1 /* 2 * sd.c Copyright (C) 1992 Drew Eckhardt 3 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale 4 * 5 * Linux scsi disk driver 6 * Initial versions: Drew Eckhardt 7 * Subsequent revisions: Eric Youngdale 8 * Modification history: 9 * - Drew Eckhardt <drew@colorado.edu> original 10 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 11 * outstanding request, and other enhancements. 12 * Support loadable low-level scsi drivers. 13 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 14 * eight major numbers. 15 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs. 16 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 17 * sd_init and cleanups. 18 * - Alex Davis <letmein@erols.com> Fix problem where partition info 19 * not being read in sd_open. Fix problem where removable media 20 * could be ejected after sd_open. 21 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x 22 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 23 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 24 * Support 32k/1M disks. 25 * 26 * Logging policy (needs CONFIG_SCSI_LOGGING defined): 27 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2 28 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1 29 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1 30 * - entering other commands: SCSI_LOG_HLQUEUE level 3 31 * Note: when the logging level is set by the user, it must be greater 32 * than the level indicated above to trigger output. 33 */ 34 35 #include <linux/module.h> 36 #include <linux/fs.h> 37 #include <linux/kernel.h> 38 #include <linux/mm.h> 39 #include <linux/bio.h> 40 #include <linux/genhd.h> 41 #include <linux/hdreg.h> 42 #include <linux/errno.h> 43 #include <linux/idr.h> 44 #include <linux/interrupt.h> 45 #include <linux/init.h> 46 #include <linux/blkdev.h> 47 #include <linux/blkpg.h> 48 #include <linux/delay.h> 49 #include <linux/mutex.h> 50 #include <linux/string_helpers.h> 51 #include <linux/async.h> 52 #include <linux/slab.h> 53 #include <linux/pm_runtime.h> 54 #include <linux/pr.h> 55 #include <asm/uaccess.h> 56 #include <asm/unaligned.h> 57 58 #include <scsi/scsi.h> 59 #include <scsi/scsi_cmnd.h> 60 #include <scsi/scsi_dbg.h> 61 #include <scsi/scsi_device.h> 62 #include <scsi/scsi_driver.h> 63 #include <scsi/scsi_eh.h> 64 #include <scsi/scsi_host.h> 65 #include <scsi/scsi_ioctl.h> 66 #include <scsi/scsicam.h> 67 68 #include "sd.h" 69 #include "scsi_priv.h" 70 #include "scsi_logging.h" 71 72 MODULE_AUTHOR("Eric Youngdale"); 73 MODULE_DESCRIPTION("SCSI disk (sd) driver"); 74 MODULE_LICENSE("GPL"); 75 76 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR); 77 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR); 78 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR); 79 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR); 80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR); 81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR); 82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR); 83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR); 84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR); 85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR); 86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR); 87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR); 88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR); 89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR); 90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR); 91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR); 92 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK); 93 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD); 94 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC); 95 96 #if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT) 97 #define SD_MINORS 16 98 #else 99 #define SD_MINORS 0 100 #endif 101 102 static void sd_config_discard(struct scsi_disk *, unsigned int); 103 static void sd_config_write_same(struct scsi_disk *); 104 static int sd_revalidate_disk(struct gendisk *); 105 static void sd_unlock_native_capacity(struct gendisk *disk); 106 static int sd_probe(struct device *); 107 static int sd_remove(struct device *); 108 static void sd_shutdown(struct device *); 109 static int sd_suspend_system(struct device *); 110 static int sd_suspend_runtime(struct device *); 111 static int sd_resume(struct device *); 112 static void sd_rescan(struct device *); 113 static int sd_init_command(struct scsi_cmnd *SCpnt); 114 static void sd_uninit_command(struct scsi_cmnd *SCpnt); 115 static int sd_done(struct scsi_cmnd *); 116 static int sd_eh_action(struct scsi_cmnd *, int); 117 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer); 118 static void scsi_disk_release(struct device *cdev); 119 static void sd_print_sense_hdr(struct scsi_disk *, struct scsi_sense_hdr *); 120 static void sd_print_result(const struct scsi_disk *, const char *, int); 121 122 static DEFINE_SPINLOCK(sd_index_lock); 123 static DEFINE_IDA(sd_index_ida); 124 125 /* This semaphore is used to mediate the 0->1 reference get in the 126 * face of object destruction (i.e. we can't allow a get on an 127 * object after last put) */ 128 static DEFINE_MUTEX(sd_ref_mutex); 129 130 static struct kmem_cache *sd_cdb_cache; 131 static mempool_t *sd_cdb_pool; 132 133 static const char *sd_cache_types[] = { 134 "write through", "none", "write back", 135 "write back, no read (daft)" 136 }; 137 138 static void sd_set_flush_flag(struct scsi_disk *sdkp) 139 { 140 unsigned flush = 0; 141 142 if (sdkp->WCE) { 143 flush |= REQ_FLUSH; 144 if (sdkp->DPOFUA) 145 flush |= REQ_FUA; 146 } 147 148 blk_queue_flush(sdkp->disk->queue, flush); 149 } 150 151 static ssize_t 152 cache_type_store(struct device *dev, struct device_attribute *attr, 153 const char *buf, size_t count) 154 { 155 int i, ct = -1, rcd, wce, sp; 156 struct scsi_disk *sdkp = to_scsi_disk(dev); 157 struct scsi_device *sdp = sdkp->device; 158 char buffer[64]; 159 char *buffer_data; 160 struct scsi_mode_data data; 161 struct scsi_sense_hdr sshdr; 162 static const char temp[] = "temporary "; 163 int len; 164 165 if (sdp->type != TYPE_DISK) 166 /* no cache control on RBC devices; theoretically they 167 * can do it, but there's probably so many exceptions 168 * it's not worth the risk */ 169 return -EINVAL; 170 171 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) { 172 buf += sizeof(temp) - 1; 173 sdkp->cache_override = 1; 174 } else { 175 sdkp->cache_override = 0; 176 } 177 178 for (i = 0; i < ARRAY_SIZE(sd_cache_types); i++) { 179 len = strlen(sd_cache_types[i]); 180 if (strncmp(sd_cache_types[i], buf, len) == 0 && 181 buf[len] == '\n') { 182 ct = i; 183 break; 184 } 185 } 186 if (ct < 0) 187 return -EINVAL; 188 rcd = ct & 0x01 ? 1 : 0; 189 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0; 190 191 if (sdkp->cache_override) { 192 sdkp->WCE = wce; 193 sdkp->RCD = rcd; 194 sd_set_flush_flag(sdkp); 195 return count; 196 } 197 198 if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT, 199 SD_MAX_RETRIES, &data, NULL)) 200 return -EINVAL; 201 len = min_t(size_t, sizeof(buffer), data.length - data.header_length - 202 data.block_descriptor_length); 203 buffer_data = buffer + data.header_length + 204 data.block_descriptor_length; 205 buffer_data[2] &= ~0x05; 206 buffer_data[2] |= wce << 2 | rcd; 207 sp = buffer_data[0] & 0x80 ? 1 : 0; 208 buffer_data[0] &= ~0x80; 209 210 if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT, 211 SD_MAX_RETRIES, &data, &sshdr)) { 212 if (scsi_sense_valid(&sshdr)) 213 sd_print_sense_hdr(sdkp, &sshdr); 214 return -EINVAL; 215 } 216 revalidate_disk(sdkp->disk); 217 return count; 218 } 219 220 static ssize_t 221 manage_start_stop_show(struct device *dev, struct device_attribute *attr, 222 char *buf) 223 { 224 struct scsi_disk *sdkp = to_scsi_disk(dev); 225 struct scsi_device *sdp = sdkp->device; 226 227 return snprintf(buf, 20, "%u\n", sdp->manage_start_stop); 228 } 229 230 static ssize_t 231 manage_start_stop_store(struct device *dev, struct device_attribute *attr, 232 const char *buf, size_t count) 233 { 234 struct scsi_disk *sdkp = to_scsi_disk(dev); 235 struct scsi_device *sdp = sdkp->device; 236 237 if (!capable(CAP_SYS_ADMIN)) 238 return -EACCES; 239 240 sdp->manage_start_stop = simple_strtoul(buf, NULL, 10); 241 242 return count; 243 } 244 static DEVICE_ATTR_RW(manage_start_stop); 245 246 static ssize_t 247 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf) 248 { 249 struct scsi_disk *sdkp = to_scsi_disk(dev); 250 251 return snprintf(buf, 40, "%d\n", sdkp->device->allow_restart); 252 } 253 254 static ssize_t 255 allow_restart_store(struct device *dev, struct device_attribute *attr, 256 const char *buf, size_t count) 257 { 258 struct scsi_disk *sdkp = to_scsi_disk(dev); 259 struct scsi_device *sdp = sdkp->device; 260 261 if (!capable(CAP_SYS_ADMIN)) 262 return -EACCES; 263 264 if (sdp->type != TYPE_DISK) 265 return -EINVAL; 266 267 sdp->allow_restart = simple_strtoul(buf, NULL, 10); 268 269 return count; 270 } 271 static DEVICE_ATTR_RW(allow_restart); 272 273 static ssize_t 274 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf) 275 { 276 struct scsi_disk *sdkp = to_scsi_disk(dev); 277 int ct = sdkp->RCD + 2*sdkp->WCE; 278 279 return snprintf(buf, 40, "%s\n", sd_cache_types[ct]); 280 } 281 static DEVICE_ATTR_RW(cache_type); 282 283 static ssize_t 284 FUA_show(struct device *dev, struct device_attribute *attr, char *buf) 285 { 286 struct scsi_disk *sdkp = to_scsi_disk(dev); 287 288 return snprintf(buf, 20, "%u\n", sdkp->DPOFUA); 289 } 290 static DEVICE_ATTR_RO(FUA); 291 292 static ssize_t 293 protection_type_show(struct device *dev, struct device_attribute *attr, 294 char *buf) 295 { 296 struct scsi_disk *sdkp = to_scsi_disk(dev); 297 298 return snprintf(buf, 20, "%u\n", sdkp->protection_type); 299 } 300 301 static ssize_t 302 protection_type_store(struct device *dev, struct device_attribute *attr, 303 const char *buf, size_t count) 304 { 305 struct scsi_disk *sdkp = to_scsi_disk(dev); 306 unsigned int val; 307 int err; 308 309 if (!capable(CAP_SYS_ADMIN)) 310 return -EACCES; 311 312 err = kstrtouint(buf, 10, &val); 313 314 if (err) 315 return err; 316 317 if (val >= 0 && val <= SD_DIF_TYPE3_PROTECTION) 318 sdkp->protection_type = val; 319 320 return count; 321 } 322 static DEVICE_ATTR_RW(protection_type); 323 324 static ssize_t 325 protection_mode_show(struct device *dev, struct device_attribute *attr, 326 char *buf) 327 { 328 struct scsi_disk *sdkp = to_scsi_disk(dev); 329 struct scsi_device *sdp = sdkp->device; 330 unsigned int dif, dix; 331 332 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type); 333 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type); 334 335 if (!dix && scsi_host_dix_capable(sdp->host, SD_DIF_TYPE0_PROTECTION)) { 336 dif = 0; 337 dix = 1; 338 } 339 340 if (!dif && !dix) 341 return snprintf(buf, 20, "none\n"); 342 343 return snprintf(buf, 20, "%s%u\n", dix ? "dix" : "dif", dif); 344 } 345 static DEVICE_ATTR_RO(protection_mode); 346 347 static ssize_t 348 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf) 349 { 350 struct scsi_disk *sdkp = to_scsi_disk(dev); 351 352 return snprintf(buf, 20, "%u\n", sdkp->ATO); 353 } 354 static DEVICE_ATTR_RO(app_tag_own); 355 356 static ssize_t 357 thin_provisioning_show(struct device *dev, struct device_attribute *attr, 358 char *buf) 359 { 360 struct scsi_disk *sdkp = to_scsi_disk(dev); 361 362 return snprintf(buf, 20, "%u\n", sdkp->lbpme); 363 } 364 static DEVICE_ATTR_RO(thin_provisioning); 365 366 static const char *lbp_mode[] = { 367 [SD_LBP_FULL] = "full", 368 [SD_LBP_UNMAP] = "unmap", 369 [SD_LBP_WS16] = "writesame_16", 370 [SD_LBP_WS10] = "writesame_10", 371 [SD_LBP_ZERO] = "writesame_zero", 372 [SD_LBP_DISABLE] = "disabled", 373 }; 374 375 static ssize_t 376 provisioning_mode_show(struct device *dev, struct device_attribute *attr, 377 char *buf) 378 { 379 struct scsi_disk *sdkp = to_scsi_disk(dev); 380 381 return snprintf(buf, 20, "%s\n", lbp_mode[sdkp->provisioning_mode]); 382 } 383 384 static ssize_t 385 provisioning_mode_store(struct device *dev, struct device_attribute *attr, 386 const char *buf, size_t count) 387 { 388 struct scsi_disk *sdkp = to_scsi_disk(dev); 389 struct scsi_device *sdp = sdkp->device; 390 391 if (!capable(CAP_SYS_ADMIN)) 392 return -EACCES; 393 394 if (sdp->type != TYPE_DISK) 395 return -EINVAL; 396 397 if (!strncmp(buf, lbp_mode[SD_LBP_UNMAP], 20)) 398 sd_config_discard(sdkp, SD_LBP_UNMAP); 399 else if (!strncmp(buf, lbp_mode[SD_LBP_WS16], 20)) 400 sd_config_discard(sdkp, SD_LBP_WS16); 401 else if (!strncmp(buf, lbp_mode[SD_LBP_WS10], 20)) 402 sd_config_discard(sdkp, SD_LBP_WS10); 