1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * sd.c Copyright (C) 1992 Drew Eckhardt 4 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale 5 * 6 * Linux scsi disk driver 7 * Initial versions: Drew Eckhardt 8 * Subsequent revisions: Eric Youngdale 9 * Modification history: 10 * - Drew Eckhardt <drew@colorado.edu> original 11 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 12 * outstanding request, and other enhancements. 13 * Support loadable low-level scsi drivers. 14 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 15 * eight major numbers. 16 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs. 17 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 18 * sd_init and cleanups. 19 * - Alex Davis <letmein@erols.com> Fix problem where partition info 20 * not being read in sd_open. Fix problem where removable media 21 * could be ejected after sd_open. 22 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x 23 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 24 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 25 * Support 32k/1M disks. 26 * 27 * Logging policy (needs CONFIG_SCSI_LOGGING defined): 28 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2 29 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1 30 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1 31 * - entering other commands: SCSI_LOG_HLQUEUE level 3 32 * Note: when the logging level is set by the user, it must be greater 33 * than the level indicated above to trigger output. 34 */ 35 36 #include <linux/module.h> 37 #include <linux/fs.h> 38 #include <linux/kernel.h> 39 #include <linux/mm.h> 40 #include <linux/bio.h> 41 #include <linux/hdreg.h> 42 #include <linux/errno.h> 43 #include <linux/idr.h> 44 #include <linux/interrupt.h> 45 #include <linux/init.h> 46 #include <linux/blkdev.h> 47 #include <linux/blkpg.h> 48 #include <linux/blk-pm.h> 49 #include <linux/delay.h> 50 #include <linux/major.h> 51 #include <linux/mutex.h> 52 #include <linux/string_helpers.h> 53 #include <linux/slab.h> 54 #include <linux/sed-opal.h> 55 #include <linux/pm_runtime.h> 56 #include <linux/pr.h> 57 #include <linux/t10-pi.h> 58 #include <linux/uaccess.h> 59 #include <asm/unaligned.h> 60 61 #include <scsi/scsi.h> 62 #include <scsi/scsi_cmnd.h> 63 #include <scsi/scsi_dbg.h> 64 #include <scsi/scsi_device.h> 65 #include <scsi/scsi_driver.h> 66 #include <scsi/scsi_eh.h> 67 #include <scsi/scsi_host.h> 68 #include <scsi/scsi_ioctl.h> 69 #include <scsi/scsicam.h> 70 #include <scsi/scsi_common.h> 71 72 #include "sd.h" 73 #include "scsi_priv.h" 74 #include "scsi_logging.h" 75 76 MODULE_AUTHOR("Eric Youngdale"); 77 MODULE_DESCRIPTION("SCSI disk (sd) driver"); 78 MODULE_LICENSE("GPL"); 79 80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR); 81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR); 82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR); 83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR); 84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR); 85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR); 86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR); 87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR); 88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR); 89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR); 90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR); 91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR); 92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR); 93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR); 94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR); 95 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR); 96 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK); 97 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD); 98 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC); 99 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC); 100 101 #define SD_MINORS 16 102 103 static void sd_config_discard(struct scsi_disk *, unsigned int); 104 static void sd_config_write_same(struct scsi_disk *); 105 static int sd_revalidate_disk(struct gendisk *); 106 static void sd_unlock_native_capacity(struct gendisk *disk); 107 static void sd_shutdown(struct device *); 108 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer); 109 static void scsi_disk_release(struct device *cdev); 110 111 static DEFINE_IDA(sd_index_ida); 112 113 static mempool_t *sd_page_pool; 114 static struct lock_class_key sd_bio_compl_lkclass; 115 116 static const char *sd_cache_types[] = { 117 "write through", "none", "write back", 118 "write back, no read (daft)" 119 }; 120 121 static void sd_set_flush_flag(struct scsi_disk *sdkp) 122 { 123 bool wc = false, fua = false; 124 125 if (sdkp->WCE) { 126 wc = true; 127 if (sdkp->DPOFUA) 128 fua = true; 129 } 130 131 blk_queue_write_cache(sdkp->disk->queue, wc, fua); 132 } 133 134 static ssize_t 135 cache_type_store(struct device *dev, struct device_attribute *attr, 136 const char *buf, size_t count) 137 { 138 int ct, rcd, wce, sp; 139 struct scsi_disk *sdkp = to_scsi_disk(dev); 140 struct scsi_device *sdp = sdkp->device; 141 char buffer[64]; 142 char *buffer_data; 143 struct scsi_mode_data data; 144 struct scsi_sense_hdr sshdr; 145 static const char temp[] = "temporary "; 146 int len, ret; 147 148 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 149 /* no cache control on RBC devices; theoretically they 150 * can do it, but there's probably so many exceptions 151 * it's not worth the risk */ 152 return -EINVAL; 153 154 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) { 155 buf += sizeof(temp) - 1; 156 sdkp->cache_override = 1; 157 } else { 158 sdkp->cache_override = 0; 159 } 160 161 ct = sysfs_match_string(sd_cache_types, buf); 162 if (ct < 0) 163 return -EINVAL; 164 165 rcd = ct & 0x01 ? 1 : 0; 166 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0; 167 168 if (sdkp->cache_override) { 169 sdkp->WCE = wce; 170 sdkp->RCD = rcd; 171 sd_set_flush_flag(sdkp); 172 return count; 173 } 174 175 if (scsi_mode_sense(sdp, 0x08, 8, 0, buffer, sizeof(buffer), SD_TIMEOUT, 176 sdkp->max_retries, &data, NULL)) 177 return -EINVAL; 178 len = min_t(size_t, sizeof(buffer), data.length - data.header_length - 179 data.block_descriptor_length); 180 buffer_data = buffer + data.header_length + 181 data.block_descriptor_length; 182 buffer_data[2] &= ~0x05; 183 buffer_data[2] |= wce << 2 | rcd; 184 sp = buffer_data[0] & 0x80 ? 1 : 0; 185 buffer_data[0] &= ~0x80; 186 187 /* 188 * Ensure WP, DPOFUA, and RESERVED fields are cleared in 189 * received mode parameter buffer before doing MODE SELECT. 190 */ 191 data.device_specific = 0; 192 193 ret = scsi_mode_select(sdp, 1, sp, buffer_data, len, SD_TIMEOUT, 194 sdkp->max_retries, &data, &sshdr); 195 if (ret) { 196 if (ret > 0 && scsi_sense_valid(&sshdr)) 197 sd_print_sense_hdr(sdkp, &sshdr); 198 return -EINVAL; 199 } 200 sd_revalidate_disk(sdkp->disk); 201 return count; 202 } 203 204 static ssize_t 205 manage_start_stop_show(struct device *dev, 206 struct device_attribute *attr, char *buf) 207 { 208 struct scsi_disk *sdkp = to_scsi_disk(dev); 209 struct scsi_device *sdp = sdkp->device; 210 211 return sysfs_emit(buf, "%u\n", 212 sdp->manage_system_start_stop && 213 sdp->manage_runtime_start_stop && 214 sdp->manage_shutdown); 215 } 216 static DEVICE_ATTR_RO(manage_start_stop); 217 218 static ssize_t 219 manage_system_start_stop_show(struct device *dev, 220 struct device_attribute *attr, char *buf) 221 { 222 struct scsi_disk *sdkp = to_scsi_disk(dev); 223 struct scsi_device *sdp = sdkp->device; 224 225 return sysfs_emit(buf, "%u\n", sdp->manage_system_start_stop); 226 } 227 228 static ssize_t 229 manage_system_start_stop_store(struct device *dev, 230 struct device_attribute *attr, 231 const char *buf, size_t count) 232 { 233 struct scsi_disk *sdkp = to_scsi_disk(dev); 234 struct scsi_device *sdp = sdkp->device; 235 bool v; 236 237 if (!capable(CAP_SYS_ADMIN)) 238 return -EACCES; 239 240 if (kstrtobool(buf, &v)) 241 return -EINVAL; 242 243 sdp->manage_system_start_stop = v; 244 245 return count; 246 } 247 static DEVICE_ATTR_RW(manage_system_start_stop); 248 249 static ssize_t 250 manage_runtime_start_stop_show(struct device *dev, 251 struct device_attribute *attr, char *buf) 252 { 253 struct scsi_disk *sdkp = to_scsi_disk(dev); 254 struct scsi_device *sdp = sdkp->device; 255 256 return sysfs_emit(buf, "%u\n", sdp->manage_runtime_start_stop); 257 } 258 259 static ssize_t 260 manage_runtime_start_stop_store(struct device *dev, 261 struct device_attribute *attr, 262 const char *buf, size_t count) 263 { 264 struct scsi_disk *sdkp = to_scsi_disk(dev); 265 struct scsi_device *sdp = sdkp->device; 266 bool v; 267 268 if (!capable(CAP_SYS_ADMIN)) 269 return -EACCES; 270 271 if (kstrtobool(buf, &v)) 272 return -EINVAL; 273 274 sdp->manage_runtime_start_stop = v; 275 276 return count; 277 } 278 static DEVICE_ATTR_RW(manage_runtime_start_stop); 279 280 static ssize_t manage_shutdown_show(struct device *dev, 281 struct device_attribute *attr, char *buf) 282 { 283 struct scsi_disk *sdkp = to_scsi_disk(dev); 284 struct scsi_device *sdp = sdkp->device; 285 286 return sysfs_emit(buf, "%u\n", sdp->manage_shutdown); 287 } 288 289 static ssize_t manage_shutdown_store(struct device *dev, 290 struct device_attribute *attr, 291 const char *buf, size_t count) 292 { 293 struct scsi_disk *sdkp = to_scsi_disk(dev); 294 struct scsi_device *sdp = sdkp->device; 295 bool v; 296 297 if (!capable(CAP_SYS_ADMIN)) 298 return -EACCES; 299 300 if (kstrtobool(buf, &v)) 301 return -EINVAL; 302 303 sdp->manage_shutdown = v; 304 305 return count; 306 } 307 static DEVICE_ATTR_RW(manage_shutdown); 308 309 static ssize_t 310 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf) 311 { 312 struct scsi_disk *sdkp = to_scsi_disk(dev); 313 314 return sprintf(buf, "%u\n", sdkp->device->allow_restart); 315 } 316 317 static ssize_t 318 allow_restart_store(struct device *dev, struct device_attribute *attr, 319 const char *buf, size_t count) 320 { 321 bool v; 322 struct scsi_disk *sdkp = to_scsi_disk(dev); 323 struct scsi_device *sdp = sdkp->device; 324 325 if (!capable(CAP_SYS_ADMIN)) 326 return -EACCES; 327 328 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 329 return -EINVAL; 330 331 if (kstrtobool(buf, &v)) 332 return -EINVAL; 333 334 sdp->allow_restart = v; 335 336 return count; 337 } 338 static DEVICE_ATTR_RW(allow_restart); 339 340 static ssize_t 341 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf) 342 { 343 struct scsi_disk *sdkp = to_scsi_disk(dev); 344 int ct = sdkp->RCD + 2*sdkp->WCE; 345 346 return sprintf(buf, "%s\n", sd_cache_types[ct]); 347 } 348 static DEVICE_ATTR_RW(cache_type); 349 350 static ssize_t 351 FUA_show(struct device *dev, struct device_attribute *attr, char *buf) 352 { 353 struct scsi_disk *sdkp = to_scsi_disk(dev); 354 355 return sprintf(buf, "%u\n", sdkp->DPOFUA); 356 } 357 static DEVICE_ATTR_RO(FUA); 358 359 static ssize_t 360 protection_type_show(struct device *dev, struct device_attribute *attr, 361 char *buf) 362 { 363 struct scsi_disk *sdkp = to_scsi_disk(dev); 364 365 return sprintf(buf, "%u\n", sdkp->protection_type); 366 } 367 368 static ssize_t 369 protection_type_store(struct device *dev, struct device_attribute *attr, 370 const char *buf, size_t count) 371 { 372 struct scsi_disk *sdkp = to_scsi_disk(dev); 373 unsigned int val; 374 int err; 375 376 if (!capable(CAP_SYS_ADMIN)) 377 return -EACCES; 378 379 err = kstrtouint(buf, 10, &val); 380 381 if (err) 382 return err; 383 384 if (val <= T10_PI_TYPE3_PROTECTION) 385 sdkp->protection_type = val; 386 387 return count; 388 } 389 static DEVICE_ATTR_RW(protection_type); 390 391 static ssize_t 392 protection_mode_show(struct device *dev, struct device_attribute *attr, 393 char *buf) 394 { 395 struct scsi_disk *sdkp = to_scsi_disk(dev); 396 struct scsi_device *sdp = sdkp->device; 397 unsigned int dif, dix; 398 399 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type); 400 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type); 401 402 if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) { 403 dif = 0; 404 dix = 1; 405 } 406 407 if (!dif && !dix) 408 return sprintf(buf, "none\n"); 409 410 return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif); 411 } 412 static DEVICE_ATTR_RO(protection_mode); 413 414 static ssize_t 415 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf) 416 { 417 struct scsi_disk *sdkp = to_scsi_disk(dev); 418 419 return sprintf(buf, "%u\n", sdkp->ATO); 420 } 421 static DEVICE_ATTR_RO(app_tag_own); 422 423 static ssize_t 424 thin_provisioning_show(struct device *dev, struct device_attribute *attr, 425 char *buf) 426 { 427 struct scsi_disk *sdkp = to_scsi_disk(dev); 428 429 return sprintf(buf, "%u\n", sdkp->lbpme); 430 } 431 static DEVICE_ATTR_RO(thin_provisioning); 432 433 /* sysfs_match_string() requires dense arrays */ 434 static const char *lbp_mode[] = { 435 [SD_LBP_FULL] = "full", 436 [SD_LBP_UNMAP] = "unmap", 437 [SD_LBP_WS16] = "writesame_16", 438 [SD_LBP_WS10] = "writesame_10", 439 [SD_LBP_ZERO] = "writesame_zero", 440 [SD_LBP_DISABLE] = "disabled", 441 }; 442 443 static ssize_t 444 provisioning_mode_show(struct device *dev, struct device_attribute *attr, 445 char *buf) 446 { 447 struct scsi_disk *sdkp = to_scsi_disk(dev); 448 449 return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]); 450 } 451 452 static ssize_t 453 provisioning_mode_store(struct device *dev, struct device_attribute *attr, 454 const char *buf, size_t count) 455 { 456 struct scsi_disk *sdkp = to_scsi_disk(dev); 457 struct scsi_device *sdp = sdkp->device; 458 int mode; 459 460 if (!capable(CAP_SYS_ADMIN)) 461 return -EACCES; 462 463 if (sd_is_zoned(sdkp)) { 464 sd_config_discard(sdkp, SD_LBP_DISABLE); 465 return count; 466 } 467 468 if (sdp->type != TYPE_DISK) 469 return -EINVAL; 470 471 mode = sysfs_match_string(lbp_mode, buf); 472 if (mode < 0) 473 return -EINVAL; 474 475 sd_config_discard(sdkp, mode); 476 477 return count; 478 } 479 static DEVICE_ATTR_RW(provisioning_mode); 480 481 /* sysfs_match_string() requires dense arrays */ 482 static const char *zeroing_mode[] = { 483 [SD_ZERO_WRITE] = "write", 484 [SD_ZERO_WS] = "writesame", 485 [SD_ZERO_WS16_UNMAP] = "writesame_16_unmap", 486 [SD_ZERO_WS10_UNMAP] = "writesame_10_unmap", 487 }; 488 489 static ssize_t 490 zeroing_mode_show(struct device *dev, struct device_attribute *attr, 491 char *buf) 492 { 493 struct scsi_disk *sdkp = to_scsi_disk(dev); 494 495 return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]); 496 } 497 498 static ssize_t 499 zeroing_mode_store(struct device *dev, struct device_attribute *attr, 500 const char *buf, size_t count) 501 { 502 struct scsi_disk *sdkp = to_scsi_disk(dev); 503 int mode; 504 505 if (!capable(CAP_SYS_ADMIN)) 506 return -EACCES; 507 508 mode = sysfs_match_string(zeroing_mode, buf); 509 if (mode < 0) 510 return -EINVAL; 511 512 sdkp->zeroing_mode = mode; 513 514 return count; 515 } 516 static DEVICE_ATTR_RW(zeroing_mode); 517 518 static ssize_t 519 max_medium_access_timeouts_show(struct device *dev, 520 struct device_attribute *attr, char *buf) 521 { 522 struct scsi_disk *sdkp = to_scsi_disk(dev); 523 524 return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts); 525 } 526 527 static ssize_t 528 max_medium_access_timeouts_store(struct device *dev, 529 struct device_attribute *attr, const char *buf, 530 size_t count) 531 { 532 