1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * sd.c Copyright (C) 1992 Drew Eckhardt 4 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale 5 * 6 * Linux scsi disk driver 7 * Initial versions: Drew Eckhardt 8 * Subsequent revisions: Eric Youngdale 9 * Modification history: 10 * - Drew Eckhardt <drew@colorado.edu> original 11 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 12 * outstanding request, and other enhancements. 13 * Support loadable low-level scsi drivers. 14 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 15 * eight major numbers. 16 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs. 17 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 18 * sd_init and cleanups. 19 * - Alex Davis <letmein@erols.com> Fix problem where partition info 20 * not being read in sd_open. Fix problem where removable media 21 * could be ejected after sd_open. 22 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x 23 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 24 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 25 * Support 32k/1M disks. 26 * 27 * Logging policy (needs CONFIG_SCSI_LOGGING defined): 28 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2 29 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1 30 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1 31 * - entering other commands: SCSI_LOG_HLQUEUE level 3 32 * Note: when the logging level is set by the user, it must be greater 33 * than the level indicated above to trigger output. 34 */ 35 36 #include <linux/module.h> 37 #include <linux/fs.h> 38 #include <linux/kernel.h> 39 #include <linux/mm.h> 40 #include <linux/bio.h> 41 #include <linux/hdreg.h> 42 #include <linux/errno.h> 43 #include <linux/idr.h> 44 #include <linux/interrupt.h> 45 #include <linux/init.h> 46 #include <linux/blkdev.h> 47 #include <linux/blkpg.h> 48 #include <linux/blk-pm.h> 49 #include <linux/delay.h> 50 #include <linux/rw_hint.h> 51 #include <linux/major.h> 52 #include <linux/mutex.h> 53 #include <linux/string_helpers.h> 54 #include <linux/slab.h> 55 #include <linux/sed-opal.h> 56 #include <linux/pm_runtime.h> 57 #include <linux/pr.h> 58 #include <linux/t10-pi.h> 59 #include <linux/uaccess.h> 60 #include <asm/unaligned.h> 61 62 #include <scsi/scsi.h> 63 #include <scsi/scsi_cmnd.h> 64 #include <scsi/scsi_dbg.h> 65 #include <scsi/scsi_device.h> 66 #include <scsi/scsi_driver.h> 67 #include <scsi/scsi_eh.h> 68 #include <scsi/scsi_host.h> 69 #include <scsi/scsi_ioctl.h> 70 #include <scsi/scsicam.h> 71 #include <scsi/scsi_common.h> 72 73 #include "sd.h" 74 #include "scsi_priv.h" 75 #include "scsi_logging.h" 76 77 MODULE_AUTHOR("Eric Youngdale"); 78 MODULE_DESCRIPTION("SCSI disk (sd) driver"); 79 MODULE_LICENSE("GPL"); 80 81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR); 82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR); 83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR); 84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR); 85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR); 86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR); 87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR); 88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR); 89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR); 90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR); 91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR); 92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR); 93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR); 94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR); 95 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR); 96 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR); 97 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK); 98 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD); 99 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC); 100 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC); 101 102 #define SD_MINORS 16 103 104 static void sd_config_discard(struct scsi_disk *sdkp, struct queue_limits *lim, 105 unsigned int mode); 106 static void sd_config_write_same(struct scsi_disk *sdkp, 107 struct queue_limits *lim); 108 static int sd_revalidate_disk(struct gendisk *); 109 static void sd_unlock_native_capacity(struct gendisk *disk); 110 static void sd_shutdown(struct device *); 111 static void scsi_disk_release(struct device *cdev); 112 113 static DEFINE_IDA(sd_index_ida); 114 115 static mempool_t *sd_page_pool; 116 static struct lock_class_key sd_bio_compl_lkclass; 117 118 static const char *sd_cache_types[] = { 119 "write through", "none", "write back", 120 "write back, no read (daft)" 121 }; 122 123 static void sd_set_flush_flag(struct scsi_disk *sdkp) 124 { 125 bool wc = false, fua = false; 126 127 if (sdkp->WCE) { 128 wc = true; 129 if (sdkp->DPOFUA) 130 fua = true; 131 } 132 133 blk_queue_write_cache(sdkp->disk->queue, wc, fua); 134 } 135 136 static ssize_t 137 cache_type_store(struct device *dev, struct device_attribute *attr, 138 const char *buf, size_t count) 139 { 140 int ct, rcd, wce, sp; 141 struct scsi_disk *sdkp = to_scsi_disk(dev); 142 struct scsi_device *sdp = sdkp->device; 143 char buffer[64]; 144 char *buffer_data; 145 struct scsi_mode_data data; 146 struct scsi_sense_hdr sshdr; 147 static const char temp[] = "temporary "; 148 int len, ret; 149 150 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 151 /* no cache control on RBC devices; theoretically they 152 * can do it, but there's probably so many exceptions 153 * it's not worth the risk */ 154 return -EINVAL; 155 156 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) { 157 buf += sizeof(temp) - 1; 158 sdkp->cache_override = 1; 159 } else { 160 sdkp->cache_override = 0; 161 } 162 163 ct = sysfs_match_string(sd_cache_types, buf); 164 if (ct < 0) 165 return -EINVAL; 166 167 rcd = ct & 0x01 ? 1 : 0; 168 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0; 169 170 if (sdkp->cache_override) { 171 sdkp->WCE = wce; 172 sdkp->RCD = rcd; 173 sd_set_flush_flag(sdkp); 174 return count; 175 } 176 177 if (scsi_mode_sense(sdp, 0x08, 8, 0, buffer, sizeof(buffer), SD_TIMEOUT, 178 sdkp->max_retries, &data, NULL)) 179 return -EINVAL; 180 len = min_t(size_t, sizeof(buffer), data.length - data.header_length - 181 data.block_descriptor_length); 182 buffer_data = buffer + data.header_length + 183 data.block_descriptor_length; 184 buffer_data[2] &= ~0x05; 185 buffer_data[2] |= wce << 2 | rcd; 186 sp = buffer_data[0] & 0x80 ? 1 : 0; 187 buffer_data[0] &= ~0x80; 188 189 /* 190 * Ensure WP, DPOFUA, and RESERVED fields are cleared in 191 * received mode parameter buffer before doing MODE SELECT. 192 */ 193 data.device_specific = 0; 194 195 ret = scsi_mode_select(sdp, 1, sp, buffer_data, len, SD_TIMEOUT, 196 sdkp->max_retries, &data, &sshdr); 197 if (ret) { 198 if (ret > 0 && scsi_sense_valid(&sshdr)) 199 sd_print_sense_hdr(sdkp, &sshdr); 200 return -EINVAL; 201 } 202 sd_revalidate_disk(sdkp->disk); 203 return count; 204 } 205 206 static ssize_t 207 manage_start_stop_show(struct device *dev, 208 struct device_attribute *attr, char *buf) 209 { 210 struct scsi_disk *sdkp = to_scsi_disk(dev); 211 struct scsi_device *sdp = sdkp->device; 212 213 return sysfs_emit(buf, "%u\n", 214 sdp->manage_system_start_stop && 215 sdp->manage_runtime_start_stop && 216 sdp->manage_shutdown); 217 } 218 static DEVICE_ATTR_RO(manage_start_stop); 219 220 static ssize_t 221 manage_system_start_stop_show(struct device *dev, 222 struct device_attribute *attr, char *buf) 223 { 224 struct scsi_disk *sdkp = to_scsi_disk(dev); 225 struct scsi_device *sdp = sdkp->device; 226 227 return sysfs_emit(buf, "%u\n", sdp->manage_system_start_stop); 228 } 229 230 static ssize_t 231 manage_system_start_stop_store(struct device *dev, 232 struct device_attribute *attr, 233 const char *buf, size_t count) 234 { 235 struct scsi_disk *sdkp = to_scsi_disk(dev); 236 struct scsi_device *sdp = sdkp->device; 237 bool v; 238 239 if (!capable(CAP_SYS_ADMIN)) 240 return -EACCES; 241 242 if (kstrtobool(buf, &v)) 243 return -EINVAL; 244 245 sdp->manage_system_start_stop = v; 246 247 return count; 248 } 249 static DEVICE_ATTR_RW(manage_system_start_stop); 250 251 static ssize_t 252 manage_runtime_start_stop_show(struct device *dev, 253 struct device_attribute *attr, char *buf) 254 { 255 struct scsi_disk *sdkp = to_scsi_disk(dev); 256 struct scsi_device *sdp = sdkp->device; 257 258 return sysfs_emit(buf, "%u\n", sdp->manage_runtime_start_stop); 259 } 260 261 static ssize_t 262 manage_runtime_start_stop_store(struct device *dev, 263 struct device_attribute *attr, 264 const char *buf, size_t count) 265 { 266 struct scsi_disk *sdkp = to_scsi_disk(dev); 267 struct scsi_device *sdp = sdkp->device; 268 bool v; 269 270 if (!capable(CAP_SYS_ADMIN)) 271 return -EACCES; 272 273 if (kstrtobool(buf, &v)) 274 return -EINVAL; 275 276 sdp->manage_runtime_start_stop = v; 277 278 return count; 279 } 280 static DEVICE_ATTR_RW(manage_runtime_start_stop); 281 282 static ssize_t manage_shutdown_show(struct device *dev, 283 struct device_attribute *attr, char *buf) 284 { 285 struct scsi_disk *sdkp = to_scsi_disk(dev); 286 struct scsi_device *sdp = sdkp->device; 287 288 return sysfs_emit(buf, "%u\n", sdp->manage_shutdown); 289 } 290 291 static ssize_t manage_shutdown_store(struct device *dev, 292 struct device_attribute *attr, 293 const char *buf, size_t count) 294 { 295 struct scsi_disk *sdkp = to_scsi_disk(dev); 296 struct scsi_device *sdp = sdkp->device; 297 bool v; 298 299 if (!capable(CAP_SYS_ADMIN)) 300 return -EACCES; 301 302 if (kstrtobool(buf, &v)) 303 return -EINVAL; 304 305 sdp->manage_shutdown = v; 306 307 return count; 308 } 309 static DEVICE_ATTR_RW(manage_shutdown); 310 311 static ssize_t 312 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf) 313 { 314 struct scsi_disk *sdkp = to_scsi_disk(dev); 315 316 return sprintf(buf, "%u\n", sdkp->device->allow_restart); 317 } 318 319 static ssize_t 320 allow_restart_store(struct device *dev, struct device_attribute *attr, 321 const char *buf, size_t count) 322 { 323 bool v; 324 struct scsi_disk *sdkp = to_scsi_disk(dev); 325 struct scsi_device *sdp = sdkp->device; 326 327 if (!capable(CAP_SYS_ADMIN)) 328 return -EACCES; 329 330 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 331 return -EINVAL; 332 333 if (kstrtobool(buf, &v)) 334 return -EINVAL; 335 336 sdp->allow_restart = v; 337 338 return count; 339 } 340 static DEVICE_ATTR_RW(allow_restart); 341 342 static ssize_t 343 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf) 344 { 345 struct scsi_disk *sdkp = to_scsi_disk(dev); 346 int ct = sdkp->RCD + 2*sdkp->WCE; 347 348 return sprintf(buf, "%s\n", sd_cache_types[ct]); 349 } 350 static DEVICE_ATTR_RW(cache_type); 351 352 static ssize_t 353 FUA_show(struct device *dev, struct device_attribute *attr, char *buf) 354 { 355 struct scsi_disk *sdkp = to_scsi_disk(dev); 356 357 return sprintf(buf, "%u\n", sdkp->DPOFUA); 358 } 359 static DEVICE_ATTR_RO(FUA); 360 361 static ssize_t 362 protection_type_show(struct device *dev, struct device_attribute *attr, 363 char *buf) 364 { 365 struct scsi_disk *sdkp = to_scsi_disk(dev); 366 367 return sprintf(buf, "%u\n", sdkp->protection_type); 368 } 369 370 static ssize_t 371 protection_type_store(struct device *dev, struct device_attribute *attr, 372 const char *buf, size_t count) 373 { 374 struct scsi_disk *sdkp = to_scsi_disk(dev); 375 unsigned int val; 376 int err; 377 378 if (!capable(CAP_SYS_ADMIN)) 379 return -EACCES; 380 381 err = kstrtouint(buf, 10, &val); 382 383 if (err) 384 return err; 385 386 if (val <= T10_PI_TYPE3_PROTECTION) 387 sdkp->protection_type = val; 388 389 return count; 390 } 391 static DEVICE_ATTR_RW(protection_type); 392 393 static ssize_t 394 protection_mode_show(struct device *dev, struct device_attribute *attr, 395 char *buf) 396 { 397 struct scsi_disk *sdkp = to_scsi_disk(dev); 398 struct scsi_device *sdp = sdkp->device; 399 unsigned int dif, dix; 400 401 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type); 402 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type); 403 404 if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) { 405 dif = 0; 406 dix = 1; 407 } 408 409 if (!dif && !dix) 410 return sprintf(buf, "none\n"); 411 412 return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif); 413 } 414 static DEVICE_ATTR_RO(protection_mode); 415 416 static ssize_t 417 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf) 418 { 419 struct scsi_disk *sdkp = to_scsi_disk(dev); 420 421 return sprintf(buf, "%u\n", sdkp->ATO); 422 } 423 static DEVICE_ATTR_RO(app_tag_own); 424 425 static ssize_t 426 thin_provisioning_show(struct device *dev, struct device_attribute *attr, 427 char *buf) 428 { 429 struct scsi_disk *sdkp = to_scsi_disk(dev); 430 431 return sprintf(buf, "%u\n", sdkp->lbpme); 432 } 433 static DEVICE_ATTR_RO(thin_provisioning); 434 435 /* sysfs_match_string() requires dense arrays */ 436 static const char *lbp_mode[] = { 437 [SD_LBP_FULL] = "full", 438 [SD_LBP_UNMAP] = "unmap", 439 [SD_LBP_WS16] = "writesame_16", 440 [SD_LBP_WS10] = "writesame_10", 441 [SD_LBP_ZERO] = "writesame_zero", 442 [SD_LBP_DISABLE] = "disabled", 443 }; 444 445 static ssize_t 446 provisioning_mode_show(struct device *dev, struct device_attribute *attr, 447 char *buf) 448 { 449 struct scsi_disk *sdkp = to_scsi_disk(dev); 450 451 return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]); 452 } 453 454 static ssize_t 455 provisioning_mode_store(struct device *dev, struct device_attribute *attr, 456 const char *buf, size_t count) 457 { 458 struct scsi_disk *sdkp = to_scsi_disk(dev); 459 struct scsi_device *sdp = sdkp->device; 460 struct queue_limits lim; 461 int mode, err; 462 463 if (!capable(CAP_SYS_ADMIN)) 464 return -EACCES; 465 466 if (sdp->type != TYPE_DISK) 467 return -EINVAL; 468 469 /* ignore the provisioning mode for ZBC devices */ 470 if (sd_is_zoned(sdkp)) 471 return count; 472 473 mode = sysfs_match_string(lbp_mode, buf); 474 if (mode < 0) 475 return -EINVAL; 476 477 lim = queue_limits_start_update(sdkp->disk->queue); 478 sd_config_discard(sdkp, &lim, mode); 479 blk_mq_freeze_queue(sdkp->disk->queue); 480 err = queue_limits_commit_update(sdkp->disk->queue, &lim); 481 blk_mq_unfreeze_queue(sdkp->disk->queue); 482 if (err) 483 return err; 484 return count; 485 } 486 static DEVICE_ATTR_RW(provisioning_mode); 487 488 /* sysfs_match_string() requires dense arrays */ 489 static const char *zeroing_mode[] = { 490 [SD_ZERO_WRITE] = "write", 491 [SD_ZERO_WS] = "writesame", 492 [SD_ZERO_WS16_UNMAP] = "writesame_16_unmap", 493 [SD_ZERO_WS10_UNMAP] = "writesame_10_unmap", 494 }; 495 496 static ssize_t 497 zeroing_mode_show(struct device *dev, struct device_attribute *attr, 498 char *buf) 499 { 500 struct scsi_disk *sdkp = to_scsi_disk(dev); 501 502 return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]); 503 } 504 505 static ssize_t 506 zeroing_mode_store(struct device *dev, struct device_attribute *attr, 507 const char *buf, size_t count) 508 { 509 struct scsi_disk *sdkp = to_scsi_disk(dev); 510 int mode; 511 512 if (!capable(CAP_SYS_ADMIN)) 513 return -EACCES; 514 515 mode = sysfs_match_string(zeroing_mode, buf); 516 if (mode < 0) 517 return -EINVAL; 518 519 sdkp->zeroing_mode = mode; 520 521 return count; 522 } 523 static DEVICE_ATTR_RW(zeroing_mode); 524 525 static ssize_t 526 max_medium_access_timeouts_show(struct device *dev, 527 struct device_attribute *attr, char *buf) 528 { 529 struct scsi_disk *sdkp = to_scsi_disk(dev); 530 531 return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts); 532 } 533 534 static ssize_t 535 max_medium_access_timeouts_store(struct device *dev, 536 struct device_attribute *attr, const char *buf, 537 size_t count) 538 { 539 struct scsi_disk *sdkp = to_scsi_disk(dev); 540 int err; 541 542 if (!capable(CAP_SYS_ADMIN)) 543 return -EACCES; 544 545 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts); 546 547 return err ? err : count; 548 } 549 static