xref: /linux/drivers/scsi/sd.c (revision 8838a1a2d219a86ab05e679c73f68dd75a25aca5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *      sd.c Copyright (C) 1992 Drew Eckhardt
4  *           Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
5  *
6  *      Linux scsi disk driver
7  *              Initial versions: Drew Eckhardt
8  *              Subsequent revisions: Eric Youngdale
9  *	Modification history:
10  *       - Drew Eckhardt <drew@colorado.edu> original
11  *       - Eric Youngdale <eric@andante.org> add scatter-gather, multiple
12  *         outstanding request, and other enhancements.
13  *         Support loadable low-level scsi drivers.
14  *       - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using
15  *         eight major numbers.
16  *       - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
17  *	 - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in
18  *	   sd_init and cleanups.
19  *	 - Alex Davis <letmein@erols.com> Fix problem where partition info
20  *	   not being read in sd_open. Fix problem where removable media
21  *	   could be ejected after sd_open.
22  *	 - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
23  *	 - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox
24  *	   <willy@debian.org>, Kurt Garloff <garloff@suse.de>:
25  *	   Support 32k/1M disks.
26  *
27  *	Logging policy (needs CONFIG_SCSI_LOGGING defined):
28  *	 - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
29  *	 - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
30  *	 - entering sd_ioctl: SCSI_LOG_IOCTL level 1
31  *	 - entering other commands: SCSI_LOG_HLQUEUE level 3
32  *	Note: when the logging level is set by the user, it must be greater
33  *	than the level indicated above to trigger output.
34  */
35 
36 #include <linux/bio-integrity.h>
37 #include <linux/module.h>
38 #include <linux/fs.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/hdreg.h>
42 #include <linux/errno.h>
43 #include <linux/idr.h>
44 #include <linux/interrupt.h>
45 #include <linux/init.h>
46 #include <linux/blkdev.h>
47 #include <linux/blkpg.h>
48 #include <linux/blk-pm.h>
49 #include <linux/delay.h>
50 #include <linux/rw_hint.h>
51 #include <linux/major.h>
52 #include <linux/mutex.h>
53 #include <linux/string_helpers.h>
54 #include <linux/slab.h>
55 #include <linux/sed-opal.h>
56 #include <linux/pm_runtime.h>
57 #include <linux/pr.h>
58 #include <linux/t10-pi.h>
59 #include <linux/uaccess.h>
60 #include <linux/unaligned.h>
61 
62 #include <scsi/scsi.h>
63 #include <scsi/scsi_cmnd.h>
64 #include <scsi/scsi_dbg.h>
65 #include <scsi/scsi_device.h>
66 #include <scsi/scsi_devinfo.h>
67 #include <scsi/scsi_driver.h>
68 #include <scsi/scsi_eh.h>
69 #include <scsi/scsi_host.h>
70 #include <scsi/scsi_ioctl.h>
71 #include <scsi/scsicam.h>
72 #include <scsi/scsi_common.h>
73 
74 #include "sd.h"
75 #include "scsi_priv.h"
76 #include "scsi_logging.h"
77 
78 MODULE_AUTHOR("Eric Youngdale");
79 MODULE_DESCRIPTION("SCSI disk (sd) driver");
80 MODULE_LICENSE("GPL");
81 
82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
95 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
96 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
97 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
98 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
99 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
100 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
101 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
102 
103 #define SD_MINORS	16
104 
105 static void sd_config_discard(struct scsi_disk *sdkp, struct queue_limits *lim,
106 		unsigned int mode);
107 static void sd_config_write_same(struct scsi_disk *sdkp,
108 		struct queue_limits *lim);
109 static int  sd_revalidate_disk(struct gendisk *);
110 static void sd_unlock_native_capacity(struct gendisk *disk);
111 static void sd_shutdown(struct device *);
112 static void scsi_disk_release(struct device *cdev);
113 
114 static DEFINE_IDA(sd_index_ida);
115 
116 static mempool_t *sd_page_pool;
117 static struct lock_class_key sd_bio_compl_lkclass;
118 
119 static const char *sd_cache_types[] = {
120 	"write through", "none", "write back",
121 	"write back, no read (daft)"
122 };
123 
124 static void sd_set_flush_flag(struct scsi_disk *sdkp,
125 		struct queue_limits *lim)
126 {
127 	if (sdkp->WCE) {
128 		lim->features |= BLK_FEAT_WRITE_CACHE;
129 		if (sdkp->DPOFUA)
130 			lim->features |= BLK_FEAT_FUA;
131 		else
132 			lim->features &= ~BLK_FEAT_FUA;
133 	} else {
134 		lim->features &= ~(BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA);
135 	}
136 }
137 
138 static ssize_t
139 cache_type_store(struct device *dev, struct device_attribute *attr,
140 		 const char *buf, size_t count)
141 {
142 	int ct, rcd, wce, sp;
143 	struct scsi_disk *sdkp = to_scsi_disk(dev);
144 	struct scsi_device *sdp = sdkp->device;
145 	char buffer[64];
146 	char *buffer_data;
147 	struct scsi_mode_data data;
148 	struct scsi_sense_hdr sshdr;
149 	static const char temp[] = "temporary ";
150 	int len, ret;
151 
152 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
153 		/* no cache control on RBC devices; theoretically they
154 		 * can do it, but there's probably so many exceptions
155 		 * it's not worth the risk */
156 		return -EINVAL;
157 
158 	if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
159 		buf += sizeof(temp) - 1;
160 		sdkp->cache_override = 1;
161 	} else {
162 		sdkp->cache_override = 0;
163 	}
164 
165 	ct = sysfs_match_string(sd_cache_types, buf);
166 	if (ct < 0)
167 		return -EINVAL;
168 
169 	rcd = ct & 0x01 ? 1 : 0;
170 	wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
171 
172 	if (sdkp->cache_override) {
173 		struct queue_limits lim;
174 
175 		sdkp->WCE = wce;
176 		sdkp->RCD = rcd;
177 
178 		lim = queue_limits_start_update(sdkp->disk->queue);
179 		sd_set_flush_flag(sdkp, &lim);
180 		ret = queue_limits_commit_update_frozen(sdkp->disk->queue,
181 				&lim);
182 		if (ret)
183 			return ret;
184 		return count;
185 	}
186 
187 	if (scsi_mode_sense(sdp, 0x08, 8, 0, buffer, sizeof(buffer), SD_TIMEOUT,
188 			    sdkp->max_retries, &data, NULL))
189 		return -EINVAL;
190 	len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
191 		  data.block_descriptor_length);
192 	buffer_data = buffer + data.header_length +
193 		data.block_descriptor_length;
194 	buffer_data[2] &= ~0x05;
195 	buffer_data[2] |= wce << 2 | rcd;
196 	sp = buffer_data[0] & 0x80 ? 1 : 0;
197 	buffer_data[0] &= ~0x80;
198 
199 	/*
200 	 * Ensure WP, DPOFUA, and RESERVED fields are cleared in
201 	 * received mode parameter buffer before doing MODE SELECT.
202 	 */
203 	data.device_specific = 0;
204 
205 	ret = scsi_mode_select(sdp, 1, sp, buffer_data, len, SD_TIMEOUT,
206 			       sdkp->max_retries, &data, &sshdr);
207 	if (ret) {
208 		if (ret > 0 && scsi_sense_valid(&sshdr))
209 			sd_print_sense_hdr(sdkp, &sshdr);
210 		return -EINVAL;
211 	}
212 	sd_revalidate_disk(sdkp->disk);
213 	return count;
214 }
215 
216 static ssize_t
217 manage_start_stop_show(struct device *dev,
218 		       struct device_attribute *attr, char *buf)
219 {
220 	struct scsi_disk *sdkp = to_scsi_disk(dev);
221 	struct scsi_device *sdp = sdkp->device;
222 
223 	return sysfs_emit(buf, "%u\n",
224 			  sdp->manage_system_start_stop &&
225 			  sdp->manage_runtime_start_stop &&
226 			  sdp->manage_shutdown);
227 }
228 static DEVICE_ATTR_RO(manage_start_stop);
229 
230 static ssize_t
231 manage_system_start_stop_show(struct device *dev,
232 			      struct device_attribute *attr, char *buf)
233 {
234 	struct scsi_disk *sdkp = to_scsi_disk(dev);
235 	struct scsi_device *sdp = sdkp->device;
236 
237 	return sysfs_emit(buf, "%u\n", sdp->manage_system_start_stop);
238 }
239 
240 static ssize_t
241 manage_system_start_stop_store(struct device *dev,
242 			       struct device_attribute *attr,
243 			       const char *buf, size_t count)
244 {
245 	struct scsi_disk *sdkp = to_scsi_disk(dev);
246 	struct scsi_device *sdp = sdkp->device;
247 	bool v;
248 
249 	if (!capable(CAP_SYS_ADMIN))
250 		return -EACCES;
251 
252 	if (kstrtobool(buf, &v))
253 		return -EINVAL;
254 
255 	sdp->manage_system_start_stop = v;
256 
257 	return count;
258 }
259 static DEVICE_ATTR_RW(manage_system_start_stop);
260 
261 static ssize_t
262 manage_runtime_start_stop_show(struct device *dev,
263 			       struct device_attribute *attr, char *buf)
264 {
265 	struct scsi_disk *sdkp = to_scsi_disk(dev);
266 	struct scsi_device *sdp = sdkp->device;
267 
268 	return sysfs_emit(buf, "%u\n", sdp->manage_runtime_start_stop);
269 }
270 
271 static ssize_t
272 manage_runtime_start_stop_store(struct device *dev,
273 				struct device_attribute *attr,
274 				const char *buf, size_t count)
275 {
276 	struct scsi_disk *sdkp = to_scsi_disk(dev);
277 	struct scsi_device *sdp = sdkp->device;
278 	bool v;
279 
280 	if (!capable(CAP_SYS_ADMIN))
281 		return -EACCES;
282 
283 	if (kstrtobool(buf, &v))
284 		return -EINVAL;
285 
286 	sdp->manage_runtime_start_stop = v;
287 
288 	return count;
289 }
290 static DEVICE_ATTR_RW(manage_runtime_start_stop);
291 
292 static ssize_t manage_shutdown_show(struct device *dev,
293 				    struct device_attribute *attr, char *buf)
294 {
295 	struct scsi_disk *sdkp = to_scsi_disk(dev);
296 	struct scsi_device *sdp = sdkp->device;
297 
298 	return sysfs_emit(buf, "%u\n", sdp->manage_shutdown);
299 }
300 
301 static ssize_t manage_shutdown_store(struct device *dev,
302 				     struct device_attribute *attr,
303 				     const char *buf, size_t count)
304 {
305 	struct scsi_disk *sdkp = to_scsi_disk(dev);
306 	struct scsi_device *sdp = sdkp->device;
307 	bool v;
308 
309 	if (!capable(CAP_SYS_ADMIN))
310 		return -EACCES;
311 
312 	if (kstrtobool(buf, &v))
313 		return -EINVAL;
314 
315 	sdp->manage_shutdown = v;
316 
317 	return count;
318 }
319 static DEVICE_ATTR_RW(manage_shutdown);
320 
321 static ssize_t
322 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
323 {
324 	struct scsi_disk *sdkp = to_scsi_disk(dev);
325 
326 	return sprintf(buf, "%u\n", sdkp->device->allow_restart);
327 }
328 
329 static ssize_t
330 allow_restart_store(struct device *dev, struct device_attribute *attr,
331 		    const char *buf, size_t count)
332 {
333 	bool v;
334 	struct scsi_disk *sdkp = to_scsi_disk(dev);
335 	struct scsi_device *sdp = sdkp->device;
336 
337 	if (!capable(CAP_SYS_ADMIN))
338 		return -EACCES;
339 
340 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
341 		return -EINVAL;
342 
343 	if (kstrtobool(buf, &v))
344 		return -EINVAL;
345 
346 	sdp->allow_restart = v;
347 
348 	return count;
349 }
350 static DEVICE_ATTR_RW(allow_restart);
351 
352 static ssize_t
353 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
354 {
355 	struct scsi_disk *sdkp = to_scsi_disk(dev);
356 	int ct = sdkp->RCD + 2*sdkp->WCE;
357 
358 	return sprintf(buf, "%s\n", sd_cache_types[ct]);
359 }
360 static DEVICE_ATTR_RW(cache_type);
361 
362 static ssize_t
363 FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
364 {
365 	struct scsi_disk *sdkp = to_scsi_disk(dev);
366 
367 	return sprintf(buf, "%u\n", sdkp->DPOFUA);
368 }
369 static DEVICE_ATTR_RO(FUA);
370 
371 static ssize_t
372 protection_type_show(struct device *dev, struct device_attribute *attr,
373 		     char *buf)
374 {
375 	struct scsi_disk *sdkp = to_scsi_disk(dev);
376 
377 	return sprintf(buf, "%u\n", sdkp->protection_type);
378 }
379 
380 static ssize_t
381 protection_type_store(struct device *dev, struct device_attribute *attr,
382 		      const char *buf, size_t count)
383 {
384 	struct scsi_disk *sdkp = to_scsi_disk(dev);
385 	unsigned int val;
386 	int err;
387 
388 	if (!capable(CAP_SYS_ADMIN))
389 		return -EACCES;
390 
391 	err = kstrtouint(buf, 10, &val);
392 
393 	if (err)
394 		return err;
395 
396 	if (val <= T10_PI_TYPE3_PROTECTION)
397 		sdkp->protection_type = val;
398 
399 	return count;
400 }
401 static DEVICE_ATTR_RW(protection_type);
402 
403 static ssize_t
404 protection_mode_show(struct device *dev, struct device_attribute *attr,
405 		     char *buf)
406 {
407 	struct scsi_disk *sdkp = to_scsi_disk(dev);
408 	struct scsi_device *sdp = sdkp->device;
409 	unsigned int dif, dix;
410 
411 	dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
412 	dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
413 
414 	if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
415 		dif = 0;
416 		dix = 1;
417 	}
418 
419 	if (!dif && !dix)
420 		return sprintf(buf, "none\n");
421 
422 	return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
423 }
424 static DEVICE_ATTR_RO(protection_mode);
425 
426 static ssize_t
427 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
428 {
429 	struct scsi_disk *sdkp = to_scsi_disk(dev);
430 
431 	return sprintf(buf, "%u\n", sdkp->ATO);
432 }
433 static DEVICE_ATTR_RO(app_tag_own);
434 
435 static ssize_t
436 thin_provisioning_show(struct device *dev, struct device_attribute *attr,
437 		       char *buf)
438 {
439 	struct scsi_disk *sdkp = to_scsi_disk(dev);
440 
441 	return sprintf(buf, "%u\n", sdkp->lbpme);
442 }
443 static DEVICE_ATTR_RO(thin_provisioning);
444 
445 /* sysfs_match_string() requires dense arrays */
446 static const char *lbp_mode[] = {
447 	[SD_LBP_FULL]		= "full",
448 	[SD_LBP_UNMAP]		= "unmap",
449 	[SD_LBP_WS16]		= "writesame_16",
450 	[SD_LBP_WS10]		= "writesame_10",
451 	[SD_LBP_ZERO]		= "writesame_zero",
452 	[SD_LBP_DISABLE]	= "disabled",
453 };
454 
455 static ssize_t
456 provisioning_mode_show(struct device *dev, struct device_attribute *attr,
457 		       char *buf)
458 {
459 	struct scsi_disk *sdkp = to_scsi_disk(dev);
460 
461 	return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
462 }
463 
464 static ssize_t
465 provisioning_mode_store(struct device *dev, struct device_attribute *attr,
466 			const char *buf, size_t count)
467 {
468 	struct scsi_disk *sdkp = to_scsi_disk(dev);
469 	struct scsi_device *sdp = sdkp->device;
470 	struct queue_limits lim;
471 	int mode, err;
472 
473 	if (!capable(CAP_SYS_ADMIN))
474 		return -EACCES;
475 
476 	if (sdp->type != TYPE_DISK)
477 		return -EINVAL;
478 
479 	mode = sysfs_match_string(lbp_mode, buf);
480 	if (mode < 0)
481 		return -EINVAL;
482 
483 	lim = queue_limits_start_update(sdkp->disk->queue);
484 	sd_config_discard(sdkp, &lim, mode);
485 	err = queue_limits_commit_update_frozen(sdkp->disk->queue, &lim);
486 	if (err)
487 		return err;
488 	return count;
489 }
490 static DEVICE_ATTR_RW(provisioning_mode);
491 
492 /* sysfs_match_string() requires dense arrays */
493 static const char *zeroing_mode[] = {
494 	[SD_ZERO_WRITE]		= "write",
495 	[SD_ZERO_WS]		= "writesame",
496 	[SD_ZERO_WS16_UNMAP]	= "writesame_16_unmap",
497 	[SD_ZERO_WS10_UNMAP]	= "writesame_10_unmap",
498 };
499 
500 static ssize_t
501 zeroing_mode_show(struct device *dev, struct device_attribute *attr,
502 		  char *buf)
503 {
504 	struct scsi_disk *sdkp = to_scsi_disk(dev);
505 
506 	return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
507 }
508 
509 static ssize_t
510 zeroing_mode_store(struct device *dev, struct device_attribute *attr,
511 		   const char *buf, size_t count)
512 {
513 	struct scsi_disk *sdkp = to_scsi_disk(dev);
514 	int mode;
515 
516 	if (!capable(CAP_SYS_ADMIN))
517 		return -EACCES;
518 
519 	mode = sysfs_match_string(zeroing_mode, buf);
520 	if (mode < 0)
521 		return -EINVAL;
522 
523 	sdkp->zeroing_mode = mode;
524 
525 	return count;
526 }
527 static DEVICE_ATTR_RW(zeroing_mode);
528 
529 static ssize_t
530 max_medium_access_timeouts_show(struct device *dev,
531 				struct device_attribute *attr, char *buf)
532 {
533 	struct scsi_disk *sdkp = to_scsi_disk(dev);
534 
535 	return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
536 }
537 
538 static ssize_t
539 max_medium_access_timeouts_store(struct device *dev,
540 				 struct device_attribute *attr, const char *buf,
541 				 size_t count)
542 {
543 	struct scsi_disk *sdkp = to_scsi_disk(dev);
544 	int err;
545 
546 	if (!capable(CAP_SYS_ADMIN))
547 		return -EACCES;
548 
549 	err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
550 
551 	return err ? err : count;
552 }
553 static DEVICE_ATTR_RW(max_medium_access_timeouts);
554 
555 static ssize_t
556 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
557 			   char *buf)
558 {
559 	struct scsi_disk *sdkp = to_scsi_disk(dev);
560 
561 	return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
562 }
563 
564 static ssize_t
565 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
566 			    const char *buf, size_t count)
567 {
568 	struct scsi_disk *sdkp = to_scsi_disk(dev);
569 	struct scsi_device *sdp = sdkp->device;
570 	struct queue_limits lim;
571 	unsigned long max;
572 	int err;
573 
574 	if (!capable(CAP_SYS_ADMIN))
575 		return -EACCES;
576 
577 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
578 		return -EINVAL;
579 
580 	err = kstrtoul(buf, 10, &max);
581 
582 	if (err)
583 		return err;
584 
585 	if (max == 0)
586 		sdp->no_write_same = 1;
587 	else if (max <= SD_MAX_WS16_BLOCKS) {
588 		sdp->no_write_same = 0;
589 		sdkp->max_ws_blocks = max;
590 	}
591 
592 	lim = queue_limits_start_update(sdkp->disk->queue);
593 	sd_config_write_same(sdkp, &lim);
594 	err = queue_limits_commit_update_frozen(sdkp->disk->queue, &lim);
595 	if (err)
596 		return err;
597 	return count;
598 }
599 static DEVICE_ATTR_RW(max_write_same_blocks);
600 
601 static ssize_t
602 zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf)
603 {
604 	struct scsi_disk *sdkp = to_scsi_disk(dev);
605 
606 	if (sdkp->device->type == TYPE_ZBC)
607 		return sprintf(buf, "host-managed\n");
608 	if (sdkp->zoned == 1)
609 		return sprintf(buf, "host-aware\n");
610 	if (sdkp->zoned == 2)
611 		return sprintf(buf, "drive-managed\n");
612 	return sprintf(buf, "none\n");
613 }
614 static DEVICE_ATTR_RO(zoned_cap);
615 
616 static ssize_t
617 max_retries_store(struct device *dev, struct device_attribute *attr,
618 		  const char *buf, size_t count)
619 {
620 	struct scsi_disk *sdkp = to_scsi_disk(dev);
621 	struct scsi_device *sdev = sdkp->device;
622 	int retries, err;
623 
624 	err = kstrtoint(buf, 10, &retries);
625 	if (err)
626 		return err;
627 
628 	if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) {
629 		sdkp->max_retries = retries;
630 		return count;
631 	}
632 
633 	sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n",
634 		    SD_MAX_RETRIES);
635 	return -EINVAL;
636 }
637 
638 static ssize_t
639 max_retries_show(struct device *dev, struct device_attribute *attr,
640 		 char *buf)
641 {
642 	struct scsi_disk *sdkp = to_scsi_disk(dev);
643 
644 	return sprintf(buf, "%d\n", sdkp->max_retries);
645 }
646 
647 static DEVICE_ATTR_RW(max_retries);
648 
649 static struct attribute *sd_disk_attrs[] = {
650 	&dev_attr_cache_type.attr,
651 	&dev_attr_FUA.attr,
652 	&dev_attr_allow_restart.attr,
653 	&dev_attr_manage_start_stop.attr,
654 	&dev_attr_manage_system_start_stop.attr,
655 	&dev_attr_manage_runtime_start_stop.attr,
656 	&dev_attr_manage_shutdown.attr,
657 	&dev_attr_protection_type.attr,
658 	&dev_attr_protection_mode.attr,
659 	&dev_attr_app_tag_own.attr,
660 	&dev_attr_thin_provisioning.attr,
661 	&dev_attr_provisioning_mode.attr,
662 	&dev_attr_zeroing_mode.attr,
663 	&dev_attr_max_write_same_blocks.attr,
664 	&dev_attr_max_medium_access_timeouts.attr,
665 	&dev_attr_zoned_cap.attr,
666 	&dev_attr_max_retries.attr,
667 	NULL,
668 };
669 ATTRIBUTE_GROUPS(sd_disk);
670 
671 static struct class sd_disk_class = {
672 	.name		= "scsi_disk",
673 	.dev_release	= scsi_disk_release,
674 	.dev_groups	= sd_disk_groups,
675 };
676 
677 /*
678  * Don't request a new module, as that could deadlock in multipath
679  * environment.
