xref: /linux/drivers/scsi/sd.c (revision 5ddb88f22eb97218d9295e69c39e0ff7cc64e09c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *      sd.c Copyright (C) 1992 Drew Eckhardt
4  *           Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
5  *
6  *      Linux scsi disk driver
7  *              Initial versions: Drew Eckhardt
8  *              Subsequent revisions: Eric Youngdale
9  *	Modification history:
10  *       - Drew Eckhardt <drew@colorado.edu> original
11  *       - Eric Youngdale <eric@andante.org> add scatter-gather, multiple
12  *         outstanding request, and other enhancements.
13  *         Support loadable low-level scsi drivers.
14  *       - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using
15  *         eight major numbers.
16  *       - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
17  *	 - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in
18  *	   sd_init and cleanups.
19  *	 - Alex Davis <letmein@erols.com> Fix problem where partition info
20  *	   not being read in sd_open. Fix problem where removable media
21  *	   could be ejected after sd_open.
22  *	 - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
23  *	 - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox
24  *	   <willy@debian.org>, Kurt Garloff <garloff@suse.de>:
25  *	   Support 32k/1M disks.
26  *
27  *	Logging policy (needs CONFIG_SCSI_LOGGING defined):
28  *	 - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
29  *	 - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
30  *	 - entering sd_ioctl: SCSI_LOG_IOCTL level 1
31  *	 - entering other commands: SCSI_LOG_HLQUEUE level 3
32  *	Note: when the logging level is set by the user, it must be greater
33  *	than the level indicated above to trigger output.
34  */
35 
36 #include <linux/module.h>
37 #include <linux/fs.h>
38 #include <linux/kernel.h>
39 #include <linux/mm.h>
40 #include <linux/bio.h>
41 #include <linux/hdreg.h>
42 #include <linux/errno.h>
43 #include <linux/idr.h>
44 #include <linux/interrupt.h>
45 #include <linux/init.h>
46 #include <linux/blkdev.h>
47 #include <linux/blkpg.h>
48 #include <linux/blk-pm.h>
49 #include <linux/delay.h>
50 #include <linux/rw_hint.h>
51 #include <linux/major.h>
52 #include <linux/mutex.h>
53 #include <linux/string_helpers.h>
54 #include <linux/slab.h>
55 #include <linux/sed-opal.h>
56 #include <linux/pm_runtime.h>
57 #include <linux/pr.h>
58 #include <linux/t10-pi.h>
59 #include <linux/uaccess.h>
60 #include <asm/unaligned.h>
61 
62 #include <scsi/scsi.h>
63 #include <scsi/scsi_cmnd.h>
64 #include <scsi/scsi_dbg.h>
65 #include <scsi/scsi_device.h>
66 #include <scsi/scsi_driver.h>
67 #include <scsi/scsi_eh.h>
68 #include <scsi/scsi_host.h>
69 #include <scsi/scsi_ioctl.h>
70 #include <scsi/scsicam.h>
71 #include <scsi/scsi_common.h>
72 
73 #include "sd.h"
74 #include "scsi_priv.h"
75 #include "scsi_logging.h"
76 
77 MODULE_AUTHOR("Eric Youngdale");
78 MODULE_DESCRIPTION("SCSI disk (sd) driver");
79 MODULE_LICENSE("GPL");
80 
81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
95 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
96 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
97 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
98 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
99 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
