1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * sd.c Copyright (C) 1992 Drew Eckhardt 4 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale 5 * 6 * Linux scsi disk driver 7 * Initial versions: Drew Eckhardt 8 * Subsequent revisions: Eric Youngdale 9 * Modification history: 10 * - Drew Eckhardt <drew@colorado.edu> original 11 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 12 * outstanding request, and other enhancements. 13 * Support loadable low-level scsi drivers. 14 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 15 * eight major numbers. 16 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs. 17 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 18 * sd_init and cleanups. 19 * - Alex Davis <letmein@erols.com> Fix problem where partition info 20 * not being read in sd_open. Fix problem where removable media 21 * could be ejected after sd_open. 22 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x 23 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 24 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 25 * Support 32k/1M disks. 26 * 27 * Logging policy (needs CONFIG_SCSI_LOGGING defined): 28 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2 29 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1 30 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1 31 * - entering other commands: SCSI_LOG_HLQUEUE level 3 32 * Note: when the logging level is set by the user, it must be greater 33 * than the level indicated above to trigger output. 34 */ 35 36 #include <linux/module.h> 37 #include <linux/fs.h> 38 #include <linux/kernel.h> 39 #include <linux/mm.h> 40 #include <linux/bio.h> 41 #include <linux/hdreg.h> 42 #include <linux/errno.h> 43 #include <linux/idr.h> 44 #include <linux/interrupt.h> 45 #include <linux/init.h> 46 #include <linux/blkdev.h> 47 #include <linux/blkpg.h> 48 #include <linux/blk-pm.h> 49 #include <linux/delay.h> 50 #include <linux/major.h> 51 #include <linux/mutex.h> 52 #include <linux/string_helpers.h> 53 #include <linux/slab.h> 54 #include <linux/sed-opal.h> 55 #include <linux/pm_runtime.h> 56 #include <linux/pr.h> 57 #include <linux/t10-pi.h> 58 #include <linux/uaccess.h> 59 #include <asm/unaligned.h> 60 61 #include <scsi/scsi.h> 62 #include <scsi/scsi_cmnd.h> 63 #include <scsi/scsi_dbg.h> 64 #include <scsi/scsi_device.h> 65 #include <scsi/scsi_driver.h> 66 #include <scsi/scsi_eh.h> 67 #include <scsi/scsi_host.h> 68 #include <scsi/scsi_ioctl.h> 69 #include <scsi/scsicam.h> 70 71 #include "sd.h" 72 #include "scsi_priv.h" 73 #include "scsi_logging.h" 74 75 MODULE_AUTHOR("Eric Youngdale"); 76 MODULE_DESCRIPTION("SCSI disk (sd) driver"); 77 MODULE_LICENSE("GPL"); 78 79 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR); 80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR); 81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR); 82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR); 83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR); 84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR); 85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR); 86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR); 87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR); 88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR); 89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR); 90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR); 91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR); 92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR); 93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR); 94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR); 95 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK); 96 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD); 97 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC); 98 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC); 99 100 #define SD_MINORS 16 101 102 static void sd_config_discard(struct scsi_disk *, unsigned int); 103 static void sd_config_write_same(struct scsi_disk *); 104 static int sd_revalidate_disk(struct gendisk *); 105 static void sd_unlock_native_capacity(struct gendisk *disk); 106 static int sd_probe(struct device *); 107 static int sd_remove(struct device *); 108 static void sd_shutdown(struct device *); 109 static int sd_suspend_system(struct device *); 110 static int sd_suspend_runtime(struct device *); 111 static int sd_resume_system(struct device *); 112 static int sd_resume_runtime(struct device *); 113 static void sd_rescan(struct device *); 114 static blk_status_t sd_init_command(struct scsi_cmnd *SCpnt); 115 static void sd_uninit_command(struct scsi_cmnd *SCpnt); 116 static int sd_done(struct scsi_cmnd *); 117 static void sd_eh_reset(struct scsi_cmnd *); 118 static int sd_eh_action(struct scsi_cmnd *, int); 119 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer); 120 static void scsi_disk_release(struct device *cdev); 121 122 static DEFINE_IDA(sd_index_ida); 123 124 static struct kmem_cache *sd_cdb_cache; 125 static mempool_t *sd_page_pool; 126 static struct lock_class_key sd_bio_compl_lkclass; 127 128 static const char *sd_cache_types[] = { 129 "write through", "none", "write back", 130 "write back, no read (daft)" 131 }; 132 133 static void sd_set_flush_flag(struct scsi_disk *sdkp) 134 { 135 bool wc = false, fua = false; 136 137 if (sdkp->WCE) { 138 wc = true; 139 if (sdkp->DPOFUA) 140 fua = true; 141 } 142 143 blk_queue_write_cache(sdkp->disk->queue, wc, fua); 144 } 145 146 static ssize_t 147 cache_type_store(struct device *dev, struct device_attribute *attr, 148 const char *buf, size_t count) 149 { 150 int ct, rcd, wce, sp; 151 struct scsi_disk *sdkp = to_scsi_disk(dev); 152 struct scsi_device *sdp = sdkp->device; 153 char buffer[64]; 154 char *buffer_data; 155 struct scsi_mode_data data; 156 struct scsi_sense_hdr sshdr; 157 static const char temp[] = "temporary "; 158 int len; 159 160 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 161 /* no cache control on RBC devices; theoretically they 162 * can do it, but there's probably so many exceptions 163 * it's not worth the risk */ 164 return -EINVAL; 165 166 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) { 167 buf += sizeof(temp) - 1; 168 sdkp->cache_override = 1; 169 } else { 170 sdkp->cache_override = 0; 171 } 172 173 ct = sysfs_match_string(sd_cache_types, buf); 174 if (ct < 0) 175 return -EINVAL; 176 177 rcd = ct & 0x01 ? 1 : 0; 178 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0; 179 180 if (sdkp->cache_override) { 181 sdkp->WCE = wce; 182 sdkp->RCD = rcd; 183 sd_set_flush_flag(sdkp); 184 return count; 185 } 186 187 if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT, 188 sdkp->max_retries, &data, NULL)) 189 return -EINVAL; 190 len = min_t(size_t, sizeof(buffer), data.length - data.header_length - 191 data.block_descriptor_length); 192 buffer_data = buffer + data.header_length + 193 data.block_descriptor_length; 194 buffer_data[2] &= ~0x05; 195 buffer_data[2] |= wce << 2 | rcd; 196 sp = buffer_data[0] & 0x80 ? 1 : 0; 197 buffer_data[0] &= ~0x80; 198 199 /* 200 * Ensure WP, DPOFUA, and RESERVED fields are cleared in 201 * received mode parameter buffer before doing MODE SELECT. 202 */ 203 data.device_specific = 0; 204 205 if (scsi_mode_select(sdp, 1, sp, buffer_data, len, SD_TIMEOUT, 206 sdkp->max_retries, &data, &sshdr)) { 207 if (scsi_sense_valid(&sshdr)) 208 sd_print_sense_hdr(sdkp, &sshdr); 209 return -EINVAL; 210 } 211 sd_revalidate_disk(sdkp->disk); 212 return count; 213 } 214 215 static ssize_t 216 manage_start_stop_show(struct device *dev, struct device_attribute *attr, 217 char *buf) 218 { 219 struct scsi_disk *sdkp = to_scsi_disk(dev); 220 struct scsi_device *sdp = sdkp->device; 221 222 return sprintf(buf, "%u\n", sdp->manage_start_stop); 223 } 224 225 static ssize_t 226 manage_start_stop_store(struct device *dev, struct device_attribute *attr, 227 const char *buf, size_t count) 228 { 229 struct scsi_disk *sdkp = to_scsi_disk(dev); 230 struct scsi_device *sdp = sdkp->device; 231 bool v; 232 233 if (!capable(CAP_SYS_ADMIN)) 234 return -EACCES; 235 236 if (kstrtobool(buf, &v)) 237 return -EINVAL; 238 239 sdp->manage_start_stop = v; 240 241 return count; 242 } 243 static DEVICE_ATTR_RW(manage_start_stop); 244 245 static ssize_t 246 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf) 247 { 248 struct scsi_disk *sdkp = to_scsi_disk(dev); 249 250 return sprintf(buf, "%u\n", sdkp->device->allow_restart); 251 } 252 253 static ssize_t 254 allow_restart_store(struct device *dev, struct device_attribute *attr, 255 const char *buf, size_t count) 256 { 257 bool v; 258 struct scsi_disk *sdkp = to_scsi_disk(dev); 259 struct scsi_device *sdp = sdkp->device; 260 261 if (!capable(CAP_SYS_ADMIN)) 262 return -EACCES; 263 264 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 265 return -EINVAL; 266 267 if (kstrtobool(buf, &v)) 268 return -EINVAL; 269 270 sdp->allow_restart = v; 271 272 return count; 273 } 274 static DEVICE_ATTR_RW(allow_restart); 275 276 static ssize_t 277 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf) 278 { 279 struct scsi_disk *sdkp = to_scsi_disk(dev); 280 int ct = sdkp->RCD + 2*sdkp->WCE; 281 282 return sprintf(buf, "%s\n", sd_cache_types[ct]); 283 } 284 static DEVICE_ATTR_RW(cache_type); 285 286 static ssize_t 287 FUA_show(struct device *dev, struct device_attribute *attr, char *buf) 288 { 289 struct scsi_disk *sdkp = to_scsi_disk(dev); 290 291 return sprintf(buf, "%u\n", sdkp->DPOFUA); 292 } 293 static DEVICE_ATTR_RO(FUA); 294 295 static ssize_t 296 protection_type_show(struct device *dev, struct device_attribute *attr, 297 char *buf) 298 { 299 struct scsi_disk *sdkp = to_scsi_disk(dev); 300 301 return sprintf(buf, "%u\n", sdkp->protection_type); 302 } 303 304 static ssize_t 305 protection_type_store(struct device *dev, struct device_attribute *attr, 306 const char *buf, size_t count) 307 { 308 struct scsi_disk *sdkp = to_scsi_disk(dev); 309 unsigned int val; 310 int err; 311 312 if (!capable(CAP_SYS_ADMIN)) 313 return -EACCES; 314 315 err = kstrtouint(buf, 10, &val); 316 317 if (err) 318 return err; 319 320 if (val <= T10_PI_TYPE3_PROTECTION) 321 sdkp->protection_type = val; 322 323 return count; 324 } 325 static DEVICE_ATTR_RW(protection_type); 326 327 static ssize_t 328 protection_mode_show(struct device *dev, struct device_attribute *attr, 329 char *buf) 330 { 331 struct scsi_disk *sdkp = to_scsi_disk(dev); 332 struct scsi_device *sdp = sdkp->device; 333 unsigned int dif, dix; 334 335 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type); 336 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type); 337 338 if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) { 339 dif = 0; 340 dix = 1; 341 } 342 343 if (!dif && !dix) 344 return sprintf(buf, "none\n"); 345 346 return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif); 347 } 348 static DEVICE_ATTR_RO(protection_mode); 349 350 static ssize_t 351 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf) 352 { 353 struct scsi_disk *sdkp = to_scsi_disk(dev); 354 355 return sprintf(buf, "%u\n", sdkp->ATO); 356 } 357 static DEVICE_ATTR_RO(app_tag_own); 358 359 static ssize_t 360 thin_provisioning_show(struct device *dev, struct device_attribute *attr, 361 char *buf) 362 { 363 struct scsi_disk *sdkp = to_scsi_disk(dev); 364 365 return sprintf(buf, "%u\n", sdkp->lbpme); 366 } 367 static DEVICE_ATTR_RO(thin_provisioning); 368 369 /* sysfs_match_string() requires dense arrays */ 370 static const char *lbp_mode[] = { 371 [SD_LBP_FULL] = "full", 372 [SD_LBP_UNMAP] = "unmap", 373 [SD_LBP_WS16] = "writesame_16", 374 [SD_LBP_WS10] = "writesame_10", 375 [SD_LBP_ZERO] = "writesame_zero", 376 [SD_LBP_DISABLE] = "disabled", 377 }; 378 379 static ssize_t 380 provisioning_mode_show(struct device *dev, struct device_attribute *attr, 381 char *buf) 382 { 383 struct scsi_disk *sdkp = to_scsi_disk(dev); 384 385 return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]); 386 } 387 388 static ssize_t 389 provisioning_mode_store(struct device *dev, struct device_attribute *attr, 390 const char *buf, size_t count) 391 { 392 struct scsi_disk *sdkp = to_scsi_disk(dev); 393 struct scsi_device *sdp = sdkp->device; 394 int mode; 395 396 if (!capable(CAP_SYS_ADMIN)) 397 return -EACCES; 398 399 if (sd_is_zoned(sdkp)) { 400 sd_config_discard(sdkp, SD_LBP_DISABLE); 401 return count; 402 } 403 404 if (sdp->type != TYPE_DISK) 405 return -EINVAL; 406 407 mode = sysfs_match_string(lbp_mode, buf); 408 if (mode < 0) 409 return -EINVAL; 410 411 sd_config_discard(sdkp, mode); 412 413 return count; 414 } 415 static DEVICE_ATTR_RW(provisioning_mode); 416 417 /* sysfs_match_string() requires dense arrays */ 418 static const char *zeroing_mode[] = { 419 [SD_ZERO_WRITE] = "write", 420 [SD_ZERO_WS] = "writesame", 421 [SD_ZERO_WS16_UNMAP] = "writesame_16_unmap", 422 [SD_ZERO_WS10_UNMAP] = "writesame_10_unmap", 423 }; 424 425 static ssize_t 426 zeroing_mode_show(struct device *dev, struct device_attribute *attr, 427 char *buf) 428 { 429 struct scsi_disk *sdkp = to_scsi_disk(dev); 430 431 return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]); 432 } 433 434 static ssize_t 435 zeroing_mode_store(struct device *dev, struct device_attribute *attr, 436 const char *buf, size_t count) 437 { 438 struct scsi_disk *sdkp = to_scsi_disk(dev); 439 int mode; 440 441 if (!capable(CAP_SYS_ADMIN)) 442 return -EACCES; 443 444 mode = sysfs_match_string(zeroing_mode, buf); 445 if (mode < 0) 446 return -EINVAL; 447 448 sdkp->zeroing_mode = mode; 449 450 return count; 451 } 452 static DEVICE_ATTR_RW(zeroing_mode); 453 454 static ssize_t 455 max_medium_access_timeouts_show(struct device *dev, 456 struct device_attribute *attr, char *buf) 457 { 458 struct scsi_disk *sdkp = to_scsi_disk(dev); 459 460 return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts); 461 } 462 463 static ssize_t 464 max_medium_access_timeouts_store(struct device *dev, 465 struct device_attribute *attr, const char *buf, 466 size_t count) 467 { 468 struct scsi_disk *sdkp = to_scsi_disk(dev); 469 int err; 470 471 if (!capable(CAP_SYS_ADMIN)) 472 return -EACCES; 473 474 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts); 475 476 return err ? err : count; 477 } 