1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * sd.c Copyright (C) 1992 Drew Eckhardt 4 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale 5 * 6 * Linux scsi disk driver 7 * Initial versions: Drew Eckhardt 8 * Subsequent revisions: Eric Youngdale 9 * Modification history: 10 * - Drew Eckhardt <drew@colorado.edu> original 11 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 12 * outstanding request, and other enhancements. 13 * Support loadable low-level scsi drivers. 14 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 15 * eight major numbers. 16 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs. 17 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 18 * sd_init and cleanups. 19 * - Alex Davis <letmein@erols.com> Fix problem where partition info 20 * not being read in sd_open. Fix problem where removable media 21 * could be ejected after sd_open. 22 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x 23 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 24 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 25 * Support 32k/1M disks. 26 * 27 * Logging policy (needs CONFIG_SCSI_LOGGING defined): 28 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2 29 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1 30 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1 31 * - entering other commands: SCSI_LOG_HLQUEUE level 3 32 * Note: when the logging level is set by the user, it must be greater 33 * than the level indicated above to trigger output. 34 */ 35 36 #include <linux/bio-integrity.h> 37 #include <linux/module.h> 38 #include <linux/fs.h> 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/hdreg.h> 42 #include <linux/errno.h> 43 #include <linux/idr.h> 44 #include <linux/interrupt.h> 45 #include <linux/init.h> 46 #include <linux/blkdev.h> 47 #include <linux/blkpg.h> 48 #include <linux/blk-pm.h> 49 #include <linux/delay.h> 50 #include <linux/rw_hint.h> 51 #include <linux/major.h> 52 #include <linux/mutex.h> 53 #include <linux/string_helpers.h> 54 #include <linux/slab.h> 55 #include <linux/sed-opal.h> 56 #include <linux/pm_runtime.h> 57 #include <linux/pr.h> 58 #include <linux/t10-pi.h> 59 #include <linux/uaccess.h> 60 #include <linux/unaligned.h> 61 62 #include <scsi/scsi.h> 63 #include <scsi/scsi_cmnd.h> 64 #include <scsi/scsi_dbg.h> 65 #include <scsi/scsi_device.h> 66 #include <scsi/scsi_devinfo.h> 67 #include <scsi/scsi_driver.h> 68 #include <scsi/scsi_eh.h> 69 #include <scsi/scsi_host.h> 70 #include <scsi/scsi_ioctl.h> 71 #include <scsi/scsicam.h> 72 #include <scsi/scsi_common.h> 73 74 #include "sd.h" 75 #include "scsi_priv.h" 76 #include "scsi_logging.h" 77 78 MODULE_AUTHOR("Eric Youngdale"); 79 MODULE_DESCRIPTION("SCSI disk (sd) driver"); 80 MODULE_LICENSE("GPL"); 81 82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR); 83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR); 84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR); 85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR); 86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR); 87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR); 88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR); 89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR); 90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR); 91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR); 92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR); 93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR); 94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR); 95 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR); 96 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR); 97 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR); 98 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK); 99 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD); 100 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC); 101 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC); 102 103 #define SD_MINORS 16 104 105 static void sd_config_discard(struct scsi_disk *sdkp, struct queue_limits *lim, 106 unsigned int mode); 107 static void sd_config_write_same(struct scsi_disk *sdkp, 108 struct queue_limits *lim); 109 static int sd_revalidate_disk(struct gendisk *); 110 static void sd_unlock_native_capacity(struct gendisk *disk); 111 static void sd_shutdown(struct device *); 112 static void scsi_disk_release(struct device *cdev); 113 114 static DEFINE_IDA(sd_index_ida); 115 116 static mempool_t *sd_page_pool; 117 static struct lock_class_key sd_bio_compl_lkclass; 118 119 static const char *sd_cache_types[] = { 120 "write through", "none", "write back", 121 "write back, no read (daft)" 122 }; 123 124 static void sd_set_flush_flag(struct scsi_disk *sdkp, 125 struct queue_limits *lim) 126 { 127 if (sdkp->WCE) { 128 lim->features |= BLK_FEAT_WRITE_CACHE; 129 if (sdkp->DPOFUA) 130 lim->features |= BLK_FEAT_FUA; 131 else 132 lim->features &= ~BLK_FEAT_FUA; 133 } else { 134 lim->features &= ~(BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA); 135 } 136 } 137 138 static ssize_t 139 cache_type_store(struct device *dev, struct device_attribute *attr, 140 const char *buf, size_t count) 141 { 142 int ct, rcd, wce, sp; 143 struct scsi_disk *sdkp = to_scsi_disk(dev); 144 struct scsi_device *sdp = sdkp->device; 145 char buffer[64]; 146 char *buffer_data; 147 struct scsi_mode_data data; 148 struct scsi_sense_hdr sshdr; 149 static const char temp[] = "temporary "; 150 int len, ret; 151 152 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 153 /* no cache control on RBC devices; theoretically they 154 * can do it, but there's probably so many exceptions 155 * it's not worth the risk */ 156 return -EINVAL; 157 158 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) { 159 buf += sizeof(temp) - 1; 160 sdkp->cache_override = 1; 161 } else { 162 sdkp->cache_override = 0; 163 } 164 165 ct = sysfs_match_string(sd_cache_types, buf); 166 if (ct < 0) 167 return -EINVAL; 168 169 rcd = ct & 0x01 ? 1 : 0; 170 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0; 171 172 if (sdkp->cache_override) { 173 struct queue_limits lim; 174 175 sdkp->WCE = wce; 176 sdkp->RCD = rcd; 177 178 lim = queue_limits_start_update(sdkp->disk->queue); 179 sd_set_flush_flag(sdkp, &lim); 180 ret = queue_limits_commit_update_frozen(sdkp->disk->queue, 181 &lim); 182 if (ret) 183 return ret; 184 return count; 185 } 186 187 if (scsi_mode_sense(sdp, 0x08, 8, 0, buffer, sizeof(buffer), SD_TIMEOUT, 188 sdkp->max_retries, &data, NULL)) 189 return -EINVAL; 190 len = min_t(size_t, sizeof(buffer), data.length - data.header_length - 191 data.block_descriptor_length); 192 buffer_data = buffer + data.header_length + 193 data.block_descriptor_length; 194 buffer_data[2] &= ~0x05; 195 buffer_data[2] |= wce << 2 | rcd; 196 sp = buffer_data[0] & 0x80 ? 1 : 0; 197 buffer_data[0] &= ~0x80; 198 199 /* 200 * Ensure WP, DPOFUA, and RESERVED fields are cleared in 201 * received mode parameter buffer before doing MODE SELECT. 202 */ 203 data.device_specific = 0; 204 205 ret = scsi_mode_select(sdp, 1, sp, buffer_data, len, SD_TIMEOUT, 206 sdkp->max_retries, &data, &sshdr); 207 if (ret) { 208 if (ret > 0 && scsi_sense_valid(&sshdr)) 209 sd_print_sense_hdr(sdkp, &sshdr); 210 return -EINVAL; 211 } 212 sd_revalidate_disk(sdkp->disk); 213 return count; 214 } 215 216 static ssize_t 217 manage_start_stop_show(struct device *dev, 218 struct device_attribute *attr, char *buf) 219 { 220 struct scsi_disk *sdkp = to_scsi_disk(dev); 221 struct scsi_device *sdp = sdkp->device; 222 223 return sysfs_emit(buf, "%u\n", 224 sdp->manage_system_start_stop && 225 sdp->manage_runtime_start_stop && 226 sdp->manage_shutdown); 227 } 228 static DEVICE_ATTR_RO(manage_start_stop); 229 230 static ssize_t 231 manage_system_start_stop_show(struct device *dev, 232 struct device_attribute *attr, char *buf) 233 { 234 struct scsi_disk *sdkp = to_scsi_disk(dev); 235 struct scsi_device *sdp = sdkp->device; 236 237 return sysfs_emit(buf, "%u\n", sdp->manage_system_start_stop); 238 } 239 240 static ssize_t 241 manage_system_start_stop_store(struct device *dev, 242 struct device_attribute *attr, 243 const char *buf, size_t count) 244 { 245 struct scsi_disk *sdkp = to_scsi_disk(dev); 246 struct scsi_device *sdp = sdkp->device; 247 bool v; 248 249 if (!capable(CAP_SYS_ADMIN)) 250 return -EACCES; 251 252 if (kstrtobool(buf, &v)) 253 return -EINVAL; 254 255 sdp->manage_system_start_stop = v; 256 257 return count; 258 } 259 static DEVICE_ATTR_RW(manage_system_start_stop); 260 261 static ssize_t 262 manage_runtime_start_stop_show(struct device *dev, 263 struct device_attribute *attr, char *buf) 264 { 265 struct scsi_disk *sdkp = to_scsi_disk(dev); 266 struct scsi_device *sdp = sdkp->device; 267 268 return sysfs_emit(buf, "%u\n", sdp->manage_runtime_start_stop); 269 } 270 271 static ssize_t 272 manage_runtime_start_stop_store(struct device *dev, 273 struct device_attribute *attr, 274 const char *buf, size_t count) 275 { 276 struct scsi_disk *sdkp = to_scsi_disk(dev); 277 struct scsi_device *sdp = sdkp->device; 278 bool v; 279 280 if (!capable(CAP_SYS_ADMIN)) 281 return -EACCES; 282 283 if (kstrtobool(buf, &v)) 284 return -EINVAL; 285 286 sdp->manage_runtime_start_stop = v; 287 288 return count; 289 } 290 static DEVICE_ATTR_RW(manage_runtime_start_stop); 291 292 static ssize_t manage_shutdown_show(struct device *dev, 293 struct device_attribute *attr, char *buf) 294 { 295 struct scsi_disk *sdkp = to_scsi_disk(dev); 296 struct scsi_device *sdp = sdkp->device; 297 298 return sysfs_emit(buf, "%u\n", sdp->manage_shutdown); 299 } 300 301 static ssize_t manage_shutdown_store(struct device *dev, 302 struct device_attribute *attr, 303 const char *buf, size_t count) 304 { 305 struct scsi_disk *sdkp = to_scsi_disk(dev); 306 struct scsi_device *sdp = sdkp->device; 307 bool v; 308 309 if (!capable(CAP_SYS_ADMIN)) 310 return -EACCES; 311 312 if (kstrtobool(buf, &v)) 313 return -EINVAL; 314 315 sdp->manage_shutdown = v; 316 317 return count; 318 } 319 static DEVICE_ATTR_RW(manage_shutdown); 320 321 static ssize_t 322 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf) 323 { 324 struct scsi_disk *sdkp = to_scsi_disk(dev); 325 326 return sprintf(buf, "%u\n", sdkp->device->allow_restart); 327 } 328 329 static ssize_t 330 allow_restart_store(struct device *dev, struct device_attribute *attr, 331 const char *buf, size_t count) 332 { 333 bool v; 334 struct scsi_disk *sdkp = to_scsi_disk(dev); 335 struct scsi_device *sdp = sdkp->device; 336 337 if (!capable(CAP_SYS_ADMIN)) 338 return -EACCES; 339 340 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 341 return -EINVAL; 342 343 if (kstrtobool(buf, &v)) 344 return -EINVAL; 345 346 sdp->allow_restart = v; 347 348 return count; 349 } 350 static DEVICE_ATTR_RW(allow_restart); 351 352 static ssize_t 353 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf) 354 { 355 struct scsi_disk *sdkp = to_scsi_disk(dev); 356 int ct = sdkp->RCD + 2*sdkp->WCE; 357 358 return sprintf(buf, "%s\n", sd_cache_types[ct]); 359 } 360 static DEVICE_ATTR_RW(cache_type); 361 362 static ssize_t 363 FUA_show(struct device *dev, struct device_attribute *attr, char *buf) 364 { 365 struct scsi_disk *sdkp = to_scsi_disk(dev); 366 367 return sprintf(buf, "%u\n", sdkp->DPOFUA); 368 } 369 static DEVICE_ATTR_RO(FUA); 370 371 static ssize_t 372 protection_type_show(struct device *dev, struct device_attribute *attr, 373 char *buf) 374 { 375 struct scsi_disk *sdkp = to_scsi_disk(dev); 376 377 return sprintf(buf, "%u\n", sdkp->protection_type); 378 } 379 380 static ssize_t 381 protection_type_store(struct device *dev, struct device_attribute *attr, 382 const char *buf, size_t count) 383 { 384 struct scsi_disk *sdkp = to_scsi_disk(dev); 385 unsigned int val; 386 int err; 387 388 if (!capable(CAP_SYS_ADMIN)) 389 return -EACCES; 390 391 err = kstrtouint(buf, 10, &val); 392 393 if (err) 394 return err; 395 396 if (val <= T10_PI_TYPE3_PROTECTION) 397 sdkp->protection_type = val; 398 399 return count; 400 } 401 static DEVICE_ATTR_RW(protection_type); 402 403 static ssize_t 404 protection_mode_show(struct device *dev, struct device_attribute *attr, 405 char *buf) 406 { 407 struct scsi_disk *sdkp = to_scsi_disk(dev); 408 struct scsi_device *sdp = sdkp->device; 409 unsigned int dif, dix; 410 411 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type); 412 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type); 413 414 if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) { 415 dif = 0; 416 dix = 1; 417 } 418 419 if (!dif && !dix) 420 return sprintf(buf, "none\n"); 421 422 return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif); 423 } 424 static DEVICE_ATTR_RO(protection_mode); 425 426 static ssize_t 427 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf) 428 { 429 struct scsi_disk *sdkp = to_scsi_disk(dev); 430 431 return sprintf(buf, "%u\n", sdkp->ATO); 432 } 433 static DEVICE_ATTR_RO(app_tag_own); 434 435 static ssize_t 436 thin_provisioning_show(struct device *dev, struct device_attribute *attr, 437 char *buf) 438 { 439 struct scsi_disk *sdkp = to_scsi_disk(dev); 440 441 return sprintf(buf, "%u\n", sdkp->lbpme); 442 } 443 static DEVICE_ATTR_RO(thin_provisioning); 444 445 /* sysfs_match_string() requires dense arrays */ 446 static const char *lbp_mode[] = { 447 [SD_LBP_FULL] = "full", 448 [SD_LBP_UNMAP] = "unmap", 449 [SD_LBP_WS16] = "writesame_16", 450 [SD_LBP_WS10] = "writesame_10", 451 [SD_LBP_ZERO] = "writesame_zero", 452 [SD_LBP_DISABLE] = "disabled", 453 }; 454 455 static ssize_t 456 provisioning_mode_show(struct device *dev, struct device_attribute *attr, 457 char *buf) 458 { 459 struct scsi_disk *sdkp = to_scsi_disk(dev); 460 461 return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]); 462 } 463 464 static ssize_t 465 provisioning_mode_store(struct device *dev, struct device_attribute *attr, 466 const char *buf, size_t count) 467 { 468 struct scsi_disk *sdkp = to_scsi_disk(dev); 469 struct scsi_device *sdp = sdkp->device; 470 struct queue_limits lim; 471 int mode, err; 472 473 if (!capable(CAP_SYS_ADMIN)) 474 return -EACCES; 475 476 if (sdp->type != TYPE_DISK) 477 return -EINVAL; 478 479 mode = sysfs_match_string(lbp_mode, buf); 480 if (mode < 0) 481 return -EINVAL; 482 483 lim = queue_limits_start_update(sdkp->disk->queue); 484 sd_config_discard(sdkp, &lim, mode); 485 err = queue_limits_commit_update_frozen(sdkp->disk->queue, &lim); 486 if (err) 487 return err; 488 return count; 489 } 490 static DEVICE_ATTR_RW(provisioning_mode); 491 492 /* sysfs_match_string() requires dense arrays */ 493 static const char *zeroing_mode[] = { 494 [SD_ZERO_WRITE] = "write", 495 [SD_ZERO_WS] = "writesame", 496 [SD_ZERO_WS16_UNMAP] = "writesame_16_unmap", 497 [SD_ZERO_WS10_UNMAP] = "writesame_10_unmap", 498 }; 499 500 static ssize_t 501 zeroing_mode_show(struct device *dev, struct device_attribute *attr, 502 char *buf) 503 { 504 struct scsi_disk *sdkp = to_scsi_disk(dev); 505 506 return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]); 507 } 508 509 static ssize_t 510 zeroing_mode_store(struct device *dev, struct device_attribute *attr, 511 const char *buf, size_t count) 512 { 513 struct scsi_disk *sdkp = to_scsi_disk(dev); 514 int mode; 515 516 if (!capable(CAP_SYS_ADMIN)) 517 return -EACCES; 518 519 mode = sysfs_match_string(zeroing_mode, buf); 520 if (mode < 0) 521 return -EINVAL; 522 523 sdkp->zeroing_mode = mode; 524 525 return count; 526 } 527 static DEVICE_ATTR_RW(zeroing_mode); 528 529 static ssize_t 530 max_medium_access_timeouts_show(struct device *dev, 531 struct device_attribute *attr, char *buf) 532 { 533 struct scsi_disk *sdkp = to_scsi_disk(dev); 534 535 return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts); 536 } 537 538 static ssize_t 539 max_medium_access_timeouts_store(struct device *dev, 540 struct device_attribute *attr, const char *buf, 541 size_t count) 542 { 543 struct scsi_disk *sdkp = to_scsi_disk(dev); 544 int err; 545 546 if (!capable(CAP_SYS_ADMIN)) 547 return -EACCES; 548 549 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts); 550 551 return err ? err : count; 552 } 553 static DEVICE_ATTR_RW(max_medium_access_timeouts); 554 555 static ssize_t 556 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr, 557 char *buf) 558 { 559 struct scsi_disk *sdkp = to_scsi_disk(dev); 560 561 return sprintf(buf, "%u\n", sdkp->max_ws_blocks); 562 } 563 564 static ssize_t 565 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr, 