680  */
681 static void sd_default_probe(dev_t devt)
682 {
683 }
684 
685 /*
686  * Device no to disk mapping:
687  *
688  *       major         disc2     disc  p1
689  *   |............|.............|....|....| <- dev_t
690  *    31        20 19          8 7  4 3  0
691  *
692  * Inside a major, we have 16k disks, however mapped non-
693  * contiguously. The first 16 disks are for major0, the next
694  * ones with major1, ... Disk 256 is for major0 again, disk 272
695  * for major1, ...
696  * As we stay compatible with our numbering scheme, we can reuse
697  * the well-know SCSI majors 8, 65--71, 136--143.
698  */
699 static int sd_major(int major_idx)
700 {
701 	switch (major_idx) {
702 	case 0:
703 		return SCSI_DISK0_MAJOR;
704 	case 1 ... 7:
705 		return SCSI_DISK1_MAJOR + major_idx - 1;
706 	case 8 ... 15:
707 		return SCSI_DISK8_MAJOR + major_idx - 8;
708 	default:
709 		BUG();
710 		return 0;	/* shut up gcc */
711 	}
712 }
713 
714 #ifdef CONFIG_BLK_SED_OPAL
715 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
716 		size_t len, bool send)
717 {
718 	struct scsi_disk *sdkp = data;
719 	struct scsi_device *sdev = sdkp->device;
720 	u8 cdb[12] = { 0, };
721 	const struct scsi_exec_args exec_args = {
722 		.req_flags = BLK_MQ_REQ_PM,
723 	};
724 	int ret;
725 
726 	cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
727 	cdb[1] = secp;
728 	put_unaligned_be16(spsp, &cdb[2]);
729 	put_unaligned_be32(len, &cdb[6]);
730 
731 	ret = scsi_execute_cmd(sdev, cdb, send ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN,
732 			       buffer, len, SD_TIMEOUT, sdkp->max_retries,
733 			       &exec_args);
734 	return ret <= 0 ? ret : -EIO;
735 }
736 #endif /* CONFIG_BLK_SED_OPAL */
737 
738 /*
739  * Look up the DIX operation based on whether the command is read or
740  * write and whether dix and dif are enabled.
741  */
742 static unsigned int sd_prot_op(bool write, bool dix, bool dif)
743 {
744 	/* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */
745 	static const unsigned int ops[] = {	/* wrt dix dif */
746 		SCSI_PROT_NORMAL,		/*  0	0   0  */
747 		SCSI_PROT_READ_STRIP,		/*  0	0   1  */
748 		SCSI_PROT_READ_INSERT,		/*  0	1   0  */
749 		SCSI_PROT_READ_PASS,		/*  0	1   1  */
750 		SCSI_PROT_NORMAL,		/*  1	0   0  */
751 		SCSI_PROT_WRITE_INSERT,		/*  1	0   1  */
752 		SCSI_PROT_WRITE_STRIP,		/*  1	1   0  */
753 		SCSI_PROT_WRITE_PASS,		/*  1	1   1  */
754 	};
755 
756 	return ops[write << 2 | dix << 1 | dif];
757 }
758 
759 /*
760  * Returns a mask of the protection flags that are valid for a given DIX
761  * operation.
762  */
763 static unsigned int sd_prot_flag_mask(unsigned int prot_op)
764 {
765 	static const unsigned int flag_mask[] = {
766 		[SCSI_PROT_NORMAL]		= 0,
767 
768 		[SCSI_PROT_READ_STRIP]		= SCSI_PROT_TRANSFER_PI |
769 						  SCSI_PROT_GUARD_CHECK |
770 						  SCSI_PROT_REF_CHECK |
771 						  SCSI_PROT_REF_INCREMENT,
772 
773 		[SCSI_PROT_READ_INSERT]		= SCSI_PROT_REF_INCREMENT |
774 						  SCSI_PROT_IP_CHECKSUM,
775 
776 		[SCSI_PROT_READ_PASS]		= SCSI_PROT_TRANSFER_PI |
777 						  SCSI_PROT_GUARD_CHECK |
778 						  SCSI_PROT_REF_CHECK |
779 						  SCSI_PROT_REF_INCREMENT |
780 						  SCSI_PROT_IP_CHECKSUM,
781 
782 		[SCSI_PROT_WRITE_INSERT]	= SCSI_PROT_TRANSFER_PI |
783 						  SCSI_PROT_REF_INCREMENT,
784 
785 		[SCSI_PROT_WRITE_STRIP]		= SCSI_PROT_GUARD_CHECK |
786 						  SCSI_PROT_REF_CHECK |
787 						  SCSI_PROT_REF_INCREMENT |
788 						  SCSI_PROT_IP_CHECKSUM,
789 
790 		[SCSI_PROT_WRITE_PASS]		= SCSI_PROT_TRANSFER_PI |
791 						  SCSI_PROT_GUARD_CHECK |
792 						  SCSI_PROT_REF_CHECK |
793 						  SCSI_PROT_REF_INCREMENT |
794 						  SCSI_PROT_IP_CHECKSUM,
795 	};
796 
797 	return flag_mask[prot_op];
798 }
799 
800 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
801 					   unsigned int dix, unsigned int dif)
802 {
803 	struct request *rq = scsi_cmd_to_rq(scmd);
804 	struct bio *bio = rq->bio;
805 	unsigned int prot_op = sd_prot_op(rq_data_dir(rq), dix, dif);
806 	unsigned int protect = 0;
807 
808 	if (dix) {				/* DIX Type 0, 1, 2, 3 */
809 		if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
810 			scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
811 
812 		if (bio_integrity_flagged(bio, BIP_CHECK_GUARD))
813 			scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
814 	}
815 
816 	if (dif != T10_PI_TYPE3_PROTECTION) {	/* DIX/DIF Type 0, 1, 2 */
817 		scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
818 
819 		if (bio_integrity_flagged(bio, BIP_CHECK_REFTAG))
820 			scmd->prot_flags |= SCSI_PROT_REF_CHECK;
821 	}
822 
823 	if (dif) {				/* DIX/DIF Type 1, 2, 3 */
824 		scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
825 
826 		if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
827 			protect = 3 << 5;	/* Disable target PI checking */
828 		else
829 			protect = 1 << 5;	/* Enable target PI checking */
830 	}
831 
832 	scsi_set_prot_op(scmd, prot_op);
833 	scsi_set_prot_type(scmd, dif);
834 	scmd->prot_flags &= sd_prot_flag_mask(prot_op);
835 
836 	return protect;
837 }
838 
839 static void sd_disable_discard(struct scsi_disk *sdkp)
840 {
841 	sdkp->provisioning_mode = SD_LBP_DISABLE;
842 	blk_queue_disable_discard(sdkp->disk->queue);
843 }
844 
845 static void sd_config_discard(struct scsi_disk *sdkp, struct queue_limits *lim,
846 		unsigned int mode)
847 {
848 	unsigned int logical_block_size = sdkp->device->sector_size;
849 	unsigned int max_blocks = 0;
850 
851 	lim->discard_alignment = sdkp->unmap_alignment * logical_block_size;
852 	lim->discard_granularity = max(sdkp->physical_block_size,
853 			sdkp->unmap_granularity * logical_block_size);
854 	sdkp->provisioning_mode = mode;
855 
856 	switch (mode) {
857 
858 	case SD_LBP_FULL:
859 	case SD_LBP_DISABLE:
860 		break;
861 
862 	case SD_LBP_UNMAP:
863 		max_blocks = min_not_zero(sdkp->max_unmap_blocks,
864 					  (u32)SD_MAX_WS16_BLOCKS);
865 		break;
866 
867 	case SD_LBP_WS16:
868 		if (sdkp->device->unmap_limit_for_ws)
869 			max_blocks = sdkp->max_unmap_blocks;
870 		else
871 			max_blocks = sdkp->max_ws_blocks;
872 
873 		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
874 		break;
875 
876 	case SD_LBP_WS10:
877 		if (sdkp->device->unmap_limit_for_ws)
878 			max_blocks = sdkp->max_unmap_blocks;
879 		else
880 			max_blocks = sdkp->max_ws_blocks;
881 
882 		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
883 		break;
884 
885 	case SD_LBP_ZERO:
886 		max_blocks = min_not_zero(sdkp->max_ws_blocks,
887 					  (u32)SD_MAX_WS10_BLOCKS);
888 		break;
889 	}
890 
891 	lim->max_hw_discard_sectors = max_blocks *
892 		(logical_block_size >> SECTOR_SHIFT);
893 }
894 
895 static void *sd_set_special_bvec(struct request *rq, unsigned int data_len)
896 {
897 	struct page *page;
898 
899 	page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
900 	if (!page)
901 		return NULL;
902 	clear_highpage(page);
903 	bvec_set_page(&rq->special_vec, page, data_len, 0);
904 	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
905 	return bvec_virt(&rq->special_vec);
906 }
907 
908 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
909 {
910 	struct scsi_device *sdp = cmd->device;
911 	struct request *rq = scsi_cmd_to_rq(cmd);
912 	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
913 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
914 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
915 	unsigned int data_len = 24;
916 	char *buf;
917 
918 	buf = sd_set_special_bvec(rq, data_len);
919 	if (!buf)
920 		return BLK_STS_RESOURCE;
921 
922 	cmd->cmd_len = 10;
923 	cmd->cmnd[0] = UNMAP;
924 	cmd->cmnd[8] = 24;
925 
926 	put_unaligned_be16(6 + 16, &buf[0]);
927 	put_unaligned_be16(16, &buf[2]);
928 	put_unaligned_be64(lba, &buf[8]);
929 	put_unaligned_be32(nr_blocks, &buf[16]);
930 
931 	cmd->allowed = sdkp->max_retries;
932 	cmd->transfersize = data_len;
933 	rq->timeout = SD_TIMEOUT;
934 
935 	return scsi_alloc_sgtables(cmd);
936 }
937 
938 static void sd_config_atomic(struct scsi_disk *sdkp, struct queue_limits *lim)
939 {
940 	unsigned int logical_block_size = sdkp->device->sector_size,
941 		physical_block_size_sectors, max_atomic, unit_min, unit_max;
942 
943 	if ((!sdkp->max_atomic && !sdkp->max_atomic_with_boundary) ||
944 	    sdkp->protection_type == T10_PI_TYPE2_PROTECTION)
945 		return;
946 
947 	physical_block_size_sectors = sdkp->physical_block_size /
948 					sdkp->device->sector_size;
949 
950 	unit_min = rounddown_pow_of_two(sdkp->atomic_granularity ?
951 					sdkp->atomic_granularity :
952 					physical_block_size_sectors);
953 
954 	/*
955 	 * Only use atomic boundary when we have the odd scenario of
956 	 * sdkp->max_atomic == 0, which the spec does permit.
957 	 */
958 	if (sdkp->max_atomic) {
959 		max_atomic = sdkp->max_atomic;
960 		unit_max = rounddown_pow_of_two(sdkp->max_atomic);
961 		sdkp->use_atomic_write_boundary = 0;
962 	} else {
963 		max_atomic = sdkp->max_atomic_with_boundary;
964 		unit_max = rounddown_pow_of_two(sdkp->max_atomic_boundary);
965 		sdkp->use_atomic_write_boundary = 1;
966 	}
967 
968 	/*
969 	 * Ensure compliance with granularity and alignment. For now, keep it
970 	 * simple and just don't support atomic writes for values mismatched
971 	 * with max_{boundary}atomic, physical block size, and
972 	 * atomic_granularity itself.
973 	 *
974 	 * We're really being distrustful by checking unit_max also...
975 	 */
976 	if (sdkp->atomic_granularity > 1) {
977 		if (unit_min > 1 && unit_min % sdkp->atomic_granularity)
978 			return;
979 		if (unit_max > 1 && unit_max % sdkp->atomic_granularity)
980 			return;
981 	}
982 
983 	if (sdkp->atomic_alignment > 1) {
984 		if (unit_min > 1 && unit_min % sdkp->atomic_alignment)
985 			return;
986 		if (unit_max > 1 && unit_max % sdkp->atomic_alignment)
987 			return;
988 	}
989 
990 	lim->atomic_write_hw_max = max_atomic * logical_block_size;
991 	lim->atomic_write_hw_boundary = 0;
992 	lim->atomic_write_hw_unit_min = unit_min * logical_block_size;
993 	lim->atomic_write_hw_unit_max = unit_max * logical_block_size;
994 	lim->features |= BLK_FEAT_ATOMIC_WRITES;
995 }
996 
997 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd,
998 		bool unmap)
999 {
1000 	struct scsi_device *sdp = cmd->device;
1001 	struct request *rq = scsi_cmd_to_rq(cmd);
1002 	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1003 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1004 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1005 	u32 data_len = sdp->sector_size;
1006 
1007 	if (!sd_set_special_bvec(rq, data_len))
1008 		return BLK_STS_RESOURCE;
1009 
1010 	cmd->cmd_len = 16;
1011 	cmd->cmnd[0] = WRITE_SAME_16;
1012 	if (unmap)
1013 		cmd->cmnd[1] = 0x8; /* UNMAP */
1014 	put_unaligned_be64(lba, &cmd->cmnd[2]);
1015 	put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1016 
1017 	cmd->allowed = sdkp->max_retries;
1018 	cmd->transfersize = data_len;
1019 	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
1020 
1021 	return scsi_alloc_sgtables(cmd);
1022 }
1023 
1024 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd,
1025 		bool unmap)
1026 {
1027 	struct scsi_device *sdp = cmd->device;
1028 	struct request *rq = scsi_cmd_to_rq(cmd);
1029 	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1030 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1031 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1032 	u32 data_len = sdp->sector_size;
1033 
1034 	if (!sd_set_special_bvec(rq, data_len))
1035 		return BLK_STS_RESOURCE;
1036 
1037 	cmd->cmd_len = 10;
1038 	cmd->cmnd[0] = WRITE_SAME;
1039 	if (unmap)
1040 		cmd->cmnd[1] = 0x8; /* UNMAP */
1041 	put_unaligned_be32(lba, &cmd->cmnd[2]);
1042 	put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1043 
1044 	cmd->allowed = sdkp->max_retries;
1045 	cmd->transfersize = data_len;
1046 	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
1047 
1048 	return scsi_alloc_sgtables(cmd);
1049 }
1050 
1051 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
1052 {
1053 	struct request *rq = scsi_cmd_to_rq(cmd);
1054 	struct scsi_device *sdp = cmd->device;
1055 	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1056 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1057 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1058 
1059 	if (!(rq->cmd_flags & REQ_NOUNMAP)) {
1060 		switch (sdkp->zeroing_mode) {
1061 		case SD_ZERO_WS16_UNMAP:
1062 			return sd_setup_write_same16_cmnd(cmd, true);
1063 		case SD_ZERO_WS10_UNMAP:
1064 			return sd_setup_write_same10_cmnd(cmd, true);
1065 		}
1066 	}
1067 
1068 	if (sdp->no_write_same) {
1069 		rq->rq_flags |= RQF_QUIET;
1070 		return BLK_STS_TARGET;
1071 	}
1072 
1073 	if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff)
1074 		return sd_setup_write_same16_cmnd(cmd, false);
1075 
1076 	return sd_setup_write_same10_cmnd(cmd, false);
1077 }
1078 
1079 static void sd_disable_write_same(struct scsi_disk *sdkp)
1080 {
1081 	sdkp->device->no_write_same = 1;
1082 	sdkp->max_ws_blocks = 0;
1083 	blk_queue_disable_write_zeroes(sdkp->disk->queue);
1084 }
1085 
1086 static void sd_config_write_same(struct scsi_disk *sdkp,
1087 		struct queue_limits *lim)
1088 {
1089 	unsigned int logical_block_size = sdkp->device->sector_size;
1090 
1091 	if (sdkp->device->no_write_same) {
1092 		sdkp->max_ws_blocks = 0;
1093 		goto out;
1094 	}
1095 
1096 	/* Some devices can not handle block counts above 0xffff despite
1097 	 * supporting WRITE SAME(16). Consequently we default to 64k
1098 	 * blocks per I/O unless the device explicitly advertises a
1099 	 * bigger limit.
1100 	 */
1101 	if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
1102 		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
1103 						   (u32)SD_MAX_WS16_BLOCKS);
1104 	else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
1105 		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
1106 						   (u32)SD_MAX_WS10_BLOCKS);
1107 	else {
1108 		sdkp->device->no_write_same = 1;
1109 		sdkp->max_ws_blocks = 0;
1110 	}
1111 
1112 	if (sdkp->lbprz && sdkp->lbpws)
1113 		sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
1114 	else if (sdkp->lbprz && sdkp->lbpws10)
1115 		sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
1116 	else if (sdkp->max_ws_blocks)
1117 		sdkp->zeroing_mode = SD_ZERO_WS;
1118 	else
1119 		sdkp->zeroing_mode = SD_ZERO_WRITE;
1120 
1121 	if (sdkp->max_ws_blocks &&
1122 	    sdkp->physical_block_size > logical_block_size) {
1123 		/*
1124 		 * Reporting a maximum number of blocks that is not aligned
1125 		 * on the device physical size would cause a large write same
1126 		 * request to be split into physically unaligned chunks by
1127 		 * __blkdev_issue_write_zeroes() even if the caller of this
1128 		 * functions took care to align the large request. So make sure
1129 		 * the maximum reported is aligned to the device physical block
1130 		 * size. This is only an optional optimization for regular
1131 		 * disks, but this is mandatory to avoid failure of large write
1132 		 * same requests directed at sequential write required zones of
1133 		 * host-managed ZBC disks.