478 static DEVICE_ATTR_RW(max_medium_access_timeouts); 479 480 static ssize_t 481 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr, 482 char *buf) 483 { 484 struct scsi_disk *sdkp = to_scsi_disk(dev); 485 486 return sprintf(buf, "%u\n", sdkp->max_ws_blocks); 487 } 488 489 static ssize_t 490 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr, 491 const char *buf, size_t count) 492 { 493 struct scsi_disk *sdkp = to_scsi_disk(dev); 494 struct scsi_device *sdp = sdkp->device; 495 unsigned long max; 496 int err; 497 498 if (!capable(CAP_SYS_ADMIN)) 499 return -EACCES; 500 501 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 502 return -EINVAL; 503 504 err = kstrtoul(buf, 10, &max); 505 506 if (err) 507 return err; 508 509 if (max == 0) 510 sdp->no_write_same = 1; 511 else if (max <= SD_MAX_WS16_BLOCKS) { 512 sdp->no_write_same = 0; 513 sdkp->max_ws_blocks = max; 514 } 515 516 sd_config_write_same(sdkp); 517 518 return count; 519 } 520 static DEVICE_ATTR_RW(max_write_same_blocks); 521 522 static ssize_t 523 zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf) 524 { 525 struct scsi_disk *sdkp = to_scsi_disk(dev); 526 527 if (sdkp->device->type == TYPE_ZBC) 528 return sprintf(buf, "host-managed\n"); 529 if (sdkp->zoned == 1) 530 return sprintf(buf, "host-aware\n"); 531 if (sdkp->zoned == 2) 532 return sprintf(buf, "drive-managed\n"); 533 return sprintf(buf, "none\n"); 534 } 535 static DEVICE_ATTR_RO(zoned_cap); 536 537 static ssize_t 538 max_retries_store(struct device *dev, struct device_attribute *attr, 539 const char *buf, size_t count) 540 { 541 struct scsi_disk *sdkp = to_scsi_disk(dev); 542 struct scsi_device *sdev = sdkp->device; 543 int retries, err; 544 545 err = kstrtoint(buf, 10, &retries); 546 if (err) 547 return err; 548 549 if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) { 550 sdkp->max_retries = retries; 551 return count; 552 } 553 554 sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n", 555 SD_MAX_RETRIES); 556 return -EINVAL; 557 } 558 559 static ssize_t 560 max_retries_show(struct device *dev, struct device_attribute *attr, 561 char *buf) 562 { 563 struct scsi_disk *sdkp = to_scsi_disk(dev); 564 565 return sprintf(buf, "%d\n", sdkp->max_retries); 566 } 567 568 static DEVICE_ATTR_RW(max_retries); 569 570 static struct attribute *sd_disk_attrs[] = { 571 &dev_attr_cache_type.attr, 572 &dev_attr_FUA.attr, 573 &dev_attr_allow_restart.attr, 574 &dev_attr_manage_start_stop.attr, 575 &dev_attr_protection_type.attr, 576 &dev_attr_protection_mode.attr, 577 &dev_attr_app_tag_own.attr, 578 &dev_attr_thin_provisioning.attr, 579 &dev_attr_provisioning_mode.attr, 580 &dev_attr_zeroing_mode.attr, 581 &dev_attr_max_write_same_blocks.attr, 582 &dev_attr_max_medium_access_timeouts.attr, 583 &dev_attr_zoned_cap.attr, 584 &dev_attr_max_retries.attr, 585 NULL, 586 }; 587 ATTRIBUTE_GROUPS(sd_disk); 588 589 static struct class sd_disk_class = { 590 .name = "scsi_disk", 591 .owner = THIS_MODULE, 592 .dev_release = scsi_disk_release, 593 .dev_groups = sd_disk_groups, 594 }; 595 596 static const struct dev_pm_ops sd_pm_ops = { 597 .suspend = sd_suspend_system, 598 .resume = sd_resume_system, 599 .poweroff = sd_suspend_system, 600 .restore = sd_resume_system, 601 .runtime_suspend = sd_suspend_runtime, 602 .runtime_resume = sd_resume_runtime, 603 }; 604 605 static struct scsi_driver sd_template = { 606 .gendrv = { 607 .name = "sd", 608 .owner = THIS_MODULE, 609 .probe = sd_probe, 610 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 611 .remove = sd_remove, 612 .shutdown = sd_shutdown, 613 .pm = &sd_pm_ops, 614 }, 615 .rescan = sd_rescan, 616 .init_command = sd_init_command, 617 .uninit_command = sd_uninit_command, 618 .done = sd_done, 619 .eh_action = sd_eh_action, 620 .eh_reset = sd_eh_reset, 621 }; 622 623 /* 624 * Don't request a new module, as that could deadlock in multipath 625 * environment. 626 */ 627 static void sd_default_probe(dev_t devt) 628 { 629 } 630 631 /* 632 * Device no to disk mapping: 633 * 634 * major disc2 disc p1 635 * |............|.............|....|....| <- dev_t 636 * 31 20 19 8 7 4 3 0 637 * 638 * Inside a major, we have 16k disks, however mapped non- 639 * contiguously. The first 16 disks are for major0, the next 640 * ones with major1, ... Disk 256 is for major0 again, disk 272 641 * for major1, ... 642 * As we stay compatible with our numbering scheme, we can reuse 643 * the well-know SCSI majors 8, 65--71, 136--143. 644 */ 645 static int sd_major(int major_idx) 646 { 647 switch (major_idx) { 648 case 0: 649 return SCSI_DISK0_MAJOR; 650 case 1 ... 7: 651 return SCSI_DISK1_MAJOR + major_idx - 1; 652 case 8 ... 15: 653 return SCSI_DISK8_MAJOR + major_idx - 8; 654 default: 655 BUG(); 656 return 0; /* shut up gcc */ 657 } 658 } 659 660 #ifdef CONFIG_BLK_SED_OPAL 661 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, 662 size_t len, bool send) 663 { 664 struct scsi_disk *sdkp = data; 665 struct scsi_device *sdev = sdkp->device; 666 u8 cdb[12] = { 0, }; 667 int ret; 668 669 cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN; 670 cdb[1] = secp; 671 put_unaligned_be16(spsp, &cdb[2]); 672 put_unaligned_be32(len, &cdb[6]); 673 674 ret = scsi_execute(sdev, cdb, send ? DMA_TO_DEVICE : DMA_FROM_DEVICE, 675 buffer, len, NULL, NULL, SD_TIMEOUT, sdkp->max_retries, 0, 676 RQF_PM, NULL); 677 return ret <= 0 ? ret : -EIO; 678 } 679 #endif /* CONFIG_BLK_SED_OPAL */ 680 681 /* 682 * Look up the DIX operation based on whether the command is read or 683 * write and whether dix and dif are enabled. 684 */ 685 static unsigned int sd_prot_op(bool write, bool dix, bool dif) 686 { 687 /* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */ 688 static const unsigned int ops[] = { /* wrt dix dif */ 689 SCSI_PROT_NORMAL, /* 0 0 0 */ 690 SCSI_PROT_READ_STRIP, /* 0 0 1 */ 691 SCSI_PROT_READ_INSERT, /* 0 1 0 */ 692 SCSI_PROT_READ_PASS, /* 0 1 1 */ 693 SCSI_PROT_NORMAL, /* 1 0 0 */ 694 SCSI_PROT_WRITE_INSERT, /* 1 0 1 */ 695 SCSI_PROT_WRITE_STRIP, /* 1 1 0 */ 696 SCSI_PROT_WRITE_PASS, /* 1 1 1 */ 697 }; 698 699 return ops[write << 2 | dix << 1 | dif]; 700 } 701 702 /* 703 * Returns a mask of the protection flags that are valid for a given DIX 704 * operation. 705 */ 706 static unsigned int sd_prot_flag_mask(unsigned int prot_op) 707 { 708 static const unsigned int flag_mask[] = { 709 [SCSI_PROT_NORMAL] = 0, 710 711 [SCSI_PROT_READ_STRIP] = SCSI_PROT_TRANSFER_PI | 712 SCSI_PROT_GUARD_CHECK | 713 SCSI_PROT_REF_CHECK | 714 SCSI_PROT_REF_INCREMENT, 715 716 [SCSI_PROT_READ_INSERT] = SCSI_PROT_REF_INCREMENT | 717 SCSI_PROT_IP_CHECKSUM, 718 719 [SCSI_PROT_READ_PASS] = SCSI_PROT_TRANSFER_PI | 720 SCSI_PROT_GUARD_CHECK | 721 SCSI_PROT_REF_CHECK | 722 SCSI_PROT_REF_INCREMENT | 723 SCSI_PROT_IP_CHECKSUM, 724 725 [SCSI_PROT_WRITE_INSERT] = SCSI_PROT_TRANSFER_PI | 726 SCSI_PROT_REF_INCREMENT, 727 728 [SCSI_PROT_WRITE_STRIP] = SCSI_PROT_GUARD_CHECK | 729 SCSI_PROT_REF_CHECK | 730 SCSI_PROT_REF_INCREMENT | 731 SCSI_PROT_IP_CHECKSUM, 732 733 [SCSI_PROT_WRITE_PASS] = SCSI_PROT_TRANSFER_PI | 734 SCSI_PROT_GUARD_CHECK | 735 SCSI_PROT_REF_CHECK | 736 SCSI_PROT_REF_INCREMENT | 737 SCSI_PROT_IP_CHECKSUM, 738 }; 739 740 return flag_mask[prot_op]; 741 } 742 743 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd, 744 unsigned int dix, unsigned int dif) 745 { 746 struct request *rq = scsi_cmd_to_rq(scmd); 747 struct bio *bio = rq->bio; 748 unsigned int prot_op = sd_prot_op(rq_data_dir(rq), dix, dif); 749 unsigned int protect = 0; 750 751 if (dix) { /* DIX Type 0, 1, 2, 3 */ 752 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM)) 753 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM; 754 755 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 756 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK; 757 } 758 759 if (dif != T10_PI_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */ 760 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT; 761 762 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 763 scmd->prot_flags |= SCSI_PROT_REF_CHECK; 764 } 765 766 if (dif) { /* DIX/DIF Type 1, 2, 3 */ 767 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI; 768 769 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK)) 770 protect = 3 << 5; /* Disable target PI checking */ 771 else 772 protect = 1 << 5; /* Enable target PI checking */ 773 } 774 775 scsi_set_prot_op(scmd, prot_op); 776 scsi_set_prot_type(scmd, dif); 777 scmd->prot_flags &= sd_prot_flag_mask(prot_op); 778 779 return protect; 780 } 781 782 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode) 783 { 784 struct request_queue *q = sdkp->disk->queue; 785 unsigned int logical_block_size = sdkp->device->sector_size; 786 unsigned int max_blocks = 0; 787 788 q->limits.discard_alignment = 789 sdkp->unmap_alignment * logical_block_size; 790 q->limits.discard_granularity = 791 max(sdkp->physical_block_size, 792 sdkp->unmap_granularity * logical_block_size); 793 sdkp->provisioning_mode = mode; 794 795 switch (mode) { 796 797 case SD_LBP_FULL: 798 case SD_LBP_DISABLE: 799 blk_queue_max_discard_sectors(q, 0); 800 return; 801 802 case SD_LBP_UNMAP: 803 max_blocks = min_not_zero(sdkp->max_unmap_blocks, 804 (u32)SD_MAX_WS16_BLOCKS); 805 break; 806 807 case SD_LBP_WS16: 808 if (sdkp->device->unmap_limit_for_ws) 809 max_blocks = sdkp->max_unmap_blocks; 810 else 811 max_blocks = sdkp->max_ws_blocks; 812 813 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS); 814 break; 815 816 case SD_LBP_WS10: 817 if (sdkp->device->unmap_limit_for_ws) 818 max_blocks = sdkp->max_unmap_blocks; 819 else 820 max_blocks = sdkp->max_ws_blocks; 821 822 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS); 823 break; 824 825 case SD_LBP_ZERO: 826 max_blocks = min_not_zero(sdkp->max_ws_blocks, 827 (u32)SD_MAX_WS10_BLOCKS); 828 break; 829 } 830 831 blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9)); 832 } 833 834 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd) 835 { 836 struct scsi_device *sdp = cmd->device; 837 struct request *rq = scsi_cmd_to_rq(cmd); 838 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 839 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 840 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 841 unsigned int data_len = 24; 842 char *buf; 843 844 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 845 if (!rq->special_vec.bv_page) 846 return BLK_STS_RESOURCE; 847 clear_highpage(rq->special_vec.bv_page); 848 rq->special_vec.bv_offset = 0; 849 rq->special_vec.bv_len = data_len; 850 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 851 852 cmd->cmd_len = 10; 853 cmd->cmnd[0] = UNMAP; 854 cmd->cmnd[8] = 24; 855 856 buf = bvec_virt(&rq->special_vec); 857 put_unaligned_be16(6 + 16, &buf[0]); 858 put_unaligned_be16(16, &buf[2]); 859 put_unaligned_be64(lba, &buf[8]); 860 put_unaligned_be32(nr_blocks, &buf[16]); 861 862 cmd->allowed = sdkp->max_retries; 863 cmd->transfersize = data_len; 864 rq->timeout = SD_TIMEOUT; 865 866 return scsi_alloc_sgtables(cmd); 867 } 868 869 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd, 870 bool unmap) 871 { 872 struct scsi_device *sdp = cmd->device; 873 struct request *rq = scsi_cmd_to_rq(cmd); 874 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 875 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 876 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 877 u32 data_len = sdp->sector_size; 878 879 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 880 if (!rq->special_vec.bv_page) 881 return BLK_STS_RESOURCE; 882 clear_highpage(rq->special_vec.bv_page); 883 rq->special_vec.bv_offset = 0; 884 rq->special_vec.bv_len = data_len; 885 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 886 887 cmd->cmd_len = 16; 888 cmd->cmnd[0] = WRITE_SAME_16; 889 if (unmap) 890 cmd->cmnd[1] = 0x8; /* UNMAP */ 891 put_unaligned_be64(lba, &cmd->cmnd[2]); 892 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 893 894 cmd->allowed = sdkp->max_retries; 895 cmd->transfersize = data_len; 896 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 897 898 return scsi_alloc_sgtables(cmd); 899 } 900 901 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd, 902 bool unmap) 903 { 904 struct scsi_device *sdp = cmd->device; 905 struct request *rq = scsi_cmd_to_rq(cmd); 906 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 907 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 908 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 909 u32 data_len = sdp->sector_size; 910 911 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 912 if (!rq->special_vec.bv_page) 913 return BLK_STS_RESOURCE; 914 clear_highpage(rq->special_vec.bv_page); 915 rq->special_vec.bv_offset = 0; 916 rq->special_vec.bv_len = data_len; 917 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 918 919 cmd->cmd_len = 10; 920 cmd->cmnd[0] = WRITE_SAME; 921 if (unmap) 922 cmd->cmnd[1] = 0x8; /* UNMAP */ 923 put_unaligned_be32(lba, &cmd->cmnd[2]); 924 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 925 926 cmd->allowed = sdkp->max_retries; 927 cmd->transfersize = data_len; 928 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 929 930 return scsi_alloc_sgtables(cmd); 931 } 932 933 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd) 934 { 935 struct request *rq = scsi_cmd_to_rq(cmd); 936 struct scsi_device *sdp = cmd->device; 937 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 938 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 939 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 940 941 if (!(rq->cmd_flags & REQ_NOUNMAP)) { 942 switch (sdkp->zeroing_mode) { 943 case SD_ZERO_WS16_UNMAP: 944 return sd_setup_write_same16_cmnd(cmd, true); 945 case SD_ZERO_WS10_UNMAP: 946 return sd_setup_write_same10_cmnd(cmd, true); 947 } 948 } 949 950 if (sdp->no_write_same) { 951 rq->rq_flags |= RQF_QUIET; 952 return BLK_STS_TARGET; 953 } 954 955 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) 956 return sd_setup_write_same16_cmnd(cmd, false); 957 958 return sd_setup_write_same10_cmnd(cmd, false); 959 } 960 961 static void sd_config_write_same(struct scsi_disk *sdkp) 962 { 963 struct request_queue *q = sdkp->disk->queue; 964 unsigned int logical_block_size = sdkp->device->sector_size; 965 966 if (sdkp->device->no_write_same) { 967 sdkp->max_ws_blocks = 0; 968 goto out; 969 } 970 971 /* Some devices can not handle block counts above 0xffff despite 972 * supporting WRITE SAME(16). Consequently we default to 64k 973 * blocks per I/O unless the device explicitly advertises a 974 * bigger limit. 