(sdkp, &sshdr)) { 2181 if (media_was_present) 2182 sd_printk(KERN_NOTICE, sdkp, "Media removed, stopped polling\n"); 2183 return; 2184 } 2185 2186 if (the_result) 2187 sense_valid = scsi_sense_valid(&sshdr); 2188 retries++; 2189 } while (retries < 3 && 2190 (!scsi_status_is_good(the_result) || 2191 (scsi_status_is_check_condition(the_result) && 2192 sense_valid && sshdr.sense_key == UNIT_ATTENTION))); 2193 2194 if (!scsi_status_is_check_condition(the_result)) { 2195 /* no sense, TUR either succeeded or failed 2196 * with a status error */ 2197 if(!spintime && !scsi_status_is_good(the_result)) { 2198 sd_print_result(sdkp, "Test Unit Ready failed", 2199 the_result); 2200 } 2201 break; 2202 } 2203 2204 /* 2205 * The device does not want the automatic start to be issued. 2206 */ 2207 if (sdkp->device->no_start_on_add) 2208 break; 2209 2210 if (sense_valid && sshdr.sense_key == NOT_READY) { 2211 if (sshdr.asc == 4 && sshdr.ascq == 3) 2212 break; /* manual intervention required */ 2213 if (sshdr.asc == 4 && sshdr.ascq == 0xb) 2214 break; /* standby */ 2215 if (sshdr.asc == 4 && sshdr.ascq == 0xc) 2216 break; /* unavailable */ 2217 if (sshdr.asc == 4 && sshdr.ascq == 0x1b) 2218 break; /* sanitize in progress */ 2219 /* 2220 * Issue command to spin up drive when not ready 2221 */ 2222 if (!spintime) { 2223 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk..."); 2224 cmd[0] = START_STOP; 2225 cmd[1] = 1; /* Return immediately */ 2226 memset((void *) &cmd[2], 0, 8); 2227 cmd[4] = 1; /* Start spin cycle */ 2228 if (sdkp->device->start_stop_pwr_cond) 2229 cmd[4] |= 1 << 4; 2230 scsi_execute_req(sdkp->device, cmd, DMA_NONE, 2231 NULL, 0, &sshdr, 2232 SD_TIMEOUT, sdkp->max_retries, 2233 NULL); 2234 spintime_expire = jiffies + 100 * HZ; 2235 spintime = 1; 2236 } 2237 /* Wait 1 second for next try */ 2238 msleep(1000); 2239 printk(KERN_CONT "."); 2240 2241 /* 2242 * Wait for USB flash devices with slow firmware. 2243 * Yes, this sense key/ASC combination shouldn't 2244 * occur here. It's characteristic of these devices. 2245 */ 2246 } else if (sense_valid && 2247 sshdr.sense_key == UNIT_ATTENTION && 2248 sshdr.asc == 0x28) { 2249 if (!spintime) { 2250 spintime_expire = jiffies + 5 * HZ; 2251 spintime = 1; 2252 } 2253 /* Wait 1 second for next try */ 2254 msleep(1000); 2255 } else { 2256 /* we don't understand the sense code, so it's 2257 * probably pointless to loop */ 2258 if(!spintime) { 2259 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n"); 2260 sd_print_sense_hdr(sdkp, &sshdr); 2261 } 2262 break; 2263 } 2264 2265 } while (spintime && time_before_eq(jiffies, spintime_expire)); 2266 2267 if (spintime) { 2268 if (scsi_status_is_good(the_result)) 2269 printk(KERN_CONT "ready\n"); 2270 else 2271 printk(KERN_CONT "not responding...\n"); 2272 } 2273 } 2274 2275 /* 2276 * Determine whether disk supports Data Integrity Field. 2277 */ 2278 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer) 2279 { 2280 struct scsi_device *sdp = sdkp->device; 2281 u8 type; 2282 int ret = 0; 2283 2284 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) { 2285 sdkp->protection_type = 0; 2286 return ret; 2287 } 2288 2289 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */ 2290 2291 if (type > T10_PI_TYPE3_PROTECTION) 2292 ret = -ENODEV; 2293 else if (scsi_host_dif_capable(sdp->host, type)) 2294 ret = 1; 2295 2296 if (sdkp->first_scan || type != sdkp->protection_type) 2297 switch (ret) { 2298 case -ENODEV: 2299 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \ 2300 " protection type %u. Disabling disk!\n", 2301 type); 2302 break; 2303 case 1: 2304 sd_printk(KERN_NOTICE, sdkp, 2305 "Enabling DIF Type %u protection\n", type); 2306 break; 2307 case 0: 2308 sd_printk(KERN_NOTICE, sdkp, 2309 "Disabling DIF Type %u protection\n", type); 2310 break; 2311 } 2312 2313 sdkp->protection_type = type; 2314 2315 return ret; 2316 } 2317 2318 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp, 2319 struct scsi_sense_hdr *sshdr, int sense_valid, 2320 int the_result) 2321 { 2322 if (sense_valid) 2323 sd_print_sense_hdr(sdkp, sshdr); 2324 else 2325 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n"); 2326 2327 /* 2328 * Set dirty bit for removable devices if not ready - 2329 * sometimes drives will not report this properly. 2330 */ 2331 if (sdp->removable && 2332 sense_valid && sshdr->sense_key == NOT_READY) 2333 set_media_not_present(sdkp); 2334 2335 /* 2336 * We used to set media_present to 0 here to indicate no media 2337 * in the drive, but some drives fail read capacity even with 2338 * media present, so we can't do that. 2339 */ 2340 sdkp->capacity = 0; /* unknown mapped to zero - as usual */ 2341 } 2342 2343 #define RC16_LEN 32 2344 #if RC16_LEN > SD_BUF_SIZE 2345 #error RC16_LEN must not be more than SD_BUF_SIZE 2346 #endif 2347 2348 #define READ_CAPACITY_RETRIES_ON_RESET 10 2349 2350 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp, 2351 unsigned char *buffer) 2352 { 2353 unsigned char cmd[16]; 2354 struct scsi_sense_hdr sshdr; 2355 int sense_valid = 0; 2356 int the_result; 2357 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2358 unsigned int alignment; 2359 unsigned long long lba; 2360 unsigned sector_size; 2361 2362 if (sdp->no_read_capacity_16) 2363 return -EINVAL; 2364 2365 do { 2366 memset(cmd, 0, 16); 2367 cmd[0] = SERVICE_ACTION_IN_16; 2368 cmd[1] = SAI_READ_CAPACITY_16; 2369 cmd[13] = RC16_LEN; 2370 memset(buffer, 0, RC16_LEN); 2371 2372 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, 2373 buffer, RC16_LEN, &sshdr, 2374 SD_TIMEOUT, sdkp->max_retries, NULL); 2375 2376 if (media_not_present(sdkp, &sshdr)) 2377 return -ENODEV; 2378 2379 if (the_result > 0) { 2380 sense_valid = scsi_sense_valid(&sshdr); 2381 if (sense_valid && 2382 sshdr.sense_key == ILLEGAL_REQUEST && 2383 (sshdr.asc == 0x20 || sshdr.asc == 0x24) && 2384 sshdr.ascq == 0x00) 2385 /* Invalid Command Operation Code or 2386 * Invalid Field in CDB, just retry 2387 * silently with RC10 */ 2388 return -EINVAL; 2389 if (sense_valid && 2390 sshdr.sense_key == UNIT_ATTENTION && 2391 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2392 /* Device reset might occur several times, 2393 * give it one more chance */ 2394 if (--reset_retries > 0) 2395 continue; 2396 } 2397 retries--; 2398 2399 } while (the_result && retries); 2400 2401 if (the_result) { 2402 sd_print_result(sdkp, "Read Capacity(16) failed", the_result); 2403 