struct scsi_disk *sdkp = to_scsi_disk(dev); 533 int err; 534 535 if (!capable(CAP_SYS_ADMIN)) 536 return -EACCES; 537 538 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts); 539 540 return err ? err : count; 541 } 542 static DEVICE_ATTR_RW(max_medium_access_timeouts); 543 544 static ssize_t 545 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr, 546 char *buf) 547 { 548 struct scsi_disk *sdkp = to_scsi_disk(dev); 549 550 return sprintf(buf, "%u\n", sdkp->max_ws_blocks); 551 } 552 553 static ssize_t 554 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr, 555 const char *buf, size_t count) 556 { 557 struct scsi_disk *sdkp = to_scsi_disk(dev); 558 struct scsi_device *sdp = sdkp->device; 559 unsigned long max; 560 int err; 561 562 if (!capable(CAP_SYS_ADMIN)) 563 return -EACCES; 564 565 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 566 return -EINVAL; 567 568 err = kstrtoul(buf, 10, &max); 569 570 if (err) 571 return err; 572 573 if (max == 0) 574 sdp->no_write_same = 1; 575 else if (max <= SD_MAX_WS16_BLOCKS) { 576 sdp->no_write_same = 0; 577 sdkp->max_ws_blocks = max; 578 } 579 580 sd_config_write_same(sdkp); 581 582 return count; 583 } 584 static DEVICE_ATTR_RW(max_write_same_blocks); 585 586 static ssize_t 587 zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf) 588 { 589 struct scsi_disk *sdkp = to_scsi_disk(dev); 590 591 if (sdkp->device->type == TYPE_ZBC) 592 return sprintf(buf, "host-managed\n"); 593 if (sdkp->zoned == 1) 594 return sprintf(buf, "host-aware\n"); 595 if (sdkp->zoned == 2) 596 return sprintf(buf, "drive-managed\n"); 597 return sprintf(buf, "none\n"); 598 } 599 static DEVICE_ATTR_RO(zoned_cap); 600 601 static ssize_t 602 max_retries_store(struct device *dev, struct device_attribute *attr, 603 const char *buf, size_t count) 604 { 605 struct scsi_disk *sdkp = to_scsi_disk(dev); 606 struct scsi_device *sdev = sdkp->device; 607 int retries, err; 608 609 err = kstrtoint(buf, 10, &retries); 610 if (err) 611 return err; 612 613 if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) { 614 sdkp->max_retries = retries; 615 return count; 616 } 617 618 sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n", 619 SD_MAX_RETRIES); 620 return -EINVAL; 621 } 622 623 static ssize_t 624 max_retries_show(struct device *dev, struct device_attribute *attr, 625 char *buf) 626 { 627 struct scsi_disk *sdkp = to_scsi_disk(dev); 628 629 return sprintf(buf, "%d\n", sdkp->max_retries); 630 } 631 632 static DEVICE_ATTR_RW(max_retries); 633 634 static struct attribute *sd_disk_attrs[] = { 635 &dev_attr_cache_type.attr, 636 &dev_attr_FUA.attr, 637 &dev_attr_allow_restart.attr, 638 &dev_attr_manage_start_stop.attr, 639 &dev_attr_manage_system_start_stop.attr, 640 &dev_attr_manage_runtime_start_stop.attr, 641 &dev_attr_manage_shutdown.attr, 642 &dev_attr_protection_type.attr, 643 &dev_attr_protection_mode.attr, 644 &dev_attr_app_tag_own.attr, 645 &dev_attr_thin_provisioning.attr, 646 &dev_attr_provisioning_mode.attr, 647 &dev_attr_zeroing_mode.attr, 648 &dev_attr_max_write_same_blocks.attr, 649 &dev_attr_max_medium_access_timeouts.attr, 650 &dev_attr_zoned_cap.attr, 651 &dev_attr_max_retries.attr, 652 NULL, 653 }; 654 ATTRIBUTE_GROUPS(sd_disk); 655 656 static struct class sd_disk_class = { 657 .name = "scsi_disk", 658 .dev_release = scsi_disk_release, 659 .dev_groups = sd_disk_groups, 660 }; 661 662 /* 663 * Don't request a new module, as that could deadlock in multipath 664 * environment. 665 */ 666 static void sd_default_probe(dev_t devt) 667 { 668 } 669 670 /* 671 * Device no to disk mapping: 672 * 673 * major disc2 disc p1 674 * |............|.............|....|....| <- dev_t 675 * 31 20 19 8 7 4 3 0 676 * 677 * Inside a major, we have 16k disks, however mapped non- 678 * contiguously. The first 16 disks are for major0, the next 679 * ones with major1, ... Disk 256 is for major0 again, disk 272 680 * for major1, ... 681 * As we stay compatible with our numbering scheme, we can reuse 682 * the well-know SCSI majors 8, 65--71, 136--143. 683 */ 684 static int sd_major(int major_idx) 685 { 686 switch (major_idx) { 687 case 0: 688 return SCSI_DISK0_MAJOR; 689 case 1 ... 7: 690 return SCSI_DISK1_MAJOR + major_idx - 1; 691 case 8 ... 15: 692 return SCSI_DISK8_MAJOR + major_idx - 8; 693 default: 694 BUG(); 695 return 0; /* shut up gcc */ 696 } 697 } 698 699 #ifdef CONFIG_BLK_SED_OPAL 700 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, 701 size_t len, bool send) 702 { 703 struct scsi_disk *sdkp = data; 704 struct scsi_device *sdev = sdkp->device; 705 u8 cdb[12] = { 0, }; 706 const struct scsi_exec_args exec_args = { 707 .req_flags = BLK_MQ_REQ_PM, 708 }; 709 int ret; 710 711 cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN; 712 cdb[1] = secp; 713 put_unaligned_be16(spsp, &cdb[2]); 714 put_unaligned_be32(len, &cdb[6]); 715 716 ret = scsi_execute_cmd(sdev, cdb, send ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 717 buffer, len, SD_TIMEOUT, sdkp->max_retries, 718 &exec_args); 719 return ret <= 0 ? ret : -EIO; 720 } 721 #endif /* CONFIG_BLK_SED_OPAL */ 722 723 /* 724 * Look up the DIX operation based on whether the command is read or 725 * write and whether dix and dif are enabled. 726 */ 727 static unsigned int sd_prot_op(bool write, bool dix, bool dif) 728 { 729 /* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */ 730 static const unsigned int ops[] = { /* wrt dix dif */ 731 SCSI_PROT_NORMAL, /* 0 0 0 */ 732 SCSI_PROT_READ_STRIP, /* 0 0 1 */ 733 SCSI_PROT_READ_INSERT, /* 0 1 0 */ 734 SCSI_PROT_READ_PASS, /* 0 1 1 */ 735 SCSI_PROT_NORMAL, /* 1 0 0 */ 736 SCSI_PROT_WRITE_INSERT, /* 1 0 1 */ 737 SCSI_PROT_WRITE_STRIP, /* 1 1 0 */ 738 SCSI_PROT_WRITE_PASS, /* 1 1 1 */ 739 }; 740 741 return ops[write << 2 | dix << 1 | dif]; 742 } 743 744 /* 745 * Returns a mask of the protection flags that are valid for a given DIX 746 * operation. 747 */ 748 static unsigned int sd_prot_flag_mask(unsigned int prot_op) 749 { 750 static const unsigned int flag_mask[] = { 751 [SCSI_PROT_NORMAL] = 0, 752 753 [SCSI_PROT_READ_STRIP] = SCSI_PROT_TRANSFER_PI | 754 SCSI_PROT_GUARD_CHECK | 755 SCSI_PROT_REF_CHECK | 756 SCSI_PROT_REF_INCREMENT, 757 758 [SCSI_PROT_READ_INSERT] = SCSI_PROT_REF_INCREMENT | 759 SCSI_PROT_IP_CHECKSUM, 760 761 [SCSI_PROT_READ_PASS] = SCSI_PROT_TRANSFER_PI | 762 SCSI_PROT_GUARD_CHECK | 763 SCSI_PROT_REF_CHECK | 764 SCSI_PROT_REF_INCREMENT | 765 SCSI_PROT_IP_CHECKSUM, 766 767 [SCSI_PROT_WRITE_INSERT] = SCSI_PROT_TRANSFER_PI | 768 SCSI_PROT_REF_INCREMENT, 769 770 [SCSI_PROT_WRITE_STRIP] = SCSI_PROT_GUARD_CHECK | 771 SCSI_PROT_REF_CHECK | 772 SCSI_PROT_REF_INCREMENT | 773 SCSI_PROT_IP_CHECKSUM, 774 775 [SCSI_PROT_WRITE_PASS] = SCSI_PROT_TRANSFER_PI | 776 SCSI_PROT_GUARD_CHECK | 777 SCSI_PROT_REF_CHECK | 778 SCSI_PROT_REF_INCREMENT | 779 SCSI_PROT_IP_CHECKSUM, 780 }; 781 782 return flag_mask[prot_op]; 783 } 784 785 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd, 786 unsigned int dix, unsigned int dif) 787 { 788 struct request *rq = scsi_cmd_to_rq(scmd); 789 struct bio *bio = rq->bio; 790 unsigned int prot_op = sd_prot_op(rq_data_dir(rq), dix, dif); 791 unsigned int protect = 0; 792 793 if (dix) { /* DIX Type 0, 1, 2, 3 */ 794 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM)) 795 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM; 796 797 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 798 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK; 799 } 800 801 if (dif != T10_PI_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */ 802 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT; 803 804 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 805 scmd->prot_flags |= SCSI_PROT_REF_CHECK; 806 } 807 808 if (dif) { /* DIX/DIF Type 1, 2, 3 */ 809 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI; 810 811 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK)) 812 protect = 3 << 5; /* Disable target PI checking */ 813 else 814 protect = 1 << 5; /* Enable target PI checking */ 815 } 816 817 scsi_set_prot_op(scmd, prot_op); 818 scsi_set_prot_type(scmd, dif); 819 scmd->prot_flags &= sd_prot_flag_mask(prot_op); 820 821 return protect; 822 } 823 824 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode) 825 { 826 struct request_queue *q = sdkp->disk->queue; 827 unsigned int logical_block_size = sdkp->device->sector_size; 828 unsigned int max_blocks = 0; 829 830 q->limits.discard_alignment = 831 sdkp->unmap_alignment * logical_block_size; 832 q->limits.discard_granularity = 833 max(sdkp->physical_block_size, 834 sdkp->unmap_granularity * logical_block_size); 835 sdkp->provisioning_mode = mode; 836 837 switch (mode) { 838 839 case SD_LBP_FULL: 840 case SD_LBP_DISABLE: 841 blk_queue_max_discard_sectors(q, 0); 842 return; 843 844 case SD_LBP_UNMAP: 845 max_blocks = min_not_zero(sdkp->max_unmap_blocks, 846 (u32)SD_MAX_WS16_BLOCKS); 847 break; 848 849 case SD_LBP_WS16: 850 if (sdkp->device->unmap_limit_for_ws) 851 max_blocks = sdkp->max_unmap_blocks; 852 else 853 max_blocks = sdkp->max_ws_blocks; 854 855 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS); 856 break; 857 858 case SD_LBP_WS10: 859 if (sdkp->device->unmap_limit_for_ws) 860 max_blocks = sdkp->max_unmap_blocks; 861 else 862 max_blocks = sdkp->max_ws_blocks; 863 864 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS); 865 break; 866 867 case SD_LBP_ZERO: 868 max_blocks = min_not_zero(sdkp->max_ws_blocks, 869 (u32)SD_MAX_WS10_BLOCKS); 870 break; 871 } 872 873 blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9)); 874 } 875 876 static void *sd_set_special_bvec(struct request *rq, unsigned int data_len) 877 { 878 struct page *page; 879 880 page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 881 if (!page) 882 return NULL; 883 clear_highpage(page); 884 bvec_set_page(&rq->special_vec, page, data_len, 0); 885 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 886 return bvec_virt(&rq->special_vec); 887 } 888 889 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd) 890 { 891 struct scsi_device *sdp = cmd->device; 892 struct request *rq = scsi_cmd_to_rq(cmd); 893 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 894 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 895 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 896 unsigned int data_len = 24; 897 char *buf; 898 899 buf = sd_set_special_bvec(rq, data_len); 900 if (!buf) 901 return BLK_STS_RESOURCE; 902 903 cmd->cmd_len = 10; 904 cmd->cmnd[0] = UNMAP; 905 cmd->cmnd[8] = 24; 906 907 put_unaligned_be16(6 + 16, &buf[0]); 908 put_unaligned_be16(16, &buf[2]); 909 put_unaligned_be64(lba, &buf[8]); 910 put_unaligned_be32(nr_blocks, &buf[16]); 911 912 cmd->allowed = sdkp->max_retries; 913 cmd->transfersize = data_len; 914 rq->timeout = SD_TIMEOUT; 915 916 return scsi_alloc_sgtables(cmd); 917 } 918 919 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd, 920 bool unmap) 921 { 922 struct scsi_device *sdp = cmd->device; 923 struct request *rq = scsi_cmd_to_rq(cmd); 924 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 925 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 926 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 927 u32 data_len = sdp->sector_size; 928 929 if (!sd_set_special_bvec(rq, data_len)) 930 return BLK_STS_RESOURCE; 931 932 cmd->cmd_len = 16; 933 cmd->cmnd[0] = WRITE_SAME_16; 934 if (unmap) 935 cmd->cmnd[1] = 0x8; /* UNMAP */ 936 put_unaligned_be64(lba, &cmd->cmnd[2]); 937 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 938 939 cmd->allowed = sdkp->max_retries; 940 cmd->transfersize = data_len; 941 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 942 943 return scsi_alloc_sgtables(cmd); 944 } 945 946 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd, 947 bool unmap) 948 { 949 struct scsi_device *sdp = cmd->device; 950 struct request *rq = scsi_cmd_to_rq(cmd); 951 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 952 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 953 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 954 u32 data_len = sdp->sector_size; 955 956 if (!sd_set_special_bvec(rq, data_len)) 957 return BLK_STS_RESOURCE; 958 959 cmd->cmd_len = 10; 960 cmd->cmnd[0] = WRITE_SAME; 961 if (unmap) 962 cmd->cmnd[1] = 0x8; /* UNMAP */ 963 put_unaligned_be32(lba, &cmd->cmnd[2]); 964 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 965 966 cmd->allowed = sdkp->max_retries; 967 cmd->transfersize = data_len; 968 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 969 970 return scsi_alloc_sgtables(cmd); 971 } 972 973 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd) 974 { 975 struct request *rq = scsi_cmd_to_rq(cmd); 976 struct scsi_device *sdp = cmd->device; 977 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 978 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 979 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 980 981 if (!(rq->cmd_flags & REQ_NOUNMAP)) { 982 switch (sdkp->zeroing_mode) { 983 case SD_ZERO_WS16_UNMAP: 984 return sd_setup_write_same16_cmnd(cmd, true); 985 case SD_ZERO_WS10_UNMAP: 986 return sd_setup_write_same10_cmnd(cmd, true); 987 } 988 } 989 990 if (sdp->no_write_same) { 991 rq->rq_flags |= RQF_QUIET; 992 return BLK_STS_TARGET; 993 } 994 995 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) 996 return sd_setup_write_same16_cmnd(cmd, false); 997 998 return sd_setup_write_same10_cmnd(cmd, false); 999 } 1000 1001 static void sd_config_write_same(struct scsi_disk *sdkp) 1002 { 1003 struct request_queue *q = sdkp->disk->queue; 1004 unsigned int logical_block_size = sdkp->device->sector_size; 1005 1006 if (sdkp->device->no_write_same) { 1007 sdkp->max_ws_blocks = 0; 1008 goto out; 1009 } 1010 1011 /* Some devices can not handle block counts above 0xffff despite 1012 * supporting WRITE SAME(16). Consequently we default to 64k 1013 * blocks per I/O unless the device explicitly advertises a 1014 * bigger limit. 1015 */ 1016 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS) 1017 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 1018 (u32)SD_MAX_WS16_BLOCKS); 1019 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes) 1020 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 1021 (u32)SD_MAX_WS10_BLOCKS); 1022 else { 1023 sdkp->device->no_write_same = 1; 1024 sdkp->max_ws_blocks = 0; 1025 } 1026 1027 if (sdkp->lbprz && sdkp->lbpws) 1028 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP; 1029 else if (sdkp->lbprz && sdkp->lbpws10) 1030 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP; 1031 else if (sdkp->max_ws_blocks) 1032 sdkp->zeroing_mode = SD_ZERO_WS; 1033 else 1034 sdkp->zeroing_mode = SD_ZERO_WRITE; 1035 1036 if (sdkp->max_ws_blocks && 1037 sdkp->physical_block_size > logical_block_size) { 1038 /* 1039 * Reporting a maximum number of blocks that is not aligned 1040 * on the device physical size would cause a large write same 1041 * request to be split into physically unaligned chunks by 1042 * __blkdev_issue_write_zeroes() even if the caller of this 1043 * functions took care to align the large request. So make sure 1044 * the maximum reported is aligned to the device physical block 1045 * size. This is only an optional optimization for regular 1046 * disks, but this is mandatory to avoid failure of large write 1047 * same requests directed at sequential write required zones of 1048 * host-managed ZBC disks. 