403 else if (!strncmp(buf, lbp_mode[SD_LBP_ZERO], 20)) 404 sd_config_discard(sdkp, SD_LBP_ZERO); 405 else if (!strncmp(buf, lbp_mode[SD_LBP_DISABLE], 20)) 406 sd_config_discard(sdkp, SD_LBP_DISABLE); 407 else 408 return -EINVAL; 409 410 return count; 411 } 412 static DEVICE_ATTR_RW(provisioning_mode); 413 414 static ssize_t 415 max_medium_access_timeouts_show(struct device *dev, 416 struct device_attribute *attr, char *buf) 417 { 418 struct scsi_disk *sdkp = to_scsi_disk(dev); 419 420 return snprintf(buf, 20, "%u\n", sdkp->max_medium_access_timeouts); 421 } 422 423 static ssize_t 424 max_medium_access_timeouts_store(struct device *dev, 425 struct device_attribute *attr, const char *buf, 426 size_t count) 427 { 428 struct scsi_disk *sdkp = to_scsi_disk(dev); 429 int err; 430 431 if (!capable(CAP_SYS_ADMIN)) 432 return -EACCES; 433 434 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts); 435 436 return err ? err : count; 437 } 438 static DEVICE_ATTR_RW(max_medium_access_timeouts); 439 440 static ssize_t 441 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr, 442 char *buf) 443 { 444 struct scsi_disk *sdkp = to_scsi_disk(dev); 445 446 return snprintf(buf, 20, "%u\n", sdkp->max_ws_blocks); 447 } 448 449 static ssize_t 450 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr, 451 const char *buf, size_t count) 452 { 453 struct scsi_disk *sdkp = to_scsi_disk(dev); 454 struct scsi_device *sdp = sdkp->device; 455 unsigned long max; 456 int err; 457 458 if (!capable(CAP_SYS_ADMIN)) 459 return -EACCES; 460 461 if (sdp->type != TYPE_DISK) 462 return -EINVAL; 463 464 err = kstrtoul(buf, 10, &max); 465 466 if (err) 467 return err; 468 469 if (max == 0) 470 sdp->no_write_same = 1; 471 else if (max <= SD_MAX_WS16_BLOCKS) { 472 sdp->no_write_same = 0; 473 sdkp->max_ws_blocks = max; 474 } 475 476 sd_config_write_same(sdkp); 477 478 return count; 479 } 480 static DEVICE_ATTR_RW(max_write_same_blocks); 481 482 static struct attribute *sd_disk_attrs[] = { 483 &dev_attr_cache_type.attr, 484 &dev_attr_FUA.attr, 485 &dev_attr_allow_restart.attr, 486 &dev_attr_manage_start_stop.attr, 487 &dev_attr_protection_type.attr, 488 &dev_attr_protection_mode.attr, 489 &dev_attr_app_tag_own.attr, 490 &dev_attr_thin_provisioning.attr, 491 &dev_attr_provisioning_mode.attr, 492 &dev_attr_max_write_same_blocks.attr, 493 &dev_attr_max_medium_access_timeouts.attr, 494 NULL, 495 }; 496 ATTRIBUTE_GROUPS(sd_disk); 497 498 static struct class sd_disk_class = { 499 .name = "scsi_disk", 500 .owner = THIS_MODULE, 501 .dev_release = scsi_disk_release, 502 .dev_groups = sd_disk_groups, 503 }; 504 505 static const struct dev_pm_ops sd_pm_ops = { 506 .suspend = sd_suspend_system, 507 .resume = sd_resume, 508 .poweroff = sd_suspend_system, 509 .restore = sd_resume, 510 .runtime_suspend = sd_suspend_runtime, 511 .runtime_resume = sd_resume, 512 }; 513 514 static struct scsi_driver sd_template = { 515 .gendrv = { 516 .name = "sd", 517 .owner = THIS_MODULE, 518 .probe = sd_probe, 519 .remove = sd_remove, 520 .shutdown = sd_shutdown, 521 .pm = &sd_pm_ops, 522 }, 523 .rescan = sd_rescan, 524 .init_command = sd_init_command, 525 .uninit_command = sd_uninit_command, 526 .done = sd_done, 527 .eh_action = sd_eh_action, 528 }; 529 530 /* 531 * Dummy kobj_map->probe function. 532 * The default ->probe function will call modprobe, which is 533 * pointless as this module is already loaded. 534 */ 535 static struct kobject *sd_default_probe(dev_t devt, int *partno, void *data) 536 { 537 return NULL; 538 } 539 540 /* 541 * Device no to disk mapping: 542 * 543 * major disc2 disc p1 544 * |............|.............|....|....| <- dev_t 545 * 31 20 19 8 7 4 3 0 546 * 547 * Inside a major, we have 16k disks, however mapped non- 548 * contiguously. The first 16 disks are for major0, the next 549 * ones with major1, ... Disk 256 is for major0 again, disk 272 550 * for major1, ... 551 * As we stay compatible with our numbering scheme, we can reuse 552 * the well-know SCSI majors 8, 65--71, 136--143. 553 */ 554 static int sd_major(int major_idx) 555 { 556 switch (major_idx) { 557 case 0: 558 return SCSI_DISK0_MAJOR; 559 case 1 ... 7: 560 return SCSI_DISK1_MAJOR + major_idx - 1; 561 case 8 ... 15: 562 return SCSI_DISK8_MAJOR + major_idx - 8; 563 default: 564 BUG(); 565 return 0; /* shut up gcc */ 566 } 567 } 568 569 static struct scsi_disk *scsi_disk_get(struct gendisk *disk) 570 { 571 struct scsi_disk *sdkp = NULL; 572 573 mutex_lock(&sd_ref_mutex); 574 575 if (disk->private_data) { 576 sdkp = scsi_disk(disk); 577 if (scsi_device_get(sdkp->device) == 0) 578 get_device(&sdkp->dev); 579 else 580 sdkp = NULL; 581 } 582 mutex_unlock(&sd_ref_mutex); 583 return sdkp; 584 } 585 586 static void scsi_disk_put(struct scsi_disk *sdkp) 587 { 588 struct scsi_device *sdev = sdkp->device; 589 590 mutex_lock(&sd_ref_mutex); 591 put_device(&sdkp->dev); 592 scsi_device_put(sdev); 593 mutex_unlock(&sd_ref_mutex); 594 } 595 596 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd, 597 unsigned int dix, unsigned int dif) 598 { 599 struct bio *bio = scmd->request->bio; 600 unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif); 601 unsigned int protect = 0; 602 603 if (dix) { /* DIX Type 0, 1, 2, 3 */ 604 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM)) 605 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM; 606 607 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 608 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK; 609 } 610 611 if (dif != SD_DIF_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */ 612 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT; 613 614 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 615 scmd->prot_flags |= SCSI_PROT_REF_CHECK; 616 } 617 618 if (dif) { /* DIX/DIF Type 1, 2, 3 */ 619 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI; 620 621 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK)) 622 protect = 3 << 5; /* Disable target PI checking */ 623 else 624 protect = 1 << 5; /* Enable target PI checking */ 625 } 626 627 scsi_set_prot_op(scmd, prot_op); 628 scsi_set_prot_type(scmd, dif); 629 scmd->prot_flags &= sd_prot_flag_mask(prot_op); 630 631 return protect; 632 } 633 634 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode) 635 { 636 struct request_queue *q = sdkp->disk->queue; 637 unsigned int logical_block_size = sdkp->device->sector_size; 638 unsigned int max_blocks = 0; 639 640 q->limits.discard_zeroes_data = 0; 641 q->limits.discard_alignment = sdkp->unmap_alignment * 642 logical_block_size; 643 q->limits.discard_granularity = 644 max(sdkp->physical_block_size, 645 sdkp->unmap_granularity * logical_block_size); 646 647 sdkp->provisioning_mode = mode; 648 649 switch (mode) { 650 651 case SD_LBP_DISABLE: 652 blk_queue_max_discard_sectors(q, 0); 653 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q); 654 return; 655 656 case SD_LBP_UNMAP: 657 max_blocks = min_not_zero(sdkp->max_unmap_blocks, 658 (u32)SD_MAX_WS16_BLOCKS); 659 break; 660 661 case SD_LBP_WS16: 662 max_blocks = min_not_zero(sdkp->max_ws_blocks, 663 (u32)SD_MAX_WS16_BLOCKS); 664 q->limits.discard_zeroes_data = sdkp->lbprz; 665 break; 666 667 case SD_LBP_WS10: 668 max_blocks = min_not_zero(sdkp->max_ws_blocks, 669 (u32)SD_MAX_WS10_BLOCKS); 670 q->limits.discard_zeroes_data = sdkp->lbprz; 671 break; 672 673 case SD_LBP_ZERO: 674 max_blocks = min_not_zero(sdkp->max_ws_blocks, 675 (u32)SD_MAX_WS10_BLOCKS); 676 q->limits.discard_zeroes_data = 1; 677 break; 678 } 679 680 blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9)); 681 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q); 682 } 683 684 /** 685 * sd_setup_discard_cmnd - unmap blocks on thinly provisioned device 686 * @sdp: scsi device to operate one 687 * @rq: Request to prepare 688 * 689 * Will issue either UNMAP or WRITE SAME(16) depending on preference 690 * indicated by target device. 691 **/ 692 static int sd_setup_discard_cmnd(struct scsi_cmnd *cmd) 693 { 694 struct request *rq = cmd->request; 695 struct scsi_device *sdp = cmd->device; 696 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 697 sector_t sector = blk_rq_pos(rq); 698 unsigned int nr_sectors = blk_rq_sectors(rq); 699 unsigned int nr_bytes = blk_rq_bytes(rq); 700 unsigned int len; 701 int ret; 702 char *buf; 703 struct page *page; 704 705 sector >>= ilog2(sdp->sector_size) - 9; 706 nr_sectors >>= ilog2(sdp->sector_size) - 9; 707 708 page = alloc_page(GFP_ATOMIC | __GFP_ZERO); 709 if (!page) 710 return BLKPREP_DEFER; 711 712 switch (sdkp->provisioning_mode) { 713 case SD_LBP_UNMAP: 714 buf = page_address(page); 715 716 cmd->cmd_len = 10; 717 cmd->cmnd[0] = UNMAP; 718 cmd->cmnd[8] = 24; 719 720 put_unaligned_be16(6 + 16, &buf[0]); 721 put_unaligned_be16(16, &buf[2]); 722 put_unaligned_be64(sector, &buf[8]); 723 put_unaligned_be32(nr_sectors, &buf[16]); 724 725 len = 24; 726 break; 727 728 case SD_LBP_WS16: 729 cmd->cmd_len = 16; 730 cmd->cmnd[0] = WRITE_SAME_16; 731 cmd->cmnd[1] = 0x8; /* UNMAP */ 732 put_unaligned_be64(sector, &cmd->cmnd[2]); 733 put_unaligned_be32(nr_sectors, &cmd->cmnd[10]); 734 735 len = sdkp->device->sector_size; 736 break; 737 738 case SD_LBP_WS10: 739 case SD_LBP_ZERO: 740 cmd->cmd_len = 10; 741 cmd->cmnd[0] = WRITE_SAME; 742 if (sdkp->provisioning_mode == SD_LBP_WS10) 743 cmd->cmnd[1] = 0x8; /* UNMAP */ 744 put_unaligned_be32(sector, &cmd->cmnd[2]); 745 put_unaligned_be16(nr_sectors, &cmd->cmnd[7]); 746 747 len = sdkp->device->sector_size; 748 break; 749 750 default: 751 ret = BLKPREP_KILL; 752 goto out; 753 } 754 755 rq->completion_data = page; 756 rq->timeout = SD_TIMEOUT; 757 758 cmd->transfersize = len; 759 cmd->allowed = SD_MAX_RETRIES; 760 761 /* 762 * Initially __data_len is set to the amount of data that needs to be 763 * transferred to the target. This amount depends on whether WRITE SAME 764 * or UNMAP is being used. After the scatterlist has been mapped by 765 * scsi_init_io() we set __data_len to the size of the area to be 766 * discarded on disk. This allows us to report completion on the full 767 * amount of blocks described by the request. 768 */ 769 blk_add_request_payload(rq, page, len); 770 ret = scsi_init_io(cmd); 771 rq->__data_len = nr_bytes; 772 773 out: 774 if (ret != BLKPREP_OK) 775 __free_page(page); 776 return ret; 777 } 778 779 static void sd_config_write_same(struct scsi_disk *sdkp) 780 { 781 struct request_queue *q = sdkp->disk->queue; 782 unsigned int logical_block_size = sdkp->device->sector_size; 783 784 if (sdkp->device->no_write_same) { 785 sdkp->max_ws_blocks = 0; 786 goto out; 787 } 788 789 /* Some devices can not handle block counts above 0xffff despite 790 * supporting WRITE SAME(16). Consequently we default to 64k 791 * blocks per I/O unless the device explicitly advertises a 792 * bigger limit. 793 */ 794 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS) 795 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 796 (u32)SD_MAX_WS16_BLOCKS); 797 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes) 798 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 799 (u32)SD_MAX_WS10_BLOCKS); 800 else { 801 sdkp->device->no_write_same = 1; 802 sdkp->max_ws_blocks = 0; 803 } 804 805 out: 806 blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks * 807 (logical_block_size >> 9)); 808 } 809 810 /** 811 * sd_setup_write_same_cmnd - write the same data to multiple blocks 812 * @cmd: command to prepare 813 * 814 * Will issue either WRITE SAME(10) or WRITE SAME(16) depending on 815 * preference indicated by target device. 816 **/ 817 static int sd_setup_write_same_cmnd(struct scsi_cmnd *cmd) 818 { 819 struct request *rq = cmd->request; 820 struct scsi_device *sdp = cmd->device; 821 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 822 struct bio *bio = rq->bio; 823 sector_t sector = blk_rq_pos(rq); 824 unsigned int nr_sectors = blk_rq_sectors(rq); 825 unsigned int nr_bytes = blk_rq_bytes(rq); 826 int ret; 827 828 if (sdkp->device->no_write_same) 829 return BLKPREP_KILL; 830 831 BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size); 832 833 sector >>= ilog2(sdp->sector_size) - 9; 834 nr_sectors >>= ilog2(sdp->sector_size) - 9; 835 836 rq->timeout = SD_WRITE_SAME_TIMEOUT; 837 838 if (sdkp->ws16 || sector > 0xffffffff || nr_sectors > 0xffff) { 839 cmd->cmd_len = 16; 840 cmd->cmnd[0] = WRITE_SAME_16; 841 put_unaligned_be64(sector, &cmd->cmnd[2]); 842 put_unaligned_be32(nr_sectors, &cmd->cmnd[10]); 843 } else { 844 cmd->cmd_len = 10; 845 cmd->cmnd[0] = WRITE_SAME; 846 put_unaligned_be32(sector, &cmd->cmnd[2]); 847 put_unaligned_be16(nr_sectors, &cmd->cmnd[7]); 848 } 849 850 cmd->transfersize = sdp->sector_size; 851 cmd->allowed = SD_MAX_RETRIES; 852 853 /* 854 * For WRITE_SAME the data transferred in the DATA IN buffer is 855 * different from the amount of data actually written to the target. 