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2404 return -EINVAL; 2405 } 2406 2407 sector_size = get_unaligned_be32(&buffer[8]); 2408 lba = get_unaligned_be64(&buffer[0]); 2409 2410 if (sd_read_protection_type(sdkp, buffer) < 0) { 2411 sdkp->capacity = 0; 2412 return -ENODEV; 2413 } 2414 2415 /* Logical blocks per physical block exponent */ 2416 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size; 2417 2418 /* RC basis */ 2419 sdkp->rc_basis = (buffer[12] >> 4) & 0x3; 2420 2421 /* Lowest aligned logical block */ 2422 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size; 2423 blk_queue_alignment_offset(sdp->request_queue, alignment); 2424 if (alignment && sdkp->first_scan) 2425 sd_printk(KERN_NOTICE, sdkp, 2426 "physical block alignment offset: %u\n", alignment); 2427 2428 if (buffer[14] & 0x80) { /* LBPME */ 2429 sdkp->lbpme = 1; 2430 2431 if (buffer[14] & 0x40) /* LBPRZ */ 2432 sdkp->lbprz = 1; 2433 2434 sd_config_discard(sdkp, SD_LBP_WS16); 2435 } 2436 2437 sdkp->capacity = lba + 1; 2438 return sector_size; 2439 } 2440 2441 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp, 2442 unsigned char *buffer) 2443 { 2444 unsigned char cmd[16]; 2445 struct scsi_sense_hdr sshdr; 2446 int sense_valid = 0; 2447 int the_result; 2448 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2449 sector_t lba; 2450 unsigned sector_size; 2451 2452 do { 2453 cmd[0] = READ_CAPACITY; 2454 memset(&cmd[1], 0, 9); 2455 memset(buffer, 0, 8); 2456 2457 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, 2458 buffer, 8, &sshdr, 2459 SD_TIMEOUT, sdkp->max_retries, NULL); 2460 2461 if (media_not_present(sdkp, &sshdr)) 2462 return -ENODEV; 2463 2464 if (the_result > 0) { 2465 sense_valid = scsi_sense_valid(&sshdr); 2466 if (sense_valid && 2467 sshdr.sense_key == UNIT_ATTENTION && 2468 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2469 /* Device reset might occur several times, 2470 * give it one more chance */ 2471 if (--reset_retries > 0) 2472 continue; 2473 } 2474 retries--; 2475 2476 } while (the_result && retries); 2477 2478 if (the_result) { 2479 sd_print_result(sdkp, "Read Capacity(10) failed", the_result); 2480 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2481 return -EINVAL; 2482 } 2483 2484 sector_size = get_unaligned_be32(&buffer[4]); 2485 lba = get_unaligned_be32(&buffer[0]); 2486 2487 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) { 2488 /* Some buggy (usb cardreader) devices return an lba of 2489 0xffffffff when the want to report a size of 0 (with 2490 which they really mean no media is present) */ 2491 sdkp->capacity = 0; 2492 sdkp->physical_block_size = sector_size; 2493 return sector_size; 2494 } 2495 2496 sdkp->capacity = lba + 1; 2497 sdkp->physical_block_size = sector_size; 2498 return sector_size; 2499 } 2500 2501 static int sd_try_rc16_first(struct scsi_device *sdp) 2502 { 2503 if (sdp->host->max_cmd_len < 16) 2504 return 0; 2505 if (sdp->try_rc_10_first) 2506 return 0; 2507 if (sdp->scsi_level > SCSI_SPC_2) 2508 return 1; 2509 if (scsi_device_protection(sdp)) 2510 return 1; 2511 return 0; 2512 } 2513 2514 /* 2515 * read disk capacity 2516 */ 2517 static void 2518 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer) 2519 { 2520 int sector_size; 2521 struct scsi_device *sdp = sdkp->device; 2522 2523 if (sd_try_rc16_first(sdp)) { 2524 sector_size = read_capacity_16(sdkp, sdp, buffer); 2525 if (sector_size == -EOVERFLOW) 2526 goto got_data; 2527 if (sector_size == -ENODEV) 2528 return; 2529 if (sector_size < 0) 2530 sector_size = read_capacity_10(sdkp, sdp, buffer); 2531 if (sector_size < 0) 2532 return; 2533 } else { 2534 sector_size = read_capacity_10(sdkp, sdp, buffer); 2535 if (sector_size == -EOVERFLOW) 2536 goto got_data; 2537 if (sector_size < 0) 2538 return; 2539 if ((sizeof(sdkp->capacity) > 4) && 2540 (sdkp->capacity > 0xffffffffULL)) { 2541 int old_sector_size = sector_size; 2542 sd_printk(KERN_NOTICE, sdkp, "Very big device. " 2543 "Trying to use READ CAPACITY(16).\n"); 2544 sector_size = read_capacity_16(sdkp, sdp, buffer); 2545 if (sector_size < 0) { 2546 sd_printk(KERN_NOTICE, sdkp, 2547 "Using 0xffffffff as device size\n"); 2548 sdkp->capacity = 1 + (sector_t) 0xffffffff; 2549 sector_size = old_sector_size; 2550 goto got_data; 2551 } 2552 /* Remember that READ CAPACITY(16) succeeded */ 2553 sdp->try_rc_10_first = 0; 2554 } 2555 } 2556 2557 /* Some devices are known to return the total number of blocks, 2558 * not the highest block number. Some devices have versions 2559 * which do this and others which do not. Some devices we might 2560 * suspect of doing this but we don't know for certain. 2561 * 2562 * If we know the reported capacity is wrong, decrement it. If 2563 * we can only guess, then assume the number of blocks is even 2564 * (usually true but not always) and err on the side of lowering 2565 * the capacity. 2566 */ 2567 if (sdp->fix_capacity || 2568 (sdp->guess_capacity && (sdkp->capacity & 0x01))) { 2569 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count " 2570 "from its reported value: %llu\n", 2571 (unsigned long long) sdkp->capacity); 2572 --sdkp->capacity; 2573 } 2574 2575 got_data: 2576 if (sector_size == 0) { 2577 sector_size = 512; 2578 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, " 2579 "assuming 512.\n"); 2580 } 2581 2582 if (sector_size != 512 && 2583 sector_size != 1024 && 2584 sector_size != 2048 && 2585 sector_size != 4096) { 2586 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n", 2587 sector_size); 2588 /* 2589 * The user might want to re-format the drive with 2590 * a supported sectorsize. Once this happens, it 2591 * would be relatively trivial to set the thing up. 2592 * For this reason, we leave the thing in the table. 