1049 */ 1050 sdkp->max_ws_blocks = 1051 round_down(sdkp->max_ws_blocks, 1052 bytes_to_logical(sdkp->device, 1053 sdkp->physical_block_size)); 1054 } 1055 1056 out: 1057 blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks * 1058 (logical_block_size >> 9)); 1059 } 1060 1061 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd) 1062 { 1063 struct request *rq = scsi_cmd_to_rq(cmd); 1064 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 1065 1066 /* flush requests don't perform I/O, zero the S/G table */ 1067 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1068 1069 if (cmd->device->use_16_for_sync) { 1070 cmd->cmnd[0] = SYNCHRONIZE_CACHE_16; 1071 cmd->cmd_len = 16; 1072 } else { 1073 cmd->cmnd[0] = SYNCHRONIZE_CACHE; 1074 cmd->cmd_len = 10; 1075 } 1076 cmd->transfersize = 0; 1077 cmd->allowed = sdkp->max_retries; 1078 1079 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER; 1080 return BLK_STS_OK; 1081 } 1082 1083 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write, 1084 sector_t lba, unsigned int nr_blocks, 1085 unsigned char flags, unsigned int dld) 1086 { 1087 cmd->cmd_len = SD_EXT_CDB_SIZE; 1088 cmd->cmnd[0] = VARIABLE_LENGTH_CMD; 1089 cmd->cmnd[7] = 0x18; /* Additional CDB len */ 1090 cmd->cmnd[9] = write ? WRITE_32 : READ_32; 1091 cmd->cmnd[10] = flags; 1092 cmd->cmnd[11] = dld & 0x07; 1093 put_unaligned_be64(lba, &cmd->cmnd[12]); 1094 put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */ 1095 put_unaligned_be32(nr_blocks, &cmd->cmnd[28]); 1096 1097 return BLK_STS_OK; 1098 } 1099 1100 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write, 1101 sector_t lba, unsigned int nr_blocks, 1102 unsigned char flags, unsigned int dld) 1103 { 1104 cmd->cmd_len = 16; 1105 cmd->cmnd[0] = write ? WRITE_16 : READ_16; 1106 cmd->cmnd[1] = flags | ((dld >> 2) & 0x01); 1107 cmd->cmnd[14] = (dld & 0x03) << 6; 1108 cmd->cmnd[15] = 0; 1109 put_unaligned_be64(lba, &cmd->cmnd[2]); 1110 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 1111 1112 return BLK_STS_OK; 1113 } 1114 1115 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write, 1116 sector_t lba, unsigned int nr_blocks, 1117 unsigned char flags) 1118 { 1119 cmd->cmd_len = 10; 1120 cmd->cmnd[0] = write ? WRITE_10 : READ_10; 1121 cmd->cmnd[1] = flags; 1122 cmd->cmnd[6] = 0; 1123 cmd->cmnd[9] = 0; 1124 put_unaligned_be32(lba, &cmd->cmnd[2]); 1125 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 1126 1127 return BLK_STS_OK; 1128 } 1129 1130 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write, 1131 sector_t lba, unsigned int nr_blocks, 1132 unsigned char flags) 1133 { 1134 /* Avoid that 0 blocks gets translated into 256 blocks. */ 1135 if (WARN_ON_ONCE(nr_blocks == 0)) 1136 return BLK_STS_IOERR; 1137 1138 if (unlikely(flags & 0x8)) { 1139 /* 1140 * This happens only if this drive failed 10byte rw 1141 * command with ILLEGAL_REQUEST during operation and 1142 * thus turned off use_10_for_rw. 1143 */ 1144 scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n"); 1145 return BLK_STS_IOERR; 1146 } 1147 1148 cmd->cmd_len = 6; 1149 cmd->cmnd[0] = write ? WRITE_6 : READ_6; 1150 cmd->cmnd[1] = (lba >> 16) & 0x1f; 1151 cmd->cmnd[2] = (lba >> 8) & 0xff; 1152 cmd->cmnd[3] = lba & 0xff; 1153 cmd->cmnd[4] = nr_blocks; 1154 cmd->cmnd[5] = 0; 1155 1156 return BLK_STS_OK; 1157 } 1158 1159 /* 1160 * Check if a command has a duration limit set. If it does, and the target 1161 * device supports CDL and the feature is enabled, return the limit 1162 * descriptor index to use. Return 0 (no limit) otherwise. 1163 */ 1164 static int sd_cdl_dld(struct scsi_disk *sdkp, struct scsi_cmnd *scmd) 1165 { 1166 struct scsi_device *sdp = sdkp->device; 1167 int hint; 1168 1169 if (!sdp->cdl_supported || !sdp->cdl_enable) 1170 return 0; 1171 1172 /* 1173 * Use "no limit" if the request ioprio does not specify a duration 1174 * limit hint. 1175 */ 1176 hint = IOPRIO_PRIO_HINT(req_get_ioprio(scsi_cmd_to_rq(scmd))); 1177 if (hint < IOPRIO_HINT_DEV_DURATION_LIMIT_1 || 1178 hint > IOPRIO_HINT_DEV_DURATION_LIMIT_7) 1179 return 0; 1180 1181 return (hint - IOPRIO_HINT_DEV_DURATION_LIMIT_1) + 1; 1182 } 1183 1184 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd) 1185 { 1186 struct request *rq = scsi_cmd_to_rq(cmd); 1187 struct scsi_device *sdp = cmd->device; 1188 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 1189 sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 1190 sector_t threshold; 1191 unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 1192 unsigned int mask = logical_to_sectors(sdp, 1) - 1; 1193 bool write = rq_data_dir(rq) == WRITE; 1194 unsigned char protect, fua; 1195 unsigned int dld; 1196 blk_status_t ret; 1197 unsigned int dif; 1198 bool dix; 1199 1200 ret = scsi_alloc_sgtables(cmd); 1201 if (ret != BLK_STS_OK) 1202 return ret; 1203 1204 ret = BLK_STS_IOERR; 1205 if (!scsi_device_online(sdp) || sdp->changed) { 1206 scmd_printk(KERN_ERR, cmd, "device offline or changed\n"); 1207 goto fail; 1208 } 1209 1210 if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->q->disk)) { 1211 scmd_printk(KERN_ERR, cmd, "access beyond end of device\n"); 1212 goto fail; 1213 } 1214 1215 if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) { 1216 scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n"); 1217 goto fail; 1218 } 1219 1220 /* 1221 * Some SD card readers can't handle accesses which touch the 1222 * last one or two logical blocks. Split accesses as needed. 1223 */ 1224 threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS; 1225 1226 if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) { 1227 if (lba < threshold) { 1228 /* Access up to the threshold but not beyond */ 1229 nr_blocks = threshold - lba; 1230 } else { 1231 /* Access only a single logical block */ 1232 nr_blocks = 1; 1233 } 1234 } 1235 1236 if (req_op(rq) == REQ_OP_ZONE_APPEND) { 1237 ret = sd_zbc_prepare_zone_append(cmd, &lba, nr_blocks); 1238 if (ret) 1239 goto fail; 1240 } 1241 1242 fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0; 1243 dix = scsi_prot_sg_count(cmd); 1244 dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type); 1245 dld = sd_cdl_dld(sdkp, cmd); 1246 1247 if (dif || dix) 1248 protect = sd_setup_protect_cmnd(cmd, dix, dif); 1249 else 1250 protect = 0; 1251 1252 if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) { 1253 ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks, 1254 protect | fua, dld); 1255 } else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) { 1256 ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks, 1257 protect | fua, dld); 1258 } else if ((nr_blocks > 0xff) || (lba > 0x1fffff) || 1259 sdp->use_10_for_rw || protect) { 1260 ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks, 1261 protect | fua); 1262 } else { 1263 ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks, 1264 protect | fua); 1265 } 1266 1267 if (unlikely(ret != BLK_STS_OK)) 1268 goto fail; 1269 1270 /* 1271 * We shouldn't disconnect in the middle of a sector, so with a dumb 1272 * host adapter, it's safe to assume that we can at least transfer 1273 * this many bytes between each connect / disconnect. 1274 */ 1275 cmd->transfersize = sdp->sector_size; 1276 cmd->underflow = nr_blocks << 9; 1277 cmd->allowed = sdkp->max_retries; 1278 cmd->sdb.length = nr_blocks * sdp->sector_size; 1279 1280 SCSI_LOG_HLQUEUE(1, 1281 scmd_printk(KERN_INFO, cmd, 1282 "%s: block=%llu, count=%d\n", __func__, 1283 (unsigned long long)blk_rq_pos(rq), 1284 blk_rq_sectors(rq))); 1285 SCSI_LOG_HLQUEUE(2, 1286 scmd_printk(KERN_INFO, cmd, 1287 "%s %d/%u 512 byte blocks.\n", 1288 write ? "writing" : "reading", nr_blocks, 1289 blk_rq_sectors(rq))); 1290 1291 /* 1292 * This indicates that the command is ready from our end to be queued. 1293 */ 1294 return BLK_STS_OK; 1295 fail: 1296 scsi_free_sgtables(cmd); 1297 return ret; 1298 } 1299 1300 static blk_status_t sd_init_command(struct scsi_cmnd *cmd) 1301 { 1302 struct request *rq = scsi_cmd_to_rq(cmd); 1303 1304 switch (req_op(rq)) { 1305 case REQ_OP_DISCARD: 1306 switch (scsi_disk(rq->q->disk)->provisioning_mode) { 1307 case SD_LBP_UNMAP: 1308 return sd_setup_unmap_cmnd(cmd); 1309 case SD_LBP_WS16: 1310 return sd_setup_write_same16_cmnd(cmd, true); 1311 case SD_LBP_WS10: 1312 return sd_setup_write_same10_cmnd(cmd, true); 1313 case SD_LBP_ZERO: 1314 return sd_setup_write_same10_cmnd(cmd, false); 1315 default: 1316 return BLK_STS_TARGET; 1317 } 1318 case REQ_OP_WRITE_ZEROES: 1319 return sd_setup_write_zeroes_cmnd(cmd); 1320 case REQ_OP_FLUSH: 1321 return sd_setup_flush_cmnd(cmd); 1322 case REQ_OP_READ: 1323 case REQ_OP_WRITE: 1324 case REQ_OP_ZONE_APPEND: 1325 return sd_setup_read_write_cmnd(cmd); 1326 case REQ_OP_ZONE_RESET: 1327 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER, 1328 false); 1329 case REQ_OP_ZONE_RESET_ALL: 1330 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER, 1331 true); 1332 case REQ_OP_ZONE_OPEN: 1333 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false); 1334 case REQ_OP_ZONE_CLOSE: 1335 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false); 1336 case REQ_OP_ZONE_FINISH: 1337 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false); 1338 default: 1339 WARN_ON_ONCE(1); 1340 return BLK_STS_NOTSUPP; 1341 } 1342 } 1343 1344 static void sd_uninit_command(struct scsi_cmnd *SCpnt) 1345 { 1346 struct request *rq = scsi_cmd_to_rq(SCpnt); 1347 1348 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1349 mempool_free(rq->special_vec.bv_page, sd_page_pool); 1350 } 1351 1352 static bool sd_need_revalidate(struct gendisk *disk, struct scsi_disk *sdkp) 1353 { 1354 if (sdkp->device->removable || sdkp->write_prot) { 1355 if (disk_check_media_change(disk)) 1356 return true; 1357 } 1358 1359 /* 1360 * Force a full rescan after ioctl(BLKRRPART). While the disk state has 1361 * nothing to do with partitions, BLKRRPART is used to force a full 1362 * revalidate after things like a format for historical reasons. 1363 */ 1364 return test_bit(GD_NEED_PART_SCAN, &disk->state); 1365 } 1366 1367 /** 1368 * sd_open - open a scsi disk device 1369 * @disk: disk to open 1370 * @mode: open mode 1371 * 1372 * Returns 0 if successful. Returns a negated errno value in case 1373 * of error. 1374 * 1375 * Note: This can be called from a user context (e.g. fsck(1) ) 1376 * or from within the kernel (e.g. as a result of a mount(1) ). 1377 * In the latter case @inode and @filp carry an abridged amount 1378 * of information as noted above. 1379 * 1380 * Locking: called with disk->open_mutex held. 1381 **/ 1382 static int sd_open(struct gendisk *disk, blk_mode_t mode) 1383 { 1384 struct scsi_disk *sdkp = scsi_disk(disk); 1385 struct scsi_device *sdev = sdkp->device; 1386 int retval; 1387 1388 if (scsi_device_get(sdev)) 1389 return -ENXIO; 1390 1391 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n")); 1392 1393 /* 1394 * If the device is in error recovery, wait until it is done. 1395 * If the device is offline, then disallow any access to it. 1396 */ 1397 retval = -ENXIO; 1398 if (!scsi_block_when_processing_errors(sdev)) 1399 goto error_out; 1400 1401 if (sd_need_revalidate(disk, sdkp)) 1402 sd_revalidate_disk(disk); 1403 1404 /* 1405 * If the drive is empty, just let the open fail. 1406 */ 1407 retval = -ENOMEDIUM; 1408 if (sdev->removable && !sdkp->media_present && 1409 !(mode & BLK_OPEN_NDELAY)) 1410 goto error_out; 1411 1412 /* 1413 * If the device has the write protect tab set, have the open fail 1414 * if the user expects to be able to write to the thing. 1415 */ 1416 retval = -EROFS; 1417 if (sdkp->write_prot && (mode & BLK_OPEN_WRITE)) 1418 goto error_out; 1419 1420 /* 1421 * It is possible that the disk changing stuff resulted in 1422 * the device being taken offline. If this is the case, 1423 * report this to the user, and don't pretend that the 1424 * open actually succeeded. 1425 */ 1426 retval = -ENXIO; 1427 if (!scsi_device_online(sdev)) 1428 goto error_out; 1429 1430 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) { 1431 if (scsi_block_when_processing_errors(sdev)) 1432 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT); 1433 } 1434 1435 return 0; 1436 1437 error_out: 1438 scsi_device_put(sdev); 1439 return retval; 1440 } 1441 1442 /** 1443 * sd_release - invoked when the (last) close(2) is called on this 1444 * scsi disk. 1445 * @disk: disk to release 1446 * 1447 * Returns 0. 1448 * 1449 * Note: may block (uninterruptible) if error recovery is underway 1450 * on this disk. 1451 * 1452 * Locking: called with disk->open_mutex held. 1453 **/ 1454 static void sd_release(struct gendisk *disk) 1455 { 1456 struct scsi_disk *sdkp = scsi_disk(disk); 1457 struct scsi_device *sdev = sdkp->device; 1458 1459 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n")); 1460 1461 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) { 1462 if (scsi_block_when_processing_errors(sdev)) 1463 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW); 1464 } 1465 1466 scsi_device_put(sdev); 1467 } 1468 1469 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1470 { 1471 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1472 struct scsi_device *sdp = sdkp->device; 1473 struct Scsi_Host *host = sdp->host; 1474 sector_t capacity = logical_to_sectors(sdp, sdkp->capacity); 1475 int diskinfo[4]; 1476 1477 /* default to most commonly used values */ 1478 diskinfo[0] = 0x40; /* 1 << 6 */ 1479 diskinfo[1] = 0x20; /* 1 << 5 */ 1480 diskinfo[2] = capacity >> 11; 1481 1482 /* override with calculated, extended default, or driver values */ 1483 if (host->hostt->bios_param) 1484 host->hostt->bios_param(sdp, bdev, capacity, diskinfo); 1485 else 1486 scsicam_bios_param(bdev, capacity, diskinfo); 1487 1488 geo->heads = diskinfo[0]; 1489 geo->sectors = diskinfo[1]; 1490 geo->cylinders = diskinfo[2]; 1491 return 0; 1492 } 1493 1494 /** 1495 * sd_ioctl - process an ioctl 1496 * @bdev: target block device 1497 * @mode: open mode 1498 * @cmd: ioctl command number 1499 * @arg: this is third argument given to ioctl(2) system call. 1500 * Often contains a pointer. 1501 * 1502 * Returns 0 if successful (some ioctls return positive numbers on 1503 * success as well). Returns a negated errno value in case of error. 1504 * 1505 * Note: most ioctls are forward onto the block subsystem or further 1506 * down in the scsi subsystem. 1507 **/ 1508 static int sd_ioctl(struct block_device *bdev, blk_mode_t mode, 1509 unsigned int cmd, unsigned long arg) 1510 { 1511 struct gendisk *disk = bdev->bd_disk; 1512 struct scsi_disk *sdkp = scsi_disk(disk); 1513 struct scsi_device *sdp = sdkp->device; 1514 void __user *p = (void __user *)arg; 1515 int error; 1516 1517 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, " 1518 "cmd=0x%x\n", disk->disk_name, cmd)); 1519 1520 if (bdev_is_partition(bdev) && !capable(CAP_SYS_RAWIO)) 1521 return -ENOIOCTLCMD; 1522 1523 /* 1524 * If we are in the middle of error recovery, don't let anyone 1525 * else try and use this device. Also, if error recovery fails, it 1526 * may try and take the device offline, in which case all further 1527 * access to the device is prohibited. 