1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * sd.c Copyright (C) 1992 Drew Eckhardt 4 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale 5 * 6 * Linux scsi disk driver 7 * Initial versions: Drew Eckhardt 8 * Subsequent revisions: Eric Youngdale 9 * Modification history: 10 * - Drew Eckhardt <drew@colorado.edu> original 11 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 12 * outstanding request, and other enhancements. 13 * Support loadable low-level scsi drivers. 14 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 15 * eight major numbers. 16 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs. 17 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 18 * sd_init and cleanups. 19 * - Alex Davis <letmein@erols.com> Fix problem where partition info 20 * not being read in sd_open. Fix problem where removable media 21 * could be ejected after sd_open. 22 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x 23 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 24 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 25 * Support 32k/1M disks. 26 * 27 * Logging policy (needs CONFIG_SCSI_LOGGING defined): 28 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2 29 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1 30 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1 31 * - entering other commands: SCSI_LOG_HLQUEUE level 3 32 * Note: when the logging level is set by the user, it must be greater 33 * than the level indicated above to trigger output. 34 */ 35 36 #include <linux/module.h> 37 #include <linux/fs.h> 38 #include <linux/kernel.h> 39 #include <linux/mm.h> 40 #include <linux/bio.h> 41 #include <linux/hdreg.h> 42 #include <linux/errno.h> 43 #include <linux/idr.h> 44 #include <linux/interrupt.h> 45 #include <linux/init.h> 46 #include <linux/blkdev.h> 47 #include <linux/blkpg.h> 48 #include <linux/blk-pm.h> 49 #include <linux/delay.h> 50 #include <linux/major.h> 51 #include <linux/mutex.h> 52 #include <linux/string_helpers.h> 53 #include <linux/slab.h> 54 #include <linux/sed-opal.h> 55 #include <linux/pm_runtime.h> 56 #include <linux/pr.h> 57 #include <linux/t10-pi.h> 58 #include <linux/uaccess.h> 59 #include <asm/unaligned.h> 60 61 #include <scsi/scsi.h> 62 #include <scsi/scsi_cmnd.h> 63 #include <scsi/scsi_dbg.h> 64 #include <scsi/scsi_device.h> 65 #include <scsi/scsi_driver.h> 66 #include <scsi/scsi_eh.h> 67 #include <scsi/scsi_host.h> 68 #include <scsi/scsi_ioctl.h> 69 #include <scsi/scsicam.h> 70 #include <scsi/scsi_common.h> 71 72 #include "sd.h" 73 #include "scsi_priv.h" 74 #include "scsi_logging.h" 75 76 MODULE_AUTHOR("Eric Youngdale"); 77 MODULE_DESCRIPTION("SCSI disk (sd) driver"); 78 MODULE_LICENSE("GPL"); 79 80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR); 81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR); 82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR); 83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR); 84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR); 85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR); 86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR); 87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR); 88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR); 89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR); 90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR); 91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR); 92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR); 93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR); 94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR); 95 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR); 96 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK); 97 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD); 98 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC); 99 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC); 100 101 #define SD_MINORS 16 102 103 static void sd_config_discard(struct scsi_disk *, unsigned int); 104 static void sd_config_write_same(struct scsi_disk *); 105 static int sd_revalidate_disk(struct gendisk *); 106 static void sd_unlock_native_capacity(struct gendisk *disk); 107 static int sd_probe(struct device *); 108 static int sd_remove(struct device *); 109 static void sd_shutdown(struct device *); 110 static int sd_suspend_system(struct device *); 111 static int sd_suspend_runtime(struct device *); 112 static int sd_resume_system(struct device *); 113 static int sd_resume_runtime(struct device *); 114 static void sd_rescan(struct device *); 115 static blk_status_t sd_init_command(struct scsi_cmnd *SCpnt); 116 static void sd_uninit_command(struct scsi_cmnd *SCpnt); 117 static int sd_done(struct scsi_cmnd *); 118 static void sd_eh_reset(struct scsi_cmnd *); 119 static int sd_eh_action(struct scsi_cmnd *, int); 120 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer); 121 static void scsi_disk_release(struct device *cdev); 122 123 static DEFINE_IDA(sd_index_ida); 124 125 static mempool_t *sd_page_pool; 126 static struct lock_class_key sd_bio_compl_lkclass; 127 128 static const char *sd_cache_types[] = { 129 "write through", "none", "write back", 130 "write back, no read (daft)" 131 }; 132 133 static void sd_set_flush_flag(struct scsi_disk *sdkp) 134 { 135 bool wc = false, fua = false; 136 137 if (sdkp->WCE) { 138 wc = true; 139 if (sdkp->DPOFUA) 140 fua = true; 141 } 142 143 blk_queue_write_cache(sdkp->disk->queue, wc, fua); 144 } 145 146 static ssize_t 147 cache_type_store(struct device *dev, struct device_attribute *attr, 148 const char *buf, size_t count) 149 { 150 int ct, rcd, wce, sp; 151 struct scsi_disk *sdkp = to_scsi_disk(dev); 152 struct scsi_device *sdp = sdkp->device; 153 char buffer[64]; 154 char *buffer_data; 155 struct scsi_mode_data data; 156 struct scsi_sense_hdr sshdr; 157 static const char temp[] = "temporary "; 158 int len; 159 160 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 161 /* no cache control on RBC devices; theoretically they 162 * can do it, but there's probably so many exceptions 163 * it's not worth the risk */ 164 return -EINVAL; 165 166 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) { 167 buf += sizeof(temp) - 1; 168 sdkp->cache_override = 1; 169 } else { 170 sdkp->cache_override = 0; 171 } 172 173 ct = sysfs_match_string(sd_cache_types, buf); 174 if (ct < 0) 175 return -EINVAL; 176 177 rcd = ct & 0x01 ? 1 : 0; 178 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0; 179 180 if (sdkp->cache_override) { 181 sdkp->WCE = wce; 182 sdkp->RCD = rcd; 183 sd_set_flush_flag(sdkp); 184 return count; 185 } 186 187 if (scsi_mode_sense(sdp, 0x08, 8, 0, buffer, sizeof(buffer), SD_TIMEOUT, 188 sdkp->max_retries, &data, NULL)) 189 return -EINVAL; 190 len = min_t(size_t, sizeof(buffer), data.length - data.header_length - 191 data.block_descriptor_length); 192 buffer_data = buffer + data.header_length + 193 data.block_descriptor_length; 194 buffer_data[2] &= ~0x05; 195 buffer_data[2] |= wce << 2 | rcd; 196 sp = buffer_data[0] & 0x80 ? 1 : 0; 197 buffer_data[0] &= ~0x80; 198 199 /* 200 * Ensure WP, DPOFUA, and RESERVED fields are cleared in 201 * received mode parameter buffer before doing MODE SELECT. 202 */ 203 data.device_specific = 0; 204 205 if (scsi_mode_select(sdp, 1, sp, buffer_data, len, SD_TIMEOUT, 206 sdkp->max_retries, &data, &sshdr)) { 207 if (scsi_sense_valid(&sshdr)) 208 sd_print_sense_hdr(sdkp, &sshdr); 209 return -EINVAL; 210 } 211 sd_revalidate_disk(sdkp->disk); 212 return count; 213 } 214 215 static ssize_t 216 manage_start_stop_show(struct device *dev, struct device_attribute *attr, 217 char *buf) 218 { 219 struct scsi_disk *sdkp = to_scsi_disk(dev); 220 struct scsi_device *sdp = sdkp->device; 221 222 return sprintf(buf, "%u\n", sdp->manage_start_stop); 223 } 224 225 static ssize_t 226 manage_start_stop_store(struct device *dev, struct device_attribute *attr, 227 const char *buf, size_t count) 228 { 229 struct scsi_disk *sdkp = to_scsi_disk(dev); 230 struct scsi_device *sdp = sdkp->device; 231 bool v; 232 233 if (!capable(CAP_SYS_ADMIN)) 234 return -EACCES; 235 236 if (kstrtobool(buf, &v)) 237 return -EINVAL; 238 239 sdp->manage_start_stop = v; 240 241 return count; 242 } 243 static DEVICE_ATTR_RW(manage_start_stop); 244 245 static ssize_t 246 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf) 247 { 248 struct scsi_disk *sdkp = to_scsi_disk(dev); 249 250 return sprintf(buf, "%u\n", sdkp->device->allow_restart); 251 } 252 253 static ssize_t 254 allow_restart_store(struct device *dev, struct device_attribute *attr, 255 const char *buf, size_t count) 256 { 257 bool v; 258 struct scsi_disk *sdkp = to_scsi_disk(dev); 259 struct scsi_device *sdp = sdkp->device; 260 261 if (!capable(CAP_SYS_ADMIN)) 262 return -EACCES; 263 264 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 265 return -EINVAL; 266 267 if (kstrtobool(buf, &v)) 268 return -EINVAL; 269 270 sdp->allow_restart = v; 271 272 return count; 273 } 274 static DEVICE_ATTR_RW(allow_restart); 275 276 static ssize_t 277 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf) 278 { 279 struct scsi_disk *sdkp = to_scsi_disk(dev); 280 int ct = sdkp->RCD + 2*sdkp->WCE; 281 282 return sprintf(buf, "%s\n", sd_cache_types[ct]); 283 } 284 static DEVICE_ATTR_RW(cache_type); 285 286 static ssize_t 287 FUA_show(struct device *dev, struct device_attribute *attr, char *buf) 288 { 289 struct scsi_disk *sdkp = to_scsi_disk(dev); 290 291 return sprintf(buf, "%u\n", sdkp->DPOFUA); 292 } 293 static DEVICE_ATTR_RO(FUA); 294 295 static ssize_t 296 protection_type_show(struct device *dev, struct device_attribute *attr, 297 char *buf) 298 { 299 struct scsi_disk *sdkp = to_scsi_disk(dev); 300 301 return sprintf(buf, "%u\n", sdkp->protection_type); 302 } 303 304 static ssize_t 305 protection_type_store(struct device *dev, struct device_attribute *attr, 306 const char *buf, size_t count) 307 { 308 struct scsi_disk *sdkp = to_scsi_disk(dev); 309 unsigned int val; 310 int err; 311 312 if (!capable(CAP_SYS_ADMIN)) 313 return -EACCES; 314 315 err = kstrtouint(buf, 10, &val); 316 317 if (err) 318 return err; 319 320 if (val <= T10_PI_TYPE3_PROTECTION) 321 sdkp->protection_type = val; 322 323 return count; 324 } 325 static DEVICE_ATTR_RW(protection_type); 326 327 static ssize_t 328 protection_mode_show(struct device *dev, struct device_attribute *attr, 329 char *buf) 330 { 331 struct scsi_disk *sdkp = to_scsi_disk(dev); 332 struct scsi_device *sdp = sdkp->device; 333 unsigned int dif, dix; 334 335 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type); 336 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type); 337 338 if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) { 339 dif = 0; 340 dix = 1; 341 } 342 343 if (!dif && !dix) 344 return sprintf(buf, "none\n"); 345 346 return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif); 347 } 348 static DEVICE_ATTR_RO(protection_mode); 349 350 static ssize_t 351 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf) 352 { 353 struct scsi_disk *sdkp = to_scsi_disk(dev); 354 355 return sprintf(buf, "%u\n", sdkp->ATO); 356 } 357 static DEVICE_ATTR_RO(app_tag_own); 358 359 static ssize_t 360 thin_provisioning_show(struct device *dev, struct device_attribute *attr, 361 char *buf) 362 { 363 struct scsi_disk *sdkp = to_scsi_disk(dev); 364 365 return sprintf(buf, "%u\n", sdkp->lbpme); 366 } 367 static DEVICE_ATTR_RO(thin_provisioning); 368 369 /* sysfs_match_string() requires dense arrays */ 370 static const char *lbp_mode[] = { 371 [SD_LBP_FULL] = "full", 372 [SD_LBP_UNMAP] = "unmap", 373 [SD_LBP_WS16] = "writesame_16", 374 [SD_LBP_WS10] = "writesame_10", 375 [SD_LBP_ZERO] = "writesame_zero", 376 [SD_LBP_DISABLE] = "disabled", 377 }; 378 379 static ssize_t 380 provisioning_mode_show(struct device *dev, struct device_attribute *attr, 381 char *buf) 382 { 383 struct scsi_disk *sdkp = to_scsi_disk(dev); 384 385 return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]); 386 } 387 388 static ssize_t 389 provisioning_mode_store(struct device *dev, struct device_attribute *attr, 390 const char *buf, size_t count) 391 { 392 struct scsi_disk *sdkp = to_scsi_disk(dev); 393 struct scsi_device *sdp = sdkp->device; 394 int mode; 395 396 if (!capable(CAP_SYS_ADMIN)) 397 return -EACCES; 398 399 if (sd_is_zoned(sdkp)) { 400 sd_config_discard(sdkp, SD_LBP_DISABLE); 401 return count; 402 } 403 404 if (sdp->type != TYPE_DISK) 405 return -EINVAL; 406 407 mode = sysfs_match_string(lbp_mode, buf); 408 if (mode < 0) 409 return -EINVAL; 410 411 sd_config_discard(sdkp, mode); 412 413 return count; 414 } 415 static DEVICE_ATTR_RW(provisioning_mode); 416 417 /* sysfs_match_string() requires dense arrays */ 418 static const char *zeroing_mode[] = { 419 [SD_ZERO_WRITE] = "write", 420 [SD_ZERO_WS] = "writesame", 421 [SD_ZERO_WS16_UNMAP] = "writesame_16_unmap", 422 [SD_ZERO_WS10_UNMAP] = "writesame_10_unmap", 423 }; 424 425 static ssize_t 426 zeroing_mode_show(struct device *dev, struct device_attribute *attr, 427 char *buf) 428 { 429 struct scsi_disk *sdkp = to_scsi_disk(dev); 430 431 return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]); 432 } 433 434 static ssize_t 435 zeroing_mode_store(struct device *dev, struct device_attribute *attr, 436 const char *buf, size_t count) 437 { 438 struct scsi_disk *sdkp = to_scsi_disk(dev); 439 int mode; 440 441 if (!capable(CAP_SYS_ADMIN)) 442 return -EACCES; 443 444 mode = sysfs_match_string(zeroing_mode, buf); 445 if (mode < 0) 446 return -EINVAL; 447 448 sdkp->zeroing_mode = mode; 449 450 return count; 451 } 452 static DEVICE_ATTR_RW(zeroing_mode); 453 454 static ssize_t 455 max_medium_access_timeouts_show(struct device *dev, 456 struct device_attribute *attr, char *buf) 457 { 458 struct scsi_disk *sdkp = to_scsi_disk(dev); 459 460 return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts); 461 } 462 463 static ssize_t 464 max_medium_access_timeouts_store(struct device *dev, 465 struct device_attribute *attr, const char *buf, 466 size_t count) 467 { 468 struct scsi_disk *sdkp = to_scsi_disk(dev); 469 int err; 470 471 if (!capable(CAP_SYS_ADMIN)) 472 return -EACCES; 473 474 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts); 475 476 return err ? err : count; 477 } 478 static DEVICE_ATTR_RW(max_medium_access_timeouts); 479 480 static ssize_t 481 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr, 482 char *buf) 483 { 484 struct scsi_disk *sdkp = to_scsi_disk(dev); 485 486 return sprintf(buf, "%u\n", sdkp->max_ws_blocks); 487 } 488 489 static ssize_t 490 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr, 491 const char *buf, size_t count) 492 { 493 struct scsi_disk *sdkp = to_scsi_disk(dev); 494 struct scsi_device *sdp = sdkp->device; 495 unsigned long max; 496 int err; 497 498 if (!capable(CAP_SYS_ADMIN)) 499 return -EACCES; 500 501 