975 */ 976 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS) 977 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 978 (u32)SD_MAX_WS16_BLOCKS); 979 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes) 980 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 981 (u32)SD_MAX_WS10_BLOCKS); 982 else { 983 sdkp->device->no_write_same = 1; 984 sdkp->max_ws_blocks = 0; 985 } 986 987 if (sdkp->lbprz && sdkp->lbpws) 988 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP; 989 else if (sdkp->lbprz && sdkp->lbpws10) 990 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP; 991 else if (sdkp->max_ws_blocks) 992 sdkp->zeroing_mode = SD_ZERO_WS; 993 else 994 sdkp->zeroing_mode = SD_ZERO_WRITE; 995 996 if (sdkp->max_ws_blocks && 997 sdkp->physical_block_size > logical_block_size) { 998 /* 999 * Reporting a maximum number of blocks that is not aligned 1000 * on the device physical size would cause a large write same 1001 * request to be split into physically unaligned chunks by 1002 * __blkdev_issue_write_zeroes() even if the caller of this 1003 * functions took care to align the large request. So make sure 1004 * the maximum reported is aligned to the device physical block 1005 * size. This is only an optional optimization for regular 1006 * disks, but this is mandatory to avoid failure of large write 1007 * same requests directed at sequential write required zones of 1008 * host-managed ZBC disks. 1009 */ 1010 sdkp->max_ws_blocks = 1011 round_down(sdkp->max_ws_blocks, 1012 bytes_to_logical(sdkp->device, 1013 sdkp->physical_block_size)); 1014 } 1015 1016 out: 1017 blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks * 1018 (logical_block_size >> 9)); 1019 } 1020 1021 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd) 1022 { 1023 struct request *rq = scsi_cmd_to_rq(cmd); 1024 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 1025 1026 /* flush requests don't perform I/O, zero the S/G table */ 1027 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1028 1029 cmd->cmnd[0] = SYNCHRONIZE_CACHE; 1030 cmd->cmd_len = 10; 1031 cmd->transfersize = 0; 1032 cmd->allowed = sdkp->max_retries; 1033 1034 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER; 1035 return BLK_STS_OK; 1036 } 1037 1038 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write, 1039 sector_t lba, unsigned int nr_blocks, 1040 unsigned char flags) 1041 { 1042 cmd->cmd_len = SD_EXT_CDB_SIZE; 1043 cmd->cmnd[0] = VARIABLE_LENGTH_CMD; 1044 cmd->cmnd[7] = 0x18; /* Additional CDB len */ 1045 cmd->cmnd[9] = write ? WRITE_32 : READ_32; 1046 cmd->cmnd[10] = flags; 1047 put_unaligned_be64(lba, &cmd->cmnd[12]); 1048 put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */ 1049 put_unaligned_be32(nr_blocks, &cmd->cmnd[28]); 1050 1051 return BLK_STS_OK; 1052 } 1053 1054 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write, 1055 sector_t lba, unsigned int nr_blocks, 1056 unsigned char flags) 1057 { 1058 cmd->cmd_len = 16; 1059 cmd->cmnd[0] = write ? WRITE_16 : READ_16; 1060 cmd->cmnd[1] = flags; 1061 cmd->cmnd[14] = 0; 1062 cmd->cmnd[15] = 0; 1063 put_unaligned_be64(lba, &cmd->cmnd[2]); 1064 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 1065 1066 return BLK_STS_OK; 1067 } 1068 1069 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write, 1070 sector_t lba, unsigned int nr_blocks, 1071 unsigned char flags) 1072 { 1073 cmd->cmd_len = 10; 1074 cmd->cmnd[0] = write ? WRITE_10 : READ_10; 1075 cmd->cmnd[1] = flags; 1076 cmd->cmnd[6] = 0; 1077 cmd->cmnd[9] = 0; 1078 put_unaligned_be32(lba, &cmd->cmnd[2]); 1079 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 1080 1081 return BLK_STS_OK; 1082 } 1083 1084 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write, 1085 sector_t lba, unsigned int nr_blocks, 1086 unsigned char flags) 1087 { 1088 /* Avoid that 0 blocks gets translated into 256 blocks. */ 1089 if (WARN_ON_ONCE(nr_blocks == 0)) 1090 return BLK_STS_IOERR; 1091 1092 if (unlikely(flags & 0x8)) { 1093 /* 1094 * This happens only if this drive failed 10byte rw 1095 * command with ILLEGAL_REQUEST during operation and 1096 * thus turned off use_10_for_rw. 1097 */ 1098 scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n"); 1099 return BLK_STS_IOERR; 1100 } 1101 1102 cmd->cmd_len = 6; 1103 cmd->cmnd[0] = write ? WRITE_6 : READ_6; 1104 cmd->cmnd[1] = (lba >> 16) & 0x1f; 1105 cmd->cmnd[2] = (lba >> 8) & 0xff; 1106 cmd->cmnd[3] = lba & 0xff; 1107 cmd->cmnd[4] = nr_blocks; 1108 cmd->cmnd[5] = 0; 1109 1110 return BLK_STS_OK; 1111 } 1112 1113 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd) 1114 { 1115 struct request *rq = scsi_cmd_to_rq(cmd); 1116 struct scsi_device *sdp = cmd->device; 1117 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 1118 sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 1119 sector_t threshold; 1120 unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 1121 unsigned int mask = logical_to_sectors(sdp, 1) - 1; 1122 bool write = rq_data_dir(rq) == WRITE; 1123 unsigned char protect, fua; 1124 blk_status_t ret; 1125 unsigned int dif; 1126 bool dix; 1127 1128 ret = scsi_alloc_sgtables(cmd); 1129 if (ret != BLK_STS_OK) 1130 return ret; 1131 1132 ret = BLK_STS_IOERR; 1133 if (!scsi_device_online(sdp) || sdp->changed) { 1134 scmd_printk(KERN_ERR, cmd, "device offline or changed\n"); 1135 goto fail; 1136 } 1137 1138 if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->q->disk)) { 1139 scmd_printk(KERN_ERR, cmd, "access beyond end of device\n"); 1140 goto fail; 1141 } 1142 1143 if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) { 1144 scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n"); 1145 goto fail; 1146 } 1147 1148 /* 1149 * Some SD card readers can't handle accesses which touch the 1150 * last one or two logical blocks. Split accesses as needed. 1151 */ 1152 threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS; 1153 1154 if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) { 1155 if (lba < threshold) { 1156 /* Access up to the threshold but not beyond */ 1157 nr_blocks = threshold - lba; 1158 } else { 1159 /* Access only a single logical block */ 1160 nr_blocks = 1; 1161 } 1162 } 1163 1164 if (req_op(rq) == REQ_OP_ZONE_APPEND) { 1165 ret = sd_zbc_prepare_zone_append(cmd, &lba, nr_blocks); 1166 if (ret) 1167 goto fail; 1168 } 1169 1170 fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0; 1171 dix = scsi_prot_sg_count(cmd); 1172 dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type); 1173 1174 if (dif || dix) 1175 protect = sd_setup_protect_cmnd(cmd, dix, dif); 1176 else 1177 protect = 0; 1178 1179 if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) { 1180 ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks, 1181 protect | fua); 1182 } else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) { 1183 ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks, 1184 protect | fua); 1185 } else if ((nr_blocks > 0xff) || (lba > 0x1fffff) || 1186 sdp->use_10_for_rw || protect) { 1187 ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks, 1188 protect | fua); 1189 } else { 1190 ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks, 1191 protect | fua); 1192 } 1193 1194 if (unlikely(ret != BLK_STS_OK)) 1195 goto fail; 1196 1197 /* 1198 * We shouldn't disconnect in the middle of a sector, so with a dumb 1199 * host adapter, it's safe to assume that we can at least transfer 1200 * this many bytes between each connect / disconnect. 1201 */ 1202 cmd->transfersize = sdp->sector_size; 1203 cmd->underflow = nr_blocks << 9; 1204 cmd->allowed = sdkp->max_retries; 1205 cmd->sdb.length = nr_blocks * sdp->sector_size; 1206 1207 SCSI_LOG_HLQUEUE(1, 1208 scmd_printk(KERN_INFO, cmd, 1209 "%s: block=%llu, count=%d\n", __func__, 1210 (unsigned long long)blk_rq_pos(rq), 1211 blk_rq_sectors(rq))); 1212 SCSI_LOG_HLQUEUE(2, 1213 scmd_printk(KERN_INFO, cmd, 1214 "%s %d/%u 512 byte blocks.\n", 1215 write ? "writing" : "reading", nr_blocks, 1216 blk_rq_sectors(rq))); 1217 1218 /* 1219 * This indicates that the command is ready from our end to be queued. 1220 */ 1221 return BLK_STS_OK; 1222 fail: 1223 scsi_free_sgtables(cmd); 1224 return ret; 1225 } 1226 1227 static blk_status_t sd_init_command(struct scsi_cmnd *cmd) 1228 { 1229 struct request *rq = scsi_cmd_to_rq(cmd); 1230 1231 switch (req_op(rq)) { 1232 case REQ_OP_DISCARD: 1233 switch (scsi_disk(rq->q->disk)->provisioning_mode) { 1234 case SD_LBP_UNMAP: 1235 return sd_setup_unmap_cmnd(cmd); 1236 case SD_LBP_WS16: 1237 return sd_setup_write_same16_cmnd(cmd, true); 1238 case SD_LBP_WS10: 1239 return sd_setup_write_same10_cmnd(cmd, true); 1240 case SD_LBP_ZERO: 1241 return sd_setup_write_same10_cmnd(cmd, false); 1242 default: 1243 return BLK_STS_TARGET; 1244 } 1245 case REQ_OP_WRITE_ZEROES: 1246 return sd_setup_write_zeroes_cmnd(cmd); 1247 case REQ_OP_FLUSH: 1248 return sd_setup_flush_cmnd(cmd); 1249 case REQ_OP_READ: 1250 case REQ_OP_WRITE: 1251 case REQ_OP_ZONE_APPEND: 1252 return sd_setup_read_write_cmnd(cmd); 1253 case REQ_OP_ZONE_RESET: 1254 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER, 1255 false); 1256 case REQ_OP_ZONE_RESET_ALL: 1257 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER, 1258 true); 1259 case REQ_OP_ZONE_OPEN: 1260 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false); 1261 case REQ_OP_ZONE_CLOSE: 1262 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false); 1263 case REQ_OP_ZONE_FINISH: 1264 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false); 1265 default: 1266 WARN_ON_ONCE(1); 1267 return BLK_STS_NOTSUPP; 1268 } 1269 } 1270 1271 static void sd_uninit_command(struct scsi_cmnd *SCpnt) 1272 { 1273 struct request *rq = scsi_cmd_to_rq(SCpnt); 1274 1275 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1276 mempool_free(rq->special_vec.bv_page, sd_page_pool); 1277 } 1278 1279 static bool sd_need_revalidate(struct block_device *bdev, 1280 struct scsi_disk *sdkp) 1281 { 1282 if (sdkp->device->removable || sdkp->write_prot) { 1283 if (bdev_check_media_change(bdev)) 1284 return true; 1285 } 1286 1287 /* 1288 * Force a full rescan after ioctl(BLKRRPART). While the disk state has 1289 * nothing to do with partitions, BLKRRPART is used to force a full 1290 * revalidate after things like a format for historical reasons. 1291 */ 1292 return test_bit(GD_NEED_PART_SCAN, &bdev->bd_disk->state); 1293 } 1294 1295 /** 1296 * sd_open - open a scsi disk device 1297 * @bdev: Block device of the scsi disk to open 1298 * @mode: FMODE_* mask 1299 * 1300 * Returns 0 if successful. Returns a negated errno value in case 1301 * of error. 1302 * 1303 * Note: This can be called from a user context (e.g. fsck(1) ) 1304 * or from within the kernel (e.g. as a result of a mount(1) ). 1305 * In the latter case @inode and @filp carry an abridged amount 1306 * of information as noted above. 1307 * 1308 * Locking: called with bdev->bd_disk->open_mutex held. 1309 **/ 1310 static int sd_open(struct block_device *bdev, fmode_t mode) 1311 { 1312 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1313 struct scsi_device *sdev = sdkp->device; 1314 int retval; 1315 1316 if (scsi_device_get(sdev)) 1317 return -ENXIO; 1318 1319 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n")); 1320 1321 /* 1322 * If the device is in error recovery, wait until it is done. 1323 * If the device is offline, then disallow any access to it. 1324 */ 1325 retval = -ENXIO; 1326 if (!scsi_block_when_processing_errors(sdev)) 1327 goto error_out; 1328 1329 if (sd_need_revalidate(bdev, sdkp)) 1330 sd_revalidate_disk(bdev->bd_disk); 1331 1332 /* 1333 * If the drive is empty, just let the open fail. 1334 */ 1335 retval = -ENOMEDIUM; 1336 if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY)) 1337 goto error_out; 1338 1339 /* 1340 * If the device has the write protect tab set, have the open fail 1341 * if the user expects to be able to write to the thing. 1342 */ 1343 retval = -EROFS; 1344 if (sdkp->write_prot && (mode & FMODE_WRITE)) 1345 goto error_out; 1346 1347 /* 1348 * It is possible that the disk changing stuff resulted in 1349 * the device being taken offline. If this is the case, 1350 * report this to the user, and don't pretend that the 1351 * open actually succeeded. 1352 */ 1353 retval = -ENXIO; 1354 if (!scsi_device_online(sdev)) 1355 goto error_out; 1356 1357 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) { 1358 if (scsi_block_when_processing_errors(sdev)) 1359 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT); 1360 } 1361 1362 return 0; 1363 1364 error_out: 1365 scsi_device_put(sdev); 1366 return retval; 1367 } 1368 1369 /** 1370 * sd_release - invoked when the (last) close(2) is called on this 1371 * scsi disk. 1372 * @disk: disk to release 1373 * @mode: FMODE_* mask 1374 * 1375 * Returns 0. 1376 * 1377 * Note: may block (uninterruptible) if error recovery is underway 1378 * on this disk. 1379 * 1380 * Locking: called with bdev->bd_disk->open_mutex held. 1381 **/ 1382 static void sd_release(struct gendisk *disk, fmode_t mode) 1383 { 1384 struct scsi_disk *sdkp = scsi_disk(disk); 1385 struct scsi_device *sdev = sdkp->device; 1386 1387 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n")); 1388 1389 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) { 1390 if (scsi_block_when_processing_errors(sdev)) 1391 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW); 1392 } 1393 1394 scsi_device_put(sdev); 1395 } 1396 1397 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1398 { 1399 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1400 struct scsi_device *sdp = sdkp->device; 1401 struct Scsi_Host *host = sdp->host; 1402 sector_t capacity = logical_to_sectors(sdp, sdkp->capacity); 1403 int diskinfo[4]; 1404 1405 /* default to most commonly used values */ 1406 diskinfo[0] = 0x40; /* 1 << 6 */ 1407 diskinfo[1] = 0x20; /* 1 << 5 */ 1408 diskinfo[2] = capacity >> 11; 1409 1410 /* override with calculated, extended default, or driver values */ 1411 if (host->hostt->bios_param) 1412 host->hostt->bios_param(sdp, bdev, capacity, diskinfo); 1413 else 1414 scsicam_bios_param(bdev, capacity, diskinfo); 1415 1416 geo->heads = diskinfo[0]; 1417 geo->sectors = diskinfo[1]; 1418 geo->cylinders = diskinfo[2]; 1419 return 0; 1420 } 1421 1422 /** 1423 * sd_ioctl - process an ioctl 1424 * @bdev: target block device 1425 * @mode: FMODE_* mask 1426 * @cmd: ioctl command number 1427 * @arg: this is third argument given to ioctl(2) system call. 1428 * Often contains a pointer. 