1134 		 */
1135 		sdkp->max_ws_blocks =
1136 			round_down(sdkp->max_ws_blocks,
1137 				   bytes_to_logical(sdkp->device,
1138 						    sdkp->physical_block_size));
1139 	}
1140 
1141 out:
1142 	lim->max_write_zeroes_sectors =
1143 		sdkp->max_ws_blocks * (logical_block_size >> SECTOR_SHIFT);
1144 }
1145 
1146 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
1147 {
1148 	struct request *rq = scsi_cmd_to_rq(cmd);
1149 	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1150 
1151 	/* flush requests don't perform I/O, zero the S/G table */
1152 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1153 
1154 	if (cmd->device->use_16_for_sync) {
1155 		cmd->cmnd[0] = SYNCHRONIZE_CACHE_16;
1156 		cmd->cmd_len = 16;
1157 	} else {
1158 		cmd->cmnd[0] = SYNCHRONIZE_CACHE;
1159 		cmd->cmd_len = 10;
1160 	}
1161 	cmd->transfersize = 0;
1162 	cmd->allowed = sdkp->max_retries;
1163 
1164 	rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
1165 	return BLK_STS_OK;
1166 }
1167 
1168 /**
1169  * sd_group_number() - Compute the GROUP NUMBER field
1170  * @cmd: SCSI command for which to compute the value of the six-bit GROUP NUMBER
1171  *	field.
1172  *
1173  * From SBC-5 r05 (https://www.t10.org/cgi-bin/ac.pl?t=f&f=sbc5r05.pdf):
1174  * 0: no relative lifetime.
1175  * 1: shortest relative lifetime.
1176  * 2: second shortest relative lifetime.
1177  * 3 - 0x3d: intermediate relative lifetimes.
1178  * 0x3e: second longest relative lifetime.
1179  * 0x3f: longest relative lifetime.
1180  */
1181 static u8 sd_group_number(struct scsi_cmnd *cmd)
1182 {
1183 	const struct request *rq = scsi_cmd_to_rq(cmd);
1184 	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1185 
1186 	if (!sdkp->rscs)
1187 		return 0;
1188 
1189 	return min3((u32)rq->bio->bi_write_hint,
1190 		    (u32)sdkp->permanent_stream_count, 0x3fu);
1191 }
1192 
1193 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write,
1194 				       sector_t lba, unsigned int nr_blocks,
1195 				       unsigned char flags, unsigned int dld)
1196 {
1197 	cmd->cmd_len = SD_EXT_CDB_SIZE;
1198 	cmd->cmnd[0]  = VARIABLE_LENGTH_CMD;
1199 	cmd->cmnd[6]  = sd_group_number(cmd);
1200 	cmd->cmnd[7]  = 0x18; /* Additional CDB len */
1201 	cmd->cmnd[9]  = write ? WRITE_32 : READ_32;
1202 	cmd->cmnd[10] = flags;
1203 	cmd->cmnd[11] = dld & 0x07;
1204 	put_unaligned_be64(lba, &cmd->cmnd[12]);
1205 	put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */
1206 	put_unaligned_be32(nr_blocks, &cmd->cmnd[28]);
1207 
1208 	return BLK_STS_OK;
1209 }
1210 
1211 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write,
1212 				       sector_t lba, unsigned int nr_blocks,
1213 				       unsigned char flags, unsigned int dld)
1214 {
1215 	cmd->cmd_len  = 16;
1216 	cmd->cmnd[0]  = write ? WRITE_16 : READ_16;
1217 	cmd->cmnd[1]  = flags | ((dld >> 2) & 0x01);
1218 	cmd->cmnd[14] = ((dld & 0x03) << 6) | sd_group_number(cmd);
1219 	cmd->cmnd[15] = 0;
1220 	put_unaligned_be64(lba, &cmd->cmnd[2]);
1221 	put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1222 
1223 	return BLK_STS_OK;
1224 }
1225 
1226 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write,
1227 				       sector_t lba, unsigned int nr_blocks,
1228 				       unsigned char flags)
1229 {
1230 	cmd->cmd_len = 10;
1231 	cmd->cmnd[0] = write ? WRITE_10 : READ_10;
1232 	cmd->cmnd[1] = flags;
1233 	cmd->cmnd[6] = sd_group_number(cmd);
1234 	cmd->cmnd[9] = 0;
1235 	put_unaligned_be32(lba, &cmd->cmnd[2]);
1236 	put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1237 
1238 	return BLK_STS_OK;
1239 }
1240 
1241 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write,
1242 				      sector_t lba, unsigned int nr_blocks,
1243 				      unsigned char flags)
1244 {
1245 	/* Avoid that 0 blocks gets translated into 256 blocks. */
1246 	if (WARN_ON_ONCE(nr_blocks == 0))
1247 		return BLK_STS_IOERR;
1248 
1249 	if (unlikely(flags & 0x8)) {
1250 		/*
1251 		 * This happens only if this drive failed 10byte rw
1252 		 * command with ILLEGAL_REQUEST during operation and
1253 		 * thus turned off use_10_for_rw.
1254 		 */
1255 		scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n");
1256 		return BLK_STS_IOERR;
1257 	}
1258 
1259 	cmd->cmd_len = 6;
1260 	cmd->cmnd[0] = write ? WRITE_6 : READ_6;
1261 	cmd->cmnd[1] = (lba >> 16) & 0x1f;
1262 	cmd->cmnd[2] = (lba >> 8) & 0xff;
1263 	cmd->cmnd[3] = lba & 0xff;
1264 	cmd->cmnd[4] = nr_blocks;
1265 	cmd->cmnd[5] = 0;
1266 
1267 	return BLK_STS_OK;
1268 }
1269 
1270 /*
1271  * Check if a command has a duration limit set. If it does, and the target
1272  * device supports CDL and the feature is enabled, return the limit
1273  * descriptor index to use. Return 0 (no limit) otherwise.
1274  */
1275 static int sd_cdl_dld(struct scsi_disk *sdkp, struct scsi_cmnd *scmd)
1276 {
1277 	struct scsi_device *sdp = sdkp->device;
1278 	int hint;
1279 
1280 	if (!sdp->cdl_supported || !sdp->cdl_enable)
1281 		return 0;
1282 
1283 	/*
1284 	 * Use "no limit" if the request ioprio does not specify a duration
1285 	 * limit hint.
1286 	 */
1287 	hint = IOPRIO_PRIO_HINT(req_get_ioprio(scsi_cmd_to_rq(scmd)));
1288 	if (hint < IOPRIO_HINT_DEV_DURATION_LIMIT_1 ||
1289 	    hint > IOPRIO_HINT_DEV_DURATION_LIMIT_7)
1290 		return 0;
1291 
1292 	return (hint - IOPRIO_HINT_DEV_DURATION_LIMIT_1) + 1;
1293 }
1294 
1295 static blk_status_t sd_setup_atomic_cmnd(struct scsi_cmnd *cmd,
1296 					sector_t lba, unsigned int nr_blocks,
1297 					bool boundary, unsigned char flags)
1298 {
1299 	cmd->cmd_len  = 16;
1300 	cmd->cmnd[0]  = WRITE_ATOMIC_16;
1301 	cmd->cmnd[1]  = flags;
1302 	put_unaligned_be64(lba, &cmd->cmnd[2]);
1303 	put_unaligned_be16(nr_blocks, &cmd->cmnd[12]);
1304 	if (boundary)
1305 		put_unaligned_be16(nr_blocks, &cmd->cmnd[10]);
1306 	else
1307 		put_unaligned_be16(0, &cmd->cmnd[10]);
1308 	put_unaligned_be16(nr_blocks, &cmd->cmnd[12]);
1309 	cmd->cmnd[14] = 0;
1310 	cmd->cmnd[15] = 0;
1311 
1312 	return BLK_STS_OK;
1313 }
1314 
1315 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd)
1316 {
1317 	struct request *rq = scsi_cmd_to_rq(cmd);
1318 	struct scsi_device *sdp = cmd->device;
1319 	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1320 	sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1321 	sector_t threshold;
1322 	unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1323 	unsigned int mask = logical_to_sectors(sdp, 1) - 1;
1324 	bool write = rq_data_dir(rq) == WRITE;
1325 	unsigned char protect, fua;
1326 	unsigned int dld;
1327 	blk_status_t ret;
1328 	unsigned int dif;
1329 	bool dix;
1330 
1331 	ret = scsi_alloc_sgtables(cmd);
1332 	if (ret != BLK_STS_OK)
1333 		return ret;
1334 
1335 	ret = BLK_STS_IOERR;
1336 	if (!scsi_device_online(sdp) || sdp->changed) {
1337 		scmd_printk(KERN_ERR, cmd, "device offline or changed\n");
1338 		goto fail;
1339 	}
1340 
1341 	if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->q->disk)) {
1342 		scmd_printk(KERN_ERR, cmd, "access beyond end of device\n");
1343 		goto fail;
1344 	}
1345 
1346 	if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) {
1347 		scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n");
1348 		goto fail;
1349 	}
1350 
1351 	/*
1352 	 * Some SD card readers can't handle accesses which touch the
1353 	 * last one or two logical blocks. Split accesses as needed.
1354 	 */
1355 	threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS;
1356 
1357 	if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) {
1358 		if (lba < threshold) {
1359 			/* Access up to the threshold but not beyond */
1360 			nr_blocks = threshold - lba;
1361 		} else {
1362 			/* Access only a single logical block */
1363 			nr_blocks = 1;
1364 		}
1365 	}
1366 
1367 	fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0;
1368 	dix = scsi_prot_sg_count(cmd);
1369 	dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type);
1370 	dld = sd_cdl_dld(sdkp, cmd);
1371 
1372 	if (dif || dix)
1373 		protect = sd_setup_protect_cmnd(cmd, dix, dif);
1374 	else
1375 		protect = 0;
1376 
1377 	if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1378 		ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks,
1379 					 protect | fua, dld);
1380 	} else if (rq->cmd_flags & REQ_ATOMIC) {
1381 		ret = sd_setup_atomic_cmnd(cmd, lba, nr_blocks,
1382 				sdkp->use_atomic_write_boundary,
1383 				protect | fua);
1384 	} else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) {
1385 		ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks,
1386 					 protect | fua, dld);
1387 	} else if ((nr_blocks > 0xff) || (lba > 0x1fffff) ||
1388 		   sdp->use_10_for_rw || protect || rq->bio->bi_write_hint) {
1389 		ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks,
1390 					 protect | fua);
1391 	} else {
1392 		ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks,
1393 					protect | fua);
1394 	}
1395 
1396 	if (unlikely(ret != BLK_STS_OK))
1397 		goto fail;
1398 
1399 	/*
1400 	 * We shouldn't disconnect in the middle of a sector, so with a dumb
1401 	 * host adapter, it's safe to assume that we can at least transfer
1402 	 * this many bytes between each connect / disconnect.
1403 	 */
1404 	cmd->transfersize = sdp->sector_size;
1405 	cmd->underflow = nr_blocks << 9;
1406 	cmd->allowed = sdkp->max_retries;
1407 	cmd->sdb.length = nr_blocks * sdp->sector_size;
1408 
1409 	SCSI_LOG_HLQUEUE(1,
1410 			 scmd_printk(KERN_INFO, cmd,
1411 				     "%s: block=%llu, count=%d\n", __func__,
1412 				     (unsigned long long)blk_rq_pos(rq),
1413 				     blk_rq_sectors(rq)));
1414 	SCSI_LOG_HLQUEUE(2,
1415 			 scmd_printk(KERN_INFO, cmd,
1416 				     "%s %d/%u 512 byte blocks.\n",
1417 				     write ? "writing" : "reading", nr_blocks,
1418 				     blk_rq_sectors(rq)));
1419 
1420 	/*
1421 	 * This indicates that the command is ready from our end to be queued.
1422 	 */
1423 	return BLK_STS_OK;
1424 fail:
1425 	scsi_free_sgtables(cmd);
1426 	return ret;
1427 }
1428 
1429 static blk_status_t sd_init_command(struct scsi_cmnd *cmd)
1430 {
1431 	struct request *rq = scsi_cmd_to_rq(cmd);
1432 
1433 	switch (req_op(rq)) {
1434 	case REQ_OP_DISCARD:
1435 		switch (scsi_disk(rq->q->disk)->provisioning_mode) {
1436 		case SD_LBP_UNMAP:
1437 			return sd_setup_unmap_cmnd(cmd);
1438 		case SD_LBP_WS16:
1439 			return sd_setup_write_same16_cmnd(cmd, true);
1440 		case SD_LBP_WS10:
1441 			return sd_setup_write_same10_cmnd(cmd, true);
1442 		case SD_LBP_ZERO:
1443 			return sd_setup_write_same10_cmnd(cmd, false);
1444 		default:
1445 			return BLK_STS_TARGET;
1446 		}
1447 	case REQ_OP_WRITE_ZEROES:
1448 		return sd_setup_write_zeroes_cmnd(cmd);
1449 	case REQ_OP_FLUSH:
1450 		return sd_setup_flush_cmnd(cmd);
1451 	case REQ_OP_READ:
1452 	case REQ_OP_WRITE:
1453 		return sd_setup_read_write_cmnd(cmd);
1454 	case REQ_OP_ZONE_RESET:
1455 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1456 						   false);
1457 	case REQ_OP_ZONE_RESET_ALL:
1458 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1459 						   true);
1460 	case REQ_OP_ZONE_OPEN:
1461 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false);
1462 	case REQ_OP_ZONE_CLOSE:
1463 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false);
1464 	case REQ_OP_ZONE_FINISH:
1465 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false);
1466 	default:
1467 		WARN_ON_ONCE(1);
1468 		return BLK_STS_NOTSUPP;
1469 	}
1470 }
1471 
1472 static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1473 {
1474 	struct request *rq = scsi_cmd_to_rq(SCpnt);
1475 
1476 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1477 		mempool_free(rq->special_vec.bv_page, sd_page_pool);
1478 }
1479 
1480 static bool sd_need_revalidate(struct gendisk *disk, struct scsi_disk *sdkp)
1481 {
1482 	if (sdkp->device->removable || sdkp->write_prot) {
1483 		if (disk_check_media_change(disk))
1484 			return true;
1485 	}
1486 
1487 	/*
1488 	 * Force a full rescan after ioctl(BLKRRPART).  While the disk state has
1489 	 * nothing to do with partitions, BLKRRPART is used to force a full
1490 	 * revalidate after things like a format for historical reasons.
1491 	 */
1492 	return test_bit(GD_NEED_PART_SCAN, &disk->state);
1493 }
1494 
1495 /**
1496  *	sd_open - open a scsi disk device
1497  *	@disk: disk to open
1498  *	@mode: open mode
1499  *
1500  *	Returns 0 if successful. Returns a negated errno value in case
1501  *	of error.
1502  *
1503  *	Note: This can be called from a user context (e.g. fsck(1) )
1504  *	or from within the kernel (e.g. as a result of a mount(1) ).
1505  *	In the latter case @inode and @filp carry an abridged amount
1506  *	of information as noted above.
1507  *
1508  *	Locking: called with disk->open_mutex held.
1509  **/
1510 static int sd_open(struct gendisk *disk, blk_mode_t mode)
1511 {
1512 	struct scsi_disk *sdkp = scsi_disk(disk);
1513 	struct scsi_device *sdev = sdkp->device;
1514 	int retval;
1515 
1516 	if (scsi_device_get(sdev))
1517 		return -ENXIO;
1518 
1519 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1520 
1521 	/*
1522 	 * If the device is in error recovery, wait until it is done.
1523 	 * If the device is offline, then disallow any access to it.
1524 	 */
1525 	retval = -ENXIO;
1526 	if (!scsi_block_when_processing_errors(sdev))
1527 		goto error_out;
1528 
1529 	if (sd_need_revalidate(disk, sdkp))
1530 		sd_revalidate_disk(disk);
1531 
1532 	/*
1533 	 * If the drive is empty, just let the open fail.
1534 	 */
1535 	retval = -ENOMEDIUM;
1536 	if (sdev->removable && !sdkp->media_present &&
1537 	    !(mode & BLK_OPEN_NDELAY))
1538 		goto error_out;
1539 
1540 	/*
1541 	 * If the device has the write protect tab set, have the open fail
1542 	 * if the user expects to be able to write to the thing.
1543 	 */
1544 	retval = -EROFS;
1545 	if (sdkp->write_prot && (mode & BLK_OPEN_WRITE))
1546 		goto error_out;
1547 
1548 	/*
1549 	 * It is possible that the disk changing stuff resulted in
1550 	 * the device being taken offline.  If this is the case,
1551 	 * report this to the user, and don't pretend that the
1552 	 * open actually succeeded.
1553 	 */
1554 	retval = -ENXIO;
1555 	if (!scsi_device_online(sdev))
1556 		goto error_out;
1557 
1558 	if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1559 		if (scsi_block_when_processing_errors(sdev))
1560 			scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1561 	}
1562 
1563 	return 0;
1564 
1565 error_out:
1566 	scsi_device_put(sdev);
1567 	return retval;
1568 }
1569 
1570 /**
1571  *	sd_release - invoked when the (last) close(2) is called on this
1572  *	scsi disk.
1573  *	@disk: disk to release
1574  *
1575  *	Returns 0.
1576  *
1577  *	Note: may block (uninterruptible) if error recovery is underway
1578  *	on this disk.
1579  *
1580  *	Locking: called with disk->open_mutex held.
1581  **/
1582 static void sd_release(struct gendisk *disk)
1583 {
1584 	struct scsi_disk *sdkp = scsi_disk(disk);
1585 	struct scsi_device *sdev = sdkp->device;
1586 
1587 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1588 
1589 	if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1590 		if (scsi_block_when_processing_errors(sdev))
1591 			scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1592 	}
1593 
1594 	scsi_device_put(sdev);
1595 }
1596 
1597 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1598 {
1599 	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1600 	struct scsi_device *sdp = sdkp->device;
1601 	struct Scsi_Host *host = sdp->host;
1602 	sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1603 	int diskinfo[4];
1604 
1605 	/* default to most commonly used values */
1606 	diskinfo[0] = 0x40;	/* 1 << 6 */
1607 	diskinfo[1] = 0x20;	/* 1 << 5 */
1608 	diskinfo[2] = capacity >> 11;
1609 
1610 	/* override with calculated, extended default, or driver values */
1611 	if (host->hostt->bios_param)
1612 		host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1613 	else
1614 		scsicam_bios_param(bdev, capacity, diskinfo);
1615 
1616 	geo->heads = diskinfo[0];
1617 	geo->sectors = diskinfo[1];
1618 	geo->cylinders = diskinfo[2];
1619 	return 0;
1620 }
1621 
1622 /**
1623  *	sd_ioctl - process an ioctl
1624  *	@bdev: target block device
1625  *	@mode: open mode
1626  *	@cmd: ioctl command number
1627  *	@arg: this is third argument given to ioctl(2) system call.
1628  *	Often contains a pointer.
1629  *
1630  *	Returns 0 if successful (some ioctls return positive numbers on
1631  *	success as well). Returns a negated errno value in case of error.
1632  *
1633  *	Note: most ioctls are forward onto the block subsystem or further
1634  *	down in the scsi subsystem.
1635  **/
1636 static int sd_ioctl(struct block_device *bdev, blk_mode_t mode,
1637 		    unsigned int cmd, unsigned long arg)
1638 {
1639 	struct gendisk *disk = bdev->bd_disk;
1640 	struct scsi_disk *sdkp = scsi_disk(disk);
1641 	struct scsi_device *sdp = sdkp->device;
1642 	void __user *p = (void __user *)arg;
1643 	int error;
1644 
1645 	SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1646 				    "cmd=0x%x\n", disk->disk_name, cmd));
1647 
1648 	if (bdev_is_partition(bdev) && !capable(CAP_SYS_RAWIO))
1649 		return -ENOIOCTLCMD;
1650 
1651 	/*
1652 	 * If we are in the middle of error recovery, don't let anyone
1653 	 * else try and use this device.  Also, if error recovery fails, it
1654 	 * may try and take the device offline, in which case all further
1655 	 * access to the device is prohibited.