DEVICE_ATTR_RW(max_medium_access_timeouts); 550 551 static ssize_t 552 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr, 553 char *buf) 554 { 555 struct scsi_disk *sdkp = to_scsi_disk(dev); 556 557 return sprintf(buf, "%u\n", sdkp->max_ws_blocks); 558 } 559 560 static ssize_t 561 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr, 562 const char *buf, size_t count) 563 { 564 struct scsi_disk *sdkp = to_scsi_disk(dev); 565 struct scsi_device *sdp = sdkp->device; 566 struct queue_limits lim; 567 unsigned long max; 568 int err; 569 570 if (!capable(CAP_SYS_ADMIN)) 571 return -EACCES; 572 573 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 574 return -EINVAL; 575 576 err = kstrtoul(buf, 10, &max); 577 578 if (err) 579 return err; 580 581 if (max == 0) 582 sdp->no_write_same = 1; 583 else if (max <= SD_MAX_WS16_BLOCKS) { 584 sdp->no_write_same = 0; 585 sdkp->max_ws_blocks = max; 586 } 587 588 lim = queue_limits_start_update(sdkp->disk->queue); 589 sd_config_write_same(sdkp, &lim); 590 blk_mq_freeze_queue(sdkp->disk->queue); 591 err = queue_limits_commit_update(sdkp->disk->queue, &lim); 592 blk_mq_unfreeze_queue(sdkp->disk->queue); 593 if (err) 594 return err; 595 return count; 596 } 597 static DEVICE_ATTR_RW(max_write_same_blocks); 598 599 static ssize_t 600 zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf) 601 { 602 struct scsi_disk *sdkp = to_scsi_disk(dev); 603 604 if (sdkp->device->type == TYPE_ZBC) 605 return sprintf(buf, "host-managed\n"); 606 if (sdkp->zoned == 1) 607 return sprintf(buf, "host-aware\n"); 608 if (sdkp->zoned == 2) 609 return sprintf(buf, "drive-managed\n"); 610 return sprintf(buf, "none\n"); 611 } 612 static DEVICE_ATTR_RO(zoned_cap); 613 614 static ssize_t 615 max_retries_store(struct device *dev, struct device_attribute *attr, 616 const char *buf, size_t count) 617 { 618 struct scsi_disk *sdkp = to_scsi_disk(dev); 619 struct scsi_device *sdev = sdkp->device; 620 int retries, err; 621 622 err = kstrtoint(buf, 10, &retries); 623 if (err) 624 return err; 625 626 if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) { 627 sdkp->max_retries = retries; 628 return count; 629 } 630 631 sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n", 632 SD_MAX_RETRIES); 633 return -EINVAL; 634 } 635 636 static ssize_t 637 max_retries_show(struct device *dev, struct device_attribute *attr, 638 char *buf) 639 { 640 struct scsi_disk *sdkp = to_scsi_disk(dev); 641 642 return sprintf(buf, "%d\n", sdkp->max_retries); 643 } 644 645 static DEVICE_ATTR_RW(max_retries); 646 647 static struct attribute *sd_disk_attrs[] = { 648 &dev_attr_cache_type.attr, 649 &dev_attr_FUA.attr, 650 &dev_attr_allow_restart.attr, 651 &dev_attr_manage_start_stop.attr, 652 &dev_attr_manage_system_start_stop.attr, 653 &dev_attr_manage_runtime_start_stop.attr, 654 &dev_attr_manage_shutdown.attr, 655 &dev_attr_protection_type.attr, 656 &dev_attr_protection_mode.attr, 657 &dev_attr_app_tag_own.attr, 658 &dev_attr_thin_provisioning.attr, 659 &dev_attr_provisioning_mode.attr, 660 &dev_attr_zeroing_mode.attr, 661 &dev_attr_max_write_same_blocks.attr, 662 &dev_attr_max_medium_access_timeouts.attr, 663 &dev_attr_zoned_cap.attr, 664 &dev_attr_max_retries.attr, 665 NULL, 666 }; 667 ATTRIBUTE_GROUPS(sd_disk); 668 669 static struct class sd_disk_class = { 670 .name = "scsi_disk", 671 .dev_release = scsi_disk_release, 672 .dev_groups = sd_disk_groups, 673 }; 674 675 /* 676 * Don't request a new module, as that could deadlock in multipath 677 * environment. 678 */ 679 static void sd_default_probe(dev_t devt) 680 { 681 } 682 683 /* 684 * Device no to disk mapping: 685 * 686 * major disc2 disc p1 687 * |............|.............|....|....| <- dev_t 688 * 31 20 19 8 7 4 3 0 689 * 690 * Inside a major, we have 16k disks, however mapped non- 691 * contiguously. The first 16 disks are for major0, the next 692 * ones with major1, ... Disk 256 is for major0 again, disk 272 693 * for major1, ... 694 * As we stay compatible with our numbering scheme, we can reuse 695 * the well-know SCSI majors 8, 65--71, 136--143. 696 */ 697 static int sd_major(int major_idx) 698 { 699 switch (major_idx) { 700 case 0: 701 return SCSI_DISK0_MAJOR; 702 case 1 ... 7: 703 return SCSI_DISK1_MAJOR + major_idx - 1; 704 case 8 ... 15: 705 return SCSI_DISK8_MAJOR + major_idx - 8; 706 default: 707 BUG(); 708 return 0; /* shut up gcc */ 709 } 710 } 711 712 #ifdef CONFIG_BLK_SED_OPAL 713 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, 714 size_t len, bool send) 715 { 716 struct scsi_disk *sdkp = data; 717 struct scsi_device *sdev = sdkp->device; 718 u8 cdb[12] = { 0, }; 719 const struct scsi_exec_args exec_args = { 720 .req_flags = BLK_MQ_REQ_PM, 721 }; 722 int ret; 723 724 cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN; 725 cdb[1] = secp; 726 put_unaligned_be16(spsp, &cdb[2]); 727 put_unaligned_be32(len, &cdb[6]); 728 729 ret = scsi_execute_cmd(sdev, cdb, send ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 730 buffer, len, SD_TIMEOUT, sdkp->max_retries, 731 &exec_args); 732 return ret <= 0 ? ret : -EIO; 733 } 734 #endif /* CONFIG_BLK_SED_OPAL */ 735 736 /* 737 * Look up the DIX operation based on whether the command is read or 738 * write and whether dix and dif are enabled. 739 */ 740 static unsigned int sd_prot_op(bool write, bool dix, bool dif) 741 { 742 /* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */ 743 static const unsigned int ops[] = { /* wrt dix dif */ 744 SCSI_PROT_NORMAL, /* 0 0 0 */ 745 SCSI_PROT_READ_STRIP, /* 0 0 1 */ 746 SCSI_PROT_READ_INSERT, /* 0 1 0 */ 747 SCSI_PROT_READ_PASS, /* 0 1 1 */ 748 SCSI_PROT_NORMAL, /* 1 0 0 */ 749 SCSI_PROT_WRITE_INSERT, /* 1 0 1 */ 750 SCSI_PROT_WRITE_STRIP, /* 1 1 0 */ 751 SCSI_PROT_WRITE_PASS, /* 1 1 1 */ 752 }; 753 754 return ops[write << 2 | dix << 1 | dif]; 755 } 756 757 /* 758 * Returns a mask of the protection flags that are valid for a given DIX 759 * operation. 760 */ 761 static unsigned int sd_prot_flag_mask(unsigned int prot_op) 762 { 763 static const unsigned int flag_mask[] = { 764 [SCSI_PROT_NORMAL] = 0, 765 766 [SCSI_PROT_READ_STRIP] = SCSI_PROT_TRANSFER_PI | 767 SCSI_PROT_GUARD_CHECK | 768 SCSI_PROT_REF_CHECK | 769 SCSI_PROT_REF_INCREMENT, 770 771 [SCSI_PROT_READ_INSERT] = SCSI_PROT_REF_INCREMENT | 772 SCSI_PROT_IP_CHECKSUM, 773 774 [SCSI_PROT_READ_PASS] = SCSI_PROT_TRANSFER_PI | 775 SCSI_PROT_GUARD_CHECK | 776 SCSI_PROT_REF_CHECK | 777 SCSI_PROT_REF_INCREMENT | 778 SCSI_PROT_IP_CHECKSUM, 779 780 [SCSI_PROT_WRITE_INSERT] = SCSI_PROT_TRANSFER_PI | 781 SCSI_PROT_REF_INCREMENT, 782 783 [SCSI_PROT_WRITE_STRIP] = SCSI_PROT_GUARD_CHECK | 784 SCSI_PROT_REF_CHECK | 785 SCSI_PROT_REF_INCREMENT | 786 SCSI_PROT_IP_CHECKSUM, 787 788 [SCSI_PROT_WRITE_PASS] = SCSI_PROT_TRANSFER_PI | 789 SCSI_PROT_GUARD_CHECK | 790 SCSI_PROT_REF_CHECK | 791 SCSI_PROT_REF_INCREMENT | 792 SCSI_PROT_IP_CHECKSUM, 793 }; 794 795 return flag_mask[prot_op]; 796 } 797 798 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd, 799 unsigned int dix, unsigned int dif) 800 { 801 struct request *rq = scsi_cmd_to_rq(scmd); 802 struct bio *bio = rq->bio; 803 unsigned int prot_op = sd_prot_op(rq_data_dir(rq), dix, dif); 804 unsigned int protect = 0; 805 806 if (dix) { /* DIX Type 0, 1, 2, 3 */ 807 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM)) 808 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM; 809 810 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 811 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK; 812 } 813 814 if (dif != T10_PI_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */ 815 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT; 816 817 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 818 scmd->prot_flags |= SCSI_PROT_REF_CHECK; 819 } 820 821 if (dif) { /* DIX/DIF Type 1, 2, 3 */ 822 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI; 823 824 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK)) 825 protect = 3 << 5; /* Disable target PI checking */ 826 else 827 protect = 1 << 5; /* Enable target PI checking */ 828 } 829 830 scsi_set_prot_op(scmd, prot_op); 831 scsi_set_prot_type(scmd, dif); 832 scmd->prot_flags &= sd_prot_flag_mask(prot_op); 833 834 return protect; 835 } 836 837 static void sd_disable_discard(struct scsi_disk *sdkp) 838 { 839 sdkp->provisioning_mode = SD_LBP_DISABLE; 840 blk_queue_disable_discard(sdkp->disk->queue); 841 } 842 843 static void sd_config_discard(struct scsi_disk *sdkp, struct queue_limits *lim, 844 unsigned int mode) 845 { 846 unsigned int logical_block_size = sdkp->device->sector_size; 847 unsigned int max_blocks = 0; 848 849 lim->discard_alignment = sdkp->unmap_alignment * logical_block_size; 850 lim->discard_granularity = max(sdkp->physical_block_size, 851 sdkp->unmap_granularity * logical_block_size); 852 sdkp->provisioning_mode = mode; 853 854 switch (mode) { 855 856 case SD_LBP_FULL: 857 case SD_LBP_DISABLE: 858 break; 859 860 case SD_LBP_UNMAP: 861 max_blocks = min_not_zero(sdkp->max_unmap_blocks, 862 (u32)SD_MAX_WS16_BLOCKS); 863 break; 864 865 case SD_LBP_WS16: 866 if (sdkp->device->unmap_limit_for_ws) 867 max_blocks = sdkp->max_unmap_blocks; 868 else 869 max_blocks = sdkp->max_ws_blocks; 870 871 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS); 872 break; 873 874 case SD_LBP_WS10: 875 if (sdkp->device->unmap_limit_for_ws) 876 max_blocks = sdkp->max_unmap_blocks; 877 else 878 max_blocks = sdkp->max_ws_blocks; 879 880 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS); 881 break; 882 883 case SD_LBP_ZERO: 884 max_blocks = min_not_zero(sdkp->max_ws_blocks, 885 (u32)SD_MAX_WS10_BLOCKS); 886 break; 887 } 888 889 lim->max_hw_discard_sectors = max_blocks * 890 (logical_block_size >> SECTOR_SHIFT); 891 } 892 893 static void *sd_set_special_bvec(struct request *rq, unsigned int data_len) 894 { 895 struct page *page; 896 897 page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 898 if (!page) 899 return NULL; 900 clear_highpage(page); 901 bvec_set_page(&rq->special_vec, page, data_len, 0); 902 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 903 return bvec_virt(&rq->special_vec); 904 } 905 906 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd) 907 { 908 struct scsi_device *sdp = cmd->device; 909 struct request *rq = scsi_cmd_to_rq(cmd); 910 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 911 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 912 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 913 unsigned int data_len = 24; 914 char *buf; 915 916 buf = sd_set_special_bvec(rq, data_len); 917 if (!buf) 918 return BLK_STS_RESOURCE; 919 920 cmd->cmd_len = 10; 921 cmd->cmnd[0] = UNMAP; 922 cmd->cmnd[8] = 24; 923 924 put_unaligned_be16(6 + 16, &buf[0]); 925 put_unaligned_be16(16, &buf[2]); 926 put_unaligned_be64(lba, &buf[8]); 927 put_unaligned_be32(nr_blocks, &buf[16]); 928 929 cmd->allowed = sdkp->max_retries; 930 cmd->transfersize = data_len; 931 rq->timeout = SD_TIMEOUT; 932 933 return scsi_alloc_sgtables(cmd); 934 } 935 936 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd, 937 bool unmap) 938 { 939 struct scsi_device *sdp = cmd->device; 940 struct request *rq = scsi_cmd_to_rq(cmd); 941 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 942 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 943 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 944 u32 data_len = sdp->sector_size; 945 946 if (!sd_set_special_bvec(rq, data_len)) 947 return BLK_STS_RESOURCE; 948 949 cmd->cmd_len = 16; 950 cmd->cmnd[0] = WRITE_SAME_16; 951 if (unmap) 952 cmd->cmnd[1] = 0x8; /* UNMAP */ 953 put_unaligned_be64(lba, &cmd->cmnd[2]); 954 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 955 956 cmd->allowed = sdkp->max_retries; 957 cmd->transfersize = data_len; 958 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 959 960 return scsi_alloc_sgtables(cmd); 961 } 962 963 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd, 964 bool unmap) 965 { 966 struct scsi_device *sdp = cmd->device; 967 struct request *rq = scsi_cmd_to_rq(cmd); 968 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 969 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 970 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 971 u32 data_len = sdp->sector_size; 972 973 if (!sd_set_special_bvec(rq, data_len)) 974 return BLK_STS_RESOURCE; 975 976 cmd->cmd_len = 10; 977 cmd->cmnd[0] = WRITE_SAME; 978 if (unmap) 979 cmd->cmnd[1] = 0x8; /* UNMAP */ 980 put_unaligned_be32(lba, &cmd->cmnd[2]); 981 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 982 983 cmd->allowed = sdkp->max_retries; 984 cmd->transfersize = data_len; 985 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 986 987 return scsi_alloc_sgtables(cmd); 988 } 989 990 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd) 991 { 992 struct request *rq = scsi_cmd_to_rq(cmd); 993 struct scsi_device *sdp = cmd->device; 994 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 995 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 996 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 997 998 if (!(rq->cmd_flags & REQ_NOUNMAP)) { 999 switch (sdkp->zeroing_mode) { 1000 case SD_ZERO_WS16_UNMAP: 1001 return sd_setup_write_same16_cmnd(cmd, true); 1002 case SD_ZERO_WS10_UNMAP: 1003 return sd_setup_write_same10_cmnd(cmd, true); 1004 } 1005 } 1006 1007 if (sdp->no_write_same) { 1008 rq->rq_flags |= RQF_QUIET; 1009 return BLK_STS_TARGET; 1010 } 1011 1012 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) 1013 return sd_setup_write_same16_cmnd(cmd, false); 1014 1015 return sd_setup_write_same10_cmnd(cmd, false); 1016 } 1017 1018 static void sd_disable_write_same(struct scsi_disk *sdkp) 1019 { 1020 sdkp->device->no_write_same = 1; 1021 sdkp->max_ws_blocks = 0; 1022 blk_queue_disable_write_zeroes(sdkp->disk->queue); 1023 } 1024 1025 static void sd_config_write_same(struct scsi_disk *sdkp, 1026 struct queue_limits *lim) 1027 { 1028 unsigned int logical_block_size = sdkp->device->sector_size; 1029 1030 if (sdkp->device->no_write_same) { 1031 sdkp->max_ws_blocks = 0; 1032 goto out; 1033 } 1034 1035 /* Some devices can not handle block counts above 0xffff despite 1036 * supporting WRITE SAME(16). Consequently we default to 64k 1037 * blocks per I/O unless the device explicitly advertises a 1038 * bigger limit. 1039 */ 1040 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS) 1041 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 1042 (u32)SD_MAX_WS16_BLOCKS); 1043 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes) 1044 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 1045 (u32)SD_MAX_WS10_BLOCKS); 1046 else { 1047 sdkp->device->no_write_same = 1; 1048 sdkp->max_ws_blocks = 0; 1049 } 1050 1051 if (sdkp->lbprz && sdkp->lbpws) 1052 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP; 1053 else if (sdkp->lbprz && sdkp->lbpws10) 1054 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP; 1055 else if (sdkp->max_ws_blocks) 1056 sdkp->zeroing_mode = SD_ZERO_WS; 1057 else 1058 sdkp->zeroing_mode = SD_ZERO_WRITE; 1059 1060 if (sdkp->max_ws_blocks && 1061 sdkp->physical_block_size > logical_block_size) { 1062 /* 1063 * Reporting a maximum number of blocks that is not aligned 1064 * on the device physical size would cause a large write same 1065 * request to be split into physically unaligned chunks by 1066 * __blkdev_issue_write_zeroes() even if the caller of this 1067 * functions took care to align the large request. So make sure 1068 * the maximum reported is aligned to the device physical block 1069 * size. This is only an optional optimization for regular 1070 * disks, but this is mandatory to avoid failure of large write 1071 * same requests directed at sequential write required zones of 1072 * host-managed ZBC disks. 