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 502 return -EINVAL; 503 504 err = kstrtoul(buf, 10, &max); 505 506 if (err) 507 return err; 508 509 if (max == 0) 510 sdp->no_write_same = 1; 511 else if (max <= SD_MAX_WS16_BLOCKS) { 512 sdp->no_write_same = 0; 513 sdkp->max_ws_blocks = max; 514 } 515 516 sd_config_write_same(sdkp); 517 518 return count; 519 } 520 static DEVICE_ATTR_RW(max_write_same_blocks); 521 522 static ssize_t 523 zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf) 524 { 525 struct scsi_disk *sdkp = to_scsi_disk(dev); 526 527 if (sdkp->device->type == TYPE_ZBC) 528 return sprintf(buf, "host-managed\n"); 529 if (sdkp->zoned == 1) 530 return sprintf(buf, "host-aware\n"); 531 if (sdkp->zoned == 2) 532 return sprintf(buf, "drive-managed\n"); 533 return sprintf(buf, "none\n"); 534 } 535 static DEVICE_ATTR_RO(zoned_cap); 536 537 static ssize_t 538 max_retries_store(struct device *dev, struct device_attribute *attr, 539 const char *buf, size_t count) 540 { 541 struct scsi_disk *sdkp = to_scsi_disk(dev); 542 struct scsi_device *sdev = sdkp->device; 543 int retries, err; 544 545 err = kstrtoint(buf, 10, &retries); 546 if (err) 547 return err; 548 549 if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) { 550 sdkp->max_retries = retries; 551 return count; 552 } 553 554 sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n", 555 SD_MAX_RETRIES); 556 return -EINVAL; 557 } 558 559 static ssize_t 560 max_retries_show(struct device *dev, struct device_attribute *attr, 561 char *buf) 562 { 563 struct scsi_disk *sdkp = to_scsi_disk(dev); 564 565 return sprintf(buf, "%d\n", sdkp->max_retries); 566 } 567 568 static DEVICE_ATTR_RW(max_retries); 569 570 static struct attribute *sd_disk_attrs[] = { 571 &dev_attr_cache_type.attr, 572 &dev_attr_FUA.attr, 573 &dev_attr_allow_restart.attr, 574 &dev_attr_manage_start_stop.attr, 575 &dev_attr_protection_type.attr, 576 &dev_attr_protection_mode.attr, 577 &dev_attr_app_tag_own.attr, 578 &dev_attr_thin_provisioning.attr, 579 &dev_attr_provisioning_mode.attr, 580 &dev_attr_zeroing_mode.attr, 581 &dev_attr_max_write_same_blocks.attr, 582 &dev_attr_max_medium_access_timeouts.attr, 583 &dev_attr_zoned_cap.attr, 584 &dev_attr_max_retries.attr, 585 NULL, 586 }; 587 ATTRIBUTE_GROUPS(sd_disk); 588 589 static struct class sd_disk_class = { 590 .name = "scsi_disk", 591 .dev_release = scsi_disk_release, 592 .dev_groups = sd_disk_groups, 593 }; 594 595 static const struct dev_pm_ops sd_pm_ops = { 596 .suspend = sd_suspend_system, 597 .resume = sd_resume_system, 598 .poweroff = sd_suspend_system, 599 .restore = sd_resume_system, 600 .runtime_suspend = sd_suspend_runtime, 601 .runtime_resume = sd_resume_runtime, 602 }; 603 604 static struct scsi_driver sd_template = { 605 .gendrv = { 606 .name = "sd", 607 .owner = THIS_MODULE, 608 .probe = sd_probe, 609 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 610 .remove = sd_remove, 611 .shutdown = sd_shutdown, 612 .pm = &sd_pm_ops, 613 }, 614 .rescan = sd_rescan, 615 .init_command = sd_init_command, 616 .uninit_command = sd_uninit_command, 617 .done = sd_done, 618 .eh_action = sd_eh_action, 619 .eh_reset = sd_eh_reset, 620 }; 621 622 /* 623 * Don't request a new module, as that could deadlock in multipath 624 * environment. 625 */ 626 static void sd_default_probe(dev_t devt) 627 { 628 } 629 630 /* 631 * Device no to disk mapping: 632 * 633 * major disc2 disc p1 634 * |............|.............|....|....| <- dev_t 635 * 31 20 19 8 7 4 3 0 636 * 637 * Inside a major, we have 16k disks, however mapped non- 638 * contiguously. The first 16 disks are for major0, the next 639 * ones with major1, ... Disk 256 is for major0 again, disk 272 640 * for major1, ... 641 * As we stay compatible with our numbering scheme, we can reuse 642 * the well-know SCSI majors 8, 65--71, 136--143. 643 */ 644 static int sd_major(int major_idx) 645 { 646 switch (major_idx) { 647 case 0: 648 return SCSI_DISK0_MAJOR; 649 case 1 ... 7: 650 return SCSI_DISK1_MAJOR + major_idx - 1; 651 case 8 ... 15: 652 return SCSI_DISK8_MAJOR + major_idx - 8; 653 default: 654 BUG(); 655 return 0; /* shut up gcc */ 656 } 657 } 658 659 #ifdef CONFIG_BLK_SED_OPAL 660 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, 661 size_t len, bool send) 662 { 663 struct scsi_disk *sdkp = data; 664 struct scsi_device *sdev = sdkp->device; 665 u8 cdb[12] = { 0, }; 666 const struct scsi_exec_args exec_args = { 667 .req_flags = BLK_MQ_REQ_PM, 668 }; 669 int ret; 670 671 cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN; 672 cdb[1] = secp; 673 put_unaligned_be16(spsp, &cdb[2]); 674 put_unaligned_be32(len, &cdb[6]); 675 676 ret = scsi_execute_cmd(sdev, cdb, send ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 677 buffer, len, SD_TIMEOUT, sdkp->max_retries, 678 &exec_args); 679 return ret <= 0 ? ret : -EIO; 680 } 681 #endif /* CONFIG_BLK_SED_OPAL */ 682 683 /* 684 * Look up the DIX operation based on whether the command is read or 685 * write and whether dix and dif are enabled. 686 */ 687 static unsigned int sd_prot_op(bool write, bool dix, bool dif) 688 { 689 /* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */ 690 static const unsigned int ops[] = { /* wrt dix dif */ 691 SCSI_PROT_NORMAL, /* 0 0 0 */ 692 SCSI_PROT_READ_STRIP, /* 0 0 1 */ 693 SCSI_PROT_READ_INSERT, /* 0 1 0 */ 694 SCSI_PROT_READ_PASS, /* 0 1 1 */ 695 SCSI_PROT_NORMAL, /* 1 0 0 */ 696 SCSI_PROT_WRITE_INSERT, /* 1 0 1 */ 697 SCSI_PROT_WRITE_STRIP, /* 1 1 0 */ 698 SCSI_PROT_WRITE_PASS, /* 1 1 1 */ 699 }; 700 701 return ops[write << 2 | dix << 1 | dif]; 702 } 703 704 /* 705 * Returns a mask of the protection flags that are valid for a given DIX 706 * operation. 707 */ 708 static unsigned int sd_prot_flag_mask(unsigned int prot_op) 709 { 710 static const unsigned int flag_mask[] = { 711 [SCSI_PROT_NORMAL] = 0, 712 713 [SCSI_PROT_READ_STRIP] = SCSI_PROT_TRANSFER_PI | 714 SCSI_PROT_GUARD_CHECK | 715 SCSI_PROT_REF_CHECK | 716 SCSI_PROT_REF_INCREMENT, 717 718 [SCSI_PROT_READ_INSERT] = SCSI_PROT_REF_INCREMENT | 719 SCSI_PROT_IP_CHECKSUM, 720 721 [SCSI_PROT_READ_PASS] = SCSI_PROT_TRANSFER_PI | 722 SCSI_PROT_GUARD_CHECK | 723 SCSI_PROT_REF_CHECK | 724 SCSI_PROT_REF_INCREMENT | 725 SCSI_PROT_IP_CHECKSUM, 726 727 [SCSI_PROT_WRITE_INSERT] = SCSI_PROT_TRANSFER_PI | 728 SCSI_PROT_REF_INCREMENT, 729 730 [SCSI_PROT_WRITE_STRIP] = SCSI_PROT_GUARD_CHECK | 731 SCSI_PROT_REF_CHECK | 732 SCSI_PROT_REF_INCREMENT | 733 SCSI_PROT_IP_CHECKSUM, 734 735 [SCSI_PROT_WRITE_PASS] = SCSI_PROT_TRANSFER_PI | 736 SCSI_PROT_GUARD_CHECK | 737 SCSI_PROT_REF_CHECK | 738 SCSI_PROT_REF_INCREMENT | 739 SCSI_PROT_IP_CHECKSUM, 740 }; 741 742 return flag_mask[prot_op]; 743 } 744 745 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd, 746 unsigned int dix, unsigned int dif) 747 { 748 struct request *rq = scsi_cmd_to_rq(scmd); 749 struct bio *bio = rq->bio; 750 unsigned int prot_op = sd_prot_op(rq_data_dir(rq), dix, dif); 751 unsigned int protect = 0; 752 753 if (dix) { /* DIX Type 0, 1, 2, 3 */ 754 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM)) 755 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM; 756 757 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 758 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK; 759 } 760 761 if (dif != T10_PI_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */ 762 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT; 763 764 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 765 scmd->prot_flags |= SCSI_PROT_REF_CHECK; 766 } 767 768 if (dif) { /* DIX/DIF Type 1, 2, 3 */ 769 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI; 770 771 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK)) 772 protect = 3 << 5; /* Disable target PI checking */ 773 else 774 protect = 1 << 5; /* Enable target PI checking */ 775 } 776 777 scsi_set_prot_op(scmd, prot_op); 778 scsi_set_prot_type(scmd, dif); 779 scmd->prot_flags &= sd_prot_flag_mask(prot_op); 780 781 return protect; 782 } 783 784 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode) 785 { 786 struct request_queue *q = sdkp->disk->queue; 787 unsigned int logical_block_size = sdkp->device->sector_size; 788 unsigned int max_blocks = 0; 789 790 q->limits.discard_alignment = 791 sdkp->unmap_alignment * logical_block_size; 792 q->limits.discard_granularity = 793 max(sdkp->physical_block_size, 794 sdkp->unmap_granularity * logical_block_size); 795 sdkp->provisioning_mode = mode; 796 797 switch (mode) { 798 799 case SD_LBP_FULL: 800 case SD_LBP_DISABLE: 801 blk_queue_max_discard_sectors(q, 0); 802 return; 803 804 case SD_LBP_UNMAP: 805 max_blocks = min_not_zero(sdkp->max_unmap_blocks, 806 (u32)SD_MAX_WS16_BLOCKS); 807 break; 808 809 case SD_LBP_WS16: 810 if (sdkp->device->unmap_limit_for_ws) 811 max_blocks = sdkp->max_unmap_blocks; 812 else 813 max_blocks = sdkp->max_ws_blocks; 814 815 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS); 816 break; 817 818 case SD_LBP_WS10: 819 if (sdkp->device->unmap_limit_for_ws) 820 max_blocks = sdkp->max_unmap_blocks; 821 else 822 max_blocks = sdkp->max_ws_blocks; 823 824 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS); 825 break; 826 827 case SD_LBP_ZERO: 828 max_blocks = min_not_zero(sdkp->max_ws_blocks, 829 (u32)SD_MAX_WS10_BLOCKS); 830 break; 831 } 832 833 blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9)); 834 } 835 836 static void *sd_set_special_bvec(struct request *rq, unsigned int data_len) 837 { 838 struct page *page; 839 840 page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 841 if (!page) 842 return NULL; 843 clear_highpage(page); 844 bvec_set_page(&rq->special_vec, page, data_len, 0); 845 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 846 return bvec_virt(&rq->special_vec); 847 } 848 849 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd) 850 { 851 struct scsi_device *sdp = cmd->device; 852 struct request *rq = scsi_cmd_to_rq(cmd); 853 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 854 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 855 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 856 unsigned int data_len = 24; 857 char *buf; 858 859 buf = sd_set_special_bvec(rq, data_len); 860 if (!buf) 861 return BLK_STS_RESOURCE; 862 863 cmd->cmd_len = 10; 864 cmd->cmnd[0] = UNMAP; 865 cmd->cmnd[8] = 24; 866 867 put_unaligned_be16(6 + 16, &buf[0]); 868 put_unaligned_be16(16, &buf[2]); 869 put_unaligned_be64(lba, &buf[8]); 870 put_unaligned_be32(nr_blocks, &buf[16]); 871 872 cmd->allowed = sdkp->max_retries; 873 cmd->transfersize = data_len; 874 rq->timeout = SD_TIMEOUT; 875 876 return scsi_alloc_sgtables(cmd); 877 } 878 879 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd, 880 bool unmap) 881 { 882 struct scsi_device *sdp = cmd->device; 883 struct request *rq = scsi_cmd_to_rq(cmd); 884 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 885 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 886 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 887 u32 data_len = sdp->sector_size; 888 889 if (!sd_set_special_bvec(rq, data_len)) 890 return BLK_STS_RESOURCE; 891 892 cmd->cmd_len = 16; 893 cmd->cmnd[0] = WRITE_SAME_16; 894 if (unmap) 895 cmd->cmnd[1] = 0x8; /* UNMAP */ 896 put_unaligned_be64(lba, &cmd->cmnd[2]); 897 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 898 899 cmd->allowed = sdkp->max_retries; 900 cmd->transfersize = data_len; 901 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 902 903 return scsi_alloc_sgtables(cmd); 904 } 905 906 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd, 907 bool unmap) 908 { 909 struct scsi_device *sdp = cmd->device; 910 struct request *rq = scsi_cmd_to_rq(cmd); 911 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 912 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 913 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 914 u32 data_len = sdp->sector_size; 915 916 if (!sd_set_special_bvec(rq, data_len)) 917 return BLK_STS_RESOURCE; 918 919 cmd->cmd_len = 10; 920 cmd->cmnd[0] = WRITE_SAME; 921 if (unmap) 922 cmd->cmnd[1] = 0x8; /* UNMAP */ 923 put_unaligned_be32(lba, &cmd->cmnd[2]); 924 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 925 926 cmd->allowed = sdkp->max_retries; 927 cmd->transfersize = data_len; 928 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 929 930 return scsi_alloc_sgtables(cmd); 931 } 932 933 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd) 934 { 935 struct request *rq = scsi_cmd_to_rq(cmd); 936 struct scsi_device *sdp = cmd->device; 937 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 938 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 939 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 940 941 if (!(rq->cmd_flags & REQ_NOUNMAP)) { 942 switch (sdkp->zeroing_mode) { 943 case SD_ZERO_WS16_UNMAP: 944 return sd_setup_write_same16_cmnd(cmd, true); 945 case SD_ZERO_WS10_UNMAP: 946 return sd_setup_write_same10_cmnd(cmd, true); 947 } 948 } 949 950 if (sdp->no_write_same) { 951 rq->rq_flags |= RQF_QUIET; 952 return BLK_STS_TARGET; 953 } 954 955 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) 956 return sd_setup_write_same16_cmnd(cmd, false); 957 958 return sd_setup_write_same10_cmnd(cmd, false); 959 } 960 961 static void sd_config_write_same(struct scsi_disk *sdkp) 962 { 963 struct request_queue *q = sdkp->disk->queue; 964 unsigned int logical_block_size = sdkp->device->sector_size; 965 966 if (sdkp->device->no_write_same) { 967 sdkp->max_ws_blocks = 0; 968 goto out; 969 } 970 971 /* Some devices can not handle block counts above 0xffff despite 972 * supporting WRITE SAME(16). Consequently we default to 64k 973 * blocks per I/O unless the device explicitly advertises a 974 * bigger limit. 975 */ 976 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS) 977 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 978 (u32)SD_MAX_WS16_BLOCKS); 979 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes) 980 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 981 (u32)SD_MAX_WS10_BLOCKS); 982 else { 983 sdkp->device->no_write_same = 1; 984 sdkp->max_ws_blocks = 0; 985 } 986 987 if (sdkp->lbprz && sdkp->lbpws) 988 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP; 989 else if (sdkp->lbprz && sdkp->lbpws10) 990 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP; 991 else if (sdkp->max_ws_blocks) 992 sdkp->zeroing_mode = SD_ZERO_WS; 993 else 994 sdkp->zeroing_mode = SD_ZERO_WRITE; 995 996 if (sdkp->max_ws_blocks && 997 sdkp->physical_block_size > logical_block_size) { 998 /* 999 * Reporting a maximum number of blocks that is not aligned 1000 * on the device physical size would cause a large write same 1001 * request to be split into physically unaligned chunks by 1002 * __blkdev_issue_write_zeroes() even if the caller of this 1003 * functions took care to align the large request. So make sure 1004 * the maximum reported is aligned to the device physical block 1005 * size. This is only an optional optimization for regular 1006 * disks, but this is mandatory to avoid failure of large write 1007 * same requests directed at sequential write required zones of 1008 * host-managed ZBC disks. 