856 * 857 * We set up __data_len to the amount of data transferred from the 858 * DATA IN buffer so that blk_rq_map_sg set up the proper S/G list 859 * to transfer a single sector of data first, but then reset it to 860 * the amount of data to be written right after so that the I/O path 861 * knows how much to actually write. 862 */ 863 rq->__data_len = sdp->sector_size; 864 ret = scsi_init_io(cmd); 865 rq->__data_len = nr_bytes; 866 return ret; 867 } 868 869 static int sd_setup_flush_cmnd(struct scsi_cmnd *cmd) 870 { 871 struct request *rq = cmd->request; 872 873 /* flush requests don't perform I/O, zero the S/G table */ 874 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 875 876 cmd->cmnd[0] = SYNCHRONIZE_CACHE; 877 cmd->cmd_len = 10; 878 cmd->transfersize = 0; 879 cmd->allowed = SD_MAX_RETRIES; 880 881 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER; 882 return BLKPREP_OK; 883 } 884 885 static int sd_setup_read_write_cmnd(struct scsi_cmnd *SCpnt) 886 { 887 struct request *rq = SCpnt->request; 888 struct scsi_device *sdp = SCpnt->device; 889 struct gendisk *disk = rq->rq_disk; 890 struct scsi_disk *sdkp; 891 sector_t block = blk_rq_pos(rq); 892 sector_t threshold; 893 unsigned int this_count = blk_rq_sectors(rq); 894 unsigned int dif, dix; 895 int ret; 896 unsigned char protect; 897 898 ret = scsi_init_io(SCpnt); 899 if (ret != BLKPREP_OK) 900 goto out; 901 SCpnt = rq->special; 902 sdkp = scsi_disk(disk); 903 904 /* from here on until we're complete, any goto out 905 * is used for a killable error condition */ 906 ret = BLKPREP_KILL; 907 908 SCSI_LOG_HLQUEUE(1, 909 scmd_printk(KERN_INFO, SCpnt, 910 "%s: block=%llu, count=%d\n", 911 __func__, (unsigned long long)block, this_count)); 912 913 if (!sdp || !scsi_device_online(sdp) || 914 block + blk_rq_sectors(rq) > get_capacity(disk)) { 915 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, 916 "Finishing %u sectors\n", 917 blk_rq_sectors(rq))); 918 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, 919 "Retry with 0x%p\n", SCpnt)); 920 goto out; 921 } 922 923 if (sdp->changed) { 924 /* 925 * quietly refuse to do anything to a changed disc until 926 * the changed bit has been reset 927 */ 928 /* printk("SCSI disk has been changed or is not present. Prohibiting further I/O.\n"); */ 929 goto out; 930 } 931 932 /* 933 * Some SD card readers can't handle multi-sector accesses which touch 934 * the last one or two hardware sectors. Split accesses as needed. 935 */ 936 threshold = get_capacity(disk) - SD_LAST_BUGGY_SECTORS * 937 (sdp->sector_size / 512); 938 939 if (unlikely(sdp->last_sector_bug && block + this_count > threshold)) { 940 if (block < threshold) { 941 /* Access up to the threshold but not beyond */ 942 this_count = threshold - block; 943 } else { 944 /* Access only a single hardware sector */ 945 this_count = sdp->sector_size / 512; 946 } 947 } 948 949 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, "block=%llu\n", 950 (unsigned long long)block)); 951 952 /* 953 * If we have a 1K hardware sectorsize, prevent access to single 954 * 512 byte sectors. In theory we could handle this - in fact 955 * the scsi cdrom driver must be able to handle this because 956 * we typically use 1K blocksizes, and cdroms typically have 957 * 2K hardware sectorsizes. Of course, things are simpler 958 * with the cdrom, since it is read-only. For performance 959 * reasons, the filesystems should be able to handle this 960 * and not force the scsi disk driver to use bounce buffers 961 * for this. 962 */ 963 if (sdp->sector_size == 1024) { 964 if ((block & 1) || (blk_rq_sectors(rq) & 1)) { 965 scmd_printk(KERN_ERR, SCpnt, 966 "Bad block number requested\n"); 967 goto out; 968 } else { 969 block = block >> 1; 970 this_count = this_count >> 1; 971 } 972 } 973 if (sdp->sector_size == 2048) { 974 if ((block & 3) || (blk_rq_sectors(rq) & 3)) { 975 scmd_printk(KERN_ERR, SCpnt, 976 "Bad block number requested\n"); 977 goto out; 978 } else { 979 block = block >> 2; 980 this_count = this_count >> 2; 981 } 982 } 983 if (sdp->sector_size == 4096) { 984 if ((block & 7) || (blk_rq_sectors(rq) & 7)) { 985 scmd_printk(KERN_ERR, SCpnt, 986 "Bad block number requested\n"); 987 goto out; 988 } else { 989 block = block >> 3; 990 this_count = this_count >> 3; 991 } 992 } 993 if (rq_data_dir(rq) == WRITE) { 994 SCpnt->cmnd[0] = WRITE_6; 995 996 if (blk_integrity_rq(rq)) 997 sd_dif_prepare(SCpnt); 998 999 } else if (rq_data_dir(rq) == READ) { 1000 SCpnt->cmnd[0] = READ_6; 1001 } else { 1002 scmd_printk(KERN_ERR, SCpnt, "Unknown command %llx\n", (unsigned long long) rq->cmd_flags); 1003 goto out; 1004 } 1005 1006 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, 1007 "%s %d/%u 512 byte blocks.\n", 1008 (rq_data_dir(rq) == WRITE) ? 1009 "writing" : "reading", this_count, 1010 blk_rq_sectors(rq))); 1011 1012 dix = scsi_prot_sg_count(SCpnt); 1013 dif = scsi_host_dif_capable(SCpnt->device->host, sdkp->protection_type); 1014 1015 if (dif || dix) 1016 protect = sd_setup_protect_cmnd(SCpnt, dix, dif); 1017 else 1018 protect = 0; 1019 1020 if (protect && sdkp->protection_type == SD_DIF_TYPE2_PROTECTION) { 1021 SCpnt->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC); 1022 1023 if (unlikely(SCpnt->cmnd == NULL)) { 1024 ret = BLKPREP_DEFER; 1025 goto out; 1026 } 1027 1028 SCpnt->cmd_len = SD_EXT_CDB_SIZE; 1029 memset(SCpnt->cmnd, 0, SCpnt->cmd_len); 1030 SCpnt->cmnd[0] = VARIABLE_LENGTH_CMD; 1031 SCpnt->cmnd[7] = 0x18; 1032 SCpnt->cmnd[9] = (rq_data_dir(rq) == READ) ? READ_32 : WRITE_32; 1033 SCpnt->cmnd[10] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0); 1034 1035 /* LBA */ 1036 SCpnt->cmnd[12] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0; 1037 SCpnt->cmnd[13] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0; 1038 SCpnt->cmnd[14] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0; 1039 SCpnt->cmnd[15] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0; 1040 SCpnt->cmnd[16] = (unsigned char) (block >> 24) & 0xff; 1041 SCpnt->cmnd[17] = (unsigned char) (block >> 16) & 0xff; 1042 SCpnt->cmnd[18] = (unsigned char) (block >> 8) & 0xff; 1043 SCpnt->cmnd[19] = (unsigned char) block & 0xff; 1044 1045 /* Expected Indirect LBA */ 1046 SCpnt->cmnd[20] = (unsigned char) (block >> 24) & 0xff; 1047 SCpnt->cmnd[21] = (unsigned char) (block >> 16) & 0xff; 1048 SCpnt->cmnd[22] = (unsigned char) (block >> 8) & 0xff; 1049 SCpnt->cmnd[23] = (unsigned char) block & 0xff; 1050 1051 /* Transfer length */ 1052 SCpnt->cmnd[28] = (unsigned char) (this_count >> 24) & 0xff; 1053 SCpnt->cmnd[29] = (unsigned char) (this_count >> 16) & 0xff; 1054 SCpnt->cmnd[30] = (unsigned char) (this_count >> 8) & 0xff; 1055 SCpnt->cmnd[31] = (unsigned char) this_count & 0xff; 1056 } else if (sdp->use_16_for_rw || (this_count > 0xffff)) { 1057 SCpnt->cmnd[0] += READ_16 - READ_6; 1058 SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0); 1059 SCpnt->cmnd[2] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0; 1060 SCpnt->cmnd[3] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0; 1061 SCpnt->cmnd[4] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0; 1062 SCpnt->cmnd[5] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0; 1063 SCpnt->cmnd[6] = (unsigned char) (block >> 24) & 0xff; 1064 SCpnt->cmnd[7] = (unsigned char) (block >> 16) & 0xff; 1065 SCpnt->cmnd[8] = (unsigned char) (block >> 8) & 0xff; 1066 SCpnt->cmnd[9] = (unsigned char) block & 0xff; 1067 SCpnt->cmnd[10] = (unsigned char) (this_count >> 24) & 0xff; 1068 SCpnt->cmnd[11] = (unsigned char) (this_count >> 16) & 0xff; 1069 SCpnt->cmnd[12] = (unsigned char) (this_count >> 8) & 0xff; 1070 SCpnt->cmnd[13] = (unsigned char) this_count & 0xff; 1071 SCpnt->cmnd[14] = SCpnt->cmnd[15] = 0; 1072 } else if ((this_count > 0xff) || (block > 0x1fffff) || 1073 scsi_device_protection(SCpnt->device) || 1074 SCpnt->device->use_10_for_rw) { 1075 SCpnt->cmnd[0] += READ_10 - READ_6; 1076 SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0); 1077 SCpnt->cmnd[2] = (unsigned char) (block >> 24) & 0xff; 1078 SCpnt->cmnd[3] = (unsigned char) (block >> 16) & 0xff; 1079 SCpnt->cmnd[4] = (unsigned char) (block >> 8) & 0xff; 1080 SCpnt->cmnd[5] = (unsigned char) block & 0xff; 1081 SCpnt->cmnd[6] = SCpnt->cmnd[9] = 0; 1082 SCpnt->cmnd[7] = (unsigned char) (this_count >> 8) & 0xff; 1083 SCpnt->cmnd[8] = (unsigned char) this_count & 0xff; 1084 } else { 1085 if (unlikely(rq->cmd_flags & REQ_FUA)) { 1086 /* 1087 * This happens only if this drive failed 1088 * 10byte rw command with ILLEGAL_REQUEST 1089 * during operation and thus turned off 1090 * use_10_for_rw. 1091 */ 1092 scmd_printk(KERN_ERR, SCpnt, 1093 "FUA write on READ/WRITE(6) drive\n"); 1094 goto out; 1095 } 1096 1097 SCpnt->cmnd[1] |= (unsigned char) ((block >> 16) & 0x1f); 1098 SCpnt->cmnd[2] = (unsigned char) ((block >> 8) & 0xff); 1099 SCpnt->cmnd[3] = (unsigned char) block & 0xff; 1100 SCpnt->cmnd[4] = (unsigned char) this_count; 1101 SCpnt->cmnd[5] = 0; 1102 } 1103 SCpnt->sdb.length = this_count * sdp->sector_size; 1104 1105 /* 1106 * We shouldn't disconnect in the middle of a sector, so with a dumb 1107 * host adapter, it's safe to assume that we can at least transfer 1108 * this many bytes between each connect / disconnect. 1109 */ 1110 SCpnt->transfersize = sdp->sector_size; 1111 SCpnt->underflow = this_count << 9; 1112 SCpnt->allowed = SD_MAX_RETRIES; 1113 1114 /* 1115 * This indicates that the command is ready from our end to be 1116 * queued. 1117 */ 1118 ret = BLKPREP_OK; 1119 out: 1120 return ret; 1121 } 1122 1123 static int sd_init_command(struct scsi_cmnd *cmd) 1124 { 1125 struct request *rq = cmd->request; 1126 1127 if (rq->cmd_flags & REQ_DISCARD) 1128 return sd_setup_discard_cmnd(cmd); 1129 else if (rq->cmd_flags & REQ_WRITE_SAME) 1130 return sd_setup_write_same_cmnd(cmd); 1131 else if (rq->cmd_flags & REQ_FLUSH) 1132 return sd_setup_flush_cmnd(cmd); 1133 else 1134 return sd_setup_read_write_cmnd(cmd); 1135 } 1136 1137 static void sd_uninit_command(struct scsi_cmnd *SCpnt) 1138 { 1139 struct request *rq = SCpnt->request; 1140 1141 if (rq->cmd_flags & REQ_DISCARD) 1142 __free_page(rq->completion_data); 1143 1144 if (SCpnt->cmnd != rq->cmd) { 1145 mempool_free(SCpnt->cmnd, sd_cdb_pool); 1146 SCpnt->cmnd = NULL; 1147 SCpnt->cmd_len = 0; 1148 } 1149 } 1150 1151 /** 1152 * sd_open - open a scsi disk device 1153 * @inode: only i_rdev member may be used 1154 * @filp: only f_mode and f_flags may be used 1155 * 1156 * Returns 0 if successful. Returns a negated errno value in case 1157 * of error. 1158 * 1159 * Note: This can be called from a user context (e.g. fsck(1) ) 1160 * or from within the kernel (e.g. as a result of a mount(1) ). 1161 * In the latter case @inode and @filp carry an abridged amount 1162 * of information as noted above. 1163 * 1164 * Locking: called with bdev->bd_mutex held. 1165 **/ 1166 static int sd_open(struct block_device *bdev, fmode_t mode) 1167 { 1168 struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk); 1169 struct scsi_device *sdev; 1170 int retval; 1171 1172 if (!sdkp) 1173 return -ENXIO; 1174 1175 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n")); 1176 1177 sdev = sdkp->device; 1178 1179 /* 1180 * If the device is in error recovery, wait until it is done. 1181 * If the device is offline, then disallow any access to it. 1182 */ 1183 retval = -ENXIO; 1184 if (!scsi_block_when_processing_errors(sdev)) 1185 goto error_out; 1186 1187 if (sdev->removable || sdkp->write_prot) 1188 check_disk_change(bdev); 1189 1190 /* 1191 * If the drive is empty, just let the open fail. 1192 */ 1193 retval = -ENOMEDIUM; 1194 if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY)) 1195 goto error_out; 1196 1197 /* 1198 * If the device has the write protect tab set, have the open fail 1199 * if the user expects to be able to write to the thing. 1200 */ 1201 retval = -EROFS; 1202 if (sdkp->write_prot && (mode & FMODE_WRITE)) 1203 goto error_out; 1204 1205 /* 1206 * It is possible that the disk changing stuff resulted in 1207 * the device being taken offline. If this is the case, 1208 * report this to the user, and don't pretend that the 1209 * open actually succeeded. 