1429 * 1430 * Returns 0 if successful (some ioctls return positive numbers on 1431 * success as well). Returns a negated errno value in case of error. 1432 * 1433 * Note: most ioctls are forward onto the block subsystem or further 1434 * down in the scsi subsystem. 1435 **/ 1436 static int sd_ioctl(struct block_device *bdev, fmode_t mode, 1437 unsigned int cmd, unsigned long arg) 1438 { 1439 struct gendisk *disk = bdev->bd_disk; 1440 struct scsi_disk *sdkp = scsi_disk(disk); 1441 struct scsi_device *sdp = sdkp->device; 1442 void __user *p = (void __user *)arg; 1443 int error; 1444 1445 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, " 1446 "cmd=0x%x\n", disk->disk_name, cmd)); 1447 1448 if (bdev_is_partition(bdev) && !capable(CAP_SYS_RAWIO)) 1449 return -ENOIOCTLCMD; 1450 1451 /* 1452 * If we are in the middle of error recovery, don't let anyone 1453 * else try and use this device. Also, if error recovery fails, it 1454 * may try and take the device offline, in which case all further 1455 * access to the device is prohibited. 1456 */ 1457 error = scsi_ioctl_block_when_processing_errors(sdp, cmd, 1458 (mode & FMODE_NDELAY) != 0); 1459 if (error) 1460 return error; 1461 1462 if (is_sed_ioctl(cmd)) 1463 return sed_ioctl(sdkp->opal_dev, cmd, p); 1464 return scsi_ioctl(sdp, mode, cmd, p); 1465 } 1466 1467 static void set_media_not_present(struct scsi_disk *sdkp) 1468 { 1469 if (sdkp->media_present) 1470 sdkp->device->changed = 1; 1471 1472 if (sdkp->device->removable) { 1473 sdkp->media_present = 0; 1474 sdkp->capacity = 0; 1475 } 1476 } 1477 1478 static int media_not_present(struct scsi_disk *sdkp, 1479 struct scsi_sense_hdr *sshdr) 1480 { 1481 if (!scsi_sense_valid(sshdr)) 1482 return 0; 1483 1484 /* not invoked for commands that could return deferred errors */ 1485 switch (sshdr->sense_key) { 1486 case UNIT_ATTENTION: 1487 case NOT_READY: 1488 /* medium not present */ 1489 if (sshdr->asc == 0x3A) { 1490 set_media_not_present(sdkp); 1491 return 1; 1492 } 1493 } 1494 return 0; 1495 } 1496 1497 /** 1498 * sd_check_events - check media events 1499 * @disk: kernel device descriptor 1500 * @clearing: disk events currently being cleared 1501 * 1502 * Returns mask of DISK_EVENT_*. 1503 * 1504 * Note: this function is invoked from the block subsystem. 1505 **/ 1506 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing) 1507 { 1508 struct scsi_disk *sdkp = disk->private_data; 1509 struct scsi_device *sdp; 1510 int retval; 1511 bool disk_changed; 1512 1513 if (!sdkp) 1514 return 0; 1515 1516 sdp = sdkp->device; 1517 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n")); 1518 1519 /* 1520 * If the device is offline, don't send any commands - just pretend as 1521 * if the command failed. If the device ever comes back online, we 1522 * can deal with it then. It is only because of unrecoverable errors 1523 * that we would ever take a device offline in the first place. 1524 */ 1525 if (!scsi_device_online(sdp)) { 1526 set_media_not_present(sdkp); 1527 goto out; 1528 } 1529 1530 /* 1531 * Using TEST_UNIT_READY enables differentiation between drive with 1532 * no cartridge loaded - NOT READY, drive with changed cartridge - 1533 * UNIT ATTENTION, or with same cartridge - GOOD STATUS. 1534 * 1535 * Drives that auto spin down. eg iomega jaz 1G, will be started 1536 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever 1537 * sd_revalidate() is called. 1538 */ 1539 if (scsi_block_when_processing_errors(sdp)) { 1540 struct scsi_sense_hdr sshdr = { 0, }; 1541 1542 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries, 1543 &sshdr); 1544 1545 /* failed to execute TUR, assume media not present */ 1546 if (retval < 0 || host_byte(retval)) { 1547 set_media_not_present(sdkp); 1548 goto out; 1549 } 1550 1551 if (media_not_present(sdkp, &sshdr)) 1552 goto out; 1553 } 1554 1555 /* 1556 * For removable scsi disk we have to recognise the presence 1557 * of a disk in the drive. 1558 */ 1559 if (!sdkp->media_present) 1560 sdp->changed = 1; 1561 sdkp->media_present = 1; 1562 out: 1563 /* 1564 * sdp->changed is set under the following conditions: 1565 * 1566 * Medium present state has changed in either direction. 1567 * Device has indicated UNIT_ATTENTION. 1568 */ 1569 disk_changed = sdp->changed; 1570 sdp->changed = 0; 1571 return disk_changed ? DISK_EVENT_MEDIA_CHANGE : 0; 1572 } 1573 1574 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr) 1575 { 1576 int retries, res; 1577 struct scsi_device *sdp = sdkp->device; 1578 const int timeout = sdp->request_queue->rq_timeout 1579 * SD_FLUSH_TIMEOUT_MULTIPLIER; 1580 struct scsi_sense_hdr my_sshdr; 1581 1582 if (!scsi_device_online(sdp)) 1583 return -ENODEV; 1584 1585 /* caller might not be interested in sense, but we need it */ 1586 if (!sshdr) 1587 sshdr = &my_sshdr; 1588 1589 for (retries = 3; retries > 0; --retries) { 1590 unsigned char cmd[10] = { 0 }; 1591 1592 cmd[0] = SYNCHRONIZE_CACHE; 1593 /* 1594 * Leave the rest of the command zero to indicate 1595 * flush everything. 1596 */ 1597 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr, 1598 timeout, sdkp->max_retries, 0, RQF_PM, NULL); 1599 if (res == 0) 1600 break; 1601 } 1602 1603 if (res) { 1604 sd_print_result(sdkp, "Synchronize Cache(10) failed", res); 1605 1606 if (res < 0) 1607 return res; 1608 1609 if (scsi_status_is_check_condition(res) && 1610 scsi_sense_valid(sshdr)) { 1611 sd_print_sense_hdr(sdkp, sshdr); 1612 1613 /* we need to evaluate the error return */ 1614 if (sshdr->asc == 0x3a || /* medium not present */ 1615 sshdr->asc == 0x20 || /* invalid command */ 1616 (sshdr->asc == 0x74 && sshdr->ascq == 0x71)) /* drive is password locked */ 1617 /* this is no error here */ 1618 return 0; 1619 } 1620 1621 switch (host_byte(res)) { 1622 /* ignore errors due to racing a disconnection */ 1623 case DID_BAD_TARGET: 1624 case DID_NO_CONNECT: 1625 return 0; 1626 /* signal the upper layer it might try again */ 1627 case DID_BUS_BUSY: 1628 case DID_IMM_RETRY: 1629 case DID_REQUEUE: 1630 case DID_SOFT_ERROR: 1631 return -EBUSY; 1632 default: 1633 return -EIO; 1634 } 1635 } 1636 return 0; 1637 } 1638 1639 static void sd_rescan(struct device *dev) 1640 { 1641 struct scsi_disk *sdkp = dev_get_drvdata(dev); 1642 1643 sd_revalidate_disk(sdkp->disk); 1644 } 1645 1646 static int sd_get_unique_id(struct gendisk *disk, u8 id[16], 1647 enum blk_unique_id type) 1648 { 1649 struct scsi_device *sdev = scsi_disk(disk)->device; 1650 const struct scsi_vpd *vpd; 1651 const unsigned char *d; 1652 int ret = -ENXIO, len; 1653 1654 rcu_read_lock(); 1655 vpd = rcu_dereference(sdev->vpd_pg83); 1656 if (!vpd) 1657 goto out_unlock; 1658 1659 ret = -EINVAL; 1660 for (d = vpd->data + 4; d < vpd->data + vpd->len; d += d[3] + 4) { 1661 /* we only care about designators with LU association */ 1662 if (((d[1] >> 4) & 0x3) != 0x00) 1663 continue; 1664 if ((d[1] & 0xf) != type) 1665 continue; 1666 1667 /* 1668 * Only exit early if a 16-byte descriptor was found. Otherwise 1669 * keep looking as one with more entropy might still show up. 1670 */ 1671 len = d[3]; 1672 if (len != 8 && len != 12 && len != 16) 1673 continue; 1674 ret = len; 1675 memcpy(id, d + 4, len); 1676 if (len == 16) 1677 break; 1678 } 1679 out_unlock: 1680 rcu_read_unlock(); 1681 return ret; 1682 } 1683 1684 static char sd_pr_type(enum pr_type type) 1685 { 1686 switch (type) { 1687 case PR_WRITE_EXCLUSIVE: 1688 return 0x01; 1689 case PR_EXCLUSIVE_ACCESS: 1690 return 0x03; 1691 case PR_WRITE_EXCLUSIVE_REG_ONLY: 1692 return 0x05; 1693 case PR_EXCLUSIVE_ACCESS_REG_ONLY: 1694 return 0x06; 1695 case PR_WRITE_EXCLUSIVE_ALL_REGS: 1696 return 0x07; 1697 case PR_EXCLUSIVE_ACCESS_ALL_REGS: 1698 return 0x08; 1699 default: 1700 return 0; 1701 } 1702 }; 1703 1704 static int sd_pr_command(struct block_device *bdev, u8 sa, 1705 u64 key, u64 sa_key, u8 type, u8 flags) 1706 { 1707 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1708 struct scsi_device *sdev = sdkp->device; 1709 struct scsi_sense_hdr sshdr; 1710 int result; 1711 u8 cmd[16] = { 0, }; 1712 u8 data[24] = { 0, }; 1713 1714 cmd[0] = PERSISTENT_RESERVE_OUT; 1715 cmd[1] = sa; 1716 cmd[2] = type; 1717 put_unaligned_be32(sizeof(data), &cmd[5]); 1718 1719 put_unaligned_be64(key, &data[0]); 1720 put_unaligned_be64(sa_key, &data[8]); 1721 data[20] = flags; 1722 1723 result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data), 1724 &sshdr, SD_TIMEOUT, sdkp->max_retries, NULL); 1725 1726 if (scsi_status_is_check_condition(result) && 1727 scsi_sense_valid(&sshdr)) { 1728 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result); 1729 scsi_print_sense_hdr(sdev, NULL, &sshdr); 1730 } 1731 1732 return result; 1733 } 1734 1735 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 1736 u32 flags) 1737 { 1738 if (flags & ~PR_FL_IGNORE_KEY) 1739 return -EOPNOTSUPP; 1740 return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00, 1741 old_key, new_key, 0, 1742 (1 << 0) /* APTPL */); 1743 } 1744 1745 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 1746 u32 flags) 1747 { 1748 if (flags) 1749 return -EOPNOTSUPP; 1750 return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0); 1751 } 1752 1753 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 1754 { 1755 return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0); 1756 } 1757 1758 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 1759 enum pr_type type, bool abort) 1760 { 1761 return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key, 1762 sd_pr_type(type), 0); 1763 } 1764 1765 static int sd_pr_clear(struct block_device *bdev, u64 key) 1766 { 1767 return sd_pr_command(bdev, 0x03, key, 0, 0, 0); 1768 } 1769 1770 static const struct pr_ops sd_pr_ops = { 1771 .pr_register = sd_pr_register, 1772 .pr_reserve = sd_pr_reserve, 1773 .pr_release = sd_pr_release, 1774 .pr_preempt = sd_pr_preempt, 1775 .pr_clear = sd_pr_clear, 1776 }; 1777 1778 static void scsi_disk_free_disk(struct gendisk *disk) 1779 { 1780 struct scsi_disk *sdkp = scsi_disk(disk); 1781 1782 put_device(&sdkp->disk_dev); 1783 } 1784 1785 static const struct block_device_operations sd_fops = { 1786 .owner = THIS_MODULE, 1787 .open = sd_open, 1788 .release = sd_release, 1789 .ioctl = sd_ioctl, 1790 .getgeo = sd_getgeo, 1791 .compat_ioctl = blkdev_compat_ptr_ioctl, 1792 .check_events = sd_check_events, 1793 .unlock_native_capacity = sd_unlock_native_capacity, 1794 .report_zones = sd_zbc_report_zones, 1795 .get_unique_id = sd_get_unique_id, 1796 .free_disk = scsi_disk_free_disk, 1797 .pr_ops = &sd_pr_ops, 1798 }; 1799 1800 /** 1801 * sd_eh_reset - reset error handling callback 1802 * @scmd: sd-issued command that has failed 1803 * 1804 * This function is called by the SCSI midlayer before starting 1805 * SCSI EH. When counting medium access failures we have to be 1806 * careful to register it only only once per device and SCSI EH run; 1807 * there might be several timed out commands which will cause the 1808 * 'max_medium_access_timeouts' counter to trigger after the first 1809 * SCSI EH run already and set the device to offline. 1810 * So this function resets the internal counter before starting SCSI EH. 1811 **/ 1812 static void sd_eh_reset(struct scsi_cmnd *scmd) 1813 { 1814 struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk); 1815 1816 /* New SCSI EH run, reset gate variable */ 1817 sdkp->ignore_medium_access_errors = false; 1818 } 1819 1820 /** 1821 * sd_eh_action - error handling callback 1822 * @scmd: sd-issued command that has failed 1823 * @eh_disp: The recovery disposition suggested by the midlayer 1824 * 1825 * This function is called by the SCSI midlayer upon completion of an 1826 * error test command (currently TEST UNIT READY). The result of sending 1827 * the eh command is passed in eh_disp. We're looking for devices that 1828 * fail medium access commands but are OK with non access commands like 1829 * test unit ready (so wrongly see the device as having a successful 1830 * recovery) 1831 **/ 1832 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp) 1833 { 1834 struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk); 1835 struct scsi_device *sdev = scmd->device; 1836 1837 if (!scsi_device_online(sdev) || 1838 !scsi_medium_access_command(scmd) || 1839 host_byte(scmd->result) != DID_TIME_OUT || 1840 eh_disp != SUCCESS) 1841 return eh_disp; 1842 1843 /* 1844 * The device has timed out executing a medium access command. 1845 * However, the TEST UNIT READY command sent during error 1846 * handling completed successfully. Either the device is in the 1847 * process of recovering or has it suffered an internal failure 1848 * that prevents access to the storage medium. 1849 */ 1850 if (!sdkp->ignore_medium_access_errors) { 1851 sdkp->medium_access_timed_out++; 1852 sdkp->ignore_medium_access_errors = true; 1853 } 1854 1855 /* 1856 * If the device keeps failing read/write commands but TEST UNIT 1857 * READY always completes successfully we assume that medium 1858 * access is no longer possible and take the device offline. 1859 */ 1860 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) { 1861 scmd_printk(KERN_ERR, scmd, 1862 "Medium access timeout failure. Offlining disk!\n"); 1863 mutex_lock(&sdev->state_mutex); 1864 scsi_device_set_state(sdev, SDEV_OFFLINE); 1865 mutex_unlock(&sdev->state_mutex); 1866 1867 return SUCCESS; 1868 } 1869 1870 return eh_disp; 1871 } 1872 1873 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd) 1874 { 1875 struct request *req = scsi_cmd_to_rq(scmd); 1876 struct scsi_device *sdev = scmd->device; 1877 unsigned int transferred, good_bytes; 1878 u64 start_lba, end_lba, bad_lba; 1879 1880 /* 1881 * Some commands have a payload smaller than the device logical 1882 * block size (e.g. INQUIRY on a 4K disk). 