1009 */ 1010 sdkp->max_ws_blocks = 1011 round_down(sdkp->max_ws_blocks, 1012 bytes_to_logical(sdkp->device, 1013 sdkp->physical_block_size)); 1014 } 1015 1016 out: 1017 blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks * 1018 (logical_block_size >> 9)); 1019 } 1020 1021 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd) 1022 { 1023 struct request *rq = scsi_cmd_to_rq(cmd); 1024 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 1025 1026 /* flush requests don't perform I/O, zero the S/G table */ 1027 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1028 1029 if (cmd->device->use_16_for_sync) { 1030 cmd->cmnd[0] = SYNCHRONIZE_CACHE_16; 1031 cmd->cmd_len = 16; 1032 } else { 1033 cmd->cmnd[0] = SYNCHRONIZE_CACHE; 1034 cmd->cmd_len = 10; 1035 } 1036 cmd->transfersize = 0; 1037 cmd->allowed = sdkp->max_retries; 1038 1039 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER; 1040 return BLK_STS_OK; 1041 } 1042 1043 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write, 1044 sector_t lba, unsigned int nr_blocks, 1045 unsigned char flags, unsigned int dld) 1046 { 1047 cmd->cmd_len = SD_EXT_CDB_SIZE; 1048 cmd->cmnd[0] = VARIABLE_LENGTH_CMD; 1049 cmd->cmnd[7] = 0x18; /* Additional CDB len */ 1050 cmd->cmnd[9] = write ? WRITE_32 : READ_32; 1051 cmd->cmnd[10] = flags; 1052 cmd->cmnd[11] = dld & 0x07; 1053 put_unaligned_be64(lba, &cmd->cmnd[12]); 1054 put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */ 1055 put_unaligned_be32(nr_blocks, &cmd->cmnd[28]); 1056 1057 return BLK_STS_OK; 1058 } 1059 1060 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write, 1061 sector_t lba, unsigned int nr_blocks, 1062 unsigned char flags, unsigned int dld) 1063 { 1064 cmd->cmd_len = 16; 1065 cmd->cmnd[0] = write ? WRITE_16 : READ_16; 1066 cmd->cmnd[1] = flags | ((dld >> 2) & 0x01); 1067 cmd->cmnd[14] = (dld & 0x03) << 6; 1068 cmd->cmnd[15] = 0; 1069 put_unaligned_be64(lba, &cmd->cmnd[2]); 1070 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 1071 1072 return BLK_STS_OK; 1073 } 1074 1075 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write, 1076 sector_t lba, unsigned int nr_blocks, 1077 unsigned char flags) 1078 { 1079 cmd->cmd_len = 10; 1080 cmd->cmnd[0] = write ? WRITE_10 : READ_10; 1081 cmd->cmnd[1] = flags; 1082 cmd->cmnd[6] = 0; 1083 cmd->cmnd[9] = 0; 1084 put_unaligned_be32(lba, &cmd->cmnd[2]); 1085 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 1086 1087 return BLK_STS_OK; 1088 } 1089 1090 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write, 1091 sector_t lba, unsigned int nr_blocks, 1092 unsigned char flags) 1093 { 1094 /* Avoid that 0 blocks gets translated into 256 blocks. */ 1095 if (WARN_ON_ONCE(nr_blocks == 0)) 1096 return BLK_STS_IOERR; 1097 1098 if (unlikely(flags & 0x8)) { 1099 /* 1100 * This happens only if this drive failed 10byte rw 1101 * command with ILLEGAL_REQUEST during operation and 1102 * thus turned off use_10_for_rw. 1103 */ 1104 scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n"); 1105 return BLK_STS_IOERR; 1106 } 1107 1108 cmd->cmd_len = 6; 1109 cmd->cmnd[0] = write ? WRITE_6 : READ_6; 1110 cmd->cmnd[1] = (lba >> 16) & 0x1f; 1111 cmd->cmnd[2] = (lba >> 8) & 0xff; 1112 cmd->cmnd[3] = lba & 0xff; 1113 cmd->cmnd[4] = nr_blocks; 1114 cmd->cmnd[5] = 0; 1115 1116 return BLK_STS_OK; 1117 } 1118 1119 /* 1120 * Check if a command has a duration limit set. If it does, and the target 1121 * device supports CDL and the feature is enabled, return the limit 1122 * descriptor index to use. Return 0 (no limit) otherwise. 1123 */ 1124 static int sd_cdl_dld(struct scsi_disk *sdkp, struct scsi_cmnd *scmd) 1125 { 1126 struct scsi_device *sdp = sdkp->device; 1127 int hint; 1128 1129 if (!sdp->cdl_supported || !sdp->cdl_enable) 1130 return 0; 1131 1132 /* 1133 * Use "no limit" if the request ioprio does not specify a duration 1134 * limit hint. 1135 */ 1136 hint = IOPRIO_PRIO_HINT(req_get_ioprio(scsi_cmd_to_rq(scmd))); 1137 if (hint < IOPRIO_HINT_DEV_DURATION_LIMIT_1 || 1138 hint > IOPRIO_HINT_DEV_DURATION_LIMIT_7) 1139 return 0; 1140 1141 return (hint - IOPRIO_HINT_DEV_DURATION_LIMIT_1) + 1; 1142 } 1143 1144 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd) 1145 { 1146 struct request *rq = scsi_cmd_to_rq(cmd); 1147 struct scsi_device *sdp = cmd->device; 1148 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 1149 sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 1150 sector_t threshold; 1151 unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 1152 unsigned int mask = logical_to_sectors(sdp, 1) - 1; 1153 bool write = rq_data_dir(rq) == WRITE; 1154 unsigned char protect, fua; 1155 unsigned int dld; 1156 blk_status_t ret; 1157 unsigned int dif; 1158 bool dix; 1159 1160 ret = scsi_alloc_sgtables(cmd); 1161 if (ret != BLK_STS_OK) 1162 return ret; 1163 1164 ret = BLK_STS_IOERR; 1165 if (!scsi_device_online(sdp) || sdp->changed) { 1166 scmd_printk(KERN_ERR, cmd, "device offline or changed\n"); 1167 goto fail; 1168 } 1169 1170 if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->q->disk)) { 1171 scmd_printk(KERN_ERR, cmd, "access beyond end of device\n"); 1172 goto fail; 1173 } 1174 1175 if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) { 1176 scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n"); 1177 goto fail; 1178 } 1179 1180 /* 1181 * Some SD card readers can't handle accesses which touch the 1182 * last one or two logical blocks. Split accesses as needed. 1183 */ 1184 threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS; 1185 1186 if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) { 1187 if (lba < threshold) { 1188 /* Access up to the threshold but not beyond */ 1189 nr_blocks = threshold - lba; 1190 } else { 1191 /* Access only a single logical block */ 1192 nr_blocks = 1; 1193 } 1194 } 1195 1196 if (req_op(rq) == REQ_OP_ZONE_APPEND) { 1197 ret = sd_zbc_prepare_zone_append(cmd, &lba, nr_blocks); 1198 if (ret) 1199 goto fail; 1200 } 1201 1202 fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0; 1203 dix = scsi_prot_sg_count(cmd); 1204 dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type); 1205 dld = sd_cdl_dld(sdkp, cmd); 1206 1207 if (dif || dix) 1208 protect = sd_setup_protect_cmnd(cmd, dix, dif); 1209 else 1210 protect = 0; 1211 1212 if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) { 1213 ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks, 1214 protect | fua, dld); 1215 } else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) { 1216 ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks, 1217 protect | fua, dld); 1218 } else if ((nr_blocks > 0xff) || (lba > 0x1fffff) || 1219 sdp->use_10_for_rw || protect) { 1220 ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks, 1221 protect | fua); 1222 } else { 1223 ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks, 1224 protect | fua); 1225 } 1226 1227 if (unlikely(ret != BLK_STS_OK)) 1228 goto fail; 1229 1230 /* 1231 * We shouldn't disconnect in the middle of a sector, so with a dumb 1232 * host adapter, it's safe to assume that we can at least transfer 1233 * this many bytes between each connect / disconnect. 1234 */ 1235 cmd->transfersize = sdp->sector_size; 1236 cmd->underflow = nr_blocks << 9; 1237 cmd->allowed = sdkp->max_retries; 1238 cmd->sdb.length = nr_blocks * sdp->sector_size; 1239 1240 SCSI_LOG_HLQUEUE(1, 1241 scmd_printk(KERN_INFO, cmd, 1242 "%s: block=%llu, count=%d\n", __func__, 1243 (unsigned long long)blk_rq_pos(rq), 1244 blk_rq_sectors(rq))); 1245 SCSI_LOG_HLQUEUE(2, 1246 scmd_printk(KERN_INFO, cmd, 1247 "%s %d/%u 512 byte blocks.\n", 1248 write ? "writing" : "reading", nr_blocks, 1249 blk_rq_sectors(rq))); 1250 1251 /* 1252 * This indicates that the command is ready from our end to be queued. 1253 */ 1254 return BLK_STS_OK; 1255 fail: 1256 scsi_free_sgtables(cmd); 1257 return ret; 1258 } 1259 1260 static blk_status_t sd_init_command(struct scsi_cmnd *cmd) 1261 { 1262 struct request *rq = scsi_cmd_to_rq(cmd); 1263 1264 switch (req_op(rq)) { 1265 case REQ_OP_DISCARD: 1266 switch (scsi_disk(rq->q->disk)->provisioning_mode) { 1267 case SD_LBP_UNMAP: 1268 return sd_setup_unmap_cmnd(cmd); 1269 case SD_LBP_WS16: 1270 return sd_setup_write_same16_cmnd(cmd, true); 1271 case SD_LBP_WS10: 1272 return sd_setup_write_same10_cmnd(cmd, true); 1273 case SD_LBP_ZERO: 1274 return sd_setup_write_same10_cmnd(cmd, false); 1275 default: 1276 return BLK_STS_TARGET; 1277 } 1278 case REQ_OP_WRITE_ZEROES: 1279 return sd_setup_write_zeroes_cmnd(cmd); 1280 case REQ_OP_FLUSH: 1281 return sd_setup_flush_cmnd(cmd); 1282 case REQ_OP_READ: 1283 case REQ_OP_WRITE: 1284 case REQ_OP_ZONE_APPEND: 1285 return sd_setup_read_write_cmnd(cmd); 1286 case REQ_OP_ZONE_RESET: 1287 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER, 1288 false); 1289 case REQ_OP_ZONE_RESET_ALL: 1290 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER, 1291 true); 1292 case REQ_OP_ZONE_OPEN: 1293 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false); 1294 case REQ_OP_ZONE_CLOSE: 1295 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false); 1296 case REQ_OP_ZONE_FINISH: 1297 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false); 1298 default: 1299 WARN_ON_ONCE(1); 1300 return BLK_STS_NOTSUPP; 1301 } 1302 } 1303 1304 static void sd_uninit_command(struct scsi_cmnd *SCpnt) 1305 { 1306 struct request *rq = scsi_cmd_to_rq(SCpnt); 1307 1308 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1309 mempool_free(rq->special_vec.bv_page, sd_page_pool); 1310 } 1311 1312 static bool sd_need_revalidate(struct gendisk *disk, struct scsi_disk *sdkp) 1313 { 1314 if (sdkp->device->removable || sdkp->write_prot) { 1315 if (disk_check_media_change(disk)) 1316 return true; 1317 } 1318 1319 /* 1320 * Force a full rescan after ioctl(BLKRRPART). While the disk state has 1321 * nothing to do with partitions, BLKRRPART is used to force a full 1322 * revalidate after things like a format for historical reasons. 1323 */ 1324 return test_bit(GD_NEED_PART_SCAN, &disk->state); 1325 } 1326 1327 /** 1328 * sd_open - open a scsi disk device 1329 * @disk: disk to open 1330 * @mode: open mode 1331 * 1332 * Returns 0 if successful. Returns a negated errno value in case 1333 * of error. 1334 * 1335 * Note: This can be called from a user context (e.g. fsck(1) ) 1336 * or from within the kernel (e.g. as a result of a mount(1) ). 1337 * In the latter case @inode and @filp carry an abridged amount 1338 * of information as noted above. 1339 * 1340 * Locking: called with disk->open_mutex held. 1341 **/ 1342 static int sd_open(struct gendisk *disk, blk_mode_t mode) 1343 { 1344 struct scsi_disk *sdkp = scsi_disk(disk); 1345 struct scsi_device *sdev = sdkp->device; 1346 int retval; 1347 1348 if (scsi_device_get(sdev)) 1349 return -ENXIO; 1350 1351 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n")); 1352 1353 /* 1354 * If the device is in error recovery, wait until it is done. 1355 * If the device is offline, then disallow any access to it. 1356 */ 1357 retval = -ENXIO; 1358 if (!scsi_block_when_processing_errors(sdev)) 1359 goto error_out; 1360 1361 if (sd_need_revalidate(disk, sdkp)) 1362 sd_revalidate_disk(disk); 1363 1364 /* 1365 * If the drive is empty, just let the open fail. 1366 */ 1367 retval = -ENOMEDIUM; 1368 if (sdev->removable && !sdkp->media_present && 1369 !(mode & BLK_OPEN_NDELAY)) 1370 goto error_out; 1371 1372 /* 1373 * If the device has the write protect tab set, have the open fail 1374 * if the user expects to be able to write to the thing. 1375 */ 1376 retval = -EROFS; 1377 if (sdkp->write_prot && (mode & BLK_OPEN_WRITE)) 1378 goto error_out; 1379 1380 /* 1381 * It is possible that the disk changing stuff resulted in 1382 * the device being taken offline. If this is the case, 1383 * report this to the user, and don't pretend that the 1384 * open actually succeeded. 1385 */ 1386 retval = -ENXIO; 1387 if (!scsi_device_online(sdev)) 1388 goto error_out; 1389 1390 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) { 1391 if (scsi_block_when_processing_errors(sdev)) 1392 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT); 1393 } 1394 1395 return 0; 1396 1397 error_out: 1398 scsi_device_put(sdev); 1399 return retval; 1400 } 1401 1402 /** 1403 * sd_release - invoked when the (last) close(2) is called on this 1404 * scsi disk. 1405 * @disk: disk to release 1406 * 1407 * Returns 0. 1408 * 1409 * Note: may block (uninterruptible) if error recovery is underway 1410 * on this disk. 1411 * 1412 * Locking: called with disk->open_mutex held. 1413 **/ 1414 static void sd_release(struct gendisk *disk) 1415 { 1416 struct scsi_disk *sdkp = scsi_disk(disk); 1417 struct scsi_device *sdev = sdkp->device; 1418 1419 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n")); 1420 1421 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) { 1422 if (scsi_block_when_processing_errors(sdev)) 1423 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW); 1424 } 1425 1426 scsi_device_put(sdev); 1427 } 1428 1429 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1430 { 1431 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1432 struct scsi_device *sdp = sdkp->device; 1433 struct Scsi_Host *host = sdp->host; 1434 sector_t capacity = logical_to_sectors(sdp, sdkp->capacity); 1435 int diskinfo[4]; 1436 1437 /* default to most commonly used values */ 1438 diskinfo[0] = 0x40; /* 1 << 6 */ 1439 diskinfo[1] = 0x20; /* 1 << 5 */ 1440 diskinfo[2] = capacity >> 11; 1441 1442 /* override with calculated, extended default, or driver values */ 1443 if (host->hostt->bios_param) 1444 host->hostt->bios_param(sdp, bdev, capacity, diskinfo); 1445 else 1446 scsicam_bios_param(bdev, capacity, diskinfo); 1447 1448 geo->heads = diskinfo[0]; 1449 geo->sectors = diskinfo[1]; 1450 geo->cylinders = diskinfo[2]; 1451 return 0; 1452 } 1453 1454 /** 1455 * sd_ioctl - process an ioctl 1456 * @bdev: target block device 1457 * @mode: open mode 1458 * @cmd: ioctl command number 1459 * @arg: this is third argument given to ioctl(2) system call. 1460 * Often contains a pointer. 1461 * 1462 * Returns 0 if successful (some ioctls return positive numbers on 1463 * success as well). Returns a negated errno value in case of error. 1464 * 1465 * Note: most ioctls are forward onto the block subsystem or further 1466 * down in the scsi subsystem. 