1528 */ 1529 error = scsi_ioctl_block_when_processing_errors(sdp, cmd, 1530 (mode & BLK_OPEN_NDELAY)); 1531 if (error) 1532 return error; 1533 1534 if (is_sed_ioctl(cmd)) 1535 return sed_ioctl(sdkp->opal_dev, cmd, p); 1536 return scsi_ioctl(sdp, mode & BLK_OPEN_WRITE, cmd, p); 1537 } 1538 1539 static void set_media_not_present(struct scsi_disk *sdkp) 1540 { 1541 if (sdkp->media_present) 1542 sdkp->device->changed = 1; 1543 1544 if (sdkp->device->removable) { 1545 sdkp->media_present = 0; 1546 sdkp->capacity = 0; 1547 } 1548 } 1549 1550 static int media_not_present(struct scsi_disk *sdkp, 1551 struct scsi_sense_hdr *sshdr) 1552 { 1553 if (!scsi_sense_valid(sshdr)) 1554 return 0; 1555 1556 /* not invoked for commands that could return deferred errors */ 1557 switch (sshdr->sense_key) { 1558 case UNIT_ATTENTION: 1559 case NOT_READY: 1560 /* medium not present */ 1561 if (sshdr->asc == 0x3A) { 1562 set_media_not_present(sdkp); 1563 return 1; 1564 } 1565 } 1566 return 0; 1567 } 1568 1569 /** 1570 * sd_check_events - check media events 1571 * @disk: kernel device descriptor 1572 * @clearing: disk events currently being cleared 1573 * 1574 * Returns mask of DISK_EVENT_*. 1575 * 1576 * Note: this function is invoked from the block subsystem. 1577 **/ 1578 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing) 1579 { 1580 struct scsi_disk *sdkp = disk->private_data; 1581 struct scsi_device *sdp; 1582 int retval; 1583 bool disk_changed; 1584 1585 if (!sdkp) 1586 return 0; 1587 1588 sdp = sdkp->device; 1589 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n")); 1590 1591 /* 1592 * If the device is offline, don't send any commands - just pretend as 1593 * if the command failed. If the device ever comes back online, we 1594 * can deal with it then. It is only because of unrecoverable errors 1595 * that we would ever take a device offline in the first place. 1596 */ 1597 if (!scsi_device_online(sdp)) { 1598 set_media_not_present(sdkp); 1599 goto out; 1600 } 1601 1602 /* 1603 * Using TEST_UNIT_READY enables differentiation between drive with 1604 * no cartridge loaded - NOT READY, drive with changed cartridge - 1605 * UNIT ATTENTION, or with same cartridge - GOOD STATUS. 1606 * 1607 * Drives that auto spin down. eg iomega jaz 1G, will be started 1608 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever 1609 * sd_revalidate() is called. 1610 */ 1611 if (scsi_block_when_processing_errors(sdp)) { 1612 struct scsi_sense_hdr sshdr = { 0, }; 1613 1614 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries, 1615 &sshdr); 1616 1617 /* failed to execute TUR, assume media not present */ 1618 if (retval < 0 || host_byte(retval)) { 1619 set_media_not_present(sdkp); 1620 goto out; 1621 } 1622 1623 if (media_not_present(sdkp, &sshdr)) 1624 goto out; 1625 } 1626 1627 /* 1628 * For removable scsi disk we have to recognise the presence 1629 * of a disk in the drive. 1630 */ 1631 if (!sdkp->media_present) 1632 sdp->changed = 1; 1633 sdkp->media_present = 1; 1634 out: 1635 /* 1636 * sdp->changed is set under the following conditions: 1637 * 1638 * Medium present state has changed in either direction. 1639 * Device has indicated UNIT_ATTENTION. 1640 */ 1641 disk_changed = sdp->changed; 1642 sdp->changed = 0; 1643 return disk_changed ? DISK_EVENT_MEDIA_CHANGE : 0; 1644 } 1645 1646 static int sd_sync_cache(struct scsi_disk *sdkp) 1647 { 1648 int res; 1649 struct scsi_device *sdp = sdkp->device; 1650 const int timeout = sdp->request_queue->rq_timeout 1651 * SD_FLUSH_TIMEOUT_MULTIPLIER; 1652 /* Leave the rest of the command zero to indicate flush everything. */ 1653 const unsigned char cmd[16] = { sdp->use_16_for_sync ? 1654 SYNCHRONIZE_CACHE_16 : SYNCHRONIZE_CACHE }; 1655 struct scsi_sense_hdr sshdr; 1656 struct scsi_failure failure_defs[] = { 1657 { 1658 .allowed = 3, 1659 .result = SCMD_FAILURE_RESULT_ANY, 1660 }, 1661 {} 1662 }; 1663 struct scsi_failures failures = { 1664 .failure_definitions = failure_defs, 1665 }; 1666 const struct scsi_exec_args exec_args = { 1667 .req_flags = BLK_MQ_REQ_PM, 1668 .sshdr = &sshdr, 1669 .failures = &failures, 1670 }; 1671 1672 if (!scsi_device_online(sdp)) 1673 return -ENODEV; 1674 1675 res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, timeout, 1676 sdkp->max_retries, &exec_args); 1677 if (res) { 1678 sd_print_result(sdkp, "Synchronize Cache(10) failed", res); 1679 1680 if (res < 0) 1681 return res; 1682 1683 if (scsi_status_is_check_condition(res) && 1684 scsi_sense_valid(&sshdr)) { 1685 sd_print_sense_hdr(sdkp, &sshdr); 1686 1687 /* we need to evaluate the error return */ 1688 if (sshdr.asc == 0x3a || /* medium not present */ 1689 sshdr.asc == 0x20 || /* invalid command */ 1690 (sshdr.asc == 0x74 && sshdr.ascq == 0x71)) /* drive is password locked */ 1691 /* this is no error here */ 1692 return 0; 1693 /* 1694 * This drive doesn't support sync and there's not much 1695 * we can do because this is called during shutdown 1696 * or suspend so just return success so those operations 1697 * can proceed. 1698 */ 1699 if (sshdr.sense_key == ILLEGAL_REQUEST) 1700 return 0; 1701 } 1702 1703 switch (host_byte(res)) { 1704 /* ignore errors due to racing a disconnection */ 1705 case DID_BAD_TARGET: 1706 case DID_NO_CONNECT: 1707 return 0; 1708 /* signal the upper layer it might try again */ 1709 case DID_BUS_BUSY: 1710 case DID_IMM_RETRY: 1711 case DID_REQUEUE: 1712 case DID_SOFT_ERROR: 1713 return -EBUSY; 1714 default: 1715 return -EIO; 1716 } 1717 } 1718 return 0; 1719 } 1720 1721 static void sd_rescan(struct device *dev) 1722 { 1723 struct scsi_disk *sdkp = dev_get_drvdata(dev); 1724 1725 sd_revalidate_disk(sdkp->disk); 1726 } 1727 1728 static int sd_get_unique_id(struct gendisk *disk, u8 id[16], 1729 enum blk_unique_id type) 1730 { 1731 struct scsi_device *sdev = scsi_disk(disk)->device; 1732 const struct scsi_vpd *vpd; 1733 const unsigned char *d; 1734 int ret = -ENXIO, len; 1735 1736 rcu_read_lock(); 1737 vpd = rcu_dereference(sdev->vpd_pg83); 1738 if (!vpd) 1739 goto out_unlock; 1740 1741 ret = -EINVAL; 1742 for (d = vpd->data + 4; d < vpd->data + vpd->len; d += d[3] + 4) { 1743 /* we only care about designators with LU association */ 1744 if (((d[1] >> 4) & 0x3) != 0x00) 1745 continue; 1746 if ((d[1] & 0xf) != type) 1747 continue; 1748 1749 /* 1750 * Only exit early if a 16-byte descriptor was found. Otherwise 1751 * keep looking as one with more entropy might still show up. 1752 */ 1753 len = d[3]; 1754 if (len != 8 && len != 12 && len != 16) 1755 continue; 1756 ret = len; 1757 memcpy(id, d + 4, len); 1758 if (len == 16) 1759 break; 1760 } 1761 out_unlock: 1762 rcu_read_unlock(); 1763 return ret; 1764 } 1765 1766 static int sd_scsi_to_pr_err(struct scsi_sense_hdr *sshdr, int result) 1767 { 1768 switch (host_byte(result)) { 1769 case DID_TRANSPORT_MARGINAL: 1770 case DID_TRANSPORT_DISRUPTED: 1771 case DID_BUS_BUSY: 1772 return PR_STS_RETRY_PATH_FAILURE; 1773 case DID_NO_CONNECT: 1774 return PR_STS_PATH_FAILED; 1775 case DID_TRANSPORT_FAILFAST: 1776 return PR_STS_PATH_FAST_FAILED; 1777 } 1778 1779 switch (status_byte(result)) { 1780 case SAM_STAT_RESERVATION_CONFLICT: 1781 return PR_STS_RESERVATION_CONFLICT; 1782 case SAM_STAT_CHECK_CONDITION: 1783 if (!scsi_sense_valid(sshdr)) 1784 return PR_STS_IOERR; 1785 1786 if (sshdr->sense_key == ILLEGAL_REQUEST && 1787 (sshdr->asc == 0x26 || sshdr->asc == 0x24)) 1788 return -EINVAL; 1789 1790 fallthrough; 1791 default: 1792 return PR_STS_IOERR; 1793 } 1794 } 1795 1796 static int sd_pr_in_command(struct block_device *bdev, u8 sa, 1797 unsigned char *data, int data_len) 1798 { 1799 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1800 struct scsi_device *sdev = sdkp->device; 1801 struct scsi_sense_hdr sshdr; 1802 u8 cmd[10] = { PERSISTENT_RESERVE_IN, sa }; 1803 struct scsi_failure failure_defs[] = { 1804 { 1805 .sense = UNIT_ATTENTION, 1806 .asc = SCMD_FAILURE_ASC_ANY, 1807 .ascq = SCMD_FAILURE_ASCQ_ANY, 1808 .allowed = 5, 1809 .result = SAM_STAT_CHECK_CONDITION, 1810 }, 1811 {} 1812 }; 1813 struct scsi_failures failures = { 1814 .failure_definitions = failure_defs, 1815 }; 1816 const struct scsi_exec_args exec_args = { 1817 .sshdr = &sshdr, 1818 .failures = &failures, 1819 }; 1820 int result; 1821 1822 put_unaligned_be16(data_len, &cmd[7]); 1823 1824 result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, data, data_len, 1825 SD_TIMEOUT, sdkp->max_retries, &exec_args); 1826 if (scsi_status_is_check_condition(result) && 1827 scsi_sense_valid(&sshdr)) { 1828 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result); 1829 scsi_print_sense_hdr(sdev, NULL, &sshdr); 1830 } 1831 1832 if (result <= 0) 1833 return result; 1834 1835 return sd_scsi_to_pr_err(&sshdr, result); 1836 } 1837 1838 static int sd_pr_read_keys(struct block_device *bdev, struct pr_keys *keys_info) 1839 { 1840 int result, i, data_offset, num_copy_keys; 1841 u32 num_keys = keys_info->num_keys; 1842 int data_len = num_keys * 8 + 8; 1843 u8 *data; 1844 1845 data = kzalloc(data_len, GFP_KERNEL); 1846 if (!data) 1847 return -ENOMEM; 1848 1849 result = sd_pr_in_command(bdev, READ_KEYS, data, data_len); 1850 if (result) 1851 goto free_data; 1852 1853 keys_info->generation = get_unaligned_be32(&data[0]); 1854 keys_info->num_keys = get_unaligned_be32(&data[4]) / 8; 1855 1856 data_offset = 8; 1857 num_copy_keys = min(num_keys, keys_info->num_keys); 1858 1859 for (i = 0; i < num_copy_keys; i++) { 1860 keys_info->keys[i] = get_unaligned_be64(&data[data_offset]); 1861 data_offset += 8; 1862 } 1863 1864 free_data: 1865 kfree(data); 1866 return result; 1867 } 1868 1869 static int sd_pr_read_reservation(struct block_device *bdev, 1870 struct pr_held_reservation *rsv) 1871 { 1872 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1873 struct scsi_device *sdev = sdkp->device; 1874 u8 data[24] = { }; 1875 int result, len; 1876 1877 result = sd_pr_in_command(bdev, READ_RESERVATION, data, sizeof(data)); 1878 if (result) 1879 return result; 1880 1881 len = get_unaligned_be32(&data[4]); 1882 if (!len) 1883 return 0; 1884 1885 /* Make sure we have at least the key and type */ 1886 if (len < 14) { 1887 sdev_printk(KERN_INFO, sdev, 1888 "READ RESERVATION failed due to short return buffer of %d bytes\n", 1889 len); 1890 return -EINVAL; 1891 } 1892 1893 rsv->generation = get_unaligned_be32(&data[0]); 1894 rsv->key = get_unaligned_be64(&data[8]); 1895 rsv->type = scsi_pr_type_to_block(data[21] & 0x0f); 1896 return 0; 1897 } 1898 1899 static int sd_pr_out_command(struct block_device *bdev, u8 sa, u64 key, 1900 u64 sa_key, enum scsi_pr_type type, u8 flags) 1901 { 1902 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1903 struct scsi_device *sdev = sdkp->device; 1904 struct scsi_sense_hdr sshdr; 1905 struct scsi_failure failure_defs[] = { 1906 { 1907 .sense = UNIT_ATTENTION, 1908 .asc = SCMD_FAILURE_ASC_ANY, 1909 .ascq = SCMD_FAILURE_ASCQ_ANY, 1910 .allowed = 5, 1911 .result = SAM_STAT_CHECK_CONDITION, 1912 }, 1913 {} 1914 }; 1915 struct scsi_failures failures = { 1916 .failure_definitions = failure_defs, 1917 }; 1918 const struct scsi_exec_args exec_args = { 1919 .sshdr = &sshdr, 1920 .failures = &failures, 1921 }; 1922 int result; 1923 u8 cmd[16] = { 0, }; 1924 u8 data[24] = { 0, }; 1925 1926 cmd[0] = PERSISTENT_RESERVE_OUT; 1927 cmd[1] = sa; 1928 cmd[2] = type; 1929 put_unaligned_be32(sizeof(data), &cmd[5]); 1930 1931 put_unaligned_be64(key, &data[0]); 1932 put_unaligned_be64(sa_key, &data[8]); 1933 data[20] = flags; 1934 1935 result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, &data, 1936 sizeof(data), SD_TIMEOUT, sdkp->max_retries, 1937 &exec_args); 1938 1939 if (scsi_status_is_check_condition(result) && 1940 scsi_sense_valid(&sshdr)) { 1941 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result); 1942 scsi_print_sense_hdr(sdev, NULL, &sshdr); 1943 } 1944 1945 if (result <= 0) 1946 return result; 1947 1948 return sd_scsi_to_pr_err(&sshdr, result); 1949 } 1950 1951 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 1952 u32 flags) 1953 { 1954 if (flags & ~PR_FL_IGNORE_KEY) 1955 return -EOPNOTSUPP; 1956 return sd_pr_out_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00, 1957 old_key, new_key, 0, 1958 (1 << 0) /* APTPL */); 1959 } 1960 1961 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 1962 u32 flags) 1963 { 1964 if (flags) 1965 return -EOPNOTSUPP; 1966 return sd_pr_out_command(bdev, 0x01, key, 0, 1967 block_pr_type_to_scsi(type), 0); 1968 } 1969 1970 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 1971 { 1972 return sd_pr_out_command(bdev, 0x02, key, 0, 1973 block_pr_type_to_scsi(type), 0); 1974 } 1975 1976 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 1977 enum pr_type type, bool abort) 1978 { 1979 return sd_pr_out_command(bdev, abort ? 0x05 : 0x04, old_key, new_key, 1980 block_pr_type_to_scsi(type), 0); 1981 } 1982 1983 static int sd_pr_clear(struct block_device *bdev, u64 key) 1984 { 1985 return sd_pr_out_command(bdev, 0x03, key, 0, 0, 0); 1986 } 1987 1988 static const struct pr_ops sd_pr_ops = { 1989 .pr_register = sd_pr_register, 1990 .pr_reserve = sd_pr_reserve, 1991 .pr_release = sd_pr_release, 1992 .pr_preempt = sd_pr_preempt, 1993 .pr_clear = sd_pr_clear, 1994 .pr_read_keys = sd_pr_read_keys, 1995 .pr_read_reservation = sd_pr_read_reservation, 1996 }; 1997 1998 static void scsi_disk_free_disk(struct gendisk *disk) 1999 { 2000 struct scsi_disk *sdkp = scsi_disk(disk); 2001 2002 put_device(&sdkp->disk_dev); 2003 } 2004 2005 static const struct block_device_operations sd_fops = { 2006 .owner = THIS_MODULE, 2007 .open = sd_open, 2008 .release = sd_release, 2009 .ioctl = sd_ioctl, 2010 .getgeo = sd_getgeo, 2011 .compat_ioctl = blkdev_compat_ptr_ioctl, 2012 .check_events = sd_check_events, 2013 .unlock_native_capacity = sd_unlock_native_capacity, 2014 .report_zones = sd_zbc_report_zones, 2015 .get_unique_id = sd_get_unique_id, 2016 .free_disk = scsi_disk_free_disk, 2017 .pr_ops = &sd_pr_ops, 2018 }; 2019 2020 /** 2021 * sd_eh_reset - reset error handling callback 2022 * @scmd: sd-issued command that has failed 2023 * 2024 * This function is called by the SCSI midlayer before starting 2025 * SCSI EH. When counting medium access failures we have to be 2026 * careful to register it only only once per device and SCSI EH run; 2027 * there might be several timed out commands which will cause the 2028 * 'max_medium_access_timeouts' counter to trigger after the first 2029 * SCSI EH run already and set the device to offline. 2030 * So this function resets the internal counter before starting SCSI EH. 2031 **/ 2032 static void sd_eh_reset(struct scsi_cmnd *scmd) 2033 { 2034 struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk); 2035 2036 /* New SCSI EH run, reset gate variable */ 2037 sdkp->ignore_medium_access_errors = false; 2038 } 2039 2040 /** 2041 * sd_eh_action - error handling callback 2042 * @scmd: sd-issued command that has failed 2043 * @eh_disp: The recovery disposition suggested by the midlayer 2044 * 2045 * This function is called by the SCSI midlayer upon completion of an 2046 * error test command (currently TEST UNIT READY). The result of sending 2047 * the eh command is passed in eh_disp. We're looking for devices that 2048 * fail medium access commands but are OK with non access commands like 2049 * test unit ready (so wrongly see the device as having a successful 2050 * recovery) 2051 **/ 2052 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp) 2053 { 2054 struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk); 2055 struct scsi_device *sdev = scmd->device; 2056 2057 if (!scsi_device_online(sdev) || 2058 !scsi_medium_access_command(scmd) || 2059 host_byte(scmd->result) != DID_TIME_OUT || 2060 eh_disp != SUCCESS) 2061 return eh_disp; 2062 2063 /* 2064 * The device has timed out executing a medium access command. 