1883 */ 1884 if (scsi_bufflen(scmd) <= sdev->sector_size) 1885 return 0; 1886 1887 /* Check if we have a 'bad_lba' information */ 1888 if (!scsi_get_sense_info_fld(scmd->sense_buffer, 1889 SCSI_SENSE_BUFFERSIZE, 1890 &bad_lba)) 1891 return 0; 1892 1893 /* 1894 * If the bad lba was reported incorrectly, we have no idea where 1895 * the error is. 1896 */ 1897 start_lba = sectors_to_logical(sdev, blk_rq_pos(req)); 1898 end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd)); 1899 if (bad_lba < start_lba || bad_lba >= end_lba) 1900 return 0; 1901 1902 /* 1903 * resid is optional but mostly filled in. When it's unused, 1904 * its value is zero, so we assume the whole buffer transferred 1905 */ 1906 transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd); 1907 1908 /* This computation should always be done in terms of the 1909 * resolution of the device's medium. 1910 */ 1911 good_bytes = logical_to_bytes(sdev, bad_lba - start_lba); 1912 1913 return min(good_bytes, transferred); 1914 } 1915 1916 /** 1917 * sd_done - bottom half handler: called when the lower level 1918 * driver has completed (successfully or otherwise) a scsi command. 1919 * @SCpnt: mid-level's per command structure. 1920 * 1921 * Note: potentially run from within an ISR. Must not block. 1922 **/ 1923 static int sd_done(struct scsi_cmnd *SCpnt) 1924 { 1925 int result = SCpnt->result; 1926 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt); 1927 unsigned int sector_size = SCpnt->device->sector_size; 1928 unsigned int resid; 1929 struct scsi_sense_hdr sshdr; 1930 struct request *req = scsi_cmd_to_rq(SCpnt); 1931 struct scsi_disk *sdkp = scsi_disk(req->q->disk); 1932 int sense_valid = 0; 1933 int sense_deferred = 0; 1934 1935 switch (req_op(req)) { 1936 case REQ_OP_DISCARD: 1937 case REQ_OP_WRITE_ZEROES: 1938 case REQ_OP_ZONE_RESET: 1939 case REQ_OP_ZONE_RESET_ALL: 1940 case REQ_OP_ZONE_OPEN: 1941 case REQ_OP_ZONE_CLOSE: 1942 case REQ_OP_ZONE_FINISH: 1943 if (!result) { 1944 good_bytes = blk_rq_bytes(req); 1945 scsi_set_resid(SCpnt, 0); 1946 } else { 1947 good_bytes = 0; 1948 scsi_set_resid(SCpnt, blk_rq_bytes(req)); 1949 } 1950 break; 1951 default: 1952 /* 1953 * In case of bogus fw or device, we could end up having 1954 * an unaligned partial completion. Check this here and force 1955 * alignment. 1956 */ 1957 resid = scsi_get_resid(SCpnt); 1958 if (resid & (sector_size - 1)) { 1959 sd_printk(KERN_INFO, sdkp, 1960 "Unaligned partial completion (resid=%u, sector_sz=%u)\n", 1961 resid, sector_size); 1962 scsi_print_command(SCpnt); 1963 resid = min(scsi_bufflen(SCpnt), 1964 round_up(resid, sector_size)); 1965 scsi_set_resid(SCpnt, resid); 1966 } 1967 } 1968 1969 if (result) { 1970 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr); 1971 if (sense_valid) 1972 sense_deferred = scsi_sense_is_deferred(&sshdr); 1973 } 1974 sdkp->medium_access_timed_out = 0; 1975 1976 if (!scsi_status_is_check_condition(result) && 1977 (!sense_valid || sense_deferred)) 1978 goto out; 1979 1980 switch (sshdr.sense_key) { 1981 case HARDWARE_ERROR: 1982 case MEDIUM_ERROR: 1983 good_bytes = sd_completed_bytes(SCpnt); 1984 break; 1985 case RECOVERED_ERROR: 1986 good_bytes = scsi_bufflen(SCpnt); 1987 break; 1988 case NO_SENSE: 1989 /* This indicates a false check condition, so ignore it. An 1990 * unknown amount of data was transferred so treat it as an 1991 * error. 1992 */ 1993 SCpnt->result = 0; 1994 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 1995 break; 1996 case ABORTED_COMMAND: 1997 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */ 1998 good_bytes = sd_completed_bytes(SCpnt); 1999 break; 2000 case ILLEGAL_REQUEST: 2001 switch (sshdr.asc) { 2002 case 0x10: /* DIX: Host detected corruption */ 2003 good_bytes = sd_completed_bytes(SCpnt); 2004 break; 2005 case 0x20: /* INVALID COMMAND OPCODE */ 2006 case 0x24: /* INVALID FIELD IN CDB */ 2007 switch (SCpnt->cmnd[0]) { 2008 case UNMAP: 2009 sd_config_discard(sdkp, SD_LBP_DISABLE); 2010 break; 2011 case WRITE_SAME_16: 2012 case WRITE_SAME: 2013 if (SCpnt->cmnd[1] & 8) { /* UNMAP */ 2014 sd_config_discard(sdkp, SD_LBP_DISABLE); 2015 } else { 2016 sdkp->device->no_write_same = 1; 2017 sd_config_write_same(sdkp); 2018 req->rq_flags |= RQF_QUIET; 2019 } 2020 break; 2021 } 2022 } 2023 break; 2024 default: 2025 break; 2026 } 2027 2028 out: 2029 if (sd_is_zoned(sdkp)) 2030 good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr); 2031 2032 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt, 2033 "sd_done: completed %d of %d bytes\n", 2034 good_bytes, scsi_bufflen(SCpnt))); 2035 2036 return good_bytes; 2037 } 2038 2039 /* 2040 * spinup disk - called only in sd_revalidate_disk() 2041 */ 2042 static void 2043 sd_spinup_disk(struct scsi_disk *sdkp) 2044 { 2045 unsigned char cmd[10]; 2046 unsigned long spintime_expire = 0; 2047 int retries, spintime; 2048 unsigned int the_result; 2049 struct scsi_sense_hdr sshdr; 2050 int sense_valid = 0; 2051 2052 spintime = 0; 2053 2054 /* Spin up drives, as required. Only do this at boot time */ 2055 /* Spinup needs to be done for module loads too. */ 2056 do { 2057 retries = 0; 2058 2059 do { 2060 bool media_was_present = sdkp->media_present; 2061 2062 cmd[0] = TEST_UNIT_READY; 2063 memset((void *) &cmd[1], 0, 9); 2064 2065 the_result = scsi_execute_req(sdkp->device, cmd, 2066 DMA_NONE, NULL, 0, 2067 &sshdr, SD_TIMEOUT, 2068 sdkp->max_retries, NULL); 2069 2070 /* 2071 * If the drive has indicated to us that it 2072 * doesn't have any media in it, don't bother 2073 * with any more polling. 2074 */ 2075 if (media_not_present(sdkp, &sshdr)) { 2076 if (media_was_present) 2077 sd_printk(KERN_NOTICE, sdkp, "Media removed, stopped polling\n"); 2078 return; 2079 } 2080 2081 if (the_result) 2082 sense_valid = scsi_sense_valid(&sshdr); 2083 retries++; 2084 } while (retries < 3 && 2085 (!scsi_status_is_good(the_result) || 2086 (scsi_status_is_check_condition(the_result) && 2087 sense_valid && sshdr.sense_key == UNIT_ATTENTION))); 2088 2089 if (!scsi_status_is_check_condition(the_result)) { 2090 /* no sense, TUR either succeeded or failed 2091 * with a status error */ 2092 if(!spintime && !scsi_status_is_good(the_result)) { 2093 sd_print_result(sdkp, "Test Unit Ready failed", 2094 the_result); 2095 } 2096 break; 2097 } 2098 2099 /* 2100 * The device does not want the automatic start to be issued. 2101 */ 2102 if (sdkp->device->no_start_on_add) 2103 break; 2104 2105 if (sense_valid && sshdr.sense_key == NOT_READY) { 2106 if (sshdr.asc == 4 && sshdr.ascq == 3) 2107 break; /* manual intervention required */ 2108 if (sshdr.asc == 4 && sshdr.ascq == 0xb) 2109 break; /* standby */ 2110 if (sshdr.asc == 4 && sshdr.ascq == 0xc) 2111 break; /* unavailable */ 2112 if (sshdr.asc == 4 && sshdr.ascq == 0x1b) 2113 break; /* sanitize in progress */ 2114 /* 2115 * Issue command to spin up drive when not ready 2116 */ 2117 if (!spintime) { 2118 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk..."); 2119 cmd[0] = START_STOP; 2120 cmd[1] = 1; /* Return immediately */ 2121 memset((void *) &cmd[2], 0, 8); 2122 cmd[4] = 1; /* Start spin cycle */ 2123 if (sdkp->device->start_stop_pwr_cond) 2124 cmd[4] |= 1 << 4; 2125 scsi_execute_req(sdkp->device, cmd, DMA_NONE, 2126 NULL, 0, &sshdr, 2127 SD_TIMEOUT, sdkp->max_retries, 2128 NULL); 2129 spintime_expire = jiffies + 100 * HZ; 2130 spintime = 1; 2131 } 2132 /* Wait 1 second for next try */ 2133 msleep(1000); 2134 printk(KERN_CONT "."); 2135 2136 /* 2137 * Wait for USB flash devices with slow firmware. 2138 * Yes, this sense key/ASC combination shouldn't 2139 * occur here. It's characteristic of these devices. 2140 */ 2141 } else if (sense_valid && 2142 sshdr.sense_key == UNIT_ATTENTION && 2143 sshdr.asc == 0x28) { 2144 if (!spintime) { 2145 spintime_expire = jiffies + 5 * HZ; 2146 spintime = 1; 2147 } 2148 /* Wait 1 second for next try */ 2149 msleep(1000); 2150 } else { 2151 /* we don't understand the sense code, so it's 2152 * probably pointless to loop */ 2153 if(!spintime) { 2154 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n"); 2155 sd_print_sense_hdr(sdkp, &sshdr); 2156 } 2157 break; 2158 } 2159 2160 } while (spintime && time_before_eq(jiffies, spintime_expire)); 2161 2162 if (spintime) { 2163 if (scsi_status_is_good(the_result)) 2164 printk(KERN_CONT "ready\n"); 2165 else 2166 printk(KERN_CONT "not responding...\n"); 2167 } 2168 } 2169 2170 /* 2171 * Determine whether disk supports Data Integrity Field. 2172 */ 2173 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer) 2174 { 2175 struct scsi_device *sdp = sdkp->device; 2176 u8 type; 2177 2178 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) { 2179 sdkp->protection_type = 0; 2180 return 0; 2181 } 2182 2183 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */ 2184 2185 if (type > T10_PI_TYPE3_PROTECTION) { 2186 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \ 2187 " protection type %u. Disabling disk!\n", 2188 type); 2189 sdkp->protection_type = 0; 2190 return -ENODEV; 2191 } 2192 2193 sdkp->protection_type = type; 2194 2195 return 0; 2196 } 2197 2198 static void sd_config_protection(struct scsi_disk *sdkp) 2199 { 2200 struct scsi_device *sdp = sdkp->device; 2201 2202 if (!sdkp->first_scan) 2203 return; 2204 2205 sd_dif_config_host(sdkp); 2206 2207 if (!sdkp->protection_type) 2208 return; 2209 2210 if (!scsi_host_dif_capable(sdp->host, sdkp->protection_type)) { 2211 sd_printk(KERN_NOTICE, sdkp, 2212 "Disabling DIF Type %u protection\n", 2213 sdkp->protection_type); 2214 sdkp->protection_type = 0; 2215 } 2216 2217 sd_printk(KERN_NOTICE, sdkp, "Enabling DIF Type %u protection\n", 2218 sdkp->protection_type); 2219 } 2220 2221 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp, 2222 struct scsi_sense_hdr *sshdr, int sense_valid, 2223 int the_result) 2224 { 2225 if (sense_valid) 2226 sd_print_sense_hdr(sdkp, sshdr); 2227 else 2228 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n"); 2229 2230 /* 2231 * Set dirty bit for removable devices if not ready - 2232 * sometimes drives will not report this properly. 2233 */ 2234 if (sdp->removable && 2235 sense_valid && sshdr->sense_key == NOT_READY) 2236 set_media_not_present(sdkp); 2237 2238 /* 2239 * We used to set media_present to 0 here to indicate no media 2240 * in the drive, but some drives fail read capacity even with 2241 * media present, so we can't do that. 2242 */ 2243 sdkp->capacity = 0; /* unknown mapped to zero - as usual */ 2244 } 2245 2246 #define RC16_LEN 32 2247 #if RC16_LEN > SD_BUF_SIZE 2248 #error RC16_LEN must not be more than SD_BUF_SIZE 2249 #endif 2250 2251 #define READ_CAPACITY_RETRIES_ON_RESET 10 2252 2253 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp, 2254 unsigned char *buffer) 2255 { 2256 unsigned char cmd[16]; 2257 struct scsi_sense_hdr sshdr; 2258 int sense_valid = 0; 2259 int the_result; 2260 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2261 unsigned int alignment; 2262 unsigned long long lba; 2263 unsigned sector_size; 2264 2265 if (sdp->no_read_capacity_16) 2266 return -EINVAL; 2267 2268 do { 2269 memset(cmd, 0, 16); 2270 cmd[0] = SERVICE_ACTION_IN_16; 2271 cmd[1] = SAI_READ_CAPACITY_16; 2272 cmd[13] = RC16_LEN; 2273 memset(buffer, 0, RC16_LEN); 2274 2275 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, 2276 buffer, RC16_LEN, &sshdr, 2277 SD_TIMEOUT, sdkp->max_retries, NULL); 2278 2279 if (media_not_present(sdkp, &sshdr)) 2280 return -ENODEV; 2281 2282 if (the_result > 0) { 2283 sense_valid = scsi_sense_valid(&sshdr); 2284 if (sense_valid && 2285 sshdr.sense_key == ILLEGAL_REQUEST && 2286 (sshdr.asc == 0x20 || sshdr.asc == 0x24) && 2287 sshdr.ascq == 0x00) 2288 /* Invalid Command Operation Code or 2289 * Invalid Field in CDB, just retry 2290 * silently with RC10 */ 2291 return -EINVAL; 2292 if (sense_valid && 2293 sshdr.sense_key == UNIT_ATTENTION && 2294 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2295 /* Device reset might occur several times, 2296 * give it one more chance */ 2297 if (--reset_retries > 0) 2298 continue; 2299 } 2300 retries--; 2301 2302 } while (the_result && retries); 2303 2304 if (the_result) { 2305 sd_print_result(sdkp, "Read Capacity(16) failed", the_result); 2306 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2307 return -EINVAL; 2308 } 2309 2310 sector_size = get_unaligned_be32(&buffer[8]); 2311 lba = get_unaligned_be64(&buffer[0]); 2312 2313 if (sd_read_protection_type(sdkp, buffer) < 0) { 2314 sdkp->capacity = 0; 2315 return -ENODEV; 2316 } 2317 2318 /* Logical blocks per physical block exponent */ 2319 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size; 2320 2321 /* RC basis */ 2322 sdkp->rc_basis = (buffer[12] >> 4) & 0x3; 2323 2324 /* Lowest aligned logical block */ 2325 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size; 2326 blk_queue_alignment_offset(sdp->request_queue, alignment); 2327 if (alignment && sdkp->first_scan) 2328 sd_printk(KERN_NOTICE, sdkp, 2329 "physical block alignment offset: %u\n", alignment); 2330 2331 if (buffer[14] & 0x80) { /* LBPME */ 2332 sdkp->lbpme = 1; 2333 2334 if (buffer[14] & 0x40) /* LBPRZ */ 2335 sdkp->lbprz = 1; 2336 2337 sd_config_discard(sdkp, SD_LBP_WS16); 2338 } 2339 2340 sdkp->capacity = lba + 1; 2341 return sector_size; 2342 } 2343 2344 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp, 2345 unsigned char *buffer) 2346 { 2347 unsigned char cmd[16]; 2348 struct scsi_sense_hdr sshdr; 2349 int sense_valid = 0; 2350 int the_result; 2351 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2352 sector_t lba; 2353 unsigned sector_size; 2354 2355 do { 2356 cmd[0] = READ_CAPACITY; 2357 memset(&cmd[1], 0, 9); 2358 memset(buffer, 0, 8); 2359 2360 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, 2361 buffer, 8, &sshdr, 2362 SD_TIMEOUT, sdkp->max_retries, NULL); 2363 2364 if (media_not_present(sdkp, &sshdr)) 2365 return -ENODEV; 2366 2367 if (the_result > 0) { 2368 sense_valid = scsi_sense_valid(&sshdr); 2369 if (sense_valid && 2370 sshdr.sense_key == UNIT_ATTENTION && 2371 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2372 /* Device reset might occur several times, 2373 * give it one more chance */ 2374 if (--reset_retries > 0) 2375 continue; 2376 } 2377 retries--; 2378 2379 } while (the_result && retries); 2380 2381 if (the_result) { 2382 sd_print_result(sdkp, "Read Capacity(10) failed", the_result); 2383 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2384 return -EINVAL; 2385 } 2386 2387 sector_size = get_unaligned_be32(&buffer[4]); 2388 lba = get_unaligned_be32(&buffer[0]); 2389 2390 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) { 2391 /* Some buggy (usb cardreader) devices return an lba of 2392 0xffffffff when the want to report a size of 0 (with 2393 which they really mean no media is present) */ 2394 sdkp->capacity = 0; 2395 sdkp->physical_block_size = sector_size; 2396 return sector_size; 2397 } 2398 2399 sdkp->capacity = lba + 1; 2400 sdkp->physical_block_size = sector_size; 2401 return sector_size; 2402 } 2403 2404 static int sd_try_rc16_first(struct scsi_device *sdp) 2405 { 2406 if (sdp->host->max_cmd_len < 16) 2407 return 0; 2408 if (sdp->try_rc_10_first) 2409 return 0; 2410 if (sdp->scsi_level > SCSI_SPC_2) 2411 return 1; 2412 if (scsi_device_protection(sdp)) 2413 return 1; 2414 return 0; 2415 } 2416 2417 /* 2418 * read disk capacity 2419 */ 2420 static void 2421 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer) 2422 { 2423 int sector_size; 2424 struct scsi_device *sdp = sdkp->device; 2425 2426 if (sd_try_rc16_first(sdp)) { 2427 sector_size = read_capacity_16(sdkp, sdp, buffer); 2428 if (sector_size == -EOVERFLOW) 2429 goto got_data; 2430 if (sector_size == -ENODEV) 2431 return; 2432 if (sector_size < 0) 2433 sector_size = read_capacity_10(sdkp, sdp, buffer); 2434 if (sector_size < 0) 2435 return; 2436 } else { 2437 sector_size = read_capacity_10(sdkp, sdp, buffer); 2438 if (sector_size == -EOVERFLOW) 2439 goto got_data; 2440 if (sector_size < 0) 2441 return; 2442 if ((sizeof(sdkp->capacity) > 4) && 2443 (sdkp->capacity > 0xffffffffULL)) { 2444 int old_sector_size = sector_size; 2445 sd_printk(KERN_NOTICE, sdkp, "Very big device. " 2446 "Trying to use READ CAPACITY(16).