1467 **/ 1468 static int sd_ioctl(struct block_device *bdev, blk_mode_t mode, 1469 unsigned int cmd, unsigned long arg) 1470 { 1471 struct gendisk *disk = bdev->bd_disk; 1472 struct scsi_disk *sdkp = scsi_disk(disk); 1473 struct scsi_device *sdp = sdkp->device; 1474 void __user *p = (void __user *)arg; 1475 int error; 1476 1477 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, " 1478 "cmd=0x%x\n", disk->disk_name, cmd)); 1479 1480 if (bdev_is_partition(bdev) && !capable(CAP_SYS_RAWIO)) 1481 return -ENOIOCTLCMD; 1482 1483 /* 1484 * If we are in the middle of error recovery, don't let anyone 1485 * else try and use this device. Also, if error recovery fails, it 1486 * may try and take the device offline, in which case all further 1487 * access to the device is prohibited. 1488 */ 1489 error = scsi_ioctl_block_when_processing_errors(sdp, cmd, 1490 (mode & BLK_OPEN_NDELAY)); 1491 if (error) 1492 return error; 1493 1494 if (is_sed_ioctl(cmd)) 1495 return sed_ioctl(sdkp->opal_dev, cmd, p); 1496 return scsi_ioctl(sdp, mode & BLK_OPEN_WRITE, cmd, p); 1497 } 1498 1499 static void set_media_not_present(struct scsi_disk *sdkp) 1500 { 1501 if (sdkp->media_present) 1502 sdkp->device->changed = 1; 1503 1504 if (sdkp->device->removable) { 1505 sdkp->media_present = 0; 1506 sdkp->capacity = 0; 1507 } 1508 } 1509 1510 static int media_not_present(struct scsi_disk *sdkp, 1511 struct scsi_sense_hdr *sshdr) 1512 { 1513 if (!scsi_sense_valid(sshdr)) 1514 return 0; 1515 1516 /* not invoked for commands that could return deferred errors */ 1517 switch (sshdr->sense_key) { 1518 case UNIT_ATTENTION: 1519 case NOT_READY: 1520 /* medium not present */ 1521 if (sshdr->asc == 0x3A) { 1522 set_media_not_present(sdkp); 1523 return 1; 1524 } 1525 } 1526 return 0; 1527 } 1528 1529 /** 1530 * sd_check_events - check media events 1531 * @disk: kernel device descriptor 1532 * @clearing: disk events currently being cleared 1533 * 1534 * Returns mask of DISK_EVENT_*. 1535 * 1536 * Note: this function is invoked from the block subsystem. 1537 **/ 1538 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing) 1539 { 1540 struct scsi_disk *sdkp = disk->private_data; 1541 struct scsi_device *sdp; 1542 int retval; 1543 bool disk_changed; 1544 1545 if (!sdkp) 1546 return 0; 1547 1548 sdp = sdkp->device; 1549 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n")); 1550 1551 /* 1552 * If the device is offline, don't send any commands - just pretend as 1553 * if the command failed. If the device ever comes back online, we 1554 * can deal with it then. It is only because of unrecoverable errors 1555 * that we would ever take a device offline in the first place. 1556 */ 1557 if (!scsi_device_online(sdp)) { 1558 set_media_not_present(sdkp); 1559 goto out; 1560 } 1561 1562 /* 1563 * Using TEST_UNIT_READY enables differentiation between drive with 1564 * no cartridge loaded - NOT READY, drive with changed cartridge - 1565 * UNIT ATTENTION, or with same cartridge - GOOD STATUS. 1566 * 1567 * Drives that auto spin down. eg iomega jaz 1G, will be started 1568 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever 1569 * sd_revalidate() is called. 1570 */ 1571 if (scsi_block_when_processing_errors(sdp)) { 1572 struct scsi_sense_hdr sshdr = { 0, }; 1573 1574 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries, 1575 &sshdr); 1576 1577 /* failed to execute TUR, assume media not present */ 1578 if (retval < 0 || host_byte(retval)) { 1579 set_media_not_present(sdkp); 1580 goto out; 1581 } 1582 1583 if (media_not_present(sdkp, &sshdr)) 1584 goto out; 1585 } 1586 1587 /* 1588 * For removable scsi disk we have to recognise the presence 1589 * of a disk in the drive. 1590 */ 1591 if (!sdkp->media_present) 1592 sdp->changed = 1; 1593 sdkp->media_present = 1; 1594 out: 1595 /* 1596 * sdp->changed is set under the following conditions: 1597 * 1598 * Medium present state has changed in either direction. 1599 * Device has indicated UNIT_ATTENTION. 1600 */ 1601 disk_changed = sdp->changed; 1602 sdp->changed = 0; 1603 return disk_changed ? DISK_EVENT_MEDIA_CHANGE : 0; 1604 } 1605 1606 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr) 1607 { 1608 int retries, res; 1609 struct scsi_device *sdp = sdkp->device; 1610 const int timeout = sdp->request_queue->rq_timeout 1611 * SD_FLUSH_TIMEOUT_MULTIPLIER; 1612 struct scsi_sense_hdr my_sshdr; 1613 const struct scsi_exec_args exec_args = { 1614 .req_flags = BLK_MQ_REQ_PM, 1615 /* caller might not be interested in sense, but we need it */ 1616 .sshdr = sshdr ? : &my_sshdr, 1617 }; 1618 1619 if (!scsi_device_online(sdp)) 1620 return -ENODEV; 1621 1622 sshdr = exec_args.sshdr; 1623 1624 for (retries = 3; retries > 0; --retries) { 1625 unsigned char cmd[16] = { 0 }; 1626 1627 if (sdp->use_16_for_sync) 1628 cmd[0] = SYNCHRONIZE_CACHE_16; 1629 else 1630 cmd[0] = SYNCHRONIZE_CACHE; 1631 /* 1632 * Leave the rest of the command zero to indicate 1633 * flush everything. 1634 */ 1635 res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, 1636 timeout, sdkp->max_retries, &exec_args); 1637 if (res == 0) 1638 break; 1639 } 1640 1641 if (res) { 1642 sd_print_result(sdkp, "Synchronize Cache(10) failed", res); 1643 1644 if (res < 0) 1645 return res; 1646 1647 if (scsi_status_is_check_condition(res) && 1648 scsi_sense_valid(sshdr)) { 1649 sd_print_sense_hdr(sdkp, sshdr); 1650 1651 /* we need to evaluate the error return */ 1652 if (sshdr->asc == 0x3a || /* medium not present */ 1653 sshdr->asc == 0x20 || /* invalid command */ 1654 (sshdr->asc == 0x74 && sshdr->ascq == 0x71)) /* drive is password locked */ 1655 /* this is no error here */ 1656 return 0; 1657 } 1658 1659 switch (host_byte(res)) { 1660 /* ignore errors due to racing a disconnection */ 1661 case DID_BAD_TARGET: 1662 case DID_NO_CONNECT: 1663 return 0; 1664 /* signal the upper layer it might try again */ 1665 case DID_BUS_BUSY: 1666 case DID_IMM_RETRY: 1667 case DID_REQUEUE: 1668 case DID_SOFT_ERROR: 1669 return -EBUSY; 1670 default: 1671 return -EIO; 1672 } 1673 } 1674 return 0; 1675 } 1676 1677 static void sd_rescan(struct device *dev) 1678 { 1679 struct scsi_disk *sdkp = dev_get_drvdata(dev); 1680 1681 sd_revalidate_disk(sdkp->disk); 1682 } 1683 1684 static int sd_get_unique_id(struct gendisk *disk, u8 id[16], 1685 enum blk_unique_id type) 1686 { 1687 struct scsi_device *sdev = scsi_disk(disk)->device; 1688 const struct scsi_vpd *vpd; 1689 const unsigned char *d; 1690 int ret = -ENXIO, len; 1691 1692 rcu_read_lock(); 1693 vpd = rcu_dereference(sdev->vpd_pg83); 1694 if (!vpd) 1695 goto out_unlock; 1696 1697 ret = -EINVAL; 1698 for (d = vpd->data + 4; d < vpd->data + vpd->len; d += d[3] + 4) { 1699 /* we only care about designators with LU association */ 1700 if (((d[1] >> 4) & 0x3) != 0x00) 1701 continue; 1702 if ((d[1] & 0xf) != type) 1703 continue; 1704 1705 /* 1706 * Only exit early if a 16-byte descriptor was found. Otherwise 1707 * keep looking as one with more entropy might still show up. 1708 */ 1709 len = d[3]; 1710 if (len != 8 && len != 12 && len != 16) 1711 continue; 1712 ret = len; 1713 memcpy(id, d + 4, len); 1714 if (len == 16) 1715 break; 1716 } 1717 out_unlock: 1718 rcu_read_unlock(); 1719 return ret; 1720 } 1721 1722 static int sd_scsi_to_pr_err(struct scsi_sense_hdr *sshdr, int result) 1723 { 1724 switch (host_byte(result)) { 1725 case DID_TRANSPORT_MARGINAL: 1726 case DID_TRANSPORT_DISRUPTED: 1727 case DID_BUS_BUSY: 1728 return PR_STS_RETRY_PATH_FAILURE; 1729 case DID_NO_CONNECT: 1730 return PR_STS_PATH_FAILED; 1731 case DID_TRANSPORT_FAILFAST: 1732 return PR_STS_PATH_FAST_FAILED; 1733 } 1734 1735 switch (status_byte(result)) { 1736 case SAM_STAT_RESERVATION_CONFLICT: 1737 return PR_STS_RESERVATION_CONFLICT; 1738 case SAM_STAT_CHECK_CONDITION: 1739 if (!scsi_sense_valid(sshdr)) 1740 return PR_STS_IOERR; 1741 1742 if (sshdr->sense_key == ILLEGAL_REQUEST && 1743 (sshdr->asc == 0x26 || sshdr->asc == 0x24)) 1744 return -EINVAL; 1745 1746 fallthrough; 1747 default: 1748 return PR_STS_IOERR; 1749 } 1750 } 1751 1752 static int sd_pr_in_command(struct block_device *bdev, u8 sa, 1753 unsigned char *data, int data_len) 1754 { 1755 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1756 struct scsi_device *sdev = sdkp->device; 1757 struct scsi_sense_hdr sshdr; 1758 u8 cmd[10] = { PERSISTENT_RESERVE_IN, sa }; 1759 const struct scsi_exec_args exec_args = { 1760 .sshdr = &sshdr, 1761 }; 1762 int result; 1763 1764 put_unaligned_be16(data_len, &cmd[7]); 1765 1766 result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, data, data_len, 1767 SD_TIMEOUT, sdkp->max_retries, &exec_args); 1768 if (scsi_status_is_check_condition(result) && 1769 scsi_sense_valid(&sshdr)) { 1770 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result); 1771 scsi_print_sense_hdr(sdev, NULL, &sshdr); 1772 } 1773 1774 if (result <= 0) 1775 return result; 1776 1777 return sd_scsi_to_pr_err(&sshdr, result); 1778 } 1779 1780 static int sd_pr_read_keys(struct block_device *bdev, struct pr_keys *keys_info) 1781 { 1782 int result, i, data_offset, num_copy_keys; 1783 u32 num_keys = keys_info->num_keys; 1784 int data_len = num_keys * 8 + 8; 1785 u8 *data; 1786 1787 data = kzalloc(data_len, GFP_KERNEL); 1788 if (!data) 1789 return -ENOMEM; 1790 1791 result = sd_pr_in_command(bdev, READ_KEYS, data, data_len); 1792 if (result) 1793 goto free_data; 1794 1795 keys_info->generation = get_unaligned_be32(&data[0]); 1796 keys_info->num_keys = get_unaligned_be32(&data[4]) / 8; 1797 1798 data_offset = 8; 1799 num_copy_keys = min(num_keys, keys_info->num_keys); 1800 1801 for (i = 0; i < num_copy_keys; i++) { 1802 keys_info->keys[i] = get_unaligned_be64(&data[data_offset]); 1803 data_offset += 8; 1804 } 1805 1806 free_data: 1807 kfree(data); 1808 return result; 1809 } 1810 1811 static int sd_pr_read_reservation(struct block_device *bdev, 1812 struct pr_held_reservation *rsv) 1813 { 1814 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1815 struct scsi_device *sdev = sdkp->device; 1816 u8 data[24] = { }; 1817 int result, len; 1818 1819 result = sd_pr_in_command(bdev, READ_RESERVATION, data, sizeof(data)); 1820 if (result) 1821 return result; 1822 1823 len = get_unaligned_be32(&data[4]); 1824 if (!len) 1825 return 0; 1826 1827 /* Make sure we have at least the key and type */ 1828 if (len < 14) { 1829 sdev_printk(KERN_INFO, sdev, 1830 "READ RESERVATION failed due to short return buffer of %d bytes\n", 1831 len); 1832 return -EINVAL; 1833 } 1834 1835 rsv->generation = get_unaligned_be32(&data[0]); 1836 rsv->key = get_unaligned_be64(&data[8]); 1837 rsv->type = scsi_pr_type_to_block(data[21] & 0x0f); 1838 return 0; 1839 } 1840 1841 static int sd_pr_out_command(struct block_device *bdev, u8 sa, u64 key, 1842 u64 sa_key, enum scsi_pr_type type, u8 flags) 1843 { 1844 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1845 struct scsi_device *sdev = sdkp->device; 1846 struct scsi_sense_hdr sshdr; 1847 const struct scsi_exec_args exec_args = { 1848 .sshdr = &sshdr, 1849 }; 1850 int result; 1851 u8 cmd[16] = { 0, }; 1852 u8 data[24] = { 0, }; 1853 1854 cmd[0] = PERSISTENT_RESERVE_OUT; 1855 cmd[1] = sa; 1856 cmd[2] = type; 1857 put_unaligned_be32(sizeof(data), &cmd[5]); 1858 1859 put_unaligned_be64(key, &data[0]); 1860 put_unaligned_be64(sa_key, &data[8]); 1861 data[20] = flags; 1862 1863 result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, &data, 1864 sizeof(data), SD_TIMEOUT, sdkp->max_retries, 1865 &exec_args); 1866 1867 if (scsi_status_is_check_condition(result) && 1868 scsi_sense_valid(&sshdr)) { 1869 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result); 1870 scsi_print_sense_hdr(sdev, NULL, &sshdr); 1871 } 1872 1873 if (result <= 0) 1874 return result; 1875 1876 return sd_scsi_to_pr_err(&sshdr, result); 1877 } 1878 1879 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 1880 u32 flags) 1881 { 1882 if (flags & ~PR_FL_IGNORE_KEY) 1883 return -EOPNOTSUPP; 1884 return sd_pr_out_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00, 1885 old_key, new_key, 0, 1886 (1 << 0) /* APTPL */); 1887 } 1888 1889 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 1890 u32 flags) 1891 { 1892 if (flags) 1893 return -EOPNOTSUPP; 1894 return sd_pr_out_command(bdev, 0x01, key, 0, 1895 block_pr_type_to_scsi(type), 0); 1896 } 1897 1898 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 1899 { 1900 return sd_pr_out_command(bdev, 0x02, key, 0, 1901 block_pr_type_to_scsi(type), 0); 1902 } 1903 1904 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 1905 enum pr_type type, bool abort) 1906 { 1907 return sd_pr_out_command(bdev, abort ? 0x05 : 0x04, old_key, new_key, 1908 block_pr_type_to_scsi(type), 0); 1909 } 1910 1911 static int sd_pr_clear(struct block_device *bdev, u64 key) 1912 { 1913 return sd_pr_out_command(bdev, 0x03, key, 0, 0, 0); 1914 } 1915 1916 static const struct pr_ops sd_pr_ops = { 1917 .pr_register = sd_pr_register, 1918 .pr_reserve = sd_pr_reserve, 1919 .pr_release = sd_pr_release, 1920 .pr_preempt = sd_pr_preempt, 1921 .pr_clear = sd_pr_clear, 1922 .pr_read_keys = sd_pr_read_keys, 1923 .pr_read_reservation = sd_pr_read_reservation, 1924 }; 1925 1926 static void scsi_disk_free_disk(struct gendisk *disk) 1927 { 1928 struct scsi_disk *sdkp = scsi_disk(disk); 1929 1930 put_device(&sdkp->disk_dev); 1931 } 1932 1933 static const struct block_device_operations sd_fops = { 1934 .owner = THIS_MODULE, 1935 .open = sd_open, 1936 .release = sd_release, 1937 .ioctl = sd_ioctl, 1938 .getgeo = sd_getgeo, 1939 .compat_ioctl = blkdev_compat_ptr_ioctl, 1940 .check_events = sd_check_events, 1941 .unlock_native_capacity = sd_unlock_native_capacity, 1942 .report_zones = sd_zbc_report_zones, 1943 .get_unique_id = sd_get_unique_id, 1944 .free_disk = scsi_disk_free_disk, 1945 .pr_ops = &sd_pr_ops, 1946 }; 1947 1948 /** 1949 * sd_eh_reset - reset error handling callback 1950 * @scmd: sd-issued command that has failed 1951 * 1952 * This function is called by the SCSI midlayer before starting 1953 * SCSI EH. When counting medium access failures we have to be 1954 * careful to register it only only once per device and SCSI EH run; 1955 * there might be several timed out commands which will cause the 1956 * 'max_medium_access_timeouts' counter to trigger after the first 1957 * SCSI EH run already and set the device to offline. 1958 * So this function resets the internal counter before starting SCSI EH. 1959 **/ 1960 static void sd_eh_reset(struct scsi_cmnd *scmd) 1961 { 1962 struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk); 1963 1964 /* New SCSI EH run, reset gate variable */ 1965 sdkp->ignore_medium_access_errors = false; 1966 } 1967 1968 /** 1969 * sd_eh_action - error handling callback 1970 * @scmd: sd-issued command that has failed 1971 * @eh_disp: The recovery disposition suggested by the midlayer 1972 * 1973 * This function is called by the SCSI midlayer upon completion of an 1974 * error test command (currently TEST UNIT READY). The result of sending 1975 * the eh command is passed in eh_disp. We're looking for devices that 1976 * fail medium access commands but are OK with non access commands like 1977 * test unit ready (so wrongly see the device as having a successful 1978 * recovery) 1979 **/ 1980 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp) 1981 { 1982 struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk); 1983 struct scsi_device *sdev = scmd->device; 1984 1985 if (!scsi_device_online(sdev) || 1986 !scsi_medium_access_command(scmd) || 1987 host_byte(scmd->result) != DID_TIME_OUT || 1988 eh_disp != SUCCESS) 1989 return eh_disp; 1990 1991 /* 1992 * The device has timed out executing a medium access command. 