1210 */ 1211 retval = -ENXIO; 1212 if (!scsi_device_online(sdev)) 1213 goto error_out; 1214 1215 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) { 1216 if (scsi_block_when_processing_errors(sdev)) 1217 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT); 1218 } 1219 1220 return 0; 1221 1222 error_out: 1223 scsi_disk_put(sdkp); 1224 return retval; 1225 } 1226 1227 /** 1228 * sd_release - invoked when the (last) close(2) is called on this 1229 * scsi disk. 1230 * @inode: only i_rdev member may be used 1231 * @filp: only f_mode and f_flags may be used 1232 * 1233 * Returns 0. 1234 * 1235 * Note: may block (uninterruptible) if error recovery is underway 1236 * on this disk. 1237 * 1238 * Locking: called with bdev->bd_mutex held. 1239 **/ 1240 static void sd_release(struct gendisk *disk, fmode_t mode) 1241 { 1242 struct scsi_disk *sdkp = scsi_disk(disk); 1243 struct scsi_device *sdev = sdkp->device; 1244 1245 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n")); 1246 1247 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) { 1248 if (scsi_block_when_processing_errors(sdev)) 1249 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW); 1250 } 1251 1252 /* 1253 * XXX and what if there are packets in flight and this close() 1254 * XXX is followed by a "rmmod sd_mod"? 1255 */ 1256 1257 scsi_disk_put(sdkp); 1258 } 1259 1260 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1261 { 1262 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1263 struct scsi_device *sdp = sdkp->device; 1264 struct Scsi_Host *host = sdp->host; 1265 int diskinfo[4]; 1266 1267 /* default to most commonly used values */ 1268 diskinfo[0] = 0x40; /* 1 << 6 */ 1269 diskinfo[1] = 0x20; /* 1 << 5 */ 1270 diskinfo[2] = sdkp->capacity >> 11; 1271 1272 /* override with calculated, extended default, or driver values */ 1273 if (host->hostt->bios_param) 1274 host->hostt->bios_param(sdp, bdev, sdkp->capacity, diskinfo); 1275 else 1276 scsicam_bios_param(bdev, sdkp->capacity, diskinfo); 1277 1278 geo->heads = diskinfo[0]; 1279 geo->sectors = diskinfo[1]; 1280 geo->cylinders = diskinfo[2]; 1281 return 0; 1282 } 1283 1284 /** 1285 * sd_ioctl - process an ioctl 1286 * @inode: only i_rdev/i_bdev members may be used 1287 * @filp: only f_mode and f_flags may be used 1288 * @cmd: ioctl command number 1289 * @arg: this is third argument given to ioctl(2) system call. 1290 * Often contains a pointer. 1291 * 1292 * Returns 0 if successful (some ioctls return positive numbers on 1293 * success as well). Returns a negated errno value in case of error. 1294 * 1295 * Note: most ioctls are forward onto the block subsystem or further 1296 * down in the scsi subsystem. 1297 **/ 1298 static int sd_ioctl(struct block_device *bdev, fmode_t mode, 1299 unsigned int cmd, unsigned long arg) 1300 { 1301 struct gendisk *disk = bdev->bd_disk; 1302 struct scsi_disk *sdkp = scsi_disk(disk); 1303 struct scsi_device *sdp = sdkp->device; 1304 void __user *p = (void __user *)arg; 1305 int error; 1306 1307 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, " 1308 "cmd=0x%x\n", disk->disk_name, cmd)); 1309 1310 error = scsi_verify_blk_ioctl(bdev, cmd); 1311 if (error < 0) 1312 return error; 1313 1314 /* 1315 * If we are in the middle of error recovery, don't let anyone 1316 * else try and use this device. Also, if error recovery fails, it 1317 * may try and take the device offline, in which case all further 1318 * access to the device is prohibited. 1319 */ 1320 error = scsi_ioctl_block_when_processing_errors(sdp, cmd, 1321 (mode & FMODE_NDELAY) != 0); 1322 if (error) 1323 goto out; 1324 1325 /* 1326 * Send SCSI addressing ioctls directly to mid level, send other 1327 * ioctls to block level and then onto mid level if they can't be 1328 * resolved. 1329 */ 1330 switch (cmd) { 1331 case SCSI_IOCTL_GET_IDLUN: 1332 case SCSI_IOCTL_GET_BUS_NUMBER: 1333 error = scsi_ioctl(sdp, cmd, p); 1334 break; 1335 default: 1336 error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p); 1337 if (error != -ENOTTY) 1338 break; 1339 error = scsi_ioctl(sdp, cmd, p); 1340 break; 1341 } 1342 out: 1343 return error; 1344 } 1345 1346 static void set_media_not_present(struct scsi_disk *sdkp) 1347 { 1348 if (sdkp->media_present) 1349 sdkp->device->changed = 1; 1350 1351 if (sdkp->device->removable) { 1352 sdkp->media_present = 0; 1353 sdkp->capacity = 0; 1354 } 1355 } 1356 1357 static int media_not_present(struct scsi_disk *sdkp, 1358 struct scsi_sense_hdr *sshdr) 1359 { 1360 if (!scsi_sense_valid(sshdr)) 1361 return 0; 1362 1363 /* not invoked for commands that could return deferred errors */ 1364 switch (sshdr->sense_key) { 1365 case UNIT_ATTENTION: 1366 case NOT_READY: 1367 /* medium not present */ 1368 if (sshdr->asc == 0x3A) { 1369 set_media_not_present(sdkp); 1370 return 1; 1371 } 1372 } 1373 return 0; 1374 } 1375 1376 /** 1377 * sd_check_events - check media events 1378 * @disk: kernel device descriptor 1379 * @clearing: disk events currently being cleared 1380 * 1381 * Returns mask of DISK_EVENT_*. 1382 * 1383 * Note: this function is invoked from the block subsystem. 1384 **/ 1385 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing) 1386 { 1387 struct scsi_disk *sdkp = scsi_disk(disk); 1388 struct scsi_device *sdp = sdkp->device; 1389 struct scsi_sense_hdr *sshdr = NULL; 1390 int retval; 1391 1392 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n")); 1393 1394 /* 1395 * If the device is offline, don't send any commands - just pretend as 1396 * if the command failed. If the device ever comes back online, we 1397 * can deal with it then. It is only because of unrecoverable errors 1398 * that we would ever take a device offline in the first place. 1399 */ 1400 if (!scsi_device_online(sdp)) { 1401 set_media_not_present(sdkp); 1402 goto out; 1403 } 1404 1405 /* 1406 * Using TEST_UNIT_READY enables differentiation between drive with 1407 * no cartridge loaded - NOT READY, drive with changed cartridge - 1408 * UNIT ATTENTION, or with same cartridge - GOOD STATUS. 1409 * 1410 * Drives that auto spin down. eg iomega jaz 1G, will be started 1411 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever 1412 * sd_revalidate() is called. 1413 */ 1414 retval = -ENODEV; 1415 1416 if (scsi_block_when_processing_errors(sdp)) { 1417 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL); 1418 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, SD_MAX_RETRIES, 1419 sshdr); 1420 } 1421 1422 /* failed to execute TUR, assume media not present */ 1423 if (host_byte(retval)) { 1424 set_media_not_present(sdkp); 1425 goto out; 1426 } 1427 1428 if (media_not_present(sdkp, sshdr)) 1429 goto out; 1430 1431 /* 1432 * For removable scsi disk we have to recognise the presence 1433 * of a disk in the drive. 1434 */ 1435 if (!sdkp->media_present) 1436 sdp->changed = 1; 1437 sdkp->media_present = 1; 1438 out: 1439 /* 1440 * sdp->changed is set under the following conditions: 1441 * 1442 * Medium present state has changed in either direction. 1443 * Device has indicated UNIT_ATTENTION. 1444 */ 1445 kfree(sshdr); 1446 retval = sdp->changed ? DISK_EVENT_MEDIA_CHANGE : 0; 1447 sdp->changed = 0; 1448 return retval; 1449 } 1450 1451 static int sd_sync_cache(struct scsi_disk *sdkp) 1452 { 1453 int retries, res; 1454 struct scsi_device *sdp = sdkp->device; 1455 const int timeout = sdp->request_queue->rq_timeout 1456 * SD_FLUSH_TIMEOUT_MULTIPLIER; 1457 struct scsi_sense_hdr sshdr; 1458 1459 if (!scsi_device_online(sdp)) 1460 return -ENODEV; 1461 1462 for (retries = 3; retries > 0; --retries) { 1463 unsigned char cmd[10] = { 0 }; 1464 1465 cmd[0] = SYNCHRONIZE_CACHE; 1466 /* 1467 * Leave the rest of the command zero to indicate 1468 * flush everything. 1469 */ 1470 res = scsi_execute_req_flags(sdp, cmd, DMA_NONE, NULL, 0, 1471 &sshdr, timeout, SD_MAX_RETRIES, 1472 NULL, REQ_PM); 1473 if (res == 0) 1474 break; 1475 } 1476 1477 if (res) { 1478 sd_print_result(sdkp, "Synchronize Cache(10) failed", res); 1479 1480 if (driver_byte(res) & DRIVER_SENSE) 1481 sd_print_sense_hdr(sdkp, &sshdr); 1482 /* we need to evaluate the error return */ 1483 if (scsi_sense_valid(&sshdr) && 1484 (sshdr.asc == 0x3a || /* medium not present */ 1485 sshdr.asc == 0x20)) /* invalid command */ 1486 /* this is no error here */ 1487 return 0; 1488 1489 switch (host_byte(res)) { 1490 /* ignore errors due to racing a disconnection */ 1491 case DID_BAD_TARGET: 1492 case DID_NO_CONNECT: 1493 return 0; 1494 /* signal the upper layer it might try again */ 1495 case DID_BUS_BUSY: 1496 case DID_IMM_RETRY: 1497 case DID_REQUEUE: 1498 case DID_SOFT_ERROR: 1499 return -EBUSY; 1500 default: 1501 return -EIO; 1502 } 1503 } 1504 return 0; 1505 } 1506 1507 static void sd_rescan(struct device *dev) 1508 { 1509 struct scsi_disk *sdkp = dev_get_drvdata(dev); 1510 1511 revalidate_disk(sdkp->disk); 1512 } 1513 1514 1515 #ifdef CONFIG_COMPAT 1516 /* 1517 * This gets directly called from VFS. When the ioctl 1518 * is not recognized we go back to the other translation paths. 1519 */ 1520 static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode, 1521 unsigned int cmd, unsigned long arg) 1522 { 1523 struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device; 1524 int error; 1525 1526 error = scsi_ioctl_block_when_processing_errors(sdev, cmd, 1527 (mode & FMODE_NDELAY) != 0); 1528 if (error) 1529 return error; 1530 1531 /* 1532 * Let the static ioctl translation table take care of it. 1533 */ 1534 if (!sdev->host->hostt->compat_ioctl) 1535 return -ENOIOCTLCMD; 1536 return sdev->host->hostt->compat_ioctl(sdev, cmd, (void __user *)arg); 1537 } 1538 #endif 1539 1540 static char sd_pr_type(enum pr_type type) 1541 { 1542 switch (type) { 1543 case PR_WRITE_EXCLUSIVE: 1544 return 0x01; 1545 case PR_EXCLUSIVE_ACCESS: 1546 return 0x03; 1547 case PR_WRITE_EXCLUSIVE_REG_ONLY: 1548 return 0x05; 1549 case PR_EXCLUSIVE_ACCESS_REG_ONLY: 1550 return 0x06; 1551 case PR_WRITE_EXCLUSIVE_ALL_REGS: 1552 return 0x07; 1553 case PR_EXCLUSIVE_ACCESS_ALL_REGS: 1554 return 0x08; 1555 default: 1556 return 0; 1557 } 1558 }; 1559 1560 static int sd_pr_command(struct block_device *bdev, u8 sa, 1561 u64 key, u64 sa_key, u8 type, u8 flags) 1562 { 1563 struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device; 1564 struct scsi_sense_hdr sshdr; 1565 int result; 1566 u8 cmd[16] = { 0, }; 1567 u8 data[24] = { 0, }; 1568 1569 cmd[0] = PERSISTENT_RESERVE_OUT; 1570 cmd[1] = sa; 1571 cmd[2] = type; 1572 put_unaligned_be32(sizeof(data), &cmd[5]); 1573 1574 put_unaligned_be64(key, &data[0]); 1575 put_unaligned_be64(sa_key, &data[8]); 1576 data[20] = flags; 1577 1578 result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data), 1579 &sshdr, SD_TIMEOUT, SD_MAX_RETRIES, NULL); 1580 1581 if ((driver_byte(result) & DRIVER_SENSE) && 1582 (scsi_sense_valid(&sshdr))) { 1583 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result); 1584 scsi_print_sense_hdr(sdev, NULL, &sshdr); 1585 } 1586 1587 return result; 1588 } 1589 1590 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 1591 u32 flags) 1592 { 1593 if (flags & ~PR_FL_IGNORE_KEY) 1594 return -EOPNOTSUPP; 1595 return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00, 1596 old_key, new_key, 0, 1597 (1 << 0) /* APTPL */ | 1598 (1 << 2) /* ALL_TG_PT */); 1599 } 1600 1601 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 1602 u32 flags) 1603 { 1604 if (flags) 1605 return -EOPNOTSUPP; 1606 return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0); 1607 } 1608 1609 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 1610 { 1611 return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0); 1612 } 1613 1614 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 1615 enum pr_type type, bool abort) 1616 { 1617 return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key, 1618 sd_pr_type(type), 0); 1619 } 1620 1621 static int sd_pr_clear(struct block_device *bdev, u64 key) 1622 { 1623 return sd_pr_command(bdev, 0x03, key, 0, 0, 0); 1624 } 1625 1626 static const struct pr_ops sd_pr_ops = { 1627 .pr_register = sd_pr_register, 1628 .pr_reserve = sd_pr_reserve, 1629 .pr_release = sd_pr_release, 1630 .pr_preempt = sd_pr_preempt, 1631 .pr_clear = sd_pr_clear, 1632 }; 1633 1634 static const struct block_device_operations sd_fops = { 1635 .owner = THIS_MODULE, 1636 .open = sd_open, 1637 .release = sd_release, 1638 .ioctl = sd_ioctl, 1639 .getgeo = sd_getgeo, 1640 #ifdef CONFIG_COMPAT 1641 .compat_ioctl = sd_compat_ioctl, 1642 #endif 1643 .check_events = sd_check_events, 1644 .revalidate_disk = sd_revalidate_disk, 1645 .unlock_native_capacity = sd_unlock_native_capacity, 1646 .pr_ops = &sd_pr_ops, 1647 }; 1648 1649 /** 1650 * sd_eh_action - error handling callback 1651 * @scmd: sd-issued command that has failed 1652 * @eh_disp: The recovery disposition suggested by the midlayer 1653 * 1654 * This function is called by the SCSI midlayer upon completion of an 1655 * error test command (currently TEST UNIT READY). The result of sending 1656 * the eh command is passed in eh_disp. We're looking for devices that 1657 * fail medium access commands but are OK with non access commands like 1658 * test unit ready (so wrongly see the device as having a successful 1659 * recovery) 1660 **/ 1661 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp) 1662 { 1663 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk); 1664 1665 if (!scsi_device_online(scmd->device) || 1666 !scsi_medium_access_command(scmd) || 1667 host_byte(scmd->result) != DID_TIME_OUT || 1668 eh_disp != SUCCESS) 1669 return eh_disp; 1670 1671 /* 1672 * The device has timed out executing a medium access command. 