100 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
101 
102 #define SD_MINORS	16
103 
104 static void sd_config_discard(struct scsi_disk *sdkp, struct queue_limits *lim,
105 		unsigned int mode);
106 static void sd_config_write_same(struct scsi_disk *sdkp,
107 		struct queue_limits *lim);
108 static int  sd_revalidate_disk(struct gendisk *);
109 static void sd_unlock_native_capacity(struct gendisk *disk);
110 static void sd_shutdown(struct device *);
111 static void scsi_disk_release(struct device *cdev);
112 
113 static DEFINE_IDA(sd_index_ida);
114 
115 static mempool_t *sd_page_pool;
116 static struct lock_class_key sd_bio_compl_lkclass;
117 
118 static const char *sd_cache_types[] = {
119 	"write through", "none", "write back",
120 	"write back, no read (daft)"
121 };
122 
123 static void sd_set_flush_flag(struct scsi_disk *sdkp,
124 		struct queue_limits *lim)
125 {
126 	if (sdkp->WCE) {
127 		lim->features |= BLK_FEAT_WRITE_CACHE;
128 		if (sdkp->DPOFUA)
129 			lim->features |= BLK_FEAT_FUA;
130 		else
131 			lim->features &= ~BLK_FEAT_FUA;
132 	} else {
133 		lim->features &= ~(BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA);
134 	}
135 }
136 
137 static ssize_t
138 cache_type_store(struct device *dev, struct device_attribute *attr,
139 		 const char *buf, size_t count)
140 {
141 	int ct, rcd, wce, sp;
142 	struct scsi_disk *sdkp = to_scsi_disk(dev);
143 	struct scsi_device *sdp = sdkp->device;
144 	char buffer[64];
145 	char *buffer_data;
146 	struct scsi_mode_data data;
147 	struct scsi_sense_hdr sshdr;
148 	static const char temp[] = "temporary ";
149 	int len, ret;
150 
151 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
152 		/* no cache control on RBC devices; theoretically they
153 		 * can do it, but there's probably so many exceptions
154 		 * it's not worth the risk */
155 		return -EINVAL;
156 
157 	if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
158 		buf += sizeof(temp) - 1;
159 		sdkp->cache_override = 1;
160 	} else {
161 		sdkp->cache_override = 0;
162 	}
163 
164 	ct = sysfs_match_string(sd_cache_types, buf);
165 	if (ct < 0)
166 		return -EINVAL;
167 
168 	rcd = ct & 0x01 ? 1 : 0;
169 	wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
170 
171 	if (sdkp->cache_override) {
172 		struct queue_limits lim;
173 
174 		sdkp->WCE = wce;
175 		sdkp->RCD = rcd;
176 
177 		lim = queue_limits_start_update(sdkp->disk->queue);
178 		sd_set_flush_flag(sdkp, &lim);
179 		blk_mq_freeze_queue(sdkp->disk->queue);
180 		ret = queue_limits_commit_update(sdkp->disk->queue, &lim);
181 		blk_mq_unfreeze_queue(sdkp->disk->queue);
182 		if (ret)
183 			return ret;
184 		return count;
185 	}
186 
187 	if (scsi_mode_sense(sdp, 0x08, 8, 0, buffer, sizeof(buffer), SD_TIMEOUT,
188 			    sdkp->max_retries, &data, NULL))
189 		return -EINVAL;
190 	len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
191 		  data.block_descriptor_length);
192 	buffer_data = buffer + data.header_length +
193 		data.block_descriptor_length;
194 	buffer_data[2] &= ~0x05;
195 	buffer_data[2] |= wce << 2 | rcd;
196 	sp = buffer_data[0] & 0x80 ? 1 : 0;
197 	buffer_data[0] &= ~0x80;
198 
199 	/*
200 	 * Ensure WP, DPOFUA, and RESERVED fields are cleared in
201 	 * received mode parameter buffer before doing MODE SELECT.