566 const char *buf, size_t count) 567 { 568 struct scsi_disk *sdkp = to_scsi_disk(dev); 569 struct scsi_device *sdp = sdkp->device; 570 struct queue_limits lim; 571 unsigned long max; 572 int err; 573 574 if (!capable(CAP_SYS_ADMIN)) 575 return -EACCES; 576 577 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 578 return -EINVAL; 579 580 err = kstrtoul(buf, 10, &max); 581 582 if (err) 583 return err; 584 585 if (max == 0) 586 sdp->no_write_same = 1; 587 else if (max <= SD_MAX_WS16_BLOCKS) { 588 sdp->no_write_same = 0; 589 sdkp->max_ws_blocks = max; 590 } 591 592 lim = queue_limits_start_update(sdkp->disk->queue); 593 sd_config_write_same(sdkp, &lim); 594 err = queue_limits_commit_update_frozen(sdkp->disk->queue, &lim); 595 if (err) 596 return err; 597 return count; 598 } 599 static DEVICE_ATTR_RW(max_write_same_blocks); 600 601 static ssize_t 602 zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf) 603 { 604 struct scsi_disk *sdkp = to_scsi_disk(dev); 605 606 if (sdkp->device->type == TYPE_ZBC) 607 return sprintf(buf, "host-managed\n"); 608 if (sdkp->zoned == 1) 609 return sprintf(buf, "host-aware\n"); 610 if (sdkp->zoned == 2) 611 return sprintf(buf, "drive-managed\n"); 612 return sprintf(buf, "none\n"); 613 } 614 static DEVICE_ATTR_RO(zoned_cap); 615 616 static ssize_t 617 max_retries_store(struct device *dev, struct device_attribute *attr, 618 const char *buf, size_t count) 619 { 620 struct scsi_disk *sdkp = to_scsi_disk(dev); 621 struct scsi_device *sdev = sdkp->device; 622 int retries, err; 623 624 err = kstrtoint(buf, 10, &retries); 625 if (err) 626 return err; 627 628 if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) { 629 sdkp->max_retries = retries; 630 return count; 631 } 632 633 sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n", 634 SD_MAX_RETRIES); 635 return -EINVAL; 636 } 637 638 static ssize_t 639 max_retries_show(struct device *dev, struct device_attribute *attr, 640 char *buf) 641 { 642 struct scsi_disk *sdkp = to_scsi_disk(dev); 643 644 return sprintf(buf, "%d\n", sdkp->max_retries); 645 } 646 647 static DEVICE_ATTR_RW(max_retries); 648 649 static struct attribute *sd_disk_attrs[] = { 650 &dev_attr_cache_type.attr, 651 &dev_attr_FUA.attr, 652 &dev_attr_allow_restart.attr, 653 &dev_attr_manage_start_stop.attr, 654 &dev_attr_manage_system_start_stop.attr, 655 &dev_attr_manage_runtime_start_stop.attr, 656 &dev_attr_manage_shutdown.attr, 657 &dev_attr_protection_type.attr, 658 &dev_attr_protection_mode.attr, 659 &dev_attr_app_tag_own.attr, 660 &dev_attr_thin_provisioning.attr, 661 &dev_attr_provisioning_mode.attr, 662 &dev_attr_zeroing_mode.attr, 663 &dev_attr_max_write_same_blocks.attr, 664 &dev_attr_max_medium_access_timeouts.attr, 665 &dev_attr_zoned_cap.attr, 666 &dev_attr_max_retries.attr, 667 NULL, 668 }; 669 ATTRIBUTE_GROUPS(sd_disk); 670 671 static struct class sd_disk_class = { 672 .name = "scsi_disk", 673 .dev_release = scsi_disk_release, 674 .dev_groups = sd_disk_groups, 675 }; 676 677 /* 678 * Don't request a new module, as that could deadlock in multipath 679 * environment. 680 */ 681 static void sd_default_probe(dev_t devt) 682 { 683 } 684 685 /* 686 * Device no to disk mapping: 687 * 688 * major disc2 disc p1 689 * |............|.............|....|....| <- dev_t 690 * 31 20 19 8 7 4 3 0 691 * 692 * Inside a major, we have 16k disks, however mapped non- 693 * contiguously. The first 16 disks are for major0, the next 694 * ones with major1, ... Disk 256 is for major0 again, disk 272 695 * for major1, ... 696 * As we stay compatible with our numbering scheme, we can reuse 697 * the well-know SCSI majors 8, 65--71, 136--143. 698 */ 699 static int sd_major(int major_idx) 700 { 701 switch (major_idx) { 702 case 0: 703 return SCSI_DISK0_MAJOR; 704 case 1 ... 7: 705 return SCSI_DISK1_MAJOR + major_idx - 1; 706 case 8 ... 15: 707 return SCSI_DISK8_MAJOR + major_idx - 8; 708 default: 709 BUG(); 710 return 0; /* shut up gcc */ 711 } 712 } 713 714 #ifdef CONFIG_BLK_SED_OPAL 715 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, 716 size_t len, bool send) 717 { 718 struct scsi_disk *sdkp = data; 719 struct scsi_device *sdev = sdkp->device; 720 u8 cdb[12] = { 0, }; 721 const struct scsi_exec_args exec_args = { 722 .req_flags = BLK_MQ_REQ_PM, 723 }; 724 int ret; 725 726 cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN; 727 cdb[1] = secp; 728 put_unaligned_be16(spsp, &cdb[2]); 729 put_unaligned_be32(len, &cdb[6]); 730 731 ret = scsi_execute_cmd(sdev, cdb, send ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 732 buffer, len, SD_TIMEOUT, sdkp->max_retries, 733 &exec_args); 734 return ret <= 0 ? ret : -EIO; 735 } 736 #endif /* CONFIG_BLK_SED_OPAL */ 737 738 /* 739 * Look up the DIX operation based on whether the command is read or 740 * write and whether dix and dif are enabled. 741 */ 742 static unsigned int sd_prot_op(bool write, bool dix, bool dif) 743 { 744 /* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */ 745 static const unsigned int ops[] = { /* wrt dix dif */ 746 SCSI_PROT_NORMAL, /* 0 0 0 */ 747 SCSI_PROT_READ_STRIP, /* 0 0 1 */ 748 SCSI_PROT_READ_INSERT, /* 0 1 0 */ 749 SCSI_PROT_READ_PASS, /* 0 1 1 */ 750 SCSI_PROT_NORMAL, /* 1 0 0 */ 751 SCSI_PROT_WRITE_INSERT, /* 1 0 1 */ 752 SCSI_PROT_WRITE_STRIP, /* 1 1 0 */ 753 SCSI_PROT_WRITE_PASS, /* 1 1 1 */ 754 }; 755 756 return ops[write << 2 | dix << 1 | dif]; 757 } 758 759 /* 760 * Returns a mask of the protection flags that are valid for a given DIX 761 * operation. 762 */ 763 static unsigned int sd_prot_flag_mask(unsigned int prot_op) 764 { 765 static const unsigned int flag_mask[] = { 766 [SCSI_PROT_NORMAL] = 0, 767 768 [SCSI_PROT_READ_STRIP] = SCSI_PROT_TRANSFER_PI | 769 SCSI_PROT_GUARD_CHECK | 770 SCSI_PROT_REF_CHECK | 771 SCSI_PROT_REF_INCREMENT, 772 773 [SCSI_PROT_READ_INSERT] = SCSI_PROT_REF_INCREMENT | 774 SCSI_PROT_IP_CHECKSUM, 775 776 [SCSI_PROT_READ_PASS] = SCSI_PROT_TRANSFER_PI | 777 SCSI_PROT_GUARD_CHECK | 778 SCSI_PROT_REF_CHECK | 779 SCSI_PROT_REF_INCREMENT | 780 SCSI_PROT_IP_CHECKSUM, 781 782 [SCSI_PROT_WRITE_INSERT] = SCSI_PROT_TRANSFER_PI | 783 SCSI_PROT_REF_INCREMENT, 784 785 [SCSI_PROT_WRITE_STRIP] = SCSI_PROT_GUARD_CHECK | 786 SCSI_PROT_REF_CHECK | 787 SCSI_PROT_REF_INCREMENT | 788 SCSI_PROT_IP_CHECKSUM, 789 790 [SCSI_PROT_WRITE_PASS] = SCSI_PROT_TRANSFER_PI | 791 SCSI_PROT_GUARD_CHECK | 792 SCSI_PROT_REF_CHECK | 793 SCSI_PROT_REF_INCREMENT | 794 SCSI_PROT_IP_CHECKSUM, 795 }; 796 797 return flag_mask[prot_op]; 798 } 799 800 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd, 801 unsigned int dix, unsigned int dif) 802 { 803 struct request *rq = scsi_cmd_to_rq(scmd); 804 struct bio *bio = rq->bio; 805 unsigned int prot_op = sd_prot_op(rq_data_dir(rq), dix, dif); 806 unsigned int protect = 0; 807 808 if (dix) { /* DIX Type 0, 1, 2, 3 */ 809 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM)) 810 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM; 811 812 if (bio_integrity_flagged(bio, BIP_CHECK_GUARD)) 813 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK; 814 } 815 816 if (dif != T10_PI_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */ 817 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT; 818 819 if (bio_integrity_flagged(bio, BIP_CHECK_REFTAG)) 820 scmd->prot_flags |= SCSI_PROT_REF_CHECK; 821 } 822 823 if (dif) { /* DIX/DIF Type 1, 2, 3 */ 824 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI; 825 826 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK)) 827 protect = 3 << 5; /* Disable target PI checking */ 828 else 829 protect = 1 << 5; /* Enable target PI checking */ 830 } 831 832 scsi_set_prot_op(scmd, prot_op); 833 scsi_set_prot_type(scmd, dif); 834 scmd->prot_flags &= sd_prot_flag_mask(prot_op); 835 836 return protect; 837 } 838 839 static void sd_disable_discard(struct scsi_disk *sdkp) 840 { 841 sdkp->provisioning_mode = SD_LBP_DISABLE; 842 blk_queue_disable_discard(sdkp->disk->queue); 843 } 844 845 static void sd_config_discard(struct scsi_disk *sdkp, struct queue_limits *lim, 846 unsigned int mode) 847 { 848 unsigned int logical_block_size = sdkp->device->sector_size; 849 unsigned int max_blocks = 0; 850 851 lim->discard_alignment = sdkp->unmap_alignment * logical_block_size; 852 lim->discard_granularity = max(sdkp->physical_block_size, 853 sdkp->unmap_granularity * logical_block_size); 854 sdkp->provisioning_mode = mode; 855 856 switch (mode) { 857 858 case SD_LBP_FULL: 859 case SD_LBP_DISABLE: 860 break; 861 862 case SD_LBP_UNMAP: 863 max_blocks = min_not_zero(sdkp->max_unmap_blocks, 864 (u32)SD_MAX_WS16_BLOCKS); 865 break; 866 867 case SD_LBP_WS16: 868 if (sdkp->device->unmap_limit_for_ws) 869 max_blocks = sdkp->max_unmap_blocks; 870 else 871 max_blocks = sdkp->max_ws_blocks; 872 873 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS); 874 break; 875 876 case SD_LBP_WS10: 877 if (sdkp->device->unmap_limit_for_ws) 878 max_blocks = sdkp->max_unmap_blocks; 879 else 880 max_blocks = sdkp->max_ws_blocks; 881 882 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS); 883 break; 884 885 case SD_LBP_ZERO: 886 max_blocks = min_not_zero(sdkp->max_ws_blocks, 887 (u32)SD_MAX_WS10_BLOCKS); 888 break; 889 } 890 891 lim->max_hw_discard_sectors = max_blocks * 892 (logical_block_size >> SECTOR_SHIFT); 893 } 894 895 static void *sd_set_special_bvec(struct request *rq, unsigned int data_len) 896 { 897 struct page *page; 898 899 page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 900 if (!page) 901 return NULL; 902 clear_highpage(page); 903 bvec_set_page(&rq->special_vec, page, data_len, 0); 904 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 905 return bvec_virt(&rq->special_vec); 906 } 907 908 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd) 909 { 910 struct scsi_device *sdp = cmd->device; 911 struct request *rq = scsi_cmd_to_rq(cmd); 912 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 913 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 914 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 915 unsigned int data_len = 24; 916 char *buf; 917 918 buf = sd_set_special_bvec(rq, data_len); 919 if (!buf) 920 return BLK_STS_RESOURCE; 921 922 cmd->cmd_len = 10; 923 cmd->cmnd[0] = UNMAP; 924 cmd->cmnd[8] = 24; 925 926 put_unaligned_be16(6 + 16, &buf[0]); 927 put_unaligned_be16(16, &buf[2]); 928 put_unaligned_be64(lba, &buf[8]); 929 put_unaligned_be32(nr_blocks, &buf[16]); 930 931 cmd->allowed = sdkp->max_retries; 932 cmd->transfersize = data_len; 933 rq->timeout = SD_TIMEOUT; 934 935 return scsi_alloc_sgtables(cmd); 936 } 937 938 static void sd_config_atomic(struct scsi_disk *sdkp, struct queue_limits *lim) 939 { 940 unsigned int logical_block_size = sdkp->device->sector_size, 941 physical_block_size_sectors, max_atomic, unit_min, unit_max; 942 943 if ((!sdkp->max_atomic && !sdkp->max_atomic_with_boundary) || 944 sdkp->protection_type == T10_PI_TYPE2_PROTECTION) 945 return; 946 947 physical_block_size_sectors = sdkp->physical_block_size / 948 sdkp->device->sector_size; 949 950 unit_min = rounddown_pow_of_two(sdkp->atomic_granularity ? 951 sdkp->atomic_granularity : 952 physical_block_size_sectors); 953 954 /* 955 * Only use atomic boundary when we have the odd scenario of 956 * sdkp->max_atomic == 0, which the spec does permit. 957 */ 958 if (sdkp->max_atomic) { 959 max_atomic = sdkp->max_atomic; 960 unit_max = rounddown_pow_of_two(sdkp->max_atomic); 961 sdkp->use_atomic_write_boundary = 0; 962 } else { 963 max_atomic = sdkp->max_atomic_with_boundary; 964 unit_max = rounddown_pow_of_two(sdkp->max_atomic_boundary); 965 sdkp->use_atomic_write_boundary = 1; 966 } 967 968 /* 969 * Ensure compliance with granularity and alignment. For now, keep it 970 * simple and just don't support atomic writes for values mismatched 971 * with max_{boundary}atomic, physical block size, and 972 * atomic_granularity itself. 973 * 974 * We're really being distrustful by checking unit_max also... 975 */ 976 if (sdkp->atomic_granularity > 1) { 977 if (unit_min > 1 && unit_min % sdkp->atomic_granularity) 978 return; 979 if (unit_max > 1 && unit_max % sdkp->atomic_granularity) 980 return; 981 } 982 983 if (sdkp->atomic_alignment > 1) { 984 if (unit_min > 1 && unit_min % sdkp->atomic_alignment) 985 return; 986 if (unit_max > 1 && unit_max % sdkp->atomic_alignment) 987 return; 988 } 989 990 lim->atomic_write_hw_max = max_atomic * logical_block_size; 991 lim->atomic_write_hw_boundary = 0; 992 lim->atomic_write_hw_unit_min = unit_min * logical_block_size; 993 lim->atomic_write_hw_unit_max = unit_max * logical_block_size; 994 lim->features |= BLK_FEAT_ATOMIC_WRITES; 995 } 996 997 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd, 998 bool unmap) 999 { 1000 struct scsi_device *sdp = cmd->device; 1001 struct request *rq = scsi_cmd_to_rq(cmd); 1002 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 1003 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 1004 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 1005 u32 data_len = sdp->sector_size; 1006 1007 if (!sd_set_special_bvec(rq, data_len)) 1008 return BLK_STS_RESOURCE; 1009 1010 cmd->cmd_len = 16; 1011 cmd->cmnd[0] = WRITE_SAME_16; 1012 if (unmap) 1013 cmd->cmnd[1] = 0x8; /* UNMAP */ 1014 put_unaligned_be64(lba, &cmd->cmnd[2]); 1015 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 1016 1017 cmd->allowed = sdkp->max_retries; 1018 cmd->transfersize = data_len; 1019 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 1020 1021 return scsi_alloc_sgtables(cmd); 1022 } 1023 1024 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd, 1025 bool unmap) 1026 { 1027 struct scsi_device *sdp = cmd->device; 1028 struct request *rq = scsi_cmd_to_rq(cmd); 1029 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 1030 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 1031 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 1032 u32 data_len = sdp->sector_size; 1033 1034 if (!sd_set_special_bvec(rq, data_len)) 1035 return BLK_STS_RESOURCE; 1036 1037 cmd->cmd_len = 10; 1038 cmd->cmnd[0] = WRITE_SAME; 1039 if (unmap) 1040 cmd->cmnd[1] = 0x8; /* UNMAP */ 1041 put_unaligned_be32(lba, &cmd->cmnd[2]); 1042 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 1043 1044 cmd->allowed = sdkp->max_retries; 1045 cmd->transfersize = data_len; 1046 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 1047 1048 return scsi_alloc_sgtables(cmd); 1049 } 1050 1051 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd) 1052 { 1053 struct request *rq = scsi_cmd_to_rq(cmd); 1054 struct scsi_device *sdp = cmd->device; 1055 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 1056 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 1057 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 1058 1059 if (!(rq->cmd_flags & REQ_NOUNMAP)) { 1060 switch (sdkp->zeroing_mode) { 1061 case SD_ZERO_WS16_UNMAP: 1062 return sd_setup_write_same16_cmnd(cmd, true); 1063 case SD_ZERO_WS10_UNMAP: 1064 return sd_setup_write_same10_cmnd(cmd, true); 1065 } 1066 } 1067 1068 if (sdp->no_write_same) { 1069 rq->rq_flags |= RQF_QUIET; 1070 return BLK_STS_TARGET; 1071 } 1072 1073 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) 1074 return sd_setup_write_same16_cmnd(cmd, false); 1075 1076 return sd_setup_write_same10_cmnd(cmd, false); 1077 } 1078 1079 static void sd_disable_write_same(struct scsi_disk *sdkp) 1080 { 1081 sdkp->device->no_write_same = 1; 1082 sdkp->max_ws_blocks = 0; 1083 blk_queue_disable_write_zeroes(sdkp->disk->queue); 1084 } 1085 1086 static void sd_config_write_same(struct scsi_disk *sdkp, 1087 struct queue_limits *lim) 1088 { 1089 unsigned int logical_block_size = sdkp->device->sector_size; 1090 1091 if (sdkp->device->no_write_same) { 1092 sdkp->max_ws_blocks = 0; 1093 goto out; 1094 } 1095 1096 /* Some devices can not handle block counts above 0xffff despite 1097 * supporting WRITE SAME(16). Consequently we default to 64k 1098 * blocks per I/O unless the device explicitly advertises a 1099 * bigger limit. 