1073 */ 1074 sdkp->max_ws_blocks = 1075 round_down(sdkp->max_ws_blocks, 1076 bytes_to_logical(sdkp->device, 1077 sdkp->physical_block_size)); 1078 } 1079 1080 out: 1081 lim->max_write_zeroes_sectors = 1082 sdkp->max_ws_blocks * (logical_block_size >> SECTOR_SHIFT); 1083 } 1084 1085 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd) 1086 { 1087 struct request *rq = scsi_cmd_to_rq(cmd); 1088 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 1089 1090 /* flush requests don't perform I/O, zero the S/G table */ 1091 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1092 1093 if (cmd->device->use_16_for_sync) { 1094 cmd->cmnd[0] = SYNCHRONIZE_CACHE_16; 1095 cmd->cmd_len = 16; 1096 } else { 1097 cmd->cmnd[0] = SYNCHRONIZE_CACHE; 1098 cmd->cmd_len = 10; 1099 } 1100 cmd->transfersize = 0; 1101 cmd->allowed = sdkp->max_retries; 1102 1103 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER; 1104 return BLK_STS_OK; 1105 } 1106 1107 /** 1108 * sd_group_number() - Compute the GROUP NUMBER field 1109 * @cmd: SCSI command for which to compute the value of the six-bit GROUP NUMBER 1110 * field. 1111 * 1112 * From SBC-5 r05 (https://www.t10.org/cgi-bin/ac.pl?t=f&f=sbc5r05.pdf): 1113 * 0: no relative lifetime. 1114 * 1: shortest relative lifetime. 1115 * 2: second shortest relative lifetime. 1116 * 3 - 0x3d: intermediate relative lifetimes. 1117 * 0x3e: second longest relative lifetime. 1118 * 0x3f: longest relative lifetime. 1119 */ 1120 static u8 sd_group_number(struct scsi_cmnd *cmd) 1121 { 1122 const struct request *rq = scsi_cmd_to_rq(cmd); 1123 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 1124 1125 if (!sdkp->rscs) 1126 return 0; 1127 1128 return min3((u32)rq->write_hint, (u32)sdkp->permanent_stream_count, 1129 0x3fu); 1130 } 1131 1132 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write, 1133 sector_t lba, unsigned int nr_blocks, 1134 unsigned char flags, unsigned int dld) 1135 { 1136 cmd->cmd_len = SD_EXT_CDB_SIZE; 1137 cmd->cmnd[0] = VARIABLE_LENGTH_CMD; 1138 cmd->cmnd[6] = sd_group_number(cmd); 1139 cmd->cmnd[7] = 0x18; /* Additional CDB len */ 1140 cmd->cmnd[9] = write ? WRITE_32 : READ_32; 1141 cmd->cmnd[10] = flags; 1142 cmd->cmnd[11] = dld & 0x07; 1143 put_unaligned_be64(lba, &cmd->cmnd[12]); 1144 put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */ 1145 put_unaligned_be32(nr_blocks, &cmd->cmnd[28]); 1146 1147 return BLK_STS_OK; 1148 } 1149 1150 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write, 1151 sector_t lba, unsigned int nr_blocks, 1152 unsigned char flags, unsigned int dld) 1153 { 1154 cmd->cmd_len = 16; 1155 cmd->cmnd[0] = write ? WRITE_16 : READ_16; 1156 cmd->cmnd[1] = flags | ((dld >> 2) & 0x01); 1157 cmd->cmnd[14] = ((dld & 0x03) << 6) | sd_group_number(cmd); 1158 cmd->cmnd[15] = 0; 1159 put_unaligned_be64(lba, &cmd->cmnd[2]); 1160 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 1161 1162 return BLK_STS_OK; 1163 } 1164 1165 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write, 1166 sector_t lba, unsigned int nr_blocks, 1167 unsigned char flags) 1168 { 1169 cmd->cmd_len = 10; 1170 cmd->cmnd[0] = write ? WRITE_10 : READ_10; 1171 cmd->cmnd[1] = flags; 1172 cmd->cmnd[6] = sd_group_number(cmd); 1173 cmd->cmnd[9] = 0; 1174 put_unaligned_be32(lba, &cmd->cmnd[2]); 1175 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 1176 1177 return BLK_STS_OK; 1178 } 1179 1180 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write, 1181 sector_t lba, unsigned int nr_blocks, 1182 unsigned char flags) 1183 { 1184 /* Avoid that 0 blocks gets translated into 256 blocks. */ 1185 if (WARN_ON_ONCE(nr_blocks == 0)) 1186 return BLK_STS_IOERR; 1187 1188 if (unlikely(flags & 0x8)) { 1189 /* 1190 * This happens only if this drive failed 10byte rw 1191 * command with ILLEGAL_REQUEST during operation and 1192 * thus turned off use_10_for_rw. 1193 */ 1194 scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n"); 1195 return BLK_STS_IOERR; 1196 } 1197 1198 cmd->cmd_len = 6; 1199 cmd->cmnd[0] = write ? WRITE_6 : READ_6; 1200 cmd->cmnd[1] = (lba >> 16) & 0x1f; 1201 cmd->cmnd[2] = (lba >> 8) & 0xff; 1202 cmd->cmnd[3] = lba & 0xff; 1203 cmd->cmnd[4] = nr_blocks; 1204 cmd->cmnd[5] = 0; 1205 1206 return BLK_STS_OK; 1207 } 1208 1209 /* 1210 * Check if a command has a duration limit set. If it does, and the target 1211 * device supports CDL and the feature is enabled, return the limit 1212 * descriptor index to use. Return 0 (no limit) otherwise. 1213 */ 1214 static int sd_cdl_dld(struct scsi_disk *sdkp, struct scsi_cmnd *scmd) 1215 { 1216 struct scsi_device *sdp = sdkp->device; 1217 int hint; 1218 1219 if (!sdp->cdl_supported || !sdp->cdl_enable) 1220 return 0; 1221 1222 /* 1223 * Use "no limit" if the request ioprio does not specify a duration 1224 * limit hint. 1225 */ 1226 hint = IOPRIO_PRIO_HINT(req_get_ioprio(scsi_cmd_to_rq(scmd))); 1227 if (hint < IOPRIO_HINT_DEV_DURATION_LIMIT_1 || 1228 hint > IOPRIO_HINT_DEV_DURATION_LIMIT_7) 1229 return 0; 1230 1231 return (hint - IOPRIO_HINT_DEV_DURATION_LIMIT_1) + 1; 1232 } 1233 1234 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd) 1235 { 1236 struct request *rq = scsi_cmd_to_rq(cmd); 1237 struct scsi_device *sdp = cmd->device; 1238 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 1239 sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 1240 sector_t threshold; 1241 unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 1242 unsigned int mask = logical_to_sectors(sdp, 1) - 1; 1243 bool write = rq_data_dir(rq) == WRITE; 1244 unsigned char protect, fua; 1245 unsigned int dld; 1246 blk_status_t ret; 1247 unsigned int dif; 1248 bool dix; 1249 1250 ret = scsi_alloc_sgtables(cmd); 1251 if (ret != BLK_STS_OK) 1252 return ret; 1253 1254 ret = BLK_STS_IOERR; 1255 if (!scsi_device_online(sdp) || sdp->changed) { 1256 scmd_printk(KERN_ERR, cmd, "device offline or changed\n"); 1257 goto fail; 1258 } 1259 1260 if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->q->disk)) { 1261 scmd_printk(KERN_ERR, cmd, "access beyond end of device\n"); 1262 goto fail; 1263 } 1264 1265 if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) { 1266 scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n"); 1267 goto fail; 1268 } 1269 1270 /* 1271 * Some SD card readers can't handle accesses which touch the 1272 * last one or two logical blocks. Split accesses as needed. 1273 */ 1274 threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS; 1275 1276 if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) { 1277 if (lba < threshold) { 1278 /* Access up to the threshold but not beyond */ 1279 nr_blocks = threshold - lba; 1280 } else { 1281 /* Access only a single logical block */ 1282 nr_blocks = 1; 1283 } 1284 } 1285 1286 fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0; 1287 dix = scsi_prot_sg_count(cmd); 1288 dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type); 1289 dld = sd_cdl_dld(sdkp, cmd); 1290 1291 if (dif || dix) 1292 protect = sd_setup_protect_cmnd(cmd, dix, dif); 1293 else 1294 protect = 0; 1295 1296 if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) { 1297 ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks, 1298 protect | fua, dld); 1299 } else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) { 1300 ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks, 1301 protect | fua, dld); 1302 } else if ((nr_blocks > 0xff) || (lba > 0x1fffff) || 1303 sdp->use_10_for_rw || protect || rq->write_hint) { 1304 ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks, 1305 protect | fua); 1306 } else { 1307 ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks, 1308 protect | fua); 1309 } 1310 1311 if (unlikely(ret != BLK_STS_OK)) 1312 goto fail; 1313 1314 /* 1315 * We shouldn't disconnect in the middle of a sector, so with a dumb 1316 * host adapter, it's safe to assume that we can at least transfer 1317 * this many bytes between each connect / disconnect. 1318 */ 1319 cmd->transfersize = sdp->sector_size; 1320 cmd->underflow = nr_blocks << 9; 1321 cmd->allowed = sdkp->max_retries; 1322 cmd->sdb.length = nr_blocks * sdp->sector_size; 1323 1324 SCSI_LOG_HLQUEUE(1, 1325 scmd_printk(KERN_INFO, cmd, 1326 "%s: block=%llu, count=%d\n", __func__, 1327 (unsigned long long)blk_rq_pos(rq), 1328 blk_rq_sectors(rq))); 1329 SCSI_LOG_HLQUEUE(2, 1330 scmd_printk(KERN_INFO, cmd, 1331 "%s %d/%u 512 byte blocks.\n", 1332 write ? "writing" : "reading", nr_blocks, 1333 blk_rq_sectors(rq))); 1334 1335 /* 1336 * This indicates that the command is ready from our end to be queued. 1337 */ 1338 return BLK_STS_OK; 1339 fail: 1340 scsi_free_sgtables(cmd); 1341 return ret; 1342 } 1343 1344 static blk_status_t sd_init_command(struct scsi_cmnd *cmd) 1345 { 1346 struct request *rq = scsi_cmd_to_rq(cmd); 1347 1348 switch (req_op(rq)) { 1349 case REQ_OP_DISCARD: 1350 switch (scsi_disk(rq->q->disk)->provisioning_mode) { 1351 case SD_LBP_UNMAP: 1352 return sd_setup_unmap_cmnd(cmd); 1353 case SD_LBP_WS16: 1354 return sd_setup_write_same16_cmnd(cmd, true); 1355 case SD_LBP_WS10: 1356 return sd_setup_write_same10_cmnd(cmd, true); 1357 case SD_LBP_ZERO: 1358 return sd_setup_write_same10_cmnd(cmd, false); 1359 default: 1360 return BLK_STS_TARGET; 1361 } 1362 case REQ_OP_WRITE_ZEROES: 1363 return sd_setup_write_zeroes_cmnd(cmd); 1364 case REQ_OP_FLUSH: 1365 return sd_setup_flush_cmnd(cmd); 1366 case REQ_OP_READ: 1367 case REQ_OP_WRITE: 1368 return sd_setup_read_write_cmnd(cmd); 1369 case REQ_OP_ZONE_RESET: 1370 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER, 1371 false); 1372 case REQ_OP_ZONE_RESET_ALL: 1373 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER, 1374 true); 1375 case REQ_OP_ZONE_OPEN: 1376 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false); 1377 case REQ_OP_ZONE_CLOSE: 1378 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false); 1379 case REQ_OP_ZONE_FINISH: 1380 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false); 1381 default: 1382 WARN_ON_ONCE(1); 1383 return BLK_STS_NOTSUPP; 1384 } 1385 } 1386 1387 static void sd_uninit_command(struct scsi_cmnd *SCpnt) 1388 { 1389 struct request *rq = scsi_cmd_to_rq(SCpnt); 1390 1391 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1392 mempool_free(rq->special_vec.bv_page, sd_page_pool); 1393 } 1394 1395 static bool sd_need_revalidate(struct gendisk *disk, struct scsi_disk *sdkp) 1396 { 1397 if (sdkp->device->removable || sdkp->write_prot) { 1398 if (disk_check_media_change(disk)) 1399 return true; 1400 } 1401 1402 /* 1403 * Force a full rescan after ioctl(BLKRRPART). While the disk state has 1404 * nothing to do with partitions, BLKRRPART is used to force a full 1405 * revalidate after things like a format for historical reasons. 1406 */ 1407 return test_bit(GD_NEED_PART_SCAN, &disk->state); 1408 } 1409 1410 /** 1411 * sd_open - open a scsi disk device 1412 * @disk: disk to open 1413 * @mode: open mode 1414 * 1415 * Returns 0 if successful. Returns a negated errno value in case 1416 * of error. 1417 * 1418 * Note: This can be called from a user context (e.g. fsck(1) ) 1419 * or from within the kernel (e.g. as a result of a mount(1) ). 1420 * In the latter case @inode and @filp carry an abridged amount 1421 * of information as noted above. 1422 * 1423 * Locking: called with disk->open_mutex held. 1424 **/ 1425 static int sd_open(struct gendisk *disk, blk_mode_t mode) 1426 { 1427 struct scsi_disk *sdkp = scsi_disk(disk); 1428 struct scsi_device *sdev = sdkp->device; 1429 int retval; 1430 1431 if (scsi_device_get(sdev)) 1432 return -ENXIO; 1433 1434 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n")); 1435 1436 /* 1437 * If the device is in error recovery, wait until it is done. 1438 * If the device is offline, then disallow any access to it. 1439 */ 1440 retval = -ENXIO; 1441 if (!scsi_block_when_processing_errors(sdev)) 1442 goto error_out; 1443 1444 if (sd_need_revalidate(disk, sdkp)) 1445 sd_revalidate_disk(disk); 1446 1447 /* 1448 * If the drive is empty, just let the open fail. 1449 */ 1450 retval = -ENOMEDIUM; 1451 if (sdev->removable && !sdkp->media_present && 1452 !(mode & BLK_OPEN_NDELAY)) 1453 goto error_out; 1454 1455 /* 1456 * If the device has the write protect tab set, have the open fail 1457 * if the user expects to be able to write to the thing. 1458 */ 1459 retval = -EROFS; 1460 if (sdkp->write_prot && (mode & BLK_OPEN_WRITE)) 1461 goto error_out; 1462 1463 /* 1464 * It is possible that the disk changing stuff resulted in 1465 * the device being taken offline. If this is the case, 1466 * report this to the user, and don't pretend that the 1467 * open actually succeeded. 1468 */ 1469 retval = -ENXIO; 1470 if (!scsi_device_online(sdev)) 1471 goto error_out; 1472 1473 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) { 1474 if (scsi_block_when_processing_errors(sdev)) 1475 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT); 1476 } 1477 1478 return 0; 1479 1480 error_out: 1481 scsi_device_put(sdev); 1482 return retval; 1483 } 1484 1485 /** 1486 * sd_release - invoked when the (last) close(2) is called on this 1487 * scsi disk. 1488 * @disk: disk to release 1489 * 1490 * Returns 0. 1491 * 1492 * Note: may block (uninterruptible) if error recovery is underway 1493 * on this disk. 1494 * 1495 * Locking: called with disk->open_mutex held. 1496 **/ 1497 static void sd_release(struct gendisk *disk) 1498 { 1499 struct scsi_disk *sdkp = scsi_disk(disk); 1500 struct scsi_device *sdev = sdkp->device; 1501 1502 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n")); 1503 1504 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) { 1505 if (scsi_block_when_processing_errors(sdev)) 1506 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW); 1507 } 1508 1509 scsi_device_put(sdev); 1510 } 1511 1512 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1513 { 1514 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1515 struct scsi_device *sdp = sdkp->device; 1516 struct Scsi_Host *host = sdp->host; 1517 sector_t capacity = logical_to_sectors(sdp, sdkp->capacity); 1518 int diskinfo[4]; 1519 1520 /* default to most commonly used values */ 1521 diskinfo[0] = 0x40; /* 1 << 6 */ 1522 diskinfo[1] = 0x20; /* 1 << 5 */ 1523 diskinfo[2] = capacity >> 11; 1524 1525 /* override with calculated, extended default, or driver values */ 1526 if (host->hostt->bios_param) 1527 host->hostt->bios_param(sdp, bdev, capacity, diskinfo); 1528 else 1529 scsicam_bios_param(bdev, capacity, diskinfo); 1530 1531 geo->heads = diskinfo[0]; 1532 geo->sectors = diskinfo[1]; 1533 geo->cylinders = diskinfo[2]; 1534 return 0; 1535 } 1536 1537 /** 1538 * sd_ioctl - process an ioctl 1539 * @bdev: target block device 1540 * @mode: open mode 1541 * @cmd: ioctl command number 1542 * @arg: this is third argument given to ioctl(2) system call. 1543 * Often contains a pointer. 1544 * 1545 * Returns 0 if successful (some ioctls return positive numbers on 1546 * success as well). Returns a negated errno value in case of error. 1547 * 1548 * Note: most ioctls are forward onto the block subsystem or further 1549 * down in the scsi subsystem. 1550 **/ 1551 static int sd_ioctl(struct block_device *bdev, blk_mode_t mode, 1552 unsigned int cmd, unsigned long arg) 1553 { 1554 struct gendisk *disk = bdev->bd_disk; 1555 struct scsi_disk *sdkp = scsi_disk(disk); 1556 struct scsi_device *sdp = sdkp->device; 1557 void __user *p = (void __user *)arg; 1558 int error; 1559 1560 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, " 1561 "cmd=0x%x\n", disk->disk_name, cmd)); 1562 1563 if (bdev_is_partition(bdev) && !capable(CAP_SYS_RAWIO)) 1564 return -ENOIOCTLCMD; 1565 1566 /* 1567 * If we are in the middle of error recovery, don't let anyone 1568 * else try and use this device. Also, if error recovery fails, it 1569 * may try and take the device offline, in which case all further 1570 * access to the device is prohibited. 