2065 * However, the TEST UNIT READY command sent during error 2066 * handling completed successfully. Either the device is in the 2067 * process of recovering or has it suffered an internal failure 2068 * that prevents access to the storage medium. 2069 */ 2070 if (!sdkp->ignore_medium_access_errors) { 2071 sdkp->medium_access_timed_out++; 2072 sdkp->ignore_medium_access_errors = true; 2073 } 2074 2075 /* 2076 * If the device keeps failing read/write commands but TEST UNIT 2077 * READY always completes successfully we assume that medium 2078 * access is no longer possible and take the device offline. 2079 */ 2080 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) { 2081 scmd_printk(KERN_ERR, scmd, 2082 "Medium access timeout failure. Offlining disk!\n"); 2083 mutex_lock(&sdev->state_mutex); 2084 scsi_device_set_state(sdev, SDEV_OFFLINE); 2085 mutex_unlock(&sdev->state_mutex); 2086 2087 return SUCCESS; 2088 } 2089 2090 return eh_disp; 2091 } 2092 2093 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd) 2094 { 2095 struct request *req = scsi_cmd_to_rq(scmd); 2096 struct scsi_device *sdev = scmd->device; 2097 unsigned int transferred, good_bytes; 2098 u64 start_lba, end_lba, bad_lba; 2099 2100 /* 2101 * Some commands have a payload smaller than the device logical 2102 * block size (e.g. INQUIRY on a 4K disk). 2103 */ 2104 if (scsi_bufflen(scmd) <= sdev->sector_size) 2105 return 0; 2106 2107 /* Check if we have a 'bad_lba' information */ 2108 if (!scsi_get_sense_info_fld(scmd->sense_buffer, 2109 SCSI_SENSE_BUFFERSIZE, 2110 &bad_lba)) 2111 return 0; 2112 2113 /* 2114 * If the bad lba was reported incorrectly, we have no idea where 2115 * the error is. 2116 */ 2117 start_lba = sectors_to_logical(sdev, blk_rq_pos(req)); 2118 end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd)); 2119 if (bad_lba < start_lba || bad_lba >= end_lba) 2120 return 0; 2121 2122 /* 2123 * resid is optional but mostly filled in. When it's unused, 2124 * its value is zero, so we assume the whole buffer transferred 2125 */ 2126 transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd); 2127 2128 /* This computation should always be done in terms of the 2129 * resolution of the device's medium. 2130 */ 2131 good_bytes = logical_to_bytes(sdev, bad_lba - start_lba); 2132 2133 return min(good_bytes, transferred); 2134 } 2135 2136 /** 2137 * sd_done - bottom half handler: called when the lower level 2138 * driver has completed (successfully or otherwise) a scsi command. 2139 * @SCpnt: mid-level's per command structure. 2140 * 2141 * Note: potentially run from within an ISR. Must not block. 2142 **/ 2143 static int sd_done(struct scsi_cmnd *SCpnt) 2144 { 2145 int result = SCpnt->result; 2146 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt); 2147 unsigned int sector_size = SCpnt->device->sector_size; 2148 unsigned int resid; 2149 struct scsi_sense_hdr sshdr; 2150 struct request *req = scsi_cmd_to_rq(SCpnt); 2151 struct scsi_disk *sdkp = scsi_disk(req->q->disk); 2152 int sense_valid = 0; 2153 int sense_deferred = 0; 2154 2155 switch (req_op(req)) { 2156 case REQ_OP_DISCARD: 2157 case REQ_OP_WRITE_ZEROES: 2158 case REQ_OP_ZONE_RESET: 2159 case REQ_OP_ZONE_RESET_ALL: 2160 case REQ_OP_ZONE_OPEN: 2161 case REQ_OP_ZONE_CLOSE: 2162 case REQ_OP_ZONE_FINISH: 2163 if (!result) { 2164 good_bytes = blk_rq_bytes(req); 2165 scsi_set_resid(SCpnt, 0); 2166 } else { 2167 good_bytes = 0; 2168 scsi_set_resid(SCpnt, blk_rq_bytes(req)); 2169 } 2170 break; 2171 default: 2172 /* 2173 * In case of bogus fw or device, we could end up having 2174 * an unaligned partial completion. Check this here and force 2175 * alignment. 2176 */ 2177 resid = scsi_get_resid(SCpnt); 2178 if (resid & (sector_size - 1)) { 2179 sd_printk(KERN_INFO, sdkp, 2180 "Unaligned partial completion (resid=%u, sector_sz=%u)\n", 2181 resid, sector_size); 2182 scsi_print_command(SCpnt); 2183 resid = min(scsi_bufflen(SCpnt), 2184 round_up(resid, sector_size)); 2185 scsi_set_resid(SCpnt, resid); 2186 } 2187 } 2188 2189 if (result) { 2190 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr); 2191 if (sense_valid) 2192 sense_deferred = scsi_sense_is_deferred(&sshdr); 2193 } 2194 sdkp->medium_access_timed_out = 0; 2195 2196 if (!scsi_status_is_check_condition(result) && 2197 (!sense_valid || sense_deferred)) 2198 goto out; 2199 2200 switch (sshdr.sense_key) { 2201 case HARDWARE_ERROR: 2202 case MEDIUM_ERROR: 2203 good_bytes = sd_completed_bytes(SCpnt); 2204 break; 2205 case RECOVERED_ERROR: 2206 good_bytes = scsi_bufflen(SCpnt); 2207 break; 2208 case NO_SENSE: 2209 /* This indicates a false check condition, so ignore it. An 2210 * unknown amount of data was transferred so treat it as an 2211 * error. 2212 */ 2213 SCpnt->result = 0; 2214 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 2215 break; 2216 case ABORTED_COMMAND: 2217 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */ 2218 good_bytes = sd_completed_bytes(SCpnt); 2219 break; 2220 case ILLEGAL_REQUEST: 2221 switch (sshdr.asc) { 2222 case 0x10: /* DIX: Host detected corruption */ 2223 good_bytes = sd_completed_bytes(SCpnt); 2224 break; 2225 case 0x20: /* INVALID COMMAND OPCODE */ 2226 case 0x24: /* INVALID FIELD IN CDB */ 2227 switch (SCpnt->cmnd[0]) { 2228 case UNMAP: 2229 sd_config_discard(sdkp, SD_LBP_DISABLE); 2230 break; 2231 case WRITE_SAME_16: 2232 case WRITE_SAME: 2233 if (SCpnt->cmnd[1] & 8) { /* UNMAP */ 2234 sd_config_discard(sdkp, SD_LBP_DISABLE); 2235 } else { 2236 sdkp->device->no_write_same = 1; 2237 sd_config_write_same(sdkp); 2238 req->rq_flags |= RQF_QUIET; 2239 } 2240 break; 2241 } 2242 } 2243 break; 2244 default: 2245 break; 2246 } 2247 2248 out: 2249 if (sd_is_zoned(sdkp)) 2250 good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr); 2251 2252 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt, 2253 "sd_done: completed %d of %d bytes\n", 2254 good_bytes, scsi_bufflen(SCpnt))); 2255 2256 return good_bytes; 2257 } 2258 2259 /* 2260 * spinup disk - called only in sd_revalidate_disk() 2261 */ 2262 static void 2263 sd_spinup_disk(struct scsi_disk *sdkp) 2264 { 2265 static const u8 cmd[10] = { TEST_UNIT_READY }; 2266 unsigned long spintime_expire = 0; 2267 int spintime, sense_valid = 0; 2268 unsigned int the_result; 2269 struct scsi_sense_hdr sshdr; 2270 struct scsi_failure failure_defs[] = { 2271 /* Do not retry Medium Not Present */ 2272 { 2273 .sense = UNIT_ATTENTION, 2274 .asc = 0x3A, 2275 .ascq = SCMD_FAILURE_ASCQ_ANY, 2276 .result = SAM_STAT_CHECK_CONDITION, 2277 }, 2278 { 2279 .sense = NOT_READY, 2280 .asc = 0x3A, 2281 .ascq = SCMD_FAILURE_ASCQ_ANY, 2282 .result = SAM_STAT_CHECK_CONDITION, 2283 }, 2284 /* Retry when scsi_status_is_good would return false 3 times */ 2285 { 2286 .result = SCMD_FAILURE_STAT_ANY, 2287 .allowed = 3, 2288 }, 2289 {} 2290 }; 2291 struct scsi_failures failures = { 2292 .failure_definitions = failure_defs, 2293 }; 2294 const struct scsi_exec_args exec_args = { 2295 .sshdr = &sshdr, 2296 .failures = &failures, 2297 }; 2298 2299 spintime = 0; 2300 2301 /* Spin up drives, as required. Only do this at boot time */ 2302 /* Spinup needs to be done for module loads too. */ 2303 do { 2304 bool media_was_present = sdkp->media_present; 2305 2306 scsi_failures_reset_retries(&failures); 2307 2308 the_result = scsi_execute_cmd(sdkp->device, cmd, REQ_OP_DRV_IN, 2309 NULL, 0, SD_TIMEOUT, 2310 sdkp->max_retries, &exec_args); 2311 2312 2313 if (the_result > 0) { 2314 /* 2315 * If the drive has indicated to us that it doesn't 2316 * have any media in it, don't bother with any more 2317 * polling. 2318 */ 2319 if (media_not_present(sdkp, &sshdr)) { 2320 if (media_was_present) 2321 sd_printk(KERN_NOTICE, sdkp, 2322 "Media removed, stopped polling\n"); 2323 return; 2324 } 2325 sense_valid = scsi_sense_valid(&sshdr); 2326 } 2327 2328 if (!scsi_status_is_check_condition(the_result)) { 2329 /* no sense, TUR either succeeded or failed 2330 * with a status error */ 2331 if(!spintime && !scsi_status_is_good(the_result)) { 2332 sd_print_result(sdkp, "Test Unit Ready failed", 2333 the_result); 2334 } 2335 break; 2336 } 2337 2338 /* 2339 * The device does not want the automatic start to be issued. 2340 */ 2341 if (sdkp->device->no_start_on_add) 2342 break; 2343 2344 if (sense_valid && sshdr.sense_key == NOT_READY) { 2345 if (sshdr.asc == 4 && sshdr.ascq == 3) 2346 break; /* manual intervention required */ 2347 if (sshdr.asc == 4 && sshdr.ascq == 0xb) 2348 break; /* standby */ 2349 if (sshdr.asc == 4 && sshdr.ascq == 0xc) 2350 break; /* unavailable */ 2351 if (sshdr.asc == 4 && sshdr.ascq == 0x1b) 2352 break; /* sanitize in progress */ 2353 if (sshdr.asc == 4 && sshdr.ascq == 0x24) 2354 break; /* depopulation in progress */ 2355 if (sshdr.asc == 4 && sshdr.ascq == 0x25) 2356 break; /* depopulation restoration in progress */ 2357 /* 2358 * Issue command to spin up drive when not ready 2359 */ 2360 if (!spintime) { 2361 /* Return immediately and start spin cycle */ 2362 const u8 start_cmd[10] = { 2363 [0] = START_STOP, 2364 [1] = 1, 2365 [4] = sdkp->device->start_stop_pwr_cond ? 2366 0x11 : 1, 2367 }; 2368 2369 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk..."); 2370 scsi_execute_cmd(sdkp->device, start_cmd, 2371 REQ_OP_DRV_IN, NULL, 0, 2372 SD_TIMEOUT, sdkp->max_retries, 2373 &exec_args); 2374 spintime_expire = jiffies + 100 * HZ; 2375 spintime = 1; 2376 } 2377 /* Wait 1 second for next try */ 2378 msleep(1000); 2379 printk(KERN_CONT "."); 2380 2381 /* 2382 * Wait for USB flash devices with slow firmware. 2383 * Yes, this sense key/ASC combination shouldn't 2384 * occur here. It's characteristic of these devices. 2385 */ 2386 } else if (sense_valid && 2387 sshdr.sense_key == UNIT_ATTENTION && 2388 sshdr.asc == 0x28) { 2389 if (!spintime) { 2390 spintime_expire = jiffies + 5 * HZ; 2391 spintime = 1; 2392 } 2393 /* Wait 1 second for next try */ 2394 msleep(1000); 2395 } else { 2396 /* we don't understand the sense code, so it's 2397 * probably pointless to loop */ 2398 if(!spintime) { 2399 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n"); 2400 sd_print_sense_hdr(sdkp, &sshdr); 2401 } 2402 break; 2403 } 2404 2405 } while (spintime && time_before_eq(jiffies, spintime_expire)); 2406 2407 if (spintime) { 2408 if (scsi_status_is_good(the_result)) 2409 printk(KERN_CONT "ready\n"); 2410 else 2411 printk(KERN_CONT "not responding...\n"); 2412 } 2413 } 2414 2415 /* 2416 * Determine whether disk supports Data Integrity Field. 2417 */ 2418 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer) 2419 { 2420 struct scsi_device *sdp = sdkp->device; 2421 u8 type; 2422 2423 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) { 2424 sdkp->protection_type = 0; 2425 return 0; 2426 } 2427 2428 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */ 2429 2430 if (type > T10_PI_TYPE3_PROTECTION) { 2431 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \ 2432 " protection type %u. Disabling disk!\n", 2433 type); 2434 sdkp->protection_type = 0; 2435 return -ENODEV; 2436 } 2437 2438 sdkp->protection_type = type; 2439 2440 return 0; 2441 } 2442 2443 static void sd_config_protection(struct scsi_disk *sdkp) 2444 { 2445 struct scsi_device *sdp = sdkp->device; 2446 2447 sd_dif_config_host(sdkp); 2448 2449 if (!sdkp->protection_type) 2450 return; 2451 2452 if (!scsi_host_dif_capable(sdp->host, sdkp->protection_type)) { 2453 sd_first_printk(KERN_NOTICE, sdkp, 2454 "Disabling DIF Type %u protection\n", 2455 sdkp->protection_type); 2456 sdkp->protection_type = 0; 2457 } 2458 2459 sd_first_printk(KERN_NOTICE, sdkp, "Enabling DIF Type %u protection\n", 2460 sdkp->protection_type); 2461 } 2462 2463 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp, 2464 struct scsi_sense_hdr *sshdr, int sense_valid, 2465 int the_result) 2466 { 2467 if (sense_valid) 2468 sd_print_sense_hdr(sdkp, sshdr); 2469 else 2470 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n"); 2471 2472 /* 2473 * Set dirty bit for removable devices if not ready - 2474 * sometimes drives will not report this properly. 2475 */ 2476 if (sdp->removable && 2477 sense_valid && sshdr->sense_key == NOT_READY) 2478 set_media_not_present(sdkp); 2479 2480 /* 2481 * We used to set media_present to 0 here to indicate no media 2482 * in the drive, but some drives fail read capacity even with 2483 * media present, so we can't do that. 2484 */ 2485 sdkp->capacity = 0; /* unknown mapped to zero - as usual */ 2486 } 2487 2488 #define RC16_LEN 32 2489 #if RC16_LEN > SD_BUF_SIZE 2490 #error RC16_LEN must not be more than SD_BUF_SIZE 2491 #endif 2492 2493 #define READ_CAPACITY_RETRIES_ON_RESET 10 2494 2495 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp, 2496 unsigned char *buffer) 2497 { 2498 unsigned char cmd[16]; 2499 struct scsi_sense_hdr sshdr; 2500 const struct scsi_exec_args exec_args = { 2501 .sshdr = &sshdr, 2502 }; 2503 int sense_valid = 0; 2504 int the_result; 2505 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2506 unsigned int alignment; 2507 unsigned long long lba; 2508 unsigned sector_size; 2509 2510 if (sdp->no_read_capacity_16) 2511 return -EINVAL; 2512 2513 do { 2514 memset(cmd, 0, 16); 2515 cmd[0] = SERVICE_ACTION_IN_16; 2516 cmd[1] = SAI_READ_CAPACITY_16; 2517 cmd[13] = RC16_LEN; 2518 memset(buffer, 0, RC16_LEN); 2519 2520 the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, 2521 buffer, RC16_LEN, SD_TIMEOUT, 2522 sdkp->max_retries, &exec_args); 2523 if (the_result > 0) { 2524 if (media_not_present(sdkp, &sshdr)) 2525 return -ENODEV; 2526 2527 sense_valid = scsi_sense_valid(&sshdr); 2528 if (sense_valid && 2529 sshdr.sense_key == ILLEGAL_REQUEST && 2530 (sshdr.asc == 0x20 || sshdr.asc == 0x24) && 2531 sshdr.ascq == 0x00) 2532 /* Invalid Command Operation Code or 2533 * Invalid Field in CDB, just retry 2534 * silently with RC10 */ 2535 return -EINVAL; 2536 if (sense_valid && 2537 sshdr.sense_key == UNIT_ATTENTION && 2538 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2539 /* Device reset might occur several times, 2540 * give it one more chance */ 2541 if (--reset_retries > 0) 2542 continue; 2543 } 2544 retries--; 2545 2546 } while (the_result && retries); 2547 2548 if (the_result) { 2549 sd_print_result(sdkp, "Read Capacity(16) failed", the_result); 2550 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2551 return -EINVAL; 2552 } 2553 2554 sector_size = get_unaligned_be32(&buffer[8]); 2555 lba = get_unaligned_be64(&buffer[0]); 2556 2557 if (sd_read_protection_type(sdkp, buffer) < 0) { 2558 sdkp->capacity = 0; 2559 return -ENODEV; 2560 } 2561 2562 /* Logical blocks per physical block exponent */ 2563 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size; 2564 2565 /* RC basis */ 2566 sdkp->rc_basis = (buffer[12] >> 4) & 0x3; 2567 2568 /* Lowest aligned logical block */ 2569 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size; 2570 blk_queue_alignment_offset(sdp->request_queue, alignment); 2571 if (alignment && sdkp->first_scan) 2572 sd_printk(KERN_NOTICE, sdkp, 2573 "physical block alignment offset: %u\n", alignment); 2574 2575 if (buffer[14] & 0x80) { /* LBPME */ 2576 sdkp->lbpme = 1; 2577 2578 if (buffer[14] & 0x40) /* LBPRZ */ 2579 sdkp->lbprz = 1; 2580 2581 sd_config_discard(sdkp, SD_LBP_WS16); 2582 } 2583 2584 sdkp->capacity = lba + 1; 2585 return sector_size; 2586 } 2587 2588 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp, 2589 unsigned char *buffer) 2590 { 2591 static const u8 cmd[10] = { READ_CAPACITY }; 2592 struct scsi_sense_hdr sshdr; 