1656 	 */
1657 	error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1658 			(mode & BLK_OPEN_NDELAY));
1659 	if (error)
1660 		return error;
1661 
1662 	if (is_sed_ioctl(cmd))
1663 		return sed_ioctl(sdkp->opal_dev, cmd, p);
1664 	return scsi_ioctl(sdp, mode & BLK_OPEN_WRITE, cmd, p);
1665 }
1666 
1667 static void set_media_not_present(struct scsi_disk *sdkp)
1668 {
1669 	if (sdkp->media_present)
1670 		sdkp->device->changed = 1;
1671 
1672 	if (sdkp->device->removable) {
1673 		sdkp->media_present = 0;
1674 		sdkp->capacity = 0;
1675 	}
1676 }
1677 
1678 static int media_not_present(struct scsi_disk *sdkp,
1679 			     struct scsi_sense_hdr *sshdr)
1680 {
1681 	if (!scsi_sense_valid(sshdr))
1682 		return 0;
1683 
1684 	/* not invoked for commands that could return deferred errors */
1685 	switch (sshdr->sense_key) {
1686 	case UNIT_ATTENTION:
1687 	case NOT_READY:
1688 		/* medium not present */
1689 		if (sshdr->asc == 0x3A) {
1690 			set_media_not_present(sdkp);
1691 			return 1;
1692 		}
1693 	}
1694 	return 0;
1695 }
1696 
1697 /**
1698  *	sd_check_events - check media events
1699  *	@disk: kernel device descriptor
1700  *	@clearing: disk events currently being cleared
1701  *
1702  *	Returns mask of DISK_EVENT_*.
1703  *
1704  *	Note: this function is invoked from the block subsystem.
1705  **/
1706 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1707 {
1708 	struct scsi_disk *sdkp = disk->private_data;
1709 	struct scsi_device *sdp;
1710 	int retval;
1711 	bool disk_changed;
1712 
1713 	if (!sdkp)
1714 		return 0;
1715 
1716 	sdp = sdkp->device;
1717 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1718 
1719 	/*
1720 	 * If the device is offline, don't send any commands - just pretend as
1721 	 * if the command failed.  If the device ever comes back online, we
1722 	 * can deal with it then.  It is only because of unrecoverable errors
1723 	 * that we would ever take a device offline in the first place.
1724 	 */
1725 	if (!scsi_device_online(sdp)) {
1726 		set_media_not_present(sdkp);
1727 		goto out;
1728 	}
1729 
1730 	/*
1731 	 * Using TEST_UNIT_READY enables differentiation between drive with
1732 	 * no cartridge loaded - NOT READY, drive with changed cartridge -
1733 	 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1734 	 *
1735 	 * Drives that auto spin down. eg iomega jaz 1G, will be started
1736 	 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1737 	 * sd_revalidate() is called.
1738 	 */
1739 	if (scsi_block_when_processing_errors(sdp)) {
1740 		struct scsi_sense_hdr sshdr = { 0, };
1741 
1742 		retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries,
1743 					      &sshdr);
1744 
1745 		/* failed to execute TUR, assume media not present */
1746 		if (retval < 0 || host_byte(retval)) {
1747 			set_media_not_present(sdkp);
1748 			goto out;
1749 		}
1750 
1751 		if (media_not_present(sdkp, &sshdr))
1752 			goto out;
1753 	}
1754 
1755 	/*
1756 	 * For removable scsi disk we have to recognise the presence
1757 	 * of a disk in the drive.
1758 	 */
1759 	if (!sdkp->media_present)
1760 		sdp->changed = 1;
1761 	sdkp->media_present = 1;
1762 out:
1763 	/*
1764 	 * sdp->changed is set under the following conditions:
1765 	 *
1766 	 *	Medium present state has changed in either direction.
1767 	 *	Device has indicated UNIT_ATTENTION.
1768 	 */
1769 	disk_changed = sdp->changed;
1770 	sdp->changed = 0;
1771 	return disk_changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1772 }
1773 
1774 static int sd_sync_cache(struct scsi_disk *sdkp)
1775 {
1776 	int res;
1777 	struct scsi_device *sdp = sdkp->device;
1778 	const int timeout = sdp->request_queue->rq_timeout
1779 		* SD_FLUSH_TIMEOUT_MULTIPLIER;
1780 	/* Leave the rest of the command zero to indicate flush everything. */
1781 	const unsigned char cmd[16] = { sdp->use_16_for_sync ?
1782 				SYNCHRONIZE_CACHE_16 : SYNCHRONIZE_CACHE };
1783 	struct scsi_sense_hdr sshdr;
1784 	struct scsi_failure failure_defs[] = {
1785 		{
1786 			.allowed = 3,
1787 			.result = SCMD_FAILURE_RESULT_ANY,
1788 		},
1789 		{}
1790 	};
1791 	struct scsi_failures failures = {
1792 		.failure_definitions = failure_defs,
1793 	};
1794 	const struct scsi_exec_args exec_args = {
1795 		.req_flags = BLK_MQ_REQ_PM,
1796 		.sshdr = &sshdr,
1797 		.failures = &failures,
1798 	};
1799 
1800 	if (!scsi_device_online(sdp))
1801 		return -ENODEV;
1802 
1803 	res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, timeout,
1804 			       sdkp->max_retries, &exec_args);
1805 	if (res) {
1806 		sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1807 
1808 		if (res < 0)
1809 			return res;
1810 
1811 		if (scsi_status_is_check_condition(res) &&
1812 		    scsi_sense_valid(&sshdr)) {
1813 			sd_print_sense_hdr(sdkp, &sshdr);
1814 
1815 			/* we need to evaluate the error return  */
1816 			if (sshdr.asc == 0x3a ||	/* medium not present */
1817 			    sshdr.asc == 0x20 ||	/* invalid command */
1818 			    (sshdr.asc == 0x74 && sshdr.ascq == 0x71))	/* drive is password locked */
1819 				/* this is no error here */
1820 				return 0;
1821 
1822 			/*
1823 			 * If a format is in progress or if the drive does not
1824 			 * support sync, there is not much we can do because
1825 			 * this is called during shutdown or suspend so just
1826 			 * return success so those operations can proceed.
1827 			 */
1828 			if ((sshdr.asc == 0x04 && sshdr.ascq == 0x04) ||
1829 			    sshdr.sense_key == ILLEGAL_REQUEST)
1830 				return 0;
1831 		}
1832 
1833 		switch (host_byte(res)) {
1834 		/* ignore errors due to racing a disconnection */
1835 		case DID_BAD_TARGET:
1836 		case DID_NO_CONNECT:
1837 			return 0;
1838 		/* signal the upper layer it might try again */
1839 		case DID_BUS_BUSY:
1840 		case DID_IMM_RETRY:
1841 		case DID_REQUEUE:
1842 		case DID_SOFT_ERROR:
1843 			return -EBUSY;
1844 		default:
1845 			return -EIO;
1846 		}
1847 	}
1848 	return 0;
1849 }
1850 
1851 static void sd_rescan(struct device *dev)
1852 {
1853 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
1854 
1855 	sd_revalidate_disk(sdkp->disk);
1856 }
1857 
1858 static int sd_get_unique_id(struct gendisk *disk, u8 id[16],
1859 		enum blk_unique_id type)
1860 {
1861 	struct scsi_device *sdev = scsi_disk(disk)->device;
1862 	const struct scsi_vpd *vpd;
1863 	const unsigned char *d;
1864 	int ret = -ENXIO, len;
1865 
1866 	rcu_read_lock();
1867 	vpd = rcu_dereference(sdev->vpd_pg83);
1868 	if (!vpd)
1869 		goto out_unlock;
1870 
1871 	ret = -EINVAL;
1872 	for (d = vpd->data + 4; d < vpd->data + vpd->len; d += d[3] + 4) {
1873 		/* we only care about designators with LU association */
1874 		if (((d[1] >> 4) & 0x3) != 0x00)
1875 			continue;
1876 		if ((d[1] & 0xf) != type)
1877 			continue;
1878 
1879 		/*
1880 		 * Only exit early if a 16-byte descriptor was found.  Otherwise
1881 		 * keep looking as one with more entropy might still show up.
1882 		 */
1883 		len = d[3];
1884 		if (len != 8 && len != 12 && len != 16)
1885 			continue;
1886 		ret = len;
1887 		memcpy(id, d + 4, len);
1888 		if (len == 16)
1889 			break;
1890 	}
1891 out_unlock:
1892 	rcu_read_unlock();
1893 	return ret;
1894 }
1895 
1896 static int sd_scsi_to_pr_err(struct scsi_sense_hdr *sshdr, int result)
1897 {
1898 	switch (host_byte(result)) {
1899 	case DID_TRANSPORT_MARGINAL:
1900 	case DID_TRANSPORT_DISRUPTED:
1901 	case DID_BUS_BUSY:
1902 		return PR_STS_RETRY_PATH_FAILURE;
1903 	case DID_NO_CONNECT:
1904 		return PR_STS_PATH_FAILED;
1905 	case DID_TRANSPORT_FAILFAST:
1906 		return PR_STS_PATH_FAST_FAILED;
1907 	}
1908 
1909 	switch (status_byte(result)) {
1910 	case SAM_STAT_RESERVATION_CONFLICT:
1911 		return PR_STS_RESERVATION_CONFLICT;
1912 	case SAM_STAT_CHECK_CONDITION:
1913 		if (!scsi_sense_valid(sshdr))
1914 			return PR_STS_IOERR;
1915 
1916 		if (sshdr->sense_key == ILLEGAL_REQUEST &&
1917 		    (sshdr->asc == 0x26 || sshdr->asc == 0x24))
1918 			return -EINVAL;
1919 
1920 		fallthrough;
1921 	default:
1922 		return PR_STS_IOERR;
1923 	}
1924 }
1925 
1926 static int sd_pr_in_command(struct block_device *bdev, u8 sa,
1927 			    unsigned char *data, int data_len)
1928 {
1929 	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1930 	struct scsi_device *sdev = sdkp->device;
1931 	struct scsi_sense_hdr sshdr;
1932 	u8 cmd[10] = { PERSISTENT_RESERVE_IN, sa };
1933 	struct scsi_failure failure_defs[] = {
1934 		{
1935 			.sense = UNIT_ATTENTION,
1936 			.asc = SCMD_FAILURE_ASC_ANY,
1937 			.ascq = SCMD_FAILURE_ASCQ_ANY,
1938 			.allowed = 5,
1939 			.result = SAM_STAT_CHECK_CONDITION,
1940 		},
1941 		{}
1942 	};
1943 	struct scsi_failures failures = {
1944 		.failure_definitions = failure_defs,
1945 	};
1946 	const struct scsi_exec_args exec_args = {
1947 		.sshdr = &sshdr,
1948 		.failures = &failures,
1949 	};
1950 	int result;
1951 
1952 	put_unaligned_be16(data_len, &cmd[7]);
1953 
1954 	result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, data, data_len,
1955 				  SD_TIMEOUT, sdkp->max_retries, &exec_args);
1956 	if (scsi_status_is_check_condition(result) &&
1957 	    scsi_sense_valid(&sshdr)) {
1958 		sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1959 		scsi_print_sense_hdr(sdev, NULL, &sshdr);
1960 	}
1961 
1962 	if (result <= 0)
1963 		return result;
1964 
1965 	return sd_scsi_to_pr_err(&sshdr, result);
1966 }
1967 
1968 static int sd_pr_read_keys(struct block_device *bdev, struct pr_keys *keys_info)
1969 {
1970 	int result, i, data_offset, num_copy_keys;
1971 	u32 num_keys = keys_info->num_keys;
1972 	int data_len = num_keys * 8 + 8;
1973 	u8 *data;
1974 
1975 	data = kzalloc(data_len, GFP_KERNEL);
1976 	if (!data)
1977 		return -ENOMEM;
1978 
1979 	result = sd_pr_in_command(bdev, READ_KEYS, data, data_len);
1980 	if (result)
1981 		goto free_data;
1982 
1983 	keys_info->generation = get_unaligned_be32(&data[0]);
1984 	keys_info->num_keys = get_unaligned_be32(&data[4]) / 8;
1985 
1986 	data_offset = 8;
1987 	num_copy_keys = min(num_keys, keys_info->num_keys);
1988 
1989 	for (i = 0; i < num_copy_keys; i++) {
1990 		keys_info->keys[i] = get_unaligned_be64(&data[data_offset]);
1991 		data_offset += 8;
1992 	}
1993 
1994 free_data:
1995 	kfree(data);
1996 	return result;
1997 }
1998 
1999 static int sd_pr_read_reservation(struct block_device *bdev,
2000 				  struct pr_held_reservation *rsv)
2001 {
2002 	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
2003 	struct scsi_device *sdev = sdkp->device;
2004 	u8 data[24] = { };
2005 	int result, len;
2006 
2007 	result = sd_pr_in_command(bdev, READ_RESERVATION, data, sizeof(data));
2008 	if (result)
2009 		return result;
2010 
2011 	len = get_unaligned_be32(&data[4]);
2012 	if (!len)
2013 		return 0;
2014 
2015 	/* Make sure we have at least the key and type */
2016 	if (len < 14) {
2017 		sdev_printk(KERN_INFO, sdev,
2018 			    "READ RESERVATION failed due to short return buffer of %d bytes\n",
2019 			    len);
2020 		return -EINVAL;
2021 	}
2022 
2023 	rsv->generation = get_unaligned_be32(&data[0]);
2024 	rsv->key = get_unaligned_be64(&data[8]);
2025 	rsv->type = scsi_pr_type_to_block(data[21] & 0x0f);
2026 	return 0;
2027 }
2028 
2029 static int sd_pr_out_command(struct block_device *bdev, u8 sa, u64 key,
2030 			     u64 sa_key, enum scsi_pr_type type, u8 flags)
2031 {
2032 	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
2033 	struct scsi_device *sdev = sdkp->device;
2034 	struct scsi_sense_hdr sshdr;
2035 	struct scsi_failure failure_defs[] = {
2036 		{
2037 			.sense = UNIT_ATTENTION,
2038 			.asc = SCMD_FAILURE_ASC_ANY,
2039 			.ascq = SCMD_FAILURE_ASCQ_ANY,
2040 			.allowed = 5,
2041 			.result = SAM_STAT_CHECK_CONDITION,
2042 		},
2043 		{}
2044 	};
2045 	struct scsi_failures failures = {
2046 		.failure_definitions = failure_defs,
2047 	};
2048 	const struct scsi_exec_args exec_args = {
2049 		.sshdr = &sshdr,
2050 		.failures = &failures,
2051 	};
2052 	int result;
2053 	u8 cmd[16] = { 0, };
2054 	u8 data[24] = { 0, };
2055 
2056 	cmd[0] = PERSISTENT_RESERVE_OUT;
2057 	cmd[1] = sa;
2058 	cmd[2] = type;
2059 	put_unaligned_be32(sizeof(data), &cmd[5]);
2060 
2061 	put_unaligned_be64(key, &data[0]);
2062 	put_unaligned_be64(sa_key, &data[8]);
2063 	data[20] = flags;
2064 
2065 	result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, &data,
2066 				  sizeof(data), SD_TIMEOUT, sdkp->max_retries,
2067 				  &exec_args);
2068 
2069 	if (scsi_status_is_check_condition(result) &&
2070 	    scsi_sense_valid(&sshdr)) {
2071 		sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
2072 		scsi_print_sense_hdr(sdev, NULL, &sshdr);
2073 	}
2074 
2075 	if (result <= 0)
2076 		return result;
2077 
2078 	return sd_scsi_to_pr_err(&sshdr, result);
2079 }
2080 
2081 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
2082 		u32 flags)
2083 {
2084 	if (flags & ~PR_FL_IGNORE_KEY)
2085 		return -EOPNOTSUPP;
2086 	return sd_pr_out_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
2087 			old_key, new_key, 0,
2088 			(1 << 0) /* APTPL */);
2089 }
2090 
2091 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
2092 		u32 flags)
2093 {
2094 	if (flags)
2095 		return -EOPNOTSUPP;
2096 	return sd_pr_out_command(bdev, 0x01, key, 0,
2097 				 block_pr_type_to_scsi(type), 0);
2098 }
2099 
2100 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2101 {
2102 	return sd_pr_out_command(bdev, 0x02, key, 0,
2103 				 block_pr_type_to_scsi(type), 0);
2104 }
2105 
2106 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
2107 		enum pr_type type, bool abort)
2108 {
2109 	return sd_pr_out_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
2110 				 block_pr_type_to_scsi(type), 0);
2111 }
2112 
2113 static int sd_pr_clear(struct block_device *bdev, u64 key)
2114 {
2115 	return sd_pr_out_command(bdev, 0x03, key, 0, 0, 0);
2116 }
2117 
2118 static const struct pr_ops sd_pr_ops = {
2119 	.pr_register	= sd_pr_register,
2120 	.pr_reserve	= sd_pr_reserve,
2121 	.pr_release	= sd_pr_release,
2122 	.pr_preempt	= sd_pr_preempt,
2123 	.pr_clear	= sd_pr_clear,
2124 	.pr_read_keys	= sd_pr_read_keys,
2125 	.pr_read_reservation = sd_pr_read_reservation,
2126 };
2127 
2128 static void scsi_disk_free_disk(struct gendisk *disk)
2129 {
2130 	struct scsi_disk *sdkp = scsi_disk(disk);
2131 
2132 	put_device(&sdkp->disk_dev);
2133 }
2134 
2135 static const struct block_device_operations sd_fops = {
2136 	.owner			= THIS_MODULE,
2137 	.open			= sd_open,
2138 	.release		= sd_release,
2139 	.ioctl			= sd_ioctl,
2140 	.getgeo			= sd_getgeo,
2141 	.compat_ioctl		= blkdev_compat_ptr_ioctl,
2142 	.check_events		= sd_check_events,
2143 	.unlock_native_capacity	= sd_unlock_native_capacity,
2144 	.report_zones		= sd_zbc_report_zones,
2145 	.get_unique_id		= sd_get_unique_id,
2146 	.free_disk		= scsi_disk_free_disk,
2147 	.pr_ops			= &sd_pr_ops,
2148 };
2149 
2150 /**
2151  *	sd_eh_reset - reset error handling callback
2152  *	@scmd:		sd-issued command that has failed
2153  *
2154  *	This function is called by the SCSI midlayer before starting
2155  *	SCSI EH. When counting medium access failures we have to be
2156  *	careful to register it only only once per device and SCSI EH run;
2157  *	there might be several timed out commands which will cause the
2158  *	'max_medium_access_timeouts' counter to trigger after the first
2159  *	SCSI EH run already and set the device to offline.
2160  *	So this function resets the internal counter before starting SCSI EH.
2161  **/
2162 static void sd_eh_reset(struct scsi_cmnd *scmd)
2163 {
2164 	struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk);
2165 
2166 	/* New SCSI EH run, reset gate variable */
2167 	sdkp->ignore_medium_access_errors = false;
2168 }
2169 
2170 /**
2171  *	sd_eh_action - error handling callback
2172  *	@scmd:		sd-issued command that has failed
2173  *	@eh_disp:	The recovery disposition suggested by the midlayer
2174  *
2175  *	This function is called by the SCSI midlayer upon completion of an
2176  *	error test command (currently TEST UNIT READY). The result of sending
2177  *	the eh command is passed in eh_disp.  We're looking for devices that
2178  *	fail medium access commands but are OK with non access commands like
2179  *	test unit ready (so wrongly see the device as having a successful
2180  *	recovery)
2181  **/
2182 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
2183 {
2184 	struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk);
2185 	struct scsi_device *sdev = scmd->device;
2186 
2187 	if (!scsi_device_online(sdev) ||
2188 	    !scsi_medium_access_command(scmd) ||
2189 	    host_byte(scmd->result) != DID_TIME_OUT ||
2190 	    eh_disp != SUCCESS)
2191 		return eh_disp;
2192 
2193 	/*
2194 	 * The device has timed out executing a medium access command.
2195 	 * However, the TEST UNIT READY command sent during error
2196 	 * handling completed successfully. Either the device is in the
2197 	 * process of recovering or has it suffered an internal failure
2198 	 * that prevents access to the storage medium.
2199 	 */
2200 	if (!sdkp->ignore_medium_access_errors) {
2201 		sdkp->medium_access_timed_out++;
2202 		sdkp->ignore_medium_access_errors = true;
2203 	}
2204 
2205 	/*
2206 	 * If the device keeps failing read/write commands but TEST UNIT
2207 	 * READY always completes successfully we assume that medium
2208 	 * access is no longer possible and take the device offline.