1993 * However, the TEST UNIT READY command sent during error 1994 * handling completed successfully. Either the device is in the 1995 * process of recovering or has it suffered an internal failure 1996 * that prevents access to the storage medium. 1997 */ 1998 if (!sdkp->ignore_medium_access_errors) { 1999 sdkp->medium_access_timed_out++; 2000 sdkp->ignore_medium_access_errors = true; 2001 } 2002 2003 /* 2004 * If the device keeps failing read/write commands but TEST UNIT 2005 * READY always completes successfully we assume that medium 2006 * access is no longer possible and take the device offline. 2007 */ 2008 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) { 2009 scmd_printk(KERN_ERR, scmd, 2010 "Medium access timeout failure. Offlining disk!\n"); 2011 mutex_lock(&sdev->state_mutex); 2012 scsi_device_set_state(sdev, SDEV_OFFLINE); 2013 mutex_unlock(&sdev->state_mutex); 2014 2015 return SUCCESS; 2016 } 2017 2018 return eh_disp; 2019 } 2020 2021 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd) 2022 { 2023 struct request *req = scsi_cmd_to_rq(scmd); 2024 struct scsi_device *sdev = scmd->device; 2025 unsigned int transferred, good_bytes; 2026 u64 start_lba, end_lba, bad_lba; 2027 2028 /* 2029 * Some commands have a payload smaller than the device logical 2030 * block size (e.g. INQUIRY on a 4K disk). 2031 */ 2032 if (scsi_bufflen(scmd) <= sdev->sector_size) 2033 return 0; 2034 2035 /* Check if we have a 'bad_lba' information */ 2036 if (!scsi_get_sense_info_fld(scmd->sense_buffer, 2037 SCSI_SENSE_BUFFERSIZE, 2038 &bad_lba)) 2039 return 0; 2040 2041 /* 2042 * If the bad lba was reported incorrectly, we have no idea where 2043 * the error is. 2044 */ 2045 start_lba = sectors_to_logical(sdev, blk_rq_pos(req)); 2046 end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd)); 2047 if (bad_lba < start_lba || bad_lba >= end_lba) 2048 return 0; 2049 2050 /* 2051 * resid is optional but mostly filled in. When it's unused, 2052 * its value is zero, so we assume the whole buffer transferred 2053 */ 2054 transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd); 2055 2056 /* This computation should always be done in terms of the 2057 * resolution of the device's medium. 2058 */ 2059 good_bytes = logical_to_bytes(sdev, bad_lba - start_lba); 2060 2061 return min(good_bytes, transferred); 2062 } 2063 2064 /** 2065 * sd_done - bottom half handler: called when the lower level 2066 * driver has completed (successfully or otherwise) a scsi command. 2067 * @SCpnt: mid-level's per command structure. 2068 * 2069 * Note: potentially run from within an ISR. Must not block. 2070 **/ 2071 static int sd_done(struct scsi_cmnd *SCpnt) 2072 { 2073 int result = SCpnt->result; 2074 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt); 2075 unsigned int sector_size = SCpnt->device->sector_size; 2076 unsigned int resid; 2077 struct scsi_sense_hdr sshdr; 2078 struct request *req = scsi_cmd_to_rq(SCpnt); 2079 struct scsi_disk *sdkp = scsi_disk(req->q->disk); 2080 int sense_valid = 0; 2081 int sense_deferred = 0; 2082 2083 switch (req_op(req)) { 2084 case REQ_OP_DISCARD: 2085 case REQ_OP_WRITE_ZEROES: 2086 case REQ_OP_ZONE_RESET: 2087 case REQ_OP_ZONE_RESET_ALL: 2088 case REQ_OP_ZONE_OPEN: 2089 case REQ_OP_ZONE_CLOSE: 2090 case REQ_OP_ZONE_FINISH: 2091 if (!result) { 2092 good_bytes = blk_rq_bytes(req); 2093 scsi_set_resid(SCpnt, 0); 2094 } else { 2095 good_bytes = 0; 2096 scsi_set_resid(SCpnt, blk_rq_bytes(req)); 2097 } 2098 break; 2099 default: 2100 /* 2101 * In case of bogus fw or device, we could end up having 2102 * an unaligned partial completion. Check this here and force 2103 * alignment. 2104 */ 2105 resid = scsi_get_resid(SCpnt); 2106 if (resid & (sector_size - 1)) { 2107 sd_printk(KERN_INFO, sdkp, 2108 "Unaligned partial completion (resid=%u, sector_sz=%u)\n", 2109 resid, sector_size); 2110 scsi_print_command(SCpnt); 2111 resid = min(scsi_bufflen(SCpnt), 2112 round_up(resid, sector_size)); 2113 scsi_set_resid(SCpnt, resid); 2114 } 2115 } 2116 2117 if (result) { 2118 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr); 2119 if (sense_valid) 2120 sense_deferred = scsi_sense_is_deferred(&sshdr); 2121 } 2122 sdkp->medium_access_timed_out = 0; 2123 2124 if (!scsi_status_is_check_condition(result) && 2125 (!sense_valid || sense_deferred)) 2126 goto out; 2127 2128 switch (sshdr.sense_key) { 2129 case HARDWARE_ERROR: 2130 case MEDIUM_ERROR: 2131 good_bytes = sd_completed_bytes(SCpnt); 2132 break; 2133 case RECOVERED_ERROR: 2134 good_bytes = scsi_bufflen(SCpnt); 2135 break; 2136 case NO_SENSE: 2137 /* This indicates a false check condition, so ignore it. An 2138 * unknown amount of data was transferred so treat it as an 2139 * error. 2140 */ 2141 SCpnt->result = 0; 2142 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 2143 break; 2144 case ABORTED_COMMAND: 2145 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */ 2146 good_bytes = sd_completed_bytes(SCpnt); 2147 break; 2148 case ILLEGAL_REQUEST: 2149 switch (sshdr.asc) { 2150 case 0x10: /* DIX: Host detected corruption */ 2151 good_bytes = sd_completed_bytes(SCpnt); 2152 break; 2153 case 0x20: /* INVALID COMMAND OPCODE */ 2154 case 0x24: /* INVALID FIELD IN CDB */ 2155 switch (SCpnt->cmnd[0]) { 2156 case UNMAP: 2157 sd_config_discard(sdkp, SD_LBP_DISABLE); 2158 break; 2159 case WRITE_SAME_16: 2160 case WRITE_SAME: 2161 if (SCpnt->cmnd[1] & 8) { /* UNMAP */ 2162 sd_config_discard(sdkp, SD_LBP_DISABLE); 2163 } else { 2164 sdkp->device->no_write_same = 1; 2165 sd_config_write_same(sdkp); 2166 req->rq_flags |= RQF_QUIET; 2167 } 2168 break; 2169 } 2170 } 2171 break; 2172 default: 2173 break; 2174 } 2175 2176 out: 2177 if (sd_is_zoned(sdkp)) 2178 good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr); 2179 2180 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt, 2181 "sd_done: completed %d of %d bytes\n", 2182 good_bytes, scsi_bufflen(SCpnt))); 2183 2184 return good_bytes; 2185 } 2186 2187 /* 2188 * spinup disk - called only in sd_revalidate_disk() 2189 */ 2190 static void 2191 sd_spinup_disk(struct scsi_disk *sdkp) 2192 { 2193 unsigned char cmd[10]; 2194 unsigned long spintime_expire = 0; 2195 int retries, spintime; 2196 unsigned int the_result; 2197 struct scsi_sense_hdr sshdr; 2198 const struct scsi_exec_args exec_args = { 2199 .sshdr = &sshdr, 2200 }; 2201 int sense_valid = 0; 2202 2203 spintime = 0; 2204 2205 /* Spin up drives, as required. Only do this at boot time */ 2206 /* Spinup needs to be done for module loads too. */ 2207 do { 2208 retries = 0; 2209 2210 do { 2211 bool media_was_present = sdkp->media_present; 2212 2213 cmd[0] = TEST_UNIT_READY; 2214 memset((void *) &cmd[1], 0, 9); 2215 2216 the_result = scsi_execute_cmd(sdkp->device, cmd, 2217 REQ_OP_DRV_IN, NULL, 0, 2218 SD_TIMEOUT, 2219 sdkp->max_retries, 2220 &exec_args); 2221 2222 /* 2223 * If the drive has indicated to us that it 2224 * doesn't have any media in it, don't bother 2225 * with any more polling. 2226 */ 2227 if (media_not_present(sdkp, &sshdr)) { 2228 if (media_was_present) 2229 sd_printk(KERN_NOTICE, sdkp, "Media removed, stopped polling\n"); 2230 return; 2231 } 2232 2233 if (the_result) 2234 sense_valid = scsi_sense_valid(&sshdr); 2235 retries++; 2236 } while (retries < 3 && 2237 (!scsi_status_is_good(the_result) || 2238 (scsi_status_is_check_condition(the_result) && 2239 sense_valid && sshdr.sense_key == UNIT_ATTENTION))); 2240 2241 if (!scsi_status_is_check_condition(the_result)) { 2242 /* no sense, TUR either succeeded or failed 2243 * with a status error */ 2244 if(!spintime && !scsi_status_is_good(the_result)) { 2245 sd_print_result(sdkp, "Test Unit Ready failed", 2246 the_result); 2247 } 2248 break; 2249 } 2250 2251 /* 2252 * The device does not want the automatic start to be issued. 2253 */ 2254 if (sdkp->device->no_start_on_add) 2255 break; 2256 2257 if (sense_valid && sshdr.sense_key == NOT_READY) { 2258 if (sshdr.asc == 4 && sshdr.ascq == 3) 2259 break; /* manual intervention required */ 2260 if (sshdr.asc == 4 && sshdr.ascq == 0xb) 2261 break; /* standby */ 2262 if (sshdr.asc == 4 && sshdr.ascq == 0xc) 2263 break; /* unavailable */ 2264 if (sshdr.asc == 4 && sshdr.ascq == 0x1b) 2265 break; /* sanitize in progress */ 2266 /* 2267 * Issue command to spin up drive when not ready 2268 */ 2269 if (!spintime) { 2270 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk..."); 2271 cmd[0] = START_STOP; 2272 cmd[1] = 1; /* Return immediately */ 2273 memset((void *) &cmd[2], 0, 8); 2274 cmd[4] = 1; /* Start spin cycle */ 2275 if (sdkp->device->start_stop_pwr_cond) 2276 cmd[4] |= 1 << 4; 2277 scsi_execute_cmd(sdkp->device, cmd, 2278 REQ_OP_DRV_IN, NULL, 0, 2279 SD_TIMEOUT, sdkp->max_retries, 2280 &exec_args); 2281 spintime_expire = jiffies + 100 * HZ; 2282 spintime = 1; 2283 } 2284 /* Wait 1 second for next try */ 2285 msleep(1000); 2286 printk(KERN_CONT "."); 2287 2288 /* 2289 * Wait for USB flash devices with slow firmware. 2290 * Yes, this sense key/ASC combination shouldn't 2291 * occur here. It's characteristic of these devices. 2292 */ 2293 } else if (sense_valid && 2294 sshdr.sense_key == UNIT_ATTENTION && 2295 sshdr.asc == 0x28) { 2296 if (!spintime) { 2297 spintime_expire = jiffies + 5 * HZ; 2298 spintime = 1; 2299 } 2300 /* Wait 1 second for next try */ 2301 msleep(1000); 2302 } else { 2303 /* we don't understand the sense code, so it's 2304 * probably pointless to loop */ 2305 if(!spintime) { 2306 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n"); 2307 sd_print_sense_hdr(sdkp, &sshdr); 2308 } 2309 break; 2310 } 2311 2312 } while (spintime && time_before_eq(jiffies, spintime_expire)); 2313 2314 if (spintime) { 2315 if (scsi_status_is_good(the_result)) 2316 printk(KERN_CONT "ready\n"); 2317 else 2318 printk(KERN_CONT "not responding...\n"); 2319 } 2320 } 2321 2322 /* 2323 * Determine whether disk supports Data Integrity Field. 2324 */ 2325 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer) 2326 { 2327 struct scsi_device *sdp = sdkp->device; 2328 u8 type; 2329 2330 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) { 2331 sdkp->protection_type = 0; 2332 return 0; 2333 } 2334 2335 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */ 2336 2337 if (type > T10_PI_TYPE3_PROTECTION) { 2338 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \ 2339 " protection type %u. Disabling disk!\n", 2340 type); 2341 sdkp->protection_type = 0; 2342 return -ENODEV; 2343 } 2344 2345 sdkp->protection_type = type; 2346 2347 return 0; 2348 } 2349 2350 static void sd_config_protection(struct scsi_disk *sdkp) 2351 { 2352 struct scsi_device *sdp = sdkp->device; 2353 2354 sd_dif_config_host(sdkp); 2355 2356 if (!sdkp->protection_type) 2357 return; 2358 2359 if (!scsi_host_dif_capable(sdp->host, sdkp->protection_type)) { 2360 sd_first_printk(KERN_NOTICE, sdkp, 2361 "Disabling DIF Type %u protection\n", 2362 sdkp->protection_type); 2363 sdkp->protection_type = 0; 2364 } 2365 2366 sd_first_printk(KERN_NOTICE, sdkp, "Enabling DIF Type %u protection\n", 2367 sdkp->protection_type); 2368 } 2369 2370 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp, 2371 struct scsi_sense_hdr *sshdr, int sense_valid, 2372 int the_result) 2373 { 2374 if (sense_valid) 2375 sd_print_sense_hdr(sdkp, sshdr); 2376 else 2377 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n"); 2378 2379 /* 2380 * Set dirty bit for removable devices if not ready - 2381 * sometimes drives will not report this properly. 2382 */ 2383 if (sdp->removable && 2384 sense_valid && sshdr->sense_key == NOT_READY) 2385 set_media_not_present(sdkp); 2386 2387 /* 2388 * We used to set media_present to 0 here to indicate no media 2389 * in the drive, but some drives fail read capacity even with 2390 * media present, so we can't do that. 2391 */ 2392 sdkp->capacity = 0; /* unknown mapped to zero - as usual */ 2393 } 2394 2395 #define RC16_LEN 32 2396 #if RC16_LEN > SD_BUF_SIZE 2397 #error RC16_LEN must not be more than SD_BUF_SIZE 2398 #endif 2399 2400 #define READ_CAPACITY_RETRIES_ON_RESET 10 2401 2402 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp, 2403 unsigned char *buffer) 2404 { 2405 unsigned char cmd[16]; 2406 struct scsi_sense_hdr sshdr; 2407 const struct scsi_exec_args exec_args = { 2408 .sshdr = &sshdr, 2409 }; 2410 int sense_valid = 0; 2411 int the_result; 2412 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2413 unsigned int alignment; 2414 unsigned long long lba; 2415 unsigned sector_size; 2416 2417 if (sdp->no_read_capacity_16) 2418 return -EINVAL; 2419 2420 do { 2421 memset(cmd, 0, 16); 2422 cmd[0] = SERVICE_ACTION_IN_16; 2423 cmd[1] = SAI_READ_CAPACITY_16; 2424 cmd[13] = RC16_LEN; 2425 memset(buffer, 0, RC16_LEN); 2426 2427 the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, 2428 buffer, RC16_LEN, SD_TIMEOUT, 2429 sdkp->max_retries, &exec_args); 2430 2431 if (media_not_present(sdkp, &sshdr)) 2432 return -ENODEV; 2433 2434 if (the_result > 0) { 2435 sense_valid = scsi_sense_valid(&sshdr); 2436 if (sense_valid && 2437 sshdr.sense_key == ILLEGAL_REQUEST && 2438 (sshdr.asc == 0x20 || sshdr.asc == 0x24) && 2439 sshdr.ascq == 0x00) 2440 /* Invalid Command Operation Code or 2441 * Invalid Field in CDB, just retry 2442 * silently with RC10 */ 2443 return -EINVAL; 2444 if (sense_valid && 2445 sshdr.sense_key == UNIT_ATTENTION && 2446 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2447 /* Device reset might occur several times, 2448 * give it one more chance */ 2449 if (--reset_retries > 0) 2450 continue; 2451 } 2452 retries--; 2453 2454 } while (the_result && retries); 2455 2456 if (the_result) { 2457 sd_print_result(sdkp, "Read Capacity(16) failed", the_result); 2458 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2459 return -EINVAL; 2460 } 2461 2462 sector_size = get_unaligned_be32(&buffer[8]); 2463 lba = get_unaligned_be64(&buffer[0]); 2464 2465 if (sd_read_protection_type(sdkp, buffer) < 0) { 2466 sdkp->capacity = 0; 2467 return -ENODEV; 2468 } 2469 2470 /* Logical blocks per physical block exponent */ 2471 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size; 2472 2473 /* RC basis */ 2474 sdkp->rc_basis = (buffer[12] >> 4) & 0x3; 2475 2476 /* Lowest aligned logical block */ 2477 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size; 2478 blk_queue_alignment_offset(sdp->request_queue, alignment); 2479 if (alignment && sdkp->first_scan) 2480 sd_printk(KERN_NOTICE, sdkp, 