2593 struct scsi_failure failure_defs[] = { 2594 /* Do not retry Medium Not Present */ 2595 { 2596 .sense = UNIT_ATTENTION, 2597 .asc = 0x3A, 2598 .result = SAM_STAT_CHECK_CONDITION, 2599 }, 2600 { 2601 .sense = NOT_READY, 2602 .asc = 0x3A, 2603 .result = SAM_STAT_CHECK_CONDITION, 2604 }, 2605 /* Device reset might occur several times so retry a lot */ 2606 { 2607 .sense = UNIT_ATTENTION, 2608 .asc = 0x29, 2609 .allowed = READ_CAPACITY_RETRIES_ON_RESET, 2610 .result = SAM_STAT_CHECK_CONDITION, 2611 }, 2612 /* Any other error not listed above retry 3 times */ 2613 { 2614 .result = SCMD_FAILURE_RESULT_ANY, 2615 .allowed = 3, 2616 }, 2617 {} 2618 }; 2619 struct scsi_failures failures = { 2620 .failure_definitions = failure_defs, 2621 }; 2622 const struct scsi_exec_args exec_args = { 2623 .sshdr = &sshdr, 2624 .failures = &failures, 2625 }; 2626 int sense_valid = 0; 2627 int the_result; 2628 sector_t lba; 2629 unsigned sector_size; 2630 2631 memset(buffer, 0, 8); 2632 2633 the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, buffer, 2634 8, SD_TIMEOUT, sdkp->max_retries, 2635 &exec_args); 2636 2637 if (the_result > 0) { 2638 sense_valid = scsi_sense_valid(&sshdr); 2639 2640 if (media_not_present(sdkp, &sshdr)) 2641 return -ENODEV; 2642 } 2643 2644 if (the_result) { 2645 sd_print_result(sdkp, "Read Capacity(10) failed", the_result); 2646 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2647 return -EINVAL; 2648 } 2649 2650 sector_size = get_unaligned_be32(&buffer[4]); 2651 lba = get_unaligned_be32(&buffer[0]); 2652 2653 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) { 2654 /* Some buggy (usb cardreader) devices return an lba of 2655 0xffffffff when the want to report a size of 0 (with 2656 which they really mean no media is present) */ 2657 sdkp->capacity = 0; 2658 sdkp->physical_block_size = sector_size; 2659 return sector_size; 2660 } 2661 2662 sdkp->capacity = lba + 1; 2663 sdkp->physical_block_size = sector_size; 2664 return sector_size; 2665 } 2666 2667 static int sd_try_rc16_first(struct scsi_device *sdp) 2668 { 2669 if (sdp->host->max_cmd_len < 16) 2670 return 0; 2671 if (sdp->try_rc_10_first) 2672 return 0; 2673 if (sdp->scsi_level > SCSI_SPC_2) 2674 return 1; 2675 if (scsi_device_protection(sdp)) 2676 return 1; 2677 return 0; 2678 } 2679 2680 /* 2681 * read disk capacity 2682 */ 2683 static void 2684 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer) 2685 { 2686 int sector_size; 2687 struct scsi_device *sdp = sdkp->device; 2688 2689 if (sd_try_rc16_first(sdp)) { 2690 sector_size = read_capacity_16(sdkp, sdp, buffer); 2691 if (sector_size == -EOVERFLOW) 2692 goto got_data; 2693 if (sector_size == -ENODEV) 2694 return; 2695 if (sector_size < 0) 2696 sector_size = read_capacity_10(sdkp, sdp, buffer); 2697 if (sector_size < 0) 2698 return; 2699 } else { 2700 sector_size = read_capacity_10(sdkp, sdp, buffer); 2701 if (sector_size == -EOVERFLOW) 2702 goto got_data; 2703 if (sector_size < 0) 2704 return; 2705 if ((sizeof(sdkp->capacity) > 4) && 2706 (sdkp->capacity > 0xffffffffULL)) { 2707 int old_sector_size = sector_size; 2708 sd_printk(KERN_NOTICE, sdkp, "Very big device. " 2709 "Trying to use READ CAPACITY(16).\n"); 2710 sector_size = read_capacity_16(sdkp, sdp, buffer); 2711 if (sector_size < 0) { 2712 sd_printk(KERN_NOTICE, sdkp, 2713 "Using 0xffffffff as device size\n"); 2714 sdkp->capacity = 1 + (sector_t) 0xffffffff; 2715 sector_size = old_sector_size; 2716 goto got_data; 2717 } 2718 /* Remember that READ CAPACITY(16) succeeded */ 2719 sdp->try_rc_10_first = 0; 2720 } 2721 } 2722 2723 /* Some devices are known to return the total number of blocks, 2724 * not the highest block number. Some devices have versions 2725 * which do this and others which do not. Some devices we might 2726 * suspect of doing this but we don't know for certain. 2727 * 2728 * If we know the reported capacity is wrong, decrement it. If 2729 * we can only guess, then assume the number of blocks is even 2730 * (usually true but not always) and err on the side of lowering 2731 * the capacity. 2732 */ 2733 if (sdp->fix_capacity || 2734 (sdp->guess_capacity && (sdkp->capacity & 0x01))) { 2735 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count " 2736 "from its reported value: %llu\n", 2737 (unsigned long long) sdkp->capacity); 2738 --sdkp->capacity; 2739 } 2740 2741 got_data: 2742 if (sector_size == 0) { 2743 sector_size = 512; 2744 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, " 2745 "assuming 512.\n"); 2746 } 2747 2748 if (sector_size != 512 && 2749 sector_size != 1024 && 2750 sector_size != 2048 && 2751 sector_size != 4096) { 2752 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n", 2753 sector_size); 2754 /* 2755 * The user might want to re-format the drive with 2756 * a supported sectorsize. Once this happens, it 2757 * would be relatively trivial to set the thing up. 2758 * For this reason, we leave the thing in the table. 2759 */ 2760 sdkp->capacity = 0; 2761 /* 2762 * set a bogus sector size so the normal read/write 2763 * logic in the block layer will eventually refuse any 2764 * request on this device without tripping over power 2765 * of two sector size assumptions 2766 */ 2767 sector_size = 512; 2768 } 2769 blk_queue_logical_block_size(sdp->request_queue, sector_size); 2770 blk_queue_physical_block_size(sdp->request_queue, 2771 sdkp->physical_block_size); 2772 sdkp->device->sector_size = sector_size; 2773 2774 if (sdkp->capacity > 0xffffffff) 2775 sdp->use_16_for_rw = 1; 2776 2777 } 2778 2779 /* 2780 * Print disk capacity 2781 */ 2782 static void 2783 sd_print_capacity(struct scsi_disk *sdkp, 2784 sector_t old_capacity) 2785 { 2786 int sector_size = sdkp->device->sector_size; 2787 char cap_str_2[10], cap_str_10[10]; 2788 2789 if (!sdkp->first_scan && old_capacity == sdkp->capacity) 2790 return; 2791 2792 string_get_size(sdkp->capacity, sector_size, 2793 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2)); 2794 string_get_size(sdkp->capacity, sector_size, 2795 STRING_UNITS_10, cap_str_10, sizeof(cap_str_10)); 2796 2797 sd_printk(KERN_NOTICE, sdkp, 2798 "%llu %d-byte logical blocks: (%s/%s)\n", 2799 (unsigned long long)sdkp->capacity, 2800 sector_size, cap_str_10, cap_str_2); 2801 2802 if (sdkp->physical_block_size != sector_size) 2803 sd_printk(KERN_NOTICE, sdkp, 2804 "%u-byte physical blocks\n", 2805 sdkp->physical_block_size); 2806 } 2807 2808 /* called with buffer of length 512 */ 2809 static inline int 2810 sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage, 2811 unsigned char *buffer, int len, struct scsi_mode_data *data, 2812 struct scsi_sense_hdr *sshdr) 2813 { 2814 /* 2815 * If we must use MODE SENSE(10), make sure that the buffer length 2816 * is at least 8 bytes so that the mode sense header fits. 2817 */ 2818 if (sdkp->device->use_10_for_ms && len < 8) 2819 len = 8; 2820 2821 return scsi_mode_sense(sdkp->device, dbd, modepage, 0, buffer, len, 2822 SD_TIMEOUT, sdkp->max_retries, data, sshdr); 2823 } 2824 2825 /* 2826 * read write protect setting, if possible - called only in sd_revalidate_disk() 2827 * called with buffer of length SD_BUF_SIZE 2828 */ 2829 static void 2830 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer) 2831 { 2832 int res; 2833 struct scsi_device *sdp = sdkp->device; 2834 struct scsi_mode_data data; 2835 int old_wp = sdkp->write_prot; 2836 2837 set_disk_ro(sdkp->disk, 0); 2838 if (sdp->skip_ms_page_3f) { 2839 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n"); 2840 return; 2841 } 2842 2843 if (sdp->use_192_bytes_for_3f) { 2844 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL); 2845 } else { 2846 /* 2847 * First attempt: ask for all pages (0x3F), but only 4 bytes. 2848 * We have to start carefully: some devices hang if we ask 2849 * for more than is available. 2850 */ 2851 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL); 2852 2853 /* 2854 * Second attempt: ask for page 0 When only page 0 is 2855 * implemented, a request for page 3F may return Sense Key 2856 * 5: Illegal Request, Sense Code 24: Invalid field in 2857 * CDB. 2858 */ 2859 if (res < 0) 2860 res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL); 2861 2862 /* 2863 * Third attempt: ask 255 bytes, as we did earlier. 2864 */ 2865 if (res < 0) 2866 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255, 2867 &data, NULL); 2868 } 2869 2870 if (res < 0) { 2871 sd_first_printk(KERN_WARNING, sdkp, 2872 "Test WP failed, assume Write Enabled\n"); 2873 } else { 2874 sdkp->write_prot = ((data.device_specific & 0x80) != 0); 2875 set_disk_ro(sdkp->disk, sdkp->write_prot); 2876 if (sdkp->first_scan || old_wp != sdkp->write_prot) { 2877 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n", 2878 sdkp->write_prot ? "on" : "off"); 2879 sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer); 2880 } 2881 } 2882 } 2883 2884 /* 2885 * sd_read_cache_type - called only from sd_revalidate_disk() 2886 * called with buffer of length SD_BUF_SIZE 2887 */ 2888 static void 2889 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer) 2890 { 2891 int len = 0, res; 2892 struct scsi_device *sdp = sdkp->device; 2893 2894 int dbd; 2895 int modepage; 2896 int first_len; 2897 struct scsi_mode_data data; 2898 struct scsi_sense_hdr sshdr; 2899 int old_wce = sdkp->WCE; 2900 int old_rcd = sdkp->RCD; 2901 int old_dpofua = sdkp->DPOFUA; 2902 2903 2904 if (sdkp->cache_override) 2905 return; 2906 2907 first_len = 4; 2908 if (sdp->skip_ms_page_8) { 2909 if (sdp->type == TYPE_RBC) 2910 goto defaults; 2911 else { 2912 if (sdp->skip_ms_page_3f) 2913 goto defaults; 2914 modepage = 0x3F; 2915 if (sdp->use_192_bytes_for_3f) 2916 first_len = 192; 2917 dbd = 0; 2918 } 2919 } else if (sdp->type == TYPE_RBC) { 2920 modepage = 6; 2921 dbd = 8; 2922 } else { 2923 modepage = 8; 2924 dbd = 0; 2925 } 2926 2927 /* cautiously ask */ 2928 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len, 2929 &data, &sshdr); 2930 2931 if (res < 0) 2932 goto bad_sense; 2933 2934 if (!data.header_length) { 2935 modepage = 6; 2936 first_len = 0; 2937 sd_first_printk(KERN_ERR, sdkp, 2938 "Missing header in MODE_SENSE response\n"); 2939 } 2940 2941 /* that went OK, now ask for the proper length */ 2942 len = data.length; 2943 2944 /* 2945 * We're only interested in the first three bytes, actually. 2946 * But the data cache page is defined for the first 20. 2947 */ 2948 if (len < 3) 2949 goto bad_sense; 2950 else if (len > SD_BUF_SIZE) { 2951 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter " 2952 "data from %d to %d bytes\n", len, SD_BUF_SIZE); 2953 len = SD_BUF_SIZE; 2954 } 2955 if (modepage == 0x3F && sdp->use_192_bytes_for_3f) 2956 len = 192; 2957 2958 /* Get the data */ 2959 if (len > first_len) 2960 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len, 2961 &data, &sshdr); 2962 2963 if (!res) { 2964 int offset = data.header_length + data.block_descriptor_length; 2965 2966 while (offset < len) { 2967 u8 page_code = buffer[offset] & 0x3F; 2968 u8 spf = buffer[offset] & 0x40; 2969 2970 if (page_code == 8 || page_code == 6) { 2971 /* We're interested only in the first 3 bytes. 2972 */ 2973 if (len - offset <= 2) { 2974 sd_first_printk(KERN_ERR, sdkp, 2975 "Incomplete mode parameter " 2976 "data\n"); 2977 goto defaults; 2978 } else { 2979 modepage = page_code; 2980 goto Page_found; 2981 } 2982 } else { 2983 /* Go to the next page */ 2984 if (spf && len - offset > 3) 2985 offset += 4 + (buffer[offset+2] << 8) + 2986 buffer[offset+3]; 2987 else if (!spf && len - offset > 1) 2988 offset += 2 + buffer[offset+1]; 2989 else { 2990 sd_first_printk(KERN_ERR, sdkp, 2991 "Incomplete mode " 2992 "parameter data\n"); 2993 goto defaults; 2994 } 2995 } 2996 } 2997 2998 sd_first_printk(KERN_WARNING, sdkp, 2999 "No Caching mode page found\n"); 3000 goto defaults; 3001 3002 Page_found: 3003 if (modepage == 8) { 3004 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0); 3005 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0); 3006 } else { 3007 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0); 3008 sdkp->RCD = 0; 3009 } 3010 3011 sdkp->DPOFUA = (data.device_specific & 0x10) != 0; 3012 if (sdp->broken_fua) { 3013 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n"); 3014 sdkp->DPOFUA = 0; 3015 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw && 3016 !sdkp->device->use_16_for_rw) { 3017 sd_first_printk(KERN_NOTICE, sdkp, 3018 "Uses READ/WRITE(6), disabling FUA\n"); 3019 sdkp->DPOFUA = 0; 3020 } 3021 3022 /* No cache flush allowed for write protected devices */ 3023 if (sdkp->WCE && sdkp->write_prot) 3024 sdkp->WCE = 0; 3025 3026 if (sdkp->first_scan || old_wce != sdkp->WCE || 3027 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA) 3028 sd_printk(KERN_NOTICE, sdkp, 3029 "Write cache: %s, read cache: %s, %s\n", 3030 sdkp->WCE ? "enabled" : "disabled", 3031 sdkp->RCD ? "disabled" : "enabled", 3032 sdkp->DPOFUA ? "supports DPO and FUA" 3033 : "doesn't support DPO or FUA"); 3034 3035 return; 3036 } 3037 3038 bad_sense: 3039 if (res == -EIO && scsi_sense_valid(&sshdr) && 3040 sshdr.sense_key == ILLEGAL_REQUEST && 3041 sshdr.asc == 0x24 && sshdr.ascq == 0x0) 3042 /* Invalid field in CDB */ 3043 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n"); 3044 else 3045 sd_first_printk(KERN_ERR, sdkp, 3046 "Asking for cache data failed\n"); 3047 3048 defaults: 3049 if (sdp->wce_default_on) { 3050 sd_first_printk(KERN_NOTICE, sdkp, 3051 "Assuming drive cache: write back\n"); 3052 sdkp->WCE = 1; 3053 } else { 3054 sd_first_printk(KERN_WARNING, sdkp, 3055 "Assuming drive cache: write through\n"); 3056 sdkp->WCE = 0; 3057 } 3058 sdkp->RCD = 0; 3059 sdkp->DPOFUA = 0; 3060 } 3061 3062 /* 3063 * The ATO bit indicates whether the DIF application tag is available 3064 * for use by the operating system. 3065 */ 3066 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer) 3067 { 3068 int res, offset; 3069 struct scsi_device *sdp = sdkp->device; 3070 struct scsi_mode_data data; 3071 struct scsi_sense_hdr sshdr; 3072 3073 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 3074 return; 3075 3076 if (sdkp->protection_type == 0) 3077 return; 3078 3079 res = scsi_mode_sense(sdp, 1, 0x0a, 0, buffer, 36, SD_TIMEOUT, 3080 sdkp->max_retries, &data, &sshdr); 3081 3082 if (res < 0 || !data.header_length || 3083 data.length < 6) { 3084 sd_first_printk(KERN_WARNING, sdkp, 3085 "getting Control mode page failed, assume no ATO\n"); 3086 3087 if (res == -EIO && scsi_sense_valid(&sshdr)) 3088 sd_print_sense_hdr(sdkp, &sshdr); 3089 3090 return; 3091 } 3092 3093 offset = data.header_length + data.block_descriptor_length; 3094 3095 if ((buffer[offset] & 0x3f) != 0x0a) { 3096 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n"); 3097 return; 3098 } 3099 3100 if ((buffer[offset + 5] & 0x80) == 0) 3101 return; 3102 3103 sdkp->ATO = 1; 3104 3105 return; 3106 } 3107 3108 /** 3109 * sd_read_block_limits - Query disk device for preferred I/O sizes. 