2593 */ 2594 sdkp->capacity = 0; 2595 /* 2596 * set a bogus sector size so the normal read/write 2597 * logic in the block layer will eventually refuse any 2598 * request on this device without tripping over power 2599 * of two sector size assumptions 2600 */ 2601 sector_size = 512; 2602 } 2603 blk_queue_logical_block_size(sdp->request_queue, sector_size); 2604 blk_queue_physical_block_size(sdp->request_queue, 2605 sdkp->physical_block_size); 2606 sdkp->device->sector_size = sector_size; 2607 2608 if (sdkp->capacity > 0xffffffff) 2609 sdp->use_16_for_rw = 1; 2610 2611 } 2612 2613 /* 2614 * Print disk capacity 2615 */ 2616 static void 2617 sd_print_capacity(struct scsi_disk *sdkp, 2618 sector_t old_capacity) 2619 { 2620 int sector_size = sdkp->device->sector_size; 2621 char cap_str_2[10], cap_str_10[10]; 2622 2623 if (!sdkp->first_scan && old_capacity == sdkp->capacity) 2624 return; 2625 2626 string_get_size(sdkp->capacity, sector_size, 2627 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2)); 2628 string_get_size(sdkp->capacity, sector_size, 2629 STRING_UNITS_10, cap_str_10, sizeof(cap_str_10)); 2630 2631 sd_printk(KERN_NOTICE, sdkp, 2632 "%llu %d-byte logical blocks: (%s/%s)\n", 2633 (unsigned long long)sdkp->capacity, 2634 sector_size, cap_str_10, cap_str_2); 2635 2636 if (sdkp->physical_block_size != sector_size) 2637 sd_printk(KERN_NOTICE, sdkp, 2638 "%u-byte physical blocks\n", 2639 sdkp->physical_block_size); 2640 } 2641 2642 /* called with buffer of length 512 */ 2643 static inline int 2644 sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage, 2645 unsigned char *buffer, int len, struct scsi_mode_data *data, 2646 struct scsi_sense_hdr *sshdr) 2647 { 2648 /* 2649 * If we must use MODE SENSE(10), make sure that the buffer length 2650 * is at least 8 bytes so that the mode sense header fits. 2651 */ 2652 if (sdkp->device->use_10_for_ms && len < 8) 2653 len = 8; 2654 2655 return scsi_mode_sense(sdkp->device, dbd, modepage, buffer, len, 2656 SD_TIMEOUT, sdkp->max_retries, data, 2657 sshdr); 2658 } 2659 2660 /* 2661 * read write protect setting, if possible - called only in sd_revalidate_disk() 2662 * called with buffer of length SD_BUF_SIZE 2663 */ 2664 static void 2665 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer) 2666 { 2667 int res; 2668 struct scsi_device *sdp = sdkp->device; 2669 struct scsi_mode_data data; 2670 int old_wp = sdkp->write_prot; 2671 2672 set_disk_ro(sdkp->disk, 0); 2673 if (sdp->skip_ms_page_3f) { 2674 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n"); 2675 return; 2676 } 2677 2678 if (sdp->use_192_bytes_for_3f) { 2679 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL); 2680 } else { 2681 /* 2682 * First attempt: ask for all pages (0x3F), but only 4 bytes. 2683 * We have to start carefully: some devices hang if we ask 2684 * for more than is available. 2685 */ 2686 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL); 2687 2688 /* 2689 * Second attempt: ask for page 0 When only page 0 is 2690 * implemented, a request for page 3F may return Sense Key 2691 * 5: Illegal Request, Sense Code 24: Invalid field in 2692 * CDB. 2693 */ 2694 if (res < 0) 2695 res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL); 2696 2697 /* 2698 * Third attempt: ask 255 bytes, as we did earlier. 2699 */ 2700 if (res < 0) 2701 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255, 2702 &data, NULL); 2703 } 2704 2705 if (res < 0) { 2706 sd_first_printk(KERN_WARNING, sdkp, 2707 "Test WP failed, assume Write Enabled\n"); 2708 } else { 2709 sdkp->write_prot = ((data.device_specific & 0x80) != 0); 2710 set_disk_ro(sdkp->disk, sdkp->write_prot); 2711 if (sdkp->first_scan || old_wp != sdkp->write_prot) { 2712 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n", 2713 sdkp->write_prot ? "on" : "off"); 2714 sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer); 2715 } 2716 } 2717 } 2718 2719 /* 2720 * sd_read_cache_type - called only from sd_revalidate_disk() 2721 * called with buffer of length SD_BUF_SIZE 2722 */ 2723 static void 2724 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer) 2725 { 2726 int len = 0, res; 2727 struct scsi_device *sdp = sdkp->device; 2728 2729 int dbd; 2730 int modepage; 2731 int first_len; 2732 struct scsi_mode_data data; 2733 struct scsi_sense_hdr sshdr; 2734 int old_wce = sdkp->WCE; 2735 int old_rcd = sdkp->RCD; 2736 int old_dpofua = sdkp->DPOFUA; 2737 2738 2739 if (sdkp->cache_override) 2740 return; 2741 2742 first_len = 4; 2743 if (sdp->skip_ms_page_8) { 2744 if (sdp->type == TYPE_RBC) 2745 goto defaults; 2746 else { 2747 if (sdp->skip_ms_page_3f) 2748 goto defaults; 2749 modepage = 0x3F; 2750 if (sdp->use_192_bytes_for_3f) 2751 first_len = 192; 2752 dbd = 0; 2753 } 2754 } else if (sdp->type == TYPE_RBC) { 2755 modepage = 6; 2756 dbd = 8; 2757 } else { 2758 modepage = 8; 2759 dbd = 0; 2760 } 2761 2762 /* cautiously ask */ 2763 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len, 2764 &data, &sshdr); 2765 2766 if (res < 0) 2767 goto bad_sense; 2768 2769 if (!data.header_length) { 2770 modepage = 6; 2771 first_len = 0; 2772 sd_first_printk(KERN_ERR, sdkp, 2773 "Missing header in MODE_SENSE response\n"); 2774 } 2775 2776 /* that went OK, now ask for the proper length */ 2777 len = data.length; 2778 2779 /* 2780 * We're only interested in the first three bytes, actually. 2781 * But the data cache page is defined for the first 20. 2782 */ 2783 if (len < 3) 2784 goto bad_sense; 2785 else if (len > SD_BUF_SIZE) { 2786 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter " 2787 "data from %d to %d bytes\n", len, SD_BUF_SIZE); 2788 len = SD_BUF_SIZE; 2789 } 2790 if (modepage == 0x3F && sdp->use_192_bytes_for_3f) 2791 len = 192; 2792 2793 /* Get the data */ 2794 if (len > first_len) 2795 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len, 2796 &data, &sshdr); 2797 2798 if (!res) { 2799 int offset = data.header_length + data.block_descriptor_length; 2800 2801 while (offset < len) { 2802 u8 page_code = buffer[offset] & 0x3F; 2803 u8 spf = buffer[offset] & 0x40; 2804 2805 if (page_code == 8 || page_code == 6) { 2806 /* We're interested only in the first 3 bytes. 2807 */ 2808 if (len - offset <= 2) { 2809 sd_first_printk(KERN_ERR, sdkp, 2810 "Incomplete mode parameter " 2811 "data\n"); 2812 goto defaults; 2813 } else { 2814 modepage = page_code; 2815 goto Page_found; 2816 } 2817 } else { 2818 /* Go to the next page */ 2819 if (spf && len - offset > 3) 2820 offset += 4 + (buffer[offset+2] << 8) + 2821 buffer[offset+3]; 2822 else if (!spf && len - offset > 1) 2823 offset += 2 + buffer[offset+1]; 2824 else { 2825 sd_first_printk(KERN_ERR, sdkp, 2826 "Incomplete mode " 2827 "parameter data\n"); 2828 goto defaults; 2829 } 2830 } 2831 } 2832 2833 sd_first_printk(KERN_WARNING, sdkp, 2834 "No Caching mode page found\n"); 2835 goto defaults; 2836 2837 Page_found: 2838 if (modepage == 8) { 2839 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0); 2840 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0); 2841 } else { 2842 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0); 2843 sdkp->RCD = 0; 2844 } 2845 2846 sdkp->DPOFUA = (data.device_specific & 0x10) != 