2209 	 */
2210 	if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
2211 		scmd_printk(KERN_ERR, scmd,
2212 			    "Medium access timeout failure. Offlining disk!\n");
2213 		mutex_lock(&sdev->state_mutex);
2214 		scsi_device_set_state(sdev, SDEV_OFFLINE);
2215 		mutex_unlock(&sdev->state_mutex);
2216 
2217 		return SUCCESS;
2218 	}
2219 
2220 	return eh_disp;
2221 }
2222 
2223 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
2224 {
2225 	struct request *req = scsi_cmd_to_rq(scmd);
2226 	struct scsi_device *sdev = scmd->device;
2227 	unsigned int transferred, good_bytes;
2228 	u64 start_lba, end_lba, bad_lba;
2229 
2230 	/*
2231 	 * Some commands have a payload smaller than the device logical
2232 	 * block size (e.g. INQUIRY on a 4K disk).
2233 	 */
2234 	if (scsi_bufflen(scmd) <= sdev->sector_size)
2235 		return 0;
2236 
2237 	/* Check if we have a 'bad_lba' information */
2238 	if (!scsi_get_sense_info_fld(scmd->sense_buffer,
2239 				     SCSI_SENSE_BUFFERSIZE,
2240 				     &bad_lba))
2241 		return 0;
2242 
2243 	/*
2244 	 * If the bad lba was reported incorrectly, we have no idea where
2245 	 * the error is.
2246 	 */
2247 	start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
2248 	end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
2249 	if (bad_lba < start_lba || bad_lba >= end_lba)
2250 		return 0;
2251 
2252 	/*
2253 	 * resid is optional but mostly filled in.  When it's unused,
2254 	 * its value is zero, so we assume the whole buffer transferred
2255 	 */
2256 	transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
2257 
2258 	/* This computation should always be done in terms of the
2259 	 * resolution of the device's medium.
2260 	 */
2261 	good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
2262 
2263 	return min(good_bytes, transferred);
2264 }
2265 
2266 /**
2267  *	sd_done - bottom half handler: called when the lower level
2268  *	driver has completed (successfully or otherwise) a scsi command.
2269  *	@SCpnt: mid-level's per command structure.
2270  *
2271  *	Note: potentially run from within an ISR. Must not block.
2272  **/
2273 static int sd_done(struct scsi_cmnd *SCpnt)
2274 {
2275 	int result = SCpnt->result;
2276 	unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
2277 	unsigned int sector_size = SCpnt->device->sector_size;
2278 	unsigned int resid;
2279 	struct scsi_sense_hdr sshdr;
2280 	struct request *req = scsi_cmd_to_rq(SCpnt);
2281 	struct scsi_disk *sdkp = scsi_disk(req->q->disk);
2282 	int sense_valid = 0;
2283 	int sense_deferred = 0;
2284 
2285 	switch (req_op(req)) {
2286 	case REQ_OP_DISCARD:
2287 	case REQ_OP_WRITE_ZEROES:
2288 	case REQ_OP_ZONE_RESET:
2289 	case REQ_OP_ZONE_RESET_ALL:
2290 	case REQ_OP_ZONE_OPEN:
2291 	case REQ_OP_ZONE_CLOSE:
2292 	case REQ_OP_ZONE_FINISH:
2293 		if (!result) {
2294 			good_bytes = blk_rq_bytes(req);
2295 			scsi_set_resid(SCpnt, 0);
2296 		} else {
2297 			good_bytes = 0;
2298 			scsi_set_resid(SCpnt, blk_rq_bytes(req));
2299 		}
2300 		break;
2301 	default:
2302 		/*
2303 		 * In case of bogus fw or device, we could end up having
2304 		 * an unaligned partial completion. Check this here and force
2305 		 * alignment.
2306 		 */
2307 		resid = scsi_get_resid(SCpnt);
2308 		if (resid & (sector_size - 1)) {
2309 			sd_printk(KERN_INFO, sdkp,
2310 				"Unaligned partial completion (resid=%u, sector_sz=%u)\n",
2311 				resid, sector_size);
2312 			scsi_print_command(SCpnt);
2313 			resid = min(scsi_bufflen(SCpnt),
2314 				    round_up(resid, sector_size));
2315 			scsi_set_resid(SCpnt, resid);
2316 		}
2317 	}
2318 
2319 	if (result) {
2320 		sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
2321 		if (sense_valid)
2322 			sense_deferred = scsi_sense_is_deferred(&sshdr);
2323 	}
2324 	sdkp->medium_access_timed_out = 0;
2325 
2326 	if (!scsi_status_is_check_condition(result) &&
2327 	    (!sense_valid || sense_deferred))
2328 		goto out;
2329 
2330 	switch (sshdr.sense_key) {
2331 	case HARDWARE_ERROR:
2332 	case MEDIUM_ERROR:
2333 		good_bytes = sd_completed_bytes(SCpnt);
2334 		break;
2335 	case RECOVERED_ERROR:
2336 		good_bytes = scsi_bufflen(SCpnt);
2337 		break;
2338 	case NO_SENSE:
2339 		/* This indicates a false check condition, so ignore it.  An
2340 		 * unknown amount of data was transferred so treat it as an
2341 		 * error.
2342 		 */
2343 		SCpnt->result = 0;
2344 		memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
2345 		break;
2346 	case ABORTED_COMMAND:
2347 		if (sshdr.asc == 0x10)  /* DIF: Target detected corruption */
2348 			good_bytes = sd_completed_bytes(SCpnt);
2349 		break;
2350 	case ILLEGAL_REQUEST:
2351 		switch (sshdr.asc) {
2352 		case 0x10:	/* DIX: Host detected corruption */
2353 			good_bytes = sd_completed_bytes(SCpnt);
2354 			break;
2355 		case 0x20:	/* INVALID COMMAND OPCODE */
2356 		case 0x24:	/* INVALID FIELD IN CDB */
2357 			switch (SCpnt->cmnd[0]) {
2358 			case UNMAP:
2359 				sd_disable_discard(sdkp);
2360 				break;
2361 			case WRITE_SAME_16:
2362 			case WRITE_SAME:
2363 				if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2364 					sd_disable_discard(sdkp);
2365 				} else {
2366 					sd_disable_write_same(sdkp);
2367 					req->rq_flags |= RQF_QUIET;
2368 				}
2369 				break;
2370 			}
2371 		}
2372 		break;
2373 	default:
2374 		break;
2375 	}
2376 
2377  out:
2378 	if (sdkp->device->type == TYPE_ZBC)
2379 		good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2380 
2381 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2382 					   "sd_done: completed %d of %d bytes\n",
2383 					   good_bytes, scsi_bufflen(SCpnt)));
2384 
2385 	return good_bytes;
2386 }
2387 
2388 /*
2389  * spinup disk - called only in sd_revalidate_disk()
2390  */
2391 static void
2392 sd_spinup_disk(struct scsi_disk *sdkp)
2393 {
2394 	static const u8 cmd[10] = { TEST_UNIT_READY };
2395 	unsigned long spintime_expire = 0;
2396 	int spintime, sense_valid = 0;
2397 	unsigned int the_result;
2398 	struct scsi_sense_hdr sshdr;
2399 	struct scsi_failure failure_defs[] = {
2400 		/* Do not retry Medium Not Present */
2401 		{
2402 			.sense = UNIT_ATTENTION,
2403 			.asc = 0x3A,
2404 			.ascq = SCMD_FAILURE_ASCQ_ANY,
2405 			.result = SAM_STAT_CHECK_CONDITION,
2406 		},
2407 		{
2408 			.sense = NOT_READY,
2409 			.asc = 0x3A,
2410 			.ascq = SCMD_FAILURE_ASCQ_ANY,
2411 			.result = SAM_STAT_CHECK_CONDITION,
2412 		},
2413 		/* Retry when scsi_status_is_good would return false 3 times */
2414 		{
2415 			.result = SCMD_FAILURE_STAT_ANY,
2416 			.allowed = 3,
2417 		},
2418 		{}
2419 	};
2420 	struct scsi_failures failures = {
2421 		.failure_definitions = failure_defs,
2422 	};
2423 	const struct scsi_exec_args exec_args = {
2424 		.sshdr = &sshdr,
2425 		.failures = &failures,
2426 	};
2427 
2428 	spintime = 0;
2429 
2430 	/* Spin up drives, as required.  Only do this at boot time */
2431 	/* Spinup needs to be done for module loads too. */
2432 	do {
2433 		bool media_was_present = sdkp->media_present;
2434 
2435 		scsi_failures_reset_retries(&failures);
2436 
2437 		the_result = scsi_execute_cmd(sdkp->device, cmd, REQ_OP_DRV_IN,
2438 					      NULL, 0, SD_TIMEOUT,
2439 					      sdkp->max_retries, &exec_args);
2440 
2441 
2442 		if (the_result > 0) {
2443 			/*
2444 			 * If the drive has indicated to us that it doesn't
2445 			 * have any media in it, don't bother with any more
2446 			 * polling.
2447 			 */
2448 			if (media_not_present(sdkp, &sshdr)) {
2449 				if (media_was_present)
2450 					sd_printk(KERN_NOTICE, sdkp,
2451 						  "Media removed, stopped polling\n");
2452 				return;
2453 			}
2454 			sense_valid = scsi_sense_valid(&sshdr);
2455 		}
2456 
2457 		if (!scsi_status_is_check_condition(the_result)) {
2458 			/* no sense, TUR either succeeded or failed
2459 			 * with a status error */
2460 			if(!spintime && !scsi_status_is_good(the_result)) {
2461 				sd_print_result(sdkp, "Test Unit Ready failed",
2462 						the_result);
2463 			}
2464 			break;
2465 		}
2466 
2467 		/*
2468 		 * The device does not want the automatic start to be issued.
2469 		 */
2470 		if (sdkp->device->no_start_on_add)
2471 			break;
2472 
2473 		if (sense_valid && sshdr.sense_key == NOT_READY) {
2474 			if (sshdr.asc == 4 && sshdr.ascq == 3)
2475 				break;	/* manual intervention required */
2476 			if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2477 				break;	/* standby */
2478 			if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2479 				break;	/* unavailable */
2480 			if (sshdr.asc == 4 && sshdr.ascq == 0x1b)
2481 				break;	/* sanitize in progress */
2482 			if (sshdr.asc == 4 && sshdr.ascq == 0x24)
2483 				break;	/* depopulation in progress */
2484 			if (sshdr.asc == 4 && sshdr.ascq == 0x25)
2485 				break;	/* depopulation restoration in progress */
2486 			/*
2487 			 * Issue command to spin up drive when not ready
2488 			 */
2489 			if (!spintime) {
2490 				/* Return immediately and start spin cycle */
2491 				const u8 start_cmd[10] = {
2492 					[0] = START_STOP,
2493 					[1] = 1,
2494 					[4] = sdkp->device->start_stop_pwr_cond ?
2495 						0x11 : 1,
2496 				};
2497 
2498 				sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2499 				scsi_execute_cmd(sdkp->device, start_cmd,
2500 						 REQ_OP_DRV_IN, NULL, 0,
2501 						 SD_TIMEOUT, sdkp->max_retries,
2502 						 &exec_args);
2503 				spintime_expire = jiffies + 100 * HZ;
2504 				spintime = 1;
2505 			}
2506 			/* Wait 1 second for next try */
2507 			msleep(1000);
2508 			printk(KERN_CONT ".");
2509 
2510 		/*
2511 		 * Wait for USB flash devices with slow firmware.
2512 		 * Yes, this sense key/ASC combination shouldn't
2513 		 * occur here.  It's characteristic of these devices.
2514 		 */
2515 		} else if (sense_valid &&
2516 				sshdr.sense_key == UNIT_ATTENTION &&
2517 				sshdr.asc == 0x28) {
2518 			if (!spintime) {
2519 				spintime_expire = jiffies + 5 * HZ;
2520 				spintime = 1;
2521 			}
2522 			/* Wait 1 second for next try */
2523 			msleep(1000);
2524 		} else {
2525 			/* we don't understand the sense code, so it's
2526 			 * probably pointless to loop */
2527 			if(!spintime) {
2528 				sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2529 				sd_print_sense_hdr(sdkp, &sshdr);
2530 			}
2531 			break;
2532 		}
2533 
2534 	} while (spintime && time_before_eq(jiffies, spintime_expire));
2535 
2536 	if (spintime) {
2537 		if (scsi_status_is_good(the_result))
2538 			printk(KERN_CONT "ready\n");
2539 		else
2540 			printk(KERN_CONT "not responding...\n");
2541 	}
2542 }
2543 
2544 /*
2545  * Determine whether disk supports Data Integrity Field.
2546  */
2547 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2548 {
2549 	struct scsi_device *sdp = sdkp->device;
2550 	u8 type;
2551 
2552 	if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) {
2553 		sdkp->protection_type = 0;
2554 		return 0;
2555 	}
2556 
2557 	type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2558 
2559 	if (type > T10_PI_TYPE3_PROTECTION) {
2560 		sd_printk(KERN_ERR, sdkp, "formatted with unsupported"	\
2561 			  " protection type %u. Disabling disk!\n",
2562 			  type);
2563 		sdkp->protection_type = 0;
2564 		return -ENODEV;
2565 	}
2566 
2567 	sdkp->protection_type = type;
2568 
2569 	return 0;
2570 }
2571 
2572 static void sd_config_protection(struct scsi_disk *sdkp,
2573 		struct queue_limits *lim)
2574 {
2575 	struct scsi_device *sdp = sdkp->device;
2576 
2577 	if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY))
2578 		sd_dif_config_host(sdkp, lim);
2579 
2580 	if (!sdkp->protection_type)
2581 		return;
2582 
2583 	if (!scsi_host_dif_capable(sdp->host, sdkp->protection_type)) {
2584 		sd_first_printk(KERN_NOTICE, sdkp,
2585 				"Disabling DIF Type %u protection\n",
2586 				sdkp->protection_type);
2587 		sdkp->protection_type = 0;
2588 	}
2589 
2590 	sd_first_printk(KERN_NOTICE, sdkp, "Enabling DIF Type %u protection\n",
2591 			sdkp->protection_type);
2592 }
2593 
2594 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2595 			struct scsi_sense_hdr *sshdr, int sense_valid,
2596 			int the_result)
2597 {
2598 	if (sense_valid)
2599 		sd_print_sense_hdr(sdkp, sshdr);
2600 	else
2601 		sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2602 
2603 	/*
2604 	 * Set dirty bit for removable devices if not ready -
2605 	 * sometimes drives will not report this properly.
2606 	 */
2607 	if (sdp->removable &&
2608 	    sense_valid && sshdr->sense_key == NOT_READY)
2609 		set_media_not_present(sdkp);
2610 
2611 	/*
2612 	 * We used to set media_present to 0 here to indicate no media
2613 	 * in the drive, but some drives fail read capacity even with
2614 	 * media present, so we can't do that.
2615 	 */
2616 	sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2617 }
2618 
2619 #define RC16_LEN 32
2620 #if RC16_LEN > SD_BUF_SIZE
2621 #error RC16_LEN must not be more than SD_BUF_SIZE
2622 #endif
2623 
2624 #define READ_CAPACITY_RETRIES_ON_RESET	10
2625 
2626 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2627 		struct queue_limits *lim, unsigned char *buffer)
2628 {
2629 	unsigned char cmd[16];
2630 	struct scsi_sense_hdr sshdr;
2631 	const struct scsi_exec_args exec_args = {
2632 		.sshdr = &sshdr,
2633 	};
2634 	int sense_valid = 0;
2635 	int the_result;
2636 	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2637 	unsigned int alignment;
2638 	unsigned long long lba;
2639 	unsigned sector_size;
2640 
2641 	if (sdp->no_read_capacity_16)
2642 		return -EINVAL;
2643 
2644 	do {
2645 		memset(cmd, 0, 16);
2646 		cmd[0] = SERVICE_ACTION_IN_16;
2647 		cmd[1] = SAI_READ_CAPACITY_16;
2648 		cmd[13] = RC16_LEN;
2649 		memset(buffer, 0, RC16_LEN);
2650 
2651 		the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN,
2652 					      buffer, RC16_LEN, SD_TIMEOUT,
2653 					      sdkp->max_retries, &exec_args);
2654 		if (the_result > 0) {
2655 			if (media_not_present(sdkp, &sshdr))
2656 				return -ENODEV;
2657 
2658 			sense_valid = scsi_sense_valid(&sshdr);
2659 			if (sense_valid &&
2660 			    sshdr.sense_key == ILLEGAL_REQUEST &&
2661 			    (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2662 			    sshdr.ascq == 0x00)
2663 				/* Invalid Command Operation Code or
2664 				 * Invalid Field in CDB, just retry
2665 				 * silently with RC10 */
2666 				return -EINVAL;
2667 			if (sense_valid &&
2668 			    sshdr.sense_key == UNIT_ATTENTION &&
2669 			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2670 				/* Device reset might occur several times,
2671 				 * give it one more chance */
2672 				if (--reset_retries > 0)
2673 					continue;
2674 		}
2675 		retries--;
2676 
2677 	} while (the_result && retries);
2678 
2679 	if (the_result) {
2680 		sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2681 		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2682 		return -EINVAL;
2683 	}
2684 
2685 	sector_size = get_unaligned_be32(&buffer[8]);
2686 	lba = get_unaligned_be64(&buffer[0]);
2687 
2688 	if (sd_read_protection_type(sdkp, buffer) < 0) {
2689 		sdkp->capacity = 0;
2690 		return -ENODEV;
2691 	}
2692 
2693 	/* Logical blocks per physical block exponent */
2694 	sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2695 
2696 	/* RC basis */
2697 	sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2698 
2699 	/* Lowest aligned logical block */
2700 	alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2701 	lim->alignment_offset = alignment;
2702 	if (alignment && sdkp->first_scan)
2703 		sd_printk(KERN_NOTICE, sdkp,
2704 			  "physical block alignment offset: %u\n", alignment);
2705 
2706 	if (buffer[14] & 0x80) { /* LBPME */
2707 		sdkp->lbpme = 1;
2708 
2709 		if (buffer[14] & 0x40) /* LBPRZ */
2710 			sdkp->lbprz = 1;
2711 	}
2712 
2713 	sdkp->capacity = lba + 1;
2714 	return sector_size;
2715 }
2716 
2717 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2718 						unsigned char *buffer)
2719 {
2720 	static const u8 cmd[10] = { READ_CAPACITY };
2721 	struct scsi_sense_hdr sshdr;
2722 	struct scsi_failure failure_defs[] = {
2723 		/* Do not retry Medium Not Present */
2724 		{
2725 			.sense = UNIT_ATTENTION,
2726 			.asc = 0x3A,
2727 			.result = SAM_STAT_CHECK_CONDITION,
2728 		},
2729 		{
2730 			.sense = NOT_READY,
2731 			.asc = 0x3A,
2732 			.result = SAM_STAT_CHECK_CONDITION,
2733 		},
2734 		 /* Device reset might occur several times so retry a lot */
2735 		{
2736 			.sense = UNIT_ATTENTION,
2737 			.asc = 0x29,
2738 			.allowed = READ_CAPACITY_RETRIES_ON_RESET,
2739 			.result = SAM_STAT_CHECK_CONDITION,
2740 		},
2741 		/* Any other error not listed above retry 3 times */
2742 		{
2743 			.result = SCMD_FAILURE_RESULT_ANY,
2744 			.allowed = 3,
2745 		},
2746 		{}
2747 	};
2748 	struct scsi_failures failures = {
2749 		.failure_definitions = failure_defs,
2750 	};
2751 	const struct scsi_exec_args exec_args = {
2752 		.sshdr = &sshdr,
2753 		.failures = &failures,
2754 	};
2755 	int sense_valid = 0;
2756 	int the_result;
2757 	sector_t lba;
2758 	unsigned sector_size;
2759 
2760 	memset(buffer, 0, 8);
2761 
2762 	the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, buffer,
2763 				      8, SD_TIMEOUT, sdkp->max_retries,
2764 				      &exec_args);
2765 
2766 	if (the_result > 0) {
2767 		sense_valid = scsi_sense_valid(&sshdr);
2768 
2769 		if (media_not_present(sdkp, &sshdr))
2770 			return -ENODEV;
2771 	}
2772 
2773 	if (the_result) {
2774 		sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2775 		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2776 		return -EINVAL;
2777 	}
2778 
2779 	sector_size = get_unaligned_be32(&buffer[4]);
2780 	lba = get_unaligned_be32(&buffer[0]);
2781 
2782 	if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2783 		/* Some buggy (usb cardreader) devices return an lba of
2784 		   0xffffffff when the want to report a size of 0 (with
2785 		   which they really mean no media is present) */
2786 		sdkp->capacity = 0;
2787 		sdkp->physical_block_size = sector_size;
2788 		return sector_size;
2789 	}
2790 
2791 	sdkp->capacity = lba + 1;
2792 	sdkp->physical_block_size = sector_size;
2793 	return sector_size;
2794 }
2795 
2796 static int sd_try_rc16_first(struct scsi_device *sdp)
2797 {
2798 	if (sdp->host->max_cmd_len < 16)
2799 		return 0;
2800 	if (sdp->try_rc_10_first)
2801 		return 0;
2802 	if (sdp->scsi_level > SCSI_SPC_2)
2803 		return 1;
2804 	if (scsi_device_protection(sdp))
2805 		return 1;
2806 	return 0;
2807 }
2808 
2809 /*
2810  * read disk capacity
2811  */
2812 static void
2813 sd_read_capacity(struct scsi_disk *sdkp, struct queue_limits *lim,
2814 		unsigned char *buffer)
2815 {
2816 	int sector_size;
2817 	struct scsi_device *sdp = sdkp->device;
2818 
2819 	if (sd_try_rc16_first(sdp)) {
2820 		sector_size = read_capacity_16(sdkp, sdp, lim, buffer);
2821 		if (sector_size == -EOVERFLOW)
2822 			goto got_data;
2823 		if (sector_size == -ENODEV)
2824 			return;
2825 		if (sector_size < 0)
2826 			sector_size = read_capacity_10(sdkp, sdp, buffer);
2827 		if (sector_size < 0)
2828 			return;
2829 	} else {
2830 		sector_size = read_capacity_10(sdkp, sdp, buffer);
2831 		if (sector_size == -EOVERFLOW)
2832 			goto got_data;
2833 		if (sector_size < 0)
2834 			return;
2835 		if ((sizeof(sdkp->capacity) > 4) &&
2836 		    (sdkp->capacity > 0xffffffffULL)) {
2837 			int old_sector_size = sector_size;
2838 			sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2839 					"Trying to use READ CAPACITY(16).\n");
2840 			sector_size = read_capacity_16(sdkp, sdp, lim, buffer);
2841 			if (sector_size < 0) {
2842 				sd_printk(KERN_NOTICE, sdkp,
2843 					"Using 0xffffffff as device size\n");
2844 				sdkp->capacity = 1 + (sector_t) 0xffffffff;
2845 				sector_size = old_sector_size;
2846 				goto got_data;
2847 			}
2848 			/* Remember that READ CAPACITY(16) succeeded */
2849 			sdp->try_rc_10_first = 0;
2850 		}
2851 	}
2852 
2853 	/* Some devices are known to return the total number of blocks,
2854 	 * not the highest block number.  Some devices have versions
2855 	 * which do this and others which do not.  Some devices we might
2856 	 * suspect of doing this but we don't know for certain.