202 	 */
203 	data.device_specific = 0;
204 
205 	ret = scsi_mode_select(sdp, 1, sp, buffer_data, len, SD_TIMEOUT,
206 			       sdkp->max_retries, &data, &sshdr);
207 	if (ret) {
208 		if (ret > 0 && scsi_sense_valid(&sshdr))
209 			sd_print_sense_hdr(sdkp, &sshdr);
210 		return -EINVAL;
211 	}
212 	sd_revalidate_disk(sdkp->disk);
213 	return count;
214 }
215 
216 static ssize_t
217 manage_start_stop_show(struct device *dev,
218 		       struct device_attribute *attr, char *buf)
219 {
220 	struct scsi_disk *sdkp = to_scsi_disk(dev);
221 	struct scsi_device *sdp = sdkp->device;
222 
223 	return sysfs_emit(buf, "%u\n",
224 			  sdp->manage_system_start_stop &&
225 			  sdp->manage_runtime_start_stop &&
226 			  sdp->manage_shutdown);
227 }
228 static DEVICE_ATTR_RO(manage_start_stop);
229 
230 static ssize_t
231 manage_system_start_stop_show(struct device *dev,
232 			      struct device_attribute *attr, char *buf)
233 {
234 	struct scsi_disk *sdkp = to_scsi_disk(dev);
235 	struct scsi_device *sdp = sdkp->device;
236 
237 	return sysfs_emit(buf, "%u\n", sdp->manage_system_start_stop);
238 }
239 
240 static ssize_t
241 manage_system_start_stop_store(struct device *dev,
242 			       struct device_attribute *attr,
243 			       const char *buf, size_t count)
244 {
245 	struct scsi_disk *sdkp = to_scsi_disk(dev);
246 	struct scsi_device *sdp = sdkp->device;
247 	bool v;
248 
249 	if (!capable(CAP_SYS_ADMIN))
250 		return -EACCES;
251 
252 	if (kstrtobool(buf, &v))
253 		return -EINVAL;
254 
255 	sdp->manage_system_start_stop = v;
256 
257 	return count;
258 }
259 static DEVICE_ATTR_RW(manage_system_start_stop);
260 
261 static ssize_t
262 manage_runtime_start_stop_show(struct device *dev,
263 			       struct device_attribute *attr, char *buf)
264 {
265 	struct scsi_disk *sdkp = to_scsi_disk(dev);
266 	struct scsi_device *sdp = sdkp->device;
267 
268 	return sysfs_emit(buf, "%u\n", sdp->manage_runtime_start_stop);
269 }
270 
271 static ssize_t
272 manage_runtime_start_stop_store(struct device *dev,
273 				struct device_attribute *attr,
274 				const char *buf, size_t count)
275 {
276 	struct scsi_disk *sdkp = to_scsi_disk(dev);
277 	struct scsi_device *sdp = sdkp->device;
278 	bool v;
279 
280 	if (!capable(CAP_SYS_ADMIN))
281 		return -EACCES;
282 
283 	if (kstrtobool(buf, &v))
284 		return -EINVAL;
285 
286 	sdp->manage_runtime_start_stop = v;
287 
288 	return count;
289 }
290 static DEVICE_ATTR_RW(manage_runtime_start_stop);
291 
292 static ssize_t manage_shutdown_show(struct device *dev,
293 				    struct device_attribute *attr, char *buf)
294 {
295 	struct scsi_disk *sdkp = to_scsi_disk(dev);
296 	struct scsi_device *sdp = sdkp->device;
297 
298 	return sysfs_emit(buf, "%u\n", sdp->manage_shutdown);
299 }
300 
301 static ssize_t manage_shutdown_store(struct device *dev,
302 				     struct device_attribute *attr,
303 				     const char *buf, size_t count)
304 {
305 	struct scsi_disk *sdkp = to_scsi_disk(dev);
306 	struct scsi_device *sdp = sdkp->device;
307 	bool v;
308 
309 	if (!capable(CAP_SYS_ADMIN))
310 		return -EACCES;
311 
312 	if (kstrtobool(buf, &v))
313 		return -EINVAL;
314 
315 	sdp->manage_shutdown = v;
316 
317 	return count;
318 }
319 static DEVICE_ATTR_RW(manage_shutdown);
320 
321 static ssize_t
322 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
323 {
324 	struct scsi_disk *sdkp = to_scsi_disk(dev);
325 
326 	return sprintf(buf, "%u\n", sdkp->device->allow_restart);