0; 2847 if (sdp->broken_fua) { 2848 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n"); 2849 sdkp->DPOFUA = 0; 2850 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw && 2851 !sdkp->device->use_16_for_rw) { 2852 sd_first_printk(KERN_NOTICE, sdkp, 2853 "Uses READ/WRITE(6), disabling FUA\n"); 2854 sdkp->DPOFUA = 0; 2855 } 2856 2857 /* No cache flush allowed for write protected devices */ 2858 if (sdkp->WCE && sdkp->write_prot) 2859 sdkp->WCE = 0; 2860 2861 if (sdkp->first_scan || old_wce != sdkp->WCE || 2862 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA) 2863 sd_printk(KERN_NOTICE, sdkp, 2864 "Write cache: %s, read cache: %s, %s\n", 2865 sdkp->WCE ? "enabled" : "disabled", 2866 sdkp->RCD ? "disabled" : "enabled", 2867 sdkp->DPOFUA ? "supports DPO and FUA" 2868 : "doesn't support DPO or FUA"); 2869 2870 return; 2871 } 2872 2873 bad_sense: 2874 if (scsi_sense_valid(&sshdr) && 2875 sshdr.sense_key == ILLEGAL_REQUEST && 2876 sshdr.asc == 0x24 && sshdr.ascq == 0x0) 2877 /* Invalid field in CDB */ 2878 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n"); 2879 else 2880 sd_first_printk(KERN_ERR, sdkp, 2881 "Asking for cache data failed\n"); 2882 2883 defaults: 2884 if (sdp->wce_default_on) { 2885 sd_first_printk(KERN_NOTICE, sdkp, 2886 "Assuming drive cache: write back\n"); 2887 sdkp->WCE = 1; 2888 } else { 2889 sd_first_printk(KERN_WARNING, sdkp, 2890 "Assuming drive cache: write through\n"); 2891 sdkp->WCE = 0; 2892 } 2893 sdkp->RCD = 0; 2894 sdkp->DPOFUA = 0; 2895 } 2896 2897 /* 2898 * The ATO bit indicates whether the DIF application tag is available 2899 * for use by the operating system. 2900 */ 2901 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer) 2902 { 2903 int res, offset; 2904 struct scsi_device *sdp = sdkp->device; 2905 struct scsi_mode_data data; 2906 struct scsi_sense_hdr sshdr; 2907 2908 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 2909 return; 2910 2911 if (sdkp->protection_type == 0) 2912 return; 2913 2914 res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT, 2915 sdkp->max_retries, &data, &sshdr); 2916 2917 if (res < 0 || !data.header_length || 2918 data.length < 6) { 2919 sd_first_printk(KERN_WARNING, sdkp, 2920 "getting Control mode page failed, assume no ATO\n"); 2921 2922 if (scsi_sense_valid(&sshdr)) 2923 sd_print_sense_hdr(sdkp, &sshdr); 2924 2925 return; 2926 } 2927 2928 offset = data.header_length + data.block_descriptor_length; 2929 2930 if ((buffer[offset] & 0x3f) != 0x0a) { 2931 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n"); 2932 return; 2933 } 2934 2935 if ((buffer[offset + 5] & 0x80) == 0) 2936 return; 2937 2938 sdkp->ATO = 1; 2939 2940 return; 2941 } 2942 2943 /** 2944 * sd_read_block_limits - Query disk device for preferred I/O sizes. 2945 * @sdkp: disk to query 2946 */ 2947 static void sd_read_block_limits(struct scsi_disk *sdkp) 2948 { 2949 unsigned int sector_sz = sdkp->device->sector_size; 2950 const int vpd_len = 64; 2951 unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL); 2952 2953 if (!buffer || 2954 /* Block Limits VPD */ 2955 scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len)) 2956 goto out; 2957 2958 blk_queue_io_min(sdkp->disk->queue, 2959 get_unaligned_be16(&buffer[6]) * sector_sz); 2960 2961 sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]); 2962 sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]); 2963 2964 if (buffer[3] == 0x3c) { 2965 unsigned int lba_count, desc_count; 2966 2967 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]); 2968 2969 if (!sdkp->lbpme) 2970 goto out; 2971 2972 lba_count = get_unaligned_be32(&buffer[20]); 2973 desc_count = get_unaligned_be32(&buffer[24]); 2974 2975 if (lba_count && desc_count) 2976 sdkp->max_unmap_blocks = lba_count; 2977 2978 sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]); 2979 2980 if (buffer[32] & 0x80) 2981 sdkp->unmap_alignment = 2982 get_unaligned_be32(&buffer[32]) & ~(1 << 31); 2983 2984 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */ 2985 2986 if (sdkp->max_unmap_blocks) 2987 sd_config_discard(sdkp, SD_LBP_UNMAP); 2988 else 2989 sd_config_discard(sdkp, SD_LBP_WS16); 2990 2991 } else { /* LBP VPD page tells us what to use */ 2992 if (sdkp->lbpu && sdkp->max_unmap_blocks) 2993 sd_config_discard(sdkp, SD_LBP_UNMAP); 2994 else if (sdkp->lbpws) 2995 sd_config_discard(sdkp, SD_LBP_WS16); 2996 else if (sdkp->lbpws10) 2997 sd_config_discard(sdkp, SD_LBP_WS10); 2998 else 2999 sd_config_discard(sdkp, SD_LBP_DISABLE); 3000 } 3001 } 3002 3003 out: 3004 kfree(buffer); 3005 } 3006 3007 /** 3008 * sd_read_block_characteristics - Query block dev. characteristics 3009 * @sdkp: disk to query 3010 */ 3011 static void sd_read_block_characteristics(struct scsi_disk *sdkp) 3012 { 3013 struct request_queue *q = sdkp->disk->queue; 3014 unsigned char *buffer; 3015 u16 rot; 3016 const int vpd_len = 64; 3017 3018 buffer = kmalloc(vpd_len, GFP_KERNEL); 3019 3020 if (!buffer || 3021 /* Block Device Characteristics VPD */ 3022 scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len)) 3023 goto out; 3024 3025 rot = get_unaligned_be16(&buffer[4]); 3026 3027 if (rot == 1) { 3028 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 3029 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q); 3030 } 3031 3032 if (sdkp->device->type == TYPE_ZBC) { 3033 /* Host-managed */ 3034 blk_queue_set_zoned(sdkp->disk, BLK_ZONED_HM); 3035 } else { 3036 sdkp->zoned = (buffer[8] >> 4) & 3; 3037 if (sdkp->zoned == 1) { 3038 /* Host-aware */ 3039 blk_queue_set_zoned(sdkp->disk, BLK_ZONED_HA); 3040 } else { 3041 /* Regular disk or drive managed disk */ 3042 blk_queue_set_zoned(sdkp->disk, BLK_ZONED_NONE); 3043 } 3044 } 3045 3046 if (!sdkp->first_scan) 3047 goto out; 3048 3049 if (blk_queue_is_zoned(q)) { 3050 sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n", 3051 q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware"); 3052 } else { 3053 if (sdkp->zoned == 1) 3054 sd_printk(KERN_NOTICE, sdkp, 3055 "Host-aware SMR disk used as regular disk\n"); 3056 else if (sdkp->zoned == 2) 3057 sd_printk(KERN_NOTICE, sdkp, 3058 "Drive-managed SMR disk\n"); 3059 } 3060 3061 out: 3062 kfree(buffer); 3063 } 3064 3065 /** 3066 * sd_read_block_provisioning - Query provisioning VPD page 3067 * @sdkp: disk to query 3068 */ 3069 static void sd_read_block_provisioning(struct scsi_disk *sdkp) 3070 { 3071 unsigned char *buffer; 3072 const int vpd_len = 8; 3073 3074 if (sdkp->lbpme == 0) 