\n"); 2447 sector_size = read_capacity_16(sdkp, sdp, buffer); 2448 if (sector_size < 0) { 2449 sd_printk(KERN_NOTICE, sdkp, 2450 "Using 0xffffffff as device size\n"); 2451 sdkp->capacity = 1 + (sector_t) 0xffffffff; 2452 sector_size = old_sector_size; 2453 goto got_data; 2454 } 2455 /* Remember that READ CAPACITY(16) succeeded */ 2456 sdp->try_rc_10_first = 0; 2457 } 2458 } 2459 2460 /* Some devices are known to return the total number of blocks, 2461 * not the highest block number. Some devices have versions 2462 * which do this and others which do not. Some devices we might 2463 * suspect of doing this but we don't know for certain. 2464 * 2465 * If we know the reported capacity is wrong, decrement it. If 2466 * we can only guess, then assume the number of blocks is even 2467 * (usually true but not always) and err on the side of lowering 2468 * the capacity. 2469 */ 2470 if (sdp->fix_capacity || 2471 (sdp->guess_capacity && (sdkp->capacity & 0x01))) { 2472 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count " 2473 "from its reported value: %llu\n", 2474 (unsigned long long) sdkp->capacity); 2475 --sdkp->capacity; 2476 } 2477 2478 got_data: 2479 if (sector_size == 0) { 2480 sector_size = 512; 2481 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, " 2482 "assuming 512.\n"); 2483 } 2484 2485 if (sector_size != 512 && 2486 sector_size != 1024 && 2487 sector_size != 2048 && 2488 sector_size != 4096) { 2489 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n", 2490 sector_size); 2491 /* 2492 * The user might want to re-format the drive with 2493 * a supported sectorsize. Once this happens, it 2494 * would be relatively trivial to set the thing up. 2495 * For this reason, we leave the thing in the table. 2496 */ 2497 sdkp->capacity = 0; 2498 /* 2499 * set a bogus sector size so the normal read/write 2500 * logic in the block layer will eventually refuse any 2501 * request on this device without tripping over power 2502 * of two sector size assumptions 2503 */ 2504 sector_size = 512; 2505 } 2506 blk_queue_logical_block_size(sdp->request_queue, sector_size); 2507 blk_queue_physical_block_size(sdp->request_queue, 2508 sdkp->physical_block_size); 2509 sdkp->device->sector_size = sector_size; 2510 2511 if (sdkp->capacity > 0xffffffff) 2512 sdp->use_16_for_rw = 1; 2513 2514 } 2515 2516 /* 2517 * Print disk capacity 2518 */ 2519 static void 2520 sd_print_capacity(struct scsi_disk *sdkp, 2521 sector_t old_capacity) 2522 { 2523 int sector_size = sdkp->device->sector_size; 2524 char cap_str_2[10], cap_str_10[10]; 2525 2526 if (!sdkp->first_scan && old_capacity == sdkp->capacity) 2527 return; 2528 2529 string_get_size(sdkp->capacity, sector_size, 2530 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2)); 2531 string_get_size(sdkp->capacity, sector_size, 2532 STRING_UNITS_10, cap_str_10, sizeof(cap_str_10)); 2533 2534 sd_printk(KERN_NOTICE, sdkp, 2535 "%llu %d-byte logical blocks: (%s/%s)\n", 2536 (unsigned long long)sdkp->capacity, 2537 sector_size, cap_str_10, cap_str_2); 2538 2539 if (sdkp->physical_block_size != sector_size) 2540 sd_printk(KERN_NOTICE, sdkp, 2541 "%u-byte physical blocks\n", 2542 sdkp->physical_block_size); 2543 } 2544 2545 /* called with buffer of length 512 */ 2546 static inline int 2547 sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage, 2548 unsigned char *buffer, int len, struct scsi_mode_data *data, 2549 struct scsi_sense_hdr *sshdr) 2550 { 2551 /* 2552 * If we must use MODE SENSE(10), make sure that the buffer length 2553 * is at least 8 bytes so that the mode sense header fits. 2554 */ 2555 if (sdkp->device->use_10_for_ms && len < 8) 2556 len = 8; 2557 2558 return scsi_mode_sense(sdkp->device, dbd, modepage, buffer, len, 2559 SD_TIMEOUT, sdkp->max_retries, data, 2560 sshdr); 2561 } 2562 2563 /* 2564 * read write protect setting, if possible - called only in sd_revalidate_disk() 2565 * called with buffer of length SD_BUF_SIZE 2566 */ 2567 static void 2568 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer) 2569 { 2570 int res; 2571 struct scsi_device *sdp = sdkp->device; 2572 struct scsi_mode_data data; 2573 int old_wp = sdkp->write_prot; 2574 2575 set_disk_ro(sdkp->disk, 0); 2576 if (sdp->skip_ms_page_3f) { 2577 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n"); 2578 return; 2579 } 2580 2581 if (sdp->use_192_bytes_for_3f) { 2582 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL); 2583 } else { 2584 /* 2585 * First attempt: ask for all pages (0x3F), but only 4 bytes. 2586 * We have to start carefully: some devices hang if we ask 2587 * for more than is available. 2588 */ 2589 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL); 2590 2591 /* 2592 * Second attempt: ask for page 0 When only page 0 is 2593 * implemented, a request for page 3F may return Sense Key 2594 * 5: Illegal Request, Sense Code 24: Invalid field in 2595 * CDB. 2596 */ 2597 if (res < 0) 2598 res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL); 2599 2600 /* 2601 * Third attempt: ask 255 bytes, as we did earlier. 2602 */ 2603 if (res < 0) 2604 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255, 2605 &data, NULL); 2606 } 2607 2608 if (res < 0) { 2609 sd_first_printk(KERN_WARNING, sdkp, 2610 "Test WP failed, assume Write Enabled\n"); 2611 } else { 2612 sdkp->write_prot = ((data.device_specific & 0x80) != 0); 2613 set_disk_ro(sdkp->disk, sdkp->write_prot); 2614 if (sdkp->first_scan || old_wp != sdkp->write_prot) { 2615 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n", 2616 sdkp->write_prot ? "on" : "off"); 2617 sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer); 2618 } 2619 } 2620 } 2621 2622 /* 2623 * sd_read_cache_type - called only from sd_revalidate_disk() 2624 * called with buffer of length SD_BUF_SIZE 2625 */ 2626 static void 2627 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer) 2628 { 2629 int len = 0, res; 2630 struct scsi_device *sdp = sdkp->device; 2631 2632 int dbd; 2633 int modepage; 2634 int first_len; 2635 struct scsi_mode_data data; 2636 struct scsi_sense_hdr sshdr; 2637 int old_wce = sdkp->WCE; 2638 int old_rcd = sdkp->RCD; 2639 int old_dpofua = sdkp->DPOFUA; 2640 2641 2642 if (sdkp->cache_override) 2643 return; 2644 2645 first_len = 4; 2646 if (sdp->skip_ms_page_8) { 2647 if (sdp->type == TYPE_RBC) 2648 goto defaults; 2649 else { 2650 if (sdp->skip_ms_page_3f) 2651 goto defaults; 2652 modepage = 0x3F; 2653 if (sdp->use_192_bytes_for_3f) 2654 first_len = 192; 2655 dbd = 0; 2656 } 2657 } else if (sdp->type == TYPE_RBC) { 2658 modepage = 6; 2659 dbd = 8; 2660 } else { 2661 modepage = 8; 2662 dbd = 0; 2663 } 2664 2665 /* cautiously ask */ 2666 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len, 2667 &data, &sshdr); 2668 2669 if (res < 0) 2670 goto bad_sense; 2671 2672 if (!data.header_length) { 2673 modepage = 6; 2674 first_len = 0; 2675 sd_first_printk(KERN_ERR, sdkp, 2676 "Missing header in MODE_SENSE response\n"); 2677 } 2678 2679 /* that went OK, now ask for the proper length */ 2680 len = data.length; 2681 2682 /* 2683 * We're only interested in the first three bytes, actually. 2684 * But the data cache page is defined for the first 20. 2685 */ 2686 if (len < 3) 2687 goto bad_sense; 2688 else if (len > SD_BUF_SIZE) { 2689 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter " 2690 "data from %d to %d bytes\n", len, SD_BUF_SIZE); 2691 len = SD_BUF_SIZE; 2692 } 2693 if (modepage == 0x3F && sdp->use_192_bytes_for_3f) 2694 len = 192; 2695 2696 /* Get the data */ 2697 if (len > first_len) 2698 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len, 2699 &data, &sshdr); 2700 2701 if (!res) { 2702 int offset = data.header_length + data.block_descriptor_length; 2703 2704 while (offset < len) { 2705 u8 page_code = buffer[offset] & 0x3F; 2706 u8 spf = buffer[offset] & 0x40; 2707 2708 if (page_code == 8 || page_code == 6) { 2709 /* We're interested only in the first 3 bytes. 2710 */ 2711 if (len - offset <= 2) { 2712 sd_first_printk(KERN_ERR, sdkp, 2713 "Incomplete mode parameter " 2714 "data\n"); 2715 goto defaults; 2716 } else { 2717 modepage = page_code; 2718 goto Page_found; 2719 } 2720 } else { 2721 /* Go to the next page */ 2722 if (spf && len - offset > 3) 2723 offset += 4 + (buffer[offset+2] << 8) + 2724 buffer[offset+3]; 2725 else if (!spf && len - offset > 1) 2726 offset += 2 + buffer[offset+1]; 2727 else { 2728 sd_first_printk(KERN_ERR, sdkp, 2729 "Incomplete mode " 2730 "parameter data\n"); 2731 goto defaults; 2732 } 2733 } 2734 } 2735 2736 sd_first_printk(KERN_WARNING, sdkp, 2737 "No Caching mode page found\n"); 2738 goto defaults; 2739 2740 Page_found: 2741 if (modepage == 8) { 2742 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0); 2743 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0); 2744 } else { 2745 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0); 2746 sdkp->RCD = 0; 2747 } 2748 2749 sdkp->DPOFUA = (data.device_specific & 0x10) != 0; 2750 if (sdp->broken_fua) { 2751 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n"); 2752 sdkp->DPOFUA = 0; 2753 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw && 2754 !sdkp->device->use_16_for_rw) { 2755 sd_first_printk(KERN_NOTICE, sdkp, 2756 "Uses READ/WRITE(6), disabling FUA\n"); 2757 sdkp->DPOFUA = 0; 2758 } 2759 2760 /* No cache flush allowed for write protected devices */ 2761 if (sdkp->WCE && sdkp->write_prot) 2762 sdkp->WCE = 0; 2763 2764 if (sdkp->first_scan || old_wce != sdkp->WCE || 2765 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA) 2766 sd_printk(KERN_NOTICE, sdkp, 2767 "Write cache: %s, read cache: %s, %s\n", 2768 sdkp->WCE ? "enabled" : "disabled", 2769 sdkp->RCD ? "disabled" : "enabled", 2770 sdkp->DPOFUA ? "supports DPO and FUA" 2771 : "doesn't support DPO or FUA"); 2772 2773 return; 2774 } 2775 2776 bad_sense: 2777 if (scsi_sense_valid(&sshdr) && 2778 sshdr.sense_key == ILLEGAL_REQUEST && 2779 sshdr.asc == 0x24 && sshdr.ascq == 0x0) 2780 /* Invalid field in CDB */ 2781 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n"); 2782 else 2783 sd_first_printk(KERN_ERR, sdkp, 2784 "Asking for cache data failed\n"); 2785 2786 defaults: 2787 if (sdp->wce_default_on) { 2788 sd_first_printk(KERN_NOTICE, sdkp, 2789 "Assuming drive cache: write back\n"); 2790 sdkp->WCE = 1; 2791 } else { 2792 sd_first_printk(KERN_WARNING, sdkp, 2793 "Assuming drive cache: write through\n"); 2794 sdkp->WCE = 0; 2795 } 2796 sdkp->RCD = 0; 2797 sdkp->DPOFUA = 0; 2798 } 2799 2800 /* 2801 * The ATO bit indicates whether the DIF application tag is available 2802 * for use by the operating system. 2803 */ 2804 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer) 2805 { 2806 int res, offset; 2807 struct scsi_device *sdp = sdkp->device; 2808 struct scsi_mode_data data; 2809 struct scsi_sense_hdr sshdr; 2810 2811 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 2812 return; 2813 2814 if (sdkp->protection_type == 0) 2815 return; 2816 2817 res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT, 2818 sdkp->max_retries, &data, &sshdr); 2819 2820 if (res < 0 || !data.header_length || 2821 data.length < 6) { 2822 sd_first_printk(KERN_WARNING, sdkp, 2823 "getting Control mode page failed, assume no ATO\n"); 2824 2825 if (scsi_sense_valid(&sshdr)) 2826 sd_print_sense_hdr(sdkp, &sshdr); 2827 2828 return; 2829 } 2830 2831 offset = data.header_length + data.block_descriptor_length; 2832 2833 if ((buffer[offset] & 0x3f) != 0x0a) { 2834 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n"); 2835 return; 2836 } 2837 2838 if ((buffer[offset + 5] & 0x80) == 0) 2839 return; 2840 2841 sdkp->ATO = 1; 2842 2843 return; 2844 } 2845 2846 /** 2847 * sd_read_block_limits - Query disk device for preferred I/O sizes. 