327 }
328 
329 static ssize_t
330 allow_restart_store(struct device *dev, struct device_attribute *attr,
331 		    const char *buf, size_t count)
332 {
333 	bool v;
334 	struct scsi_disk *sdkp = to_scsi_disk(dev);
335 	struct scsi_device *sdp = sdkp->device;
336 
337 	if (!capable(CAP_SYS_ADMIN))
338 		return -EACCES;
339 
340 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
341 		return -EINVAL;
342 
343 	if (kstrtobool(buf, &v))
344 		return -EINVAL;
345 
346 	sdp->allow_restart = v;
347 
348 	return count;
349 }
350 static DEVICE_ATTR_RW(allow_restart);
351 
352 static ssize_t
353 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
354 {
355 	struct scsi_disk *sdkp = to_scsi_disk(dev);
356 	int ct = sdkp->RCD + 2*sdkp->WCE;
357 
358 	return sprintf(buf, "%s\n", sd_cache_types[ct]);
359 }
360 static DEVICE_ATTR_RW(cache_type);
361 
362 static ssize_t
363 FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
364 {
365 	struct scsi_disk *sdkp = to_scsi_disk(dev);
366 
367 	return sprintf(buf, "%u\n", sdkp->DPOFUA);
368 }
369 static DEVICE_ATTR_RO(FUA);
370 
371 static ssize_t
372 protection_type_show(struct device *dev, struct device_attribute *attr,
373 		     char *buf)
374 {
375 	struct scsi_disk *sdkp = to_scsi_disk(dev);
376 
377 	return sprintf(buf, "%u\n", sdkp->protection_type);
378 }
379 
380 static ssize_t
381 protection_type_store(struct device *dev, struct device_attribute *attr,
382 		      const char *buf, size_t count)
383 {
384 	struct scsi_disk *sdkp = to_scsi_disk(dev);
385 	unsigned int val;
386 	int err;
387 
388 	if (!capable(CAP_SYS_ADMIN))
389 		return -EACCES;
390 
391 	err = kstrtouint(buf, 10, &val);
392 
393 	if (err)
394 		return err;
395 
396 	if (val <= T10_PI_TYPE3_PROTECTION)
397 		sdkp->protection_type = val;
398 
399 	return count;
400 }
401 static DEVICE_ATTR_RW(protection_type);
402 
403 static ssize_t
404 protection_mode_show(struct device *dev, struct device_attribute *attr,
405 		     char *buf)
406 {
407 	struct scsi_disk *sdkp = to_scsi_disk(dev);
408 	struct scsi_device *sdp = sdkp->device;
409 	unsigned int dif, dix;
410 
411 	dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
412 	dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
413 
414 	if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
415 		dif = 0;
416 		dix = 1;
417 	}
418 
419 	if (!dif && !dix)
420 		return sprintf(buf, "none\n");
421 
422 	return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
423 }
424 static DEVICE_ATTR_RO(protection_mode);
425 
426 static ssize_t
427 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
428 {
429 	struct scsi_disk *sdkp = to_scsi_disk(dev);
430 
431 	return sprintf(buf, "%u\n", sdkp->ATO);
432 }
433 static DEVICE_ATTR_RO(app_tag_own);
434 
435 static ssize_t
436 thin_provisioning_show(struct device *dev, struct device_attribute *attr,
437 		       char *buf)
438 {
439 	struct scsi_disk *sdkp = to_scsi_disk(dev);
440 
441 	return sprintf(buf, "%u\n", sdkp->lbpme);
442 }
443 static DEVICE_ATTR_RO(thin_provisioning);
444 
445 /* sysfs_match_string() requires dense arrays */
446 static const char *lbp_mode[] = {
447 	[SD_LBP_FULL]		= "full",
448 	[SD_LBP_UNMAP]		= "unmap",
449 	[SD_LBP_WS16]		= "writesame_16",
450 	[SD_LBP_WS10]		= "writesame_10",
451 	[SD_LBP_ZERO]		= "writesame_zero",
452 	[SD_LBP_DISABLE]	= "disabled",
453 };
454 
455 static ssize_t
456 provisioning_mode_show(struct device *dev, struct device_attribute *attr,