1100 */ 1101 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS) 1102 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 1103 (u32)SD_MAX_WS16_BLOCKS); 1104 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes) 1105 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 1106 (u32)SD_MAX_WS10_BLOCKS); 1107 else { 1108 sdkp->device->no_write_same = 1; 1109 sdkp->max_ws_blocks = 0; 1110 } 1111 1112 if (sdkp->lbprz && sdkp->lbpws) 1113 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP; 1114 else if (sdkp->lbprz && sdkp->lbpws10) 1115 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP; 1116 else if (sdkp->max_ws_blocks) 1117 sdkp->zeroing_mode = SD_ZERO_WS; 1118 else 1119 sdkp->zeroing_mode = SD_ZERO_WRITE; 1120 1121 if (sdkp->max_ws_blocks && 1122 sdkp->physical_block_size > logical_block_size) { 1123 /* 1124 * Reporting a maximum number of blocks that is not aligned 1125 * on the device physical size would cause a large write same 1126 * request to be split into physically unaligned chunks by 1127 * __blkdev_issue_write_zeroes() even if the caller of this 1128 * functions took care to align the large request. So make sure 1129 * the maximum reported is aligned to the device physical block 1130 * size. This is only an optional optimization for regular 1131 * disks, but this is mandatory to avoid failure of large write 1132 * same requests directed at sequential write required zones of 1133 * host-managed ZBC disks. 1134 */ 1135 sdkp->max_ws_blocks = 1136 round_down(sdkp->max_ws_blocks, 1137 bytes_to_logical(sdkp->device, 1138 sdkp->physical_block_size)); 1139 } 1140 1141 out: 1142 lim->max_write_zeroes_sectors = 1143 sdkp->max_ws_blocks * (logical_block_size >> SECTOR_SHIFT); 1144 } 1145 1146 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd) 1147 { 1148 struct request *rq = scsi_cmd_to_rq(cmd); 1149 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 1150 1151 /* flush requests don't perform I/O, zero the S/G table */ 1152 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1153 1154 if (cmd->device->use_16_for_sync) { 1155 cmd->cmnd[0] = SYNCHRONIZE_CACHE_16; 1156 cmd->cmd_len = 16; 1157 } else { 1158 cmd->cmnd[0] = SYNCHRONIZE_CACHE; 1159 cmd->cmd_len = 10; 1160 } 1161 cmd->transfersize = 0; 1162 cmd->allowed = sdkp->max_retries; 1163 1164 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER; 1165 return BLK_STS_OK; 1166 } 1167 1168 /** 1169 * sd_group_number() - Compute the GROUP NUMBER field 1170 * @cmd: SCSI command for which to compute the value of the six-bit GROUP NUMBER 1171 * field. 1172 * 1173 * From SBC-5 r05 (https://www.t10.org/cgi-bin/ac.pl?t=f&f=sbc5r05.pdf): 1174 * 0: no relative lifetime. 1175 * 1: shortest relative lifetime. 1176 * 2: second shortest relative lifetime. 1177 * 3 - 0x3d: intermediate relative lifetimes. 1178 * 0x3e: second longest relative lifetime. 1179 * 0x3f: longest relative lifetime. 1180 */ 1181 static u8 sd_group_number(struct scsi_cmnd *cmd) 1182 { 1183 const struct request *rq = scsi_cmd_to_rq(cmd); 1184 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 1185 1186 if (!sdkp->rscs) 1187 return 0; 1188 1189 return min3((u32)rq->bio->bi_write_hint, 1190 (u32)sdkp->permanent_stream_count, 0x3fu); 1191 } 1192 1193 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write, 1194 sector_t lba, unsigned int nr_blocks, 1195 unsigned char flags, unsigned int dld) 1196 { 1197 cmd->cmd_len = SD_EXT_CDB_SIZE; 1198 cmd->cmnd[0] = VARIABLE_LENGTH_CMD; 1199 cmd->cmnd[6] = sd_group_number(cmd); 1200 cmd->cmnd[7] = 0x18; /* Additional CDB len */ 1201 cmd->cmnd[9] = write ? WRITE_32 : READ_32; 1202 cmd->cmnd[10] = flags; 1203 cmd->cmnd[11] = dld & 0x07; 1204 put_unaligned_be64(lba, &cmd->cmnd[12]); 1205 put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */ 1206 put_unaligned_be32(nr_blocks, &cmd->cmnd[28]); 1207 1208 return BLK_STS_OK; 1209 } 1210 1211 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write, 1212 sector_t lba, unsigned int nr_blocks, 1213 unsigned char flags, unsigned int dld) 1214 { 1215 cmd->cmd_len = 16; 1216 cmd->cmnd[0] = write ? WRITE_16 : READ_16; 1217 cmd->cmnd[1] = flags | ((dld >> 2) & 0x01); 1218 cmd->cmnd[14] = ((dld & 0x03) << 6) | sd_group_number(cmd); 1219 cmd->cmnd[15] = 0; 1220 put_unaligned_be64(lba, &cmd->cmnd[2]); 1221 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 1222 1223 return BLK_STS_OK; 1224 } 1225 1226 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write, 1227 sector_t lba, unsigned int nr_blocks, 1228 unsigned char flags) 1229 { 1230 cmd->cmd_len = 10; 1231 cmd->cmnd[0] = write ? WRITE_10 : READ_10; 1232 cmd->cmnd[1] = flags; 1233 cmd->cmnd[6] = sd_group_number(cmd); 1234 cmd->cmnd[9] = 0; 1235 put_unaligned_be32(lba, &cmd->cmnd[2]); 1236 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 1237 1238 return BLK_STS_OK; 1239 } 1240 1241 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write, 1242 sector_t lba, unsigned int nr_blocks, 1243 unsigned char flags) 1244 { 1245 /* Avoid that 0 blocks gets translated into 256 blocks. */ 1246 if (WARN_ON_ONCE(nr_blocks == 0)) 1247 return BLK_STS_IOERR; 1248 1249 if (unlikely(flags & 0x8)) { 1250 /* 1251 * This happens only if this drive failed 10byte rw 1252 * command with ILLEGAL_REQUEST during operation and 1253 * thus turned off use_10_for_rw. 1254 */ 1255 scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n"); 1256 return BLK_STS_IOERR; 1257 } 1258 1259 cmd->cmd_len = 6; 1260 cmd->cmnd[0] = write ? WRITE_6 : READ_6; 1261 cmd->cmnd[1] = (lba >> 16) & 0x1f; 1262 cmd->cmnd[2] = (lba >> 8) & 0xff; 1263 cmd->cmnd[3] = lba & 0xff; 1264 cmd->cmnd[4] = nr_blocks; 1265 cmd->cmnd[5] = 0; 1266 1267 return BLK_STS_OK; 1268 } 1269 1270 /* 1271 * Check if a command has a duration limit set. If it does, and the target 1272 * device supports CDL and the feature is enabled, return the limit 1273 * descriptor index to use. Return 0 (no limit) otherwise. 1274 */ 1275 static int sd_cdl_dld(struct scsi_disk *sdkp, struct scsi_cmnd *scmd) 1276 { 1277 struct scsi_device *sdp = sdkp->device; 1278 int hint; 1279 1280 if (!sdp->cdl_supported || !sdp->cdl_enable) 1281 return 0; 1282 1283 /* 1284 * Use "no limit" if the request ioprio does not specify a duration 1285 * limit hint. 1286 */ 1287 hint = IOPRIO_PRIO_HINT(req_get_ioprio(scsi_cmd_to_rq(scmd))); 1288 if (hint < IOPRIO_HINT_DEV_DURATION_LIMIT_1 || 1289 hint > IOPRIO_HINT_DEV_DURATION_LIMIT_7) 1290 return 0; 1291 1292 return (hint - IOPRIO_HINT_DEV_DURATION_LIMIT_1) + 1; 1293 } 1294 1295 static blk_status_t sd_setup_atomic_cmnd(struct scsi_cmnd *cmd, 1296 sector_t lba, unsigned int nr_blocks, 1297 bool boundary, unsigned char flags) 1298 { 1299 cmd->cmd_len = 16; 1300 cmd->cmnd[0] = WRITE_ATOMIC_16; 1301 cmd->cmnd[1] = flags; 1302 put_unaligned_be64(lba, &cmd->cmnd[2]); 1303 put_unaligned_be16(nr_blocks, &cmd->cmnd[12]); 1304 if (boundary) 1305 put_unaligned_be16(nr_blocks, &cmd->cmnd[10]); 1306 else 1307 put_unaligned_be16(0, &cmd->cmnd[10]); 1308 put_unaligned_be16(nr_blocks, &cmd->cmnd[12]); 1309 cmd->cmnd[14] = 0; 1310 cmd->cmnd[15] = 0; 1311 1312 return BLK_STS_OK; 1313 } 1314 1315 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd) 1316 { 1317 struct request *rq = scsi_cmd_to_rq(cmd); 1318 struct scsi_device *sdp = cmd->device; 1319 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 1320 sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 1321 sector_t threshold; 1322 unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 1323 unsigned int mask = logical_to_sectors(sdp, 1) - 1; 1324 bool write = rq_data_dir(rq) == WRITE; 1325 unsigned char protect, fua; 1326 unsigned int dld; 1327 blk_status_t ret; 1328 unsigned int dif; 1329 bool dix; 1330 1331 ret = scsi_alloc_sgtables(cmd); 1332 if (ret != BLK_STS_OK) 1333 return ret; 1334 1335 ret = BLK_STS_IOERR; 1336 if (!scsi_device_online(sdp) || sdp->changed) { 1337 scmd_printk(KERN_ERR, cmd, "device offline or changed\n"); 1338 goto fail; 1339 } 1340 1341 if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->q->disk)) { 1342 scmd_printk(KERN_ERR, cmd, "access beyond end of device\n"); 1343 goto fail; 1344 } 1345 1346 if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) { 1347 scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n"); 1348 goto fail; 1349 } 1350 1351 /* 1352 * Some SD card readers can't handle accesses which touch the 1353 * last one or two logical blocks. Split accesses as needed. 1354 */ 1355 threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS; 1356 1357 if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) { 1358 if (lba < threshold) { 1359 /* Access up to the threshold but not beyond */ 1360 nr_blocks = threshold - lba; 1361 } else { 1362 /* Access only a single logical block */ 1363 nr_blocks = 1; 1364 } 1365 } 1366 1367 fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0; 1368 dix = scsi_prot_sg_count(cmd); 1369 dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type); 1370 dld = sd_cdl_dld(sdkp, cmd); 1371 1372 if (dif || dix) 1373 protect = sd_setup_protect_cmnd(cmd, dix, dif); 1374 else 1375 protect = 0; 1376 1377 if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) { 1378 ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks, 1379 protect | fua, dld); 1380 } else if (rq->cmd_flags & REQ_ATOMIC) { 1381 ret = sd_setup_atomic_cmnd(cmd, lba, nr_blocks, 1382 sdkp->use_atomic_write_boundary, 1383 protect | fua); 1384 } else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) { 1385 ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks, 1386 protect | fua, dld); 1387 } else if ((nr_blocks > 0xff) || (lba > 0x1fffff) || 1388 sdp->use_10_for_rw || protect || rq->bio->bi_write_hint) { 1389 ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks, 1390 protect | fua); 1391 } else { 1392 ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks, 1393 protect | fua); 1394 } 1395 1396 if (unlikely(ret != BLK_STS_OK)) 1397 goto fail; 1398 1399 /* 1400 * We shouldn't disconnect in the middle of a sector, so with a dumb 1401 * host adapter, it's safe to assume that we can at least transfer 1402 * this many bytes between each connect / disconnect. 1403 */ 1404 cmd->transfersize = sdp->sector_size; 1405 cmd->underflow = nr_blocks << 9; 1406 cmd->allowed = sdkp->max_retries; 1407 cmd->sdb.length = nr_blocks * sdp->sector_size; 1408 1409 SCSI_LOG_HLQUEUE(1, 1410 scmd_printk(KERN_INFO, cmd, 1411 "%s: block=%llu, count=%d\n", __func__, 1412 (unsigned long long)blk_rq_pos(rq), 1413 blk_rq_sectors(rq))); 1414 SCSI_LOG_HLQUEUE(2, 1415 scmd_printk(KERN_INFO, cmd, 1416 "%s %d/%u 512 byte blocks.\n", 1417 write ? "writing" : "reading", nr_blocks, 1418 blk_rq_sectors(rq))); 1419 1420 /* 1421 * This indicates that the command is ready from our end to be queued. 1422 */ 1423 return BLK_STS_OK; 1424 fail: 1425 scsi_free_sgtables(cmd); 1426 return ret; 1427 } 1428 1429 static blk_status_t sd_init_command(struct scsi_cmnd *cmd) 1430 { 1431 struct request *rq = scsi_cmd_to_rq(cmd); 1432 1433 switch (req_op(rq)) { 1434 case REQ_OP_DISCARD: 1435 switch (scsi_disk(rq->q->disk)->provisioning_mode) { 1436 case SD_LBP_UNMAP: 1437 return sd_setup_unmap_cmnd(cmd); 1438 case SD_LBP_WS16: 1439 return sd_setup_write_same16_cmnd(cmd, true); 1440 case SD_LBP_WS10: 1441 return sd_setup_write_same10_cmnd(cmd, true); 1442 case SD_LBP_ZERO: 1443 return sd_setup_write_same10_cmnd(cmd, false); 1444 default: 1445 return BLK_STS_TARGET; 1446 } 1447 case REQ_OP_WRITE_ZEROES: 1448 return sd_setup_write_zeroes_cmnd(cmd); 1449 case REQ_OP_FLUSH: 1450 return sd_setup_flush_cmnd(cmd); 1451 case REQ_OP_READ: 1452 case REQ_OP_WRITE: 1453 return sd_setup_read_write_cmnd(cmd); 1454 case REQ_OP_ZONE_RESET: 1455 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER, 1456 false); 1457 case REQ_OP_ZONE_RESET_ALL: 1458 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER, 1459 true); 1460 case REQ_OP_ZONE_OPEN: 1461 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false); 1462 case REQ_OP_ZONE_CLOSE: 1463 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false); 1464 case REQ_OP_ZONE_FINISH: 1465 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false); 1466 default: 1467 WARN_ON_ONCE(1); 1468 return BLK_STS_NOTSUPP; 1469 } 1470 } 1471 1472 static void sd_uninit_command(struct scsi_cmnd *SCpnt) 1473 { 1474 struct request *rq = scsi_cmd_to_rq(SCpnt); 1475 1476 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1477 mempool_free(rq->special_vec.bv_page, sd_page_pool); 1478 } 1479 1480 static bool sd_need_revalidate(struct gendisk *disk, struct scsi_disk *sdkp) 1481 { 1482 if (sdkp->device->removable || sdkp->write_prot) { 1483 if (disk_check_media_change(disk)) 1484 return true; 1485 } 1486 1487 /* 1488 * Force a full rescan after ioctl(BLKRRPART). While the disk state has 1489 * nothing to do with partitions, BLKRRPART is used to force a full 1490 * revalidate after things like a format for historical reasons. 1491 */ 1492 return test_bit(GD_NEED_PART_SCAN, &disk->state); 1493 } 1494 1495 /** 1496 * sd_open - open a scsi disk device 1497 * @disk: disk to open 1498 * @mode: open mode 1499 * 1500 * Returns 0 if successful. Returns a negated errno value in case 1501 * of error. 1502 * 1503 * Note: This can be called from a user context (e.g. fsck(1) ) 1504 * or from within the kernel (e.g. as a result of a mount(1) ). 1505 * In the latter case @inode and @filp carry an abridged amount 1506 * of information as noted above. 1507 * 1508 * Locking: called with disk->open_mutex held. 1509 **/ 1510 static int sd_open(struct gendisk *disk, blk_mode_t mode) 1511 { 1512 struct scsi_disk *sdkp = scsi_disk(disk); 1513 struct scsi_device *sdev = sdkp->device; 1514 int retval; 1515 1516 if (scsi_device_get(sdev)) 1517 return -ENXIO; 1518 1519 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n")); 1520 1521 /* 1522 * If the device is in error recovery, wait until it is done. 1523 * If the device is offline, then disallow any access to it. 1524 */ 1525 retval = -ENXIO; 1526 if (!scsi_block_when_processing_errors(sdev)) 1527 goto error_out; 1528 1529 if (sd_need_revalidate(disk, sdkp)) 1530 sd_revalidate_disk(disk); 1531 1532 /* 1533 * If the drive is empty, just let the open fail. 1534 */ 1535 retval = -ENOMEDIUM; 1536 if (sdev->removable && !sdkp->media_present && 1537 !(mode & BLK_OPEN_NDELAY)) 1538 goto error_out; 1539 1540 /* 1541 * If the device has the write protect tab set, have the open fail 1542 * if the user expects to be able to write to the thing. 1543 */ 1544 retval = -EROFS; 1545 if (sdkp->write_prot && (mode & BLK_OPEN_WRITE)) 1546 goto error_out; 1547 1548 /* 1549 * It is possible that the disk changing stuff resulted in 1550 * the device being taken offline. If this is the case, 1551 * report this to the user, and don't pretend that the 1552 * open actually succeeded. 1553 */ 1554 retval = -ENXIO; 1555 if (!scsi_device_online(sdev)) 1556 goto error_out; 1557 1558 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) { 1559 if (scsi_block_when_processing_errors(sdev)) 1560 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT); 1561 } 1562 1563 return 0; 1564 1565 error_out: 1566 scsi_device_put(sdev); 1567 return retval; 1568 } 1569 1570 /** 1571 * sd_release - invoked when the (last) close(2) is called on this 1572 * scsi disk. 1573 * @disk: disk to release 1574 * 1575 * Returns 0. 1576 * 1577 * Note: may block (uninterruptible) if error recovery is underway 1578 * on this disk. 1579 * 1580 * Locking: called with disk->open_mutex held. 1581 **/ 1582 static void sd_release(struct gendisk *disk) 1583 { 1584 struct scsi_disk *sdkp = scsi_disk(disk); 1585 struct scsi_device *sdev = sdkp->device; 1586 1587 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n")); 1588 1589 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) { 1590 if (scsi_block_when_processing_errors(sdev)) 1591 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW); 1592 } 1593 1594 scsi_device_put(sdev); 1595 } 1596 1597 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1598 { 1599 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1600 struct scsi_device *sdp = sdkp->device; 1601 struct Scsi_Host *host = sdp->host; 1602 sector_t capacity = logical_to_sectors(sdp, sdkp->capacity); 1603 int diskinfo[4]; 1604 1605 /* default to most commonly used values */ 1606 diskinfo[0] = 0x40; /* 1 << 6 */ 1607 diskinfo[1] = 0x20; /* 1 << 5 */ 1608 diskinfo[2] = capacity >> 11; 1609 1610 /* override with calculated, extended default, or driver values */ 1611 if (host->hostt->bios_param) 1612 host->hostt->bios_param(sdp, bdev, capacity, diskinfo); 1613 else 1614 scsicam_bios_param(bdev, capacity, diskinfo); 1615 1616 geo->heads = diskinfo[0]; 1617 geo->sectors = diskinfo[1]; 1618 geo->cylinders = diskinfo[2]; 1619 return 0; 1620 } 1621 1622 /** 1623 * sd_ioctl - process an ioctl 1624 * @bdev: target block device 1625 * @mode: open mode 1626 * @cmd: ioctl command number 1627 * @arg: this is third argument given to ioctl(2) system call. 1628 * Often contains a pointer. 