1571 */ 1572 error = scsi_ioctl_block_when_processing_errors(sdp, cmd, 1573 (mode & BLK_OPEN_NDELAY)); 1574 if (error) 1575 return error; 1576 1577 if (is_sed_ioctl(cmd)) 1578 return sed_ioctl(sdkp->opal_dev, cmd, p); 1579 return scsi_ioctl(sdp, mode & BLK_OPEN_WRITE, cmd, p); 1580 } 1581 1582 static void set_media_not_present(struct scsi_disk *sdkp) 1583 { 1584 if (sdkp->media_present) 1585 sdkp->device->changed = 1; 1586 1587 if (sdkp->device->removable) { 1588 sdkp->media_present = 0; 1589 sdkp->capacity = 0; 1590 } 1591 } 1592 1593 static int media_not_present(struct scsi_disk *sdkp, 1594 struct scsi_sense_hdr *sshdr) 1595 { 1596 if (!scsi_sense_valid(sshdr)) 1597 return 0; 1598 1599 /* not invoked for commands that could return deferred errors */ 1600 switch (sshdr->sense_key) { 1601 case UNIT_ATTENTION: 1602 case NOT_READY: 1603 /* medium not present */ 1604 if (sshdr->asc == 0x3A) { 1605 set_media_not_present(sdkp); 1606 return 1; 1607 } 1608 } 1609 return 0; 1610 } 1611 1612 /** 1613 * sd_check_events - check media events 1614 * @disk: kernel device descriptor 1615 * @clearing: disk events currently being cleared 1616 * 1617 * Returns mask of DISK_EVENT_*. 1618 * 1619 * Note: this function is invoked from the block subsystem. 1620 **/ 1621 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing) 1622 { 1623 struct scsi_disk *sdkp = disk->private_data; 1624 struct scsi_device *sdp; 1625 int retval; 1626 bool disk_changed; 1627 1628 if (!sdkp) 1629 return 0; 1630 1631 sdp = sdkp->device; 1632 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n")); 1633 1634 /* 1635 * If the device is offline, don't send any commands - just pretend as 1636 * if the command failed. If the device ever comes back online, we 1637 * can deal with it then. It is only because of unrecoverable errors 1638 * that we would ever take a device offline in the first place. 1639 */ 1640 if (!scsi_device_online(sdp)) { 1641 set_media_not_present(sdkp); 1642 goto out; 1643 } 1644 1645 /* 1646 * Using TEST_UNIT_READY enables differentiation between drive with 1647 * no cartridge loaded - NOT READY, drive with changed cartridge - 1648 * UNIT ATTENTION, or with same cartridge - GOOD STATUS. 1649 * 1650 * Drives that auto spin down. eg iomega jaz 1G, will be started 1651 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever 1652 * sd_revalidate() is called. 1653 */ 1654 if (scsi_block_when_processing_errors(sdp)) { 1655 struct scsi_sense_hdr sshdr = { 0, }; 1656 1657 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries, 1658 &sshdr); 1659 1660 /* failed to execute TUR, assume media not present */ 1661 if (retval < 0 || host_byte(retval)) { 1662 set_media_not_present(sdkp); 1663 goto out; 1664 } 1665 1666 if (media_not_present(sdkp, &sshdr)) 1667 goto out; 1668 } 1669 1670 /* 1671 * For removable scsi disk we have to recognise the presence 1672 * of a disk in the drive. 1673 */ 1674 if (!sdkp->media_present) 1675 sdp->changed = 1; 1676 sdkp->media_present = 1; 1677 out: 1678 /* 1679 * sdp->changed is set under the following conditions: 1680 * 1681 * Medium present state has changed in either direction. 1682 * Device has indicated UNIT_ATTENTION. 1683 */ 1684 disk_changed = sdp->changed; 1685 sdp->changed = 0; 1686 return disk_changed ? DISK_EVENT_MEDIA_CHANGE : 0; 1687 } 1688 1689 static int sd_sync_cache(struct scsi_disk *sdkp) 1690 { 1691 int res; 1692 struct scsi_device *sdp = sdkp->device; 1693 const int timeout = sdp->request_queue->rq_timeout 1694 * SD_FLUSH_TIMEOUT_MULTIPLIER; 1695 /* Leave the rest of the command zero to indicate flush everything. */ 1696 const unsigned char cmd[16] = { sdp->use_16_for_sync ? 1697 SYNCHRONIZE_CACHE_16 : SYNCHRONIZE_CACHE }; 1698 struct scsi_sense_hdr sshdr; 1699 struct scsi_failure failure_defs[] = { 1700 { 1701 .allowed = 3, 1702 .result = SCMD_FAILURE_RESULT_ANY, 1703 }, 1704 {} 1705 }; 1706 struct scsi_failures failures = { 1707 .failure_definitions = failure_defs, 1708 }; 1709 const struct scsi_exec_args exec_args = { 1710 .req_flags = BLK_MQ_REQ_PM, 1711 .sshdr = &sshdr, 1712 .failures = &failures, 1713 }; 1714 1715 if (!scsi_device_online(sdp)) 1716 return -ENODEV; 1717 1718 res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, timeout, 1719 sdkp->max_retries, &exec_args); 1720 if (res) { 1721 sd_print_result(sdkp, "Synchronize Cache(10) failed", res); 1722 1723 if (res < 0) 1724 return res; 1725 1726 if (scsi_status_is_check_condition(res) && 1727 scsi_sense_valid(&sshdr)) { 1728 sd_print_sense_hdr(sdkp, &sshdr); 1729 1730 /* we need to evaluate the error return */ 1731 if (sshdr.asc == 0x3a || /* medium not present */ 1732 sshdr.asc == 0x20 || /* invalid command */ 1733 (sshdr.asc == 0x74 && sshdr.ascq == 0x71)) /* drive is password locked */ 1734 /* this is no error here */ 1735 return 0; 1736 /* 1737 * This drive doesn't support sync and there's not much 1738 * we can do because this is called during shutdown 1739 * or suspend so just return success so those operations 1740 * can proceed. 1741 */ 1742 if (sshdr.sense_key == ILLEGAL_REQUEST) 1743 return 0; 1744 } 1745 1746 switch (host_byte(res)) { 1747 /* ignore errors due to racing a disconnection */ 1748 case DID_BAD_TARGET: 1749 case DID_NO_CONNECT: 1750 return 0; 1751 /* signal the upper layer it might try again */ 1752 case DID_BUS_BUSY: 1753 case DID_IMM_RETRY: 1754 case DID_REQUEUE: 1755 case DID_SOFT_ERROR: 1756 return -EBUSY; 1757 default: 1758 return -EIO; 1759 } 1760 } 1761 return 0; 1762 } 1763 1764 static void sd_rescan(struct device *dev) 1765 { 1766 struct scsi_disk *sdkp = dev_get_drvdata(dev); 1767 1768 sd_revalidate_disk(sdkp->disk); 1769 } 1770 1771 static int sd_get_unique_id(struct gendisk *disk, u8 id[16], 1772 enum blk_unique_id type) 1773 { 1774 struct scsi_device *sdev = scsi_disk(disk)->device; 1775 const struct scsi_vpd *vpd; 1776 const unsigned char *d; 1777 int ret = -ENXIO, len; 1778 1779 rcu_read_lock(); 1780 vpd = rcu_dereference(sdev->vpd_pg83); 1781 if (!vpd) 1782 goto out_unlock; 1783 1784 ret = -EINVAL; 1785 for (d = vpd->data + 4; d < vpd->data + vpd->len; d += d[3] + 4) { 1786 /* we only care about designators with LU association */ 1787 if (((d[1] >> 4) & 0x3) != 0x00) 1788 continue; 1789 if ((d[1] & 0xf) != type) 1790 continue; 1791 1792 /* 1793 * Only exit early if a 16-byte descriptor was found. Otherwise 1794 * keep looking as one with more entropy might still show up. 1795 */ 1796 len = d[3]; 1797 if (len != 8 && len != 12 && len != 16) 1798 continue; 1799 ret = len; 1800 memcpy(id, d + 4, len); 1801 if (len == 16) 1802 break; 1803 } 1804 out_unlock: 1805 rcu_read_unlock(); 1806 return ret; 1807 } 1808 1809 static int sd_scsi_to_pr_err(struct scsi_sense_hdr *sshdr, int result) 1810 { 1811 switch (host_byte(result)) { 1812 case DID_TRANSPORT_MARGINAL: 1813 case DID_TRANSPORT_DISRUPTED: 1814 case DID_BUS_BUSY: 1815 return PR_STS_RETRY_PATH_FAILURE; 1816 case DID_NO_CONNECT: 1817 return PR_STS_PATH_FAILED; 1818 case DID_TRANSPORT_FAILFAST: 1819 return PR_STS_PATH_FAST_FAILED; 1820 } 1821 1822 switch (status_byte(result)) { 1823 case SAM_STAT_RESERVATION_CONFLICT: 1824 return PR_STS_RESERVATION_CONFLICT; 1825 case SAM_STAT_CHECK_CONDITION: 1826 if (!scsi_sense_valid(sshdr)) 1827 return PR_STS_IOERR; 1828 1829 if (sshdr->sense_key == ILLEGAL_REQUEST && 1830 (sshdr->asc == 0x26 || sshdr->asc == 0x24)) 1831 return -EINVAL; 1832 1833 fallthrough; 1834 default: 1835 return PR_STS_IOERR; 1836 } 1837 } 1838 1839 static int sd_pr_in_command(struct block_device *bdev, u8 sa, 1840 unsigned char *data, int data_len) 1841 { 1842 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1843 struct scsi_device *sdev = sdkp->device; 1844 struct scsi_sense_hdr sshdr; 1845 u8 cmd[10] = { PERSISTENT_RESERVE_IN, sa }; 1846 struct scsi_failure failure_defs[] = { 1847 { 1848 .sense = UNIT_ATTENTION, 1849 .asc = SCMD_FAILURE_ASC_ANY, 1850 .ascq = SCMD_FAILURE_ASCQ_ANY, 1851 .allowed = 5, 1852 .result = SAM_STAT_CHECK_CONDITION, 1853 }, 1854 {} 1855 }; 1856 struct scsi_failures failures = { 1857 .failure_definitions = failure_defs, 1858 }; 1859 const struct scsi_exec_args exec_args = { 1860 .sshdr = &sshdr, 1861 .failures = &failures, 1862 }; 1863 int result; 1864 1865 put_unaligned_be16(data_len, &cmd[7]); 1866 1867 result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, data, data_len, 1868 SD_TIMEOUT, sdkp->max_retries, &exec_args); 1869 if (scsi_status_is_check_condition(result) && 1870 scsi_sense_valid(&sshdr)) { 1871 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result); 1872 scsi_print_sense_hdr(sdev, NULL, &sshdr); 1873 } 1874 1875 if (result <= 0) 1876 return result; 1877 1878 return sd_scsi_to_pr_err(&sshdr, result); 1879 } 1880 1881 static int sd_pr_read_keys(struct block_device *bdev, struct pr_keys *keys_info) 1882 { 1883 int result, i, data_offset, num_copy_keys; 1884 u32 num_keys = keys_info->num_keys; 1885 int data_len = num_keys * 8 + 8; 1886 u8 *data; 1887 1888 data = kzalloc(data_len, GFP_KERNEL); 1889 if (!data) 1890 return -ENOMEM; 1891 1892 result = sd_pr_in_command(bdev, READ_KEYS, data, data_len); 1893 if (result) 1894 goto free_data; 1895 1896 keys_info->generation = get_unaligned_be32(&data[0]); 1897 keys_info->num_keys = get_unaligned_be32(&data[4]) / 8; 1898 1899 data_offset = 8; 1900 num_copy_keys = min(num_keys, keys_info->num_keys); 1901 1902 for (i = 0; i < num_copy_keys; i++) { 1903 keys_info->keys[i] = get_unaligned_be64(&data[data_offset]); 1904 data_offset += 8; 1905 } 1906 1907 free_data: 1908 kfree(data); 1909 return result; 1910 } 1911 1912 static int sd_pr_read_reservation(struct block_device *bdev, 1913 struct pr_held_reservation *rsv) 1914 { 1915 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1916 struct scsi_device *sdev = sdkp->device; 1917 u8 data[24] = { }; 1918 int result, len; 1919 1920 result = sd_pr_in_command(bdev, READ_RESERVATION, data, sizeof(data)); 1921 if (result) 1922 return result; 1923 1924 len = get_unaligned_be32(&data[4]); 1925 if (!len) 1926 return 0; 1927 1928 /* Make sure we have at least the key and type */ 1929 if (len < 14) { 1930 sdev_printk(KERN_INFO, sdev, 1931 "READ RESERVATION failed due to short return buffer of %d bytes\n", 1932 len); 1933 return -EINVAL; 1934 } 1935 1936 rsv->generation = get_unaligned_be32(&data[0]); 1937 rsv->key = get_unaligned_be64(&data[8]); 1938 rsv->type = scsi_pr_type_to_block(data[21] & 0x0f); 1939 return 0; 1940 } 1941 1942 static int sd_pr_out_command(struct block_device *bdev, u8 sa, u64 key, 1943 u64 sa_key, enum scsi_pr_type type, u8 flags) 1944 { 1945 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1946 struct scsi_device *sdev = sdkp->device; 1947 struct scsi_sense_hdr sshdr; 1948 struct scsi_failure failure_defs[] = { 1949 { 1950 .sense = UNIT_ATTENTION, 1951 .asc = SCMD_FAILURE_ASC_ANY, 1952 .ascq = SCMD_FAILURE_ASCQ_ANY, 1953 .allowed = 5, 1954 .result = SAM_STAT_CHECK_CONDITION, 1955 }, 1956 {} 1957 }; 1958 struct scsi_failures failures = { 1959 .failure_definitions = failure_defs, 1960 }; 1961 const struct scsi_exec_args exec_args = { 1962 .sshdr = &sshdr, 1963 .failures = &failures, 1964 }; 1965 int result; 1966 u8 cmd[16] = { 0, }; 1967 u8 data[24] = { 0, }; 1968 1969 cmd[0] = PERSISTENT_RESERVE_OUT; 1970 cmd[1] = sa; 1971 cmd[2] = type; 1972 put_unaligned_be32(sizeof(data), &cmd[5]); 1973 1974 put_unaligned_be64(key, &data[0]); 1975 put_unaligned_be64(sa_key, &data[8]); 1976 data[20] = flags; 1977 1978 result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, &data, 1979 sizeof(data), SD_TIMEOUT, sdkp->max_retries, 1980 &exec_args); 1981 1982 if (scsi_status_is_check_condition(result) && 1983 scsi_sense_valid(&sshdr)) { 1984 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result); 1985 scsi_print_sense_hdr(sdev, NULL, &sshdr); 1986 } 1987 1988 if (result <= 0) 1989 return result; 1990 1991 return sd_scsi_to_pr_err(&sshdr, result); 1992 } 1993 1994 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 1995 u32 flags) 1996 { 1997 if (flags & ~PR_FL_IGNORE_KEY) 1998 return -EOPNOTSUPP; 1999 return sd_pr_out_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00, 2000 old_key, new_key, 0, 2001 (1 << 0) /* APTPL */); 2002 } 2003 2004 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 2005 u32 flags) 2006 { 2007 if (flags) 2008 return -EOPNOTSUPP; 2009 return sd_pr_out_command(bdev, 0x01, key, 0, 2010 block_pr_type_to_scsi(type), 0); 2011 } 2012 2013 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 2014 { 2015 return sd_pr_out_command(bdev, 0x02, key, 0, 2016 block_pr_type_to_scsi(type), 0); 2017 } 2018 2019 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 2020 enum pr_type type, bool abort) 2021 { 2022 return sd_pr_out_command(bdev, abort ? 0x05 : 0x04, old_key, new_key, 2023 block_pr_type_to_scsi(type), 0); 2024 } 2025 2026 static int sd_pr_clear(struct block_device *bdev, u64 key) 2027 { 2028 return sd_pr_out_command(bdev, 0x03, key, 0, 0, 0); 2029 } 2030 2031 static const struct pr_ops sd_pr_ops = { 2032 .pr_register = sd_pr_register, 2033 .pr_reserve = sd_pr_reserve, 2034 .pr_release = sd_pr_release, 2035 .pr_preempt = sd_pr_preempt, 2036 .pr_clear = sd_pr_clear, 2037 .pr_read_keys = sd_pr_read_keys, 2038 .pr_read_reservation = sd_pr_read_reservation, 2039 }; 2040 2041 static void scsi_disk_free_disk(struct gendisk *disk) 2042 { 2043 struct scsi_disk *sdkp = scsi_disk(disk); 2044 2045 put_device(&sdkp->disk_dev); 2046 } 2047 2048 static const struct block_device_operations sd_fops = { 2049 .owner = THIS_MODULE, 2050 .open = sd_open, 2051 .release = sd_release, 2052 .ioctl = sd_ioctl, 2053 .getgeo = sd_getgeo, 2054 .compat_ioctl = blkdev_compat_ptr_ioctl, 2055 .check_events = sd_check_events, 2056 .unlock_native_capacity = sd_unlock_native_capacity, 2057 .report_zones = sd_zbc_report_zones, 2058 .get_unique_id = sd_get_unique_id, 2059 .free_disk = scsi_disk_free_disk, 2060 .pr_ops = &sd_pr_ops, 2061 }; 2062 2063 /** 2064 * sd_eh_reset - reset error handling callback 2065 * @scmd: sd-issued command that has failed 2066 * 2067 * This function is called by the SCSI midlayer before starting 2068 * SCSI EH. When counting medium access failures we have to be 2069 * careful to register it only only once per device and SCSI EH run; 2070 * there might be several timed out commands which will cause the 2071 * 'max_medium_access_timeouts' counter to trigger after the first 2072 * SCSI EH run already and set the device to offline. 2073 * So this function resets the internal counter before starting SCSI EH. 2074 **/ 2075 static void sd_eh_reset(struct scsi_cmnd *scmd) 2076 { 2077 struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk); 2078 2079 /* New SCSI EH run, reset gate variable */ 2080 sdkp->ignore_medium_access_errors = false; 2081 } 2082 2083 /** 2084 * sd_eh_action - error handling callback 2085 * @scmd: sd-issued command that has failed 2086 * @eh_disp: The recovery disposition suggested by the midlayer 2087 * 2088 * This function is called by the SCSI midlayer upon completion of an 2089 * error test command (currently TEST UNIT READY). The result of sending 2090 * the eh command is passed in eh_disp. We're looking for devices that 2091 * fail medium access commands but are OK with non access commands like 2092 * test unit ready (so wrongly see the device as having a successful 2093 * recovery) 2094 **/ 2095 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp) 2096 { 2097 struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk); 2098 struct scsi_device *sdev = scmd->device; 2099 2100 if (!scsi_device_online(sdev) || 2101 !scsi_medium_access_command(scmd) || 2102 host_byte(scmd->result) != DID_TIME_OUT || 2103 eh_disp != SUCCESS) 2104 return eh_disp; 2105 2106 /* 2107 * The device has timed out executing a medium access command. 2108 * However, the TEST UNIT READY command sent during error 2109 * handling completed successfully. Either the device is in the 2110 * process of recovering or has it suffered an internal failure 2111 * that prevents access to the storage medium. 2112 */ 2113 if (!sdkp->ignore_medium_access_errors) { 2114 sdkp->medium_access_timed_out++; 2115 sdkp->ignore_medium_access_errors = true; 2116 } 2117 2118 /* 2119 * If the device keeps failing read/write commands but TEST UNIT 2120 * READY always completes successfully we assume that medium 2121 * access is no longer possible and take the device offline. 