3075 return; 3076 3077 buffer = kmalloc(vpd_len, GFP_KERNEL); 3078 3079 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len)) 3080 goto out; 3081 3082 sdkp->lbpvpd = 1; 3083 sdkp->lbpu = (buffer[5] >> 7) & 1; /* UNMAP */ 3084 sdkp->lbpws = (buffer[5] >> 6) & 1; /* WRITE SAME(16) with UNMAP */ 3085 sdkp->lbpws10 = (buffer[5] >> 5) & 1; /* WRITE SAME(10) with UNMAP */ 3086 3087 out: 3088 kfree(buffer); 3089 } 3090 3091 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer) 3092 { 3093 struct scsi_device *sdev = sdkp->device; 3094 3095 if (sdev->host->no_write_same) { 3096 sdev->no_write_same = 1; 3097 3098 return; 3099 } 3100 3101 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) { 3102 /* too large values might cause issues with arcmsr */ 3103 int vpd_buf_len = 64; 3104 3105 sdev->no_report_opcodes = 1; 3106 3107 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION 3108 * CODES is unsupported and the device has an ATA 3109 * Information VPD page (SAT). 3110 */ 3111 if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len)) 3112 sdev->no_write_same = 1; 3113 } 3114 3115 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1) 3116 sdkp->ws16 = 1; 3117 3118 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1) 3119 sdkp->ws10 = 1; 3120 } 3121 3122 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer) 3123 { 3124 struct scsi_device *sdev = sdkp->device; 3125 3126 if (!sdev->security_supported) 3127 return; 3128 3129 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3130 SECURITY_PROTOCOL_IN) == 1 && 3131 scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3132 SECURITY_PROTOCOL_OUT) == 1) 3133 sdkp->security = 1; 3134 } 3135 3136 static inline sector_t sd64_to_sectors(struct scsi_disk *sdkp, u8 *buf) 3137 { 3138 return logical_to_sectors(sdkp->device, get_unaligned_be64(buf)); 3139 } 3140 3141 /** 3142 * sd_read_cpr - Query concurrent positioning ranges 3143 * @sdkp: disk to query 3144 */ 3145 static void sd_read_cpr(struct scsi_disk *sdkp) 3146 { 3147 struct blk_independent_access_ranges *iars = NULL; 3148 unsigned char *buffer = NULL; 3149 unsigned int nr_cpr = 0; 3150 int i, vpd_len, buf_len = SD_BUF_SIZE; 3151 u8 *desc; 3152 3153 /* 3154 * We need to have the capacity set first for the block layer to be 3155 * able to check the ranges. 3156 */ 3157 if (sdkp->first_scan) 3158 return; 3159 3160 if (!sdkp->capacity) 3161 goto out; 3162 3163 /* 3164 * Concurrent Positioning Ranges VPD: there can be at most 256 ranges, 3165 * leading to a maximum page size of 64 + 256*32 bytes. 3166 */ 3167 buf_len = 64 + 256*32; 3168 buffer = kmalloc(buf_len, GFP_KERNEL); 3169 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb9, buffer, buf_len)) 3170 goto out; 3171 3172 /* We must have at least a 64B header and one 32B range descriptor */ 3173 vpd_len = get_unaligned_be16(&buffer[2]) + 3; 3174 if (vpd_len > buf_len || vpd_len < 64 + 32 || (vpd_len & 31)) { 3175 sd_printk(KERN_ERR, sdkp, 3176 "Invalid Concurrent Positioning Ranges VPD page\n"); 3177 goto out; 3178 } 3179 3180 nr_cpr = (vpd_len - 64) / 32; 3181 if (nr_cpr == 1) { 3182 nr_cpr = 0; 3183 goto out; 3184 } 3185 3186 iars = disk_alloc_independent_access_ranges(sdkp->disk, nr_cpr); 3187 if (!iars) { 3188 nr_cpr = 0; 3189 goto out; 3190 } 3191 3192 desc = &buffer[64]; 3193 for (i = 0; i < nr_cpr; i++, desc += 32) { 3194 if (desc[0] != i) { 3195 sd_printk(KERN_ERR, sdkp, 3196 "Invalid Concurrent Positioning Range number\n"); 3197 nr_cpr = 0; 3198 break; 3199 } 3200 3201 iars->ia_range[i].sector = sd64_to_sectors(sdkp, desc + 8); 3202 iars->ia_range[i].nr_sectors = sd64_to_sectors(sdkp, desc + 16); 3203 } 3204 3205 out: 3206 disk_set_independent_access_ranges(sdkp->disk, iars); 3207 if (nr_cpr && sdkp->nr_actuators != nr_cpr) { 3208 sd_printk(KERN_NOTICE, sdkp, 3209 "%u concurrent positioning ranges\n", nr_cpr); 3210 sdkp->nr_actuators = nr_cpr; 3211 } 3212 3213 kfree(buffer); 3214 } 3215 3216 /* 3217 * Determine the device's preferred I/O size for reads and writes 3218 * unless the reported value is unreasonably small, large, not a 3219 * multiple of the physical block size, or simply garbage. 3220 */ 3221 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp, 3222 unsigned int dev_max) 3223 { 3224 struct scsi_device *sdp = sdkp->device; 3225 unsigned int opt_xfer_bytes = 3226 logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 3227 3228 if (sdkp->opt_xfer_blocks == 0) 3229 return false; 3230 3231 if (sdkp->opt_xfer_blocks > dev_max) { 3232 sd_first_printk(KERN_WARNING, sdkp, 3233 "Optimal transfer size %u logical blocks " \ 3234 "> dev_max (%u logical blocks)\n", 3235 sdkp->opt_xfer_blocks, dev_max); 3236 return false; 3237 } 3238 3239 if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) { 3240 sd_first_printk(KERN_WARNING, sdkp, 3241 "Optimal transfer size %u logical blocks " \ 3242 "> sd driver limit (%u logical blocks)\n", 3243 sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS); 3244 return false; 3245 } 3246 3247 if (opt_xfer_bytes < PAGE_SIZE) { 3248 sd_first_printk(KERN_WARNING, sdkp, 3249 "Optimal transfer size %u bytes < " \ 3250 "PAGE_SIZE (%u bytes)\n", 3251 opt_xfer_bytes, (unsigned int)PAGE_SIZE); 3252 return false; 3253 } 3254 3255 if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) { 3256 sd_first_printk(KERN_WARNING, sdkp, 3257 "Optimal transfer size %u bytes not a " \ 3258 "multiple of physical block size (%u bytes)\n", 3259 opt_xfer_bytes, sdkp->physical_block_size); 3260 return false; 3261 } 3262 3263 sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n", 3264 opt_xfer_bytes); 3265 return true; 3266 } 3267 3268 /** 3269 * sd_revalidate_disk - called the first time a new disk is seen, 3270 * performs disk spin up, read_capacity, etc. 3271 * @disk: struct gendisk we care about 3272 **/ 3273 static int sd_revalidate_disk(struct gendisk *disk) 3274 { 3275 struct scsi_disk *sdkp = scsi_disk(disk); 3276 struct scsi_device *sdp = sdkp->device; 3277 struct request_queue *q = sdkp->disk->queue; 3278 sector_t old_capacity = sdkp->capacity; 3279 unsigned char *buffer; 3280 unsigned int dev_max, rw_max; 3281 3282 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, 3283 "sd_revalidate_disk\n")); 3284 3285 /* 3286 * If the device is offline, don't try and read capacity or any 3287 * of the other niceties. 