1673 * However, the TEST UNIT READY command sent during error 1674 * handling completed successfully. Either the device is in the 1675 * process of recovering or has it suffered an internal failure 1676 * that prevents access to the storage medium. 1677 */ 1678 sdkp->medium_access_timed_out++; 1679 1680 /* 1681 * If the device keeps failing read/write commands but TEST UNIT 1682 * READY always completes successfully we assume that medium 1683 * access is no longer possible and take the device offline. 1684 */ 1685 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) { 1686 scmd_printk(KERN_ERR, scmd, 1687 "Medium access timeout failure. Offlining disk!\n"); 1688 scsi_device_set_state(scmd->device, SDEV_OFFLINE); 1689 1690 return FAILED; 1691 } 1692 1693 return eh_disp; 1694 } 1695 1696 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd) 1697 { 1698 u64 start_lba = blk_rq_pos(scmd->request); 1699 u64 end_lba = blk_rq_pos(scmd->request) + (scsi_bufflen(scmd) / 512); 1700 u64 factor = scmd->device->sector_size / 512; 1701 u64 bad_lba; 1702 int info_valid; 1703 /* 1704 * resid is optional but mostly filled in. When it's unused, 1705 * its value is zero, so we assume the whole buffer transferred 1706 */ 1707 unsigned int transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd); 1708 unsigned int good_bytes; 1709 1710 if (scmd->request->cmd_type != REQ_TYPE_FS) 1711 return 0; 1712 1713 info_valid = scsi_get_sense_info_fld(scmd->sense_buffer, 1714 SCSI_SENSE_BUFFERSIZE, 1715 &bad_lba); 1716 if (!info_valid) 1717 return 0; 1718 1719 if (scsi_bufflen(scmd) <= scmd->device->sector_size) 1720 return 0; 1721 1722 /* be careful ... don't want any overflows */ 1723 do_div(start_lba, factor); 1724 do_div(end_lba, factor); 1725 1726 /* The bad lba was reported incorrectly, we have no idea where 1727 * the error is. 1728 */ 1729 if (bad_lba < start_lba || bad_lba >= end_lba) 1730 return 0; 1731 1732 /* This computation should always be done in terms of 1733 * the resolution of the device's medium. 1734 */ 1735 good_bytes = (bad_lba - start_lba) * scmd->device->sector_size; 1736 return min(good_bytes, transferred); 1737 } 1738 1739 /** 1740 * sd_done - bottom half handler: called when the lower level 1741 * driver has completed (successfully or otherwise) a scsi command. 1742 * @SCpnt: mid-level's per command structure. 1743 * 1744 * Note: potentially run from within an ISR. Must not block. 1745 **/ 1746 static int sd_done(struct scsi_cmnd *SCpnt) 1747 { 1748 int result = SCpnt->result; 1749 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt); 1750 struct scsi_sense_hdr sshdr; 1751 struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk); 1752 struct request *req = SCpnt->request; 1753 int sense_valid = 0; 1754 int sense_deferred = 0; 1755 unsigned char op = SCpnt->cmnd[0]; 1756 unsigned char unmap = SCpnt->cmnd[1] & 8; 1757 1758 if (req->cmd_flags & REQ_DISCARD || req->cmd_flags & REQ_WRITE_SAME) { 1759 if (!result) { 1760 good_bytes = blk_rq_bytes(req); 1761 scsi_set_resid(SCpnt, 0); 1762 } else { 1763 good_bytes = 0; 1764 scsi_set_resid(SCpnt, blk_rq_bytes(req)); 1765 } 1766 } 1767 1768 if (result) { 1769 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr); 1770 if (sense_valid) 1771 sense_deferred = scsi_sense_is_deferred(&sshdr); 1772 } 1773 sdkp->medium_access_timed_out = 0; 1774 1775 if (driver_byte(result) != DRIVER_SENSE && 1776 (!sense_valid || sense_deferred)) 1777 goto out; 1778 1779 switch (sshdr.sense_key) { 1780 case HARDWARE_ERROR: 1781 case MEDIUM_ERROR: 1782 good_bytes = sd_completed_bytes(SCpnt); 1783 break; 1784 case RECOVERED_ERROR: 1785 good_bytes = scsi_bufflen(SCpnt); 1786 break; 1787 case NO_SENSE: 1788 /* This indicates a false check condition, so ignore it. An 1789 * unknown amount of data was transferred so treat it as an 1790 * error. 1791 */ 1792 SCpnt->result = 0; 1793 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 1794 break; 1795 case ABORTED_COMMAND: 1796 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */ 1797 good_bytes = sd_completed_bytes(SCpnt); 1798 break; 1799 case ILLEGAL_REQUEST: 1800 if (sshdr.asc == 0x10) /* DIX: Host detected corruption */ 1801 good_bytes = sd_completed_bytes(SCpnt); 1802 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */ 1803 if (sshdr.asc == 0x20 || sshdr.asc == 0x24) { 1804 switch (op) { 1805 case UNMAP: 1806 sd_config_discard(sdkp, SD_LBP_DISABLE); 1807 break; 1808 case WRITE_SAME_16: 1809 case WRITE_SAME: 1810 if (unmap) 1811 sd_config_discard(sdkp, SD_LBP_DISABLE); 1812 else { 1813 sdkp->device->no_write_same = 1; 1814 sd_config_write_same(sdkp); 1815 1816 good_bytes = 0; 1817 req->__data_len = blk_rq_bytes(req); 1818 req->cmd_flags |= REQ_QUIET; 1819 } 1820 } 1821 } 1822 break; 1823 default: 1824 break; 1825 } 1826 out: 1827 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt, 1828 "sd_done: completed %d of %d bytes\n", 1829 good_bytes, scsi_bufflen(SCpnt))); 1830 1831 if (rq_data_dir(SCpnt->request) == READ && scsi_prot_sg_count(SCpnt)) 1832 sd_dif_complete(SCpnt, good_bytes); 1833 1834 return good_bytes; 1835 } 1836 1837 /* 1838 * spinup disk - called only in sd_revalidate_disk() 1839 */ 1840 static void 1841 sd_spinup_disk(struct scsi_disk *sdkp) 1842 { 1843 unsigned char cmd[10]; 1844 unsigned long spintime_expire = 0; 1845 int retries, spintime; 1846 unsigned int the_result; 1847 struct scsi_sense_hdr sshdr; 1848 int sense_valid = 0; 1849 1850 spintime = 0; 1851 1852 /* Spin up drives, as required. Only do this at boot time */ 1853 /* Spinup needs to be done for module loads too. */ 1854 do { 1855 retries = 0; 1856 1857 do { 1858 cmd[0] = TEST_UNIT_READY; 1859 memset((void *) &cmd[1], 0, 9); 1860 1861 the_result = scsi_execute_req(sdkp->device, cmd, 1862 DMA_NONE, NULL, 0, 1863 &sshdr, SD_TIMEOUT, 1864 SD_MAX_RETRIES, NULL); 1865 1866 /* 1867 * If the drive has indicated to us that it 1868 * doesn't have any media in it, don't bother 1869 * with any more polling. 1870 */ 1871 if (media_not_present(sdkp, &sshdr)) 1872 return; 1873 1874 if (the_result) 1875 sense_valid = scsi_sense_valid(&sshdr); 1876 retries++; 1877 } while (retries < 3 && 1878 (!scsi_status_is_good(the_result) || 1879 ((driver_byte(the_result) & DRIVER_SENSE) && 1880 sense_valid && sshdr.sense_key == UNIT_ATTENTION))); 1881 1882 if ((driver_byte(the_result) & DRIVER_SENSE) == 0) { 1883 /* no sense, TUR either succeeded or failed 1884 * with a status error */ 1885 if(!spintime && !scsi_status_is_good(the_result)) { 1886 sd_print_result(sdkp, "Test Unit Ready failed", 1887 the_result); 1888 } 1889 break; 1890 } 1891 1892 /* 1893 * The device does not want the automatic start to be issued. 1894 */ 1895 if (sdkp->device->no_start_on_add) 1896 break; 1897 1898 if (sense_valid && sshdr.sense_key == NOT_READY) { 1899 if (sshdr.asc == 4 && sshdr.ascq == 3) 1900 break; /* manual intervention required */ 1901 if (sshdr.asc == 4 && sshdr.ascq == 0xb) 1902 break; /* standby */ 1903 if (sshdr.asc == 4 && sshdr.ascq == 0xc) 1904 break; /* unavailable */ 1905 /* 1906 * Issue command to spin up drive when not ready 1907 */ 1908 if (!spintime) { 1909 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk..."); 1910 cmd[0] = START_STOP; 1911 cmd[1] = 1; /* Return immediately */ 1912 memset((void *) &cmd[2], 0, 8); 1913 cmd[4] = 1; /* Start spin cycle */ 1914 if (sdkp->device->start_stop_pwr_cond) 1915 cmd[4] |= 1 << 4; 1916 scsi_execute_req(sdkp->device, cmd, DMA_NONE, 1917 NULL, 0, &sshdr, 1918 SD_TIMEOUT, SD_MAX_RETRIES, 1919 NULL); 1920 spintime_expire = jiffies + 100 * HZ; 1921 spintime = 1; 1922 } 1923 /* Wait 1 second for next try */ 1924 msleep(1000); 1925 printk("."); 1926 1927 /* 1928 * Wait for USB flash devices with slow firmware. 1929 * Yes, this sense key/ASC combination shouldn't 1930 * occur here. It's characteristic of these devices. 1931 */ 1932 } else if (sense_valid && 1933 sshdr.sense_key == UNIT_ATTENTION && 1934 sshdr.asc == 0x28) { 1935 if (!spintime) { 1936 spintime_expire = jiffies + 5 * HZ; 1937 spintime = 1; 1938 } 1939 /* Wait 1 second for next try */ 1940 msleep(1000); 1941 } else { 1942 /* we don't understand the sense code, so it's 1943 * probably pointless to loop */ 1944 if(!spintime) { 1945 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n"); 1946 sd_print_sense_hdr(sdkp, &sshdr); 1947 } 1948 break; 1949 } 1950 1951 } while (spintime && time_before_eq(jiffies, spintime_expire)); 1952 1953 if (spintime) { 1954 if (scsi_status_is_good(the_result)) 1955 printk("ready\n"); 1956 else 1957 printk("not responding...\n"); 1958 } 1959 } 1960 1961 1962 /* 1963 * Determine whether disk supports Data Integrity Field. 1964 */ 1965 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer) 1966 { 1967 struct scsi_device *sdp = sdkp->device; 1968 u8 type; 1969 int ret = 0; 1970 1971 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) 1972 return ret; 1973 1974 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */ 1975 1976 if (type > SD_DIF_TYPE3_PROTECTION) 1977 ret = -ENODEV; 1978 else if (scsi_host_dif_capable(sdp->host, type)) 1979 ret = 1; 1980 1981 if (sdkp->first_scan || type != sdkp->protection_type) 1982 switch (ret) { 1983 case -ENODEV: 1984 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \ 1985 " protection type %u. Disabling disk!\n", 1986 type); 1987 break; 1988 case 1: 1989 sd_printk(KERN_NOTICE, sdkp, 1990 "Enabling DIF Type %u protection\n", type); 1991 break; 1992 case 0: 1993 sd_printk(KERN_NOTICE, sdkp, 1994 "Disabling DIF Type %u protection\n", type); 1995 break; 1996 } 1997 1998 sdkp->protection_type = type; 1999 2000 return ret; 2001 } 2002 2003 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp, 2004 struct scsi_sense_hdr *sshdr, int sense_valid, 2005 int the_result) 2006 { 2007 if (driver_byte(the_result) & DRIVER_SENSE) 2008 sd_print_sense_hdr(sdkp, sshdr); 2009 else 2010 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n"); 2011 2012 /* 2013 * Set dirty bit for removable devices if not ready - 2014 * sometimes drives will not report this properly. 2015 */ 2016 if (sdp->removable && 2017 sense_valid && sshdr->sense_key == NOT_READY) 2018 set_media_not_present(sdkp); 2019 2020 /* 2021 * We used to set media_present to 0 here to indicate no media 2022 * in the drive, but some drives fail read capacity even with 2023 * media present, so we can't do that. 2024 */ 2025 sdkp->capacity = 0; /* unknown mapped to zero - as usual */ 2026 } 2027 2028 #define RC16_LEN 32 2029 #if RC16_LEN > SD_BUF_SIZE 2030 #error RC16_LEN must not be more than SD_BUF_SIZE 2031 #endif 2032 2033 #define READ_CAPACITY_RETRIES_ON_RESET 10 2034 2035 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp, 2036 unsigned char *buffer) 2037 { 2038 unsigned char cmd[16]; 2039 struct scsi_sense_hdr sshdr; 2040 int sense_valid = 0; 2041 int the_result; 2042 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2043 unsigned int alignment; 2044 unsigned long long lba; 2045 unsigned sector_size; 2046 2047 if (sdp->no_read_capacity_16) 2048 return -EINVAL; 2049 2050 do { 2051 memset(cmd, 0, 16); 2052 cmd[0] = SERVICE_ACTION_IN_16; 2053 cmd[1] = SAI_READ_CAPACITY_16; 2054 cmd[13] = RC16_LEN; 2055 memset(buffer, 0, RC16_LEN); 2056 2057 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, 2058 buffer, RC16_LEN, &sshdr, 2059 SD_TIMEOUT, SD_MAX_RETRIES, NULL); 2060 2061 if (media_not_present(sdkp, &sshdr)) 2062 return -ENODEV; 2063 2064 if (the_result) { 2065 sense_valid = scsi_sense_valid(&sshdr); 2066 if (sense_valid && 2067 sshdr.sense_key == ILLEGAL_REQUEST && 2068 (sshdr.asc == 0x20 || sshdr.asc == 0x24) && 2069 sshdr.ascq == 0x00) 2070 /* Invalid Command Operation Code or 2071 * Invalid Field in CDB, just retry 2072 * silently with RC10 */ 2073 return -EINVAL; 2074 if (sense_valid && 2075 sshdr.sense_key == UNIT_ATTENTION && 2076 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2077 /* Device reset might occur several times, 2078 * give it one more chance */ 2079 if (--reset_retries > 0) 2080 continue; 2081 } 2082 retries--; 2083 2084 } while (the_result && retries); 2085 2086 if (the_result) { 2087 sd_print_result(sdkp, "Read Capacity(16) failed", the_result); 2088 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2089 return -EINVAL; 2090 } 2091 2092 sector_size = get_unaligned_be32(&buffer[8]); 2093 lba = get_unaligned_be64(&buffer[0]); 2094 2095 if (sd_read_protection_type(sdkp, buffer) < 0) { 2096 sdkp->capacity = 0; 2097 return -ENODEV; 2098 } 2099 2100 if ((sizeof(sdkp->capacity) == 4) && (lba >= 0xffffffffULL)) { 2101 sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a " 2102 "kernel compiled with support for large block " 2103 "devices.