2481 "physical block alignment offset: %u\n", alignment); 2482 2483 if (buffer[14] & 0x80) { /* LBPME */ 2484 sdkp->lbpme = 1; 2485 2486 if (buffer[14] & 0x40) /* LBPRZ */ 2487 sdkp->lbprz = 1; 2488 2489 sd_config_discard(sdkp, SD_LBP_WS16); 2490 } 2491 2492 sdkp->capacity = lba + 1; 2493 return sector_size; 2494 } 2495 2496 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp, 2497 unsigned char *buffer) 2498 { 2499 unsigned char cmd[16]; 2500 struct scsi_sense_hdr sshdr; 2501 const struct scsi_exec_args exec_args = { 2502 .sshdr = &sshdr, 2503 }; 2504 int sense_valid = 0; 2505 int the_result; 2506 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2507 sector_t lba; 2508 unsigned sector_size; 2509 2510 do { 2511 cmd[0] = READ_CAPACITY; 2512 memset(&cmd[1], 0, 9); 2513 memset(buffer, 0, 8); 2514 2515 the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, buffer, 2516 8, SD_TIMEOUT, sdkp->max_retries, 2517 &exec_args); 2518 2519 if (media_not_present(sdkp, &sshdr)) 2520 return -ENODEV; 2521 2522 if (the_result > 0) { 2523 sense_valid = scsi_sense_valid(&sshdr); 2524 if (sense_valid && 2525 sshdr.sense_key == UNIT_ATTENTION && 2526 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2527 /* Device reset might occur several times, 2528 * give it one more chance */ 2529 if (--reset_retries > 0) 2530 continue; 2531 } 2532 retries--; 2533 2534 } while (the_result && retries); 2535 2536 if (the_result) { 2537 sd_print_result(sdkp, "Read Capacity(10) failed", the_result); 2538 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2539 return -EINVAL; 2540 } 2541 2542 sector_size = get_unaligned_be32(&buffer[4]); 2543 lba = get_unaligned_be32(&buffer[0]); 2544 2545 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) { 2546 /* Some buggy (usb cardreader) devices return an lba of 2547 0xffffffff when the want to report a size of 0 (with 2548 which they really mean no media is present) */ 2549 sdkp->capacity = 0; 2550 sdkp->physical_block_size = sector_size; 2551 return sector_size; 2552 } 2553 2554 sdkp->capacity = lba + 1; 2555 sdkp->physical_block_size = sector_size; 2556 return sector_size; 2557 } 2558 2559 static int sd_try_rc16_first(struct scsi_device *sdp) 2560 { 2561 if (sdp->host->max_cmd_len < 16) 2562 return 0; 2563 if (sdp->try_rc_10_first) 2564 return 0; 2565 if (sdp->scsi_level > SCSI_SPC_2) 2566 return 1; 2567 if (scsi_device_protection(sdp)) 2568 return 1; 2569 return 0; 2570 } 2571 2572 /* 2573 * read disk capacity 2574 */ 2575 static void 2576 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer) 2577 { 2578 int sector_size; 2579 struct scsi_device *sdp = sdkp->device; 2580 2581 if (sd_try_rc16_first(sdp)) { 2582 sector_size = read_capacity_16(sdkp, sdp, buffer); 2583 if (sector_size == -EOVERFLOW) 2584 goto got_data; 2585 if (sector_size == -ENODEV) 2586 return; 2587 if (sector_size < 0) 2588 sector_size = read_capacity_10(sdkp, sdp, buffer); 2589 if (sector_size < 0) 2590 return; 2591 } else { 2592 sector_size = read_capacity_10(sdkp, sdp, buffer); 2593 if (sector_size == -EOVERFLOW) 2594 goto got_data; 2595 if (sector_size < 0) 2596 return; 2597 if ((sizeof(sdkp->capacity) > 4) && 2598 (sdkp->capacity > 0xffffffffULL)) { 2599 int old_sector_size = sector_size; 2600 sd_printk(KERN_NOTICE, sdkp, "Very big device. " 2601 "Trying to use READ CAPACITY(16).\n"); 2602 sector_size = read_capacity_16(sdkp, sdp, buffer); 2603 if (sector_size < 0) { 2604 sd_printk(KERN_NOTICE, sdkp, 2605 "Using 0xffffffff as device size\n"); 2606 sdkp->capacity = 1 + (sector_t) 0xffffffff; 2607 sector_size = old_sector_size; 2608 goto got_data; 2609 } 2610 /* Remember that READ CAPACITY(16) succeeded */ 2611 sdp->try_rc_10_first = 0; 2612 } 2613 } 2614 2615 /* Some devices are known to return the total number of blocks, 2616 * not the highest block number. Some devices have versions 2617 * which do this and others which do not. Some devices we might 2618 * suspect of doing this but we don't know for certain. 2619 * 2620 * If we know the reported capacity is wrong, decrement it. If 2621 * we can only guess, then assume the number of blocks is even 2622 * (usually true but not always) and err on the side of lowering 2623 * the capacity. 2624 */ 2625 if (sdp->fix_capacity || 2626 (sdp->guess_capacity && (sdkp->capacity & 0x01))) { 2627 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count " 2628 "from its reported value: %llu\n", 2629 (unsigned long long) sdkp->capacity); 2630 --sdkp->capacity; 2631 } 2632 2633 got_data: 2634 if (sector_size == 0) { 2635 sector_size = 512; 2636 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, " 2637 "assuming 512.\n"); 2638 } 2639 2640 if (sector_size != 512 && 2641 sector_size != 1024 && 2642 sector_size != 2048 && 2643 sector_size != 4096) { 2644 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n", 2645 sector_size); 2646 /* 2647 * The user might want to re-format the drive with 2648 * a supported sectorsize. Once this happens, it 2649 * would be relatively trivial to set the thing up. 2650 * For this reason, we leave the thing in the table. 2651 */ 2652 sdkp->capacity = 0; 2653 /* 2654 * set a bogus sector size so the normal read/write 2655 * logic in the block layer will eventually refuse any 2656 * request on this device without tripping over power 2657 * of two sector size assumptions 2658 */ 2659 sector_size = 512; 2660 } 2661 blk_queue_logical_block_size(sdp->request_queue, sector_size); 2662 blk_queue_physical_block_size(sdp->request_queue, 2663 sdkp->physical_block_size); 2664 sdkp->device->sector_size = sector_size; 2665 2666 if (sdkp->capacity > 0xffffffff) 2667 sdp->use_16_for_rw = 1; 2668 2669 } 2670 2671 /* 2672 * Print disk capacity 2673 */ 2674 static void 2675 sd_print_capacity(struct scsi_disk *sdkp, 2676 sector_t old_capacity) 2677 { 2678 int sector_size = sdkp->device->sector_size; 2679 char cap_str_2[10], cap_str_10[10]; 2680 2681 if (!sdkp->first_scan && old_capacity == sdkp->capacity) 2682 return; 2683 2684 string_get_size(sdkp->capacity, sector_size, 2685 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2)); 2686 string_get_size(sdkp->capacity, sector_size, 2687 STRING_UNITS_10, cap_str_10, sizeof(cap_str_10)); 2688 2689 sd_printk(KERN_NOTICE, sdkp, 2690 "%llu %d-byte logical blocks: (%s/%s)\n", 2691 (unsigned long long)sdkp->capacity, 2692 sector_size, cap_str_10, cap_str_2); 2693 2694 if (sdkp->physical_block_size != sector_size) 2695 sd_printk(KERN_NOTICE, sdkp, 2696 "%u-byte physical blocks\n", 2697 sdkp->physical_block_size); 2698 } 2699 2700 /* called with buffer of length 512 */ 2701 static inline int 2702 sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage, 2703 unsigned char *buffer, int len, struct scsi_mode_data *data, 2704 struct scsi_sense_hdr *sshdr) 2705 { 2706 /* 2707 * If we must use MODE SENSE(10), make sure that the buffer length 2708 * is at least 8 bytes so that the mode sense header fits. 2709 */ 2710 if (sdkp->device->use_10_for_ms && len < 8) 2711 len = 8; 2712 2713 return scsi_mode_sense(sdkp->device, dbd, modepage, 0, buffer, len, 2714 SD_TIMEOUT, sdkp->max_retries, data, sshdr); 2715 } 2716 2717 /* 2718 * read write protect setting, if possible - called only in sd_revalidate_disk() 2719 * called with buffer of length SD_BUF_SIZE 2720 */ 2721 static void 2722 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer) 2723 { 2724 int res; 2725 struct scsi_device *sdp = sdkp->device; 2726 struct scsi_mode_data data; 2727 int old_wp = sdkp->write_prot; 2728 2729 set_disk_ro(sdkp->disk, 0); 2730 if (sdp->skip_ms_page_3f) { 2731 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n"); 2732 return; 2733 } 2734 2735 if (sdp->use_192_bytes_for_3f) { 2736 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL); 2737 } else { 2738 /* 2739 * First attempt: ask for all pages (0x3F), but only 4 bytes. 2740 * We have to start carefully: some devices hang if we ask 2741 * for more than is available. 2742 */ 2743 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL); 2744 2745 /* 2746 * Second attempt: ask for page 0 When only page 0 is 2747 * implemented, a request for page 3F may return Sense Key 2748 * 5: Illegal Request, Sense Code 24: Invalid field in 2749 * CDB. 2750 */ 2751 if (res < 0) 2752 res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL); 2753 2754 /* 2755 * Third attempt: ask 255 bytes, as we did earlier. 2756 */ 2757 if (res < 0) 2758 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255, 2759 &data, NULL); 2760 } 2761 2762 if (res < 0) { 2763 sd_first_printk(KERN_WARNING, sdkp, 2764 "Test WP failed, assume Write Enabled\n"); 2765 } else { 2766 sdkp->write_prot = ((data.device_specific & 0x80) != 0); 2767 set_disk_ro(sdkp->disk, sdkp->write_prot); 2768 if (sdkp->first_scan || old_wp != sdkp->write_prot) { 2769 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n", 2770 sdkp->write_prot ? "on" : "off"); 2771 sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer); 2772 } 2773 } 2774 } 2775 2776 /* 2777 * sd_read_cache_type - called only from sd_revalidate_disk() 2778 * called with buffer of length SD_BUF_SIZE 2779 */ 2780 static void 2781 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer) 2782 { 2783 int len = 0, res; 2784 struct scsi_device *sdp = sdkp->device; 2785 2786 int dbd; 2787 int modepage; 2788 int first_len; 2789 struct scsi_mode_data data; 2790 struct scsi_sense_hdr sshdr; 2791 int old_wce = sdkp->WCE; 2792 int old_rcd = sdkp->RCD; 2793 int old_dpofua = sdkp->DPOFUA; 2794 2795 2796 if (sdkp->cache_override) 2797 return; 2798 2799 first_len = 4; 2800 if (sdp->skip_ms_page_8) { 2801 if (sdp->type == TYPE_RBC) 2802 goto defaults; 2803 else { 2804 if (sdp->skip_ms_page_3f) 2805 goto defaults; 2806 modepage = 0x3F; 2807 if (sdp->use_192_bytes_for_3f) 2808 first_len = 192; 2809 dbd = 0; 2810 } 2811 } else if (sdp->type == TYPE_RBC) { 2812 modepage = 6; 2813 dbd = 8; 2814 } else { 2815 modepage = 8; 2816 dbd = 0; 2817 } 2818 2819 /* cautiously ask */ 2820 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len, 2821 &data, &sshdr); 2822 2823 if (res < 0) 2824 goto bad_sense; 2825 2826 if (!data.header_length) { 2827 modepage = 6; 2828 first_len = 0; 2829 sd_first_printk(KERN_ERR, sdkp, 2830 "Missing header in MODE_SENSE response\n"); 2831 } 2832 2833 /* that went OK, now ask for the proper length */ 2834 len = data.length; 2835 2836 /* 2837 * We're only interested in the first three bytes, actually. 2838 * But the data cache page is defined for the first 20. 2839 */ 2840 if (len < 3) 2841 goto bad_sense; 2842 else if (len > SD_BUF_SIZE) { 2843 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter " 2844 "data from %d to %d bytes\n", len, SD_BUF_SIZE); 2845 len = SD_BUF_SIZE; 2846 } 2847 if (modepage == 0x3F && sdp->use_192_bytes_for_3f) 2848 len = 192; 2849 2850 /* Get the data */ 2851 if (len > first_len) 2852 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len, 2853 &data, &sshdr); 2854 2855 if (!res) { 2856 int offset = data.header_length + data.block_descriptor_length; 2857 2858 while (offset < len) { 2859 u8 page_code = buffer[offset] & 0x3F; 2860 u8 spf = buffer[offset] & 0x40; 2861 2862 if (page_code == 8 || page_code == 6) { 2863 /* We're interested only in the first 3 bytes. 2864 */ 2865 if (len - offset <= 2) { 2866 sd_first_printk(KERN_ERR, sdkp, 2867 "Incomplete mode parameter " 2868 "data\n"); 2869 goto defaults; 2870 } else { 2871 modepage = page_code; 2872 goto Page_found; 2873 } 2874 } else { 2875 /* Go to the next page */ 2876 if (spf && len - offset > 3) 2877 offset += 4 + (buffer[offset+2] << 8) + 2878 buffer[offset+3]; 2879 else if (!spf && len - offset > 1) 2880 offset += 2 + buffer[offset+1]; 2881 else { 2882 sd_first_printk(KERN_ERR, sdkp, 2883 "Incomplete mode " 2884 "parameter data\n"); 2885 goto defaults; 2886 } 2887 } 2888 } 2889 2890 sd_first_printk(KERN_WARNING, sdkp, 2891 "No Caching mode page found\n"); 2892 goto defaults; 2893 2894 Page_found: 2895 if (modepage == 8) { 2896 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0); 2897 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0); 2898 } else { 2899 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0); 2900 sdkp->RCD = 0; 2901 } 2902 2903 sdkp->DPOFUA = (data.device_specific & 0x10) != 0; 2904 if (sdp->broken_fua) { 2905 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n"); 2906 sdkp->DPOFUA = 0; 2907 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw && 2908 !sdkp->device->use_16_for_rw) { 2909 sd_first_printk(KERN_NOTICE, sdkp, 2910 "Uses READ/WRITE(6), disabling FUA\n"); 2911 sdkp->DPOFUA = 0; 2912 } 2913 2914 /* No cache flush allowed for write protected devices */ 2915 if (sdkp->WCE && sdkp->write_prot) 2916 sdkp->WCE = 0; 2917 2918 if (sdkp->first_scan || old_wce != sdkp->WCE || 2919 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA) 2920 sd_printk(KERN_NOTICE, sdkp, 2921 "Write cache: %s, read cache: %s, %s\n", 2922 sdkp->WCE ? "enabled" : "disabled", 2923 sdkp->RCD ? "disabled" : "enabled", 2924 sdkp->DPOFUA ? "supports DPO and FUA" 2925 : "doesn't support DPO or FUA"); 2926 2927 return; 2928 } 2929 2930 bad_sense: 2931 if (scsi_sense_valid(&sshdr) && 2932 sshdr.sense_key == ILLEGAL_REQUEST && 2933 sshdr.asc == 0x24 && sshdr.ascq == 0x0) 2934 /* Invalid field in CDB */ 2935 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n"); 2936 else 2937 sd_first_printk(KERN_ERR, sdkp, 2938 "Asking for cache data failed\n"); 2939 2940 defaults: 2941 if (sdp->wce_default_on) { 2942 sd_first_printk(KERN_NOTICE, sdkp, 2943 "Assuming drive cache: write back\n"); 2944 sdkp->WCE = 1; 2945 } else { 2946 sd_first_printk(KERN_WARNING, sdkp, 2947 "Assuming drive cache: write through\n"); 2948 sdkp->WCE = 0; 2949 } 2950 sdkp->RCD = 0; 2951 sdkp->DPOFUA = 0; 2952 } 2953 2954 /* 2955 * The ATO bit indicates whether the DIF application tag is available 2956 * for use by the operating system. 2957 */ 2958 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer) 2959 { 2960 int res, offset; 2961 struct scsi_device *sdp = sdkp->device; 2962 struct scsi_mode_data data; 2963 struct scsi_sense_hdr sshdr; 2964 2965 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 2966 return; 2967 2968 if (sdkp->protection_type == 0) 2969 return; 2970 2971 res = scsi_mode_sense(sdp, 1, 0x0a, 0, buffer, 36, SD_TIMEOUT, 2972 sdkp->max_retries, &data, &sshdr); 2973 2974 if (res < 0 || !data.header_length || 2975 data.length < 6) { 2976 sd_first_printk(KERN_WARNING, sdkp, 2977 "getting Control mode page failed, assume no ATO\n"); 2978 2979 if (scsi_sense_valid(&sshdr)) 2980 sd_print_sense_hdr(sdkp, &sshdr); 2981 2982 return; 2983 } 2984 2985 offset = data.header_length + data.block_descriptor_length; 2986 2987 if ((buffer[offset] & 0x3f) != 0x0a) { 2988 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n"); 2989 return; 2990 } 2991 2992 if ((buffer[offset + 5] & 0x80) == 0) 2993 return; 2994 2995 sdkp->ATO = 1; 2996 2997 return; 2998 } 2999 3000 /** 3001 * sd_read_block_limits - Query disk device for preferred I/O sizes. 