3288 */ 3289 if (!scsi_device_online(sdp)) 3290 goto out; 3291 3292 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL); 3293 if (!buffer) { 3294 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory " 3295 "allocation failure.\n"); 3296 goto out; 3297 } 3298 3299 sd_spinup_disk(sdkp); 3300 3301 /* 3302 * Without media there is no reason to ask; moreover, some devices 3303 * react badly if we do. 3304 */ 3305 if (sdkp->media_present) { 3306 sd_read_capacity(sdkp, buffer); 3307 3308 /* 3309 * set the default to rotational. All non-rotational devices 3310 * support the block characteristics VPD page, which will 3311 * cause this to be updated correctly and any device which 3312 * doesn't support it should be treated as rotational. 3313 */ 3314 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q); 3315 blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q); 3316 3317 if (scsi_device_supports_vpd(sdp)) { 3318 sd_read_block_provisioning(sdkp); 3319 sd_read_block_limits(sdkp); 3320 sd_read_block_characteristics(sdkp); 3321 sd_zbc_read_zones(sdkp, buffer); 3322 } 3323 3324 sd_print_capacity(sdkp, old_capacity); 3325 3326 sd_read_write_protect_flag(sdkp, buffer); 3327 sd_read_cache_type(sdkp, buffer); 3328 sd_read_app_tag_own(sdkp, buffer); 3329 sd_read_write_same(sdkp, buffer); 3330 sd_read_security(sdkp, buffer); 3331 sd_read_cpr(sdkp); 3332 } 3333 3334 /* 3335 * We now have all cache related info, determine how we deal 3336 * with flush requests. 3337 */ 3338 sd_set_flush_flag(sdkp); 3339 3340 /* Initial block count limit based on CDB TRANSFER LENGTH field size. */ 3341 dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS; 3342 3343 /* Some devices report a maximum block count for READ/WRITE requests. */ 3344 dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks); 3345 q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max); 3346 3347 if (sd_validate_opt_xfer_size(sdkp, dev_max)) { 3348 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 3349 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks); 3350 } else { 3351 q->limits.io_opt = 0; 3352 rw_max = min_not_zero(logical_to_sectors(sdp, dev_max), 3353 (sector_t)BLK_DEF_MAX_SECTORS); 3354 } 3355 3356 /* Do not exceed controller limit */ 3357 rw_max = min(rw_max, queue_max_hw_sectors(q)); 3358 3359 /* 3360 * Only update max_sectors if previously unset or if the current value 3361 * exceeds the capabilities of the hardware. 3362 */ 3363 if (sdkp->first_scan || 3364 q->limits.max_sectors > q->limits.max_dev_sectors || 3365 q->limits.max_sectors > q->limits.max_hw_sectors) 3366 q->limits.max_sectors = rw_max; 3367 3368 sdkp->first_scan = 0; 3369 3370 set_capacity_and_notify(disk, logical_to_sectors(sdp, sdkp->capacity)); 3371 sd_config_write_same(sdkp); 3372 kfree(buffer); 3373 3374 /* 3375 * For a zoned drive, revalidating the zones can be done only once 3376 * the gendisk capacity is set. So if this fails, set back the gendisk 3377 * capacity to 0. 3378 */ 3379 if (sd_zbc_revalidate_zones(sdkp)) 3380 set_capacity_and_notify(disk, 0); 3381 3382 out: 3383 return 0; 3384 } 3385 3386 /** 3387 * sd_unlock_native_capacity - unlock native capacity 3388 * @disk: struct gendisk to set capacity for 3389 * 3390 * Block layer calls this function if it detects that partitions 3391 * on @disk reach beyond the end of the device. If the SCSI host 3392 * implements ->unlock_native_capacity() method, it's invoked to 3393 * give it a chance to adjust the device capacity. 3394 * 3395 * CONTEXT: 3396 * Defined by block layer. Might sleep. 3397 */ 3398 static void sd_unlock_native_capacity(struct gendisk *disk) 3399 { 3400 struct scsi_device *sdev = scsi_disk(disk)->device; 3401 3402 if (sdev->host->hostt->unlock_native_capacity) 3403 sdev->host->hostt->unlock_native_capacity(sdev); 3404 } 3405 3406 /** 3407 * sd_format_disk_name - format disk name 3408 * @prefix: name prefix - ie. "sd" for SCSI disks 3409 * @index: index of the disk to format name for 3410 * @buf: output buffer 3411 * @buflen: length of the output buffer 3412 * 3413 * SCSI disk names starts at sda. The 26th device is sdz and the 3414 * 27th is sdaa. The last one for two lettered suffix is sdzz 3415 * which is followed by sdaaa. 3416 * 3417 * This is basically 26 base counting with one extra 'nil' entry 3418 * at the beginning from the second digit on and can be 3419 * determined using similar method as 26 base conversion with the 3420 * index shifted -1 after each digit is computed. 3421 * 3422 * CONTEXT: 3423 * Don't care. 3424 * 3425 * RETURNS: 3426 * 0 on success, -errno on failure. 3427 */ 3428 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen) 3429 { 3430 const int base = 'z' - 'a' + 1; 3431 char *begin = buf + strlen(prefix); 3432 char *end = buf + buflen; 3433 char *p; 3434 int unit; 3435 3436 p = end - 1; 3437 *p = '\0'; 3438 unit = base; 3439 do { 3440 if (p == begin) 3441 return -EINVAL; 3442 *--p = 'a' + (index % unit); 3443 index = (index / unit) - 1; 3444 } while (index >= 0); 3445 3446 memmove(begin, p, end - p); 3447 memcpy(buf, prefix, strlen(prefix)); 3448 3449 return 0; 3450 } 3451 3452 /** 3453 * sd_probe - called during driver initialization and whenever a 3454 * new scsi device is attached to the system. It is called once 3455 * for each scsi device (not just disks) present. 3456 * @dev: pointer to device object 3457 * 3458 * Returns 0 if successful (or not interested in this scsi device 3459 * (e.g. scanner)); 1 when there is an error. 3460 * 3461 * Note: this function is invoked from the scsi mid-level. 3462 * This function sets up the mapping between a given 3463 * <host,channel,id,lun> (found in sdp) and new device name 3464 * (e.g. /dev/sda). More precisely it is the block device major 3465 * and minor number that is chosen here. 3466 * 3467 * Assume sd_probe is not re-entrant (for time being) 3468 * Also think about sd_probe() and sd_remove() running coincidentally. 3469 **/ 3470 static int sd_probe(struct device *dev) 3471 { 3472 struct scsi_device *sdp = to_scsi_device(dev); 3473 struct scsi_disk *sdkp; 3474 struct gendisk *gd; 3475 int index; 3476 int error; 3477 3478 scsi_autopm_get_device(sdp); 3479 error = -ENODEV; 3480 if (sdp->type != TYPE_DISK && 3481 sdp->type != TYPE_ZBC && 3482 sdp->type != TYPE_MOD && 3483 sdp->type != TYPE_RBC) 3484 goto out; 3485 3486 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) && sdp->type == TYPE_ZBC) { 3487 sdev_printk(KERN_WARNING, sdp, 3488 "Unsupported ZBC host-managed device.