3110 * @sdkp: disk to query 3111 */ 3112 static void sd_read_block_limits(struct scsi_disk *sdkp) 3113 { 3114 struct scsi_vpd *vpd; 3115 3116 rcu_read_lock(); 3117 3118 vpd = rcu_dereference(sdkp->device->vpd_pgb0); 3119 if (!vpd || vpd->len < 16) 3120 goto out; 3121 3122 sdkp->min_xfer_blocks = get_unaligned_be16(&vpd->data[6]); 3123 sdkp->max_xfer_blocks = get_unaligned_be32(&vpd->data[8]); 3124 sdkp->opt_xfer_blocks = get_unaligned_be32(&vpd->data[12]); 3125 3126 if (vpd->len >= 64) { 3127 unsigned int lba_count, desc_count; 3128 3129 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&vpd->data[36]); 3130 3131 if (!sdkp->lbpme) 3132 goto out; 3133 3134 lba_count = get_unaligned_be32(&vpd->data[20]); 3135 desc_count = get_unaligned_be32(&vpd->data[24]); 3136 3137 if (lba_count && desc_count) 3138 sdkp->max_unmap_blocks = lba_count; 3139 3140 sdkp->unmap_granularity = get_unaligned_be32(&vpd->data[28]); 3141 3142 if (vpd->data[32] & 0x80) 3143 sdkp->unmap_alignment = 3144 get_unaligned_be32(&vpd->data[32]) & ~(1 << 31); 3145 3146 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */ 3147 3148 if (sdkp->max_unmap_blocks) 3149 sd_config_discard(sdkp, SD_LBP_UNMAP); 3150 else 3151 sd_config_discard(sdkp, SD_LBP_WS16); 3152 3153 } else { /* LBP VPD page tells us what to use */ 3154 if (sdkp->lbpu && sdkp->max_unmap_blocks) 3155 sd_config_discard(sdkp, SD_LBP_UNMAP); 3156 else if (sdkp->lbpws) 3157 sd_config_discard(sdkp, SD_LBP_WS16); 3158 else if (sdkp->lbpws10) 3159 sd_config_discard(sdkp, SD_LBP_WS10); 3160 else 3161 sd_config_discard(sdkp, SD_LBP_DISABLE); 3162 } 3163 } 3164 3165 out: 3166 rcu_read_unlock(); 3167 } 3168 3169 /** 3170 * sd_read_block_characteristics - Query block dev. characteristics 3171 * @sdkp: disk to query 3172 */ 3173 static void sd_read_block_characteristics(struct scsi_disk *sdkp) 3174 { 3175 struct request_queue *q = sdkp->disk->queue; 3176 struct scsi_vpd *vpd; 3177 u16 rot; 3178 3179 rcu_read_lock(); 3180 vpd = rcu_dereference(sdkp->device->vpd_pgb1); 3181 3182 if (!vpd || vpd->len < 8) { 3183 rcu_read_unlock(); 3184 return; 3185 } 3186 3187 rot = get_unaligned_be16(&vpd->data[4]); 3188 sdkp->zoned = (vpd->data[8] >> 4) & 3; 3189 rcu_read_unlock(); 3190 3191 if (rot == 1) { 3192 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 3193 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q); 3194 } 3195 3196 3197 #ifdef CONFIG_BLK_DEV_ZONED /* sd_probe rejects ZBD devices early otherwise */ 3198 if (sdkp->device->type == TYPE_ZBC) { 3199 /* 3200 * Host-managed. 3201 */ 3202 disk_set_zoned(sdkp->disk); 3203 3204 /* 3205 * Per ZBC and ZAC specifications, writes in sequential write 3206 * required zones of host-managed devices must be aligned to 3207 * the device physical block size. 3208 */ 3209 blk_queue_zone_write_granularity(q, sdkp->physical_block_size); 3210 } else { 3211 /* 3212 * Host-aware devices are treated as conventional. 3213 */ 3214 WARN_ON_ONCE(blk_queue_is_zoned(q)); 3215 } 3216 #endif /* CONFIG_BLK_DEV_ZONED */ 3217 3218 if (!sdkp->first_scan) 3219 return; 3220 3221 if (blk_queue_is_zoned(q)) 3222 sd_printk(KERN_NOTICE, sdkp, "Host-managed zoned block device\n"); 3223 else if (sdkp->zoned == 1) 3224 sd_printk(KERN_NOTICE, sdkp, "Host-aware SMR disk used as regular disk\n"); 3225 else if (sdkp->zoned == 2) 3226 sd_printk(KERN_NOTICE, sdkp, "Drive-managed SMR disk\n"); 3227 } 3228 3229 /** 3230 * sd_read_block_provisioning - Query provisioning VPD page 3231 * @sdkp: disk to query 3232 */ 3233 static void sd_read_block_provisioning(struct scsi_disk *sdkp) 3234 { 3235 struct scsi_vpd *vpd; 3236 3237 if (sdkp->lbpme == 0) 3238 return; 3239 3240 rcu_read_lock(); 3241 vpd = rcu_dereference(sdkp->device->vpd_pgb2); 3242 3243 if (!vpd || vpd->len < 8) { 3244 rcu_read_unlock(); 3245 return; 3246 } 3247 3248 sdkp->lbpvpd = 1; 3249 sdkp->lbpu = (vpd->data[5] >> 7) & 1; /* UNMAP */ 3250 sdkp->lbpws = (vpd->data[5] >> 6) & 1; /* WRITE SAME(16) w/ UNMAP */ 3251 sdkp->lbpws10 = (vpd->data[5] >> 5) & 1; /* WRITE SAME(10) w/ UNMAP */ 3252 rcu_read_unlock(); 3253 } 3254 3255 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer) 3256 { 3257 struct scsi_device *sdev = sdkp->device; 3258 3259 if (sdev->host->no_write_same) { 3260 sdev->no_write_same = 1; 3261 3262 return; 3263 } 3264 3265 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY, 0) < 0) { 3266 struct scsi_vpd *vpd; 3267 3268 sdev->no_report_opcodes = 1; 3269 3270 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION 3271 * CODES is unsupported and the device has an ATA 3272 * Information VPD page (SAT). 3273 */ 3274 rcu_read_lock(); 3275 vpd = rcu_dereference(sdev->vpd_pg89); 3276 if (vpd) 3277 sdev->no_write_same = 1; 3278 rcu_read_unlock(); 3279 } 3280 3281 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16, 0) == 1) 3282 sdkp->ws16 = 1; 3283 3284 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME, 0) == 1) 3285 sdkp->ws10 = 1; 3286 } 3287 3288 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer) 3289 { 3290 struct scsi_device *sdev = sdkp->device; 3291 3292 if (!sdev->security_supported) 3293 return; 3294 3295 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3296 SECURITY_PROTOCOL_IN, 0) == 1 && 3297 scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3298 SECURITY_PROTOCOL_OUT, 0) == 1) 3299 sdkp->security = 1; 3300 } 3301 3302 static inline sector_t sd64_to_sectors(struct scsi_disk *sdkp, u8 *buf) 3303 { 3304 return logical_to_sectors(sdkp->device, get_unaligned_be64(buf)); 3305 } 3306 3307 /** 3308 * sd_read_cpr - Query concurrent positioning ranges 3309 * @sdkp: disk to query 3310 */ 3311 static void sd_read_cpr(struct scsi_disk *sdkp) 3312 { 3313 struct blk_independent_access_ranges *iars = NULL; 3314 unsigned char *buffer = NULL; 3315 unsigned int nr_cpr = 0; 3316 int i, vpd_len, buf_len = SD_BUF_SIZE; 3317 u8 *desc; 3318 3319 /* 3320 * We need to have the capacity set first for the block layer to be 3321 * able to check the ranges. 3322 */ 3323 if (sdkp->first_scan) 3324 return; 3325 3326 if (!sdkp->capacity) 3327 goto out; 3328 3329 /* 3330 * Concurrent Positioning Ranges VPD: there can be at most 256 ranges, 3331 * leading to a maximum page size of 64 + 256*32 bytes. 3332 */ 3333 buf_len = 64 + 256*32; 3334 buffer = kmalloc(buf_len, GFP_KERNEL); 3335 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb9, buffer, buf_len)) 3336 goto out; 3337 3338 /* We must have at least a 64B header and one 32B range descriptor */ 3339 vpd_len = get_unaligned_be16(&buffer[2]) + 4; 3340 if (vpd_len > buf_len || vpd_len < 64 + 32 || (vpd_len & 31)) { 3341 sd_printk(KERN_ERR, sdkp, 3342 "Invalid Concurrent Positioning Ranges VPD page\n"); 3343 goto out; 3344 } 3345 3346 nr_cpr = (vpd_len - 64) / 32; 3347 if (nr_cpr == 1) { 3348 nr_cpr = 0; 3349 goto out; 3350 } 3351 3352 iars = disk_alloc_independent_access_ranges(sdkp->disk, nr_cpr); 3353 if (!iars) { 3354 nr_cpr = 0; 3355 goto out; 3356 } 3357 3358 desc = &buffer[64]; 3359 for (i = 0; i < nr_cpr; i++, desc += 32) { 3360 if (desc[0] != i) { 3361 sd_printk(KERN_ERR, sdkp, 3362 "Invalid Concurrent Positioning Range number\n"); 3363 nr_cpr = 0; 3364 break; 3365 } 3366 3367 iars->ia_range[i].sector = sd64_to_sectors(sdkp, desc + 8); 3368 iars->ia_range[i].nr_sectors = sd64_to_sectors(sdkp, desc + 16); 3369 } 3370 3371 out: 3372 disk_set_independent_access_ranges(sdkp->disk, iars); 3373 if (nr_cpr && sdkp->nr_actuators != nr_cpr) { 3374 sd_printk(KERN_NOTICE, sdkp, 3375 "%u concurrent positioning ranges\n", nr_cpr); 3376 sdkp->nr_actuators = nr_cpr; 3377 } 3378 3379 kfree(buffer); 3380 } 3381 3382 static bool sd_validate_min_xfer_size(struct scsi_disk *sdkp) 3383 { 3384 struct scsi_device *sdp = sdkp->device; 3385 unsigned int min_xfer_bytes = 3386 logical_to_bytes(sdp, sdkp->min_xfer_blocks); 3387 3388 if (sdkp->min_xfer_blocks == 0) 3389 return false; 3390 3391 if (min_xfer_bytes & (sdkp->physical_block_size - 1)) { 3392 sd_first_printk(KERN_WARNING, sdkp, 3393 "Preferred minimum I/O size %u bytes not a " \ 3394 "multiple of physical block size (%u bytes)\n", 3395 min_xfer_bytes, sdkp->physical_block_size); 3396 sdkp->min_xfer_blocks = 0; 3397 return false; 3398 } 3399 3400 sd_first_printk(KERN_INFO, sdkp, "Preferred minimum I/O size %u bytes\n", 3401 min_xfer_bytes); 3402 return true; 3403 } 3404 3405 /* 3406 * Determine the device's preferred I/O size for reads and writes 3407 * unless the reported value is unreasonably small, large, not a 3408 * multiple of the physical block size, or simply garbage. 3409 */ 3410 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp, 3411 unsigned int dev_max) 3412 { 3413 struct scsi_device *sdp = sdkp->device; 3414 unsigned int opt_xfer_bytes = 3415 logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 3416 unsigned int min_xfer_bytes = 3417 logical_to_bytes(sdp, sdkp->min_xfer_blocks); 3418 3419 if (sdkp->opt_xfer_blocks == 0) 3420 return false; 3421 3422 if (sdkp->opt_xfer_blocks > dev_max) { 3423 sd_first_printk(KERN_WARNING, sdkp, 3424 "Optimal transfer size %u logical blocks " \ 3425 "> dev_max (%u logical blocks)\n", 3426 sdkp->opt_xfer_blocks, dev_max); 3427 return false; 3428 } 3429 3430 if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) { 3431 sd_first_printk(KERN_WARNING, sdkp, 3432 "Optimal transfer size %u logical blocks " \ 3433 "> sd driver limit (%u logical blocks)\n", 3434 sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS); 3435 return false; 3436 } 3437 3438 if (opt_xfer_bytes < PAGE_SIZE) { 3439 sd_first_printk(KERN_WARNING, sdkp, 3440 "Optimal transfer size %u bytes < " \ 3441 "PAGE_SIZE (%u bytes)\n", 3442 opt_xfer_bytes, (unsigned int)PAGE_SIZE); 3443 return false; 3444 } 3445 3446 if (min_xfer_bytes && opt_xfer_bytes % min_xfer_bytes) { 3447 sd_first_printk(KERN_WARNING, sdkp, 3448 "Optimal transfer size %u bytes not a " \ 3449 "multiple of preferred minimum block " \ 3450 "size (%u bytes)\n", 3451 opt_xfer_bytes, min_xfer_bytes); 3452 return false; 3453 } 3454 3455 if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) { 3456 sd_first_printk(KERN_WARNING, sdkp, 3457 "Optimal transfer size %u bytes not a " \ 3458 "multiple of physical block size (%u bytes)\n", 3459 opt_xfer_bytes, sdkp->physical_block_size); 3460 return false; 3461 } 3462 3463 sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n", 3464 opt_xfer_bytes); 3465 return true; 3466 } 3467 3468 static void sd_read_block_zero(struct scsi_disk *sdkp) 3469 { 3470 unsigned int buf_len = sdkp->device->sector_size; 3471 char *buffer, cmd[10] = { }; 3472 3473 buffer = kmalloc(buf_len, GFP_KERNEL); 3474 if (!buffer) 3475 return; 3476 3477 cmd[0] = READ_10; 3478 put_unaligned_be32(0, &cmd[2]); /* Logical block address 0 */ 3479 put_unaligned_be16(1, &cmd[7]); /* Transfer 1 logical block */ 3480 3481 scsi_execute_cmd(sdkp->device, cmd, REQ_OP_DRV_IN, buffer, buf_len, 3482 SD_TIMEOUT, sdkp->max_retries, NULL); 3483 kfree(buffer); 3484 } 3485 3486 /** 3487 * sd_revalidate_disk - called the first time a new disk is seen, 3488 * performs disk spin up, read_capacity, etc. 3489 * @disk: struct gendisk we care about 3490 **/ 3491 static int sd_revalidate_disk(struct gendisk *disk) 3492 { 3493 struct scsi_disk *sdkp = scsi_disk(disk); 3494 struct scsi_device *sdp = sdkp->device; 3495 struct request_queue *q = sdkp->disk->queue; 3496 sector_t old_capacity = sdkp->capacity; 3497 unsigned char *buffer; 3498 unsigned int dev_max, rw_max; 3499 3500 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, 3501 "sd_revalidate_disk\n")); 3502 3503 /* 3504 * If the device is offline, don't try and read capacity or any 3505 * of the other niceties. 3506 */ 3507 if (!scsi_device_online(sdp)) 3508 goto out; 3509 3510 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL); 3511 if (!buffer) { 3512 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory " 3513 "allocation failure.\n"); 3514 goto out; 3515 } 3516 3517 sd_spinup_disk(sdkp); 3518 3519 /* 3520 * Without media there is no reason to ask; moreover, some devices 3521 * react badly if we do. 3522 */ 3523 if (sdkp->media_present) { 3524 sd_read_capacity(sdkp, buffer); 3525 /* 3526 * Some USB/UAS devices return generic values for mode pages 3527 * until the media has been accessed. Trigger a READ operation 3528 * to force the device to populate mode pages. 3529 */ 3530 if (sdp->read_before_ms) 3531 sd_read_block_zero(sdkp); 3532 /* 3533 * set the default to rotational. All non-rotational devices 3534 * support the block characteristics VPD page, which will 3535 * cause this to be updated correctly and any device which 3536 * doesn't support it should be treated as rotational. 3537 */ 3538 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q); 3539 blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q); 3540 3541 if (scsi_device_supports_vpd(sdp)) { 3542 sd_read_block_provisioning(sdkp); 3543 sd_read_block_limits(sdkp); 3544 sd_read_block_characteristics(sdkp); 3545 sd_zbc_read_zones(sdkp, buffer); 3546 sd_read_cpr(sdkp); 3547 } 3548 3549 sd_print_capacity(sdkp, old_capacity); 3550 3551 sd_read_write_protect_flag(sdkp, buffer); 3552 sd_read_cache_type(sdkp, buffer); 3553 sd_read_app_tag_own(sdkp, buffer); 3554 sd_read_write_same(sdkp, buffer); 3555 sd_read_security(sdkp, buffer); 3556 sd_config_protection(sdkp); 3557 } 3558 3559 /* 3560 * We now have all cache related info, determine how we deal 3561 * with flush requests. 3562 */ 3563 sd_set_flush_flag(sdkp); 3564 3565 /* Initial block count limit based on CDB TRANSFER LENGTH field size. */ 3566 dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS; 3567 3568 /* Some devices report a maximum block count for READ/WRITE requests. */ 3569 dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks); 3570 q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max); 3571 3572 if (sd_validate_min_xfer_size(sdkp)) 3573 blk_queue_io_min(sdkp->disk->queue, 3574 logical_to_bytes(sdp, sdkp->min_xfer_blocks)); 3575 else 3576 blk_queue_io_min(sdkp->disk->queue, 0); 3577 3578 if (sd_validate_opt_xfer_size(sdkp, dev_max)) { 3579 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 3580 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks); 3581 } else { 3582 q->limits.io_opt = 0; 3583 rw_max = min_not_zero(logical_to_sectors(sdp, dev_max), 3584 (sector_t)BLK_DEF_MAX_SECTORS_CAP); 3585 } 3586 3587 /* 3588 * Limit default to SCSI host optimal sector limit if set. There may be 3589 * an impact on performance for when the size of a request exceeds this 3590 * host limit. 3591 */ 3592 rw_max = min_not_zero(rw_max, sdp->host->opt_sectors); 3593 3594 /* Do not exceed controller limit */ 3595 rw_max = min(rw_max, queue_max_hw_sectors(q)); 3596 3597 /* 3598 * Only update max_sectors if previously unset or if the current value 3599 * exceeds the capabilities of the hardware. 3600 */ 3601 if (sdkp->first_scan || 3602 q->limits.max_sectors > q->limits.max_dev_sectors || 3603 q->limits.max_sectors > q->limits.max_hw_sectors) 3604 q->limits.max_sectors = rw_max; 3605 3606 sdkp->first_scan = 0; 3607 3608 set_capacity_and_notify(disk, logical_to_sectors(sdp, sdkp->capacity)); 3609 sd_config_write_same(sdkp); 3610 kfree(buffer); 3611 3612 /* 3613 * For a zoned drive, revalidating the zones can be done only once 3614 * the gendisk capacity is set. So if this fails, set back the gendisk 3615 * capacity to 0. 3616 */ 3617 if (sd_zbc_revalidate_zones(sdkp)) 3618 set_capacity_and_notify(disk, 0); 3619 3620 out: 3621 return 0; 3622 } 3623 3624 /** 3625 * sd_unlock_native_capacity - unlock native capacity 3626 * @disk: struct gendisk to set capacity for 3627 * 3628 * Block layer calls this function if it detects that partitions 3629 * on @disk reach beyond the end of the device. If the SCSI host 3630 * implements ->unlock_native_capacity() method, it's invoked to 3631 * give it a chance to adjust the device capacity. 3632 * 3633 * CONTEXT: 3634 * Defined by block layer. Might sleep. 