457 		       char *buf)
458 {
459 	struct scsi_disk *sdkp = to_scsi_disk(dev);
460 
461 	return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
462 }
463 
464 static ssize_t
465 provisioning_mode_store(struct device *dev, struct device_attribute *attr,
466 			const char *buf, size_t count)
467 {
468 	struct scsi_disk *sdkp = to_scsi_disk(dev);
469 	struct scsi_device *sdp = sdkp->device;
470 	struct queue_limits lim;
471 	int mode, err;
472 
473 	if (!capable(CAP_SYS_ADMIN))
474 		return -EACCES;
475 
476 	if (sdp->type != TYPE_DISK)
477 		return -EINVAL;
478 
479 	mode = sysfs_match_string(lbp_mode, buf);
480 	if (mode < 0)
481 		return -EINVAL;
482 
483 	lim = queue_limits_start_update(sdkp->disk->queue);
484 	sd_config_discard(sdkp, &lim, mode);
485 	blk_mq_freeze_queue(sdkp->disk->queue);
486 	err = queue_limits_commit_update(sdkp->disk->queue, &lim);
487 	blk_mq_unfreeze_queue(sdkp->disk->queue);
488 	if (err)
489 		return err;
490 	return count;
491 }
492 static DEVICE_ATTR_RW(provisioning_mode);
493 
494 /* sysfs_match_string() requires dense arrays */
495 static const char *zeroing_mode[] = {
496 	[SD_ZERO_WRITE]		= "write",
497 	[SD_ZERO_WS]		= "writesame",
498 	[SD_ZERO_WS16_UNMAP]	= "writesame_16_unmap",
499 	[SD_ZERO_WS10_UNMAP]	= "writesame_10_unmap",
500 };
501 
502 static ssize_t
503 zeroing_mode_show(struct device *dev, struct device_attribute *attr,
504 		  char *buf)
505 {
506 	struct scsi_disk *sdkp = to_scsi_disk(dev);
507 
508 	return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
509 }
510 
511 static ssize_t
512 zeroing_mode_store(struct device *dev, struct device_attribute *attr,
513 		   const char *buf, size_t count)
514 {
515 	struct scsi_disk *sdkp = to_scsi_disk(dev);
516 	int mode;
517 
518 	if (!capable(CAP_SYS_ADMIN))
519 		return -EACCES;
520 
521 	mode = sysfs_match_string(zeroing_mode, buf);
522 	if (mode < 0)
523 		return -EINVAL;
524 
525 	sdkp->zeroing_mode = mode;
526 
527 	return count;
528 }
529 static DEVICE_ATTR_RW(zeroing_mode);
530 
531 static ssize_t
532 max_medium_access_timeouts_show(struct device *dev,
533 				struct device_attribute *attr, char *buf)
534 {
535 	struct scsi_disk *sdkp = to_scsi_disk(dev);
536 
537 	return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
538 }
539 
540 static ssize_t
541 max_medium_access_timeouts_store(struct device *dev,
542 				 struct device_attribute *attr, const char *buf,
543 				 size_t count)
544 {
545 	struct scsi_disk *sdkp = to_scsi_disk(dev);
546 	int err;
547 
548 	if (!capable(CAP_SYS_ADMIN))
549 		return -EACCES;
550 
551 	err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
552 
553 	return err ? err : count;
554 }
555 static DEVICE_ATTR_RW(max_medium_access_timeouts);
556 
557 static ssize_t
558 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
559 			   char *buf)
560 {
561 	struct scsi_disk *sdkp = to_scsi_disk(dev);
562 
563 	return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
564 }
565 
566 static ssize_t
567 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
568 			    const char *buf, size_t count)
569 {
570 	struct scsi_disk *sdkp = to_scsi_disk(dev);
571 	struct scsi_device *sdp = sdkp->device;
572 	struct queue_limits lim;
573 	unsigned long max;
574 	int err;
575 
576 	if (!capable(CAP_SYS_ADMIN))
577 		return -EACCES;
578 
579 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
580 		return -EINVAL;
581 
582 	err = kstrtoul(buf, 10, &max);
583 