2848 * @sdkp: disk to query 2849 */ 2850 static void sd_read_block_limits(struct scsi_disk *sdkp) 2851 { 2852 struct scsi_vpd *vpd; 2853 2854 rcu_read_lock(); 2855 2856 vpd = rcu_dereference(sdkp->device->vpd_pgb0); 2857 if (!vpd || vpd->len < 16) 2858 goto out; 2859 2860 sdkp->min_xfer_blocks = get_unaligned_be16(&vpd->data[6]); 2861 sdkp->max_xfer_blocks = get_unaligned_be32(&vpd->data[8]); 2862 sdkp->opt_xfer_blocks = get_unaligned_be32(&vpd->data[12]); 2863 2864 if (vpd->len >= 64) { 2865 unsigned int lba_count, desc_count; 2866 2867 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&vpd->data[36]); 2868 2869 if (!sdkp->lbpme) 2870 goto out; 2871 2872 lba_count = get_unaligned_be32(&vpd->data[20]); 2873 desc_count = get_unaligned_be32(&vpd->data[24]); 2874 2875 if (lba_count && desc_count) 2876 sdkp->max_unmap_blocks = lba_count; 2877 2878 sdkp->unmap_granularity = get_unaligned_be32(&vpd->data[28]); 2879 2880 if (vpd->data[32] & 0x80) 2881 sdkp->unmap_alignment = 2882 get_unaligned_be32(&vpd->data[32]) & ~(1 << 31); 2883 2884 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */ 2885 2886 if (sdkp->max_unmap_blocks) 2887 sd_config_discard(sdkp, SD_LBP_UNMAP); 2888 else 2889 sd_config_discard(sdkp, SD_LBP_WS16); 2890 2891 } else { /* LBP VPD page tells us what to use */ 2892 if (sdkp->lbpu && sdkp->max_unmap_blocks) 2893 sd_config_discard(sdkp, SD_LBP_UNMAP); 2894 else if (sdkp->lbpws) 2895 sd_config_discard(sdkp, SD_LBP_WS16); 2896 else if (sdkp->lbpws10) 2897 sd_config_discard(sdkp, SD_LBP_WS10); 2898 else 2899 sd_config_discard(sdkp, SD_LBP_DISABLE); 2900 } 2901 } 2902 2903 out: 2904 rcu_read_unlock(); 2905 } 2906 2907 /** 2908 * sd_read_block_characteristics - Query block dev. characteristics 2909 * @sdkp: disk to query 2910 */ 2911 static void sd_read_block_characteristics(struct scsi_disk *sdkp) 2912 { 2913 struct request_queue *q = sdkp->disk->queue; 2914 struct scsi_vpd *vpd; 2915 u16 rot; 2916 u8 zoned; 2917 2918 rcu_read_lock(); 2919 vpd = rcu_dereference(sdkp->device->vpd_pgb1); 2920 2921 if (!vpd || vpd->len < 8) { 2922 rcu_read_unlock(); 2923 return; 2924 } 2925 2926 rot = get_unaligned_be16(&vpd->data[4]); 2927 zoned = (vpd->data[8] >> 4) & 3; 2928 rcu_read_unlock(); 2929 2930 if (rot == 1) { 2931 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 2932 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q); 2933 } 2934 2935 if (sdkp->device->type == TYPE_ZBC) { 2936 /* Host-managed */ 2937 blk_queue_set_zoned(sdkp->disk, BLK_ZONED_HM); 2938 } else { 2939 sdkp->zoned = zoned; 2940 if (sdkp->zoned == 1) { 2941 /* Host-aware */ 2942 blk_queue_set_zoned(sdkp->disk, BLK_ZONED_HA); 2943 } else { 2944 /* Regular disk or drive managed disk */ 2945 blk_queue_set_zoned(sdkp->disk, BLK_ZONED_NONE); 2946 } 2947 } 2948 2949 if (!sdkp->first_scan) 2950 return; 2951 2952 if (blk_queue_is_zoned(q)) { 2953 sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n", 2954 q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware"); 2955 } else { 2956 if (sdkp->zoned == 1) 2957 sd_printk(KERN_NOTICE, sdkp, 2958 "Host-aware SMR disk used as regular disk\n"); 2959 else if (sdkp->zoned == 2) 2960 sd_printk(KERN_NOTICE, sdkp, 2961 "Drive-managed SMR disk\n"); 2962 } 2963 } 2964 2965 /** 2966 * sd_read_block_provisioning - Query provisioning VPD page 2967 * @sdkp: disk to query 2968 */ 2969 static void sd_read_block_provisioning(struct scsi_disk *sdkp) 2970 { 2971 struct scsi_vpd *vpd; 2972 2973 if (sdkp->lbpme == 0) 2974 return; 2975 2976 rcu_read_lock(); 2977 vpd = rcu_dereference(sdkp->device->vpd_pgb2); 2978 2979 if (!vpd || vpd->len < 8) { 2980 rcu_read_unlock(); 2981 return; 2982 } 2983 2984 sdkp->lbpvpd = 1; 2985 sdkp->lbpu = (vpd->data[5] >> 7) & 1; /* UNMAP */ 2986 sdkp->lbpws = (vpd->data[5] >> 6) & 1; /* WRITE SAME(16) w/ UNMAP */ 2987 sdkp->lbpws10 = (vpd->data[5] >> 5) & 1; /* WRITE SAME(10) w/ UNMAP */ 2988 rcu_read_unlock(); 2989 } 2990 2991 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer) 2992 { 2993 struct scsi_device *sdev = sdkp->device; 2994 2995 if (sdev->host->no_write_same) { 2996 sdev->no_write_same = 1; 2997 2998 return; 2999 } 3000 3001 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) { 3002 struct scsi_vpd *vpd; 3003 3004 sdev->no_report_opcodes = 1; 3005 3006 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION 3007 * CODES is unsupported and the device has an ATA 3008 * Information VPD page (SAT). 3009 */ 3010 rcu_read_lock(); 3011 vpd = rcu_dereference(sdev->vpd_pg89); 3012 if (vpd) 3013 sdev->no_write_same = 1; 3014 rcu_read_unlock(); 3015 } 3016 3017 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1) 3018 sdkp->ws16 = 1; 3019 3020 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1) 3021 sdkp->ws10 = 1; 3022 } 3023 3024 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer) 3025 { 3026 struct scsi_device *sdev = sdkp->device; 3027 3028 if (!sdev->security_supported) 3029 return; 3030 3031 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3032 SECURITY_PROTOCOL_IN) == 1 && 3033 scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3034 SECURITY_PROTOCOL_OUT) == 1) 3035 sdkp->security = 1; 3036 } 3037 3038 static inline sector_t sd64_to_sectors(struct scsi_disk *sdkp, u8 *buf) 3039 { 3040 return logical_to_sectors(sdkp->device, get_unaligned_be64(buf)); 3041 } 3042 3043 /** 3044 * sd_read_cpr - Query concurrent positioning ranges 3045 * @sdkp: disk to query 3046 */ 3047 static void sd_read_cpr(struct scsi_disk *sdkp) 3048 { 3049 struct blk_independent_access_ranges *iars = NULL; 3050 unsigned char *buffer = NULL; 3051 unsigned int nr_cpr = 0; 3052 int i, vpd_len, buf_len = SD_BUF_SIZE; 3053 u8 *desc; 3054 3055 /* 3056 * We need to have the capacity set first for the block layer to be 3057 * able to check the ranges. 3058 */ 3059 if (sdkp->first_scan) 3060 return; 3061 3062 if (!sdkp->capacity) 3063 goto out; 3064 3065 /* 3066 * Concurrent Positioning Ranges VPD: there can be at most 256 ranges, 3067 * leading to a maximum page size of 64 + 256*32 bytes. 3068 */ 3069 buf_len = 64 + 256*32; 3070 buffer = kmalloc(buf_len, GFP_KERNEL); 3071 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb9, buffer, buf_len)) 3072 goto out; 3073 3074 /* We must have at least a 64B header and one 32B range descriptor */ 3075 vpd_len = get_unaligned_be16(&buffer[2]) + 4; 3076 if (vpd_len > buf_len || vpd_len < 64 + 32 || (vpd_len & 31)) { 3077 sd_printk(KERN_ERR, sdkp, 3078 "Invalid Concurrent Positioning Ranges VPD page\n"); 3079 goto out; 3080 } 3081 3082 nr_cpr = (vpd_len - 64) / 32; 3083 if (nr_cpr == 1) { 3084 nr_cpr = 0; 3085 goto out; 3086 } 3087 3088 iars = disk_alloc_independent_access_ranges(sdkp->disk, nr_cpr); 3089 if (!iars) { 3090 nr_cpr = 0; 3091 goto out; 3092 } 3093 3094 desc = &buffer[64]; 3095 for (i = 0; i < nr_cpr; i++, desc += 32) { 3096 if (desc[0] != i) { 3097 sd_printk(KERN_ERR, sdkp, 3098 "Invalid Concurrent Positioning Range number\n"); 3099 nr_cpr = 0; 3100 break; 3101 } 3102 3103 iars->ia_range[i].sector = sd64_to_sectors(sdkp, desc + 8); 3104 iars->ia_range[i].nr_sectors = sd64_to_sectors(sdkp, desc + 16); 3105 } 3106 3107 out: 3108 disk_set_independent_access_ranges(sdkp->disk, iars); 3109 if (nr_cpr && sdkp->nr_actuators != nr_cpr) { 3110 sd_printk(KERN_NOTICE, sdkp, 3111 "%u concurrent positioning ranges\n", nr_cpr); 3112 sdkp->nr_actuators = nr_cpr; 3113 } 3114 3115 kfree(buffer); 3116 } 3117 3118 static bool sd_validate_min_xfer_size(struct scsi_disk *sdkp) 3119 { 3120 struct scsi_device *sdp = sdkp->device; 3121 unsigned int min_xfer_bytes = 3122 logical_to_bytes(sdp, sdkp->min_xfer_blocks); 3123 3124 if (sdkp->min_xfer_blocks == 0) 3125 return false; 3126 3127 if (min_xfer_bytes & (sdkp->physical_block_size - 1)) { 3128 sd_first_printk(KERN_WARNING, sdkp, 3129 "Preferred minimum I/O size %u bytes not a " \ 3130 "multiple of physical block size (%u bytes)\n", 3131 min_xfer_bytes, sdkp->physical_block_size); 3132 sdkp->min_xfer_blocks = 0; 3133 return false; 3134 } 3135 3136 sd_first_printk(KERN_INFO, sdkp, "Preferred minimum I/O size %u bytes\n", 3137 min_xfer_bytes); 3138 return true; 3139 } 3140 3141 /* 3142 * Determine the device's preferred I/O size for reads and writes 3143 * unless the reported value is unreasonably small, large, not a 3144 * multiple of the physical block size, or simply garbage. 3145 */ 3146 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp, 3147 unsigned int dev_max) 3148 { 3149 struct scsi_device *sdp = sdkp->device; 3150 unsigned int opt_xfer_bytes = 3151 logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 3152 unsigned int min_xfer_bytes = 3153 logical_to_bytes(sdp, sdkp->min_xfer_blocks); 3154 3155 if (sdkp->opt_xfer_blocks == 0) 3156 return false; 3157 3158 if (sdkp->opt_xfer_blocks > dev_max) { 3159 sd_first_printk(KERN_WARNING, sdkp, 3160 "Optimal transfer size %u logical blocks " \ 3161 "> dev_max (%u logical blocks)\n", 3162 sdkp->opt_xfer_blocks, dev_max); 3163 return false; 3164 } 3165 3166 if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) { 3167 sd_first_printk(KERN_WARNING, sdkp, 3168 "Optimal transfer size %u logical blocks " \ 3169 "> sd driver limit (%u logical blocks)\n", 3170 sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS); 3171 return false; 3172 } 3173 3174 if (opt_xfer_bytes < PAGE_SIZE) { 3175 sd_first_printk(KERN_WARNING, sdkp, 3176 "Optimal transfer size %u bytes < " \ 3177 "PAGE_SIZE (%u bytes)\n", 3178 opt_xfer_bytes, (unsigned int)PAGE_SIZE); 3179 return false; 3180 } 3181 3182 if (min_xfer_bytes && opt_xfer_bytes % min_xfer_bytes) { 3183 sd_first_printk(KERN_WARNING, sdkp, 3184 "Optimal transfer size %u bytes not a " \ 3185 "multiple of preferred minimum block " \ 3186 "size (%u bytes)\n", 3187 opt_xfer_bytes, min_xfer_bytes); 3188 return false; 3189 } 3190 3191 if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) { 3192 sd_first_printk(KERN_WARNING, sdkp, 3193 "Optimal transfer size %u bytes not a " \ 3194 "multiple of physical block size (%u bytes)\n", 3195 opt_xfer_bytes, sdkp->physical_block_size); 3196 return false; 3197 } 3198 3199 sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n", 3200 opt_xfer_bytes); 3201 return true; 3202 } 3203 3204 /** 3205 * sd_revalidate_disk - called the first time a new disk is seen, 3206 * performs disk spin up, read_capacity, etc. 3207 * @disk: struct gendisk we care about 3208 **/ 3209 static int sd_revalidate_disk(struct gendisk *disk) 3210 { 3211 struct scsi_disk *sdkp = scsi_disk(disk); 3212 struct scsi_device *sdp = sdkp->device; 3213 struct request_queue *q = sdkp->disk->queue; 3214 sector_t old_capacity = sdkp->capacity; 3215 unsigned char *buffer; 3216 unsigned int dev_max, rw_max; 3217 3218 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, 3219 "sd_revalidate_disk\n")); 3220 3221 /* 3222 * If the device is offline, don't try and read capacity or any 3223 * of the other niceties. 3224 */ 3225 if (!scsi_device_online(sdp)) 3226 goto out; 3227 3228 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL); 3229 if (!buffer) { 3230 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory " 3231 "allocation failure.\n"); 3232 goto out; 3233 } 3234 3235 sd_spinup_disk(sdkp); 3236 3237 /* 3238 * Without media there is no reason to ask; moreover, some devices 3239 * react badly if we do. 3240 */ 3241 if (sdkp->media_present) { 3242 sd_read_capacity(sdkp, buffer); 3243 3244 /* 3245 * set the default to rotational. All non-rotational devices 3246 * support the block characteristics VPD page, which will 3247 * cause this to be updated correctly and any device which 3248 * doesn't support it should be treated as rotational. 3249 */ 3250 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q); 3251 blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q); 3252 3253 if (scsi_device_supports_vpd(sdp)) { 3254 sd_read_block_provisioning(sdkp); 3255 sd_read_block_limits(sdkp); 3256 sd_read_block_characteristics(sdkp); 3257 sd_zbc_read_zones(sdkp, buffer); 3258 sd_read_cpr(sdkp); 3259 } 3260 3261 sd_print_capacity(sdkp, old_capacity); 3262 3263 sd_read_write_protect_flag(sdkp, buffer); 3264 sd_read_cache_type(sdkp, buffer); 3265 sd_read_app_tag_own(sdkp, buffer); 3266 sd_read_write_same(sdkp, buffer); 3267 sd_read_security(sdkp, buffer); 3268 sd_config_protection(sdkp); 3269 } 3270 3271 /* 3272 * We now have all cache related info, determine how we deal 3273 * with flush requests. 3274 */ 3275 sd_set_flush_flag(sdkp); 3276 3277 /* Initial block count limit based on CDB TRANSFER LENGTH field size. */ 3278 dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS; 3279 3280 /* Some devices report a maximum block count for READ/WRITE requests. */ 3281 dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks); 3282 q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max); 3283 3284 if (sd_validate_min_xfer_size(sdkp)) 3285 blk_queue_io_min(sdkp->disk->queue, 3286 logical_to_bytes(sdp, sdkp->min_xfer_blocks)); 3287 else 3288 blk_queue_io_min(sdkp->disk->queue, 0); 3289 3290 if (sd_validate_opt_xfer_size(sdkp, dev_max)) { 3291 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 3292 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks); 3293 } else { 3294 q->limits.io_opt = 0; 3295 rw_max = min_not_zero(logical_to_sectors(sdp, dev_max), 3296 (sector_t)BLK_DEF_MAX_SECTORS); 3297 } 3298 3299 /* Do not exceed controller limit */ 3300 rw_max = min(rw_max, queue_max_hw_sectors(q)); 3301 3302 /* 3303 * Only update max_sectors if previously unset or if the current value 3304 * exceeds the capabilities of the hardware. 3305 */ 3306 if (sdkp->first_scan || 3307 q->limits.max_sectors > q->limits.max_dev_sectors || 3308 q->limits.max_sectors > q->limits.max_hw_sectors) 3309 q->limits.max_sectors = rw_max; 3310 3311 sdkp->first_scan = 0; 3312 3313 set_capacity_and_notify(disk, logical_to_sectors(sdp, sdkp->capacity)); 3314 sd_config_write_same(sdkp); 3315 kfree(buffer); 3316 3317 /* 3318 * For a zoned drive, revalidating the zones can be done only once 3319 * the gendisk capacity is set. So if this fails, set back the gendisk 3320 * capacity to 0. 3321 */ 3322 if (sd_zbc_revalidate_zones(sdkp)) 3323 set_capacity_and_notify(disk, 0); 3324 3325 out: 3326 return 0; 3327 } 3328 3329 /** 3330 * sd_unlock_native_capacity - unlock native capacity 3331 * @disk: struct gendisk to set capacity for 3332 * 3333 * Block layer calls this function if it detects that partitions 3334 * on @disk reach beyond the end of the device. If the SCSI host 3335 * implements ->unlock_native_capacity() method, it's invoked to 3336 * give it a chance to adjust the device capacity. 3337 * 3338 * CONTEXT: 3339 * Defined by block layer. Might sleep. 