1629 * 1630 * Returns 0 if successful (some ioctls return positive numbers on 1631 * success as well). Returns a negated errno value in case of error. 1632 * 1633 * Note: most ioctls are forward onto the block subsystem or further 1634 * down in the scsi subsystem. 1635 **/ 1636 static int sd_ioctl(struct block_device *bdev, blk_mode_t mode, 1637 unsigned int cmd, unsigned long arg) 1638 { 1639 struct gendisk *disk = bdev->bd_disk; 1640 struct scsi_disk *sdkp = scsi_disk(disk); 1641 struct scsi_device *sdp = sdkp->device; 1642 void __user *p = (void __user *)arg; 1643 int error; 1644 1645 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, " 1646 "cmd=0x%x\n", disk->disk_name, cmd)); 1647 1648 if (bdev_is_partition(bdev) && !capable(CAP_SYS_RAWIO)) 1649 return -ENOIOCTLCMD; 1650 1651 /* 1652 * If we are in the middle of error recovery, don't let anyone 1653 * else try and use this device. Also, if error recovery fails, it 1654 * may try and take the device offline, in which case all further 1655 * access to the device is prohibited. 1656 */ 1657 error = scsi_ioctl_block_when_processing_errors(sdp, cmd, 1658 (mode & BLK_OPEN_NDELAY)); 1659 if (error) 1660 return error; 1661 1662 if (is_sed_ioctl(cmd)) 1663 return sed_ioctl(sdkp->opal_dev, cmd, p); 1664 return scsi_ioctl(sdp, mode & BLK_OPEN_WRITE, cmd, p); 1665 } 1666 1667 static void set_media_not_present(struct scsi_disk *sdkp) 1668 { 1669 if (sdkp->media_present) 1670 sdkp->device->changed = 1; 1671 1672 if (sdkp->device->removable) { 1673 sdkp->media_present = 0; 1674 sdkp->capacity = 0; 1675 } 1676 } 1677 1678 static int media_not_present(struct scsi_disk *sdkp, 1679 struct scsi_sense_hdr *sshdr) 1680 { 1681 if (!scsi_sense_valid(sshdr)) 1682 return 0; 1683 1684 /* not invoked for commands that could return deferred errors */ 1685 switch (sshdr->sense_key) { 1686 case UNIT_ATTENTION: 1687 case NOT_READY: 1688 /* medium not present */ 1689 if (sshdr->asc == 0x3A) { 1690 set_media_not_present(sdkp); 1691 return 1; 1692 } 1693 } 1694 return 0; 1695 } 1696 1697 /** 1698 * sd_check_events - check media events 1699 * @disk: kernel device descriptor 1700 * @clearing: disk events currently being cleared 1701 * 1702 * Returns mask of DISK_EVENT_*. 1703 * 1704 * Note: this function is invoked from the block subsystem. 1705 **/ 1706 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing) 1707 { 1708 struct scsi_disk *sdkp = disk->private_data; 1709 struct scsi_device *sdp; 1710 int retval; 1711 bool disk_changed; 1712 1713 if (!sdkp) 1714 return 0; 1715 1716 sdp = sdkp->device; 1717 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n")); 1718 1719 /* 1720 * If the device is offline, don't send any commands - just pretend as 1721 * if the command failed. If the device ever comes back online, we 1722 * can deal with it then. It is only because of unrecoverable errors 1723 * that we would ever take a device offline in the first place. 1724 */ 1725 if (!scsi_device_online(sdp)) { 1726 set_media_not_present(sdkp); 1727 goto out; 1728 } 1729 1730 /* 1731 * Using TEST_UNIT_READY enables differentiation between drive with 1732 * no cartridge loaded - NOT READY, drive with changed cartridge - 1733 * UNIT ATTENTION, or with same cartridge - GOOD STATUS. 1734 * 1735 * Drives that auto spin down. eg iomega jaz 1G, will be started 1736 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever 1737 * sd_revalidate() is called. 1738 */ 1739 if (scsi_block_when_processing_errors(sdp)) { 1740 struct scsi_sense_hdr sshdr = { 0, }; 1741 1742 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries, 1743 &sshdr); 1744 1745 /* failed to execute TUR, assume media not present */ 1746 if (retval < 0 || host_byte(retval)) { 1747 set_media_not_present(sdkp); 1748 goto out; 1749 } 1750 1751 if (media_not_present(sdkp, &sshdr)) 1752 goto out; 1753 } 1754 1755 /* 1756 * For removable scsi disk we have to recognise the presence 1757 * of a disk in the drive. 1758 */ 1759 if (!sdkp->media_present) 1760 sdp->changed = 1; 1761 sdkp->media_present = 1; 1762 out: 1763 /* 1764 * sdp->changed is set under the following conditions: 1765 * 1766 * Medium present state has changed in either direction. 1767 * Device has indicated UNIT_ATTENTION. 1768 */ 1769 disk_changed = sdp->changed; 1770 sdp->changed = 0; 1771 return disk_changed ? DISK_EVENT_MEDIA_CHANGE : 0; 1772 } 1773 1774 static int sd_sync_cache(struct scsi_disk *sdkp) 1775 { 1776 int res; 1777 struct scsi_device *sdp = sdkp->device; 1778 const int timeout = sdp->request_queue->rq_timeout 1779 * SD_FLUSH_TIMEOUT_MULTIPLIER; 1780 /* Leave the rest of the command zero to indicate flush everything. */ 1781 const unsigned char cmd[16] = { sdp->use_16_for_sync ? 1782 SYNCHRONIZE_CACHE_16 : SYNCHRONIZE_CACHE }; 1783 struct scsi_sense_hdr sshdr; 1784 struct scsi_failure failure_defs[] = { 1785 { 1786 .allowed = 3, 1787 .result = SCMD_FAILURE_RESULT_ANY, 1788 }, 1789 {} 1790 }; 1791 struct scsi_failures failures = { 1792 .failure_definitions = failure_defs, 1793 }; 1794 const struct scsi_exec_args exec_args = { 1795 .req_flags = BLK_MQ_REQ_PM, 1796 .sshdr = &sshdr, 1797 .failures = &failures, 1798 }; 1799 1800 if (!scsi_device_online(sdp)) 1801 return -ENODEV; 1802 1803 res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, timeout, 1804 sdkp->max_retries, &exec_args); 1805 if (res) { 1806 sd_print_result(sdkp, "Synchronize Cache(10) failed", res); 1807 1808 if (res < 0) 1809 return res; 1810 1811 if (scsi_status_is_check_condition(res) && 1812 scsi_sense_valid(&sshdr)) { 1813 sd_print_sense_hdr(sdkp, &sshdr); 1814 1815 /* we need to evaluate the error return */ 1816 if (sshdr.asc == 0x3a || /* medium not present */ 1817 sshdr.asc == 0x20 || /* invalid command */ 1818 (sshdr.asc == 0x74 && sshdr.ascq == 0x71)) /* drive is password locked */ 1819 /* this is no error here */ 1820 return 0; 1821 1822 /* 1823 * If a format is in progress or if the drive does not 1824 * support sync, there is not much we can do because 1825 * this is called during shutdown or suspend so just 1826 * return success so those operations can proceed. 1827 */ 1828 if ((sshdr.asc == 0x04 && sshdr.ascq == 0x04) || 1829 sshdr.sense_key == ILLEGAL_REQUEST) 1830 return 0; 1831 } 1832 1833 switch (host_byte(res)) { 1834 /* ignore errors due to racing a disconnection */ 1835 case DID_BAD_TARGET: 1836 case DID_NO_CONNECT: 1837 return 0; 1838 /* signal the upper layer it might try again */ 1839 case DID_BUS_BUSY: 1840 case DID_IMM_RETRY: 1841 case DID_REQUEUE: 1842 case DID_SOFT_ERROR: 1843 return -EBUSY; 1844 default: 1845 return -EIO; 1846 } 1847 } 1848 return 0; 1849 } 1850 1851 static void sd_rescan(struct device *dev) 1852 { 1853 struct scsi_disk *sdkp = dev_get_drvdata(dev); 1854 1855 sd_revalidate_disk(sdkp->disk); 1856 } 1857 1858 static int sd_get_unique_id(struct gendisk *disk, u8 id[16], 1859 enum blk_unique_id type) 1860 { 1861 struct scsi_device *sdev = scsi_disk(disk)->device; 1862 const struct scsi_vpd *vpd; 1863 const unsigned char *d; 1864 int ret = -ENXIO, len; 1865 1866 rcu_read_lock(); 1867 vpd = rcu_dereference(sdev->vpd_pg83); 1868 if (!vpd) 1869 goto out_unlock; 1870 1871 ret = -EINVAL; 1872 for (d = vpd->data + 4; d < vpd->data + vpd->len; d += d[3] + 4) { 1873 /* we only care about designators with LU association */ 1874 if (((d[1] >> 4) & 0x3) != 0x00) 1875 continue; 1876 if ((d[1] & 0xf) != type) 1877 continue; 1878 1879 /* 1880 * Only exit early if a 16-byte descriptor was found. Otherwise 1881 * keep looking as one with more entropy might still show up. 1882 */ 1883 len = d[3]; 1884 if (len != 8 && len != 12 && len != 16) 1885 continue; 1886 ret = len; 1887 memcpy(id, d + 4, len); 1888 if (len == 16) 1889 break; 1890 } 1891 out_unlock: 1892 rcu_read_unlock(); 1893 return ret; 1894 } 1895 1896 static int sd_scsi_to_pr_err(struct scsi_sense_hdr *sshdr, int result) 1897 { 1898 switch (host_byte(result)) { 1899 case DID_TRANSPORT_MARGINAL: 1900 case DID_TRANSPORT_DISRUPTED: 1901 case DID_BUS_BUSY: 1902 return PR_STS_RETRY_PATH_FAILURE; 1903 case DID_NO_CONNECT: 1904 return PR_STS_PATH_FAILED; 1905 case DID_TRANSPORT_FAILFAST: 1906 return PR_STS_PATH_FAST_FAILED; 1907 } 1908 1909 switch (status_byte(result)) { 1910 case SAM_STAT_RESERVATION_CONFLICT: 1911 return PR_STS_RESERVATION_CONFLICT; 1912 case SAM_STAT_CHECK_CONDITION: 1913 if (!scsi_sense_valid(sshdr)) 1914 return PR_STS_IOERR; 1915 1916 if (sshdr->sense_key == ILLEGAL_REQUEST && 1917 (sshdr->asc == 0x26 || sshdr->asc == 0x24)) 1918 return -EINVAL; 1919 1920 fallthrough; 1921 default: 1922 return PR_STS_IOERR; 1923 } 1924 } 1925 1926 static int sd_pr_in_command(struct block_device *bdev, u8 sa, 1927 unsigned char *data, int data_len) 1928 { 1929 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1930 struct scsi_device *sdev = sdkp->device; 1931 struct scsi_sense_hdr sshdr; 1932 u8 cmd[10] = { PERSISTENT_RESERVE_IN, sa }; 1933 struct scsi_failure failure_defs[] = { 1934 { 1935 .sense = UNIT_ATTENTION, 1936 .asc = SCMD_FAILURE_ASC_ANY, 1937 .ascq = SCMD_FAILURE_ASCQ_ANY, 1938 .allowed = 5, 1939 .result = SAM_STAT_CHECK_CONDITION, 1940 }, 1941 {} 1942 }; 1943 struct scsi_failures failures = { 1944 .failure_definitions = failure_defs, 1945 }; 1946 const struct scsi_exec_args exec_args = { 1947 .sshdr = &sshdr, 1948 .failures = &failures, 1949 }; 1950 int result; 1951 1952 put_unaligned_be16(data_len, &cmd[7]); 1953 1954 result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, data, data_len, 1955 SD_TIMEOUT, sdkp->max_retries, &exec_args); 1956 if (scsi_status_is_check_condition(result) && 1957 scsi_sense_valid(&sshdr)) { 1958 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result); 1959 scsi_print_sense_hdr(sdev, NULL, &sshdr); 1960 } 1961 1962 if (result <= 0) 1963 return result; 1964 1965 return sd_scsi_to_pr_err(&sshdr, result); 1966 } 1967 1968 static int sd_pr_read_keys(struct block_device *bdev, struct pr_keys *keys_info) 1969 { 1970 int result, i, data_offset, num_copy_keys; 1971 u32 num_keys = keys_info->num_keys; 1972 int data_len = num_keys * 8 + 8; 1973 u8 *data; 1974 1975 data = kzalloc(data_len, GFP_KERNEL); 1976 if (!data) 1977 return -ENOMEM; 1978 1979 result = sd_pr_in_command(bdev, READ_KEYS, data, data_len); 1980 if (result) 1981 goto free_data; 1982 1983 keys_info->generation = get_unaligned_be32(&data[0]); 1984 keys_info->num_keys = get_unaligned_be32(&data[4]) / 8; 1985 1986 data_offset = 8; 1987 num_copy_keys = min(num_keys, keys_info->num_keys); 1988 1989 for (i = 0; i < num_copy_keys; i++) { 1990 keys_info->keys[i] = get_unaligned_be64(&data[data_offset]); 1991 data_offset += 8; 1992 } 1993 1994 free_data: 1995 kfree(data); 1996 return result; 1997 } 1998 1999 static int sd_pr_read_reservation(struct block_device *bdev, 2000 struct pr_held_reservation *rsv) 2001 { 2002 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 2003 struct scsi_device *sdev = sdkp->device; 2004 u8 data[24] = { }; 2005 int result, len; 2006 2007 result = sd_pr_in_command(bdev, READ_RESERVATION, data, sizeof(data)); 2008 if (result) 2009 return result; 2010 2011 len = get_unaligned_be32(&data[4]); 2012 if (!len) 2013 return 0; 2014 2015 /* Make sure we have at least the key and type */ 2016 if (len < 14) { 2017 sdev_printk(KERN_INFO, sdev, 2018 "READ RESERVATION failed due to short return buffer of %d bytes\n", 2019 len); 2020 return -EINVAL; 2021 } 2022 2023 rsv->generation = get_unaligned_be32(&data[0]); 2024 rsv->key = get_unaligned_be64(&data[8]); 2025 rsv->type = scsi_pr_type_to_block(data[21] & 0x0f); 2026 return 0; 2027 } 2028 2029 static int sd_pr_out_command(struct block_device *bdev, u8 sa, u64 key, 2030 u64 sa_key, enum scsi_pr_type type, u8 flags) 2031 { 2032 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 2033 struct scsi_device *sdev = sdkp->device; 2034 struct scsi_sense_hdr sshdr; 2035 struct scsi_failure failure_defs[] = { 2036 { 2037 .sense = UNIT_ATTENTION, 2038 .asc = SCMD_FAILURE_ASC_ANY, 2039 .ascq = SCMD_FAILURE_ASCQ_ANY, 2040 .allowed = 5, 2041 .result = SAM_STAT_CHECK_CONDITION, 2042 }, 2043 {} 2044 }; 2045 struct scsi_failures failures = { 2046 .failure_definitions = failure_defs, 2047 }; 2048 const struct scsi_exec_args exec_args = { 2049 .sshdr = &sshdr, 2050 .failures = &failures, 2051 }; 2052 int result; 2053 u8 cmd[16] = { 0, }; 2054 u8 data[24] = { 0, }; 2055 2056 cmd[0] = PERSISTENT_RESERVE_OUT; 2057 cmd[1] = sa; 2058 cmd[2] = type; 2059 put_unaligned_be32(sizeof(data), &cmd[5]); 2060 2061 put_unaligned_be64(key, &data[0]); 2062 put_unaligned_be64(sa_key, &data[8]); 2063 data[20] = flags; 2064 2065 result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, &data, 2066 sizeof(data), SD_TIMEOUT, sdkp->max_retries, 2067 &exec_args); 2068 2069 if (scsi_status_is_check_condition(result) && 2070 scsi_sense_valid(&sshdr)) { 2071 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result); 2072 scsi_print_sense_hdr(sdev, NULL, &sshdr); 2073 } 2074 2075 if (result <= 0) 2076 return result; 2077 2078 return sd_scsi_to_pr_err(&sshdr, result); 2079 } 2080 2081 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 2082 u32 flags) 2083 { 2084 if (flags & ~PR_FL_IGNORE_KEY) 2085 return -EOPNOTSUPP; 2086 return sd_pr_out_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00, 2087 old_key, new_key, 0, 2088 (1 << 0) /* APTPL */); 2089 } 2090 2091 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 2092 u32 flags) 2093 { 2094 if (flags) 2095 return -EOPNOTSUPP; 2096 return sd_pr_out_command(bdev, 0x01, key, 0, 2097 block_pr_type_to_scsi(type), 0); 2098 } 2099 2100 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 2101 { 2102 return sd_pr_out_command(bdev, 0x02, key, 0, 2103 block_pr_type_to_scsi(type), 0); 2104 } 2105 2106 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 2107 enum pr_type type, bool abort) 2108 { 2109 return sd_pr_out_command(bdev, abort ? 0x05 : 0x04, old_key, new_key, 2110 block_pr_type_to_scsi(type), 0); 2111 } 2112 2113 static int sd_pr_clear(struct block_device *bdev, u64 key) 2114 { 2115 return sd_pr_out_command(bdev, 0x03, key, 0, 0, 0); 2116 } 2117 2118 static const struct pr_ops sd_pr_ops = { 2119 .pr_register = sd_pr_register, 2120 .pr_reserve = sd_pr_reserve, 2121 .pr_release = sd_pr_release, 2122 .pr_preempt = sd_pr_preempt, 2123 .pr_clear = sd_pr_clear, 2124 .pr_read_keys = sd_pr_read_keys, 2125 .pr_read_reservation = sd_pr_read_reservation, 2126 }; 2127 2128 static void scsi_disk_free_disk(struct gendisk *disk) 2129 { 2130 struct scsi_disk *sdkp = scsi_disk(disk); 2131 2132 put_device(&sdkp->disk_dev); 2133 } 2134 2135 static const struct block_device_operations sd_fops = { 2136 .owner = THIS_MODULE, 2137 .open = sd_open, 2138 .release = sd_release, 2139 .ioctl = sd_ioctl, 2140 .getgeo = sd_getgeo, 2141 .compat_ioctl = blkdev_compat_ptr_ioctl, 2142 .check_events = sd_check_events, 2143 .unlock_native_capacity = sd_unlock_native_capacity, 2144 .report_zones = sd_zbc_report_zones, 2145 .get_unique_id = sd_get_unique_id, 2146 .free_disk = scsi_disk_free_disk, 2147 .pr_ops = &sd_pr_ops, 2148 }; 2149 2150 /** 2151 * sd_eh_reset - reset error handling callback 2152 * @scmd: sd-issued command that has failed 2153 * 2154 * This function is called by the SCSI midlayer before starting 2155 * SCSI EH. When counting medium access failures we have to be 2156 * careful to register it only only once per device and SCSI EH run; 2157 * there might be several timed out commands which will cause the 2158 * 'max_medium_access_timeouts' counter to trigger after the first 2159 * SCSI EH run already and set the device to offline. 2160 * So this function resets the internal counter before starting SCSI EH. 2161 **/ 2162 static void sd_eh_reset(struct scsi_cmnd *scmd) 2163 { 2164 struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk); 2165 2166 /* New SCSI EH run, reset gate variable */ 2167 sdkp->ignore_medium_access_errors = false; 2168 } 2169 2170 /** 2171 * sd_eh_action - error handling callback 2172 * @scmd: sd-issued command that has failed 2173 * @eh_disp: The recovery disposition suggested by the midlayer 2174 * 2175 * This function is called by the SCSI midlayer upon completion of an 2176 * error test command (currently TEST UNIT READY). The result of sending 2177 * the eh command is passed in eh_disp. We're looking for devices that 2178 * fail medium access commands but are OK with non access commands like 2179 * test unit ready (so wrongly see the device as having a successful 2180 * recovery) 2181 **/ 2182 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp) 2183 { 2184 struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk); 2185 struct scsi_device *sdev = scmd->device; 2186 2187 if (!scsi_device_online(sdev) || 2188 !scsi_medium_access_command(scmd) || 2189 host_byte(scmd->result) != DID_TIME_OUT || 2190 eh_disp != SUCCESS) 2191 return eh_disp; 2192 2193 /* 2194 * The device has timed out executing a medium access command. 