\n"); 3489 goto out; 3490 } 3491 3492 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp, 3493 "sd_probe\n")); 3494 3495 error = -ENOMEM; 3496 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL); 3497 if (!sdkp) 3498 goto out; 3499 3500 gd = __alloc_disk_node(sdp->request_queue, NUMA_NO_NODE, 3501 &sd_bio_compl_lkclass); 3502 if (!gd) 3503 goto out_free; 3504 3505 index = ida_alloc(&sd_index_ida, GFP_KERNEL); 3506 if (index < 0) { 3507 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n"); 3508 goto out_put; 3509 } 3510 3511 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN); 3512 if (error) { 3513 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n"); 3514 goto out_free_index; 3515 } 3516 3517 sdkp->device = sdp; 3518 sdkp->driver = &sd_template; 3519 sdkp->disk = gd; 3520 sdkp->index = index; 3521 sdkp->max_retries = SD_MAX_RETRIES; 3522 atomic_set(&sdkp->openers, 0); 3523 atomic_set(&sdkp->device->ioerr_cnt, 0); 3524 3525 if (!sdp->request_queue->rq_timeout) { 3526 if (sdp->type != TYPE_MOD) 3527 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT); 3528 else 3529 blk_queue_rq_timeout(sdp->request_queue, 3530 SD_MOD_TIMEOUT); 3531 } 3532 3533 device_initialize(&sdkp->dev); 3534 sdkp->dev.parent = get_device(dev); 3535 sdkp->dev.class = &sd_disk_class; 3536 dev_set_name(&sdkp->dev, "%s", dev_name(dev)); 3537 3538 error = device_add(&sdkp->dev); 3539 if (error) { 3540 put_device(&sdkp->dev); 3541 goto out; 3542 } 3543 3544 dev_set_drvdata(dev, sdkp); 3545 3546 gd->major = sd_major((index & 0xf0) >> 4); 3547 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00); 3548 gd->minors = SD_MINORS; 3549 3550 gd->fops = &sd_fops; 3551 gd->private_data = &sdkp->driver; 3552 3553 /* defaults, until the device tells us otherwise */ 3554 sdp->sector_size = 512; 3555 sdkp->capacity = 0; 3556 sdkp->media_present = 1; 3557 sdkp->write_prot = 0; 3558 sdkp->cache_override = 0; 3559 sdkp->WCE = 0; 3560 sdkp->RCD = 0; 3561 sdkp->ATO = 0; 3562 sdkp->first_scan = 1; 3563 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS; 3564 3565 sd_revalidate_disk(gd); 3566 3567 if (sdp->removable) { 3568 gd->flags |= GENHD_FL_REMOVABLE; 3569 gd->events |= DISK_EVENT_MEDIA_CHANGE; 3570 gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT; 3571 } 3572 3573 blk_pm_runtime_init(sdp->request_queue, dev); 3574 if (sdp->rpm_autosuspend) { 3575 pm_runtime_set_autosuspend_delay(dev, 3576 sdp->host->hostt->rpm_autosuspend_delay); 3577 } 3578 3579 error = device_add_disk(dev, gd, NULL); 3580 if (error) { 3581 put_device(&sdkp->dev); 3582 goto out; 3583 } 3584 3585 if (sdkp->capacity) 3586 sd_dif_config_host(sdkp); 3587 3588 sd_revalidate_disk(gd); 3589 3590 if (sdkp->security) { 3591 sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit); 3592 if (sdkp->opal_dev) 3593 sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n"); 3594 } 3595 3596 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n", 3597 sdp->removable ? "removable " : ""); 3598 scsi_autopm_put_device(sdp); 3599 3600 return 0; 3601 3602 out_free_index: 3603 ida_free(&sd_index_ida, index); 3604 out_put: 3605 put_disk(gd); 3606 out_free: 3607 sd_zbc_release_disk(sdkp); 3608 kfree(sdkp); 3609 out: 3610 scsi_autopm_put_device(sdp); 3611 return error; 3612 } 3613 3614 /** 3615 * sd_remove - called whenever a scsi disk (previously recognized by 3616 * sd_probe) is detached from the system. It is called (potentially 3617 * multiple times) during sd module unload. 3618 * @dev: pointer to device object 3619 * 3620 * Note: this function is invoked from the scsi mid-level. 3621 * This function potentially frees up a device name (e.g. /dev/sdc) 3622 * that could be re-used by a subsequent sd_probe(). 3623 * This function is not called when the built-in sd driver is "exit-ed". 3624 **/ 3625 static int sd_remove(struct device *dev) 3626 { 3627 struct scsi_disk *sdkp; 3628 3629 sdkp = dev_get_drvdata(dev); 3630 scsi_autopm_get_device(sdkp->device); 3631 3632 device_del(&sdkp->dev); 3633 del_gendisk(sdkp->disk); 3634 sd_shutdown(dev); 3635 3636 free_opal_dev(sdkp->opal_dev); 3637 3638 mutex_lock(&sd_ref_mutex); 3639 dev_set_drvdata(dev, NULL); 3640 put_device(&sdkp->dev); 3641 mutex_unlock(&sd_ref_mutex); 3642 3643 return 0; 3644 } 3645 3646 /** 3647 * scsi_disk_release - Called to free the scsi_disk structure 3648 * @dev: pointer to embedded class device 3649 * 3650 * sd_ref_mutex must be held entering this routine. Because it is 3651 * called on last put, you should always use the scsi_disk_get() 3652 * scsi_disk_put() helpers which manipulate the semaphore directly 3653 * and never do a direct put_device. 3654 **/ 3655 static void scsi_disk_release(struct device *dev) 3656 { 3657 struct scsi_disk *sdkp = to_scsi_disk(dev); 3658 struct gendisk *disk = sdkp->disk; 3659 struct request_queue *q = disk->queue; 3660 3661 ida_free(&sd_index_ida, sdkp->index); 3662 3663 /* 3664 * Wait until all requests that are in progress have completed. 3665 * This is necessary to avoid that e.g. scsi_end_request() crashes 3666 * due to clearing the disk->private_data pointer. Wait from inside 3667 * scsi_disk_release() instead of from sd_release() to avoid that 3668 * freezing and unfreezing the request queue affects user space I/O 3669 * in case multiple processes open a /dev/sd... node concurrently. 3670 */ 3671 blk_mq_freeze_queue(q); 3672 blk_mq_unfreeze_queue(q); 3673 3674 disk->private_data = NULL; 3675 put_disk(disk); 3676 put_device(&sdkp->device->sdev_gendev); 3677 3678 sd_zbc_release_disk(sdkp); 3679 3680 kfree(sdkp); 3681 } 3682 3683 static int sd_start_stop_device(struct scsi_disk *sdkp, int start) 3684 { 3685 unsigned char cmd[6] = { START_STOP }; /* START_VALID */ 3686 struct scsi_sense_hdr sshdr; 3687 struct scsi_device *sdp = sdkp->device; 3688 int res; 3689 3690 if (start) 3691 cmd[4] |= 1; /* START */ 3692 3693 if (sdp->start_stop_pwr_cond) 3694 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */ 3695 3696 if (!scsi_device_online(sdp)) 3697 return -ENODEV; 3698 3699 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr, 3700 SD_TIMEOUT, sdkp->max_retries, 0, RQF_PM, NULL); 3701 if (res) { 3702 sd_print_result(sdkp, "Start/Stop Unit failed", res); 3703 if (res > 0 && scsi_sense_valid(&sshdr)) { 3704 sd_print_sense_hdr(sdkp, &sshdr); 3705 /* 0x3a is medium not present */ 3706 if (sshdr.asc == 0x3a) 3707 res = 0; 3708 } 3709 } 3710 3711 /* SCSI error codes must not go to the generic layer */ 3712 if (res) 3713 return -EIO; 3714 3715 return 0; 3716 } 3717 3718 /* 3719 * Send a SYNCHRONIZE CACHE instruction down to the device through 3720 * the normal SCSI command structure. Wait for the command to 3721 * complete. 