2122 */ 2123 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) { 2124 scmd_printk(KERN_ERR, scmd, 2125 "Medium access timeout failure. Offlining disk!\n"); 2126 mutex_lock(&sdev->state_mutex); 2127 scsi_device_set_state(sdev, SDEV_OFFLINE); 2128 mutex_unlock(&sdev->state_mutex); 2129 2130 return SUCCESS; 2131 } 2132 2133 return eh_disp; 2134 } 2135 2136 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd) 2137 { 2138 struct request *req = scsi_cmd_to_rq(scmd); 2139 struct scsi_device *sdev = scmd->device; 2140 unsigned int transferred, good_bytes; 2141 u64 start_lba, end_lba, bad_lba; 2142 2143 /* 2144 * Some commands have a payload smaller than the device logical 2145 * block size (e.g. INQUIRY on a 4K disk). 2146 */ 2147 if (scsi_bufflen(scmd) <= sdev->sector_size) 2148 return 0; 2149 2150 /* Check if we have a 'bad_lba' information */ 2151 if (!scsi_get_sense_info_fld(scmd->sense_buffer, 2152 SCSI_SENSE_BUFFERSIZE, 2153 &bad_lba)) 2154 return 0; 2155 2156 /* 2157 * If the bad lba was reported incorrectly, we have no idea where 2158 * the error is. 2159 */ 2160 start_lba = sectors_to_logical(sdev, blk_rq_pos(req)); 2161 end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd)); 2162 if (bad_lba < start_lba || bad_lba >= end_lba) 2163 return 0; 2164 2165 /* 2166 * resid is optional but mostly filled in. When it's unused, 2167 * its value is zero, so we assume the whole buffer transferred 2168 */ 2169 transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd); 2170 2171 /* This computation should always be done in terms of the 2172 * resolution of the device's medium. 2173 */ 2174 good_bytes = logical_to_bytes(sdev, bad_lba - start_lba); 2175 2176 return min(good_bytes, transferred); 2177 } 2178 2179 /** 2180 * sd_done - bottom half handler: called when the lower level 2181 * driver has completed (successfully or otherwise) a scsi command. 2182 * @SCpnt: mid-level's per command structure. 2183 * 2184 * Note: potentially run from within an ISR. Must not block. 2185 **/ 2186 static int sd_done(struct scsi_cmnd *SCpnt) 2187 { 2188 int result = SCpnt->result; 2189 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt); 2190 unsigned int sector_size = SCpnt->device->sector_size; 2191 unsigned int resid; 2192 struct scsi_sense_hdr sshdr; 2193 struct request *req = scsi_cmd_to_rq(SCpnt); 2194 struct scsi_disk *sdkp = scsi_disk(req->q->disk); 2195 int sense_valid = 0; 2196 int sense_deferred = 0; 2197 2198 switch (req_op(req)) { 2199 case REQ_OP_DISCARD: 2200 case REQ_OP_WRITE_ZEROES: 2201 case REQ_OP_ZONE_RESET: 2202 case REQ_OP_ZONE_RESET_ALL: 2203 case REQ_OP_ZONE_OPEN: 2204 case REQ_OP_ZONE_CLOSE: 2205 case REQ_OP_ZONE_FINISH: 2206 if (!result) { 2207 good_bytes = blk_rq_bytes(req); 2208 scsi_set_resid(SCpnt, 0); 2209 } else { 2210 good_bytes = 0; 2211 scsi_set_resid(SCpnt, blk_rq_bytes(req)); 2212 } 2213 break; 2214 default: 2215 /* 2216 * In case of bogus fw or device, we could end up having 2217 * an unaligned partial completion. Check this here and force 2218 * alignment. 2219 */ 2220 resid = scsi_get_resid(SCpnt); 2221 if (resid & (sector_size - 1)) { 2222 sd_printk(KERN_INFO, sdkp, 2223 "Unaligned partial completion (resid=%u, sector_sz=%u)\n", 2224 resid, sector_size); 2225 scsi_print_command(SCpnt); 2226 resid = min(scsi_bufflen(SCpnt), 2227 round_up(resid, sector_size)); 2228 scsi_set_resid(SCpnt, resid); 2229 } 2230 } 2231 2232 if (result) { 2233 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr); 2234 if (sense_valid) 2235 sense_deferred = scsi_sense_is_deferred(&sshdr); 2236 } 2237 sdkp->medium_access_timed_out = 0; 2238 2239 if (!scsi_status_is_check_condition(result) && 2240 (!sense_valid || sense_deferred)) 2241 goto out; 2242 2243 switch (sshdr.sense_key) { 2244 case HARDWARE_ERROR: 2245 case MEDIUM_ERROR: 2246 good_bytes = sd_completed_bytes(SCpnt); 2247 break; 2248 case RECOVERED_ERROR: 2249 good_bytes = scsi_bufflen(SCpnt); 2250 break; 2251 case NO_SENSE: 2252 /* This indicates a false check condition, so ignore it. An 2253 * unknown amount of data was transferred so treat it as an 2254 * error. 2255 */ 2256 SCpnt->result = 0; 2257 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 2258 break; 2259 case ABORTED_COMMAND: 2260 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */ 2261 good_bytes = sd_completed_bytes(SCpnt); 2262 break; 2263 case ILLEGAL_REQUEST: 2264 switch (sshdr.asc) { 2265 case 0x10: /* DIX: Host detected corruption */ 2266 good_bytes = sd_completed_bytes(SCpnt); 2267 break; 2268 case 0x20: /* INVALID COMMAND OPCODE */ 2269 case 0x24: /* INVALID FIELD IN CDB */ 2270 switch (SCpnt->cmnd[0]) { 2271 case UNMAP: 2272 sd_disable_discard(sdkp); 2273 break; 2274 case WRITE_SAME_16: 2275 case WRITE_SAME: 2276 if (SCpnt->cmnd[1] & 8) { /* UNMAP */ 2277 sd_disable_discard(sdkp); 2278 } else { 2279 sd_disable_write_same(sdkp); 2280 req->rq_flags |= RQF_QUIET; 2281 } 2282 break; 2283 } 2284 } 2285 break; 2286 default: 2287 break; 2288 } 2289 2290 out: 2291 if (sd_is_zoned(sdkp)) 2292 good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr); 2293 2294 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt, 2295 "sd_done: completed %d of %d bytes\n", 2296 good_bytes, scsi_bufflen(SCpnt))); 2297 2298 return good_bytes; 2299 } 2300 2301 /* 2302 * spinup disk - called only in sd_revalidate_disk() 2303 */ 2304 static void 2305 sd_spinup_disk(struct scsi_disk *sdkp) 2306 { 2307 static const u8 cmd[10] = { TEST_UNIT_READY }; 2308 unsigned long spintime_expire = 0; 2309 int spintime, sense_valid = 0; 2310 unsigned int the_result; 2311 struct scsi_sense_hdr sshdr; 2312 struct scsi_failure failure_defs[] = { 2313 /* Do not retry Medium Not Present */ 2314 { 2315 .sense = UNIT_ATTENTION, 2316 .asc = 0x3A, 2317 .ascq = SCMD_FAILURE_ASCQ_ANY, 2318 .result = SAM_STAT_CHECK_CONDITION, 2319 }, 2320 { 2321 .sense = NOT_READY, 2322 .asc = 0x3A, 2323 .ascq = SCMD_FAILURE_ASCQ_ANY, 2324 .result = SAM_STAT_CHECK_CONDITION, 2325 }, 2326 /* Retry when scsi_status_is_good would return false 3 times */ 2327 { 2328 .result = SCMD_FAILURE_STAT_ANY, 2329 .allowed = 3, 2330 }, 2331 {} 2332 }; 2333 struct scsi_failures failures = { 2334 .failure_definitions = failure_defs, 2335 }; 2336 const struct scsi_exec_args exec_args = { 2337 .sshdr = &sshdr, 2338 .failures = &failures, 2339 }; 2340 2341 spintime = 0; 2342 2343 /* Spin up drives, as required. Only do this at boot time */ 2344 /* Spinup needs to be done for module loads too. */ 2345 do { 2346 bool media_was_present = sdkp->media_present; 2347 2348 scsi_failures_reset_retries(&failures); 2349 2350 the_result = scsi_execute_cmd(sdkp->device, cmd, REQ_OP_DRV_IN, 2351 NULL, 0, SD_TIMEOUT, 2352 sdkp->max_retries, &exec_args); 2353 2354 2355 if (the_result > 0) { 2356 /* 2357 * If the drive has indicated to us that it doesn't 2358 * have any media in it, don't bother with any more 2359 * polling. 2360 */ 2361 if (media_not_present(sdkp, &sshdr)) { 2362 if (media_was_present) 2363 sd_printk(KERN_NOTICE, sdkp, 2364 "Media removed, stopped polling\n"); 2365 return; 2366 } 2367 sense_valid = scsi_sense_valid(&sshdr); 2368 } 2369 2370 if (!scsi_status_is_check_condition(the_result)) { 2371 /* no sense, TUR either succeeded or failed 2372 * with a status error */ 2373 if(!spintime && !scsi_status_is_good(the_result)) { 2374 sd_print_result(sdkp, "Test Unit Ready failed", 2375 the_result); 2376 } 2377 break; 2378 } 2379 2380 /* 2381 * The device does not want the automatic start to be issued. 2382 */ 2383 if (sdkp->device->no_start_on_add) 2384 break; 2385 2386 if (sense_valid && sshdr.sense_key == NOT_READY) { 2387 if (sshdr.asc == 4 && sshdr.ascq == 3) 2388 break; /* manual intervention required */ 2389 if (sshdr.asc == 4 && sshdr.ascq == 0xb) 2390 break; /* standby */ 2391 if (sshdr.asc == 4 && sshdr.ascq == 0xc) 2392 break; /* unavailable */ 2393 if (sshdr.asc == 4 && sshdr.ascq == 0x1b) 2394 break; /* sanitize in progress */ 2395 if (sshdr.asc == 4 && sshdr.ascq == 0x24) 2396 break; /* depopulation in progress */ 2397 if (sshdr.asc == 4 && sshdr.ascq == 0x25) 2398 break; /* depopulation restoration in progress */ 2399 /* 2400 * Issue command to spin up drive when not ready 2401 */ 2402 if (!spintime) { 2403 /* Return immediately and start spin cycle */ 2404 const u8 start_cmd[10] = { 2405 [0] = START_STOP, 2406 [1] = 1, 2407 [4] = sdkp->device->start_stop_pwr_cond ? 2408 0x11 : 1, 2409 }; 2410 2411 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk..."); 2412 scsi_execute_cmd(sdkp->device, start_cmd, 2413 REQ_OP_DRV_IN, NULL, 0, 2414 SD_TIMEOUT, sdkp->max_retries, 2415 &exec_args); 2416 spintime_expire = jiffies + 100 * HZ; 2417 spintime = 1; 2418 } 2419 /* Wait 1 second for next try */ 2420 msleep(1000); 2421 printk(KERN_CONT "."); 2422 2423 /* 2424 * Wait for USB flash devices with slow firmware. 2425 * Yes, this sense key/ASC combination shouldn't 2426 * occur here. It's characteristic of these devices. 2427 */ 2428 } else if (sense_valid && 2429 sshdr.sense_key == UNIT_ATTENTION && 2430 sshdr.asc == 0x28) { 2431 if (!spintime) { 2432 spintime_expire = jiffies + 5 * HZ; 2433 spintime = 1; 2434 } 2435 /* Wait 1 second for next try */ 2436 msleep(1000); 2437 } else { 2438 /* we don't understand the sense code, so it's 2439 * probably pointless to loop */ 2440 if(!spintime) { 2441 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n"); 2442 sd_print_sense_hdr(sdkp, &sshdr); 2443 } 2444 break; 2445 } 2446 2447 } while (spintime && time_before_eq(jiffies, spintime_expire)); 2448 2449 if (spintime) { 2450 if (scsi_status_is_good(the_result)) 2451 printk(KERN_CONT "ready\n"); 2452 else 2453 printk(KERN_CONT "not responding...\n"); 2454 } 2455 } 2456 2457 /* 2458 * Determine whether disk supports Data Integrity Field. 2459 */ 2460 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer) 2461 { 2462 struct scsi_device *sdp = sdkp->device; 2463 u8 type; 2464 2465 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) { 2466 sdkp->protection_type = 0; 2467 return 0; 2468 } 2469 2470 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */ 2471 2472 if (type > T10_PI_TYPE3_PROTECTION) { 2473 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \ 2474 " protection type %u. Disabling disk!\n", 2475 type); 2476 sdkp->protection_type = 0; 2477 return -ENODEV; 2478 } 2479 2480 sdkp->protection_type = type; 2481 2482 return 0; 2483 } 2484 2485 static void sd_config_protection(struct scsi_disk *sdkp, 2486 struct queue_limits *lim) 2487 { 2488 struct scsi_device *sdp = sdkp->device; 2489 2490 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY)) 2491 sd_dif_config_host(sdkp, lim); 2492 2493 if (!sdkp->protection_type) 2494 return; 2495 2496 if (!scsi_host_dif_capable(sdp->host, sdkp->protection_type)) { 2497 sd_first_printk(KERN_NOTICE, sdkp, 2498 "Disabling DIF Type %u protection\n", 2499 sdkp->protection_type); 2500 sdkp->protection_type = 0; 2501 } 2502 2503 sd_first_printk(KERN_NOTICE, sdkp, "Enabling DIF Type %u protection\n", 2504 sdkp->protection_type); 2505 } 2506 2507 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp, 2508 struct scsi_sense_hdr *sshdr, int sense_valid, 2509 int the_result) 2510 { 2511 if (sense_valid) 2512 sd_print_sense_hdr(sdkp, sshdr); 2513 else 2514 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n"); 2515 2516 /* 2517 * Set dirty bit for removable devices if not ready - 2518 * sometimes drives will not report this properly. 2519 */ 2520 if (sdp->removable && 2521 sense_valid && sshdr->sense_key == NOT_READY) 2522 set_media_not_present(sdkp); 2523 2524 /* 2525 * We used to set media_present to 0 here to indicate no media 2526 * in the drive, but some drives fail read capacity even with 2527 * media present, so we can't do that. 2528 */ 2529 sdkp->capacity = 0; /* unknown mapped to zero - as usual */ 2530 } 2531 2532 #define RC16_LEN 32 2533 #if RC16_LEN > SD_BUF_SIZE 2534 #error RC16_LEN must not be more than SD_BUF_SIZE 2535 #endif 2536 2537 #define READ_CAPACITY_RETRIES_ON_RESET 10 2538 2539 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp, 2540 struct queue_limits *lim, unsigned char *buffer) 2541 { 2542 unsigned char cmd[16]; 2543 struct scsi_sense_hdr sshdr; 2544 const struct scsi_exec_args exec_args = { 2545 .sshdr = &sshdr, 2546 }; 2547 int sense_valid = 0; 2548 int the_result; 2549 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2550 unsigned int alignment; 2551 unsigned long long lba; 2552 unsigned sector_size; 2553 2554 if (sdp->no_read_capacity_16) 2555 return -EINVAL; 2556 2557 do { 2558 memset(cmd, 0, 16); 2559 cmd[0] = SERVICE_ACTION_IN_16; 2560 cmd[1] = SAI_READ_CAPACITY_16; 2561 cmd[13] = RC16_LEN; 2562 memset(buffer, 0, RC16_LEN); 2563 2564 the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, 2565 buffer, RC16_LEN, SD_TIMEOUT, 2566 sdkp->max_retries, &exec_args); 2567 if (the_result > 0) { 2568 if (media_not_present(sdkp, &sshdr)) 2569 return -ENODEV; 2570 2571 sense_valid = scsi_sense_valid(&sshdr); 2572 if (sense_valid && 2573 sshdr.sense_key == ILLEGAL_REQUEST && 2574 (sshdr.asc == 0x20 || sshdr.asc == 0x24) && 2575 sshdr.ascq == 0x00) 2576 /* Invalid Command Operation Code or 2577 * Invalid Field in CDB, just retry 2578 * silently with RC10 */ 2579 return -EINVAL; 2580 if (sense_valid && 2581 sshdr.sense_key == UNIT_ATTENTION && 2582 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2583 /* Device reset might occur several times, 2584 * give it one more chance */ 2585 if (--reset_retries > 0) 2586 continue; 2587 } 2588 retries--; 2589 2590 } while (the_result && retries); 2591 2592 if (the_result) { 2593 sd_print_result(sdkp, "Read Capacity(16) failed", the_result); 2594 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2595 return -EINVAL; 2596 } 2597 2598 sector_size = get_unaligned_be32(&buffer[8]); 2599 lba = get_unaligned_be64(&buffer[0]); 2600 2601 if (sd_read_protection_type(sdkp, buffer) < 0) { 2602 sdkp->capacity = 0; 2603 return -ENODEV; 2604 } 2605 2606 /* Logical blocks per physical block exponent */ 2607 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size; 2608 2609 /* RC basis */ 2610 sdkp->rc_basis = (buffer[12] >> 4) & 0x3; 2611 2612 /* Lowest aligned logical block */ 2613 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size; 2614 lim->alignment_offset = alignment; 2615 if (alignment && sdkp->first_scan) 2616 sd_printk(KERN_NOTICE, sdkp, 2617 "physical block alignment offset: %u\n", alignment); 2618 2619 if (buffer[14] & 0x80) { /* LBPME */ 2620 sdkp->lbpme = 1; 2621 2622 if (buffer[14] & 0x40) /* LBPRZ */ 2623 sdkp->lbprz = 1; 2624 2625 sd_config_discard(sdkp, lim, SD_LBP_WS16); 2626 } 2627 2628 sdkp->capacity = lba + 1; 2629 return sector_size; 2630 } 2631 2632 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp, 2633 unsigned char *buffer) 2634 { 2635 static const u8 cmd[10] = { READ_CAPACITY }; 2636 struct scsi_sense_hdr sshdr; 2637 struct scsi_failure failure_defs[] = { 2638 /* Do not retry Medium Not Present */ 2639 { 2640 .sense = UNIT_ATTENTION, 2641 .asc = 0x3A, 2642 .result = SAM_STAT_CHECK_CONDITION, 2643 }, 2644 { 2645 .sense = NOT_READY, 2646 .asc = 0x3A, 2647 .result = SAM_STAT_CHECK_CONDITION, 2648 }, 2649 /* Device reset might occur several times so retry a lot */ 2650 { 2651 .sense = UNIT_ATTENTION, 2652 .asc = 0x29, 2653 .allowed = READ_CAPACITY_RETRIES_ON_RESET, 2654 .result = SAM_STAT_CHECK_CONDITION, 2655 }, 2656 /* Any other error not listed above retry 3 times */ 2657 { 2658 .result = SCMD_FAILURE_RESULT_ANY, 2659 .allowed = 3, 2660 }, 2661 {} 2662 }; 2663 struct scsi_failures failures = { 2664 .failure_definitions = failure_defs, 2665 }; 2666 const struct scsi_exec_args exec_args = { 2667 .sshdr = &sshdr, 2668 .failures = &failures, 2669 }; 2670 int sense_valid = 0; 2671 int the_result; 2672 sector_t lba; 2673 unsigned sector_size; 2674 2675 memset(buffer, 0, 8); 2676 2677 the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, buffer, 2678 8, SD_TIMEOUT, sdkp->max_retries, 2679 &exec_args); 2680 2681 if (the_result > 0) { 2682 sense_valid = scsi_sense_valid(&sshdr); 2683 2684 if (media_not_present(sdkp, &sshdr)) 2685 return -ENODEV; 2686 } 2687 2688 if (the_result) { 2689 sd_print_result(sdkp, "Read Capacity(10) failed", the_result); 2690 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2691 return -EINVAL; 2692 } 2693 2694 sector_size = get_unaligned_be32(&buffer[4]); 2695 lba = get_unaligned_be32(&buffer[0]); 2696 2697 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) { 2698 /* Some buggy (usb cardreader) devices return an lba of 2699 0xffffffff when the want to report a size of 0 (with 2700 which they really mean no media is present) */ 2701 sdkp->capacity = 0; 2702 sdkp->physical_block_size = sector_size; 2703 return sector_size; 2704 } 2705 2706 sdkp->capacity = lba + 1; 2707 sdkp->physical_block_size = sector_size; 2708 return sector_size; 2709 } 2710 2711 static int sd_try_rc16_first(struct scsi_device *sdp) 2712 { 2713 if (sdp->host->max_cmd_len < 16) 2714 return 0; 2715 if (sdp->try_rc_10_first) 2716 return 0; 2717 if (sdp->scsi_level > SCSI_SPC_2) 2718 return 1; 2719 if (scsi_device_protection(sdp)) 2720 return 1; 2721 return 0; 2722 } 2723 2724 /* 2725 * read disk capacity 2726 */ 2727 static void 2728 sd_read_capacity(struct scsi_disk *sdkp, struct queue_limits *lim, 2729 unsigned char *buffer) 2730 { 2731 int sector_size; 2732 struct scsi_device *sdp = sdkp->device; 2733 2734 if (sd_try_rc16_first(sdp)) { 2735 sector_size = read_capacity_16(sdkp, sdp, lim, buffer); 2736 if (sector_size == -EOVERFLOW) 2737 goto got_data; 2738 if (sector_size == -ENODEV) 2739 return; 2740 if (sector_size < 0) 2741 sector_size = read_capacity_10(sdkp, sdp, buffer); 2742 if (sector_size < 0) 2743 return; 2744 } else { 2745 sector_size = read_capacity_10(sdkp, sdp, buffer); 2746 if (sector_size == -EOVERFLOW) 2747 goto got_data; 2748 if (sector_size < 0) 2749 return; 2750 if ((sizeof(sdkp->capacity) > 4) && 2751 (sdkp->capacity > 0xffffffffULL)) { 2752 int old_sector_size = sector_size; 2753 sd_printk(KERN_NOTICE, sdkp, "Very big device. " 2754 "Trying to use READ CAPACITY(16).