2195 * However, the TEST UNIT READY command sent during error 2196 * handling completed successfully. Either the device is in the 2197 * process of recovering or has it suffered an internal failure 2198 * that prevents access to the storage medium. 2199 */ 2200 if (!sdkp->ignore_medium_access_errors) { 2201 sdkp->medium_access_timed_out++; 2202 sdkp->ignore_medium_access_errors = true; 2203 } 2204 2205 /* 2206 * If the device keeps failing read/write commands but TEST UNIT 2207 * READY always completes successfully we assume that medium 2208 * access is no longer possible and take the device offline. 2209 */ 2210 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) { 2211 scmd_printk(KERN_ERR, scmd, 2212 "Medium access timeout failure. Offlining disk!\n"); 2213 mutex_lock(&sdev->state_mutex); 2214 scsi_device_set_state(sdev, SDEV_OFFLINE); 2215 mutex_unlock(&sdev->state_mutex); 2216 2217 return SUCCESS; 2218 } 2219 2220 return eh_disp; 2221 } 2222 2223 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd) 2224 { 2225 struct request *req = scsi_cmd_to_rq(scmd); 2226 struct scsi_device *sdev = scmd->device; 2227 unsigned int transferred, good_bytes; 2228 u64 start_lba, end_lba, bad_lba; 2229 2230 /* 2231 * Some commands have a payload smaller than the device logical 2232 * block size (e.g. INQUIRY on a 4K disk). 2233 */ 2234 if (scsi_bufflen(scmd) <= sdev->sector_size) 2235 return 0; 2236 2237 /* Check if we have a 'bad_lba' information */ 2238 if (!scsi_get_sense_info_fld(scmd->sense_buffer, 2239 SCSI_SENSE_BUFFERSIZE, 2240 &bad_lba)) 2241 return 0; 2242 2243 /* 2244 * If the bad lba was reported incorrectly, we have no idea where 2245 * the error is. 2246 */ 2247 start_lba = sectors_to_logical(sdev, blk_rq_pos(req)); 2248 end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd)); 2249 if (bad_lba < start_lba || bad_lba >= end_lba) 2250 return 0; 2251 2252 /* 2253 * resid is optional but mostly filled in. When it's unused, 2254 * its value is zero, so we assume the whole buffer transferred 2255 */ 2256 transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd); 2257 2258 /* This computation should always be done in terms of the 2259 * resolution of the device's medium. 2260 */ 2261 good_bytes = logical_to_bytes(sdev, bad_lba - start_lba); 2262 2263 return min(good_bytes, transferred); 2264 } 2265 2266 /** 2267 * sd_done - bottom half handler: called when the lower level 2268 * driver has completed (successfully or otherwise) a scsi command. 2269 * @SCpnt: mid-level's per command structure. 2270 * 2271 * Note: potentially run from within an ISR. Must not block. 2272 **/ 2273 static int sd_done(struct scsi_cmnd *SCpnt) 2274 { 2275 int result = SCpnt->result; 2276 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt); 2277 unsigned int sector_size = SCpnt->device->sector_size; 2278 unsigned int resid; 2279 struct scsi_sense_hdr sshdr; 2280 struct request *req = scsi_cmd_to_rq(SCpnt); 2281 struct scsi_disk *sdkp = scsi_disk(req->q->disk); 2282 int sense_valid = 0; 2283 int sense_deferred = 0; 2284 2285 switch (req_op(req)) { 2286 case REQ_OP_DISCARD: 2287 case REQ_OP_WRITE_ZEROES: 2288 case REQ_OP_ZONE_RESET: 2289 case REQ_OP_ZONE_RESET_ALL: 2290 case REQ_OP_ZONE_OPEN: 2291 case REQ_OP_ZONE_CLOSE: 2292 case REQ_OP_ZONE_FINISH: 2293 if (!result) { 2294 good_bytes = blk_rq_bytes(req); 2295 scsi_set_resid(SCpnt, 0); 2296 } else { 2297 good_bytes = 0; 2298 scsi_set_resid(SCpnt, blk_rq_bytes(req)); 2299 } 2300 break; 2301 default: 2302 /* 2303 * In case of bogus fw or device, we could end up having 2304 * an unaligned partial completion. Check this here and force 2305 * alignment. 2306 */ 2307 resid = scsi_get_resid(SCpnt); 2308 if (resid & (sector_size - 1)) { 2309 sd_printk(KERN_INFO, sdkp, 2310 "Unaligned partial completion (resid=%u, sector_sz=%u)\n", 2311 resid, sector_size); 2312 scsi_print_command(SCpnt); 2313 resid = min(scsi_bufflen(SCpnt), 2314 round_up(resid, sector_size)); 2315 scsi_set_resid(SCpnt, resid); 2316 } 2317 } 2318 2319 if (result) { 2320 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr); 2321 if (sense_valid) 2322 sense_deferred = scsi_sense_is_deferred(&sshdr); 2323 } 2324 sdkp->medium_access_timed_out = 0; 2325 2326 if (!scsi_status_is_check_condition(result) && 2327 (!sense_valid || sense_deferred)) 2328 goto out; 2329 2330 switch (sshdr.sense_key) { 2331 case HARDWARE_ERROR: 2332 case MEDIUM_ERROR: 2333 good_bytes = sd_completed_bytes(SCpnt); 2334 break; 2335 case RECOVERED_ERROR: 2336 good_bytes = scsi_bufflen(SCpnt); 2337 break; 2338 case NO_SENSE: 2339 /* This indicates a false check condition, so ignore it. An 2340 * unknown amount of data was transferred so treat it as an 2341 * error. 2342 */ 2343 SCpnt->result = 0; 2344 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 2345 break; 2346 case ABORTED_COMMAND: 2347 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */ 2348 good_bytes = sd_completed_bytes(SCpnt); 2349 break; 2350 case ILLEGAL_REQUEST: 2351 switch (sshdr.asc) { 2352 case 0x10: /* DIX: Host detected corruption */ 2353 good_bytes = sd_completed_bytes(SCpnt); 2354 break; 2355 case 0x20: /* INVALID COMMAND OPCODE */ 2356 case 0x24: /* INVALID FIELD IN CDB */ 2357 switch (SCpnt->cmnd[0]) { 2358 case UNMAP: 2359 sd_disable_discard(sdkp); 2360 break; 2361 case WRITE_SAME_16: 2362 case WRITE_SAME: 2363 if (SCpnt->cmnd[1] & 8) { /* UNMAP */ 2364 sd_disable_discard(sdkp); 2365 } else { 2366 sd_disable_write_same(sdkp); 2367 req->rq_flags |= RQF_QUIET; 2368 } 2369 break; 2370 } 2371 } 2372 break; 2373 default: 2374 break; 2375 } 2376 2377 out: 2378 if (sdkp->device->type == TYPE_ZBC) 2379 good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr); 2380 2381 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt, 2382 "sd_done: completed %d of %d bytes\n", 2383 good_bytes, scsi_bufflen(SCpnt))); 2384 2385 return good_bytes; 2386 } 2387 2388 /* 2389 * spinup disk - called only in sd_revalidate_disk() 2390 */ 2391 static void 2392 sd_spinup_disk(struct scsi_disk *sdkp) 2393 { 2394 static const u8 cmd[10] = { TEST_UNIT_READY }; 2395 unsigned long spintime_expire = 0; 2396 int spintime, sense_valid = 0; 2397 unsigned int the_result; 2398 struct scsi_sense_hdr sshdr; 2399 struct scsi_failure failure_defs[] = { 2400 /* Do not retry Medium Not Present */ 2401 { 2402 .sense = UNIT_ATTENTION, 2403 .asc = 0x3A, 2404 .ascq = SCMD_FAILURE_ASCQ_ANY, 2405 .result = SAM_STAT_CHECK_CONDITION, 2406 }, 2407 { 2408 .sense = NOT_READY, 2409 .asc = 0x3A, 2410 .ascq = SCMD_FAILURE_ASCQ_ANY, 2411 .result = SAM_STAT_CHECK_CONDITION, 2412 }, 2413 /* Retry when scsi_status_is_good would return false 3 times */ 2414 { 2415 .result = SCMD_FAILURE_STAT_ANY, 2416 .allowed = 3, 2417 }, 2418 {} 2419 }; 2420 struct scsi_failures failures = { 2421 .failure_definitions = failure_defs, 2422 }; 2423 const struct scsi_exec_args exec_args = { 2424 .sshdr = &sshdr, 2425 .failures = &failures, 2426 }; 2427 2428 spintime = 0; 2429 2430 /* Spin up drives, as required. Only do this at boot time */ 2431 /* Spinup needs to be done for module loads too. */ 2432 do { 2433 bool media_was_present = sdkp->media_present; 2434 2435 scsi_failures_reset_retries(&failures); 2436 2437 the_result = scsi_execute_cmd(sdkp->device, cmd, REQ_OP_DRV_IN, 2438 NULL, 0, SD_TIMEOUT, 2439 sdkp->max_retries, &exec_args); 2440 2441 2442 if (the_result > 0) { 2443 /* 2444 * If the drive has indicated to us that it doesn't 2445 * have any media in it, don't bother with any more 2446 * polling. 2447 */ 2448 if (media_not_present(sdkp, &sshdr)) { 2449 if (media_was_present) 2450 sd_printk(KERN_NOTICE, sdkp, 2451 "Media removed, stopped polling\n"); 2452 return; 2453 } 2454 sense_valid = scsi_sense_valid(&sshdr); 2455 } 2456 2457 if (!scsi_status_is_check_condition(the_result)) { 2458 /* no sense, TUR either succeeded or failed 2459 * with a status error */ 2460 if(!spintime && !scsi_status_is_good(the_result)) { 2461 sd_print_result(sdkp, "Test Unit Ready failed", 2462 the_result); 2463 } 2464 break; 2465 } 2466 2467 /* 2468 * The device does not want the automatic start to be issued. 2469 */ 2470 if (sdkp->device->no_start_on_add) 2471 break; 2472 2473 if (sense_valid && sshdr.sense_key == NOT_READY) { 2474 if (sshdr.asc == 4 && sshdr.ascq == 3) 2475 break; /* manual intervention required */ 2476 if (sshdr.asc == 4 && sshdr.ascq == 0xb) 2477 break; /* standby */ 2478 if (sshdr.asc == 4 && sshdr.ascq == 0xc) 2479 break; /* unavailable */ 2480 if (sshdr.asc == 4 && sshdr.ascq == 0x1b) 2481 break; /* sanitize in progress */ 2482 if (sshdr.asc == 4 && sshdr.ascq == 0x24) 2483 break; /* depopulation in progress */ 2484 if (sshdr.asc == 4 && sshdr.ascq == 0x25) 2485 break; /* depopulation restoration in progress */ 2486 /* 2487 * Issue command to spin up drive when not ready 2488 */ 2489 if (!spintime) { 2490 /* Return immediately and start spin cycle */ 2491 const u8 start_cmd[10] = { 2492 [0] = START_STOP, 2493 [1] = 1, 2494 [4] = sdkp->device->start_stop_pwr_cond ? 2495 0x11 : 1, 2496 }; 2497 2498 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk..."); 2499 scsi_execute_cmd(sdkp->device, start_cmd, 2500 REQ_OP_DRV_IN, NULL, 0, 2501 SD_TIMEOUT, sdkp->max_retries, 2502 &exec_args); 2503 spintime_expire = jiffies + 100 * HZ; 2504 spintime = 1; 2505 } 2506 /* Wait 1 second for next try */ 2507 msleep(1000); 2508 printk(KERN_CONT "."); 2509 2510 /* 2511 * Wait for USB flash devices with slow firmware. 2512 * Yes, this sense key/ASC combination shouldn't 2513 * occur here. It's characteristic of these devices. 2514 */ 2515 } else if (sense_valid && 2516 sshdr.sense_key == UNIT_ATTENTION && 2517 sshdr.asc == 0x28) { 2518 if (!spintime) { 2519 spintime_expire = jiffies + 5 * HZ; 2520 spintime = 1; 2521 } 2522 /* Wait 1 second for next try */ 2523 msleep(1000); 2524 } else { 2525 /* we don't understand the sense code, so it's 2526 * probably pointless to loop */ 2527 if(!spintime) { 2528 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n"); 2529 sd_print_sense_hdr(sdkp, &sshdr); 2530 } 2531 break; 2532 } 2533 2534 } while (spintime && time_before_eq(jiffies, spintime_expire)); 2535 2536 if (spintime) { 2537 if (scsi_status_is_good(the_result)) 2538 printk(KERN_CONT "ready\n"); 2539 else 2540 printk(KERN_CONT "not responding...\n"); 2541 } 2542 } 2543 2544 /* 2545 * Determine whether disk supports Data Integrity Field. 2546 */ 2547 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer) 2548 { 2549 struct scsi_device *sdp = sdkp->device; 2550 u8 type; 2551 2552 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) { 2553 sdkp->protection_type = 0; 2554 return 0; 2555 } 2556 2557 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */ 2558 2559 if (type > T10_PI_TYPE3_PROTECTION) { 2560 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \ 2561 " protection type %u. Disabling disk!\n", 2562 type); 2563 sdkp->protection_type = 0; 2564 return -ENODEV; 2565 } 2566 2567 sdkp->protection_type = type; 2568 2569 return 0; 2570 } 2571 2572 static void sd_config_protection(struct scsi_disk *sdkp, 2573 struct queue_limits *lim) 2574 { 2575 struct scsi_device *sdp = sdkp->device; 2576 2577 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY)) 2578 sd_dif_config_host(sdkp, lim); 2579 2580 if (!sdkp->protection_type) 2581 return; 2582 2583 if (!scsi_host_dif_capable(sdp->host, sdkp->protection_type)) { 2584 sd_first_printk(KERN_NOTICE, sdkp, 2585 "Disabling DIF Type %u protection\n", 2586 sdkp->protection_type); 2587 sdkp->protection_type = 0; 2588 } 2589 2590 sd_first_printk(KERN_NOTICE, sdkp, "Enabling DIF Type %u protection\n", 2591 sdkp->protection_type); 2592 } 2593 2594 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp, 2595 struct scsi_sense_hdr *sshdr, int sense_valid, 2596 int the_result) 2597 { 2598 if (sense_valid) 2599 sd_print_sense_hdr(sdkp, sshdr); 2600 else 2601 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n"); 2602 2603 /* 2604 * Set dirty bit for removable devices if not ready - 2605 * sometimes drives will not report this properly. 2606 */ 2607 if (sdp->removable && 2608 sense_valid && sshdr->sense_key == NOT_READY) 2609 set_media_not_present(sdkp); 2610 2611 /* 2612 * We used to set media_present to 0 here to indicate no media 2613 * in the drive, but some drives fail read capacity even with 2614 * media present, so we can't do that. 2615 */ 2616 sdkp->capacity = 0; /* unknown mapped to zero - as usual */ 2617 } 2618 2619 #define RC16_LEN 32 2620 #if RC16_LEN > SD_BUF_SIZE 2621 #error RC16_LEN must not be more than SD_BUF_SIZE 2622 #endif 2623 2624 #define READ_CAPACITY_RETRIES_ON_RESET 10 2625 2626 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp, 2627 struct queue_limits *lim, unsigned char *buffer) 2628 { 2629 unsigned char cmd[16]; 2630 struct scsi_sense_hdr sshdr; 2631 const struct scsi_exec_args exec_args = { 2632 .sshdr = &sshdr, 2633 }; 2634 int sense_valid = 0; 2635 int the_result; 2636 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2637 unsigned int alignment; 2638 unsigned long long lba; 2639 unsigned sector_size; 2640 2641 if (sdp->no_read_capacity_16) 2642 return -EINVAL; 2643 2644 do { 2645 memset(cmd, 0, 16); 2646 cmd[0] = SERVICE_ACTION_IN_16; 2647 cmd[1] = SAI_READ_CAPACITY_16; 2648 cmd[13] = RC16_LEN; 2649 memset(buffer, 0, RC16_LEN); 2650 2651 the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, 2652 buffer, RC16_LEN, SD_TIMEOUT, 2653 sdkp->max_retries, &exec_args); 2654 if (the_result > 0) { 2655 if (media_not_present(sdkp, &sshdr)) 2656 return -ENODEV; 2657 2658 sense_valid = scsi_sense_valid(&sshdr); 2659 if (sense_valid && 2660 sshdr.sense_key == ILLEGAL_REQUEST && 2661 (sshdr.asc == 0x20 || sshdr.asc == 0x24) && 2662 sshdr.ascq == 0x00) 2663 /* Invalid Command Operation Code or 2664 * Invalid Field in CDB, just retry 2665 * silently with RC10 */ 2666 return -EINVAL; 2667 if (sense_valid && 2668 sshdr.sense_key == UNIT_ATTENTION && 2669 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2670 /* Device reset might occur several times, 2671 * give it one more chance */ 2672 if (--reset_retries > 0) 2673 continue; 2674 } 2675 retries--; 2676 2677 } while (the_result && retries); 2678 2679 if (the_result) { 2680 sd_print_result(sdkp, "Read Capacity(16) failed", the_result); 2681 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2682 return -EINVAL; 2683 } 2684 2685 sector_size = get_unaligned_be32(&buffer[8]); 2686 lba = get_unaligned_be64(&buffer[0]); 2687 2688 if (sd_read_protection_type(sdkp, buffer) < 0) { 2689 sdkp->capacity = 0; 2690 return -ENODEV; 2691 } 2692 2693 /* Logical blocks per physical block exponent */ 2694 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size; 2695 2696 /* RC basis */ 2697 sdkp->rc_basis = (buffer[12] >> 4) & 0x3; 2698 2699 /* Lowest aligned logical block */ 2700 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size; 2701 lim->alignment_offset = alignment; 2702 if (alignment && sdkp->first_scan) 2703 sd_printk(KERN_NOTICE, sdkp, 2704 "physical block alignment offset: %u\n", alignment); 2705 2706 if (buffer[14] & 0x80) { /* LBPME */ 2707 sdkp->lbpme = 1; 2708 2709 if (buffer[14] & 0x40) /* LBPRZ */ 2710 sdkp->lbprz = 1; 2711 } 2712 2713 sdkp->capacity = lba + 1; 2714 return sector_size; 2715 } 2716 2717 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp, 2718 unsigned char *buffer) 2719 { 2720 static const u8 cmd[10] = { READ_CAPACITY }; 2721 struct scsi_sense_hdr sshdr; 2722 struct scsi_failure failure_defs[] = { 2723 /* Do not retry Medium Not Present */ 2724 { 2725 .sense = UNIT_ATTENTION, 2726 .asc = 0x3A, 2727 .result = SAM_STAT_CHECK_CONDITION, 2728 }, 2729 { 2730 .sense = NOT_READY, 2731 .asc = 0x3A, 2732 .result = SAM_STAT_CHECK_CONDITION, 2733 }, 2734 /* Device reset might occur several times so retry a lot */ 2735 { 2736 .sense = UNIT_ATTENTION, 2737 .asc = 0x29, 2738 .allowed = READ_CAPACITY_RETRIES_ON_RESET, 2739 .result = SAM_STAT_CHECK_CONDITION, 2740 }, 2741 /* Any other error not listed above retry 3 times */ 2742 { 2743 .result = SCMD_FAILURE_RESULT_ANY, 2744 .allowed = 3, 2745 }, 2746 {} 2747 }; 2748 struct scsi_failures failures = { 2749 .failure_definitions = failure_defs, 2750 }; 2751 const struct scsi_exec_args exec_args = { 2752 .sshdr = &sshdr, 2753 .failures = &failures, 2754 }; 2755 int sense_valid = 0; 2756 int the_result; 2757 sector_t lba; 2758 unsigned sector_size; 2759 2760 memset(buffer, 0, 8); 2761 2762 the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, buffer, 2763 8, SD_TIMEOUT, sdkp->max_retries, 2764 &exec_args); 2765 2766 if (the_result > 0) { 2767 sense_valid = scsi_sense_valid(&sshdr); 2768 2769 if (media_not_present(sdkp, &sshdr)) 2770 return -ENODEV; 2771 } 2772 2773 if (the_result) { 2774 sd_print_result(sdkp, "Read Capacity(10) failed", the_result); 2775 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2776 return -EINVAL; 2777 } 2778 2779 sector_size = get_unaligned_be32(&buffer[4]); 2780 lba = get_unaligned_be32(&buffer[0]); 2781 2782 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) { 2783 /* Some buggy (usb cardreader) devices return an lba of 2784 0xffffffff when the want to report a size of 0 (with 2785 which they really mean no media is present) */ 2786 sdkp->capacity = 0; 2787 sdkp->physical_block_size = sector_size; 2788 return sector_size; 2789 } 2790 2791 sdkp->capacity = lba + 1; 2792 sdkp->physical_block_size = sector_size; 2793 return sector_size; 2794 } 2795 2796 static int sd_try_rc16_first(struct scsi_device *sdp) 2797 { 2798 if (sdp->host->max_cmd_len < 16) 2799 return 0; 2800 if (sdp->try_rc_10_first) 2801 return 0; 2802 if (sdp->scsi_level > SCSI_SPC_2) 2803 return 1; 2804 if (scsi_device_protection(sdp)) 2805 return 1; 2806 return 0; 2807 } 2808 2809 /* 2810 * read disk capacity 2811 */ 2812 static void 2813 sd_read_capacity(struct scsi_disk *sdkp, struct queue_limits *lim, 2814 unsigned char *buffer) 2815 { 2816 int sector_size; 2817 struct scsi_device *sdp = sdkp->device; 2818 2819 if (sd_try_rc16_first(sdp)) { 2820 sector_size = read_capacity_16(sdkp, sdp, lim, buffer); 2821 if (sector_size == -EOVERFLOW) 2822 goto got_data; 2823 if (sector_size == -ENODEV) 2824 return; 2825 if (sector_size < 0) 2826 sector_size = read_capacity_10(sdkp, sdp, buffer); 2827 if (sector_size < 0) 2828 return; 2829 } else { 2830 sector_size = read_capacity_10(sdkp, sdp, buffer); 2831 if (sector_size == -EOVERFLOW) 2832 goto got_data; 2833 if (sector_size < 0) 2834 return; 2835 if ((sizeof(sdkp->capacity) > 4) && 2836 (sdkp->capacity > 0xffffffffULL)) { 2837 int old_sector_size = sector_size; 2838 sd_printk(KERN_NOTICE, sdkp, "Very big device. " 2839 "Trying to use READ CAPACITY(16).\n"); 2840 sector_size = read_capacity_16(sdkp, sdp, lim, buffer); 2841 if (sector_size < 0) { 2842 sd_printk(KERN_NOTICE, sdkp, 2843 "Using 0xffffffff as device size\n"); 2844 sdkp->capacity = 1 + (sector_t) 0xffffffff; 2845 sector_size = old_sector_size; 2846 goto got_data; 2847 } 2848 /* Remember that READ CAPACITY(16) succeeded */ 2849 sdp->try_rc_10_first = 0; 2850 } 2851 } 2852 2853 /* Some devices are known to return the total number of blocks, 2854 * not the highest block number. Some devices have versions 2855 * which do this and others which do not. Some devices we might 2856 * suspect of doing this but we don't know for certain. 2857 * 2858 * If we know the reported capacity is wrong, decrement it. If 2859 * we can only guess, then assume the number of blocks is even 2860 * (usually true but not always) and err on the side of lowering 2861 * the capacity. 2862 */ 2863 if (sdp->fix_capacity || 2864 (sdp->guess_capacity && (sdkp->capacity & 0x01))) { 2865 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count " 2866 "from its reported value: %llu\n", 2867 (unsigned long long) sdkp->capacity); 2868 --sdkp->capacity; 2869 } 2870 2871 got_data: 2872 if (sector_size == 0) { 2873 sector_size = 512; 2874 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, " 2875 "assuming 512.\n"); 2876 } 2877 2878 if (sector_size != 512 && 2879 sector_size != 1024 && 2880 sector_size != 2048 && 2881 sector_size != 4096) { 2882 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n", 2883 sector_size); 2884 /* 2885 * The user might want to re-format the drive with 2886 * a supported sectorsize. Once this happens, it 2887 * would be relatively trivial to set the thing up. 2888 * For this reason, we leave the thing in the table. 2889 */ 2890 sdkp->capacity = 0; 2891 /* 2892 * set a bogus sector size so the normal read/write 2893 * logic in the block layer will eventually refuse any 2894 * request on this device without tripping over power 2895 * of two sector size assumptions 2896 */ 2897 sector_size = 512; 2898 } 2899 lim->logical_block_size = sector_size; 2900 lim->physical_block_size = sdkp->physical_block_size; 2901 sdkp->device->sector_size = sector_size; 2902 2903 if (sdkp->capacity > 0xffffffff) 2904 sdp->use_16_for_rw = 1; 2905 2906 } 2907 2908 /* 2909 * Print disk capacity 2910 */ 2911 static void 2912 sd_print_capacity(struct scsi_disk *sdkp, 2913 sector_t old_capacity) 2914 { 2915 int sector_size = sdkp->device->sector_size; 2916 char cap_str_2[10], cap_str_10[10]; 2917 2918 if (!sdkp->first_scan && old_capacity == sdkp->capacity) 2919 return; 2920 2921 string_get_size(sdkp->capacity, sector_size, 2922 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2)); 2923 string_get_size(sdkp->capacity, sector_size, 2924 STRING_UNITS_10, cap_str_10, sizeof(cap_str_10)); 2925 2926 sd_printk(KERN_NOTICE, sdkp, 2927 "%llu %d-byte logical blocks: (%s/%s)\n", 2928 (unsigned long long)sdkp->capacity, 2929 sector_size, cap_str_10, cap_str_2); 2930 2931 if (sdkp->physical_block_size != sector_size) 2932 sd_printk(KERN_NOTICE, sdkp, 2933 "%u-byte physical blocks\n", 2934 sdkp->physical_block_size); 2935 } 2936 2937 /* called with buffer of length 512 */ 2938 static inline int 2939 sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage, 2940 unsigned char *buffer, int len, struct scsi_mode_data *data, 2941 struct scsi_sense_hdr *sshdr) 2942 { 2943 /* 2944 * If we must use MODE SENSE(10), make sure that the buffer length 2945 * is at least 8 bytes so that the mode sense header fits. 2946 */ 2947 if (sdkp->device->use_10_for_ms && len < 8) 2948 len = 8; 2949 2950 return scsi_mode_sense(sdkp->device, dbd, modepage, 0, buffer, len, 2951 SD_TIMEOUT, sdkp->max_retries, data, sshdr); 2952 } 2953 2954 /* 2955 * read write protect setting, if possible - called only in sd_revalidate_disk() 2956 * called with buffer of length SD_BUF_SIZE 2957 */ 2958 static void 2959 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer) 2960 { 2961 int res; 2962 struct scsi_device *sdp = sdkp->device; 2963 struct scsi_mode_data data; 2964 int old_wp = sdkp->write_prot; 2965 2966 set_disk_ro(sdkp->disk, 0); 2967 if (sdp->skip_ms_page_3f) { 2968 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n"); 2969 return; 2970 } 2971 2972 if (sdp->use_192_bytes_for_3f) { 2973 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL); 2974 } else { 2975 /* 2976 * First attempt: ask for all pages (0x3F), but only 4 bytes. 2977 * We have to start carefully: some devices hang if we ask 2978 * for more than is available. 2979 */ 2980 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL); 2981 2982 /* 2983 * Second attempt: ask for page 0 When only page 0 is 2984 * implemented, a request for page 3F may return Sense Key 2985 * 5: Illegal Request, Sense Code 24: Invalid field in 2986 * CDB. 2987 */ 2988 if (res < 0) 2989 res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL); 2990 2991 /* 2992 * Third attempt: ask 255 bytes, as we did earlier. 2993 */ 2994 if (res < 0) 2995 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255, 2996 &data, NULL); 2997 } 2998 2999 if (res < 0) { 3000 sd_first_printk(KERN_WARNING, sdkp, 3001 "Test WP failed, assume Write Enabled\n"); 3002 } else { 3003 sdkp->write_prot = ((data.device_specific & 0x80) != 0); 3004 set_disk_ro(sdkp->disk, sdkp->write_prot); 3005 if (sdkp->first_scan || old_wp != sdkp->write_prot) { 3006 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n", 3007 sdkp->write_prot ? "on" : "off"); 3008 sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer); 3009 } 3010 } 3011 } 3012 3013 /* 3014 * sd_read_cache_type - called only from sd_revalidate_disk() 3015 * called with buffer of length SD_BUF_SIZE 3016 */ 3017 static void 3018 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer) 3019 { 3020 int len = 0, res; 3021 struct scsi_device *sdp = sdkp->device; 3022 3023 int dbd; 3024 int modepage; 3025 int first_len; 3026 struct scsi_mode_data data; 3027 struct scsi_sense_hdr sshdr; 3028 int old_wce = sdkp->WCE; 3029 int old_rcd = sdkp->RCD; 3030 int old_dpofua = sdkp->DPOFUA; 3031 3032 3033 if (sdkp->cache_override) 3034 return; 3035 3036 first_len = 4; 3037 if (sdp->skip_ms_page_8) { 3038 if (sdp->type == TYPE_RBC) 3039 goto defaults; 3040 else { 3041 if (sdp->skip_ms_page_3f) 3042 goto defaults; 3043 modepage = 0x3F; 3044 if (sdp->use_192_bytes_for_3f) 3045 first_len = 192; 3046 dbd = 0; 3047 } 3048 } else if (sdp->type == TYPE_RBC) { 3049 modepage = 6; 3050 dbd = 8; 3051 } else { 3052 modepage = 8; 3053 dbd = 0; 3054 } 3055 3056 /* cautiously ask */ 3057 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len, 3058 &data, &sshdr); 3059 3060 if (res < 0) 3061 goto bad_sense; 3062 3063 if (!data.header_length) { 3064 modepage = 6; 3065 first_len = 0; 3066 sd_first_printk(KERN_ERR, sdkp, 3067 "Missing header in MODE_SENSE response\n"); 3068 } 3069 3070 /* that went OK, now ask for the proper length */ 3071 len = data.length; 3072 3073 /* 3074 * We're only interested in the first three bytes, actually. 3075 * But the data cache page is defined for the first 20. 3076 */ 3077 if (len < 3) 3078 goto bad_sense; 3079 else if (len > SD_BUF_SIZE) { 3080 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter " 3081 "data from %d to %d bytes\n", len, SD_BUF_SIZE); 3082 len = SD_BUF_SIZE; 3083 } 3084 if (modepage == 0x3F && sdp->use_192_bytes_for_3f) 3085 len = 192; 3086 3087 /* Get the data */ 3088 if (len > first_len) 3089 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len, 3090 &data, &sshdr); 3091 3092 if (!res) { 3093 int offset = data.header_length + data.block_descriptor_length; 3094 3095 while (offset < len) { 3096 u8 page_code = buffer[offset] & 0x3F; 3097 u8 spf = buffer[offset] & 0x40; 3098 3099 if (page_code == 8 || page_code == 6) { 3100 /* We're interested only in the first 3 bytes. 3101 */ 3102 if (len - offset <= 2) { 3103 sd_first_printk(KERN_ERR, sdkp, 3104 "Incomplete mode parameter " 3105 "data\n"); 3106 goto defaults; 3107 } else { 3108 modepage = page_code; 3109 goto Page_found; 3110 } 3111 } else { 3112 /* Go to the next page */ 3113 if (spf && len - offset > 3) 3114 offset += 4 + (buffer[offset+2] << 8) + 3115 buffer[offset+3]; 3116 else if (!spf && len - offset > 1) 3117 offset += 2 + buffer[offset+1]; 3118 else { 3119 sd_first_printk(KERN_ERR, sdkp, 3120 "Incomplete mode " 3121 "parameter data\n"); 3122 goto defaults; 3123 } 3124 } 3125 } 3126 3127 sd_first_printk(KERN_WARNING, sdkp, 3128 "No Caching mode page found\n"); 3129 goto defaults; 3130 3131 Page_found: 3132 if (modepage == 8) { 3133 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0); 3134 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0); 3135 } else { 3136 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0); 3137 sdkp->RCD = 0; 3138 } 3139 3140 sdkp->DPOFUA = (data.device_specific & 0x10) != 0; 3141 if (sdp->broken_fua) { 3142 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n"); 3143 sdkp->DPOFUA = 0; 3144 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw && 3145 !sdkp->device->use_16_for_rw) { 3146 sd_first_printk(KERN_NOTICE, sdkp, 3147 "Uses READ/WRITE(6), disabling FUA\n"); 3148 sdkp->DPOFUA = 0; 3149 } 3150 3151 /* No cache flush allowed for write protected devices */ 3152 if (sdkp->WCE && sdkp->write_prot) 3153 sdkp->WCE = 0; 3154 3155 if (sdkp->first_scan || old_wce != sdkp->WCE || 3156 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA) 3157 sd_printk(KERN_NOTICE, sdkp, 3158 "Write cache: %s, read cache: %s, %s\n", 3159 sdkp->WCE ? "enabled" : "disabled", 3160 sdkp->RCD ? "disabled" : "enabled", 3161 sdkp->DPOFUA ? "supports DPO and FUA" 3162 : "doesn't support DPO or FUA"); 3163 3164 return; 3165 } 3166 3167 bad_sense: 3168 if (res == -EIO && scsi_sense_valid(&sshdr) && 3169 sshdr.sense_key == ILLEGAL_REQUEST && 3170 sshdr.asc == 0x24 && sshdr.ascq == 0x0) 3171 /* Invalid field in CDB */ 3172 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n"); 3173 else 3174 sd_first_printk(KERN_ERR, sdkp, 3175 "Asking for cache data failed\n"); 3176 3177 defaults: 3178 if (sdp->wce_default_on) { 3179 sd_first_printk(KERN_NOTICE, sdkp, 3180 "Assuming drive cache: write back\n"); 3181 sdkp->WCE = 1; 3182 } else { 3183 sd_first_printk(KERN_WARNING, sdkp, 3184 "Assuming drive cache: write through\n"); 3185 sdkp->WCE = 0; 3186 } 3187 sdkp->RCD = 0; 3188 sdkp->DPOFUA = 0; 3189 } 3190 3191 static bool sd_is_perm_stream(struct scsi_disk *sdkp, unsigned int stream_id) 3192 { 3193 u8 cdb[16] = { SERVICE_ACTION_IN_16, SAI_GET_STREAM_STATUS }; 3194 struct { 3195 struct scsi_stream_status_header h; 3196 struct scsi_stream_status s; 3197 } buf; 3198 struct scsi_device *sdev = sdkp->device; 3199 struct scsi_sense_hdr sshdr; 3200 const struct scsi_exec_args exec_args = { 3201 .sshdr = &sshdr, 3202 }; 3203 int res; 3204 3205 put_unaligned_be16(stream_id, &cdb[4]); 3206 put_unaligned_be32(sizeof(buf), &cdb[10]); 3207 3208 res = scsi_execute_cmd(sdev, cdb, REQ_OP_DRV_IN, &buf, sizeof(buf), 3209 SD_TIMEOUT, sdkp->max_retries, &exec_args); 3210 if (res < 0) 3211 return false; 3212 if (scsi_status_is_check_condition(res) && scsi_sense_valid(&sshdr)) 3213 sd_print_sense_hdr(sdkp, &sshdr); 3214 if (res) 3215 return false; 3216 if (get_unaligned_be32(&buf.h.len) < sizeof(struct scsi_stream_status)) 3217 return false; 3218 return buf.h.stream_status[0].perm; 3219 } 3220 3221 static void sd_read_io_hints(struct scsi_disk *sdkp, unsigned char *buffer) 3222 { 3223 struct scsi_device *sdp = sdkp->device; 3224 const struct scsi_io_group_descriptor *desc, *start, *end; 3225 u16 permanent_stream_count_old; 3226 struct scsi_sense_hdr sshdr; 3227 struct scsi_mode_data data; 3228 int res; 3229 3230 if (sdp->sdev_bflags & BLIST_SKIP_IO_HINTS) 3231 return; 3232 3233 res = scsi_mode_sense(sdp, /*dbd=*/0x8, /*modepage=*/0x0a, 3234 /*subpage=*/0x05, buffer, SD_BUF_SIZE, SD_TIMEOUT, 3235 sdkp->max_retries, &data, &sshdr); 3236 if (res < 0) 3237 return; 3238 start = (void *)buffer + data.header_length + 16; 3239 end = (void *)buffer + ALIGN_DOWN(data.header_length + data.length, 3240 sizeof(*end)); 3241 /* 3242 * From "SBC-5 Constrained Streams with Data Lifetimes": Device severs 3243 * should assign the lowest numbered stream identifiers to permanent 3244 * streams. 3245 */ 3246 for (desc = start; desc < end; desc++) 3247 if (!desc->st_enble || !sd_is_perm_stream(sdkp, desc - start)) 3248 break; 3249 permanent_stream_count_old = sdkp->permanent_stream_count; 3250 sdkp->permanent_stream_count = desc - start; 3251 if (sdkp->rscs && sdkp->permanent_stream_count < 2) 3252 sd_printk(KERN_INFO, sdkp, 3253 "Unexpected: RSCS has been set and the permanent stream count is %u\n", 3254 sdkp->permanent_stream_count); 3255 else if (sdkp->permanent_stream_count != permanent_stream_count_old) 3256 sd_printk(KERN_INFO, sdkp, "permanent stream count = %d\n", 3257 sdkp->permanent_stream_count); 3258 } 3259 3260 /* 3261 * The ATO bit indicates whether the DIF application tag is available 3262 * for use by the operating system. 