\n"); 2104 sdkp->capacity = 0; 2105 return -EOVERFLOW; 2106 } 2107 2108 /* Logical blocks per physical block exponent */ 2109 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size; 2110 2111 /* Lowest aligned logical block */ 2112 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size; 2113 blk_queue_alignment_offset(sdp->request_queue, alignment); 2114 if (alignment && sdkp->first_scan) 2115 sd_printk(KERN_NOTICE, sdkp, 2116 "physical block alignment offset: %u\n", alignment); 2117 2118 if (buffer[14] & 0x80) { /* LBPME */ 2119 sdkp->lbpme = 1; 2120 2121 if (buffer[14] & 0x40) /* LBPRZ */ 2122 sdkp->lbprz = 1; 2123 2124 sd_config_discard(sdkp, SD_LBP_WS16); 2125 } 2126 2127 sdkp->capacity = lba + 1; 2128 return sector_size; 2129 } 2130 2131 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp, 2132 unsigned char *buffer) 2133 { 2134 unsigned char cmd[16]; 2135 struct scsi_sense_hdr sshdr; 2136 int sense_valid = 0; 2137 int the_result; 2138 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2139 sector_t lba; 2140 unsigned sector_size; 2141 2142 do { 2143 cmd[0] = READ_CAPACITY; 2144 memset(&cmd[1], 0, 9); 2145 memset(buffer, 0, 8); 2146 2147 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, 2148 buffer, 8, &sshdr, 2149 SD_TIMEOUT, SD_MAX_RETRIES, NULL); 2150 2151 if (media_not_present(sdkp, &sshdr)) 2152 return -ENODEV; 2153 2154 if (the_result) { 2155 sense_valid = scsi_sense_valid(&sshdr); 2156 if (sense_valid && 2157 sshdr.sense_key == UNIT_ATTENTION && 2158 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2159 /* Device reset might occur several times, 2160 * give it one more chance */ 2161 if (--reset_retries > 0) 2162 continue; 2163 } 2164 retries--; 2165 2166 } while (the_result && retries); 2167 2168 if (the_result) { 2169 sd_print_result(sdkp, "Read Capacity(10) failed", the_result); 2170 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2171 return -EINVAL; 2172 } 2173 2174 sector_size = get_unaligned_be32(&buffer[4]); 2175 lba = get_unaligned_be32(&buffer[0]); 2176 2177 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) { 2178 /* Some buggy (usb cardreader) devices return an lba of 2179 0xffffffff when the want to report a size of 0 (with 2180 which they really mean no media is present) */ 2181 sdkp->capacity = 0; 2182 sdkp->physical_block_size = sector_size; 2183 return sector_size; 2184 } 2185 2186 if ((sizeof(sdkp->capacity) == 4) && (lba == 0xffffffff)) { 2187 sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a " 2188 "kernel compiled with support for large block " 2189 "devices.\n"); 2190 sdkp->capacity = 0; 2191 return -EOVERFLOW; 2192 } 2193 2194 sdkp->capacity = lba + 1; 2195 sdkp->physical_block_size = sector_size; 2196 return sector_size; 2197 } 2198 2199 static int sd_try_rc16_first(struct scsi_device *sdp) 2200 { 2201 if (sdp->host->max_cmd_len < 16) 2202 return 0; 2203 if (sdp->try_rc_10_first) 2204 return 0; 2205 if (sdp->scsi_level > SCSI_SPC_2) 2206 return 1; 2207 if (scsi_device_protection(sdp)) 2208 return 1; 2209 return 0; 2210 } 2211 2212 /* 2213 * read disk capacity 2214 */ 2215 static void 2216 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer) 2217 { 2218 int sector_size; 2219 struct scsi_device *sdp = sdkp->device; 2220 sector_t old_capacity = sdkp->capacity; 2221 2222 if (sd_try_rc16_first(sdp)) { 2223 sector_size = read_capacity_16(sdkp, sdp, buffer); 2224 if (sector_size == -EOVERFLOW) 2225 goto got_data; 2226 if (sector_size == -ENODEV) 2227 return; 2228 if (sector_size < 0) 2229 sector_size = read_capacity_10(sdkp, sdp, buffer); 2230 if (sector_size < 0) 2231 return; 2232 } else { 2233 sector_size = read_capacity_10(sdkp, sdp, buffer); 2234 if (sector_size == -EOVERFLOW) 2235 goto got_data; 2236 if (sector_size < 0) 2237 return; 2238 if ((sizeof(sdkp->capacity) > 4) && 2239 (sdkp->capacity > 0xffffffffULL)) { 2240 int old_sector_size = sector_size; 2241 sd_printk(KERN_NOTICE, sdkp, "Very big device. " 2242 "Trying to use READ CAPACITY(16).\n"); 2243 sector_size = read_capacity_16(sdkp, sdp, buffer); 2244 if (sector_size < 0) { 2245 sd_printk(KERN_NOTICE, sdkp, 2246 "Using 0xffffffff as device size\n"); 2247 sdkp->capacity = 1 + (sector_t) 0xffffffff; 2248 sector_size = old_sector_size; 2249 goto got_data; 2250 } 2251 } 2252 } 2253 2254 /* Some devices are known to return the total number of blocks, 2255 * not the highest block number. Some devices have versions 2256 * which do this and others which do not. Some devices we might 2257 * suspect of doing this but we don't know for certain. 2258 * 2259 * If we know the reported capacity is wrong, decrement it. If 2260 * we can only guess, then assume the number of blocks is even 2261 * (usually true but not always) and err on the side of lowering 2262 * the capacity. 2263 */ 2264 if (sdp->fix_capacity || 2265 (sdp->guess_capacity && (sdkp->capacity & 0x01))) { 2266 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count " 2267 "from its reported value: %llu\n", 2268 (unsigned long long) sdkp->capacity); 2269 --sdkp->capacity; 2270 } 2271 2272 got_data: 2273 if (sector_size == 0) { 2274 sector_size = 512; 2275 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, " 2276 "assuming 512.\n"); 2277 } 2278 2279 if (sector_size != 512 && 2280 sector_size != 1024 && 2281 sector_size != 2048 && 2282 sector_size != 4096) { 2283 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n", 2284 sector_size); 2285 /* 2286 * The user might want to re-format the drive with 2287 * a supported sectorsize. Once this happens, it 2288 * would be relatively trivial to set the thing up. 2289 * For this reason, we leave the thing in the table. 2290 */ 2291 sdkp->capacity = 0; 2292 /* 2293 * set a bogus sector size so the normal read/write 2294 * logic in the block layer will eventually refuse any 2295 * request on this device without tripping over power 2296 * of two sector size assumptions 2297 */ 2298 sector_size = 512; 2299 } 2300 blk_queue_logical_block_size(sdp->request_queue, sector_size); 2301 2302 { 2303 char cap_str_2[10], cap_str_10[10]; 2304 2305 string_get_size(sdkp->capacity, sector_size, 2306 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2)); 2307 string_get_size(sdkp->capacity, sector_size, 2308 STRING_UNITS_10, cap_str_10, 2309 sizeof(cap_str_10)); 2310 2311 if (sdkp->first_scan || old_capacity != sdkp->capacity) { 2312 sd_printk(KERN_NOTICE, sdkp, 2313 "%llu %d-byte logical blocks: (%s/%s)\n", 2314 (unsigned long long)sdkp->capacity, 2315 sector_size, cap_str_10, cap_str_2); 2316 2317 if (sdkp->physical_block_size != sector_size) 2318 sd_printk(KERN_NOTICE, sdkp, 2319 "%u-byte physical blocks\n", 2320 sdkp->physical_block_size); 2321 } 2322 } 2323 2324 if (sdkp->capacity > 0xffffffff) { 2325 sdp->use_16_for_rw = 1; 2326 sdkp->max_xfer_blocks = SD_MAX_XFER_BLOCKS; 2327 } else 2328 sdkp->max_xfer_blocks = SD_DEF_XFER_BLOCKS; 2329 2330 /* Rescale capacity to 512-byte units */ 2331 if (sector_size == 4096) 2332 sdkp->capacity <<= 3; 2333 else if (sector_size == 2048) 2334 sdkp->capacity <<= 2; 2335 else if (sector_size == 1024) 2336 sdkp->capacity <<= 1; 2337 2338 blk_queue_physical_block_size(sdp->request_queue, 2339 sdkp->physical_block_size); 2340 sdkp->device->sector_size = sector_size; 2341 } 2342 2343 /* called with buffer of length 512 */ 2344 static inline int 2345 sd_do_mode_sense(struct scsi_device *sdp, int dbd, int modepage, 2346 unsigned char *buffer, int len, struct scsi_mode_data *data, 2347 struct scsi_sense_hdr *sshdr) 2348 { 2349 return scsi_mode_sense(sdp, dbd, modepage, buffer, len, 2350 SD_TIMEOUT, SD_MAX_RETRIES, data, 2351 sshdr); 2352 } 2353 2354 /* 2355 * read write protect setting, if possible - called only in sd_revalidate_disk() 2356 * called with buffer of length SD_BUF_SIZE 2357 */ 2358 static void 2359 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer) 2360 { 2361 int res; 2362 struct scsi_device *sdp = sdkp->device; 2363 struct scsi_mode_data data; 2364 int old_wp = sdkp->write_prot; 2365 2366 set_disk_ro(sdkp->disk, 0); 2367 if (sdp->skip_ms_page_3f) { 2368 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n"); 2369 return; 2370 } 2371 2372 if (sdp->use_192_bytes_for_3f) { 2373 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 192, &data, NULL); 2374 } else { 2375 /* 2376 * First attempt: ask for all pages (0x3F), but only 4 bytes. 2377 * We have to start carefully: some devices hang if we ask 2378 * for more than is available. 2379 */ 2380 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 4, &data, NULL); 2381 2382 /* 2383 * Second attempt: ask for page 0 When only page 0 is 2384 * implemented, a request for page 3F may return Sense Key 2385 * 5: Illegal Request, Sense Code 24: Invalid field in 2386 * CDB. 2387 */ 2388 if (!scsi_status_is_good(res)) 2389 res = sd_do_mode_sense(sdp, 0, 0, buffer, 4, &data, NULL); 2390 2391 /* 2392 * Third attempt: ask 255 bytes, as we did earlier. 2393 */ 2394 if (!scsi_status_is_good(res)) 2395 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 255, 2396 &data, NULL); 2397 } 2398 2399 if (!scsi_status_is_good(res)) { 2400 sd_first_printk(KERN_WARNING, sdkp, 2401 "Test WP failed, assume Write Enabled\n"); 2402 } else { 2403 sdkp->write_prot = ((data.device_specific & 0x80) != 0); 2404 set_disk_ro(sdkp->disk, sdkp->write_prot); 2405 if (sdkp->first_scan || old_wp != sdkp->write_prot) { 2406 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n", 2407 sdkp->write_prot ? "on" : "off"); 2408 sd_printk(KERN_DEBUG, sdkp, 2409 "Mode Sense: %02x %02x %02x %02x\n", 2410 buffer[0], buffer[1], buffer[2], buffer[3]); 2411 } 2412 } 2413 } 2414 2415 /* 2416 * sd_read_cache_type - called only from sd_revalidate_disk() 2417 * called with buffer of length SD_BUF_SIZE 2418 */ 2419 static void 2420 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer) 2421 { 2422 int len = 0, res; 2423 struct scsi_device *sdp = sdkp->device; 2424 2425 int dbd; 2426 int modepage; 2427 int first_len; 2428 struct scsi_mode_data data; 2429 struct scsi_sense_hdr sshdr; 2430 int old_wce = sdkp->WCE; 2431 int old_rcd = sdkp->RCD; 2432 int old_dpofua = sdkp->DPOFUA; 2433 2434 2435 if (sdkp->cache_override) 2436 return; 2437 2438 first_len = 4; 2439 if (sdp->skip_ms_page_8) { 2440 if (sdp->type == TYPE_RBC) 2441 goto defaults; 2442 else { 2443 if (sdp->skip_ms_page_3f) 2444 goto defaults; 2445 modepage = 0x3F; 2446 if (sdp->use_192_bytes_for_3f) 2447 first_len = 192; 2448 dbd = 0; 2449 } 2450 } else if (sdp->type == TYPE_RBC) { 2451 modepage = 6; 2452 dbd = 8; 2453 } else { 2454 modepage = 8; 2455 dbd = 0; 2456 } 2457 2458 /* cautiously ask */ 2459 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, first_len, 2460 &data, &sshdr); 2461 2462 if (!scsi_status_is_good(res)) 2463 goto bad_sense; 2464 2465 if (!data.header_length) { 2466 modepage = 6; 2467 first_len = 0; 2468 sd_first_printk(KERN_ERR, sdkp, 2469 "Missing header in MODE_SENSE response\n"); 2470 } 2471 2472 /* that went OK, now ask for the proper length */ 2473 len = data.length; 2474 2475 /* 2476 * We're only interested in the first three bytes, actually. 2477 * But the data cache page is defined for the first 20. 2478 */ 2479 if (len < 3) 2480 goto bad_sense; 2481 else if (len > SD_BUF_SIZE) { 2482 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter " 2483 "data from %d to %d bytes\n", len, SD_BUF_SIZE); 2484 len = SD_BUF_SIZE; 2485 } 2486 if (modepage == 0x3F && sdp->use_192_bytes_for_3f) 2487 len = 192; 2488 2489 /* Get the data */ 2490 if (len > first_len) 2491 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, len, 2492 &data, &sshdr); 2493 2494 if (scsi_status_is_good(res)) { 2495 int offset = data.header_length + data.block_descriptor_length; 2496 2497 while (offset < len) { 2498 u8 page_code = buffer[offset] & 0x3F; 2499 u8 spf = buffer[offset] & 0x40; 2500 2501 if (page_code == 8 || page_code == 6) { 2502 /* We're interested only in the first 3 bytes. 