\n"); 2755 sector_size = read_capacity_16(sdkp, sdp, lim, buffer); 2756 if (sector_size < 0) { 2757 sd_printk(KERN_NOTICE, sdkp, 2758 "Using 0xffffffff as device size\n"); 2759 sdkp->capacity = 1 + (sector_t) 0xffffffff; 2760 sector_size = old_sector_size; 2761 goto got_data; 2762 } 2763 /* Remember that READ CAPACITY(16) succeeded */ 2764 sdp->try_rc_10_first = 0; 2765 } 2766 } 2767 2768 /* Some devices are known to return the total number of blocks, 2769 * not the highest block number. Some devices have versions 2770 * which do this and others which do not. Some devices we might 2771 * suspect of doing this but we don't know for certain. 2772 * 2773 * If we know the reported capacity is wrong, decrement it. If 2774 * we can only guess, then assume the number of blocks is even 2775 * (usually true but not always) and err on the side of lowering 2776 * the capacity. 2777 */ 2778 if (sdp->fix_capacity || 2779 (sdp->guess_capacity && (sdkp->capacity & 0x01))) { 2780 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count " 2781 "from its reported value: %llu\n", 2782 (unsigned long long) sdkp->capacity); 2783 --sdkp->capacity; 2784 } 2785 2786 got_data: 2787 if (sector_size == 0) { 2788 sector_size = 512; 2789 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, " 2790 "assuming 512.\n"); 2791 } 2792 2793 if (sector_size != 512 && 2794 sector_size != 1024 && 2795 sector_size != 2048 && 2796 sector_size != 4096) { 2797 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n", 2798 sector_size); 2799 /* 2800 * The user might want to re-format the drive with 2801 * a supported sectorsize. Once this happens, it 2802 * would be relatively trivial to set the thing up. 2803 * For this reason, we leave the thing in the table. 2804 */ 2805 sdkp->capacity = 0; 2806 /* 2807 * set a bogus sector size so the normal read/write 2808 * logic in the block layer will eventually refuse any 2809 * request on this device without tripping over power 2810 * of two sector size assumptions 2811 */ 2812 sector_size = 512; 2813 } 2814 lim->logical_block_size = sector_size; 2815 lim->physical_block_size = sdkp->physical_block_size; 2816 sdkp->device->sector_size = sector_size; 2817 2818 if (sdkp->capacity > 0xffffffff) 2819 sdp->use_16_for_rw = 1; 2820 2821 } 2822 2823 /* 2824 * Print disk capacity 2825 */ 2826 static void 2827 sd_print_capacity(struct scsi_disk *sdkp, 2828 sector_t old_capacity) 2829 { 2830 int sector_size = sdkp->device->sector_size; 2831 char cap_str_2[10], cap_str_10[10]; 2832 2833 if (!sdkp->first_scan && old_capacity == sdkp->capacity) 2834 return; 2835 2836 string_get_size(sdkp->capacity, sector_size, 2837 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2)); 2838 string_get_size(sdkp->capacity, sector_size, 2839 STRING_UNITS_10, cap_str_10, sizeof(cap_str_10)); 2840 2841 sd_printk(KERN_NOTICE, sdkp, 2842 "%llu %d-byte logical blocks: (%s/%s)\n", 2843 (unsigned long long)sdkp->capacity, 2844 sector_size, cap_str_10, cap_str_2); 2845 2846 if (sdkp->physical_block_size != sector_size) 2847 sd_printk(KERN_NOTICE, sdkp, 2848 "%u-byte physical blocks\n", 2849 sdkp->physical_block_size); 2850 } 2851 2852 /* called with buffer of length 512 */ 2853 static inline int 2854 sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage, 2855 unsigned char *buffer, int len, struct scsi_mode_data *data, 2856 struct scsi_sense_hdr *sshdr) 2857 { 2858 /* 2859 * If we must use MODE SENSE(10), make sure that the buffer length 2860 * is at least 8 bytes so that the mode sense header fits. 2861 */ 2862 if (sdkp->device->use_10_for_ms && len < 8) 2863 len = 8; 2864 2865 return scsi_mode_sense(sdkp->device, dbd, modepage, 0, buffer, len, 2866 SD_TIMEOUT, sdkp->max_retries, data, sshdr); 2867 } 2868 2869 /* 2870 * read write protect setting, if possible - called only in sd_revalidate_disk() 2871 * called with buffer of length SD_BUF_SIZE 2872 */ 2873 static void 2874 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer) 2875 { 2876 int res; 2877 struct scsi_device *sdp = sdkp->device; 2878 struct scsi_mode_data data; 2879 int old_wp = sdkp->write_prot; 2880 2881 set_disk_ro(sdkp->disk, 0); 2882 if (sdp->skip_ms_page_3f) { 2883 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n"); 2884 return; 2885 } 2886 2887 if (sdp->use_192_bytes_for_3f) { 2888 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL); 2889 } else { 2890 /* 2891 * First attempt: ask for all pages (0x3F), but only 4 bytes. 2892 * We have to start carefully: some devices hang if we ask 2893 * for more than is available. 2894 */ 2895 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL); 2896 2897 /* 2898 * Second attempt: ask for page 0 When only page 0 is 2899 * implemented, a request for page 3F may return Sense Key 2900 * 5: Illegal Request, Sense Code 24: Invalid field in 2901 * CDB. 2902 */ 2903 if (res < 0) 2904 res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL); 2905 2906 /* 2907 * Third attempt: ask 255 bytes, as we did earlier. 2908 */ 2909 if (res < 0) 2910 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255, 2911 &data, NULL); 2912 } 2913 2914 if (res < 0) { 2915 sd_first_printk(KERN_WARNING, sdkp, 2916 "Test WP failed, assume Write Enabled\n"); 2917 } else { 2918 sdkp->write_prot = ((data.device_specific & 0x80) != 0); 2919 set_disk_ro(sdkp->disk, sdkp->write_prot); 2920 if (sdkp->first_scan || old_wp != sdkp->write_prot) { 2921 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n", 2922 sdkp->write_prot ? "on" : "off"); 2923 sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer); 2924 } 2925 } 2926 } 2927 2928 /* 2929 * sd_read_cache_type - called only from sd_revalidate_disk() 2930 * called with buffer of length SD_BUF_SIZE 2931 */ 2932 static void 2933 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer) 2934 { 2935 int len = 0, res; 2936 struct scsi_device *sdp = sdkp->device; 2937 2938 int dbd; 2939 int modepage; 2940 int first_len; 2941 struct scsi_mode_data data; 2942 struct scsi_sense_hdr sshdr; 2943 int old_wce = sdkp->WCE; 2944 int old_rcd = sdkp->RCD; 2945 int old_dpofua = sdkp->DPOFUA; 2946 2947 2948 if (sdkp->cache_override) 2949 return; 2950 2951 first_len = 4; 2952 if (sdp->skip_ms_page_8) { 2953 if (sdp->type == TYPE_RBC) 2954 goto defaults; 2955 else { 2956 if (sdp->skip_ms_page_3f) 2957 goto defaults; 2958 modepage = 0x3F; 2959 if (sdp->use_192_bytes_for_3f) 2960 first_len = 192; 2961 dbd = 0; 2962 } 2963 } else if (sdp->type == TYPE_RBC) { 2964 modepage = 6; 2965 dbd = 8; 2966 } else { 2967 modepage = 8; 2968 dbd = 0; 2969 } 2970 2971 /* cautiously ask */ 2972 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len, 2973 &data, &sshdr); 2974 2975 if (res < 0) 2976 goto bad_sense; 2977 2978 if (!data.header_length) { 2979 modepage = 6; 2980 first_len = 0; 2981 sd_first_printk(KERN_ERR, sdkp, 2982 "Missing header in MODE_SENSE response\n"); 2983 } 2984 2985 /* that went OK, now ask for the proper length */ 2986 len = data.length; 2987 2988 /* 2989 * We're only interested in the first three bytes, actually. 2990 * But the data cache page is defined for the first 20. 2991 */ 2992 if (len < 3) 2993 goto bad_sense; 2994 else if (len > SD_BUF_SIZE) { 2995 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter " 2996 "data from %d to %d bytes\n", len, SD_BUF_SIZE); 2997 len = SD_BUF_SIZE; 2998 } 2999 if (modepage == 0x3F && sdp->use_192_bytes_for_3f) 3000 len = 192; 3001 3002 /* Get the data */ 3003 if (len > first_len) 3004 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len, 3005 &data, &sshdr); 3006 3007 if (!res) { 3008 int offset = data.header_length + data.block_descriptor_length; 3009 3010 while (offset < len) { 3011 u8 page_code = buffer[offset] & 0x3F; 3012 u8 spf = buffer[offset] & 0x40; 3013 3014 if (page_code == 8 || page_code == 6) { 3015 /* We're interested only in the first 3 bytes. 3016 */ 3017 if (len - offset <= 2) { 3018 sd_first_printk(KERN_ERR, sdkp, 3019 "Incomplete mode parameter " 3020 "data\n"); 3021 goto defaults; 3022 } else { 3023 modepage = page_code; 3024 goto Page_found; 3025 } 3026 } else { 3027 /* Go to the next page */ 3028 if (spf && len - offset > 3) 3029 offset += 4 + (buffer[offset+2] << 8) + 3030 buffer[offset+3]; 3031 else if (!spf && len - offset > 1) 3032 offset += 2 + buffer[offset+1]; 3033 else { 3034 sd_first_printk(KERN_ERR, sdkp, 3035 "Incomplete mode " 3036 "parameter data\n"); 3037 goto defaults; 3038 } 3039 } 3040 } 3041 3042 sd_first_printk(KERN_WARNING, sdkp, 3043 "No Caching mode page found\n"); 3044 goto defaults; 3045 3046 Page_found: 3047 if (modepage == 8) { 3048 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0); 3049 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0); 3050 } else { 3051 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0); 3052 sdkp->RCD = 0; 3053 } 3054 3055 sdkp->DPOFUA = (data.device_specific & 0x10) != 0; 3056 if (sdp->broken_fua) { 3057 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n"); 3058 sdkp->DPOFUA = 0; 3059 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw && 3060 !sdkp->device->use_16_for_rw) { 3061 sd_first_printk(KERN_NOTICE, sdkp, 3062 "Uses READ/WRITE(6), disabling FUA\n"); 3063 sdkp->DPOFUA = 0; 3064 } 3065 3066 /* No cache flush allowed for write protected devices */ 3067 if (sdkp->WCE && sdkp->write_prot) 3068 sdkp->WCE = 0; 3069 3070 if (sdkp->first_scan || old_wce != sdkp->WCE || 3071 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA) 3072 sd_printk(KERN_NOTICE, sdkp, 3073 "Write cache: %s, read cache: %s, %s\n", 3074 sdkp->WCE ? "enabled" : "disabled", 3075 sdkp->RCD ? "disabled" : "enabled", 3076 sdkp->DPOFUA ? "supports DPO and FUA" 3077 : "doesn't support DPO or FUA"); 3078 3079 return; 3080 } 3081 3082 bad_sense: 3083 if (res == -EIO && scsi_sense_valid(&sshdr) && 3084 sshdr.sense_key == ILLEGAL_REQUEST && 3085 sshdr.asc == 0x24 && sshdr.ascq == 0x0) 3086 /* Invalid field in CDB */ 3087 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n"); 3088 else 3089 sd_first_printk(KERN_ERR, sdkp, 3090 "Asking for cache data failed\n"); 3091 3092 defaults: 3093 if (sdp->wce_default_on) { 3094 sd_first_printk(KERN_NOTICE, sdkp, 3095 "Assuming drive cache: write back\n"); 3096 sdkp->WCE = 1; 3097 } else { 3098 sd_first_printk(KERN_WARNING, sdkp, 3099 "Assuming drive cache: write through\n"); 3100 sdkp->WCE = 0; 3101 } 3102 sdkp->RCD = 0; 3103 sdkp->DPOFUA = 0; 3104 } 3105 3106 static bool sd_is_perm_stream(struct scsi_disk *sdkp, unsigned int stream_id) 3107 { 3108 u8 cdb[16] = { SERVICE_ACTION_IN_16, SAI_GET_STREAM_STATUS }; 3109 struct { 3110 struct scsi_stream_status_header h; 3111 struct scsi_stream_status s; 3112 } buf; 3113 struct scsi_device *sdev = sdkp->device; 3114 struct scsi_sense_hdr sshdr; 3115 const struct scsi_exec_args exec_args = { 3116 .sshdr = &sshdr, 3117 }; 3118 int res; 3119 3120 put_unaligned_be16(stream_id, &cdb[4]); 3121 put_unaligned_be32(sizeof(buf), &cdb[10]); 3122 3123 res = scsi_execute_cmd(sdev, cdb, REQ_OP_DRV_IN, &buf, sizeof(buf), 3124 SD_TIMEOUT, sdkp->max_retries, &exec_args); 3125 if (res < 0) 3126 return false; 3127 if (scsi_status_is_check_condition(res) && scsi_sense_valid(&sshdr)) 3128 sd_print_sense_hdr(sdkp, &sshdr); 3129 if (res) 3130 return false; 3131 if (get_unaligned_be32(&buf.h.len) < sizeof(struct scsi_stream_status)) 3132 return false; 3133 return buf.h.stream_status[0].perm; 3134 } 3135 3136 static void sd_read_io_hints(struct scsi_disk *sdkp, unsigned char *buffer) 3137 { 3138 struct scsi_device *sdp = sdkp->device; 3139 const struct scsi_io_group_descriptor *desc, *start, *end; 3140 u16 permanent_stream_count_old; 3141 struct scsi_sense_hdr sshdr; 3142 struct scsi_mode_data data; 3143 int res; 3144 3145 res = scsi_mode_sense(sdp, /*dbd=*/0x8, /*modepage=*/0x0a, 3146 /*subpage=*/0x05, buffer, SD_BUF_SIZE, SD_TIMEOUT, 3147 sdkp->max_retries, &data, &sshdr); 3148 if (res < 0) 3149 return; 3150 start = (void *)buffer + data.header_length + 16; 3151 end = (void *)buffer + ALIGN_DOWN(data.header_length + data.length, 3152 sizeof(*end)); 3153 /* 3154 * From "SBC-5 Constrained Streams with Data Lifetimes": Device severs 3155 * should assign the lowest numbered stream identifiers to permanent 3156 * streams. 3157 */ 3158 for (desc = start; desc < end; desc++) 3159 if (!desc->st_enble || !sd_is_perm_stream(sdkp, desc - start)) 3160 break; 3161 permanent_stream_count_old = sdkp->permanent_stream_count; 3162 sdkp->permanent_stream_count = desc - start; 3163 if (sdkp->rscs && sdkp->permanent_stream_count < 2) 3164 sd_printk(KERN_INFO, sdkp, 3165 "Unexpected: RSCS has been set and the permanent stream count is %u\n", 3166 sdkp->permanent_stream_count); 3167 else if (sdkp->permanent_stream_count != permanent_stream_count_old) 3168 sd_printk(KERN_INFO, sdkp, "permanent stream count = %d\n", 3169 sdkp->permanent_stream_count); 3170 } 3171 3172 /* 3173 * The ATO bit indicates whether the DIF application tag is available 3174 * for use by the operating system. 