3263 */ 3264 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer) 3265 { 3266 int res, offset; 3267 struct scsi_device *sdp = sdkp->device; 3268 struct scsi_mode_data data; 3269 struct scsi_sense_hdr sshdr; 3270 3271 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 3272 return; 3273 3274 if (sdkp->protection_type == 0) 3275 return; 3276 3277 res = scsi_mode_sense(sdp, 1, 0x0a, 0, buffer, 36, SD_TIMEOUT, 3278 sdkp->max_retries, &data, &sshdr); 3279 3280 if (res < 0 || !data.header_length || 3281 data.length < 6) { 3282 sd_first_printk(KERN_WARNING, sdkp, 3283 "getting Control mode page failed, assume no ATO\n"); 3284 3285 if (res == -EIO && scsi_sense_valid(&sshdr)) 3286 sd_print_sense_hdr(sdkp, &sshdr); 3287 3288 return; 3289 } 3290 3291 offset = data.header_length + data.block_descriptor_length; 3292 3293 if ((buffer[offset] & 0x3f) != 0x0a) { 3294 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n"); 3295 return; 3296 } 3297 3298 if ((buffer[offset + 5] & 0x80) == 0) 3299 return; 3300 3301 sdkp->ATO = 1; 3302 3303 return; 3304 } 3305 3306 static unsigned int sd_discard_mode(struct scsi_disk *sdkp) 3307 { 3308 if (!sdkp->lbpme) 3309 return SD_LBP_FULL; 3310 3311 if (!sdkp->lbpvpd) { 3312 /* LBP VPD page not provided */ 3313 if (sdkp->max_unmap_blocks) 3314 return SD_LBP_UNMAP; 3315 return SD_LBP_WS16; 3316 } 3317 3318 /* LBP VPD page tells us what to use */ 3319 if (sdkp->lbpu && sdkp->max_unmap_blocks) 3320 return SD_LBP_UNMAP; 3321 if (sdkp->lbpws) 3322 return SD_LBP_WS16; 3323 if (sdkp->lbpws10) 3324 return SD_LBP_WS10; 3325 return SD_LBP_DISABLE; 3326 } 3327 3328 /* 3329 * Query disk device for preferred I/O sizes. 3330 */ 3331 static void sd_read_block_limits(struct scsi_disk *sdkp, 3332 struct queue_limits *lim) 3333 { 3334 struct scsi_vpd *vpd; 3335 3336 rcu_read_lock(); 3337 3338 vpd = rcu_dereference(sdkp->device->vpd_pgb0); 3339 if (!vpd || vpd->len < 16) 3340 goto out; 3341 3342 sdkp->min_xfer_blocks = get_unaligned_be16(&vpd->data[6]); 3343 sdkp->max_xfer_blocks = get_unaligned_be32(&vpd->data[8]); 3344 sdkp->opt_xfer_blocks = get_unaligned_be32(&vpd->data[12]); 3345 3346 if (vpd->len >= 64) { 3347 unsigned int lba_count, desc_count; 3348 3349 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&vpd->data[36]); 3350 3351 if (!sdkp->lbpme) 3352 goto config_atomic; 3353 3354 lba_count = get_unaligned_be32(&vpd->data[20]); 3355 desc_count = get_unaligned_be32(&vpd->data[24]); 3356 3357 if (lba_count && desc_count) 3358 sdkp->max_unmap_blocks = lba_count; 3359 3360 sdkp->unmap_granularity = get_unaligned_be32(&vpd->data[28]); 3361 3362 if (vpd->data[32] & 0x80) 3363 sdkp->unmap_alignment = 3364 get_unaligned_be32(&vpd->data[32]) & ~(1 << 31); 3365 3366 config_atomic: 3367 sdkp->max_atomic = get_unaligned_be32(&vpd->data[44]); 3368 sdkp->atomic_alignment = get_unaligned_be32(&vpd->data[48]); 3369 sdkp->atomic_granularity = get_unaligned_be32(&vpd->data[52]); 3370 sdkp->max_atomic_with_boundary = get_unaligned_be32(&vpd->data[56]); 3371 sdkp->max_atomic_boundary = get_unaligned_be32(&vpd->data[60]); 3372 3373 sd_config_atomic(sdkp, lim); 3374 } 3375 3376 out: 3377 rcu_read_unlock(); 3378 } 3379 3380 /* Parse the Block Limits Extension VPD page (0xb7) */ 3381 static void sd_read_block_limits_ext(struct scsi_disk *sdkp) 3382 { 3383 struct scsi_vpd *vpd; 3384 3385 rcu_read_lock(); 3386 vpd = rcu_dereference(sdkp->device->vpd_pgb7); 3387 if (vpd && vpd->len >= 2) 3388 sdkp->rscs = vpd->data[5] & 1; 3389 rcu_read_unlock(); 3390 } 3391 3392 /* Query block device characteristics */ 3393 static void sd_read_block_characteristics(struct scsi_disk *sdkp, 3394 struct queue_limits *lim) 3395 { 3396 struct scsi_vpd *vpd; 3397 u16 rot; 3398 3399 rcu_read_lock(); 3400 vpd = rcu_dereference(sdkp->device->vpd_pgb1); 3401 3402 if (!vpd || vpd->len <= 8) { 3403 rcu_read_unlock(); 3404 return; 3405 } 3406 3407 rot = get_unaligned_be16(&vpd->data[4]); 3408 sdkp->zoned = (vpd->data[8] >> 4) & 3; 3409 rcu_read_unlock(); 3410 3411 if (rot == 1) 3412 lim->features &= ~(BLK_FEAT_ROTATIONAL | BLK_FEAT_ADD_RANDOM); 3413 3414 if (!sdkp->first_scan) 3415 return; 3416 3417 if (sdkp->device->type == TYPE_ZBC) 3418 sd_printk(KERN_NOTICE, sdkp, "Host-managed zoned block device\n"); 3419 else if (sdkp->zoned == 1) 3420 sd_printk(KERN_NOTICE, sdkp, "Host-aware SMR disk used as regular disk\n"); 3421 else if (sdkp->zoned == 2) 3422 sd_printk(KERN_NOTICE, sdkp, "Drive-managed SMR disk\n"); 3423 } 3424 3425 /** 3426 * sd_read_block_provisioning - Query provisioning VPD page 3427 * @sdkp: disk to query 3428 */ 3429 static void sd_read_block_provisioning(struct scsi_disk *sdkp) 3430 { 3431 struct scsi_vpd *vpd; 3432 3433 if (sdkp->lbpme == 0) 3434 return; 3435 3436 rcu_read_lock(); 3437 vpd = rcu_dereference(sdkp->device->vpd_pgb2); 3438 3439 if (!vpd || vpd->len < 8) { 3440 rcu_read_unlock(); 3441 return; 3442 } 3443 3444 sdkp->lbpvpd = 1; 3445 sdkp->lbpu = (vpd->data[5] >> 7) & 1; /* UNMAP */ 3446 sdkp->lbpws = (vpd->data[5] >> 6) & 1; /* WRITE SAME(16) w/ UNMAP */ 3447 sdkp->lbpws10 = (vpd->data[5] >> 5) & 1; /* WRITE SAME(10) w/ UNMAP */ 3448 rcu_read_unlock(); 3449 } 3450 3451 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer) 3452 { 3453 struct scsi_device *sdev = sdkp->device; 3454 3455 if (sdev->host->no_write_same) { 3456 sdev->no_write_same = 1; 3457 3458 return; 3459 } 3460 3461 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY, 0) < 0) { 3462 struct scsi_vpd *vpd; 3463 3464 sdev->no_report_opcodes = 1; 3465 3466 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION 3467 * CODES is unsupported and the device has an ATA 3468 * Information VPD page (SAT). 3469 */ 3470 rcu_read_lock(); 3471 vpd = rcu_dereference(sdev->vpd_pg89); 3472 if (vpd) 3473 sdev->no_write_same = 1; 3474 rcu_read_unlock(); 3475 } 3476 3477 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16, 0) == 1) 3478 sdkp->ws16 = 1; 3479 3480 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME, 0) == 1) 3481 sdkp->ws10 = 1; 3482 } 3483 3484 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer) 3485 { 3486 struct scsi_device *sdev = sdkp->device; 3487 3488 if (!sdev->security_supported) 3489 return; 3490 3491 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3492 SECURITY_PROTOCOL_IN, 0) == 1 && 3493 scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3494 SECURITY_PROTOCOL_OUT, 0) == 1) 3495 sdkp->security = 1; 3496 } 3497 3498 static inline sector_t sd64_to_sectors(struct scsi_disk *sdkp, u8 *buf) 3499 { 3500 return logical_to_sectors(sdkp->device, get_unaligned_be64(buf)); 3501 } 3502 3503 /** 3504 * sd_read_cpr - Query concurrent positioning ranges 3505 * @sdkp: disk to query 3506 */ 3507 static void sd_read_cpr(struct scsi_disk *sdkp) 3508 { 3509 struct blk_independent_access_ranges *iars = NULL; 3510 unsigned char *buffer = NULL; 3511 unsigned int nr_cpr = 0; 3512 int i, vpd_len, buf_len = SD_BUF_SIZE; 3513 u8 *desc; 3514 3515 /* 3516 * We need to have the capacity set first for the block layer to be 3517 * able to check the ranges. 3518 */ 3519 if (sdkp->first_scan) 3520 return; 3521 3522 if (!sdkp->capacity) 3523 goto out; 3524 3525 /* 3526 * Concurrent Positioning Ranges VPD: there can be at most 256 ranges, 3527 * leading to a maximum page size of 64 + 256*32 bytes. 3528 */ 3529 buf_len = 64 + 256*32; 3530 buffer = kmalloc(buf_len, GFP_KERNEL); 3531 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb9, buffer, buf_len)) 3532 goto out; 3533 3534 /* We must have at least a 64B header and one 32B range descriptor */ 3535 vpd_len = get_unaligned_be16(&buffer[2]) + 4; 3536 if (vpd_len > buf_len || vpd_len < 64 + 32 || (vpd_len & 31)) { 3537 sd_printk(KERN_ERR, sdkp, 3538 "Invalid Concurrent Positioning Ranges VPD page\n"); 3539 goto out; 3540 } 3541 3542 nr_cpr = (vpd_len - 64) / 32; 3543 if (nr_cpr == 1) { 3544 nr_cpr = 0; 3545 goto out; 3546 } 3547 3548 iars = disk_alloc_independent_access_ranges(sdkp->disk, nr_cpr); 3549 if (!iars) { 3550 nr_cpr = 0; 3551 goto out; 3552 } 3553 3554 desc = &buffer[64]; 3555 for (i = 0; i < nr_cpr; i++, desc += 32) { 3556 if (desc[0] != i) { 3557 sd_printk(KERN_ERR, sdkp, 3558 "Invalid Concurrent Positioning Range number\n"); 3559 nr_cpr = 0; 3560 break; 3561 } 3562 3563 iars->ia_range[i].sector = sd64_to_sectors(sdkp, desc + 8); 3564 iars->ia_range[i].nr_sectors = sd64_to_sectors(sdkp, desc + 16); 3565 } 3566 3567 out: 3568 disk_set_independent_access_ranges(sdkp->disk, iars); 3569 if (nr_cpr && sdkp->nr_actuators != nr_cpr) { 3570 sd_printk(KERN_NOTICE, sdkp, 3571 "%u concurrent positioning ranges\n", nr_cpr); 3572 sdkp->nr_actuators = nr_cpr; 3573 } 3574 3575 kfree(buffer); 3576 } 3577 3578 static bool sd_validate_min_xfer_size(struct scsi_disk *sdkp) 3579 { 3580 struct scsi_device *sdp = sdkp->device; 3581 unsigned int min_xfer_bytes = 3582 logical_to_bytes(sdp, sdkp->min_xfer_blocks); 3583 3584 if (sdkp->min_xfer_blocks == 0) 3585 return false; 3586 3587 if (min_xfer_bytes & (sdkp->physical_block_size - 1)) { 3588 sd_first_printk(KERN_WARNING, sdkp, 3589 "Preferred minimum I/O size %u bytes not a " \ 3590 "multiple of physical block size (%u bytes)\n", 3591 min_xfer_bytes, sdkp->physical_block_size); 3592 sdkp->min_xfer_blocks = 0; 3593 return false; 3594 } 3595 3596 sd_first_printk(KERN_INFO, sdkp, "Preferred minimum I/O size %u bytes\n", 3597 min_xfer_bytes); 3598 return true; 3599 } 3600 3601 /* 3602 * Determine the device's preferred I/O size for reads and writes 3603 * unless the reported value is unreasonably small, large, not a 3604 * multiple of the physical block size, or simply garbage. 3605 */ 3606 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp, 3607 unsigned int dev_max) 3608 { 3609 struct scsi_device *sdp = sdkp->device; 3610 unsigned int opt_xfer_bytes = 3611 logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 3612 unsigned int min_xfer_bytes = 3613 logical_to_bytes(sdp, sdkp->min_xfer_blocks); 3614 3615 if (sdkp->opt_xfer_blocks == 0) 3616 return false; 3617 3618 if (sdkp->opt_xfer_blocks > dev_max) { 3619 sd_first_printk(KERN_WARNING, sdkp, 3620 "Optimal transfer size %u logical blocks " \ 3621 "> dev_max (%u logical blocks)\n", 3622 sdkp->opt_xfer_blocks, dev_max); 3623 return false; 3624 } 3625 3626 if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) { 3627 sd_first_printk(KERN_WARNING, sdkp, 3628 "Optimal transfer size %u logical blocks " \ 3629 "> sd driver limit (%u logical blocks)\n", 3630 sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS); 3631 return false; 3632 } 3633 3634 if (opt_xfer_bytes < PAGE_SIZE) { 3635 sd_first_printk(KERN_WARNING, sdkp, 3636 "Optimal transfer size %u bytes < " \ 3637 "PAGE_SIZE (%u bytes)\n", 3638 opt_xfer_bytes, (unsigned int)PAGE_SIZE); 3639 return false; 3640 } 3641 3642 if (min_xfer_bytes && opt_xfer_bytes % min_xfer_bytes) { 3643 sd_first_printk(KERN_WARNING, sdkp, 3644 "Optimal transfer size %u bytes not a " \ 3645 "multiple of preferred minimum block " \ 3646 "size (%u bytes)\n", 3647 opt_xfer_bytes, min_xfer_bytes); 3648 return false; 3649 } 3650 3651 if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) { 3652 sd_first_printk(KERN_WARNING, sdkp, 3653 "Optimal transfer size %u bytes not a " \ 3654 "multiple of physical block size (%u bytes)\n", 3655 opt_xfer_bytes, sdkp->physical_block_size); 3656 return false; 3657 } 3658 3659 sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n", 3660 opt_xfer_bytes); 3661 return true; 3662 } 3663 3664 static void sd_read_block_zero(struct scsi_disk *sdkp) 3665 { 3666 struct scsi_device *sdev = sdkp->device; 3667 unsigned int buf_len = sdev->sector_size; 3668 u8 *buffer, cmd[16] = { }; 3669 3670 buffer = kmalloc(buf_len, GFP_KERNEL); 3671 if (!buffer) 3672 return; 3673 3674 if (sdev->use_16_for_rw) { 3675 cmd[0] = READ_16; 3676 put_unaligned_be64(0, &cmd[2]); /* Logical block address 0 */ 3677 put_unaligned_be32(1, &cmd[10]);/* Transfer 1 logical block */ 3678 } else { 3679 cmd[0] = READ_10; 3680 put_unaligned_be32(0, &cmd[2]); /* Logical block address 0 */ 3681 put_unaligned_be16(1, &cmd[7]); /* Transfer 1 logical block */ 3682 } 3683 3684 scsi_execute_cmd(sdkp->device, cmd, REQ_OP_DRV_IN, buffer, buf_len, 3685 SD_TIMEOUT, sdkp->max_retries, NULL); 3686 kfree(buffer); 3687 } 3688 3689 /** 3690 * sd_revalidate_disk - called the first time a new disk is seen, 3691 * performs disk spin up, read_capacity, etc. 3692 * @disk: struct gendisk we care about 3693 **/ 3694 static int sd_revalidate_disk(struct gendisk *disk) 3695 { 3696 struct scsi_disk *sdkp = scsi_disk(disk); 3697 struct scsi_device *sdp = sdkp->device; 3698 sector_t old_capacity = sdkp->capacity; 3699 struct queue_limits lim; 3700 unsigned char *buffer; 3701 unsigned int dev_max; 3702 int err; 3703 3704 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, 3705 "sd_revalidate_disk\n")); 3706 3707 /* 3708 * If the device is offline, don't try and read capacity or any 3709 * of the other niceties. 3710 */ 3711 if (!scsi_device_online(sdp)) 3712 goto out; 3713 3714 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL); 3715 if (!buffer) { 3716 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory " 3717 "allocation failure.\n"); 3718 goto out; 3719 } 3720 3721 sd_spinup_disk(sdkp); 3722 3723 lim = queue_limits_start_update(sdkp->disk->queue); 3724 3725 /* 3726 * Without media there is no reason to ask; moreover, some devices 3727 * react badly if we do. 3728 */ 3729 if (sdkp->media_present) { 3730 sd_read_capacity(sdkp, &lim, buffer); 3731 /* 3732 * Some USB/UAS devices return generic values for mode pages 3733 * until the media has been accessed. Trigger a READ operation 3734 * to force the device to populate mode pages. 3735 */ 3736 if (sdp->read_before_ms) 3737 sd_read_block_zero(sdkp); 3738 /* 3739 * set the default to rotational. All non-rotational devices 3740 * support the block characteristics VPD page, which will 3741 * cause this to be updated correctly and any device which 3742 * doesn't support it should be treated as rotational. 3743 */ 3744 lim.features |= (BLK_FEAT_ROTATIONAL | BLK_FEAT_ADD_RANDOM); 3745 3746 if (scsi_device_supports_vpd(sdp)) { 3747 sd_read_block_provisioning(sdkp); 3748 sd_read_block_limits(sdkp, &lim); 3749 sd_read_block_limits_ext(sdkp); 3750 sd_read_block_characteristics(sdkp, &lim); 3751 sd_zbc_read_zones(sdkp, &lim, buffer); 3752 } 3753 3754 sd_config_discard(sdkp, &lim, sd_discard_mode(sdkp)); 3755 3756 sd_print_capacity(sdkp, old_capacity); 3757 3758 sd_read_write_protect_flag(sdkp, buffer); 3759 sd_read_cache_type(sdkp, buffer); 3760 sd_read_io_hints(sdkp, buffer); 3761 sd_read_app_tag_own(sdkp, buffer); 3762 sd_read_write_same(sdkp, buffer); 3763 sd_read_security(sdkp, buffer); 3764 sd_config_protection(sdkp, &lim); 3765 } 3766 3767 /* 3768 * We now have all cache related info, determine how we deal 3769 * with flush requests. 3770 */ 3771 sd_set_flush_flag(sdkp, &lim); 3772 3773 /* Initial block count limit based on CDB TRANSFER LENGTH field size. */ 3774 dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS; 3775 3776 /* Some devices report a maximum block count for READ/WRITE requests. */ 3777 dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks); 3778 lim.max_dev_sectors = logical_to_sectors(sdp, dev_max); 3779 3780 if (sd_validate_min_xfer_size(sdkp)) 3781 lim.io_min = logical_to_bytes(sdp, sdkp->min_xfer_blocks); 3782 else 3783 lim.io_min = 0; 3784 3785 /* 3786 * Limit default to SCSI host optimal sector limit if set. There may be 3787 * an impact on performance for when the size of a request exceeds this 3788 * host limit. 3789 */ 3790 lim.io_opt = sdp->host->opt_sectors << SECTOR_SHIFT; 3791 if (sd_validate_opt_xfer_size(sdkp, dev_max)) { 3792 lim.io_opt = min_not_zero(lim.io_opt, 3793 logical_to_bytes(sdp, sdkp->opt_xfer_blocks)); 3794 } 3795 3796 sdkp->first_scan = 0; 3797 3798 set_capacity_and_notify(disk, logical_to_sectors(sdp, sdkp->capacity)); 3799 sd_config_write_same(sdkp, &lim); 3800 kfree(buffer); 3801 3802 err = queue_limits_commit_update_frozen(sdkp->disk->queue, &lim); 3803 if (err) 3804 return err; 3805 3806 /* 3807 * Query concurrent positioning ranges after 3808 * queue_limits_commit_update() unlocked q->limits_lock to avoid 3809 * deadlock with q->sysfs_dir_lock and q->sysfs_lock. 3810 */ 3811 if (sdkp->media_present && scsi_device_supports_vpd(sdp)) 3812 sd_read_cpr(sdkp); 3813 3814 /* 3815 * For a zoned drive, revalidating the zones can be done only once 3816 * the gendisk capacity is set. So if this fails, set back the gendisk 3817 * capacity to 0. 3818 */ 3819 if (sd_zbc_revalidate_zones(sdkp)) 3820 set_capacity_and_notify(disk, 0); 3821 3822 out: 3823 return 0; 3824 } 3825 3826 /** 3827 * sd_unlock_native_capacity - unlock native capacity 3828 * @disk: struct gendisk to set capacity for 3829 * 3830 * Block layer calls this function if it detects that partitions 3831 * on @disk reach beyond the end of the device. If the SCSI host 3832 * implements ->unlock_native_capacity() method, it's invoked to 3833 * give it a chance to adjust the device capacity. 