3002 * @sdkp: disk to query 3003 */ 3004 static void sd_read_block_limits(struct scsi_disk *sdkp) 3005 { 3006 struct scsi_vpd *vpd; 3007 3008 rcu_read_lock(); 3009 3010 vpd = rcu_dereference(sdkp->device->vpd_pgb0); 3011 if (!vpd || vpd->len < 16) 3012 goto out; 3013 3014 sdkp->min_xfer_blocks = get_unaligned_be16(&vpd->data[6]); 3015 sdkp->max_xfer_blocks = get_unaligned_be32(&vpd->data[8]); 3016 sdkp->opt_xfer_blocks = get_unaligned_be32(&vpd->data[12]); 3017 3018 if (vpd->len >= 64) { 3019 unsigned int lba_count, desc_count; 3020 3021 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&vpd->data[36]); 3022 3023 if (!sdkp->lbpme) 3024 goto out; 3025 3026 lba_count = get_unaligned_be32(&vpd->data[20]); 3027 desc_count = get_unaligned_be32(&vpd->data[24]); 3028 3029 if (lba_count && desc_count) 3030 sdkp->max_unmap_blocks = lba_count; 3031 3032 sdkp->unmap_granularity = get_unaligned_be32(&vpd->data[28]); 3033 3034 if (vpd->data[32] & 0x80) 3035 sdkp->unmap_alignment = 3036 get_unaligned_be32(&vpd->data[32]) & ~(1 << 31); 3037 3038 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */ 3039 3040 if (sdkp->max_unmap_blocks) 3041 sd_config_discard(sdkp, SD_LBP_UNMAP); 3042 else 3043 sd_config_discard(sdkp, SD_LBP_WS16); 3044 3045 } else { /* LBP VPD page tells us what to use */ 3046 if (sdkp->lbpu && sdkp->max_unmap_blocks) 3047 sd_config_discard(sdkp, SD_LBP_UNMAP); 3048 else if (sdkp->lbpws) 3049 sd_config_discard(sdkp, SD_LBP_WS16); 3050 else if (sdkp->lbpws10) 3051 sd_config_discard(sdkp, SD_LBP_WS10); 3052 else 3053 sd_config_discard(sdkp, SD_LBP_DISABLE); 3054 } 3055 } 3056 3057 out: 3058 rcu_read_unlock(); 3059 } 3060 3061 /** 3062 * sd_read_block_characteristics - Query block dev. characteristics 3063 * @sdkp: disk to query 3064 */ 3065 static void sd_read_block_characteristics(struct scsi_disk *sdkp) 3066 { 3067 struct request_queue *q = sdkp->disk->queue; 3068 struct scsi_vpd *vpd; 3069 u16 rot; 3070 u8 zoned; 3071 3072 rcu_read_lock(); 3073 vpd = rcu_dereference(sdkp->device->vpd_pgb1); 3074 3075 if (!vpd || vpd->len < 8) { 3076 rcu_read_unlock(); 3077 return; 3078 } 3079 3080 rot = get_unaligned_be16(&vpd->data[4]); 3081 zoned = (vpd->data[8] >> 4) & 3; 3082 rcu_read_unlock(); 3083 3084 if (rot == 1) { 3085 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 3086 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q); 3087 } 3088 3089 if (sdkp->device->type == TYPE_ZBC) { 3090 /* 3091 * Host-managed: Per ZBC and ZAC specifications, writes in 3092 * sequential write required zones of host-managed devices must 3093 * be aligned to the device physical block size. 3094 */ 3095 disk_set_zoned(sdkp->disk, BLK_ZONED_HM); 3096 blk_queue_zone_write_granularity(q, sdkp->physical_block_size); 3097 } else { 3098 sdkp->zoned = zoned; 3099 if (sdkp->zoned == 1) { 3100 /* Host-aware */ 3101 disk_set_zoned(sdkp->disk, BLK_ZONED_HA); 3102 } else { 3103 /* Regular disk or drive managed disk */ 3104 disk_set_zoned(sdkp->disk, BLK_ZONED_NONE); 3105 } 3106 } 3107 3108 if (!sdkp->first_scan) 3109 return; 3110 3111 if (blk_queue_is_zoned(q)) { 3112 sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n", 3113 q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware"); 3114 } else { 3115 if (sdkp->zoned == 1) 3116 sd_printk(KERN_NOTICE, sdkp, 3117 "Host-aware SMR disk used as regular disk\n"); 3118 else if (sdkp->zoned == 2) 3119 sd_printk(KERN_NOTICE, sdkp, 3120 "Drive-managed SMR disk\n"); 3121 } 3122 } 3123 3124 /** 3125 * sd_read_block_provisioning - Query provisioning VPD page 3126 * @sdkp: disk to query 3127 */ 3128 static void sd_read_block_provisioning(struct scsi_disk *sdkp) 3129 { 3130 struct scsi_vpd *vpd; 3131 3132 if (sdkp->lbpme == 0) 3133 return; 3134 3135 rcu_read_lock(); 3136 vpd = rcu_dereference(sdkp->device->vpd_pgb2); 3137 3138 if (!vpd || vpd->len < 8) { 3139 rcu_read_unlock(); 3140 return; 3141 } 3142 3143 sdkp->lbpvpd = 1; 3144 sdkp->lbpu = (vpd->data[5] >> 7) & 1; /* UNMAP */ 3145 sdkp->lbpws = (vpd->data[5] >> 6) & 1; /* WRITE SAME(16) w/ UNMAP */ 3146 sdkp->lbpws10 = (vpd->data[5] >> 5) & 1; /* WRITE SAME(10) w/ UNMAP */ 3147 rcu_read_unlock(); 3148 } 3149 3150 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer) 3151 { 3152 struct scsi_device *sdev = sdkp->device; 3153 3154 if (sdev->host->no_write_same) { 3155 sdev->no_write_same = 1; 3156 3157 return; 3158 } 3159 3160 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY, 0) < 0) { 3161 struct scsi_vpd *vpd; 3162 3163 sdev->no_report_opcodes = 1; 3164 3165 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION 3166 * CODES is unsupported and the device has an ATA 3167 * Information VPD page (SAT). 3168 */ 3169 rcu_read_lock(); 3170 vpd = rcu_dereference(sdev->vpd_pg89); 3171 if (vpd) 3172 sdev->no_write_same = 1; 3173 rcu_read_unlock(); 3174 } 3175 3176 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16, 0) == 1) 3177 sdkp->ws16 = 1; 3178 3179 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME, 0) == 1) 3180 sdkp->ws10 = 1; 3181 } 3182 3183 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer) 3184 { 3185 struct scsi_device *sdev = sdkp->device; 3186 3187 if (!sdev->security_supported) 3188 return; 3189 3190 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3191 SECURITY_PROTOCOL_IN, 0) == 1 && 3192 scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3193 SECURITY_PROTOCOL_OUT, 0) == 1) 3194 sdkp->security = 1; 3195 } 3196 3197 static inline sector_t sd64_to_sectors(struct scsi_disk *sdkp, u8 *buf) 3198 { 3199 return logical_to_sectors(sdkp->device, get_unaligned_be64(buf)); 3200 } 3201 3202 /** 3203 * sd_read_cpr - Query concurrent positioning ranges 3204 * @sdkp: disk to query 3205 */ 3206 static void sd_read_cpr(struct scsi_disk *sdkp) 3207 { 3208 struct blk_independent_access_ranges *iars = NULL; 3209 unsigned char *buffer = NULL; 3210 unsigned int nr_cpr = 0; 3211 int i, vpd_len, buf_len = SD_BUF_SIZE; 3212 u8 *desc; 3213 3214 /* 3215 * We need to have the capacity set first for the block layer to be 3216 * able to check the ranges. 3217 */ 3218 if (sdkp->first_scan) 3219 return; 3220 3221 if (!sdkp->capacity) 3222 goto out; 3223 3224 /* 3225 * Concurrent Positioning Ranges VPD: there can be at most 256 ranges, 3226 * leading to a maximum page size of 64 + 256*32 bytes. 3227 */ 3228 buf_len = 64 + 256*32; 3229 buffer = kmalloc(buf_len, GFP_KERNEL); 3230 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb9, buffer, buf_len)) 3231 goto out; 3232 3233 /* We must have at least a 64B header and one 32B range descriptor */ 3234 vpd_len = get_unaligned_be16(&buffer[2]) + 4; 3235 if (vpd_len > buf_len || vpd_len < 64 + 32 || (vpd_len & 31)) { 3236 sd_printk(KERN_ERR, sdkp, 3237 "Invalid Concurrent Positioning Ranges VPD page\n"); 3238 goto out; 3239 } 3240 3241 nr_cpr = (vpd_len - 64) / 32; 3242 if (nr_cpr == 1) { 3243 nr_cpr = 0; 3244 goto out; 3245 } 3246 3247 iars = disk_alloc_independent_access_ranges(sdkp->disk, nr_cpr); 3248 if (!iars) { 3249 nr_cpr = 0; 3250 goto out; 3251 } 3252 3253 desc = &buffer[64]; 3254 for (i = 0; i < nr_cpr; i++, desc += 32) { 3255 if (desc[0] != i) { 3256 sd_printk(KERN_ERR, sdkp, 3257 "Invalid Concurrent Positioning Range number\n"); 3258 nr_cpr = 0; 3259 break; 3260 } 3261 3262 iars->ia_range[i].sector = sd64_to_sectors(sdkp, desc + 8); 3263 iars->ia_range[i].nr_sectors = sd64_to_sectors(sdkp, desc + 16); 3264 } 3265 3266 out: 3267 disk_set_independent_access_ranges(sdkp->disk, iars); 3268 if (nr_cpr && sdkp->nr_actuators != nr_cpr) { 3269 sd_printk(KERN_NOTICE, sdkp, 3270 "%u concurrent positioning ranges\n", nr_cpr); 3271 sdkp->nr_actuators = nr_cpr; 3272 } 3273 3274 kfree(buffer); 3275 } 3276 3277 static bool sd_validate_min_xfer_size(struct scsi_disk *sdkp) 3278 { 3279 struct scsi_device *sdp = sdkp->device; 3280 unsigned int min_xfer_bytes = 3281 logical_to_bytes(sdp, sdkp->min_xfer_blocks); 3282 3283 if (sdkp->min_xfer_blocks == 0) 3284 return false; 3285 3286 if (min_xfer_bytes & (sdkp->physical_block_size - 1)) { 3287 sd_first_printk(KERN_WARNING, sdkp, 3288 "Preferred minimum I/O size %u bytes not a " \ 3289 "multiple of physical block size (%u bytes)\n", 3290 min_xfer_bytes, sdkp->physical_block_size); 3291 sdkp->min_xfer_blocks = 0; 3292 return false; 3293 } 3294 3295 sd_first_printk(KERN_INFO, sdkp, "Preferred minimum I/O size %u bytes\n", 3296 min_xfer_bytes); 3297 return true; 3298 } 3299 3300 /* 3301 * Determine the device's preferred I/O size for reads and writes 3302 * unless the reported value is unreasonably small, large, not a 3303 * multiple of the physical block size, or simply garbage. 3304 */ 3305 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp, 3306 unsigned int dev_max) 3307 { 3308 struct scsi_device *sdp = sdkp->device; 3309 unsigned int opt_xfer_bytes = 3310 logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 3311 unsigned int min_xfer_bytes = 3312 logical_to_bytes(sdp, sdkp->min_xfer_blocks); 3313 3314 if (sdkp->opt_xfer_blocks == 0) 3315 return false; 3316 3317 if (sdkp->opt_xfer_blocks > dev_max) { 3318 sd_first_printk(KERN_WARNING, sdkp, 3319 "Optimal transfer size %u logical blocks " \ 3320 "> dev_max (%u logical blocks)\n", 3321 sdkp->opt_xfer_blocks, dev_max); 3322 return false; 3323 } 3324 3325 if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) { 3326 sd_first_printk(KERN_WARNING, sdkp, 3327 "Optimal transfer size %u logical blocks " \ 3328 "> sd driver limit (%u logical blocks)\n", 3329 sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS); 3330 return false; 3331 } 3332 3333 if (opt_xfer_bytes < PAGE_SIZE) { 3334 sd_first_printk(KERN_WARNING, sdkp, 3335 "Optimal transfer size %u bytes < " \ 3336 "PAGE_SIZE (%u bytes)\n", 3337 opt_xfer_bytes, (unsigned int)PAGE_SIZE); 3338 return false; 3339 } 3340 3341 if (min_xfer_bytes && opt_xfer_bytes % min_xfer_bytes) { 3342 sd_first_printk(KERN_WARNING, sdkp, 3343 "Optimal transfer size %u bytes not a " \ 3344 "multiple of preferred minimum block " \ 3345 "size (%u bytes)\n", 3346 opt_xfer_bytes, min_xfer_bytes); 3347 return false; 3348 } 3349 3350 if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) { 3351 sd_first_printk(KERN_WARNING, sdkp, 3352 "Optimal transfer size %u bytes not a " \ 3353 "multiple of physical block size (%u bytes)\n", 3354 opt_xfer_bytes, sdkp->physical_block_size); 3355 return false; 3356 } 3357 3358 sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n", 3359 opt_xfer_bytes); 3360 return true; 3361 } 3362 3363 /** 3364 * sd_revalidate_disk - called the first time a new disk is seen, 3365 * performs disk spin up, read_capacity, etc. 3366 * @disk: struct gendisk we care about 3367 **/ 3368 static int sd_revalidate_disk(struct gendisk *disk) 3369 { 3370 struct scsi_disk *sdkp = scsi_disk(disk); 3371 struct scsi_device *sdp = sdkp->device; 3372 struct request_queue *q = sdkp->disk->queue; 3373 sector_t old_capacity = sdkp->capacity; 3374 unsigned char *buffer; 3375 unsigned int dev_max, rw_max; 3376 3377 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, 3378 "sd_revalidate_disk\n")); 3379 3380 /* 3381 * If the device is offline, don't try and read capacity or any 3382 * of the other niceties. 3383 */ 3384 if (!scsi_device_online(sdp)) 3385 goto out; 3386 3387 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL); 3388 if (!buffer) { 3389 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory " 3390 "allocation failure.\n"); 3391 goto out; 3392 } 3393 3394 sd_spinup_disk(sdkp); 3395 3396 /* 3397 * Without media there is no reason to ask; moreover, some devices 3398 * react badly if we do. 3399 */ 3400 if (sdkp->media_present) { 3401 sd_read_capacity(sdkp, buffer); 3402 3403 /* 3404 * set the default to rotational. All non-rotational devices 3405 * support the block characteristics VPD page, which will 3406 * cause this to be updated correctly and any device which 3407 * doesn't support it should be treated as rotational. 3408 */ 3409 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q); 3410 blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q); 3411 3412 if (scsi_device_supports_vpd(sdp)) { 3413 sd_read_block_provisioning(sdkp); 3414 sd_read_block_limits(sdkp); 3415 sd_read_block_characteristics(sdkp); 3416 sd_zbc_read_zones(sdkp, buffer); 3417 sd_read_cpr(sdkp); 3418 } 3419 3420 sd_print_capacity(sdkp, old_capacity); 3421 3422 sd_read_write_protect_flag(sdkp, buffer); 3423 sd_read_cache_type(sdkp, buffer); 3424 sd_read_app_tag_own(sdkp, buffer); 3425 sd_read_write_same(sdkp, buffer); 3426 sd_read_security(sdkp, buffer); 3427 sd_config_protection(sdkp); 3428 } 3429 3430 /* 3431 * We now have all cache related info, determine how we deal 3432 * with flush requests. 3433 */ 3434 sd_set_flush_flag(sdkp); 3435 3436 /* Initial block count limit based on CDB TRANSFER LENGTH field size. */ 3437 dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS; 3438 3439 /* Some devices report a maximum block count for READ/WRITE requests. */ 3440 dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks); 3441 q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max); 3442 3443 if (sd_validate_min_xfer_size(sdkp)) 3444 blk_queue_io_min(sdkp->disk->queue, 3445 logical_to_bytes(sdp, sdkp->min_xfer_blocks)); 3446 else 3447 blk_queue_io_min(sdkp->disk->queue, 0); 3448 3449 if (sd_validate_opt_xfer_size(sdkp, dev_max)) { 3450 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 3451 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks); 3452 } else { 3453 q->limits.io_opt = 0; 3454 rw_max = min_not_zero(logical_to_sectors(sdp, dev_max), 3455 (sector_t)BLK_DEF_MAX_SECTORS); 3456 } 3457 3458 /* 3459 * Limit default to SCSI host optimal sector limit if set. There may be 3460 * an impact on performance for when the size of a request exceeds this 3461 * host limit. 3462 */ 3463 rw_max = min_not_zero(rw_max, sdp->host->opt_sectors); 3464 3465 /* Do not exceed controller limit */ 3466 rw_max = min(rw_max, queue_max_hw_sectors(q)); 3467 3468 /* 3469 * Only update max_sectors if previously unset or if the current value 3470 * exceeds the capabilities of the hardware. 3471 */ 3472 if (sdkp->first_scan || 3473 q->limits.max_sectors > q->limits.max_dev_sectors || 3474 q->limits.max_sectors > q->limits.max_hw_sectors) 3475 q->limits.max_sectors = rw_max; 3476 3477 sdkp->first_scan = 0; 3478 3479 set_capacity_and_notify(disk, logical_to_sectors(sdp, sdkp->capacity)); 3480 sd_config_write_same(sdkp); 3481 kfree(buffer); 3482 3483 /* 3484 * For a zoned drive, revalidating the zones can be done only once 3485 * the gendisk capacity is set. So if this fails, set back the gendisk 3486 * capacity to 0. 