3175 */ 3176 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer) 3177 { 3178 int res, offset; 3179 struct scsi_device *sdp = sdkp->device; 3180 struct scsi_mode_data data; 3181 struct scsi_sense_hdr sshdr; 3182 3183 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 3184 return; 3185 3186 if (sdkp->protection_type == 0) 3187 return; 3188 3189 res = scsi_mode_sense(sdp, 1, 0x0a, 0, buffer, 36, SD_TIMEOUT, 3190 sdkp->max_retries, &data, &sshdr); 3191 3192 if (res < 0 || !data.header_length || 3193 data.length < 6) { 3194 sd_first_printk(KERN_WARNING, sdkp, 3195 "getting Control mode page failed, assume no ATO\n"); 3196 3197 if (res == -EIO && scsi_sense_valid(&sshdr)) 3198 sd_print_sense_hdr(sdkp, &sshdr); 3199 3200 return; 3201 } 3202 3203 offset = data.header_length + data.block_descriptor_length; 3204 3205 if ((buffer[offset] & 0x3f) != 0x0a) { 3206 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n"); 3207 return; 3208 } 3209 3210 if ((buffer[offset + 5] & 0x80) == 0) 3211 return; 3212 3213 sdkp->ATO = 1; 3214 3215 return; 3216 } 3217 3218 static unsigned int sd_discard_mode(struct scsi_disk *sdkp) 3219 { 3220 if (!sdkp->lbpvpd) { 3221 /* LBP VPD page not provided */ 3222 if (sdkp->max_unmap_blocks) 3223 return SD_LBP_UNMAP; 3224 return SD_LBP_WS16; 3225 } 3226 3227 /* LBP VPD page tells us what to use */ 3228 if (sdkp->lbpu && sdkp->max_unmap_blocks) 3229 return SD_LBP_UNMAP; 3230 if (sdkp->lbpws) 3231 return SD_LBP_WS16; 3232 if (sdkp->lbpws10) 3233 return SD_LBP_WS10; 3234 return SD_LBP_DISABLE; 3235 } 3236 3237 /* 3238 * Query disk device for preferred I/O sizes. 3239 */ 3240 static void sd_read_block_limits(struct scsi_disk *sdkp, 3241 struct queue_limits *lim) 3242 { 3243 struct scsi_vpd *vpd; 3244 3245 rcu_read_lock(); 3246 3247 vpd = rcu_dereference(sdkp->device->vpd_pgb0); 3248 if (!vpd || vpd->len < 16) 3249 goto out; 3250 3251 sdkp->min_xfer_blocks = get_unaligned_be16(&vpd->data[6]); 3252 sdkp->max_xfer_blocks = get_unaligned_be32(&vpd->data[8]); 3253 sdkp->opt_xfer_blocks = get_unaligned_be32(&vpd->data[12]); 3254 3255 if (vpd->len >= 64) { 3256 unsigned int lba_count, desc_count; 3257 3258 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&vpd->data[36]); 3259 3260 if (!sdkp->lbpme) 3261 goto out; 3262 3263 lba_count = get_unaligned_be32(&vpd->data[20]); 3264 desc_count = get_unaligned_be32(&vpd->data[24]); 3265 3266 if (lba_count && desc_count) 3267 sdkp->max_unmap_blocks = lba_count; 3268 3269 sdkp->unmap_granularity = get_unaligned_be32(&vpd->data[28]); 3270 3271 if (vpd->data[32] & 0x80) 3272 sdkp->unmap_alignment = 3273 get_unaligned_be32(&vpd->data[32]) & ~(1 << 31); 3274 3275 sd_config_discard(sdkp, lim, sd_discard_mode(sdkp)); 3276 } 3277 3278 out: 3279 rcu_read_unlock(); 3280 } 3281 3282 /* Parse the Block Limits Extension VPD page (0xb7) */ 3283 static void sd_read_block_limits_ext(struct scsi_disk *sdkp) 3284 { 3285 struct scsi_vpd *vpd; 3286 3287 rcu_read_lock(); 3288 vpd = rcu_dereference(sdkp->device->vpd_pgb7); 3289 if (vpd && vpd->len >= 2) 3290 sdkp->rscs = vpd->data[5] & 1; 3291 rcu_read_unlock(); 3292 } 3293 3294 /* Query block device characteristics */ 3295 static void sd_read_block_characteristics(struct scsi_disk *sdkp, 3296 struct queue_limits *lim) 3297 { 3298 struct request_queue *q = sdkp->disk->queue; 3299 struct scsi_vpd *vpd; 3300 u16 rot; 3301 3302 rcu_read_lock(); 3303 vpd = rcu_dereference(sdkp->device->vpd_pgb1); 3304 3305 if (!vpd || vpd->len < 8) { 3306 rcu_read_unlock(); 3307 return; 3308 } 3309 3310 rot = get_unaligned_be16(&vpd->data[4]); 3311 sdkp->zoned = (vpd->data[8] >> 4) & 3; 3312 rcu_read_unlock(); 3313 3314 if (rot == 1) { 3315 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 3316 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q); 3317 } 3318 3319 3320 #ifdef CONFIG_BLK_DEV_ZONED /* sd_probe rejects ZBD devices early otherwise */ 3321 if (sdkp->device->type == TYPE_ZBC) { 3322 lim->zoned = true; 3323 3324 /* 3325 * Per ZBC and ZAC specifications, writes in sequential write 3326 * required zones of host-managed devices must be aligned to 3327 * the device physical block size. 3328 */ 3329 lim->zone_write_granularity = sdkp->physical_block_size; 3330 } else { 3331 /* 3332 * Host-aware devices are treated as conventional. 3333 */ 3334 lim->zoned = false; 3335 } 3336 #endif /* CONFIG_BLK_DEV_ZONED */ 3337 3338 if (!sdkp->first_scan) 3339 return; 3340 3341 if (lim->zoned) 3342 sd_printk(KERN_NOTICE, sdkp, "Host-managed zoned block device\n"); 3343 else if (sdkp->zoned == 1) 3344 sd_printk(KERN_NOTICE, sdkp, "Host-aware SMR disk used as regular disk\n"); 3345 else if (sdkp->zoned == 2) 3346 sd_printk(KERN_NOTICE, sdkp, "Drive-managed SMR disk\n"); 3347 } 3348 3349 /** 3350 * sd_read_block_provisioning - Query provisioning VPD page 3351 * @sdkp: disk to query 3352 */ 3353 static void sd_read_block_provisioning(struct scsi_disk *sdkp) 3354 { 3355 struct scsi_vpd *vpd; 3356 3357 if (sdkp->lbpme == 0) 3358 return; 3359 3360 rcu_read_lock(); 3361 vpd = rcu_dereference(sdkp->device->vpd_pgb2); 3362 3363 if (!vpd || vpd->len < 8) { 3364 rcu_read_unlock(); 3365 return; 3366 } 3367 3368 sdkp->lbpvpd = 1; 3369 sdkp->lbpu = (vpd->data[5] >> 7) & 1; /* UNMAP */ 3370 sdkp->lbpws = (vpd->data[5] >> 6) & 1; /* WRITE SAME(16) w/ UNMAP */ 3371 sdkp->lbpws10 = (vpd->data[5] >> 5) & 1; /* WRITE SAME(10) w/ UNMAP */ 3372 rcu_read_unlock(); 3373 } 3374 3375 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer) 3376 { 3377 struct scsi_device *sdev = sdkp->device; 3378 3379 if (sdev->host->no_write_same) { 3380 sdev->no_write_same = 1; 3381 3382 return; 3383 } 3384 3385 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY, 0) < 0) { 3386 struct scsi_vpd *vpd; 3387 3388 sdev->no_report_opcodes = 1; 3389 3390 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION 3391 * CODES is unsupported and the device has an ATA 3392 * Information VPD page (SAT). 3393 */ 3394 rcu_read_lock(); 3395 vpd = rcu_dereference(sdev->vpd_pg89); 3396 if (vpd) 3397 sdev->no_write_same = 1; 3398 rcu_read_unlock(); 3399 } 3400 3401 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16, 0) == 1) 3402 sdkp->ws16 = 1; 3403 3404 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME, 0) == 1) 3405 sdkp->ws10 = 1; 3406 } 3407 3408 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer) 3409 { 3410 struct scsi_device *sdev = sdkp->device; 3411 3412 if (!sdev->security_supported) 3413 return; 3414 3415 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3416 SECURITY_PROTOCOL_IN, 0) == 1 && 3417 scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3418 SECURITY_PROTOCOL_OUT, 0) == 1) 3419 sdkp->security = 1; 3420 } 3421 3422 static inline sector_t sd64_to_sectors(struct scsi_disk *sdkp, u8 *buf) 3423 { 3424 return logical_to_sectors(sdkp->device, get_unaligned_be64(buf)); 3425 } 3426 3427 /** 3428 * sd_read_cpr - Query concurrent positioning ranges 3429 * @sdkp: disk to query 3430 */ 3431 static void sd_read_cpr(struct scsi_disk *sdkp) 3432 { 3433 struct blk_independent_access_ranges *iars = NULL; 3434 unsigned char *buffer = NULL; 3435 unsigned int nr_cpr = 0; 3436 int i, vpd_len, buf_len = SD_BUF_SIZE; 3437 u8 *desc; 3438 3439 /* 3440 * We need to have the capacity set first for the block layer to be 3441 * able to check the ranges. 3442 */ 3443 if (sdkp->first_scan) 3444 return; 3445 3446 if (!sdkp->capacity) 3447 goto out; 3448 3449 /* 3450 * Concurrent Positioning Ranges VPD: there can be at most 256 ranges, 3451 * leading to a maximum page size of 64 + 256*32 bytes. 3452 */ 3453 buf_len = 64 + 256*32; 3454 buffer = kmalloc(buf_len, GFP_KERNEL); 3455 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb9, buffer, buf_len)) 3456 goto out; 3457 3458 /* We must have at least a 64B header and one 32B range descriptor */ 3459 vpd_len = get_unaligned_be16(&buffer[2]) + 4; 3460 if (vpd_len > buf_len || vpd_len < 64 + 32 || (vpd_len & 31)) { 3461 sd_printk(KERN_ERR, sdkp, 3462 "Invalid Concurrent Positioning Ranges VPD page\n"); 3463 goto out; 3464 } 3465 3466 nr_cpr = (vpd_len - 64) / 32; 3467 if (nr_cpr == 1) { 3468 nr_cpr = 0; 3469 goto out; 3470 } 3471 3472 iars = disk_alloc_independent_access_ranges(sdkp->disk, nr_cpr); 3473 if (!iars) { 3474 nr_cpr = 0; 3475 goto out; 3476 } 3477 3478 desc = &buffer[64]; 3479 for (i = 0; i < nr_cpr; i++, desc += 32) { 3480 if (desc[0] != i) { 3481 sd_printk(KERN_ERR, sdkp, 3482 "Invalid Concurrent Positioning Range number\n"); 3483 nr_cpr = 0; 3484 break; 3485 } 3486 3487 iars->ia_range[i].sector = sd64_to_sectors(sdkp, desc + 8); 3488 iars->ia_range[i].nr_sectors = sd64_to_sectors(sdkp, desc + 16); 3489 } 3490 3491 out: 3492 disk_set_independent_access_ranges(sdkp->disk, iars); 3493 if (nr_cpr && sdkp->nr_actuators != nr_cpr) { 3494 sd_printk(KERN_NOTICE, sdkp, 3495 "%u concurrent positioning ranges\n", nr_cpr); 3496 sdkp->nr_actuators = nr_cpr; 3497 } 3498 3499 kfree(buffer); 3500 } 3501 3502 static bool sd_validate_min_xfer_size(struct scsi_disk *sdkp) 3503 { 3504 struct scsi_device *sdp = sdkp->device; 3505 unsigned int min_xfer_bytes = 3506 logical_to_bytes(sdp, sdkp->min_xfer_blocks); 3507 3508 if (sdkp->min_xfer_blocks == 0) 3509 return false; 3510 3511 if (min_xfer_bytes & (sdkp->physical_block_size - 1)) { 3512 sd_first_printk(KERN_WARNING, sdkp, 3513 "Preferred minimum I/O size %u bytes not a " \ 3514 "multiple of physical block size (%u bytes)\n", 3515 min_xfer_bytes, sdkp->physical_block_size); 3516 sdkp->min_xfer_blocks = 0; 3517 return false; 3518 } 3519 3520 sd_first_printk(KERN_INFO, sdkp, "Preferred minimum I/O size %u bytes\n", 3521 min_xfer_bytes); 3522 return true; 3523 } 3524 3525 /* 3526 * Determine the device's preferred I/O size for reads and writes 3527 * unless the reported value is unreasonably small, large, not a 3528 * multiple of the physical block size, or simply garbage. 3529 */ 3530 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp, 3531 unsigned int dev_max) 3532 { 3533 struct scsi_device *sdp = sdkp->device; 3534 unsigned int opt_xfer_bytes = 3535 logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 3536 unsigned int min_xfer_bytes = 3537 logical_to_bytes(sdp, sdkp->min_xfer_blocks); 3538 3539 if (sdkp->opt_xfer_blocks == 0) 3540 return false; 3541 3542 if (sdkp->opt_xfer_blocks > dev_max) { 3543 sd_first_printk(KERN_WARNING, sdkp, 3544 "Optimal transfer size %u logical blocks " \ 3545 "> dev_max (%u logical blocks)\n", 3546 sdkp->opt_xfer_blocks, dev_max); 3547 return false; 3548 } 3549 3550 if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) { 3551 sd_first_printk(KERN_WARNING, sdkp, 3552 "Optimal transfer size %u logical blocks " \ 3553 "> sd driver limit (%u logical blocks)\n", 3554 sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS); 3555 return false; 3556 } 3557 3558 if (opt_xfer_bytes < PAGE_SIZE) { 3559 sd_first_printk(KERN_WARNING, sdkp, 3560 "Optimal transfer size %u bytes < " \ 3561 "PAGE_SIZE (%u bytes)\n", 3562 opt_xfer_bytes, (unsigned int)PAGE_SIZE); 3563 return false; 3564 } 3565 3566 if (min_xfer_bytes && opt_xfer_bytes % min_xfer_bytes) { 3567 sd_first_printk(KERN_WARNING, sdkp, 3568 "Optimal transfer size %u bytes not a " \ 3569 "multiple of preferred minimum block " \ 3570 "size (%u bytes)\n", 3571 opt_xfer_bytes, min_xfer_bytes); 3572 return false; 3573 } 3574 3575 if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) { 3576 sd_first_printk(KERN_WARNING, sdkp, 3577 "Optimal transfer size %u bytes not a " \ 3578 "multiple of physical block size (%u bytes)\n", 3579 opt_xfer_bytes, sdkp->physical_block_size); 3580 return false; 3581 } 3582 3583 sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n", 3584 opt_xfer_bytes); 3585 return true; 3586 } 3587 3588 static void sd_read_block_zero(struct scsi_disk *sdkp) 3589 { 3590 unsigned int buf_len = sdkp->device->sector_size; 3591 char *buffer, cmd[10] = { }; 3592 3593 buffer = kmalloc(buf_len, GFP_KERNEL); 3594 if (!buffer) 3595 return; 3596 3597 cmd[0] = READ_10; 3598 put_unaligned_be32(0, &cmd[2]); /* Logical block address 0 */ 3599 put_unaligned_be16(1, &cmd[7]); /* Transfer 1 logical block */ 3600 3601 scsi_execute_cmd(sdkp->device, cmd, REQ_OP_DRV_IN, buffer, buf_len, 3602 SD_TIMEOUT, sdkp->max_retries, NULL); 3603 kfree(buffer); 3604 } 3605 3606 /** 3607 * sd_revalidate_disk - called the first time a new disk is seen, 3608 * performs disk spin up, read_capacity, etc. 3609 * @disk: struct gendisk we care about 3610 **/ 3611 static int sd_revalidate_disk(struct gendisk *disk) 3612 { 3613 struct scsi_disk *sdkp = scsi_disk(disk); 3614 struct scsi_device *sdp = sdkp->device; 3615 struct request_queue *q = sdkp->disk->queue; 3616 sector_t old_capacity = sdkp->capacity; 3617 struct queue_limits lim; 3618 unsigned char *buffer; 3619 unsigned int dev_max; 3620 int err; 3621 3622 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, 3623 "sd_revalidate_disk\n")); 3624 3625 /* 3626 * If the device is offline, don't try and read capacity or any 3627 * of the other niceties. 3628 */ 3629 if (!scsi_device_online(sdp)) 3630 goto out; 3631 3632 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL); 3633 if (!buffer) { 3634 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory " 3635 "allocation failure.\n"); 3636 goto out; 3637 } 3638 3639 sd_spinup_disk(sdkp); 3640 3641 lim = queue_limits_start_update(sdkp->disk->queue); 3642 3643 /* 3644 * Without media there is no reason to ask; moreover, some devices 3645 * react badly if we do. 3646 */ 3647 if (sdkp->media_present) { 3648 sd_read_capacity(sdkp, &lim, buffer); 3649 /* 3650 * Some USB/UAS devices return generic values for mode pages 3651 * until the media has been accessed. Trigger a READ operation 3652 * to force the device to populate mode pages. 3653 */ 3654 if (sdp->read_before_ms) 3655 sd_read_block_zero(sdkp); 3656 /* 3657 * set the default to rotational. All non-rotational devices 3658 * support the block characteristics VPD page, which will 3659 * cause this to be updated correctly and any device which 3660 * doesn't support it should be treated as rotational. 3661 */ 3662 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q); 3663 blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q); 3664 3665 if (scsi_device_supports_vpd(sdp)) { 3666 sd_read_block_provisioning(sdkp); 3667 sd_read_block_limits(sdkp, &lim); 3668 sd_read_block_limits_ext(sdkp); 3669 sd_read_block_characteristics(sdkp, &lim); 3670 sd_zbc_read_zones(sdkp, &lim, buffer); 3671 sd_read_cpr(sdkp); 3672 } 3673 3674 sd_print_capacity(sdkp, old_capacity); 3675 3676 sd_read_write_protect_flag(sdkp, buffer); 3677 sd_read_cache_type(sdkp, buffer); 3678 sd_read_io_hints(sdkp, buffer); 3679 sd_read_app_tag_own(sdkp, buffer); 3680 sd_read_write_same(sdkp, buffer); 3681 sd_read_security(sdkp, buffer); 3682 sd_config_protection(sdkp, &lim); 3683 } 3684 3685 /* 3686 * We now have all cache related info, determine how we deal 3687 * with flush requests. 3688 */ 3689 sd_set_flush_flag(sdkp); 3690 3691 /* Initial block count limit based on CDB TRANSFER LENGTH field size. */ 3692 dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS; 3693 3694 /* Some devices report a maximum block count for READ/WRITE requests. */ 3695 dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks); 3696 lim.max_dev_sectors = logical_to_sectors(sdp, dev_max); 3697 3698 if (sd_validate_min_xfer_size(sdkp)) 3699 lim.io_min = logical_to_bytes(sdp, sdkp->min_xfer_blocks); 3700 else 3701 lim.io_min = 0; 3702 3703 /* 3704 * Limit default to SCSI host optimal sector limit if set. There may be 3705 * an impact on performance for when the size of a request exceeds this 3706 * host limit. 3707 */ 3708 lim.io_opt = sdp->host->opt_sectors << SECTOR_SHIFT; 3709 if (sd_validate_opt_xfer_size(sdkp, dev_max)) { 3710 lim.io_opt = min_not_zero(lim.io_opt, 3711 logical_to_bytes(sdp, sdkp->opt_xfer_blocks)); 3712 } 3713 3714 sdkp->first_scan = 0; 3715 3716 set_capacity_and_notify(disk, logical_to_sectors(sdp, sdkp->capacity)); 3717 sd_config_write_same(sdkp, &lim); 3718 kfree(buffer); 3719 3720 blk_mq_freeze_queue(sdkp->disk->queue); 3721 err = queue_limits_commit_update(sdkp->disk->queue, &lim); 3722 blk_mq_unfreeze_queue(sdkp->disk->queue); 3723 if (err) 3724 return err; 3725 3726 /* 3727 * For a zoned drive, revalidating the zones can be done only once 3728 * the gendisk capacity is set. So if this fails, set back the gendisk 3729 * capacity to 0. 3730 */ 3731 if (sd_zbc_revalidate_zones(sdkp)) 3732 set_capacity_and_notify(disk, 0); 3733 3734 out: 3735 return 0; 3736 } 3737 3738 /** 3739 * sd_unlock_native_capacity - unlock native capacity 3740 * @disk: struct gendisk to set capacity for 3741 * 3742 * Block layer calls this function if it detects that partitions 3743 * on @disk reach beyond the end of the device. If the SCSI host 3744 * implements ->unlock_native_capacity() method, it's invoked to 3745 * give it a chance to adjust the device capacity. 