2857 	 *
2858 	 * If we know the reported capacity is wrong, decrement it.  If
2859 	 * we can only guess, then assume the number of blocks is even
2860 	 * (usually true but not always) and err on the side of lowering
2861 	 * the capacity.
2862 	 */
2863 	if (sdp->fix_capacity ||
2864 	    (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2865 		sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2866 				"from its reported value: %llu\n",
2867 				(unsigned long long) sdkp->capacity);
2868 		--sdkp->capacity;
2869 	}
2870 
2871 got_data:
2872 	if (sector_size == 0) {
2873 		sector_size = 512;
2874 		sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2875 			  "assuming 512.\n");
2876 	}
2877 
2878 	if (sector_size != 512 &&
2879 	    sector_size != 1024 &&
2880 	    sector_size != 2048 &&
2881 	    sector_size != 4096) {
2882 		sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2883 			  sector_size);
2884 		/*
2885 		 * The user might want to re-format the drive with
2886 		 * a supported sectorsize.  Once this happens, it
2887 		 * would be relatively trivial to set the thing up.
2888 		 * For this reason, we leave the thing in the table.
2889 		 */
2890 		sdkp->capacity = 0;
2891 		/*
2892 		 * set a bogus sector size so the normal read/write
2893 		 * logic in the block layer will eventually refuse any
2894 		 * request on this device without tripping over power
2895 		 * of two sector size assumptions
2896 		 */
2897 		sector_size = 512;
2898 	}
2899 	lim->logical_block_size = sector_size;
2900 	lim->physical_block_size = sdkp->physical_block_size;
2901 	sdkp->device->sector_size = sector_size;
2902 
2903 	if (sdkp->capacity > 0xffffffff)
2904 		sdp->use_16_for_rw = 1;
2905 
2906 }
2907 
2908 /*
2909  * Print disk capacity
2910  */
2911 static void
2912 sd_print_capacity(struct scsi_disk *sdkp,
2913 		  sector_t old_capacity)
2914 {
2915 	int sector_size = sdkp->device->sector_size;
2916 	char cap_str_2[10], cap_str_10[10];
2917 
2918 	if (!sdkp->first_scan && old_capacity == sdkp->capacity)
2919 		return;
2920 
2921 	string_get_size(sdkp->capacity, sector_size,
2922 			STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2923 	string_get_size(sdkp->capacity, sector_size,
2924 			STRING_UNITS_10, cap_str_10, sizeof(cap_str_10));
2925 
2926 	sd_printk(KERN_NOTICE, sdkp,
2927 		  "%llu %d-byte logical blocks: (%s/%s)\n",
2928 		  (unsigned long long)sdkp->capacity,
2929 		  sector_size, cap_str_10, cap_str_2);
2930 
2931 	if (sdkp->physical_block_size != sector_size)
2932 		sd_printk(KERN_NOTICE, sdkp,
2933 			  "%u-byte physical blocks\n",
2934 			  sdkp->physical_block_size);
2935 }
2936 
2937 /* called with buffer of length 512 */
2938 static inline int
2939 sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage,
2940 		 unsigned char *buffer, int len, struct scsi_mode_data *data,
2941 		 struct scsi_sense_hdr *sshdr)
2942 {
2943 	/*
2944 	 * If we must use MODE SENSE(10), make sure that the buffer length
2945 	 * is at least 8 bytes so that the mode sense header fits.
2946 	 */
2947 	if (sdkp->device->use_10_for_ms && len < 8)
2948 		len = 8;
2949 
2950 	return scsi_mode_sense(sdkp->device, dbd, modepage, 0, buffer, len,
2951 			       SD_TIMEOUT, sdkp->max_retries, data, sshdr);
2952 }
2953 
2954 /*
2955  * read write protect setting, if possible - called only in sd_revalidate_disk()
2956  * called with buffer of length SD_BUF_SIZE
2957  */
2958 static void
2959 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2960 {
2961 	int res;
2962 	struct scsi_device *sdp = sdkp->device;
2963 	struct scsi_mode_data data;
2964 	int old_wp = sdkp->write_prot;
2965 
2966 	set_disk_ro(sdkp->disk, 0);
2967 	if (sdp->skip_ms_page_3f) {
2968 		sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2969 		return;
2970 	}
2971 
2972 	if (sdp->use_192_bytes_for_3f) {
2973 		res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL);
2974 	} else {
2975 		/*
2976 		 * First attempt: ask for all pages (0x3F), but only 4 bytes.
2977 		 * We have to start carefully: some devices hang if we ask
2978 		 * for more than is available.
2979 		 */
2980 		res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL);
2981 
2982 		/*
2983 		 * Second attempt: ask for page 0 When only page 0 is
2984 		 * implemented, a request for page 3F may return Sense Key
2985 		 * 5: Illegal Request, Sense Code 24: Invalid field in
2986 		 * CDB.
2987 		 */
2988 		if (res < 0)
2989 			res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL);
2990 
2991 		/*
2992 		 * Third attempt: ask 255 bytes, as we did earlier.
2993 		 */
2994 		if (res < 0)
2995 			res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255,
2996 					       &data, NULL);
2997 	}
2998 
2999 	if (res < 0) {
3000 		sd_first_printk(KERN_WARNING, sdkp,
3001 			  "Test WP failed, assume Write Enabled\n");
3002 	} else {
3003 		sdkp->write_prot = ((data.device_specific & 0x80) != 0);
3004 		set_disk_ro(sdkp->disk, sdkp->write_prot);
3005 		if (sdkp->first_scan || old_wp != sdkp->write_prot) {
3006 			sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
3007 				  sdkp->write_prot ? "on" : "off");
3008 			sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
3009 		}
3010 	}
3011 }
3012 
3013 /*
3014  * sd_read_cache_type - called only from sd_revalidate_disk()
3015  * called with buffer of length SD_BUF_SIZE
3016  */
3017 static void
3018 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
3019 {
3020 	int len = 0, res;
3021 	struct scsi_device *sdp = sdkp->device;
3022 
3023 	int dbd;
3024 	int modepage;
3025 	int first_len;
3026 	struct scsi_mode_data data;
3027 	struct scsi_sense_hdr sshdr;
3028 	int old_wce = sdkp->WCE;
3029 	int old_rcd = sdkp->RCD;
3030 	int old_dpofua = sdkp->DPOFUA;
3031 
3032 
3033 	if (sdkp->cache_override)
3034 		return;
3035 
3036 	first_len = 4;
3037 	if (sdp->skip_ms_page_8) {
3038 		if (sdp->type == TYPE_RBC)
3039 			goto defaults;
3040 		else {
3041 			if (sdp->skip_ms_page_3f)
3042 				goto defaults;
3043 			modepage = 0x3F;
3044 			if (sdp->use_192_bytes_for_3f)
3045 				first_len = 192;
3046 			dbd = 0;
3047 		}
3048 	} else if (sdp->type == TYPE_RBC) {
3049 		modepage = 6;
3050 		dbd = 8;
3051 	} else {
3052 		modepage = 8;
3053 		dbd = 0;
3054 	}
3055 
3056 	/* cautiously ask */
3057 	res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len,
3058 			&data, &sshdr);
3059 
3060 	if (res < 0)
3061 		goto bad_sense;
3062 
3063 	if (!data.header_length) {
3064 		modepage = 6;
3065 		first_len = 0;
3066 		sd_first_printk(KERN_ERR, sdkp,
3067 				"Missing header in MODE_SENSE response\n");
3068 	}
3069 
3070 	/* that went OK, now ask for the proper length */
3071 	len = data.length;
3072 
3073 	/*
3074 	 * We're only interested in the first three bytes, actually.
3075 	 * But the data cache page is defined for the first 20.
3076 	 */
3077 	if (len < 3)
3078 		goto bad_sense;
3079 	else if (len > SD_BUF_SIZE) {
3080 		sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
3081 			  "data from %d to %d bytes\n", len, SD_BUF_SIZE);
3082 		len = SD_BUF_SIZE;
3083 	}
3084 	if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
3085 		len = 192;
3086 
3087 	/* Get the data */
3088 	if (len > first_len)
3089 		res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len,
3090 				&data, &sshdr);
3091 
3092 	if (!res) {
3093 		int offset = data.header_length + data.block_descriptor_length;
3094 
3095 		while (offset < len) {
3096 			u8 page_code = buffer[offset] & 0x3F;
3097 			u8 spf       = buffer[offset] & 0x40;
3098 
3099 			if (page_code == 8 || page_code == 6) {
3100 				/* We're interested only in the first 3 bytes.
3101 				 */
3102 				if (len - offset <= 2) {
3103 					sd_first_printk(KERN_ERR, sdkp,
3104 						"Incomplete mode parameter "
3105 							"data\n");
3106 					goto defaults;
3107 				} else {
3108 					modepage = page_code;
3109 					goto Page_found;
3110 				}
3111 			} else {
3112 				/* Go to the next page */
3113 				if (spf && len - offset > 3)
3114 					offset += 4 + (buffer[offset+2] << 8) +
3115 						buffer[offset+3];
3116 				else if (!spf && len - offset > 1)
3117 					offset += 2 + buffer[offset+1];
3118 				else {
3119 					sd_first_printk(KERN_ERR, sdkp,
3120 							"Incomplete mode "
3121 							"parameter data\n");
3122 					goto defaults;
3123 				}
3124 			}
3125 		}
3126 
3127 		sd_first_printk(KERN_WARNING, sdkp,
3128 				"No Caching mode page found\n");
3129 		goto defaults;
3130 
3131 	Page_found:
3132 		if (modepage == 8) {
3133 			sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
3134 			sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
3135 		} else {
3136 			sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
3137 			sdkp->RCD = 0;
3138 		}
3139 
3140 		sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
3141 		if (sdp->broken_fua) {
3142 			sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
3143 			sdkp->DPOFUA = 0;
3144 		} else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
3145 			   !sdkp->device->use_16_for_rw) {
3146 			sd_first_printk(KERN_NOTICE, sdkp,
3147 				  "Uses READ/WRITE(6), disabling FUA\n");
3148 			sdkp->DPOFUA = 0;
3149 		}
3150 
3151 		/* No cache flush allowed for write protected devices */
3152 		if (sdkp->WCE && sdkp->write_prot)
3153 			sdkp->WCE = 0;
3154 
3155 		if (sdkp->first_scan || old_wce != sdkp->WCE ||
3156 		    old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
3157 			sd_printk(KERN_NOTICE, sdkp,
3158 				  "Write cache: %s, read cache: %s, %s\n",
3159 				  sdkp->WCE ? "enabled" : "disabled",
3160 				  sdkp->RCD ? "disabled" : "enabled",
3161 				  sdkp->DPOFUA ? "supports DPO and FUA"
3162 				  : "doesn't support DPO or FUA");
3163 
3164 		return;
3165 	}
3166 
3167 bad_sense:
3168 	if (res == -EIO && scsi_sense_valid(&sshdr) &&
3169 	    sshdr.sense_key == ILLEGAL_REQUEST &&
3170 	    sshdr.asc == 0x24 && sshdr.ascq == 0x0)
3171 		/* Invalid field in CDB */
3172 		sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
3173 	else
3174 		sd_first_printk(KERN_ERR, sdkp,
3175 				"Asking for cache data failed\n");
3176 
3177 defaults:
3178 	if (sdp->wce_default_on) {
3179 		sd_first_printk(KERN_NOTICE, sdkp,
3180 				"Assuming drive cache: write back\n");
3181 		sdkp->WCE = 1;
3182 	} else {
3183 		sd_first_printk(KERN_WARNING, sdkp,
3184 				"Assuming drive cache: write through\n");
3185 		sdkp->WCE = 0;
3186 	}
3187 	sdkp->RCD = 0;
3188 	sdkp->DPOFUA = 0;
3189 }
3190 
3191 static bool sd_is_perm_stream(struct scsi_disk *sdkp, unsigned int stream_id)
3192 {
3193 	u8 cdb[16] = { SERVICE_ACTION_IN_16, SAI_GET_STREAM_STATUS };
3194 	struct {
3195 		struct scsi_stream_status_header h;
3196 		struct scsi_stream_status s;
3197 	} buf;
3198 	struct scsi_device *sdev = sdkp->device;
3199 	struct scsi_sense_hdr sshdr;
3200 	const struct scsi_exec_args exec_args = {
3201 		.sshdr = &sshdr,
3202 	};
3203 	int res;
3204 
3205 	put_unaligned_be16(stream_id, &cdb[4]);
3206 	put_unaligned_be32(sizeof(buf), &cdb[10]);
3207 
3208 	res = scsi_execute_cmd(sdev, cdb, REQ_OP_DRV_IN, &buf, sizeof(buf),
3209 			       SD_TIMEOUT, sdkp->max_retries, &exec_args);
3210 	if (res < 0)
3211 		return false;
3212 	if (scsi_status_is_check_condition(res) && scsi_sense_valid(&sshdr))
3213 		sd_print_sense_hdr(sdkp, &sshdr);
3214 	if (res)
3215 		return false;
3216 	if (get_unaligned_be32(&buf.h.len) < sizeof(struct scsi_stream_status))
3217 		return false;
3218 	return buf.h.stream_status[0].perm;
3219 }
3220 
3221 static void sd_read_io_hints(struct scsi_disk *sdkp, unsigned char *buffer)
3222 {
3223 	struct scsi_device *sdp = sdkp->device;
3224 	const struct scsi_io_group_descriptor *desc, *start, *end;
3225 	u16 permanent_stream_count_old;
3226 	struct scsi_sense_hdr sshdr;
3227 	struct scsi_mode_data data;
3228 	int res;
3229 
3230 	if (sdp->sdev_bflags & BLIST_SKIP_IO_HINTS)
3231 		return;
3232 
3233 	res = scsi_mode_sense(sdp, /*dbd=*/0x8, /*modepage=*/0x0a,
3234 			      /*subpage=*/0x05, buffer, SD_BUF_SIZE, SD_TIMEOUT,
3235 			      sdkp->max_retries, &data, &sshdr);
3236 	if (res < 0)
3237 		return;
3238 	start = (void *)buffer + data.header_length + 16;
3239 	end = (void *)buffer + ALIGN_DOWN(data.header_length + data.length,
3240 					  sizeof(*end));
3241 	/*
3242 	 * From "SBC-5 Constrained Streams with Data Lifetimes": Device severs
3243 	 * should assign the lowest numbered stream identifiers to permanent
3244 	 * streams.
3245 	 */
3246 	for (desc = start; desc < end; desc++)
3247 		if (!desc->st_enble || !sd_is_perm_stream(sdkp, desc - start))
3248 			break;
3249 	permanent_stream_count_old = sdkp->permanent_stream_count;
3250 	sdkp->permanent_stream_count = desc - start;
3251 	if (sdkp->rscs && sdkp->permanent_stream_count < 2)
3252 		sd_printk(KERN_INFO, sdkp,
3253 			  "Unexpected: RSCS has been set and the permanent stream count is %u\n",
3254 			  sdkp->permanent_stream_count);
3255 	else if (sdkp->permanent_stream_count != permanent_stream_count_old)
3256 		sd_printk(KERN_INFO, sdkp, "permanent stream count = %d\n",
3257 			  sdkp->permanent_stream_count);
3258 }
3259 
3260 /*
3261  * The ATO bit indicates whether the DIF application tag is available
3262  * for use by the operating system.
3263  */
3264 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
3265 {
3266 	int res, offset;
3267 	struct scsi_device *sdp = sdkp->device;
3268 	struct scsi_mode_data data;
3269 	struct scsi_sense_hdr sshdr;
3270 
3271 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
3272 		return;
3273 
3274 	if (sdkp->protection_type == 0)
3275 		return;
3276 
3277 	res = scsi_mode_sense(sdp, 1, 0x0a, 0, buffer, 36, SD_TIMEOUT,
3278 			      sdkp->max_retries, &data, &sshdr);
3279 
3280 	if (res < 0 || !data.header_length ||
3281 	    data.length < 6) {
3282 		sd_first_printk(KERN_WARNING, sdkp,
3283 			  "getting Control mode page failed, assume no ATO\n");
3284 
3285 		if (res == -EIO && scsi_sense_valid(&sshdr))
3286 			sd_print_sense_hdr(sdkp, &sshdr);
3287 
3288 		return;
3289 	}
3290 
3291 	offset = data.header_length + data.block_descriptor_length;
3292 
3293 	if ((buffer[offset] & 0x3f) != 0x0a) {
3294 		sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
3295 		return;
3296 	}
3297 
3298 	if ((buffer[offset + 5] & 0x80) == 0)
3299 		return;
3300 
3301 	sdkp->ATO = 1;
3302 
3303 	return;
3304 }
3305 
3306 static unsigned int sd_discard_mode(struct scsi_disk *sdkp)
3307 {
3308 	if (!sdkp->lbpme)
3309 		return SD_LBP_FULL;
3310 
3311 	if (!sdkp->lbpvpd) {
3312 		/* LBP VPD page not provided */
3313 		if (sdkp->max_unmap_blocks)
3314 			return SD_LBP_UNMAP;
3315 		return SD_LBP_WS16;
3316 	}
3317 
3318 	/* LBP VPD page tells us what to use */
3319 	if (sdkp->lbpu && sdkp->max_unmap_blocks)
3320 		return SD_LBP_UNMAP;
3321 	if (sdkp->lbpws)
3322 		return SD_LBP_WS16;
3323 	if (sdkp->lbpws10)
3324 		return SD_LBP_WS10;
3325 	return SD_LBP_DISABLE;
3326 }
3327 
3328 /*
3329  * Query disk device for preferred I/O sizes.