2503 */ 2504 if (len - offset <= 2) { 2505 sd_first_printk(KERN_ERR, sdkp, 2506 "Incomplete mode parameter " 2507 "data\n"); 2508 goto defaults; 2509 } else { 2510 modepage = page_code; 2511 goto Page_found; 2512 } 2513 } else { 2514 /* Go to the next page */ 2515 if (spf && len - offset > 3) 2516 offset += 4 + (buffer[offset+2] << 8) + 2517 buffer[offset+3]; 2518 else if (!spf && len - offset > 1) 2519 offset += 2 + buffer[offset+1]; 2520 else { 2521 sd_first_printk(KERN_ERR, sdkp, 2522 "Incomplete mode " 2523 "parameter data\n"); 2524 goto defaults; 2525 } 2526 } 2527 } 2528 2529 sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n"); 2530 goto defaults; 2531 2532 Page_found: 2533 if (modepage == 8) { 2534 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0); 2535 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0); 2536 } else { 2537 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0); 2538 sdkp->RCD = 0; 2539 } 2540 2541 sdkp->DPOFUA = (data.device_specific & 0x10) != 0; 2542 if (sdp->broken_fua) { 2543 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n"); 2544 sdkp->DPOFUA = 0; 2545 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw) { 2546 sd_first_printk(KERN_NOTICE, sdkp, 2547 "Uses READ/WRITE(6), disabling FUA\n"); 2548 sdkp->DPOFUA = 0; 2549 } 2550 2551 /* No cache flush allowed for write protected devices */ 2552 if (sdkp->WCE && sdkp->write_prot) 2553 sdkp->WCE = 0; 2554 2555 if (sdkp->first_scan || old_wce != sdkp->WCE || 2556 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA) 2557 sd_printk(KERN_NOTICE, sdkp, 2558 "Write cache: %s, read cache: %s, %s\n", 2559 sdkp->WCE ? "enabled" : "disabled", 2560 sdkp->RCD ? "disabled" : "enabled", 2561 sdkp->DPOFUA ? "supports DPO and FUA" 2562 : "doesn't support DPO or FUA"); 2563 2564 return; 2565 } 2566 2567 bad_sense: 2568 if (scsi_sense_valid(&sshdr) && 2569 sshdr.sense_key == ILLEGAL_REQUEST && 2570 sshdr.asc == 0x24 && sshdr.ascq == 0x0) 2571 /* Invalid field in CDB */ 2572 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n"); 2573 else 2574 sd_first_printk(KERN_ERR, sdkp, 2575 "Asking for cache data failed\n"); 2576 2577 defaults: 2578 if (sdp->wce_default_on) { 2579 sd_first_printk(KERN_NOTICE, sdkp, 2580 "Assuming drive cache: write back\n"); 2581 sdkp->WCE = 1; 2582 } else { 2583 sd_first_printk(KERN_ERR, sdkp, 2584 "Assuming drive cache: write through\n"); 2585 sdkp->WCE = 0; 2586 } 2587 sdkp->RCD = 0; 2588 sdkp->DPOFUA = 0; 2589 } 2590 2591 /* 2592 * The ATO bit indicates whether the DIF application tag is available 2593 * for use by the operating system. 2594 */ 2595 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer) 2596 { 2597 int res, offset; 2598 struct scsi_device *sdp = sdkp->device; 2599 struct scsi_mode_data data; 2600 struct scsi_sense_hdr sshdr; 2601 2602 if (sdp->type != TYPE_DISK) 2603 return; 2604 2605 if (sdkp->protection_type == 0) 2606 return; 2607 2608 res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT, 2609 SD_MAX_RETRIES, &data, &sshdr); 2610 2611 if (!scsi_status_is_good(res) || !data.header_length || 2612 data.length < 6) { 2613 sd_first_printk(KERN_WARNING, sdkp, 2614 "getting Control mode page failed, assume no ATO\n"); 2615 2616 if (scsi_sense_valid(&sshdr)) 2617 sd_print_sense_hdr(sdkp, &sshdr); 2618 2619 return; 2620 } 2621 2622 offset = data.header_length + data.block_descriptor_length; 2623 2624 if ((buffer[offset] & 0x3f) != 0x0a) { 2625 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n"); 2626 return; 2627 } 2628 2629 if ((buffer[offset + 5] & 0x80) == 0) 2630 return; 2631 2632 sdkp->ATO = 1; 2633 2634 return; 2635 } 2636 2637 /** 2638 * sd_read_block_limits - Query disk device for preferred I/O sizes. 2639 * @disk: disk to query 2640 */ 2641 static void sd_read_block_limits(struct scsi_disk *sdkp) 2642 { 2643 unsigned int sector_sz = sdkp->device->sector_size; 2644 const int vpd_len = 64; 2645 u32 max_xfer_length; 2646 unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL); 2647 2648 if (!buffer || 2649 /* Block Limits VPD */ 2650 scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len)) 2651 goto out; 2652 2653 max_xfer_length = get_unaligned_be32(&buffer[8]); 2654 if (max_xfer_length) 2655 sdkp->max_xfer_blocks = max_xfer_length; 2656 2657 blk_queue_io_min(sdkp->disk->queue, 2658 get_unaligned_be16(&buffer[6]) * sector_sz); 2659 blk_queue_io_opt(sdkp->disk->queue, 2660 get_unaligned_be32(&buffer[12]) * sector_sz); 2661 2662 if (buffer[3] == 0x3c) { 2663 unsigned int lba_count, desc_count; 2664 2665 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]); 2666 2667 if (!sdkp->lbpme) 2668 goto out; 2669 2670 lba_count = get_unaligned_be32(&buffer[20]); 2671 desc_count = get_unaligned_be32(&buffer[24]); 2672 2673 if (lba_count && desc_count) 2674 sdkp->max_unmap_blocks = lba_count; 2675 2676 sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]); 2677 2678 if (buffer[32] & 0x80) 2679 sdkp->unmap_alignment = 2680 get_unaligned_be32(&buffer[32]) & ~(1 << 31); 2681 2682 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */ 2683 2684 if (sdkp->max_unmap_blocks) 2685 sd_config_discard(sdkp, SD_LBP_UNMAP); 2686 else 2687 sd_config_discard(sdkp, SD_LBP_WS16); 2688 2689 } else { /* LBP VPD page tells us what to use */ 2690 if (sdkp->lbpu && sdkp->max_unmap_blocks && !sdkp->lbprz) 2691 sd_config_discard(sdkp, SD_LBP_UNMAP); 2692 else if (sdkp->lbpws) 2693 sd_config_discard(sdkp, SD_LBP_WS16); 2694 else if (sdkp->lbpws10) 2695 sd_config_discard(sdkp, SD_LBP_WS10); 2696 else if (sdkp->lbpu && sdkp->max_unmap_blocks) 2697 sd_config_discard(sdkp, SD_LBP_UNMAP); 2698 else 2699 sd_config_discard(sdkp, SD_LBP_DISABLE); 2700 } 2701 } 2702 2703 out: 2704 kfree(buffer); 2705 } 2706 2707 /** 2708 * sd_read_block_characteristics - Query block dev. characteristics 2709 * @disk: disk to query 2710 */ 2711 static void sd_read_block_characteristics(struct scsi_disk *sdkp) 2712 { 2713 unsigned char *buffer; 2714 u16 rot; 2715 const int vpd_len = 64; 2716 2717 buffer = kmalloc(vpd_len, GFP_KERNEL); 2718 2719 if (!buffer || 2720 /* Block Device Characteristics VPD */ 2721 scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len)) 2722 goto out; 2723 2724 rot = get_unaligned_be16(&buffer[4]); 2725 2726 if (rot == 1) { 2727 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, sdkp->disk->queue); 2728 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, sdkp->disk->queue); 2729 } 2730 2731 out: 2732 kfree(buffer); 2733 } 2734 2735 /** 2736 * sd_read_block_provisioning - Query provisioning VPD page 2737 * @disk: disk to query 2738 */ 2739 static void sd_read_block_provisioning(struct scsi_disk *sdkp) 2740 { 2741 unsigned char *buffer; 2742 const int vpd_len = 8; 2743 2744 if (sdkp->lbpme == 0) 2745 return; 2746 2747 buffer = kmalloc(vpd_len, GFP_KERNEL); 2748 2749 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len)) 2750 goto out; 2751 2752 sdkp->lbpvpd = 1; 2753 sdkp->lbpu = (buffer[5] >> 7) & 1; /* UNMAP */ 2754 sdkp->lbpws = (buffer[5] >> 6) & 1; /* WRITE SAME(16) with UNMAP */ 2755 sdkp->lbpws10 = (buffer[5] >> 5) & 1; /* WRITE SAME(10) with UNMAP */ 2756 2757 out: 2758 kfree(buffer); 2759 } 2760 2761 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer) 2762 { 2763 struct scsi_device *sdev = sdkp->device; 2764 2765 if (sdev->host->no_write_same) { 2766 sdev->no_write_same = 1; 2767 2768 return; 2769 } 2770 2771 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) { 2772 /* too large values might cause issues with arcmsr */ 2773 int vpd_buf_len = 64; 2774 2775 sdev->no_report_opcodes = 1; 2776 2777 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION 2778 * CODES is unsupported and the device has an ATA 2779 * Information VPD page (SAT). 2780 */ 2781 if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len)) 2782 sdev->no_write_same = 1; 2783 } 2784 2785 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1) 2786 sdkp->ws16 = 1; 2787 2788 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1) 2789 sdkp->ws10 = 1; 2790 } 2791 2792 static int sd_try_extended_inquiry(struct scsi_device *sdp) 2793 { 2794 /* Attempt VPD inquiry if the device blacklist explicitly calls 2795 * for it. 2796 */ 2797 if (sdp->try_vpd_pages) 2798 return 1; 2799 /* 2800 * Although VPD inquiries can go to SCSI-2 type devices, 2801 * some USB ones crash on receiving them, and the pages 2802 * we currently ask for are for SPC-3 and beyond 2803 */ 2804 if (sdp->scsi_level > SCSI_SPC_2 && !sdp->skip_vpd_pages) 2805 return 1; 2806 return 0; 2807 } 2808 2809 /** 2810 * sd_revalidate_disk - called the first time a new disk is seen, 2811 * performs disk spin up, read_capacity, etc. 2812 * @disk: struct gendisk we care about 2813 **/ 2814 static int sd_revalidate_disk(struct gendisk *disk) 2815 { 2816 struct scsi_disk *sdkp = scsi_disk(disk); 2817 struct scsi_device *sdp = sdkp->device; 2818 unsigned char *buffer; 2819 unsigned int max_xfer; 2820 2821 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, 2822 "sd_revalidate_disk\n")); 2823 2824 /* 2825 * If the device is offline, don't try and read capacity or any 2826 * of the other niceties. 2827 */ 2828 if (!scsi_device_online(sdp)) 2829 goto out; 2830 2831 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL); 2832 if (!buffer) { 2833 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory " 2834 "allocation failure.\n"); 2835 goto out; 2836 } 2837 2838 sd_spinup_disk(sdkp); 2839 2840 /* 2841 * Without media there is no reason to ask; moreover, some devices 2842 * react badly if we do. 2843 */ 2844 if (sdkp->media_present) { 2845 sd_read_capacity(sdkp, buffer); 2846 2847 if (sd_try_extended_inquiry(sdp)) { 2848 sd_read_block_provisioning(sdkp); 2849 sd_read_block_limits(sdkp); 2850 sd_read_block_characteristics(sdkp); 2851 } 2852 2853 sd_read_write_protect_flag(sdkp, buffer); 2854 sd_read_cache_type(sdkp, buffer); 2855 sd_read_app_tag_own(sdkp, buffer); 2856 sd_read_write_same(sdkp, buffer); 2857 } 2858 2859 sdkp->first_scan = 0; 2860 2861 /* 2862 * We now have all cache related info, determine how we deal 2863 * with flush requests. 2864 */ 2865 sd_set_flush_flag(sdkp); 2866 2867 max_xfer = sdkp->max_xfer_blocks; 2868 max_xfer <<= ilog2(sdp->sector_size) - 9; 2869 2870 sdkp->disk->queue->limits.max_sectors = 2871 min_not_zero(queue_max_hw_sectors(sdkp->disk->queue), max_xfer); 2872 2873 set_capacity(disk, sdkp->capacity); 2874 sd_config_write_same(sdkp); 2875 kfree(buffer); 2876 2877 out: 2878 return 0; 2879 } 2880 2881 /** 2882 * sd_unlock_native_capacity - unlock native capacity 2883 * @disk: struct gendisk to set capacity for 2884 * 2885 * Block layer calls this function if it detects that partitions 2886 * on @disk reach beyond the end of the device. If the SCSI host 2887 * implements ->unlock_native_capacity() method, it's invoked to 2888 * give it a chance to adjust the device capacity. 2889 * 2890 * CONTEXT: 2891 * Defined by block layer. Might sleep. 2892 */ 2893 static void sd_unlock_native_capacity(struct gendisk *disk) 2894 { 2895 struct scsi_device *sdev = scsi_disk(disk)->device; 2896 2897 if (sdev->host->hostt->unlock_native_capacity) 2898 sdev->host->hostt->unlock_native_capacity(sdev); 2899 } 2900 2901 /** 2902 * sd_format_disk_name - format disk name 2903 * @prefix: name prefix - ie. "sd" for SCSI disks 2904 * @index: index of the disk to format name for 2905 * @buf: output buffer 2906 * @buflen: length of the output buffer 2907 * 2908 * SCSI disk names starts at sda. The 26th device is sdz and the 2909 * 27th is sdaa. The last one for two lettered suffix is sdzz 2910 * which is followed by sdaaa. 2911 * 2912 * This is basically 26 base counting with one extra 'nil' entry 2913 * at the beginning from the second digit on and can be 2914 * determined using similar method as 26 base conversion with the 2915 * index shifted -1 after each digit is computed. 2916 * 2917 * CONTEXT: 2918 * Don't care. 2919 * 2920 * RETURNS: 2921 * 0 on success, -errno on failure. 