3834 * 3835 * CONTEXT: 3836 * Defined by block layer. Might sleep. 3837 */ 3838 static void sd_unlock_native_capacity(struct gendisk *disk) 3839 { 3840 struct scsi_device *sdev = scsi_disk(disk)->device; 3841 3842 if (sdev->host->hostt->unlock_native_capacity) 3843 sdev->host->hostt->unlock_native_capacity(sdev); 3844 } 3845 3846 /** 3847 * sd_format_disk_name - format disk name 3848 * @prefix: name prefix - ie. "sd" for SCSI disks 3849 * @index: index of the disk to format name for 3850 * @buf: output buffer 3851 * @buflen: length of the output buffer 3852 * 3853 * SCSI disk names starts at sda. The 26th device is sdz and the 3854 * 27th is sdaa. The last one for two lettered suffix is sdzz 3855 * which is followed by sdaaa. 3856 * 3857 * This is basically 26 base counting with one extra 'nil' entry 3858 * at the beginning from the second digit on and can be 3859 * determined using similar method as 26 base conversion with the 3860 * index shifted -1 after each digit is computed. 3861 * 3862 * CONTEXT: 3863 * Don't care. 3864 * 3865 * RETURNS: 3866 * 0 on success, -errno on failure. 3867 */ 3868 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen) 3869 { 3870 const int base = 'z' - 'a' + 1; 3871 char *begin = buf + strlen(prefix); 3872 char *end = buf + buflen; 3873 char *p; 3874 int unit; 3875 3876 p = end - 1; 3877 *p = '\0'; 3878 unit = base; 3879 do { 3880 if (p == begin) 3881 return -EINVAL; 3882 *--p = 'a' + (index % unit); 3883 index = (index / unit) - 1; 3884 } while (index >= 0); 3885 3886 memmove(begin, p, end - p); 3887 memcpy(buf, prefix, strlen(prefix)); 3888 3889 return 0; 3890 } 3891 3892 /** 3893 * sd_probe - called during driver initialization and whenever a 3894 * new scsi device is attached to the system. It is called once 3895 * for each scsi device (not just disks) present. 3896 * @dev: pointer to device object 3897 * 3898 * Returns 0 if successful (or not interested in this scsi device 3899 * (e.g. scanner)); 1 when there is an error. 3900 * 3901 * Note: this function is invoked from the scsi mid-level. 3902 * This function sets up the mapping between a given 3903 * <host,channel,id,lun> (found in sdp) and new device name 3904 * (e.g. /dev/sda). More precisely it is the block device major 3905 * and minor number that is chosen here. 3906 * 3907 * Assume sd_probe is not re-entrant (for time being) 3908 * Also think about sd_probe() and sd_remove() running coincidentally. 3909 **/ 3910 static int sd_probe(struct device *dev) 3911 { 3912 struct scsi_device *sdp = to_scsi_device(dev); 3913 struct scsi_disk *sdkp; 3914 struct gendisk *gd; 3915 int index; 3916 int error; 3917 3918 scsi_autopm_get_device(sdp); 3919 error = -ENODEV; 3920 if (sdp->type != TYPE_DISK && 3921 sdp->type != TYPE_ZBC && 3922 sdp->type != TYPE_MOD && 3923 sdp->type != TYPE_RBC) 3924 goto out; 3925 3926 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) && sdp->type == TYPE_ZBC) { 3927 sdev_printk(KERN_WARNING, sdp, 3928 "Unsupported ZBC host-managed device.\n"); 3929 goto out; 3930 } 3931 3932 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp, 3933 "sd_probe\n")); 3934 3935 error = -ENOMEM; 3936 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL); 3937 if (!sdkp) 3938 goto out; 3939 3940 gd = blk_mq_alloc_disk_for_queue(sdp->request_queue, 3941 &sd_bio_compl_lkclass); 3942 if (!gd) 3943 goto out_free; 3944 3945 index = ida_alloc(&sd_index_ida, GFP_KERNEL); 3946 if (index < 0) { 3947 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n"); 3948 goto out_put; 3949 } 3950 3951 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN); 3952 if (error) { 3953 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n"); 3954 goto out_free_index; 3955 } 3956 3957 sdkp->device = sdp; 3958 sdkp->disk = gd; 3959 sdkp->index = index; 3960 sdkp->max_retries = SD_MAX_RETRIES; 3961 atomic_set(&sdkp->openers, 0); 3962 atomic_set(&sdkp->device->ioerr_cnt, 0); 3963 3964 if (!sdp->request_queue->rq_timeout) { 3965 if (sdp->type != TYPE_MOD) 3966 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT); 3967 else 3968 blk_queue_rq_timeout(sdp->request_queue, 3969 SD_MOD_TIMEOUT); 3970 } 3971 3972 device_initialize(&sdkp->disk_dev); 3973 sdkp->disk_dev.parent = get_device(dev); 3974 sdkp->disk_dev.class = &sd_disk_class; 3975 dev_set_name(&sdkp->disk_dev, "%s", dev_name(dev)); 3976 3977 error = device_add(&sdkp->disk_dev); 3978 if (error) { 3979 put_device(&sdkp->disk_dev); 3980 goto out; 3981 } 3982 3983 dev_set_drvdata(dev, sdkp); 3984 3985 gd->major = sd_major((index & 0xf0) >> 4); 3986 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00); 3987 gd->minors = SD_MINORS; 3988 3989 gd->fops = &sd_fops; 3990 gd->private_data = sdkp; 3991 3992 /* defaults, until the device tells us otherwise */ 3993 sdp->sector_size = 512; 3994 sdkp->capacity = 0; 3995 sdkp->media_present = 1; 3996 sdkp->write_prot = 0; 3997 sdkp->cache_override = 0; 3998 sdkp->WCE = 0; 3999 sdkp->RCD = 0; 4000 sdkp->ATO = 0; 4001 sdkp->first_scan = 1; 4002 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS; 4003 4004 sd_revalidate_disk(gd); 4005 4006 if (sdp->removable) { 4007 gd->flags |= GENHD_FL_REMOVABLE; 4008 gd->events |= DISK_EVENT_MEDIA_CHANGE; 4009 gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT; 4010 } 4011 4012 blk_pm_runtime_init(sdp->request_queue, dev); 4013 if (sdp->rpm_autosuspend) { 4014 pm_runtime_set_autosuspend_delay(dev, 4015 sdp->host->rpm_autosuspend_delay); 4016 } 4017 4018 error = device_add_disk(dev, gd, NULL); 4019 if (error) { 4020 device_unregister(&sdkp->disk_dev); 4021 put_disk(gd); 4022 goto out; 4023 } 4024 4025 if (sdkp->security) { 4026 sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit); 4027 if (sdkp->opal_dev) 4028 sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n"); 4029 } 4030 4031 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n", 4032 sdp->removable ? "removable " : ""); 4033 scsi_autopm_put_device(sdp); 4034 4035 return 0; 4036 4037 out_free_index: 4038 ida_free(&sd_index_ida, index); 4039 out_put: 4040 put_disk(gd); 4041 out_free: 4042 kfree(sdkp); 4043 out: 4044 scsi_autopm_put_device(sdp); 4045 return error; 4046 } 4047 4048 /** 4049 * sd_remove - called whenever a scsi disk (previously recognized by 4050 * sd_probe) is detached from the system. It is called (potentially 4051 * multiple times) during sd module unload. 4052 * @dev: pointer to device object 4053 * 4054 * Note: this function is invoked from the scsi mid-level. 4055 * This function potentially frees up a device name (e.g. /dev/sdc) 4056 * that could be re-used by a subsequent sd_probe(). 4057 * This function is not called when the built-in sd driver is "exit-ed". 4058 **/ 4059 static int sd_remove(struct device *dev) 4060 { 4061 struct scsi_disk *sdkp = dev_get_drvdata(dev); 4062 4063 scsi_autopm_get_device(sdkp->device); 4064 4065 device_del(&sdkp->disk_dev); 4066 del_gendisk(sdkp->disk); 4067 if (!sdkp->suspended) 4068 sd_shutdown(dev); 4069 4070 put_disk(sdkp->disk); 4071 return 0; 4072 } 4073 4074 static void scsi_disk_release(struct device *dev) 4075 { 4076 struct scsi_disk *sdkp = to_scsi_disk(dev); 4077 4078 ida_free(&sd_index_ida, sdkp->index); 4079 put_device(&sdkp->device->sdev_gendev); 4080 free_opal_dev(sdkp->opal_dev); 4081 4082 kfree(sdkp); 4083 } 4084 4085 static int sd_start_stop_device(struct scsi_disk *sdkp, int start) 4086 { 4087 unsigned char cmd[6] = { START_STOP }; /* START_VALID */ 4088 struct scsi_sense_hdr sshdr; 4089 struct scsi_failure failure_defs[] = { 4090 { 4091 /* Power on, reset, or bus device reset occurred */ 4092 .sense = UNIT_ATTENTION, 4093 .asc = 0x29, 4094 .ascq = 0, 4095 .result = SAM_STAT_CHECK_CONDITION, 4096 }, 4097 { 4098 /* Power on occurred */ 4099 .sense = UNIT_ATTENTION, 4100 .asc = 0x29, 4101 .ascq = 1, 4102 .result = SAM_STAT_CHECK_CONDITION, 4103 }, 4104 { 4105 /* SCSI bus reset */ 4106 .sense = UNIT_ATTENTION, 4107 .asc = 0x29, 4108 .ascq = 2, 4109 .result = SAM_STAT_CHECK_CONDITION, 4110 }, 4111 {} 4112 }; 4113 struct scsi_failures failures = { 4114 .total_allowed = 3, 4115 .failure_definitions = failure_defs, 4116 }; 4117 const struct scsi_exec_args exec_args = { 4118 .sshdr = &sshdr, 4119 .req_flags = BLK_MQ_REQ_PM, 4120 .failures = &failures, 4121 }; 4122 struct scsi_device *sdp = sdkp->device; 4123 int res; 4124 4125 if (start) 4126 cmd[4] |= 1; /* START */ 4127 4128 if (sdp->start_stop_pwr_cond) 4129 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */ 4130 4131 if (!scsi_device_online(sdp)) 4132 return -ENODEV; 4133 4134 res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, SD_TIMEOUT, 4135 sdkp->max_retries, &exec_args); 4136 if (res) { 4137 sd_print_result(sdkp, "Start/Stop Unit failed", res); 4138 if (res > 0 && scsi_sense_valid(&sshdr)) { 4139 sd_print_sense_hdr(sdkp, &sshdr); 4140 /* 0x3a is medium not present */ 4141 if (sshdr.asc == 0x3a) 4142 res = 0; 4143 } 4144 } 4145 4146 /* SCSI error codes must not go to the generic layer */ 4147 if (res) 4148 return -EIO; 4149 4150 return 0; 4151 } 4152 4153 /* 4154 * Send a SYNCHRONIZE CACHE instruction down to the device through 4155 * the normal SCSI command structure. Wait for the command to 4156 * complete. 4157 */ 4158 static void sd_shutdown(struct device *dev) 4159 { 4160 struct scsi_disk *sdkp = dev_get_drvdata(dev); 4161 4162 if (!sdkp) 4163 return; /* this can happen */ 4164 4165 if (pm_runtime_suspended(dev)) 4166 return; 4167 4168 if (sdkp->WCE && sdkp->media_present) { 4169 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 4170 sd_sync_cache(sdkp); 4171 } 4172 4173 if ((system_state != SYSTEM_RESTART && 4174 sdkp->device->manage_system_start_stop) || 4175 (system_state == SYSTEM_POWER_OFF && 4176 sdkp->device->manage_shutdown)) { 4177 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 4178 sd_start_stop_device(sdkp, 0); 4179 } 4180 } 4181 4182 static inline bool sd_do_start_stop(struct scsi_device *sdev, bool runtime) 4183 { 4184 return (sdev->manage_system_start_stop && !runtime) || 4185 (sdev->manage_runtime_start_stop && runtime); 4186 } 4187 4188 static int sd_suspend_common(struct device *dev, bool runtime) 4189 { 4190 struct scsi_disk *sdkp = dev_get_drvdata(dev); 4191 int ret = 0; 4192 4193 if (!sdkp) /* E.g.: runtime suspend following sd_remove() */ 4194 return 0; 4195 4196 if (sdkp->WCE && sdkp->media_present) { 4197 if (!sdkp->device->silence_suspend) 4198 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 4199 ret = sd_sync_cache(sdkp); 4200 /* ignore OFFLINE device */ 4201 if (ret == -ENODEV) 4202 return 0; 4203 4204 if (ret) 4205 return ret; 4206 } 4207 4208 if (sd_do_start_stop(sdkp->device, runtime)) { 4209 if (!sdkp->device->silence_suspend) 4210 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 4211 /* an error is not worth aborting a system sleep */ 4212 ret = sd_start_stop_device(sdkp, 0); 4213 if (!runtime) 4214 ret = 0; 4215 } 4216 4217 if (!ret) 4218 sdkp->suspended = true; 4219 4220 return ret; 4221 } 4222 4223 static int sd_suspend_system(struct device *dev) 4224 { 4225 if (pm_runtime_suspended(dev)) 4226 return 0; 4227 4228 return sd_suspend_common(dev, false); 4229 } 4230 4231 static int sd_suspend_runtime(struct device *dev) 4232 { 4233 return sd_suspend_common(dev, true); 4234 } 4235 4236 static int sd_resume(struct device *dev) 4237 { 4238 struct scsi_disk *sdkp = dev_get_drvdata(dev); 4239 4240 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n"); 4241 4242 if (opal_unlock_from_suspend(sdkp->opal_dev)) { 4243 sd_printk(KERN_NOTICE, sdkp, "OPAL unlock failed\n"); 4244 return -EIO; 4245 } 4246 4247 return 0; 4248 } 4249 4250 static int sd_resume_common(struct device *dev, bool runtime) 4251 { 4252 struct scsi_disk *sdkp = dev_get_drvdata(dev); 4253 int ret; 4254 4255 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */ 4256 return 0; 4257 4258 if (!sd_do_start_stop(sdkp->device, runtime)) { 4259 sdkp->suspended = false; 4260 return 0; 4261 } 4262 4263 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n"); 4264 ret = sd_start_stop_device(sdkp, 1); 4265 if (!ret) { 4266 sd_resume(dev); 4267 sdkp->suspended = false; 4268 } 4269 4270 return ret; 4271 } 4272 4273 static int sd_resume_system(struct device *dev) 4274 { 4275 if (pm_runtime_suspended(dev)) { 4276 struct scsi_disk *sdkp = dev_get_drvdata(dev); 4277 struct scsi_device *sdp = sdkp ? sdkp->device : NULL; 4278 4279 if (sdp && sdp->force_runtime_start_on_system_start) 4280 pm_request_resume(dev); 4281 4282 return 0; 4283 } 4284 4285 return sd_resume_common(dev, false); 4286 } 4287 4288 static int sd_resume_runtime(struct device *dev) 4289 { 4290 struct scsi_disk *sdkp = dev_get_drvdata(dev); 4291 struct scsi_device *sdp; 4292 4293 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */ 4294 return 0; 4295 4296 sdp = sdkp->device; 4297 4298 if (sdp->ignore_media_change) { 4299 /* clear the device's sense data */ 4300 static const u8 cmd[10] = { REQUEST_SENSE }; 4301 const struct scsi_exec_args exec_args = { 4302 .req_flags = BLK_MQ_REQ_PM, 4303 }; 4304 4305 if (scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, 4306 sdp->request_queue->rq_timeout, 1, 4307 &exec_args)) 4308 sd_printk(KERN_NOTICE, sdkp, 4309 "Failed to clear sense data\n"); 4310 } 4311 4312 return sd_resume_common(dev, true); 4313 } 4314 4315 static const struct dev_pm_ops sd_pm_ops = { 4316 .suspend = sd_suspend_system, 4317 .resume = sd_resume_system, 4318 .poweroff = sd_suspend_system, 4319 .restore = sd_resume_system, 4320 .runtime_suspend = sd_suspend_runtime, 4321 .runtime_resume = sd_resume_runtime, 4322 }; 4323 4324 static struct scsi_driver sd_template = { 4325 .gendrv = { 4326 .name = "sd", 4327 .probe = sd_probe, 4328 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 4329 .remove = sd_remove, 4330 .shutdown = sd_shutdown, 4331 .pm = &sd_pm_ops, 4332 }, 4333 .rescan = sd_rescan, 4334 .resume = sd_resume, 4335 .init_command = sd_init_command, 4336 .uninit_command = sd_uninit_command, 4337 .done = sd_done, 4338 .eh_action = sd_eh_action, 4339 .eh_reset = sd_eh_reset, 4340 }; 4341 4342 /** 4343 * init_sd - entry point for this driver (both when built in or when 4344 * a module). 4345 * 4346 * Note: this function registers this driver with the scsi mid-level. 4347 **/ 4348 static int __init init_sd(void) 4349 { 4350 int majors = 0, i, err; 4351 4352 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n")); 4353 4354 for (i = 0; i < SD_MAJORS; i++) { 4355 if (__register_blkdev(sd_major(i), "sd", sd_default_probe)) 4356 continue; 4357 majors++; 4358 } 4359 4360 if (!majors) 4361 return -ENODEV; 4362 4363 err = class_register(&sd_disk_class); 4364 if (err) 4365 goto err_out; 4366 4367 sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0); 4368 if (!sd_page_pool) { 4369 printk(KERN_ERR "sd: can't init discard page pool\n"); 4370 err = -ENOMEM; 4371 goto err_out_class; 4372 } 4373 4374 err = scsi_register_driver(&sd_template.gendrv); 4375 if (err) 4376 goto err_out_driver; 4377 4378 return 0; 4379 4380 err_out_driver: 4381 mempool_destroy(sd_page_pool); 4382 err_out_class: 4383 class_unregister(&sd_disk_class); 4384 err_out: 4385 for (i = 0; i < SD_MAJORS; i++) 4386 unregister_blkdev(sd_major(i), "sd"); 4387 return err; 4388 } 4389 4390 /** 4391 * exit_sd - exit point for this driver (when it is a module). 4392 * 4393 * Note: this function unregisters this driver from the scsi mid-level. 4394 **/ 4395 static void __exit exit_sd(void) 4396 { 4397 int i; 4398 4399 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n")); 4400 4401 scsi_unregister_driver(&sd_template.gendrv); 4402 mempool_destroy(sd_page_pool); 4403 4404 class_unregister(&sd_disk_class); 4405 4406 for (i = 0; i < SD_MAJORS; i++) 4407 unregister_blkdev(sd_major(i), "sd"); 4408 } 4409 4410 module_init(init_sd); 4411 module_exit(exit_sd); 4412 4413 void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr) 4414 { 4415 scsi_print_sense_hdr(sdkp->device, 4416 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr); 4417 } 4418 4419 void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result) 4420 { 4421 const char *hb_string = scsi_hostbyte_string(result); 4422 4423 if (hb_string) 4424 sd_printk(KERN_INFO, sdkp, 4425 "%s: Result: hostbyte=%s driverbyte=%s\n", msg, 4426 hb_string ? hb_string : "invalid", 4427 "DRIVER_OK"); 4428 else 4429 sd_printk(KERN_INFO, sdkp, 4430 "%s: Result: hostbyte=0x%02x driverbyte=%s\n", 4431 msg, host_byte(result), "DRIVER_OK"); 4432 } 4433