3340 */ 3341 static void sd_unlock_native_capacity(struct gendisk *disk) 3342 { 3343 struct scsi_device *sdev = scsi_disk(disk)->device; 3344 3345 if (sdev->host->hostt->unlock_native_capacity) 3346 sdev->host->hostt->unlock_native_capacity(sdev); 3347 } 3348 3349 /** 3350 * sd_format_disk_name - format disk name 3351 * @prefix: name prefix - ie. "sd" for SCSI disks 3352 * @index: index of the disk to format name for 3353 * @buf: output buffer 3354 * @buflen: length of the output buffer 3355 * 3356 * SCSI disk names starts at sda. The 26th device is sdz and the 3357 * 27th is sdaa. The last one for two lettered suffix is sdzz 3358 * which is followed by sdaaa. 3359 * 3360 * This is basically 26 base counting with one extra 'nil' entry 3361 * at the beginning from the second digit on and can be 3362 * determined using similar method as 26 base conversion with the 3363 * index shifted -1 after each digit is computed. 3364 * 3365 * CONTEXT: 3366 * Don't care. 3367 * 3368 * RETURNS: 3369 * 0 on success, -errno on failure. 3370 */ 3371 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen) 3372 { 3373 const int base = 'z' - 'a' + 1; 3374 char *begin = buf + strlen(prefix); 3375 char *end = buf + buflen; 3376 char *p; 3377 int unit; 3378 3379 p = end - 1; 3380 *p = '\0'; 3381 unit = base; 3382 do { 3383 if (p == begin) 3384 return -EINVAL; 3385 *--p = 'a' + (index % unit); 3386 index = (index / unit) - 1; 3387 } while (index >= 0); 3388 3389 memmove(begin, p, end - p); 3390 memcpy(buf, prefix, strlen(prefix)); 3391 3392 return 0; 3393 } 3394 3395 /** 3396 * sd_probe - called during driver initialization and whenever a 3397 * new scsi device is attached to the system. It is called once 3398 * for each scsi device (not just disks) present. 3399 * @dev: pointer to device object 3400 * 3401 * Returns 0 if successful (or not interested in this scsi device 3402 * (e.g. scanner)); 1 when there is an error. 3403 * 3404 * Note: this function is invoked from the scsi mid-level. 3405 * This function sets up the mapping between a given 3406 * <host,channel,id,lun> (found in sdp) and new device name 3407 * (e.g. /dev/sda). More precisely it is the block device major 3408 * and minor number that is chosen here. 3409 * 3410 * Assume sd_probe is not re-entrant (for time being) 3411 * Also think about sd_probe() and sd_remove() running coincidentally. 3412 **/ 3413 static int sd_probe(struct device *dev) 3414 { 3415 struct scsi_device *sdp = to_scsi_device(dev); 3416 struct scsi_disk *sdkp; 3417 struct gendisk *gd; 3418 int index; 3419 int error; 3420 3421 scsi_autopm_get_device(sdp); 3422 error = -ENODEV; 3423 if (sdp->type != TYPE_DISK && 3424 sdp->type != TYPE_ZBC && 3425 sdp->type != TYPE_MOD && 3426 sdp->type != TYPE_RBC) 3427 goto out; 3428 3429 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) && sdp->type == TYPE_ZBC) { 3430 sdev_printk(KERN_WARNING, sdp, 3431 "Unsupported ZBC host-managed device.\n"); 3432 goto out; 3433 } 3434 3435 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp, 3436 "sd_probe\n")); 3437 3438 error = -ENOMEM; 3439 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL); 3440 if (!sdkp) 3441 goto out; 3442 3443 gd = __alloc_disk_node(sdp->request_queue, NUMA_NO_NODE, 3444 &sd_bio_compl_lkclass); 3445 if (!gd) 3446 goto out_free; 3447 3448 index = ida_alloc(&sd_index_ida, GFP_KERNEL); 3449 if (index < 0) { 3450 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n"); 3451 goto out_put; 3452 } 3453 3454 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN); 3455 if (error) { 3456 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n"); 3457 goto out_free_index; 3458 } 3459 3460 sdkp->device = sdp; 3461 sdkp->disk = gd; 3462 sdkp->index = index; 3463 sdkp->max_retries = SD_MAX_RETRIES; 3464 atomic_set(&sdkp->openers, 0); 3465 atomic_set(&sdkp->device->ioerr_cnt, 0); 3466 3467 if (!sdp->request_queue->rq_timeout) { 3468 if (sdp->type != TYPE_MOD) 3469 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT); 3470 else 3471 blk_queue_rq_timeout(sdp->request_queue, 3472 SD_MOD_TIMEOUT); 3473 } 3474 3475 device_initialize(&sdkp->disk_dev); 3476 sdkp->disk_dev.parent = get_device(dev); 3477 sdkp->disk_dev.class = &sd_disk_class; 3478 dev_set_name(&sdkp->disk_dev, "%s", dev_name(dev)); 3479 3480 error = device_add(&sdkp->disk_dev); 3481 if (error) { 3482 put_device(&sdkp->disk_dev); 3483 goto out; 3484 } 3485 3486 dev_set_drvdata(dev, sdkp); 3487 3488 gd->major = sd_major((index & 0xf0) >> 4); 3489 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00); 3490 gd->minors = SD_MINORS; 3491 3492 gd->fops = &sd_fops; 3493 gd->private_data = sdkp; 3494 3495 /* defaults, until the device tells us otherwise */ 3496 sdp->sector_size = 512; 3497 sdkp->capacity = 0; 3498 sdkp->media_present = 1; 3499 sdkp->write_prot = 0; 3500 sdkp->cache_override = 0; 3501 sdkp->WCE = 0; 3502 sdkp->RCD = 0; 3503 sdkp->ATO = 0; 3504 sdkp->first_scan = 1; 3505 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS; 3506 3507 sd_revalidate_disk(gd); 3508 3509 if (sdp->removable) { 3510 gd->flags |= GENHD_FL_REMOVABLE; 3511 gd->events |= DISK_EVENT_MEDIA_CHANGE; 3512 gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT; 3513 } 3514 3515 blk_pm_runtime_init(sdp->request_queue, dev); 3516 if (sdp->rpm_autosuspend) { 3517 pm_runtime_set_autosuspend_delay(dev, 3518 sdp->host->hostt->rpm_autosuspend_delay); 3519 } 3520 3521 error = device_add_disk(dev, gd, NULL); 3522 if (error) { 3523 put_device(&sdkp->disk_dev); 3524 put_disk(gd); 3525 goto out; 3526 } 3527 3528 if (sdkp->security) { 3529 sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit); 3530 if (sdkp->opal_dev) 3531 sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n"); 3532 } 3533 3534 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n", 3535 sdp->removable ? "removable " : ""); 3536 scsi_autopm_put_device(sdp); 3537 3538 return 0; 3539 3540 out_free_index: 3541 ida_free(&sd_index_ida, index); 3542 out_put: 3543 put_disk(gd); 3544 out_free: 3545 kfree(sdkp); 3546 out: 3547 scsi_autopm_put_device(sdp); 3548 return error; 3549 } 3550 3551 /** 3552 * sd_remove - called whenever a scsi disk (previously recognized by 3553 * sd_probe) is detached from the system. It is called (potentially 3554 * multiple times) during sd module unload. 3555 * @dev: pointer to device object 3556 * 3557 * Note: this function is invoked from the scsi mid-level. 3558 * This function potentially frees up a device name (e.g. /dev/sdc) 3559 * that could be re-used by a subsequent sd_probe(). 3560 * This function is not called when the built-in sd driver is "exit-ed". 3561 **/ 3562 static int sd_remove(struct device *dev) 3563 { 3564 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3565 3566 scsi_autopm_get_device(sdkp->device); 3567 3568 device_del(&sdkp->disk_dev); 3569 del_gendisk(sdkp->disk); 3570 sd_shutdown(dev); 3571 3572 put_disk(sdkp->disk); 3573 return 0; 3574 } 3575 3576 static void scsi_disk_release(struct device *dev) 3577 { 3578 struct scsi_disk *sdkp = to_scsi_disk(dev); 3579 3580 ida_free(&sd_index_ida, sdkp->index); 3581 sd_zbc_free_zone_info(sdkp); 3582 put_device(&sdkp->device->sdev_gendev); 3583 free_opal_dev(sdkp->opal_dev); 3584 3585 kfree(sdkp); 3586 } 3587 3588 static int sd_start_stop_device(struct scsi_disk *sdkp, int start) 3589 { 3590 unsigned char cmd[6] = { START_STOP }; /* START_VALID */ 3591 struct scsi_sense_hdr sshdr; 3592 struct scsi_device *sdp = sdkp->device; 3593 int res; 3594 3595 if (start) 3596 cmd[4] |= 1; /* START */ 3597 3598 if (sdp->start_stop_pwr_cond) 3599 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */ 3600 3601 if (!scsi_device_online(sdp)) 3602 return -ENODEV; 3603 3604 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr, 3605 SD_TIMEOUT, sdkp->max_retries, 0, RQF_PM, NULL); 3606 if (res) { 3607 sd_print_result(sdkp, "Start/Stop Unit failed", res); 3608 if (res > 0 && scsi_sense_valid(&sshdr)) { 3609 sd_print_sense_hdr(sdkp, &sshdr); 3610 /* 0x3a is medium not present */ 3611 if (sshdr.asc == 0x3a) 3612 res = 0; 3613 } 3614 } 3615 3616 /* SCSI error codes must not go to the generic layer */ 3617 if (res) 3618 return -EIO; 3619 3620 return 0; 3621 } 3622 3623 /* 3624 * Send a SYNCHRONIZE CACHE instruction down to the device through 3625 * the normal SCSI command structure. Wait for the command to 3626 * complete. 3627 */ 3628 static void sd_shutdown(struct device *dev) 3629 { 3630 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3631 3632 if (!sdkp) 3633 return; /* this can happen */ 3634 3635 if (pm_runtime_suspended(dev)) 3636 return; 3637 3638 if (sdkp->WCE && sdkp->media_present) { 3639 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3640 sd_sync_cache(sdkp, NULL); 3641 } 3642 3643 if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) { 3644 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3645 sd_start_stop_device(sdkp, 0); 3646 } 3647 } 3648 3649 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors) 3650 { 3651 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3652 struct scsi_sense_hdr sshdr; 3653 int ret = 0; 3654 3655 if (!sdkp) /* E.g.: runtime suspend following sd_remove() */ 3656 return 0; 3657 3658 if (sdkp->WCE && sdkp->media_present) { 3659 if (!sdkp->device->silence_suspend) 3660 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3661 ret = sd_sync_cache(sdkp, &sshdr); 3662 3663 if (ret) { 3664 /* ignore OFFLINE device */ 3665 if (ret == -ENODEV) 3666 return 0; 3667 3668 if (!scsi_sense_valid(&sshdr) || 3669 sshdr.sense_key != ILLEGAL_REQUEST) 3670 return ret; 3671 3672 /* 3673 * sshdr.sense_key == ILLEGAL_REQUEST means this drive 3674 * doesn't support sync. There's not much to do and 3675 * suspend shouldn't fail. 3676 */ 3677 ret = 0; 3678 } 3679 } 3680 3681 if (sdkp->device->manage_start_stop) { 3682 if (!sdkp->device->silence_suspend) 3683 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3684 /* an error is not worth aborting a system sleep */ 3685 ret = sd_start_stop_device(sdkp, 0); 3686 if (ignore_stop_errors) 3687 ret = 0; 3688 } 3689 3690 return ret; 3691 } 3692 3693 static int sd_suspend_system(struct device *dev) 3694 { 3695 if (pm_runtime_suspended(dev)) 3696 return 0; 3697 3698 return sd_suspend_common(dev, true); 3699 } 3700 3701 static int sd_suspend_runtime(struct device *dev) 3702 { 3703 return sd_suspend_common(dev, false); 3704 } 3705 3706 static int sd_resume(struct device *dev) 3707 { 3708 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3709 int ret; 3710 3711 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */ 3712 return 0; 3713 3714 if (!sdkp->device->manage_start_stop) 3715 return 0; 3716 3717 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n"); 3718 ret = sd_start_stop_device(sdkp, 1); 3719 if (!ret) 3720 opal_unlock_from_suspend(sdkp->opal_dev); 3721 return ret; 3722 } 3723 3724 static int sd_resume_system(struct device *dev) 3725 { 3726 if (pm_runtime_suspended(dev)) 3727 return 0; 3728 3729 return sd_resume(dev); 3730 } 3731 3732 static int sd_resume_runtime(struct device *dev) 3733 { 3734 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3735 struct scsi_device *sdp; 3736 3737 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */ 3738 return 0; 3739 3740 sdp = sdkp->device; 3741 3742 if (sdp->ignore_media_change) { 3743 /* clear the device's sense data */ 3744 static const u8 cmd[10] = { REQUEST_SENSE }; 3745 3746 if (scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, 3747 NULL, sdp->request_queue->rq_timeout, 1, 0, 3748 RQF_PM, NULL)) 3749 sd_printk(KERN_NOTICE, sdkp, 3750 "Failed to clear sense data\n"); 3751 } 3752 3753 return sd_resume(dev); 3754 } 3755 3756 /** 3757 * init_sd - entry point for this driver (both when built in or when 3758 * a module). 3759 * 3760 * Note: this function registers this driver with the scsi mid-level. 3761 **/ 3762 static int __init init_sd(void) 3763 { 3764 int majors = 0, i, err; 3765 3766 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n")); 3767 3768 for (i = 0; i < SD_MAJORS; i++) { 3769 if (__register_blkdev(sd_major(i), "sd", sd_default_probe)) 3770 continue; 3771 majors++; 3772 } 3773 3774 if (!majors) 3775 return -ENODEV; 3776 3777 err = class_register(&sd_disk_class); 3778 if (err) 3779 goto err_out; 3780 3781 sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE, 3782 0, 0, NULL); 3783 if (!sd_cdb_cache) { 3784 printk(KERN_ERR "sd: can't init extended cdb cache\n"); 3785 err = -ENOMEM; 3786 goto err_out_class; 3787 } 3788 3789 sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0); 3790 if (!sd_page_pool) { 3791 printk(KERN_ERR "sd: can't init discard page pool\n"); 3792 err = -ENOMEM; 3793 goto err_out_cache; 3794 } 3795 3796 err = scsi_register_driver(&sd_template.gendrv); 3797 if (err) 3798 goto err_out_driver; 3799 3800 return 0; 3801 3802 err_out_driver: 3803 mempool_destroy(sd_page_pool); 3804 3805 err_out_cache: 3806 kmem_cache_destroy(sd_cdb_cache); 3807 3808 err_out_class: 3809 class_unregister(&sd_disk_class); 3810 err_out: 3811 for (i = 0; i < SD_MAJORS; i++) 3812 unregister_blkdev(sd_major(i), "sd"); 3813 return err; 3814 } 3815 3816 /** 3817 * exit_sd - exit point for this driver (when it is a module). 3818 * 3819 * Note: this function unregisters this driver from the scsi mid-level. 3820 **/ 3821 static void __exit exit_sd(void) 3822 { 3823 int i; 3824 3825 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n")); 3826 3827 scsi_unregister_driver(&sd_template.gendrv); 3828 mempool_destroy(sd_page_pool); 3829 kmem_cache_destroy(sd_cdb_cache); 3830 3831 class_unregister(&sd_disk_class); 3832 3833 for (i = 0; i < SD_MAJORS; i++) 3834 unregister_blkdev(sd_major(i), "sd"); 3835 } 3836 3837 module_init(init_sd); 3838 module_exit(exit_sd); 3839 3840 void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr) 3841 { 3842 scsi_print_sense_hdr(sdkp->device, 3843 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr); 3844 } 3845 3846 void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result) 3847 { 3848 const char *hb_string = scsi_hostbyte_string(result); 3849 3850 if (hb_string) 3851 sd_printk(KERN_INFO, sdkp, 3852 "%s: Result: hostbyte=%s driverbyte=%s\n", msg, 3853 hb_string ? hb_string : "invalid", 3854 "DRIVER_OK"); 3855 else 3856 sd_printk(KERN_INFO, sdkp, 3857 "%s: Result: hostbyte=0x%02x driverbyte=%s\n", 3858 msg, host_byte(result), "DRIVER_OK"); 3859 } 3860