3487 */ 3488 if (sd_zbc_revalidate_zones(sdkp)) 3489 set_capacity_and_notify(disk, 0); 3490 3491 out: 3492 return 0; 3493 } 3494 3495 /** 3496 * sd_unlock_native_capacity - unlock native capacity 3497 * @disk: struct gendisk to set capacity for 3498 * 3499 * Block layer calls this function if it detects that partitions 3500 * on @disk reach beyond the end of the device. If the SCSI host 3501 * implements ->unlock_native_capacity() method, it's invoked to 3502 * give it a chance to adjust the device capacity. 3503 * 3504 * CONTEXT: 3505 * Defined by block layer. Might sleep. 3506 */ 3507 static void sd_unlock_native_capacity(struct gendisk *disk) 3508 { 3509 struct scsi_device *sdev = scsi_disk(disk)->device; 3510 3511 if (sdev->host->hostt->unlock_native_capacity) 3512 sdev->host->hostt->unlock_native_capacity(sdev); 3513 } 3514 3515 /** 3516 * sd_format_disk_name - format disk name 3517 * @prefix: name prefix - ie. "sd" for SCSI disks 3518 * @index: index of the disk to format name for 3519 * @buf: output buffer 3520 * @buflen: length of the output buffer 3521 * 3522 * SCSI disk names starts at sda. The 26th device is sdz and the 3523 * 27th is sdaa. The last one for two lettered suffix is sdzz 3524 * which is followed by sdaaa. 3525 * 3526 * This is basically 26 base counting with one extra 'nil' entry 3527 * at the beginning from the second digit on and can be 3528 * determined using similar method as 26 base conversion with the 3529 * index shifted -1 after each digit is computed. 3530 * 3531 * CONTEXT: 3532 * Don't care. 3533 * 3534 * RETURNS: 3535 * 0 on success, -errno on failure. 3536 */ 3537 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen) 3538 { 3539 const int base = 'z' - 'a' + 1; 3540 char *begin = buf + strlen(prefix); 3541 char *end = buf + buflen; 3542 char *p; 3543 int unit; 3544 3545 p = end - 1; 3546 *p = '\0'; 3547 unit = base; 3548 do { 3549 if (p == begin) 3550 return -EINVAL; 3551 *--p = 'a' + (index % unit); 3552 index = (index / unit) - 1; 3553 } while (index >= 0); 3554 3555 memmove(begin, p, end - p); 3556 memcpy(buf, prefix, strlen(prefix)); 3557 3558 return 0; 3559 } 3560 3561 /** 3562 * sd_probe - called during driver initialization and whenever a 3563 * new scsi device is attached to the system. It is called once 3564 * for each scsi device (not just disks) present. 3565 * @dev: pointer to device object 3566 * 3567 * Returns 0 if successful (or not interested in this scsi device 3568 * (e.g. scanner)); 1 when there is an error. 3569 * 3570 * Note: this function is invoked from the scsi mid-level. 3571 * This function sets up the mapping between a given 3572 * <host,channel,id,lun> (found in sdp) and new device name 3573 * (e.g. /dev/sda). More precisely it is the block device major 3574 * and minor number that is chosen here. 3575 * 3576 * Assume sd_probe is not re-entrant (for time being) 3577 * Also think about sd_probe() and sd_remove() running coincidentally. 3578 **/ 3579 static int sd_probe(struct device *dev) 3580 { 3581 struct scsi_device *sdp = to_scsi_device(dev); 3582 struct scsi_disk *sdkp; 3583 struct gendisk *gd; 3584 int index; 3585 int error; 3586 3587 scsi_autopm_get_device(sdp); 3588 error = -ENODEV; 3589 if (sdp->type != TYPE_DISK && 3590 sdp->type != TYPE_ZBC && 3591 sdp->type != TYPE_MOD && 3592 sdp->type != TYPE_RBC) 3593 goto out; 3594 3595 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) && sdp->type == TYPE_ZBC) { 3596 sdev_printk(KERN_WARNING, sdp, 3597 "Unsupported ZBC host-managed device.\n"); 3598 goto out; 3599 } 3600 3601 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp, 3602 "sd_probe\n")); 3603 3604 error = -ENOMEM; 3605 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL); 3606 if (!sdkp) 3607 goto out; 3608 3609 gd = blk_mq_alloc_disk_for_queue(sdp->request_queue, 3610 &sd_bio_compl_lkclass); 3611 if (!gd) 3612 goto out_free; 3613 3614 index = ida_alloc(&sd_index_ida, GFP_KERNEL); 3615 if (index < 0) { 3616 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n"); 3617 goto out_put; 3618 } 3619 3620 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN); 3621 if (error) { 3622 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n"); 3623 goto out_free_index; 3624 } 3625 3626 sdkp->device = sdp; 3627 sdkp->disk = gd; 3628 sdkp->index = index; 3629 sdkp->max_retries = SD_MAX_RETRIES; 3630 atomic_set(&sdkp->openers, 0); 3631 atomic_set(&sdkp->device->ioerr_cnt, 0); 3632 3633 if (!sdp->request_queue->rq_timeout) { 3634 if (sdp->type != TYPE_MOD) 3635 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT); 3636 else 3637 blk_queue_rq_timeout(sdp->request_queue, 3638 SD_MOD_TIMEOUT); 3639 } 3640 3641 device_initialize(&sdkp->disk_dev); 3642 sdkp->disk_dev.parent = get_device(dev); 3643 sdkp->disk_dev.class = &sd_disk_class; 3644 dev_set_name(&sdkp->disk_dev, "%s", dev_name(dev)); 3645 3646 error = device_add(&sdkp->disk_dev); 3647 if (error) { 3648 put_device(&sdkp->disk_dev); 3649 goto out; 3650 } 3651 3652 dev_set_drvdata(dev, sdkp); 3653 3654 gd->major = sd_major((index & 0xf0) >> 4); 3655 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00); 3656 gd->minors = SD_MINORS; 3657 3658 gd->fops = &sd_fops; 3659 gd->private_data = sdkp; 3660 3661 /* defaults, until the device tells us otherwise */ 3662 sdp->sector_size = 512; 3663 sdkp->capacity = 0; 3664 sdkp->media_present = 1; 3665 sdkp->write_prot = 0; 3666 sdkp->cache_override = 0; 3667 sdkp->WCE = 0; 3668 sdkp->RCD = 0; 3669 sdkp->ATO = 0; 3670 sdkp->first_scan = 1; 3671 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS; 3672 3673 sd_revalidate_disk(gd); 3674 3675 if (sdp->removable) { 3676 gd->flags |= GENHD_FL_REMOVABLE; 3677 gd->events |= DISK_EVENT_MEDIA_CHANGE; 3678 gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT; 3679 } 3680 3681 blk_pm_runtime_init(sdp->request_queue, dev); 3682 if (sdp->rpm_autosuspend) { 3683 pm_runtime_set_autosuspend_delay(dev, 3684 sdp->host->hostt->rpm_autosuspend_delay); 3685 } 3686 3687 error = device_add_disk(dev, gd, NULL); 3688 if (error) { 3689 put_device(&sdkp->disk_dev); 3690 put_disk(gd); 3691 goto out; 3692 } 3693 3694 if (sdkp->security) { 3695 sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit); 3696 if (sdkp->opal_dev) 3697 sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n"); 3698 } 3699 3700 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n", 3701 sdp->removable ? "removable " : ""); 3702 scsi_autopm_put_device(sdp); 3703 3704 return 0; 3705 3706 out_free_index: 3707 ida_free(&sd_index_ida, index); 3708 out_put: 3709 put_disk(gd); 3710 out_free: 3711 kfree(sdkp); 3712 out: 3713 scsi_autopm_put_device(sdp); 3714 return error; 3715 } 3716 3717 /** 3718 * sd_remove - called whenever a scsi disk (previously recognized by 3719 * sd_probe) is detached from the system. It is called (potentially 3720 * multiple times) during sd module unload. 3721 * @dev: pointer to device object 3722 * 3723 * Note: this function is invoked from the scsi mid-level. 3724 * This function potentially frees up a device name (e.g. /dev/sdc) 3725 * that could be re-used by a subsequent sd_probe(). 3726 * This function is not called when the built-in sd driver is "exit-ed". 3727 **/ 3728 static int sd_remove(struct device *dev) 3729 { 3730 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3731 3732 scsi_autopm_get_device(sdkp->device); 3733 3734 device_del(&sdkp->disk_dev); 3735 del_gendisk(sdkp->disk); 3736 sd_shutdown(dev); 3737 3738 put_disk(sdkp->disk); 3739 return 0; 3740 } 3741 3742 static void scsi_disk_release(struct device *dev) 3743 { 3744 struct scsi_disk *sdkp = to_scsi_disk(dev); 3745 3746 ida_free(&sd_index_ida, sdkp->index); 3747 sd_zbc_free_zone_info(sdkp); 3748 put_device(&sdkp->device->sdev_gendev); 3749 free_opal_dev(sdkp->opal_dev); 3750 3751 kfree(sdkp); 3752 } 3753 3754 static int sd_start_stop_device(struct scsi_disk *sdkp, int start) 3755 { 3756 unsigned char cmd[6] = { START_STOP }; /* START_VALID */ 3757 struct scsi_sense_hdr sshdr; 3758 const struct scsi_exec_args exec_args = { 3759 .sshdr = &sshdr, 3760 .req_flags = BLK_MQ_REQ_PM, 3761 }; 3762 struct scsi_device *sdp = sdkp->device; 3763 int res; 3764 3765 if (start) 3766 cmd[4] |= 1; /* START */ 3767 3768 if (sdp->start_stop_pwr_cond) 3769 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */ 3770 3771 if (!scsi_device_online(sdp)) 3772 return -ENODEV; 3773 3774 res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, SD_TIMEOUT, 3775 sdkp->max_retries, &exec_args); 3776 if (res) { 3777 sd_print_result(sdkp, "Start/Stop Unit failed", res); 3778 if (res > 0 && scsi_sense_valid(&sshdr)) { 3779 sd_print_sense_hdr(sdkp, &sshdr); 3780 /* 0x3a is medium not present */ 3781 if (sshdr.asc == 0x3a) 3782 res = 0; 3783 } 3784 } 3785 3786 /* SCSI error codes must not go to the generic layer */ 3787 if (res) 3788 return -EIO; 3789 3790 return 0; 3791 } 3792 3793 /* 3794 * Send a SYNCHRONIZE CACHE instruction down to the device through 3795 * the normal SCSI command structure. Wait for the command to 3796 * complete. 3797 */ 3798 static void sd_shutdown(struct device *dev) 3799 { 3800 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3801 3802 if (!sdkp) 3803 return; /* this can happen */ 3804 3805 if (pm_runtime_suspended(dev)) 3806 return; 3807 3808 if (sdkp->WCE && sdkp->media_present) { 3809 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3810 sd_sync_cache(sdkp, NULL); 3811 } 3812 3813 if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) { 3814 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3815 sd_start_stop_device(sdkp, 0); 3816 } 3817 } 3818 3819 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors) 3820 { 3821 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3822 struct scsi_sense_hdr sshdr; 3823 int ret = 0; 3824 3825 if (!sdkp) /* E.g.: runtime suspend following sd_remove() */ 3826 return 0; 3827 3828 if (sdkp->WCE && sdkp->media_present) { 3829 if (!sdkp->device->silence_suspend) 3830 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3831 ret = sd_sync_cache(sdkp, &sshdr); 3832 3833 if (ret) { 3834 /* ignore OFFLINE device */ 3835 if (ret == -ENODEV) 3836 return 0; 3837 3838 if (!scsi_sense_valid(&sshdr) || 3839 sshdr.sense_key != ILLEGAL_REQUEST) 3840 return ret; 3841 3842 /* 3843 * sshdr.sense_key == ILLEGAL_REQUEST means this drive 3844 * doesn't support sync. There's not much to do and 3845 * suspend shouldn't fail. 3846 */ 3847 ret = 0; 3848 } 3849 } 3850 3851 if (sdkp->device->manage_start_stop) { 3852 if (!sdkp->device->silence_suspend) 3853 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3854 /* an error is not worth aborting a system sleep */ 3855 ret = sd_start_stop_device(sdkp, 0); 3856 if (ignore_stop_errors) 3857 ret = 0; 3858 } 3859 3860 return ret; 3861 } 3862 3863 static int sd_suspend_system(struct device *dev) 3864 { 3865 if (pm_runtime_suspended(dev)) 3866 return 0; 3867 3868 return sd_suspend_common(dev, true); 3869 } 3870 3871 static int sd_suspend_runtime(struct device *dev) 3872 { 3873 return sd_suspend_common(dev, false); 3874 } 3875 3876 static int sd_resume(struct device *dev) 3877 { 3878 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3879 int ret = 0; 3880 3881 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */ 3882 return 0; 3883 3884 if (!sdkp->device->manage_start_stop) 3885 return 0; 3886 3887 if (!sdkp->device->no_start_on_resume) { 3888 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n"); 3889 ret = sd_start_stop_device(sdkp, 1); 3890 } 3891 3892 if (!ret) 3893 opal_unlock_from_suspend(sdkp->opal_dev); 3894 return ret; 3895 } 3896 3897 static int sd_resume_system(struct device *dev) 3898 { 3899 if (pm_runtime_suspended(dev)) 3900 return 0; 3901 3902 return sd_resume(dev); 3903 } 3904 3905 static int sd_resume_runtime(struct device *dev) 3906 { 3907 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3908 struct scsi_device *sdp; 3909 3910 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */ 3911 return 0; 3912 3913 sdp = sdkp->device; 3914 3915 if (sdp->ignore_media_change) { 3916 /* clear the device's sense data */ 3917 static const u8 cmd[10] = { REQUEST_SENSE }; 3918 const struct scsi_exec_args exec_args = { 3919 .req_flags = BLK_MQ_REQ_PM, 3920 }; 3921 3922 if (scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, 3923 sdp->request_queue->rq_timeout, 1, 3924 &exec_args)) 3925 sd_printk(KERN_NOTICE, sdkp, 3926 "Failed to clear sense data\n"); 3927 } 3928 3929 return sd_resume(dev); 3930 } 3931 3932 /** 3933 * init_sd - entry point for this driver (both when built in or when 3934 * a module). 3935 * 3936 * Note: this function registers this driver with the scsi mid-level. 3937 **/ 3938 static int __init init_sd(void) 3939 { 3940 int majors = 0, i, err; 3941 3942 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n")); 3943 3944 for (i = 0; i < SD_MAJORS; i++) { 3945 if (__register_blkdev(sd_major(i), "sd", sd_default_probe)) 3946 continue; 3947 majors++; 3948 } 3949 3950 if (!majors) 3951 return -ENODEV; 3952 3953 err = class_register(&sd_disk_class); 3954 if (err) 3955 goto err_out; 3956 3957 sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0); 3958 if (!sd_page_pool) { 3959 printk(KERN_ERR "sd: can't init discard page pool\n"); 3960 err = -ENOMEM; 3961 goto err_out_class; 3962 } 3963 3964 err = scsi_register_driver(&sd_template.gendrv); 3965 if (err) 3966 goto err_out_driver; 3967 3968 return 0; 3969 3970 err_out_driver: 3971 mempool_destroy(sd_page_pool); 3972 err_out_class: 3973 class_unregister(&sd_disk_class); 3974 err_out: 3975 for (i = 0; i < SD_MAJORS; i++) 3976 unregister_blkdev(sd_major(i), "sd"); 3977 return err; 3978 } 3979 3980 /** 3981 * exit_sd - exit point for this driver (when it is a module). 3982 * 3983 * Note: this function unregisters this driver from the scsi mid-level. 3984 **/ 3985 static void __exit exit_sd(void) 3986 { 3987 int i; 3988 3989 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n")); 3990 3991 scsi_unregister_driver(&sd_template.gendrv); 3992 mempool_destroy(sd_page_pool); 3993 3994 class_unregister(&sd_disk_class); 3995 3996 for (i = 0; i < SD_MAJORS; i++) 3997 unregister_blkdev(sd_major(i), "sd"); 3998 } 3999 4000 module_init(init_sd); 4001 module_exit(exit_sd); 4002 4003 void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr) 4004 { 4005 scsi_print_sense_hdr(sdkp->device, 4006 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr); 4007 } 4008 4009 void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result) 4010 { 4011 const char *hb_string = scsi_hostbyte_string(result); 4012 4013 if (hb_string) 4014 sd_printk(KERN_INFO, sdkp, 4015 "%s: Result: hostbyte=%s driverbyte=%s\n", msg, 4016 hb_string ? hb_string : "invalid", 4017 "DRIVER_OK"); 4018 else 4019 sd_printk(KERN_INFO, sdkp, 4020 "%s: Result: hostbyte=0x%02x driverbyte=%s\n", 4021 msg, host_byte(result), "DRIVER_OK"); 4022 } 4023