3330  */
3331 static void sd_read_block_limits(struct scsi_disk *sdkp,
3332 		struct queue_limits *lim)
3333 {
3334 	struct scsi_vpd *vpd;
3335 
3336 	rcu_read_lock();
3337 
3338 	vpd = rcu_dereference(sdkp->device->vpd_pgb0);
3339 	if (!vpd || vpd->len < 16)
3340 		goto out;
3341 
3342 	sdkp->min_xfer_blocks = get_unaligned_be16(&vpd->data[6]);
3343 	sdkp->max_xfer_blocks = get_unaligned_be32(&vpd->data[8]);
3344 	sdkp->opt_xfer_blocks = get_unaligned_be32(&vpd->data[12]);
3345 
3346 	if (vpd->len >= 64) {
3347 		unsigned int lba_count, desc_count;
3348 
3349 		sdkp->max_ws_blocks = (u32)get_unaligned_be64(&vpd->data[36]);
3350 
3351 		if (!sdkp->lbpme)
3352 			goto config_atomic;
3353 
3354 		lba_count = get_unaligned_be32(&vpd->data[20]);
3355 		desc_count = get_unaligned_be32(&vpd->data[24]);
3356 
3357 		if (lba_count && desc_count)
3358 			sdkp->max_unmap_blocks = lba_count;
3359 
3360 		sdkp->unmap_granularity = get_unaligned_be32(&vpd->data[28]);
3361 
3362 		if (vpd->data[32] & 0x80)
3363 			sdkp->unmap_alignment =
3364 				get_unaligned_be32(&vpd->data[32]) & ~(1 << 31);
3365 
3366 config_atomic:
3367 		sdkp->max_atomic = get_unaligned_be32(&vpd->data[44]);
3368 		sdkp->atomic_alignment = get_unaligned_be32(&vpd->data[48]);
3369 		sdkp->atomic_granularity = get_unaligned_be32(&vpd->data[52]);
3370 		sdkp->max_atomic_with_boundary = get_unaligned_be32(&vpd->data[56]);
3371 		sdkp->max_atomic_boundary = get_unaligned_be32(&vpd->data[60]);
3372 
3373 		sd_config_atomic(sdkp, lim);
3374 	}
3375 
3376  out:
3377 	rcu_read_unlock();
3378 }
3379 
3380 /* Parse the Block Limits Extension VPD page (0xb7) */
3381 static void sd_read_block_limits_ext(struct scsi_disk *sdkp)
3382 {
3383 	struct scsi_vpd *vpd;
3384 
3385 	rcu_read_lock();
3386 	vpd = rcu_dereference(sdkp->device->vpd_pgb7);
3387 	if (vpd && vpd->len >= 2)
3388 		sdkp->rscs = vpd->data[5] & 1;
3389 	rcu_read_unlock();
3390 }
3391 
3392 /* Query block device characteristics */
3393 static void sd_read_block_characteristics(struct scsi_disk *sdkp,
3394 		struct queue_limits *lim)
3395 {
3396 	struct scsi_vpd *vpd;
3397 	u16 rot;
3398 
3399 	rcu_read_lock();
3400 	vpd = rcu_dereference(sdkp->device->vpd_pgb1);
3401 
3402 	if (!vpd || vpd->len <= 8) {
3403 		rcu_read_unlock();
3404 	        return;
3405 	}
3406 
3407 	rot = get_unaligned_be16(&vpd->data[4]);
3408 	sdkp->zoned = (vpd->data[8] >> 4) & 3;
3409 	rcu_read_unlock();
3410 
3411 	if (rot == 1)
3412 		lim->features &= ~(BLK_FEAT_ROTATIONAL | BLK_FEAT_ADD_RANDOM);
3413 
3414 	if (!sdkp->first_scan)
3415 		return;
3416 
3417 	if (sdkp->device->type == TYPE_ZBC)
3418 		sd_printk(KERN_NOTICE, sdkp, "Host-managed zoned block device\n");
3419 	else if (sdkp->zoned == 1)
3420 		sd_printk(KERN_NOTICE, sdkp, "Host-aware SMR disk used as regular disk\n");
3421 	else if (sdkp->zoned == 2)
3422 		sd_printk(KERN_NOTICE, sdkp, "Drive-managed SMR disk\n");
3423 }
3424 
3425 /**
3426  * sd_read_block_provisioning - Query provisioning VPD page
3427  * @sdkp: disk to query
3428  */
3429 static void sd_read_block_provisioning(struct scsi_disk *sdkp)
3430 {
3431 	struct scsi_vpd *vpd;
3432 
3433 	if (sdkp->lbpme == 0)
3434 		return;
3435 
3436 	rcu_read_lock();
3437 	vpd = rcu_dereference(sdkp->device->vpd_pgb2);
3438 
3439 	if (!vpd || vpd->len < 8) {
3440 		rcu_read_unlock();
3441 		return;
3442 	}
3443 
3444 	sdkp->lbpvpd	= 1;
3445 	sdkp->lbpu	= (vpd->data[5] >> 7) & 1; /* UNMAP */
3446 	sdkp->lbpws	= (vpd->data[5] >> 6) & 1; /* WRITE SAME(16) w/ UNMAP */
3447 	sdkp->lbpws10	= (vpd->data[5] >> 5) & 1; /* WRITE SAME(10) w/ UNMAP */
3448 	rcu_read_unlock();
3449 }
3450 
3451 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
3452 {
3453 	struct scsi_device *sdev = sdkp->device;
3454 
3455 	if (sdev->host->no_write_same) {
3456 		sdev->no_write_same = 1;
3457 
3458 		return;
3459 	}
3460 
3461 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY, 0) < 0) {
3462 		struct scsi_vpd *vpd;
3463 
3464 		sdev->no_report_opcodes = 1;
3465 
3466 		/* Disable WRITE SAME if REPORT SUPPORTED OPERATION
3467 		 * CODES is unsupported and the device has an ATA
3468 		 * Information VPD page (SAT).
3469 		 */
3470 		rcu_read_lock();
3471 		vpd = rcu_dereference(sdev->vpd_pg89);
3472 		if (vpd)
3473 			sdev->no_write_same = 1;
3474 		rcu_read_unlock();
3475 	}
3476 
3477 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16, 0) == 1)
3478 		sdkp->ws16 = 1;
3479 
3480 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME, 0) == 1)
3481 		sdkp->ws10 = 1;
3482 }
3483 
3484 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3485 {
3486 	struct scsi_device *sdev = sdkp->device;
3487 
3488 	if (!sdev->security_supported)
3489 		return;
3490 
3491 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3492 			SECURITY_PROTOCOL_IN, 0) == 1 &&
3493 	    scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3494 			SECURITY_PROTOCOL_OUT, 0) == 1)
3495 		sdkp->security = 1;
3496 }
3497 
3498 static inline sector_t sd64_to_sectors(struct scsi_disk *sdkp, u8 *buf)
3499 {
3500 	return logical_to_sectors(sdkp->device, get_unaligned_be64(buf));
3501 }
3502 
3503 /**
3504  * sd_read_cpr - Query concurrent positioning ranges
3505  * @sdkp:	disk to query
3506  */
3507 static void sd_read_cpr(struct scsi_disk *sdkp)
3508 {
3509 	struct blk_independent_access_ranges *iars = NULL;
3510 	unsigned char *buffer = NULL;
3511 	unsigned int nr_cpr = 0;
3512 	int i, vpd_len, buf_len = SD_BUF_SIZE;
3513 	u8 *desc;
3514 
3515 	/*
3516 	 * We need to have the capacity set first for the block layer to be
3517 	 * able to check the ranges.
3518 	 */
3519 	if (sdkp->first_scan)
3520 		return;
3521 
3522 	if (!sdkp->capacity)
3523 		goto out;
3524 
3525 	/*
3526 	 * Concurrent Positioning Ranges VPD: there can be at most 256 ranges,
3527 	 * leading to a maximum page size of 64 + 256*32 bytes.
3528 	 */
3529 	buf_len = 64 + 256*32;
3530 	buffer = kmalloc(buf_len, GFP_KERNEL);
3531 	if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb9, buffer, buf_len))
3532 		goto out;
3533 
3534 	/* We must have at least a 64B header and one 32B range descriptor */
3535 	vpd_len = get_unaligned_be16(&buffer[2]) + 4;
3536 	if (vpd_len > buf_len || vpd_len < 64 + 32 || (vpd_len & 31)) {
3537 		sd_printk(KERN_ERR, sdkp,
3538 			  "Invalid Concurrent Positioning Ranges VPD page\n");
3539 		goto out;
3540 	}
3541 
3542 	nr_cpr = (vpd_len - 64) / 32;
3543 	if (nr_cpr == 1) {
3544 		nr_cpr = 0;
3545 		goto out;
3546 	}
3547 
3548 	iars = disk_alloc_independent_access_ranges(sdkp->disk, nr_cpr);
3549 	if (!iars) {
3550 		nr_cpr = 0;
3551 		goto out;
3552 	}
3553 
3554 	desc = &buffer[64];
3555 	for (i = 0; i < nr_cpr; i++, desc += 32) {
3556 		if (desc[0] != i) {
3557 			sd_printk(KERN_ERR, sdkp,
3558 				"Invalid Concurrent Positioning Range number\n");
3559 			nr_cpr = 0;
3560 			break;
3561 		}
3562 
3563 		iars->ia_range[i].sector = sd64_to_sectors(sdkp, desc + 8);
3564 		iars->ia_range[i].nr_sectors = sd64_to_sectors(sdkp, desc + 16);
3565 	}
3566 
3567 out:
3568 	disk_set_independent_access_ranges(sdkp->disk, iars);
3569 	if (nr_cpr && sdkp->nr_actuators != nr_cpr) {
3570 		sd_printk(KERN_NOTICE, sdkp,
3571 			  "%u concurrent positioning ranges\n", nr_cpr);
3572 		sdkp->nr_actuators = nr_cpr;
3573 	}
3574 
3575 	kfree(buffer);
3576 }
3577 
3578 static bool sd_validate_min_xfer_size(struct scsi_disk *sdkp)
3579 {
3580 	struct scsi_device *sdp = sdkp->device;
3581 	unsigned int min_xfer_bytes =
3582 		logical_to_bytes(sdp, sdkp->min_xfer_blocks);
3583 
3584 	if (sdkp->min_xfer_blocks == 0)
3585 		return false;
3586 
3587 	if (min_xfer_bytes & (sdkp->physical_block_size - 1)) {
3588 		sd_first_printk(KERN_WARNING, sdkp,
3589 				"Preferred minimum I/O size %u bytes not a " \
3590 				"multiple of physical block size (%u bytes)\n",
3591 				min_xfer_bytes, sdkp->physical_block_size);
3592 		sdkp->min_xfer_blocks = 0;
3593 		return false;
3594 	}
3595 
3596 	sd_first_printk(KERN_INFO, sdkp, "Preferred minimum I/O size %u bytes\n",
3597 			min_xfer_bytes);
3598 	return true;
3599 }
3600 
3601 /*
3602  * Determine the device's preferred I/O size for reads and writes
3603  * unless the reported value is unreasonably small, large, not a
3604  * multiple of the physical block size, or simply garbage.
3605  */
3606 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp,
3607 				      unsigned int dev_max)
3608 {
3609 	struct scsi_device *sdp = sdkp->device;
3610 	unsigned int opt_xfer_bytes =
3611 		logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3612 	unsigned int min_xfer_bytes =
3613 		logical_to_bytes(sdp, sdkp->min_xfer_blocks);
3614 
3615 	if (sdkp->opt_xfer_blocks == 0)
3616 		return false;
3617 
3618 	if (sdkp->opt_xfer_blocks > dev_max) {
3619 		sd_first_printk(KERN_WARNING, sdkp,
3620 				"Optimal transfer size %u logical blocks " \
3621 				"> dev_max (%u logical blocks)\n",
3622 				sdkp->opt_xfer_blocks, dev_max);
3623 		return false;
3624 	}
3625 
3626 	if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) {
3627 		sd_first_printk(KERN_WARNING, sdkp,
3628 				"Optimal transfer size %u logical blocks " \
3629 				"> sd driver limit (%u logical blocks)\n",
3630 				sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS);
3631 		return false;
3632 	}
3633 
3634 	if (opt_xfer_bytes < PAGE_SIZE) {
3635 		sd_first_printk(KERN_WARNING, sdkp,
3636 				"Optimal transfer size %u bytes < " \
3637 				"PAGE_SIZE (%u bytes)\n",
3638 				opt_xfer_bytes, (unsigned int)PAGE_SIZE);
3639 		return false;
3640 	}
3641 
3642 	if (min_xfer_bytes && opt_xfer_bytes % min_xfer_bytes) {
3643 		sd_first_printk(KERN_WARNING, sdkp,
3644 				"Optimal transfer size %u bytes not a " \
3645 				"multiple of preferred minimum block " \
3646 				"size (%u bytes)\n",
3647 				opt_xfer_bytes, min_xfer_bytes);
3648 		return false;
3649 	}
3650 
3651 	if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) {
3652 		sd_first_printk(KERN_WARNING, sdkp,
3653 				"Optimal transfer size %u bytes not a " \
3654 				"multiple of physical block size (%u bytes)\n",
3655 				opt_xfer_bytes, sdkp->physical_block_size);
3656 		return false;
3657 	}
3658 
3659 	sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n",
3660 			opt_xfer_bytes);
3661 	return true;
3662 }
3663 
3664 static void sd_read_block_zero(struct scsi_disk *sdkp)
3665 {
3666 	struct scsi_device *sdev = sdkp->device;
3667 	unsigned int buf_len = sdev->sector_size;
3668 	u8 *buffer, cmd[16] = { };
3669 
3670 	buffer = kmalloc(buf_len, GFP_KERNEL);
3671 	if (!buffer)
3672 		return;
3673 
3674 	if (sdev->use_16_for_rw) {
3675 		cmd[0] = READ_16;
3676 		put_unaligned_be64(0, &cmd[2]); /* Logical block address 0 */
3677 		put_unaligned_be32(1, &cmd[10]);/* Transfer 1 logical block */
3678 	} else {
3679 		cmd[0] = READ_10;
3680 		put_unaligned_be32(0, &cmd[2]); /* Logical block address 0 */
3681 		put_unaligned_be16(1, &cmd[7]);	/* Transfer 1 logical block */
3682 	}
3683 
3684 	scsi_execute_cmd(sdkp->device, cmd, REQ_OP_DRV_IN, buffer, buf_len,
3685 			 SD_TIMEOUT, sdkp->max_retries, NULL);
3686 	kfree(buffer);
3687 }
3688 
3689 /**
3690  *	sd_revalidate_disk - called the first time a new disk is seen,
3691  *	performs disk spin up, read_capacity, etc.
3692  *	@disk: struct gendisk we care about
3693  **/
3694 static int sd_revalidate_disk(struct gendisk *disk)
3695 {
3696 	struct scsi_disk *sdkp = scsi_disk(disk);
3697 	struct scsi_device *sdp = sdkp->device;
3698 	sector_t old_capacity = sdkp->capacity;
3699 	struct queue_limits lim;
3700 	unsigned char *buffer;
3701 	unsigned int dev_max;
3702 	int err;
3703 
3704 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3705 				      "sd_revalidate_disk\n"));
3706 
3707 	/*
3708 	 * If the device is offline, don't try and read capacity or any
3709 	 * of the other niceties.
3710 	 */
3711 	if (!scsi_device_online(sdp))
3712 		goto out;
3713 
3714 	buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3715 	if (!buffer) {
3716 		sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3717 			  "allocation failure.\n");
3718 		goto out;
3719 	}
3720 
3721 	sd_spinup_disk(sdkp);
3722 
3723 	lim = queue_limits_start_update(sdkp->disk->queue);
3724 
3725 	/*
3726 	 * Without media there is no reason to ask; moreover, some devices
3727 	 * react badly if we do.
3728 	 */
3729 	if (sdkp->media_present) {
3730 		sd_read_capacity(sdkp, &lim, buffer);
3731 		/*
3732 		 * Some USB/UAS devices return generic values for mode pages
3733 		 * until the media has been accessed. Trigger a READ operation
3734 		 * to force the device to populate mode pages.
3735 		 */
3736 		if (sdp->read_before_ms)
3737 			sd_read_block_zero(sdkp);
3738 		/*
3739 		 * set the default to rotational.  All non-rotational devices
3740 		 * support the block characteristics VPD page, which will
3741 		 * cause this to be updated correctly and any device which
3742 		 * doesn't support it should be treated as rotational.
3743 		 */
3744 		lim.features |= (BLK_FEAT_ROTATIONAL | BLK_FEAT_ADD_RANDOM);
3745 
3746 		if (scsi_device_supports_vpd(sdp)) {
3747 			sd_read_block_provisioning(sdkp);
3748 			sd_read_block_limits(sdkp, &lim);
3749 			sd_read_block_limits_ext(sdkp);
3750 			sd_read_block_characteristics(sdkp, &lim);
3751 			sd_zbc_read_zones(sdkp, &lim, buffer);
3752 		}
3753 
3754 		sd_config_discard(sdkp, &lim, sd_discard_mode(sdkp));
3755 
3756 		sd_print_capacity(sdkp, old_capacity);
3757 
3758 		sd_read_write_protect_flag(sdkp, buffer);
3759 		sd_read_cache_type(sdkp, buffer);
3760 		sd_read_io_hints(sdkp, buffer);
3761 		sd_read_app_tag_own(sdkp, buffer);
3762 		sd_read_write_same(sdkp, buffer);
3763 		sd_read_security(sdkp, buffer);
3764 		sd_config_protection(sdkp, &lim);
3765 	}
3766 
3767 	/*
3768 	 * We now have all cache related info, determine how we deal
3769 	 * with flush requests.
3770 	 */
3771 	sd_set_flush_flag(sdkp, &lim);
3772 
3773 	/* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3774 	dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3775 
3776 	/* Some devices report a maximum block count for READ/WRITE requests. */
3777 	dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3778 	lim.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3779 
3780 	if (sd_validate_min_xfer_size(sdkp))
3781 		lim.io_min = logical_to_bytes(sdp, sdkp->min_xfer_blocks);
3782 	else
3783 		lim.io_min = 0;
3784 
3785 	/*
3786 	 * Limit default to SCSI host optimal sector limit if set. There may be
3787 	 * an impact on performance for when the size of a request exceeds this
3788 	 * host limit.
3789 	 */
3790 	lim.io_opt = sdp->host->opt_sectors << SECTOR_SHIFT;
3791 	if (sd_validate_opt_xfer_size(sdkp, dev_max)) {
3792 		lim.io_opt = min_not_zero(lim.io_opt,
3793 				logical_to_bytes(sdp, sdkp->opt_xfer_blocks));
3794 	}
3795 
3796 	sdkp->first_scan = 0;
3797 
3798 	set_capacity_and_notify(disk, logical_to_sectors(sdp, sdkp->capacity));
3799 	sd_config_write_same(sdkp, &lim);
3800 	kfree(buffer);
3801 
3802 	err = queue_limits_commit_update_frozen(sdkp->disk->queue, &lim);
3803 	if (err)
3804 		return err;
3805 
3806 	/*
3807 	 * Query concurrent positioning ranges after
3808 	 * queue_limits_commit_update() unlocked q->limits_lock to avoid
3809 	 * deadlock with q->sysfs_dir_lock and q->sysfs_lock.
3810 	 */
3811 	if (sdkp->media_present && scsi_device_supports_vpd(sdp))
3812 		sd_read_cpr(sdkp);
3813 
3814 	/*
3815 	 * For a zoned drive, revalidating the zones can be done only once
3816 	 * the gendisk capacity is set. So if this fails, set back the gendisk
3817 	 * capacity to 0.
3818 	 */
3819 	if (sd_zbc_revalidate_zones(sdkp))
3820 		set_capacity_and_notify(disk, 0);
3821 
3822  out:
3823 	return 0;
3824 }
3825 
3826 /**
3827  *	sd_unlock_native_capacity - unlock native capacity
3828  *	@disk: struct gendisk to set capacity for
3829  *
3830  *	Block layer calls this function if it detects that partitions
3831  *	on @disk reach beyond the end of the device.  If the SCSI host
3832  *	implements ->unlock_native_capacity() method, it's invoked to
3833  *	give it a chance to adjust the device capacity.