3722 */ 3723 static void sd_shutdown(struct device *dev) 3724 { 3725 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3726 3727 if (!sdkp) 3728 return; /* this can happen */ 3729 3730 if (pm_runtime_suspended(dev)) 3731 return; 3732 3733 if (sdkp->WCE && sdkp->media_present) { 3734 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3735 sd_sync_cache(sdkp, NULL); 3736 } 3737 3738 if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) { 3739 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3740 sd_start_stop_device(sdkp, 0); 3741 } 3742 } 3743 3744 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors) 3745 { 3746 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3747 struct scsi_sense_hdr sshdr; 3748 int ret = 0; 3749 3750 if (!sdkp) /* E.g.: runtime suspend following sd_remove() */ 3751 return 0; 3752 3753 if (sdkp->WCE && sdkp->media_present) { 3754 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3755 ret = sd_sync_cache(sdkp, &sshdr); 3756 3757 if (ret) { 3758 /* ignore OFFLINE device */ 3759 if (ret == -ENODEV) 3760 return 0; 3761 3762 if (!scsi_sense_valid(&sshdr) || 3763 sshdr.sense_key != ILLEGAL_REQUEST) 3764 return ret; 3765 3766 /* 3767 * sshdr.sense_key == ILLEGAL_REQUEST means this drive 3768 * doesn't support sync. There's not much to do and 3769 * suspend shouldn't fail. 3770 */ 3771 ret = 0; 3772 } 3773 } 3774 3775 if (sdkp->device->manage_start_stop) { 3776 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3777 /* an error is not worth aborting a system sleep */ 3778 ret = sd_start_stop_device(sdkp, 0); 3779 if (ignore_stop_errors) 3780 ret = 0; 3781 } 3782 3783 return ret; 3784 } 3785 3786 static int sd_suspend_system(struct device *dev) 3787 { 3788 if (pm_runtime_suspended(dev)) 3789 return 0; 3790 3791 return sd_suspend_common(dev, true); 3792 } 3793 3794 static int sd_suspend_runtime(struct device *dev) 3795 { 3796 return sd_suspend_common(dev, false); 3797 } 3798 3799 static int sd_resume(struct device *dev) 3800 { 3801 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3802 int ret; 3803 3804 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */ 3805 return 0; 3806 3807 if (!sdkp->device->manage_start_stop) 3808 return 0; 3809 3810 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n"); 3811 ret = sd_start_stop_device(sdkp, 1); 3812 if (!ret) 3813 opal_unlock_from_suspend(sdkp->opal_dev); 3814 return ret; 3815 } 3816 3817 static int sd_resume_system(struct device *dev) 3818 { 3819 if (pm_runtime_suspended(dev)) 3820 return 0; 3821 3822 return sd_resume(dev); 3823 } 3824 3825 static int sd_resume_runtime(struct device *dev) 3826 { 3827 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3828 struct scsi_device *sdp; 3829 3830 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */ 3831 return 0; 3832 3833 sdp = sdkp->device; 3834 3835 if (sdp->ignore_media_change) { 3836 /* clear the device's sense data */ 3837 static const u8 cmd[10] = { REQUEST_SENSE }; 3838 3839 if (scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, 3840 NULL, sdp->request_queue->rq_timeout, 1, 0, 3841 RQF_PM, NULL)) 3842 sd_printk(KERN_NOTICE, sdkp, 3843 "Failed to clear sense data\n"); 3844 } 3845 3846 return sd_resume(dev); 3847 } 3848 3849 /** 3850 * init_sd - entry point for this driver (both when built in or when 3851 * a module). 3852 * 3853 * Note: this function registers this driver with the scsi mid-level. 3854 **/ 3855 static int __init init_sd(void) 3856 { 3857 int majors = 0, i, err; 3858 3859 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n")); 3860 3861 for (i = 0; i < SD_MAJORS; i++) { 3862 if (__register_blkdev(sd_major(i), "sd", sd_default_probe)) 3863 continue; 3864 majors++; 3865 } 3866 3867 if (!majors) 3868 return -ENODEV; 3869 3870 err = class_register(&sd_disk_class); 3871 if (err) 3872 goto err_out; 3873 3874 sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE, 3875 0, 0, NULL); 3876 if (!sd_cdb_cache) { 3877 printk(KERN_ERR "sd: can't init extended cdb cache\n"); 3878 err = -ENOMEM; 3879 goto err_out_class; 3880 } 3881 3882 sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache); 3883 if (!sd_cdb_pool) { 3884 printk(KERN_ERR "sd: can't init extended cdb pool\n"); 3885 err = -ENOMEM; 3886 goto err_out_cache; 3887 } 3888 3889 sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0); 3890 if (!sd_page_pool) { 3891 printk(KERN_ERR "sd: can't init discard page pool\n"); 3892 err = -ENOMEM; 3893 goto err_out_ppool; 3894 } 3895 3896 err = scsi_register_driver(&sd_template.gendrv); 3897 if (err) 3898 goto err_out_driver; 3899 3900 return 0; 3901 3902 err_out_driver: 3903 mempool_destroy(sd_page_pool); 3904 3905 err_out_ppool: 3906 mempool_destroy(sd_cdb_pool); 3907 3908 err_out_cache: 3909 kmem_cache_destroy(sd_cdb_cache); 3910 3911 err_out_class: 3912 class_unregister(&sd_disk_class); 3913 err_out: 3914 for (i = 0; i < SD_MAJORS; i++) 3915 unregister_blkdev(sd_major(i), "sd"); 3916 return err; 3917 } 3918 3919 /** 3920 * exit_sd - exit point for this driver (when it is a module). 3921 * 3922 * Note: this function unregisters this driver from the scsi mid-level. 3923 **/ 3924 static void __exit exit_sd(void) 3925 { 3926 int i; 3927 3928 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n")); 3929 3930 scsi_unregister_driver(&sd_template.gendrv); 3931 mempool_destroy(sd_cdb_pool); 3932 mempool_destroy(sd_page_pool); 3933 kmem_cache_destroy(sd_cdb_cache); 3934 3935 class_unregister(&sd_disk_class); 3936 3937 for (i = 0; i < SD_MAJORS; i++) 3938 unregister_blkdev(sd_major(i), "sd"); 3939 } 3940 3941 module_init(init_sd); 3942 module_exit(exit_sd); 3943 3944 void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr) 3945 { 3946 scsi_print_sense_hdr(sdkp->device, 3947 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr); 3948 } 3949 3950 void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result) 3951 { 3952 const char *hb_string = scsi_hostbyte_string(result); 3953 3954 if (hb_string) 3955 sd_printk(KERN_INFO, sdkp, 3956 "%s: Result: hostbyte=%s driverbyte=%s\n", msg, 3957 hb_string ? hb_string : "invalid", 3958 "DRIVER_OK"); 3959 else 3960 sd_printk(KERN_INFO, sdkp, 3961 "%s: Result: hostbyte=0x%02x driverbyte=%s\n", 3962 msg, host_byte(result), "DRIVER_OK"); 3963 } 3964