2922 */ 2923 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen) 2924 { 2925 const int base = 'z' - 'a' + 1; 2926 char *begin = buf + strlen(prefix); 2927 char *end = buf + buflen; 2928 char *p; 2929 int unit; 2930 2931 p = end - 1; 2932 *p = '\0'; 2933 unit = base; 2934 do { 2935 if (p == begin) 2936 return -EINVAL; 2937 *--p = 'a' + (index % unit); 2938 index = (index / unit) - 1; 2939 } while (index >= 0); 2940 2941 memmove(begin, p, end - p); 2942 memcpy(buf, prefix, strlen(prefix)); 2943 2944 return 0; 2945 } 2946 2947 /* 2948 * The asynchronous part of sd_probe 2949 */ 2950 static void sd_probe_async(void *data, async_cookie_t cookie) 2951 { 2952 struct scsi_disk *sdkp = data; 2953 struct scsi_device *sdp; 2954 struct gendisk *gd; 2955 u32 index; 2956 struct device *dev; 2957 2958 sdp = sdkp->device; 2959 gd = sdkp->disk; 2960 index = sdkp->index; 2961 dev = &sdp->sdev_gendev; 2962 2963 gd->major = sd_major((index & 0xf0) >> 4); 2964 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00); 2965 gd->minors = SD_MINORS; 2966 2967 gd->fops = &sd_fops; 2968 gd->private_data = &sdkp->driver; 2969 gd->queue = sdkp->device->request_queue; 2970 2971 /* defaults, until the device tells us otherwise */ 2972 sdp->sector_size = 512; 2973 sdkp->capacity = 0; 2974 sdkp->media_present = 1; 2975 sdkp->write_prot = 0; 2976 sdkp->cache_override = 0; 2977 sdkp->WCE = 0; 2978 sdkp->RCD = 0; 2979 sdkp->ATO = 0; 2980 sdkp->first_scan = 1; 2981 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS; 2982 2983 sd_revalidate_disk(gd); 2984 2985 gd->driverfs_dev = &sdp->sdev_gendev; 2986 gd->flags = GENHD_FL_EXT_DEVT; 2987 if (sdp->removable) { 2988 gd->flags |= GENHD_FL_REMOVABLE; 2989 gd->events |= DISK_EVENT_MEDIA_CHANGE; 2990 } 2991 2992 blk_pm_runtime_init(sdp->request_queue, dev); 2993 add_disk(gd); 2994 if (sdkp->capacity) 2995 sd_dif_config_host(sdkp); 2996 2997 sd_revalidate_disk(gd); 2998 2999 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n", 3000 sdp->removable ? "removable " : ""); 3001 scsi_autopm_put_device(sdp); 3002 put_device(&sdkp->dev); 3003 } 3004 3005 /** 3006 * sd_probe - called during driver initialization and whenever a 3007 * new scsi device is attached to the system. It is called once 3008 * for each scsi device (not just disks) present. 3009 * @dev: pointer to device object 3010 * 3011 * Returns 0 if successful (or not interested in this scsi device 3012 * (e.g. scanner)); 1 when there is an error. 3013 * 3014 * Note: this function is invoked from the scsi mid-level. 3015 * This function sets up the mapping between a given 3016 * <host,channel,id,lun> (found in sdp) and new device name 3017 * (e.g. /dev/sda). More precisely it is the block device major 3018 * and minor number that is chosen here. 3019 * 3020 * Assume sd_probe is not re-entrant (for time being) 3021 * Also think about sd_probe() and sd_remove() running coincidentally. 3022 **/ 3023 static int sd_probe(struct device *dev) 3024 { 3025 struct scsi_device *sdp = to_scsi_device(dev); 3026 struct scsi_disk *sdkp; 3027 struct gendisk *gd; 3028 int index; 3029 int error; 3030 3031 scsi_autopm_get_device(sdp); 3032 error = -ENODEV; 3033 if (sdp->type != TYPE_DISK && sdp->type != TYPE_MOD && sdp->type != TYPE_RBC) 3034 goto out; 3035 3036 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp, 3037 "sd_probe\n")); 3038 3039 error = -ENOMEM; 3040 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL); 3041 if (!sdkp) 3042 goto out; 3043 3044 gd = alloc_disk(SD_MINORS); 3045 if (!gd) 3046 goto out_free; 3047 3048 do { 3049 if (!ida_pre_get(&sd_index_ida, GFP_KERNEL)) 3050 goto out_put; 3051 3052 spin_lock(&sd_index_lock); 3053 error = ida_get_new(&sd_index_ida, &index); 3054 spin_unlock(&sd_index_lock); 3055 } while (error == -EAGAIN); 3056 3057 if (error) { 3058 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n"); 3059 goto out_put; 3060 } 3061 3062 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN); 3063 if (error) { 3064 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n"); 3065 goto out_free_index; 3066 } 3067 3068 sdkp->device = sdp; 3069 sdkp->driver = &sd_template; 3070 sdkp->disk = gd; 3071 sdkp->index = index; 3072 atomic_set(&sdkp->openers, 0); 3073 atomic_set(&sdkp->device->ioerr_cnt, 0); 3074 3075 if (!sdp->request_queue->rq_timeout) { 3076 if (sdp->type != TYPE_MOD) 3077 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT); 3078 else 3079 blk_queue_rq_timeout(sdp->request_queue, 3080 SD_MOD_TIMEOUT); 3081 } 3082 3083 device_initialize(&sdkp->dev); 3084 sdkp->dev.parent = dev; 3085 sdkp->dev.class = &sd_disk_class; 3086 dev_set_name(&sdkp->dev, "%s", dev_name(dev)); 3087 3088 error = device_add(&sdkp->dev); 3089 if (error) 3090 goto out_free_index; 3091 3092 get_device(dev); 3093 dev_set_drvdata(dev, sdkp); 3094 3095 get_device(&sdkp->dev); /* prevent release before async_schedule */ 3096 async_schedule_domain(sd_probe_async, sdkp, &scsi_sd_probe_domain); 3097 3098 return 0; 3099 3100 out_free_index: 3101 spin_lock(&sd_index_lock); 3102 ida_remove(&sd_index_ida, index); 3103 spin_unlock(&sd_index_lock); 3104 out_put: 3105 put_disk(gd); 3106 out_free: 3107 kfree(sdkp); 3108 out: 3109 scsi_autopm_put_device(sdp); 3110 return error; 3111 } 3112 3113 /** 3114 * sd_remove - called whenever a scsi disk (previously recognized by 3115 * sd_probe) is detached from the system. It is called (potentially 3116 * multiple times) during sd module unload. 3117 * @sdp: pointer to mid level scsi device object 3118 * 3119 * Note: this function is invoked from the scsi mid-level. 3120 * This function potentially frees up a device name (e.g. /dev/sdc) 3121 * that could be re-used by a subsequent sd_probe(). 3122 * This function is not called when the built-in sd driver is "exit-ed". 3123 **/ 3124 static int sd_remove(struct device *dev) 3125 { 3126 struct scsi_disk *sdkp; 3127 dev_t devt; 3128 3129 sdkp = dev_get_drvdata(dev); 3130 devt = disk_devt(sdkp->disk); 3131 scsi_autopm_get_device(sdkp->device); 3132 3133 async_synchronize_full_domain(&scsi_sd_pm_domain); 3134 async_synchronize_full_domain(&scsi_sd_probe_domain); 3135 device_del(&sdkp->dev); 3136 del_gendisk(sdkp->disk); 3137 sd_shutdown(dev); 3138 3139 blk_register_region(devt, SD_MINORS, NULL, 3140 sd_default_probe, NULL, NULL); 3141 3142 mutex_lock(&sd_ref_mutex); 3143 dev_set_drvdata(dev, NULL); 3144 put_device(&sdkp->dev); 3145 mutex_unlock(&sd_ref_mutex); 3146 3147 return 0; 3148 } 3149 3150 /** 3151 * scsi_disk_release - Called to free the scsi_disk structure 3152 * @dev: pointer to embedded class device 3153 * 3154 * sd_ref_mutex must be held entering this routine. Because it is 3155 * called on last put, you should always use the scsi_disk_get() 3156 * scsi_disk_put() helpers which manipulate the semaphore directly 3157 * and never do a direct put_device. 3158 **/ 3159 static void scsi_disk_release(struct device *dev) 3160 { 3161 struct scsi_disk *sdkp = to_scsi_disk(dev); 3162 struct gendisk *disk = sdkp->disk; 3163 3164 spin_lock(&sd_index_lock); 3165 ida_remove(&sd_index_ida, sdkp->index); 3166 spin_unlock(&sd_index_lock); 3167 3168 disk->private_data = NULL; 3169 put_disk(disk); 3170 put_device(&sdkp->device->sdev_gendev); 3171 3172 kfree(sdkp); 3173 } 3174 3175 static int sd_start_stop_device(struct scsi_disk *sdkp, int start) 3176 { 3177 unsigned char cmd[6] = { START_STOP }; /* START_VALID */ 3178 struct scsi_sense_hdr sshdr; 3179 struct scsi_device *sdp = sdkp->device; 3180 int res; 3181 3182 if (start) 3183 cmd[4] |= 1; /* START */ 3184 3185 if (sdp->start_stop_pwr_cond) 3186 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */ 3187 3188 if (!scsi_device_online(sdp)) 3189 return -ENODEV; 3190 3191 res = scsi_execute_req_flags(sdp, cmd, DMA_NONE, NULL, 0, &sshdr, 3192 SD_TIMEOUT, SD_MAX_RETRIES, NULL, REQ_PM); 3193 if (res) { 3194 sd_print_result(sdkp, "Start/Stop Unit failed", res); 3195 if (driver_byte(res) & DRIVER_SENSE) 3196 sd_print_sense_hdr(sdkp, &sshdr); 3197 if (scsi_sense_valid(&sshdr) && 3198 /* 0x3a is medium not present */ 3199 sshdr.asc == 0x3a) 3200 res = 0; 3201 } 3202 3203 /* SCSI error codes must not go to the generic layer */ 3204 if (res) 3205 return -EIO; 3206 3207 return 0; 3208 } 3209 3210 /* 3211 * Send a SYNCHRONIZE CACHE instruction down to the device through 3212 * the normal SCSI command structure. Wait for the command to 3213 * complete. 3214 */ 3215 static void sd_shutdown(struct device *dev) 3216 { 3217 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3218 3219 if (!sdkp) 3220 return; /* this can happen */ 3221 3222 if (pm_runtime_suspended(dev)) 3223 return; 3224 3225 if (sdkp->WCE && sdkp->media_present) { 3226 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3227 sd_sync_cache(sdkp); 3228 } 3229 3230 if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) { 3231 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3232 sd_start_stop_device(sdkp, 0); 3233 } 3234 } 3235 3236 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors) 3237 { 3238 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3239 int ret = 0; 3240 3241 if (!sdkp) 3242 return 0; /* this can happen */ 3243 3244 if (sdkp->WCE && sdkp->media_present) { 3245 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3246 ret = sd_sync_cache(sdkp); 3247 if (ret) { 3248 /* ignore OFFLINE device */ 3249 if (ret == -ENODEV) 3250 ret = 0; 3251 goto done; 3252 } 3253 } 3254 3255 if (sdkp->device->manage_start_stop) { 3256 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3257 /* an error is not worth aborting a system sleep */ 3258 ret = sd_start_stop_device(sdkp, 0); 3259 if (ignore_stop_errors) 3260 ret = 0; 3261 } 3262 3263 done: 3264 return ret; 3265 } 3266 3267 static int sd_suspend_system(struct device *dev) 3268 { 3269 return sd_suspend_common(dev, true); 3270 } 3271 3272 static int sd_suspend_runtime(struct device *dev) 3273 { 3274 return sd_suspend_common(dev, false); 3275 } 3276 3277 static int sd_resume(struct device *dev) 3278 { 3279 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3280 3281 if (!sdkp->device->manage_start_stop) 3282 return 0; 3283 3284 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n"); 3285 return sd_start_stop_device(sdkp, 1); 3286 } 3287 3288 /** 3289 * init_sd - entry point for this driver (both when built in or when 3290 * a module). 3291 * 3292 * Note: this function registers this driver with the scsi mid-level. 3293 **/ 3294 static int __init init_sd(void) 3295 { 3296 int majors = 0, i, err; 3297 3298 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n")); 3299 3300 for (i = 0; i < SD_MAJORS; i++) { 3301 if (register_blkdev(sd_major(i), "sd") != 0) 3302 continue; 3303 majors++; 3304 blk_register_region(sd_major(i), SD_MINORS, NULL, 3305 sd_default_probe, NULL, NULL); 3306 } 3307 3308 if (!majors) 3309 return -ENODEV; 3310 3311 err = class_register(&sd_disk_class); 3312 if (err) 3313 goto err_out; 3314 3315 sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE, 3316 0, 0, NULL); 3317 if (!sd_cdb_cache) { 3318 printk(KERN_ERR "sd: can't init extended cdb cache\n"); 3319 err = -ENOMEM; 3320 goto err_out_class; 3321 } 3322 3323 sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache); 3324 if (!sd_cdb_pool) { 3325 printk(KERN_ERR "sd: can't init extended cdb pool\n"); 3326 err = -ENOMEM; 3327 goto err_out_cache; 3328 } 3329 3330 err = scsi_register_driver(&sd_template.gendrv); 3331 if (err) 3332 goto err_out_driver; 3333 3334 return 0; 3335 3336 err_out_driver: 3337 mempool_destroy(sd_cdb_pool); 3338 3339 err_out_cache: 3340 kmem_cache_destroy(sd_cdb_cache); 3341 3342 err_out_class: 3343 class_unregister(&sd_disk_class); 3344 err_out: 3345 for (i = 0; i < SD_MAJORS; i++) 3346 unregister_blkdev(sd_major(i), "sd"); 3347 return err; 3348 } 3349 3350 /** 3351 * exit_sd - exit point for this driver (when it is a module). 3352 * 3353 * Note: this function unregisters this driver from the scsi mid-level. 3354 **/ 3355 static void __exit exit_sd(void) 3356 { 3357 int i; 3358 3359 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n")); 3360 3361 scsi_unregister_driver(&sd_template.gendrv); 3362 mempool_destroy(sd_cdb_pool); 3363 kmem_cache_destroy(sd_cdb_cache); 3364 3365 class_unregister(&sd_disk_class); 3366 3367 for (i = 0; i < SD_MAJORS; i++) { 3368 blk_unregister_region(sd_major(i), SD_MINORS); 3369 unregister_blkdev(sd_major(i), "sd"); 3370 } 3371 } 3372 3373 module_init(init_sd); 3374 module_exit(exit_sd); 3375 3376 static void sd_print_sense_hdr(struct scsi_disk *sdkp, 3377 struct scsi_sense_hdr *sshdr) 3378 { 3379 scsi_print_sense_hdr(sdkp->device, 3380 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr); 3381 } 3382 3383 static void sd_print_result(const struct scsi_disk *sdkp, const char *msg, 3384 int result) 3385 { 3386 const char *hb_string = scsi_hostbyte_string(result); 3387 const char *db_string = scsi_driverbyte_string(result); 3388 3389 if (hb_string || db_string) 3390 sd_printk(KERN_INFO, sdkp, 3391 "%s: Result: hostbyte=%s driverbyte=%s\n", msg, 3392 hb_string ? hb_string : "invalid", 3393 db_string ? db_string : "invalid"); 3394 else 3395 sd_printk(KERN_INFO, sdkp, 3396 "%s: Result: hostbyte=0x%02x driverbyte=0x%02x\n", 3397 msg, host_byte(result), driver_byte(result)); 3398 } 3399 3400