3834  *
3835  *	CONTEXT:
3836  *	Defined by block layer.  Might sleep.
3837  */
3838 static void sd_unlock_native_capacity(struct gendisk *disk)
3839 {
3840 	struct scsi_device *sdev = scsi_disk(disk)->device;
3841 
3842 	if (sdev->host->hostt->unlock_native_capacity)
3843 		sdev->host->hostt->unlock_native_capacity(sdev);
3844 }
3845 
3846 /**
3847  *	sd_format_disk_name - format disk name
3848  *	@prefix: name prefix - ie. "sd" for SCSI disks
3849  *	@index: index of the disk to format name for
3850  *	@buf: output buffer
3851  *	@buflen: length of the output buffer
3852  *
3853  *	SCSI disk names starts at sda.  The 26th device is sdz and the
3854  *	27th is sdaa.  The last one for two lettered suffix is sdzz
3855  *	which is followed by sdaaa.
3856  *
3857  *	This is basically 26 base counting with one extra 'nil' entry
3858  *	at the beginning from the second digit on and can be
3859  *	determined using similar method as 26 base conversion with the
3860  *	index shifted -1 after each digit is computed.
3861  *
3862  *	CONTEXT:
3863  *	Don't care.
3864  *
3865  *	RETURNS:
3866  *	0 on success, -errno on failure.
3867  */
3868 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3869 {
3870 	const int base = 'z' - 'a' + 1;
3871 	char *begin = buf + strlen(prefix);
3872 	char *end = buf + buflen;
3873 	char *p;
3874 	int unit;
3875 
3876 	p = end - 1;
3877 	*p = '\0';
3878 	unit = base;
3879 	do {
3880 		if (p == begin)
3881 			return -EINVAL;
3882 		*--p = 'a' + (index % unit);
3883 		index = (index / unit) - 1;
3884 	} while (index >= 0);
3885 
3886 	memmove(begin, p, end - p);
3887 	memcpy(buf, prefix, strlen(prefix));
3888 
3889 	return 0;
3890 }
3891 
3892 /**
3893  *	sd_probe - called during driver initialization and whenever a
3894  *	new scsi device is attached to the system. It is called once
3895  *	for each scsi device (not just disks) present.
3896  *	@dev: pointer to device object
3897  *
3898  *	Returns 0 if successful (or not interested in this scsi device
3899  *	(e.g. scanner)); 1 when there is an error.
3900  *
3901  *	Note: this function is invoked from the scsi mid-level.
3902  *	This function sets up the mapping between a given
3903  *	<host,channel,id,lun> (found in sdp) and new device name
3904  *	(e.g. /dev/sda). More precisely it is the block device major
3905  *	and minor number that is chosen here.
3906  *
3907  *	Assume sd_probe is not re-entrant (for time being)
3908  *	Also think about sd_probe() and sd_remove() running coincidentally.
3909  **/
3910 static int sd_probe(struct device *dev)
3911 {
3912 	struct scsi_device *sdp = to_scsi_device(dev);
3913 	struct scsi_disk *sdkp;
3914 	struct gendisk *gd;
3915 	int index;
3916 	int error;
3917 
3918 	scsi_autopm_get_device(sdp);
3919 	error = -ENODEV;
3920 	if (sdp->type != TYPE_DISK &&
3921 	    sdp->type != TYPE_ZBC &&
3922 	    sdp->type != TYPE_MOD &&
3923 	    sdp->type != TYPE_RBC)
3924 		goto out;
3925 
3926 	if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) && sdp->type == TYPE_ZBC) {
3927 		sdev_printk(KERN_WARNING, sdp,
3928 			    "Unsupported ZBC host-managed device.\n");
3929 		goto out;
3930 	}
3931 
3932 	SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3933 					"sd_probe\n"));
3934 
3935 	error = -ENOMEM;
3936 	sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3937 	if (!sdkp)
3938 		goto out;
3939 
3940 	gd = blk_mq_alloc_disk_for_queue(sdp->request_queue,
3941 					 &sd_bio_compl_lkclass);
3942 	if (!gd)
3943 		goto out_free;
3944 
3945 	index = ida_alloc(&sd_index_ida, GFP_KERNEL);
3946 	if (index < 0) {
3947 		sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3948 		goto out_put;
3949 	}
3950 
3951 	error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3952 	if (error) {
3953 		sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3954 		goto out_free_index;
3955 	}
3956 
3957 	sdkp->device = sdp;
3958 	sdkp->disk = gd;
3959 	sdkp->index = index;
3960 	sdkp->max_retries = SD_MAX_RETRIES;
3961 	atomic_set(&sdkp->openers, 0);
3962 	atomic_set(&sdkp->device->ioerr_cnt, 0);
3963 
3964 	if (!sdp->request_queue->rq_timeout) {
3965 		if (sdp->type != TYPE_MOD)
3966 			blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3967 		else
3968 			blk_queue_rq_timeout(sdp->request_queue,
3969 					     SD_MOD_TIMEOUT);
3970 	}
3971 
3972 	device_initialize(&sdkp->disk_dev);
3973 	sdkp->disk_dev.parent = get_device(dev);
3974 	sdkp->disk_dev.class = &sd_disk_class;
3975 	dev_set_name(&sdkp->disk_dev, "%s", dev_name(dev));
3976 
3977 	error = device_add(&sdkp->disk_dev);
3978 	if (error) {
3979 		put_device(&sdkp->disk_dev);
3980 		goto out;
3981 	}
3982 
3983 	dev_set_drvdata(dev, sdkp);
3984 
3985 	gd->major = sd_major((index & 0xf0) >> 4);
3986 	gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3987 	gd->minors = SD_MINORS;
3988 
3989 	gd->fops = &sd_fops;
3990 	gd->private_data = sdkp;
3991 
3992 	/* defaults, until the device tells us otherwise */
3993 	sdp->sector_size = 512;
3994 	sdkp->capacity = 0;
3995 	sdkp->media_present = 1;
3996 	sdkp->write_prot = 0;
3997 	sdkp->cache_override = 0;
3998 	sdkp->WCE = 0;
3999 	sdkp->RCD = 0;
4000 	sdkp->ATO = 0;
4001 	sdkp->first_scan = 1;
4002 	sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
4003 
4004 	sd_revalidate_disk(gd);
4005 
4006 	if (sdp->removable) {
4007 		gd->flags |= GENHD_FL_REMOVABLE;
4008 		gd->events |= DISK_EVENT_MEDIA_CHANGE;
4009 		gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT;
4010 	}
4011 
4012 	blk_pm_runtime_init(sdp->request_queue, dev);
4013 	if (sdp->rpm_autosuspend) {
4014 		pm_runtime_set_autosuspend_delay(dev,
4015 			sdp->host->rpm_autosuspend_delay);
4016 	}
4017 
4018 	error = device_add_disk(dev, gd, NULL);
4019 	if (error) {
4020 		device_unregister(&sdkp->disk_dev);
4021 		put_disk(gd);
4022 		goto out;
4023 	}
4024 
4025 	if (sdkp->security) {
4026 		sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit);
4027 		if (sdkp->opal_dev)
4028 			sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
4029 	}
4030 
4031 	sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
4032 		  sdp->removable ? "removable " : "");
4033 	scsi_autopm_put_device(sdp);
4034 
4035 	return 0;
4036 
4037  out_free_index:
4038 	ida_free(&sd_index_ida, index);
4039  out_put:
4040 	put_disk(gd);
4041  out_free:
4042 	kfree(sdkp);
4043  out:
4044 	scsi_autopm_put_device(sdp);
4045 	return error;
4046 }
4047 
4048 /**
4049  *	sd_remove - called whenever a scsi disk (previously recognized by
4050  *	sd_probe) is detached from the system. It is called (potentially
4051  *	multiple times) during sd module unload.
4052  *	@dev: pointer to device object
4053  *
4054  *	Note: this function is invoked from the scsi mid-level.
4055  *	This function potentially frees up a device name (e.g. /dev/sdc)
4056  *	that could be re-used by a subsequent sd_probe().
4057  *	This function is not called when the built-in sd driver is "exit-ed".
4058  **/
4059 static int sd_remove(struct device *dev)
4060 {
4061 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
4062 
4063 	scsi_autopm_get_device(sdkp->device);
4064 
4065 	device_del(&sdkp->disk_dev);
4066 	del_gendisk(sdkp->disk);
4067 	if (!sdkp->suspended)
4068 		sd_shutdown(dev);
4069 
4070 	put_disk(sdkp->disk);
4071 	return 0;
4072 }
4073 
4074 static void scsi_disk_release(struct device *dev)
4075 {
4076 	struct scsi_disk *sdkp = to_scsi_disk(dev);
4077 
4078 	ida_free(&sd_index_ida, sdkp->index);
4079 	put_device(&sdkp->device->sdev_gendev);
4080 	free_opal_dev(sdkp->opal_dev);
4081 
4082 	kfree(sdkp);
4083 }
4084 
4085 static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
4086 {
4087 	unsigned char cmd[6] = { START_STOP };	/* START_VALID */
4088 	struct scsi_sense_hdr sshdr;
4089 	struct scsi_failure failure_defs[] = {
4090 		{
4091 			/* Power on, reset, or bus device reset occurred */
4092 			.sense = UNIT_ATTENTION,
4093 			.asc = 0x29,
4094 			.ascq = 0,
4095 			.result = SAM_STAT_CHECK_CONDITION,
4096 		},
4097 		{
4098 			/* Power on occurred */
4099 			.sense = UNIT_ATTENTION,
4100 			.asc = 0x29,
4101 			.ascq = 1,
4102 			.result = SAM_STAT_CHECK_CONDITION,
4103 		},
4104 		{
4105 			/* SCSI bus reset */
4106 			.sense = UNIT_ATTENTION,
4107 			.asc = 0x29,
4108 			.ascq = 2,
4109 			.result = SAM_STAT_CHECK_CONDITION,
4110 		},
4111 		{}
4112 	};
4113 	struct scsi_failures failures = {
4114 		.total_allowed = 3,
4115 		.failure_definitions = failure_defs,
4116 	};
4117 	const struct scsi_exec_args exec_args = {
4118 		.sshdr = &sshdr,
4119 		.req_flags = BLK_MQ_REQ_PM,
4120 		.failures = &failures,
4121 	};
4122 	struct scsi_device *sdp = sdkp->device;
4123 	int res;
4124 
4125 	if (start)
4126 		cmd[4] |= 1;	/* START */
4127 
4128 	if (sdp->start_stop_pwr_cond)
4129 		cmd[4] |= start ? 1 << 4 : 3 << 4;	/* Active or Standby */
4130 
4131 	if (!scsi_device_online(sdp))
4132 		return -ENODEV;
4133 
4134 	res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, SD_TIMEOUT,
4135 			       sdkp->max_retries, &exec_args);
4136 	if (res) {
4137 		sd_print_result(sdkp, "Start/Stop Unit failed", res);
4138 		if (res > 0 && scsi_sense_valid(&sshdr)) {
4139 			sd_print_sense_hdr(sdkp, &sshdr);
4140 			/* 0x3a is medium not present */
4141 			if (sshdr.asc == 0x3a)
4142 				res = 0;
4143 		}
4144 	}
4145 
4146 	/* SCSI error codes must not go to the generic layer */
4147 	if (res)
4148 		return -EIO;
4149 
4150 	return 0;
4151 }
4152 
4153 /*
4154  * Send a SYNCHRONIZE CACHE instruction down to the device through
4155  * the normal SCSI command structure.  Wait for the command to
4156  * complete.
4157  */
4158 static void sd_shutdown(struct device *dev)
4159 {
4160 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
4161 
4162 	if (!sdkp)
4163 		return;         /* this can happen */
4164 
4165 	if (pm_runtime_suspended(dev))
4166 		return;
4167 
4168 	if (sdkp->WCE && sdkp->media_present) {
4169 		sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
4170 		sd_sync_cache(sdkp);
4171 	}
4172 
4173 	if ((system_state != SYSTEM_RESTART &&
4174 	     sdkp->device->manage_system_start_stop) ||
4175 	    (system_state == SYSTEM_POWER_OFF &&
4176 	     sdkp->device->manage_shutdown)) {
4177 		sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
4178 		sd_start_stop_device(sdkp, 0);
4179 	}
4180 }
4181 
4182 static inline bool sd_do_start_stop(struct scsi_device *sdev, bool runtime)
4183 {
4184 	return (sdev->manage_system_start_stop && !runtime) ||
4185 		(sdev->manage_runtime_start_stop && runtime);
4186 }
4187 
4188 static int sd_suspend_common(struct device *dev, bool runtime)
4189 {
4190 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
4191 	int ret = 0;
4192 
4193 	if (!sdkp)	/* E.g.: runtime suspend following sd_remove() */
4194 		return 0;
4195 
4196 	if (sdkp->WCE && sdkp->media_present) {
4197 		if (!sdkp->device->silence_suspend)
4198 			sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
4199 		ret = sd_sync_cache(sdkp);
4200 		/* ignore OFFLINE device */
4201 		if (ret == -ENODEV)
4202 			return 0;
4203 
4204 		if (ret)
4205 			return ret;
4206 	}
4207 
4208 	if (sd_do_start_stop(sdkp->device, runtime)) {
4209 		if (!sdkp->device->silence_suspend)
4210 			sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
4211 		/* an error is not worth aborting a system sleep */
4212 		ret = sd_start_stop_device(sdkp, 0);
4213 		if (!runtime)
4214 			ret = 0;
4215 	}
4216 
4217 	if (!ret)
4218 		sdkp->suspended = true;
4219 
4220 	return ret;
4221 }
4222 
4223 static int sd_suspend_system(struct device *dev)
4224 {
4225 	if (pm_runtime_suspended(dev))
4226 		return 0;
4227 
4228 	return sd_suspend_common(dev, false);
4229 }
4230 
4231 static int sd_suspend_runtime(struct device *dev)
4232 {
4233 	return sd_suspend_common(dev, true);
4234 }
4235 
4236 static int sd_resume(struct device *dev)
4237 {
4238 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
4239 
4240 	sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
4241 
4242 	if (opal_unlock_from_suspend(sdkp->opal_dev)) {
4243 		sd_printk(KERN_NOTICE, sdkp, "OPAL unlock failed\n");
4244 		return -EIO;
4245 	}
4246 
4247 	return 0;
4248 }
4249 
4250 static int sd_resume_common(struct device *dev, bool runtime)
4251 {
4252 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
4253 	int ret;
4254 
4255 	if (!sdkp)	/* E.g.: runtime resume at the start of sd_probe() */
4256 		return 0;
4257 
4258 	if (!sd_do_start_stop(sdkp->device, runtime)) {
4259 		sdkp->suspended = false;
4260 		return 0;
4261 	}
4262 
4263 	sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
4264 	ret = sd_start_stop_device(sdkp, 1);
4265 	if (!ret) {
4266 		sd_resume(dev);
4267 		sdkp->suspended = false;
4268 	}
4269 
4270 	return ret;
4271 }
4272 
4273 static int sd_resume_system(struct device *dev)
4274 {
4275 	if (pm_runtime_suspended(dev)) {
4276 		struct scsi_disk *sdkp = dev_get_drvdata(dev);
4277 		struct scsi_device *sdp = sdkp ? sdkp->device : NULL;
4278 
4279 		if (sdp && sdp->force_runtime_start_on_system_start)
4280 			pm_request_resume(dev);
4281 
4282 		return 0;
4283 	}
4284 
4285 	return sd_resume_common(dev, false);
4286 }
4287 
4288 static int sd_resume_runtime(struct device *dev)
4289 {
4290 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
4291 	struct scsi_device *sdp;
4292 
4293 	if (!sdkp)	/* E.g.: runtime resume at the start of sd_probe() */
4294 		return 0;
4295 
4296 	sdp = sdkp->device;
4297 
4298 	if (sdp->ignore_media_change) {
4299 		/* clear the device's sense data */
4300 		static const u8 cmd[10] = { REQUEST_SENSE };
4301 		const struct scsi_exec_args exec_args = {
4302 			.req_flags = BLK_MQ_REQ_PM,
4303 		};
4304 
4305 		if (scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0,
4306 				     sdp->request_queue->rq_timeout, 1,
4307 				     &exec_args))
4308 			sd_printk(KERN_NOTICE, sdkp,
4309 				  "Failed to clear sense data\n");
4310 	}
4311 
4312 	return sd_resume_common(dev, true);
4313 }
4314 
4315 static const struct dev_pm_ops sd_pm_ops = {
4316 	.suspend		= sd_suspend_system,
4317 	.resume			= sd_resume_system,
4318 	.poweroff		= sd_suspend_system,
4319 	.restore		= sd_resume_system,
4320 	.runtime_suspend	= sd_suspend_runtime,
4321 	.runtime_resume		= sd_resume_runtime,
4322 };
4323 
4324 static struct scsi_driver sd_template = {
4325 	.gendrv = {
4326 		.name		= "sd",
4327 		.probe		= sd_probe,
4328 		.probe_type	= PROBE_PREFER_ASYNCHRONOUS,
4329 		.remove		= sd_remove,
4330 		.shutdown	= sd_shutdown,
4331 		.pm		= &sd_pm_ops,
4332 	},
4333 	.rescan			= sd_rescan,
4334 	.resume			= sd_resume,
4335 	.init_command		= sd_init_command,
4336 	.uninit_command		= sd_uninit_command,
4337 	.done			= sd_done,
4338 	.eh_action		= sd_eh_action,
4339 	.eh_reset		= sd_eh_reset,
4340 };
4341 
4342 /**
4343  *	init_sd - entry point for this driver (both when built in or when
4344  *	a module).
4345  *
4346  *	Note: this function registers this driver with the scsi mid-level.
4347  **/
4348 static int __init init_sd(void)
4349 {
4350 	int majors = 0, i, err;
4351 
4352 	SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
4353 
4354 	for (i = 0; i < SD_MAJORS; i++) {
4355 		if (__register_blkdev(sd_major(i), "sd", sd_default_probe))
4356 			continue;
4357 		majors++;
4358 	}
4359 
4360 	if (!majors)
4361 		return -ENODEV;
4362 
4363 	err = class_register(&sd_disk_class);
4364 	if (err)
4365 		goto err_out;
4366 
4367 	sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0);
4368 	if (!sd_page_pool) {
4369 		printk(KERN_ERR "sd: can't init discard page pool\n");
4370 		err = -ENOMEM;
4371 		goto err_out_class;
4372 	}
4373 
4374 	err = scsi_register_driver(&sd_template.gendrv);
4375 	if (err)
4376 		goto err_out_driver;
4377 
4378 	return 0;
4379 
4380 err_out_driver:
4381 	mempool_destroy(sd_page_pool);
4382 err_out_class:
4383 	class_unregister(&sd_disk_class);
4384 err_out:
4385 	for (i = 0; i < SD_MAJORS; i++)
4386 		unregister_blkdev(sd_major(i), "sd");
4387 	return err;
4388 }
4389 
4390 /**
4391  *	exit_sd - exit point for this driver (when it is a module).
4392  *
4393  *	Note: this function unregisters this driver from the scsi mid-level.
4394  **/
4395 static void __exit exit_sd(void)
4396 {
4397 	int i;
4398 
4399 	SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
4400 
4401 	scsi_unregister_driver(&sd_template.gendrv);
4402 	mempool_destroy(sd_page_pool);
4403 
4404 	class_unregister(&sd_disk_class);
4405 
4406 	for (i = 0; i < SD_MAJORS; i++)
4407 		unregister_blkdev(sd_major(i), "sd");
4408 }
4409 
4410 module_init(init_sd);
4411 module_exit(exit_sd);
4412 
4413 void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
4414 {
4415 	scsi_print_sense_hdr(sdkp->device,
4416 			     sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
4417 }
4418 
4419 void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result)
4420 {
4421 	const char *hb_string = scsi_hostbyte_string(result);
4422 
4423 	if (hb_string)
4424 		sd_printk(KERN_INFO, sdkp,
4425 			  "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
4426 			  hb_string ? hb_string : "invalid",
4427 			  "DRIVER_OK");
4428 	else
4429 		sd_printk(KERN_INFO, sdkp,
4430 			  "%s: Result: hostbyte=0x%02x driverbyte=%s\n",
4431 			  msg, host_byte(result), "DRIVER_OK");
4432 }
4433