3746 * 3747 * CONTEXT: 3748 * Defined by block layer. Might sleep. 3749 */ 3750 static void sd_unlock_native_capacity(struct gendisk *disk) 3751 { 3752 struct scsi_device *sdev = scsi_disk(disk)->device; 3753 3754 if (sdev->host->hostt->unlock_native_capacity) 3755 sdev->host->hostt->unlock_native_capacity(sdev); 3756 } 3757 3758 /** 3759 * sd_format_disk_name - format disk name 3760 * @prefix: name prefix - ie. "sd" for SCSI disks 3761 * @index: index of the disk to format name for 3762 * @buf: output buffer 3763 * @buflen: length of the output buffer 3764 * 3765 * SCSI disk names starts at sda. The 26th device is sdz and the 3766 * 27th is sdaa. The last one for two lettered suffix is sdzz 3767 * which is followed by sdaaa. 3768 * 3769 * This is basically 26 base counting with one extra 'nil' entry 3770 * at the beginning from the second digit on and can be 3771 * determined using similar method as 26 base conversion with the 3772 * index shifted -1 after each digit is computed. 3773 * 3774 * CONTEXT: 3775 * Don't care. 3776 * 3777 * RETURNS: 3778 * 0 on success, -errno on failure. 3779 */ 3780 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen) 3781 { 3782 const int base = 'z' - 'a' + 1; 3783 char *begin = buf + strlen(prefix); 3784 char *end = buf + buflen; 3785 char *p; 3786 int unit; 3787 3788 p = end - 1; 3789 *p = '\0'; 3790 unit = base; 3791 do { 3792 if (p == begin) 3793 return -EINVAL; 3794 *--p = 'a' + (index % unit); 3795 index = (index / unit) - 1; 3796 } while (index >= 0); 3797 3798 memmove(begin, p, end - p); 3799 memcpy(buf, prefix, strlen(prefix)); 3800 3801 return 0; 3802 } 3803 3804 /** 3805 * sd_probe - called during driver initialization and whenever a 3806 * new scsi device is attached to the system. It is called once 3807 * for each scsi device (not just disks) present. 3808 * @dev: pointer to device object 3809 * 3810 * Returns 0 if successful (or not interested in this scsi device 3811 * (e.g. scanner)); 1 when there is an error. 3812 * 3813 * Note: this function is invoked from the scsi mid-level. 3814 * This function sets up the mapping between a given 3815 * <host,channel,id,lun> (found in sdp) and new device name 3816 * (e.g. /dev/sda). More precisely it is the block device major 3817 * and minor number that is chosen here. 3818 * 3819 * Assume sd_probe is not re-entrant (for time being) 3820 * Also think about sd_probe() and sd_remove() running coincidentally. 3821 **/ 3822 static int sd_probe(struct device *dev) 3823 { 3824 struct scsi_device *sdp = to_scsi_device(dev); 3825 struct scsi_disk *sdkp; 3826 struct gendisk *gd; 3827 int index; 3828 int error; 3829 3830 scsi_autopm_get_device(sdp); 3831 error = -ENODEV; 3832 if (sdp->type != TYPE_DISK && 3833 sdp->type != TYPE_ZBC && 3834 sdp->type != TYPE_MOD && 3835 sdp->type != TYPE_RBC) 3836 goto out; 3837 3838 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) && sdp->type == TYPE_ZBC) { 3839 sdev_printk(KERN_WARNING, sdp, 3840 "Unsupported ZBC host-managed device.\n"); 3841 goto out; 3842 } 3843 3844 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp, 3845 "sd_probe\n")); 3846 3847 error = -ENOMEM; 3848 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL); 3849 if (!sdkp) 3850 goto out; 3851 3852 gd = blk_mq_alloc_disk_for_queue(sdp->request_queue, 3853 &sd_bio_compl_lkclass); 3854 if (!gd) 3855 goto out_free; 3856 3857 index = ida_alloc(&sd_index_ida, GFP_KERNEL); 3858 if (index < 0) { 3859 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n"); 3860 goto out_put; 3861 } 3862 3863 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN); 3864 if (error) { 3865 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n"); 3866 goto out_free_index; 3867 } 3868 3869 sdkp->device = sdp; 3870 sdkp->disk = gd; 3871 sdkp->index = index; 3872 sdkp->max_retries = SD_MAX_RETRIES; 3873 atomic_set(&sdkp->openers, 0); 3874 atomic_set(&sdkp->device->ioerr_cnt, 0); 3875 3876 if (!sdp->request_queue->rq_timeout) { 3877 if (sdp->type != TYPE_MOD) 3878 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT); 3879 else 3880 blk_queue_rq_timeout(sdp->request_queue, 3881 SD_MOD_TIMEOUT); 3882 } 3883 3884 device_initialize(&sdkp->disk_dev); 3885 sdkp->disk_dev.parent = get_device(dev); 3886 sdkp->disk_dev.class = &sd_disk_class; 3887 dev_set_name(&sdkp->disk_dev, "%s", dev_name(dev)); 3888 3889 error = device_add(&sdkp->disk_dev); 3890 if (error) { 3891 put_device(&sdkp->disk_dev); 3892 goto out; 3893 } 3894 3895 dev_set_drvdata(dev, sdkp); 3896 3897 gd->major = sd_major((index & 0xf0) >> 4); 3898 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00); 3899 gd->minors = SD_MINORS; 3900 3901 gd->fops = &sd_fops; 3902 gd->private_data = sdkp; 3903 3904 /* defaults, until the device tells us otherwise */ 3905 sdp->sector_size = 512; 3906 sdkp->capacity = 0; 3907 sdkp->media_present = 1; 3908 sdkp->write_prot = 0; 3909 sdkp->cache_override = 0; 3910 sdkp->WCE = 0; 3911 sdkp->RCD = 0; 3912 sdkp->ATO = 0; 3913 sdkp->first_scan = 1; 3914 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS; 3915 3916 sd_revalidate_disk(gd); 3917 3918 if (sdp->removable) { 3919 gd->flags |= GENHD_FL_REMOVABLE; 3920 gd->events |= DISK_EVENT_MEDIA_CHANGE; 3921 gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT; 3922 } 3923 3924 blk_pm_runtime_init(sdp->request_queue, dev); 3925 if (sdp->rpm_autosuspend) { 3926 pm_runtime_set_autosuspend_delay(dev, 3927 sdp->host->rpm_autosuspend_delay); 3928 } 3929 3930 error = device_add_disk(dev, gd, NULL); 3931 if (error) { 3932 device_unregister(&sdkp->disk_dev); 3933 put_disk(gd); 3934 goto out; 3935 } 3936 3937 if (sdkp->security) { 3938 sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit); 3939 if (sdkp->opal_dev) 3940 sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n"); 3941 } 3942 3943 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n", 3944 sdp->removable ? "removable " : ""); 3945 scsi_autopm_put_device(sdp); 3946 3947 return 0; 3948 3949 out_free_index: 3950 ida_free(&sd_index_ida, index); 3951 out_put: 3952 put_disk(gd); 3953 out_free: 3954 kfree(sdkp); 3955 out: 3956 scsi_autopm_put_device(sdp); 3957 return error; 3958 } 3959 3960 /** 3961 * sd_remove - called whenever a scsi disk (previously recognized by 3962 * sd_probe) is detached from the system. It is called (potentially 3963 * multiple times) during sd module unload. 3964 * @dev: pointer to device object 3965 * 3966 * Note: this function is invoked from the scsi mid-level. 3967 * This function potentially frees up a device name (e.g. /dev/sdc) 3968 * that could be re-used by a subsequent sd_probe(). 3969 * This function is not called when the built-in sd driver is "exit-ed". 3970 **/ 3971 static int sd_remove(struct device *dev) 3972 { 3973 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3974 3975 scsi_autopm_get_device(sdkp->device); 3976 3977 device_del(&sdkp->disk_dev); 3978 del_gendisk(sdkp->disk); 3979 if (!sdkp->suspended) 3980 sd_shutdown(dev); 3981 3982 put_disk(sdkp->disk); 3983 return 0; 3984 } 3985 3986 static void scsi_disk_release(struct device *dev) 3987 { 3988 struct scsi_disk *sdkp = to_scsi_disk(dev); 3989 3990 ida_free(&sd_index_ida, sdkp->index); 3991 put_device(&sdkp->device->sdev_gendev); 3992 free_opal_dev(sdkp->opal_dev); 3993 3994 kfree(sdkp); 3995 } 3996 3997 static int sd_start_stop_device(struct scsi_disk *sdkp, int start) 3998 { 3999 unsigned char cmd[6] = { START_STOP }; /* START_VALID */ 4000 struct scsi_sense_hdr sshdr; 4001 const struct scsi_exec_args exec_args = { 4002 .sshdr = &sshdr, 4003 .req_flags = BLK_MQ_REQ_PM, 4004 }; 4005 struct scsi_device *sdp = sdkp->device; 4006 int res; 4007 4008 if (start) 4009 cmd[4] |= 1; /* START */ 4010 4011 if (sdp->start_stop_pwr_cond) 4012 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */ 4013 4014 if (!scsi_device_online(sdp)) 4015 return -ENODEV; 4016 4017 res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, SD_TIMEOUT, 4018 sdkp->max_retries, &exec_args); 4019 if (res) { 4020 sd_print_result(sdkp, "Start/Stop Unit failed", res); 4021 if (res > 0 && scsi_sense_valid(&sshdr)) { 4022 sd_print_sense_hdr(sdkp, &sshdr); 4023 /* 0x3a is medium not present */ 4024 if (sshdr.asc == 0x3a) 4025 res = 0; 4026 } 4027 } 4028 4029 /* SCSI error codes must not go to the generic layer */ 4030 if (res) 4031 return -EIO; 4032 4033 return 0; 4034 } 4035 4036 /* 4037 * Send a SYNCHRONIZE CACHE instruction down to the device through 4038 * the normal SCSI command structure. Wait for the command to 4039 * complete. 4040 */ 4041 static void sd_shutdown(struct device *dev) 4042 { 4043 struct scsi_disk *sdkp = dev_get_drvdata(dev); 4044 4045 if (!sdkp) 4046 return; /* this can happen */ 4047 4048 if (pm_runtime_suspended(dev)) 4049 return; 4050 4051 if (sdkp->WCE && sdkp->media_present) { 4052 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 4053 sd_sync_cache(sdkp); 4054 } 4055 4056 if ((system_state != SYSTEM_RESTART && 4057 sdkp->device->manage_system_start_stop) || 4058 (system_state == SYSTEM_POWER_OFF && 4059 sdkp->device->manage_shutdown)) { 4060 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 4061 sd_start_stop_device(sdkp, 0); 4062 } 4063 } 4064 4065 static inline bool sd_do_start_stop(struct scsi_device *sdev, bool runtime) 4066 { 4067 return (sdev->manage_system_start_stop && !runtime) || 4068 (sdev->manage_runtime_start_stop && runtime); 4069 } 4070 4071 static int sd_suspend_common(struct device *dev, bool runtime) 4072 { 4073 struct scsi_disk *sdkp = dev_get_drvdata(dev); 4074 int ret = 0; 4075 4076 if (!sdkp) /* E.g.: runtime suspend following sd_remove() */ 4077 return 0; 4078 4079 if (sdkp->WCE && sdkp->media_present) { 4080 if (!sdkp->device->silence_suspend) 4081 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 4082 ret = sd_sync_cache(sdkp); 4083 /* ignore OFFLINE device */ 4084 if (ret == -ENODEV) 4085 return 0; 4086 4087 if (ret) 4088 return ret; 4089 } 4090 4091 if (sd_do_start_stop(sdkp->device, runtime)) { 4092 if (!sdkp->device->silence_suspend) 4093 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 4094 /* an error is not worth aborting a system sleep */ 4095 ret = sd_start_stop_device(sdkp, 0); 4096 if (!runtime) 4097 ret = 0; 4098 } 4099 4100 if (!ret) 4101 sdkp->suspended = true; 4102 4103 return ret; 4104 } 4105 4106 static int sd_suspend_system(struct device *dev) 4107 { 4108 if (pm_runtime_suspended(dev)) 4109 return 0; 4110 4111 return sd_suspend_common(dev, false); 4112 } 4113 4114 static int sd_suspend_runtime(struct device *dev) 4115 { 4116 return sd_suspend_common(dev, true); 4117 } 4118 4119 static int sd_resume(struct device *dev) 4120 { 4121 struct scsi_disk *sdkp = dev_get_drvdata(dev); 4122 4123 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n"); 4124 4125 if (opal_unlock_from_suspend(sdkp->opal_dev)) { 4126 sd_printk(KERN_NOTICE, sdkp, "OPAL unlock failed\n"); 4127 return -EIO; 4128 } 4129 4130 return 0; 4131 } 4132 4133 static int sd_resume_common(struct device *dev, bool runtime) 4134 { 4135 struct scsi_disk *sdkp = dev_get_drvdata(dev); 4136 int ret; 4137 4138 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */ 4139 return 0; 4140 4141 if (!sd_do_start_stop(sdkp->device, runtime)) { 4142 sdkp->suspended = false; 4143 return 0; 4144 } 4145 4146 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n"); 4147 ret = sd_start_stop_device(sdkp, 1); 4148 if (!ret) { 4149 sd_resume(dev); 4150 sdkp->suspended = false; 4151 } 4152 4153 return ret; 4154 } 4155 4156 static int sd_resume_system(struct device *dev) 4157 { 4158 if (pm_runtime_suspended(dev)) { 4159 struct scsi_disk *sdkp = dev_get_drvdata(dev); 4160 struct scsi_device *sdp = sdkp ? sdkp->device : NULL; 4161 4162 if (sdp && sdp->force_runtime_start_on_system_start) 4163 pm_request_resume(dev); 4164 4165 return 0; 4166 } 4167 4168 return sd_resume_common(dev, false); 4169 } 4170 4171 static int sd_resume_runtime(struct device *dev) 4172 { 4173 struct scsi_disk *sdkp = dev_get_drvdata(dev); 4174 struct scsi_device *sdp; 4175 4176 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */ 4177 return 0; 4178 4179 sdp = sdkp->device; 4180 4181 if (sdp->ignore_media_change) { 4182 /* clear the device's sense data */ 4183 static const u8 cmd[10] = { REQUEST_SENSE }; 4184 const struct scsi_exec_args exec_args = { 4185 .req_flags = BLK_MQ_REQ_PM, 4186 }; 4187 4188 if (scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, 4189 sdp->request_queue->rq_timeout, 1, 4190 &exec_args)) 4191 sd_printk(KERN_NOTICE, sdkp, 4192 "Failed to clear sense data\n"); 4193 } 4194 4195 return sd_resume_common(dev, true); 4196 } 4197 4198 static const struct dev_pm_ops sd_pm_ops = { 4199 .suspend = sd_suspend_system, 4200 .resume = sd_resume_system, 4201 .poweroff = sd_suspend_system, 4202 .restore = sd_resume_system, 4203 .runtime_suspend = sd_suspend_runtime, 4204 .runtime_resume = sd_resume_runtime, 4205 }; 4206 4207 static struct scsi_driver sd_template = { 4208 .gendrv = { 4209 .name = "sd", 4210 .probe = sd_probe, 4211 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 4212 .remove = sd_remove, 4213 .shutdown = sd_shutdown, 4214 .pm = &sd_pm_ops, 4215 }, 4216 .rescan = sd_rescan, 4217 .resume = sd_resume, 4218 .init_command = sd_init_command, 4219 .uninit_command = sd_uninit_command, 4220 .done = sd_done, 4221 .eh_action = sd_eh_action, 4222 .eh_reset = sd_eh_reset, 4223 }; 4224 4225 /** 4226 * init_sd - entry point for this driver (both when built in or when 4227 * a module). 4228 * 4229 * Note: this function registers this driver with the scsi mid-level. 4230 **/ 4231 static int __init init_sd(void) 4232 { 4233 int majors = 0, i, err; 4234 4235 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n")); 4236 4237 for (i = 0; i < SD_MAJORS; i++) { 4238 if (__register_blkdev(sd_major(i), "sd", sd_default_probe)) 4239 continue; 4240 majors++; 4241 } 4242 4243 if (!majors) 4244 return -ENODEV; 4245 4246 err = class_register(&sd_disk_class); 4247 if (err) 4248 goto err_out; 4249 4250 sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0); 4251 if (!sd_page_pool) { 4252 printk(KERN_ERR "sd: can't init discard page pool\n"); 4253 err = -ENOMEM; 4254 goto err_out_class; 4255 } 4256 4257 err = scsi_register_driver(&sd_template.gendrv); 4258 if (err) 4259 goto err_out_driver; 4260 4261 return 0; 4262 4263 err_out_driver: 4264 mempool_destroy(sd_page_pool); 4265 err_out_class: 4266 class_unregister(&sd_disk_class); 4267 err_out: 4268 for (i = 0; i < SD_MAJORS; i++) 4269 unregister_blkdev(sd_major(i), "sd"); 4270 return err; 4271 } 4272 4273 /** 4274 * exit_sd - exit point for this driver (when it is a module). 4275 * 4276 * Note: this function unregisters this driver from the scsi mid-level. 4277 **/ 4278 static void __exit exit_sd(void) 4279 { 4280 int i; 4281 4282 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n")); 4283 4284 scsi_unregister_driver(&sd_template.gendrv); 4285 mempool_destroy(sd_page_pool); 4286 4287 class_unregister(&sd_disk_class); 4288 4289 for (i = 0; i < SD_MAJORS; i++) 4290 unregister_blkdev(sd_major(i), "sd"); 4291 } 4292 4293 module_init(init_sd); 4294 module_exit(exit_sd); 4295 4296 void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr) 4297 { 4298 scsi_print_sense_hdr(sdkp->device, 4299 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr); 4300 } 4301 4302 void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result) 4303 { 4304 const char *hb_string = scsi_hostbyte_string(result); 4305 4306 if (hb_string) 4307 sd_printk(KERN_INFO, sdkp, 4308 "%s: Result: hostbyte=%s driverbyte=%s\n", msg, 4309 hb_string ? hb_string : "invalid", 4310 "DRIVER_OK"); 4311 else 4312 sd_printk(KERN_INFO, sdkp, 4313 "%s: Result: hostbyte=0x%02x driverbyte=%s\n", 4314 msg, host_byte(result), "DRIVER_OK"); 4315 } 4316