3635 */ 3636 static void sd_unlock_native_capacity(struct gendisk *disk) 3637 { 3638 struct scsi_device *sdev = scsi_disk(disk)->device; 3639 3640 if (sdev->host->hostt->unlock_native_capacity) 3641 sdev->host->hostt->unlock_native_capacity(sdev); 3642 } 3643 3644 /** 3645 * sd_format_disk_name - format disk name 3646 * @prefix: name prefix - ie. "sd" for SCSI disks 3647 * @index: index of the disk to format name for 3648 * @buf: output buffer 3649 * @buflen: length of the output buffer 3650 * 3651 * SCSI disk names starts at sda. The 26th device is sdz and the 3652 * 27th is sdaa. The last one for two lettered suffix is sdzz 3653 * which is followed by sdaaa. 3654 * 3655 * This is basically 26 base counting with one extra 'nil' entry 3656 * at the beginning from the second digit on and can be 3657 * determined using similar method as 26 base conversion with the 3658 * index shifted -1 after each digit is computed. 3659 * 3660 * CONTEXT: 3661 * Don't care. 3662 * 3663 * RETURNS: 3664 * 0 on success, -errno on failure. 3665 */ 3666 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen) 3667 { 3668 const int base = 'z' - 'a' + 1; 3669 char *begin = buf + strlen(prefix); 3670 char *end = buf + buflen; 3671 char *p; 3672 int unit; 3673 3674 p = end - 1; 3675 *p = '\0'; 3676 unit = base; 3677 do { 3678 if (p == begin) 3679 return -EINVAL; 3680 *--p = 'a' + (index % unit); 3681 index = (index / unit) - 1; 3682 } while (index >= 0); 3683 3684 memmove(begin, p, end - p); 3685 memcpy(buf, prefix, strlen(prefix)); 3686 3687 return 0; 3688 } 3689 3690 /** 3691 * sd_probe - called during driver initialization and whenever a 3692 * new scsi device is attached to the system. It is called once 3693 * for each scsi device (not just disks) present. 3694 * @dev: pointer to device object 3695 * 3696 * Returns 0 if successful (or not interested in this scsi device 3697 * (e.g. scanner)); 1 when there is an error. 3698 * 3699 * Note: this function is invoked from the scsi mid-level. 3700 * This function sets up the mapping between a given 3701 * <host,channel,id,lun> (found in sdp) and new device name 3702 * (e.g. /dev/sda). More precisely it is the block device major 3703 * and minor number that is chosen here. 3704 * 3705 * Assume sd_probe is not re-entrant (for time being) 3706 * Also think about sd_probe() and sd_remove() running coincidentally. 3707 **/ 3708 static int sd_probe(struct device *dev) 3709 { 3710 struct scsi_device *sdp = to_scsi_device(dev); 3711 struct scsi_disk *sdkp; 3712 struct gendisk *gd; 3713 int index; 3714 int error; 3715 3716 scsi_autopm_get_device(sdp); 3717 error = -ENODEV; 3718 if (sdp->type != TYPE_DISK && 3719 sdp->type != TYPE_ZBC && 3720 sdp->type != TYPE_MOD && 3721 sdp->type != TYPE_RBC) 3722 goto out; 3723 3724 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) && sdp->type == TYPE_ZBC) { 3725 sdev_printk(KERN_WARNING, sdp, 3726 "Unsupported ZBC host-managed device.\n"); 3727 goto out; 3728 } 3729 3730 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp, 3731 "sd_probe\n")); 3732 3733 error = -ENOMEM; 3734 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL); 3735 if (!sdkp) 3736 goto out; 3737 3738 gd = blk_mq_alloc_disk_for_queue(sdp->request_queue, 3739 &sd_bio_compl_lkclass); 3740 if (!gd) 3741 goto out_free; 3742 3743 index = ida_alloc(&sd_index_ida, GFP_KERNEL); 3744 if (index < 0) { 3745 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n"); 3746 goto out_put; 3747 } 3748 3749 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN); 3750 if (error) { 3751 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n"); 3752 goto out_free_index; 3753 } 3754 3755 sdkp->device = sdp; 3756 sdkp->disk = gd; 3757 sdkp->index = index; 3758 sdkp->max_retries = SD_MAX_RETRIES; 3759 atomic_set(&sdkp->openers, 0); 3760 atomic_set(&sdkp->device->ioerr_cnt, 0); 3761 3762 if (!sdp->request_queue->rq_timeout) { 3763 if (sdp->type != TYPE_MOD) 3764 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT); 3765 else 3766 blk_queue_rq_timeout(sdp->request_queue, 3767 SD_MOD_TIMEOUT); 3768 } 3769 3770 device_initialize(&sdkp->disk_dev); 3771 sdkp->disk_dev.parent = get_device(dev); 3772 sdkp->disk_dev.class = &sd_disk_class; 3773 dev_set_name(&sdkp->disk_dev, "%s", dev_name(dev)); 3774 3775 error = device_add(&sdkp->disk_dev); 3776 if (error) { 3777 put_device(&sdkp->disk_dev); 3778 goto out; 3779 } 3780 3781 dev_set_drvdata(dev, sdkp); 3782 3783 gd->major = sd_major((index & 0xf0) >> 4); 3784 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00); 3785 gd->minors = SD_MINORS; 3786 3787 gd->fops = &sd_fops; 3788 gd->private_data = sdkp; 3789 3790 /* defaults, until the device tells us otherwise */ 3791 sdp->sector_size = 512; 3792 sdkp->capacity = 0; 3793 sdkp->media_present = 1; 3794 sdkp->write_prot = 0; 3795 sdkp->cache_override = 0; 3796 sdkp->WCE = 0; 3797 sdkp->RCD = 0; 3798 sdkp->ATO = 0; 3799 sdkp->first_scan = 1; 3800 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS; 3801 3802 sd_revalidate_disk(gd); 3803 3804 if (sdp->removable) { 3805 gd->flags |= GENHD_FL_REMOVABLE; 3806 gd->events |= DISK_EVENT_MEDIA_CHANGE; 3807 gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT; 3808 } 3809 3810 blk_pm_runtime_init(sdp->request_queue, dev); 3811 if (sdp->rpm_autosuspend) { 3812 pm_runtime_set_autosuspend_delay(dev, 3813 sdp->host->rpm_autosuspend_delay); 3814 } 3815 3816 error = device_add_disk(dev, gd, NULL); 3817 if (error) { 3818 put_device(&sdkp->disk_dev); 3819 put_disk(gd); 3820 goto out; 3821 } 3822 3823 if (sdkp->security) { 3824 sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit); 3825 if (sdkp->opal_dev) 3826 sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n"); 3827 } 3828 3829 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n", 3830 sdp->removable ? "removable " : ""); 3831 scsi_autopm_put_device(sdp); 3832 3833 return 0; 3834 3835 out_free_index: 3836 ida_free(&sd_index_ida, index); 3837 out_put: 3838 put_disk(gd); 3839 out_free: 3840 kfree(sdkp); 3841 out: 3842 scsi_autopm_put_device(sdp); 3843 return error; 3844 } 3845 3846 /** 3847 * sd_remove - called whenever a scsi disk (previously recognized by 3848 * sd_probe) is detached from the system. It is called (potentially 3849 * multiple times) during sd module unload. 3850 * @dev: pointer to device object 3851 * 3852 * Note: this function is invoked from the scsi mid-level. 3853 * This function potentially frees up a device name (e.g. /dev/sdc) 3854 * that could be re-used by a subsequent sd_probe(). 3855 * This function is not called when the built-in sd driver is "exit-ed". 3856 **/ 3857 static int sd_remove(struct device *dev) 3858 { 3859 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3860 3861 scsi_autopm_get_device(sdkp->device); 3862 3863 device_del(&sdkp->disk_dev); 3864 del_gendisk(sdkp->disk); 3865 if (!sdkp->suspended) 3866 sd_shutdown(dev); 3867 3868 put_disk(sdkp->disk); 3869 return 0; 3870 } 3871 3872 static void scsi_disk_release(struct device *dev) 3873 { 3874 struct scsi_disk *sdkp = to_scsi_disk(dev); 3875 3876 ida_free(&sd_index_ida, sdkp->index); 3877 sd_zbc_free_zone_info(sdkp); 3878 put_device(&sdkp->device->sdev_gendev); 3879 free_opal_dev(sdkp->opal_dev); 3880 3881 kfree(sdkp); 3882 } 3883 3884 static int sd_start_stop_device(struct scsi_disk *sdkp, int start) 3885 { 3886 unsigned char cmd[6] = { START_STOP }; /* START_VALID */ 3887 struct scsi_sense_hdr sshdr; 3888 const struct scsi_exec_args exec_args = { 3889 .sshdr = &sshdr, 3890 .req_flags = BLK_MQ_REQ_PM, 3891 }; 3892 struct scsi_device *sdp = sdkp->device; 3893 int res; 3894 3895 if (start) 3896 cmd[4] |= 1; /* START */ 3897 3898 if (sdp->start_stop_pwr_cond) 3899 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */ 3900 3901 if (!scsi_device_online(sdp)) 3902 return -ENODEV; 3903 3904 res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, SD_TIMEOUT, 3905 sdkp->max_retries, &exec_args); 3906 if (res) { 3907 sd_print_result(sdkp, "Start/Stop Unit failed", res); 3908 if (res > 0 && scsi_sense_valid(&sshdr)) { 3909 sd_print_sense_hdr(sdkp, &sshdr); 3910 /* 0x3a is medium not present */ 3911 if (sshdr.asc == 0x3a) 3912 res = 0; 3913 } 3914 } 3915 3916 /* SCSI error codes must not go to the generic layer */ 3917 if (res) 3918 return -EIO; 3919 3920 return 0; 3921 } 3922 3923 /* 3924 * Send a SYNCHRONIZE CACHE instruction down to the device through 3925 * the normal SCSI command structure. Wait for the command to 3926 * complete. 3927 */ 3928 static void sd_shutdown(struct device *dev) 3929 { 3930 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3931 3932 if (!sdkp) 3933 return; /* this can happen */ 3934 3935 if (pm_runtime_suspended(dev)) 3936 return; 3937 3938 if (sdkp->WCE && sdkp->media_present) { 3939 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3940 sd_sync_cache(sdkp); 3941 } 3942 3943 if ((system_state != SYSTEM_RESTART && 3944 sdkp->device->manage_system_start_stop) || 3945 (system_state == SYSTEM_POWER_OFF && 3946 sdkp->device->manage_shutdown)) { 3947 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3948 sd_start_stop_device(sdkp, 0); 3949 } 3950 } 3951 3952 static inline bool sd_do_start_stop(struct scsi_device *sdev, bool runtime) 3953 { 3954 return (sdev->manage_system_start_stop && !runtime) || 3955 (sdev->manage_runtime_start_stop && runtime); 3956 } 3957 3958 static int sd_suspend_common(struct device *dev, bool runtime) 3959 { 3960 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3961 int ret = 0; 3962 3963 if (!sdkp) /* E.g.: runtime suspend following sd_remove() */ 3964 return 0; 3965 3966 if (sdkp->WCE && sdkp->media_present) { 3967 if (!sdkp->device->silence_suspend) 3968 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3969 ret = sd_sync_cache(sdkp); 3970 /* ignore OFFLINE device */ 3971 if (ret == -ENODEV) 3972 return 0; 3973 3974 if (ret) 3975 return ret; 3976 } 3977 3978 if (sd_do_start_stop(sdkp->device, runtime)) { 3979 if (!sdkp->device->silence_suspend) 3980 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3981 /* an error is not worth aborting a system sleep */ 3982 ret = sd_start_stop_device(sdkp, 0); 3983 if (!runtime) 3984 ret = 0; 3985 } 3986 3987 if (!ret) 3988 sdkp->suspended = true; 3989 3990 return ret; 3991 } 3992 3993 static int sd_suspend_system(struct device *dev) 3994 { 3995 if (pm_runtime_suspended(dev)) 3996 return 0; 3997 3998 return sd_suspend_common(dev, false); 3999 } 4000 4001 static int sd_suspend_runtime(struct device *dev) 4002 { 4003 return sd_suspend_common(dev, true); 4004 } 4005 4006 static int sd_resume(struct device *dev, bool runtime) 4007 { 4008 struct scsi_disk *sdkp = dev_get_drvdata(dev); 4009 int ret; 4010 4011 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */ 4012 return 0; 4013 4014 if (!sd_do_start_stop(sdkp->device, runtime)) { 4015 sdkp->suspended = false; 4016 return 0; 4017 } 4018 4019 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n"); 4020 ret = sd_start_stop_device(sdkp, 1); 4021 if (!ret) { 4022 opal_unlock_from_suspend(sdkp->opal_dev); 4023 sdkp->suspended = false; 4024 } 4025 4026 return ret; 4027 } 4028 4029 static int sd_resume_system(struct device *dev) 4030 { 4031 if (pm_runtime_suspended(dev)) { 4032 struct scsi_disk *sdkp = dev_get_drvdata(dev); 4033 struct scsi_device *sdp = sdkp ? sdkp->device : NULL; 4034 4035 if (sdp && sdp->force_runtime_start_on_system_start) 4036 pm_request_resume(dev); 4037 4038 return 0; 4039 } 4040 4041 return sd_resume(dev, false); 4042 } 4043 4044 static int sd_resume_runtime(struct device *dev) 4045 { 4046 struct scsi_disk *sdkp = dev_get_drvdata(dev); 4047 struct scsi_device *sdp; 4048 4049 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */ 4050 return 0; 4051 4052 sdp = sdkp->device; 4053 4054 if (sdp->ignore_media_change) { 4055 /* clear the device's sense data */ 4056 static const u8 cmd[10] = { REQUEST_SENSE }; 4057 const struct scsi_exec_args exec_args = { 4058 .req_flags = BLK_MQ_REQ_PM, 4059 }; 4060 4061 if (scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, 4062 sdp->request_queue->rq_timeout, 1, 4063 &exec_args)) 4064 sd_printk(KERN_NOTICE, sdkp, 4065 "Failed to clear sense data\n"); 4066 } 4067 4068 return sd_resume(dev, true); 4069 } 4070 4071 static const struct dev_pm_ops sd_pm_ops = { 4072 .suspend = sd_suspend_system, 4073 .resume = sd_resume_system, 4074 .poweroff = sd_suspend_system, 4075 .restore = sd_resume_system, 4076 .runtime_suspend = sd_suspend_runtime, 4077 .runtime_resume = sd_resume_runtime, 4078 }; 4079 4080 static struct scsi_driver sd_template = { 4081 .gendrv = { 4082 .name = "sd", 4083 .owner = THIS_MODULE, 4084 .probe = sd_probe, 4085 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 4086 .remove = sd_remove, 4087 .shutdown = sd_shutdown, 4088 .pm = &sd_pm_ops, 4089 }, 4090 .rescan = sd_rescan, 4091 .init_command = sd_init_command, 4092 .uninit_command = sd_uninit_command, 4093 .done = sd_done, 4094 .eh_action = sd_eh_action, 4095 .eh_reset = sd_eh_reset, 4096 }; 4097 4098 /** 4099 * init_sd - entry point for this driver (both when built in or when 4100 * a module). 4101 * 4102 * Note: this function registers this driver with the scsi mid-level. 4103 **/ 4104 static int __init init_sd(void) 4105 { 4106 int majors = 0, i, err; 4107 4108 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n")); 4109 4110 for (i = 0; i < SD_MAJORS; i++) { 4111 if (__register_blkdev(sd_major(i), "sd", sd_default_probe)) 4112 continue; 4113 majors++; 4114 } 4115 4116 if (!majors) 4117 return -ENODEV; 4118 4119 err = class_register(&sd_disk_class); 4120 if (err) 4121 goto err_out; 4122 4123 sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0); 4124 if (!sd_page_pool) { 4125 printk(KERN_ERR "sd: can't init discard page pool\n"); 4126 err = -ENOMEM; 4127 goto err_out_class; 4128 } 4129 4130 err = scsi_register_driver(&sd_template.gendrv); 4131 if (err) 4132 goto err_out_driver; 4133 4134 return 0; 4135 4136 err_out_driver: 4137 mempool_destroy(sd_page_pool); 4138 err_out_class: 4139 class_unregister(&sd_disk_class); 4140 err_out: 4141 for (i = 0; i < SD_MAJORS; i++) 4142 unregister_blkdev(sd_major(i), "sd"); 4143 return err; 4144 } 4145 4146 /** 4147 * exit_sd - exit point for this driver (when it is a module). 4148 * 4149 * Note: this function unregisters this driver from the scsi mid-level. 4150 **/ 4151 static void __exit exit_sd(void) 4152 { 4153 int i; 4154 4155 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n")); 4156 4157 scsi_unregister_driver(&sd_template.gendrv); 4158 mempool_destroy(sd_page_pool); 4159 4160 class_unregister(&sd_disk_class); 4161 4162 for (i = 0; i < SD_MAJORS; i++) 4163 unregister_blkdev(sd_major(i), "sd"); 4164 } 4165 4166 module_init(init_sd); 4167 module_exit(exit_sd); 4168 4169 void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr) 4170 { 4171 scsi_print_sense_hdr(sdkp->device, 4172 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr); 4173 } 4174 4175 void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result) 4176 { 4177 const char *hb_string = scsi_hostbyte_string(result); 4178 4179 if (hb_string) 4180 sd_printk(KERN_INFO, sdkp, 4181 "%s: Result: hostbyte=%s driverbyte=%s\n", msg, 4182 hb_string ? hb_string : "invalid", 4183 "DRIVER_OK"); 4184 else 4185 sd_printk(KERN_INFO, sdkp, 4186 "%s: Result: hostbyte=0x%02x driverbyte=%s\n", 4187 msg, host_byte(result), "DRIVER_OK"); 4188 } 4189