584 	if (err)
585 		return err;
586 
587 	if (max == 0)
588 		sdp->no_write_same = 1;
589 	else if (max <= SD_MAX_WS16_BLOCKS) {
590 		sdp->no_write_same = 0;
591 		sdkp->max_ws_blocks = max;
592 	}
593 
594 	lim = queue_limits_start_update(sdkp->disk->queue);
595 	sd_config_write_same(sdkp, &lim);
596 	blk_mq_freeze_queue(sdkp->disk->queue);
597 	err = queue_limits_commit_update(sdkp->disk->queue, &lim);
598 	blk_mq_unfreeze_queue(sdkp->disk->queue);
599 	if (err)
600 		return err;
601 	return count;
602 }
603 static DEVICE_ATTR_RW(max_write_same_blocks);
604 
605 static ssize_t
606 zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf)
607 {
608 	struct scsi_disk *sdkp = to_scsi_disk(dev);
609 
610 	if (sdkp->device->type == TYPE_ZBC)
611 		return sprintf(buf, "host-managed\n");
612 	if (sdkp->zoned == 1)
613 		return sprintf(buf, "host-aware\n");
614 	if (sdkp->zoned == 2)
615 		return sprintf(buf, "drive-managed\n");
616 	return sprintf(buf, "none\n");
617 }
618 static DEVICE_ATTR_RO(zoned_cap);
619 
620 static ssize_t
621 max_retries_store(struct device *dev, struct device_attribute *attr,
622 		  const char *buf, size_t count)
623 {
624 	struct scsi_disk *sdkp = to_scsi_disk(dev);
625 	struct scsi_device *sdev = sdkp->device;
626 	int retries, err;
627 
628 	err = kstrtoint(buf, 10, &retries);
629 	if (err)
630 		return err;
631 
632 	if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) {
633 		sdkp->max_retries = retries;
634 		return count;
635 	}
636 
637 	sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n",
638 		    SD_MAX_RETRIES);
639 	return -EINVAL;
640 }
641 
642 static ssize_t
643 max_retries_show(struct device *dev, struct device_attribute *attr,
644 		 char *buf)
645 {
646 	struct scsi_disk *sdkp = to_scsi_disk(dev);
647 
648 	return sprintf(buf, "%d\n", sdkp->max_retries);
649 }
650 
651 static DEVICE_ATTR_RW(max_retries);
652 
653 static struct attribute *sd_disk_attrs[] = {
654 	&dev_attr_cache_type.attr,
655 	&dev_attr_FUA.attr,
656 	&dev_attr_allow_restart.attr,
657 	&dev_attr_manage_start_stop.attr,
658 	&dev_attr_manage_system_start_stop.attr,
659 	&dev_attr_manage_runtime_start_stop.attr,
660 	&dev_attr_manage_shutdown.attr,
661 	&dev_attr_protection_type.attr,
662 	&dev_attr_protection_mode.attr,
663 	&dev_attr_app_tag_own.attr,
664 	&dev_attr_thin_provisioning.attr,
665 	&dev_attr_provisioning_mode.attr,
666 	&dev_attr_zeroing_mode.attr,
667 	&dev_attr_max_write_same_blocks.attr,
668 	&dev_attr_max_medium_access_timeouts.attr,
669 	&dev_attr_zoned_cap.attr,
670 	&dev_attr_max_retries.attr,
671 	NULL,
672 };
673 ATTRIBUTE_GROUPS(sd_disk);
674 
675 static struct class sd_disk_class = {
676 	.name		= "scsi_disk",
677 	.dev_release	= scsi_disk_release,
678 	.dev_groups	= sd_disk_groups,
679 };
680 
681 /*
682  * Don't request a new module, as that could deadlock in multipath
683  * environment.
684  */
685 static void sd_default_probe(dev_t devt)
686 {
687 }
688 
689 /*
690  * Device no to disk mapping:
691  *
692  *       major         disc2     disc  p1
693  *   |............|.............|....|....| <- dev_t
694  *    31        20 19          8 7  4 3  0
695  *
696  * Inside a major, we have 16k disks, however mapped non-
697  * contiguously. The first 16 disks are for major0, the next
698  * ones with major1, ... Disk 256 is for major0 again, disk 272
699  * for major1, ...
700  * As we stay compatible with our numbering scheme, we can reuse
701  * the well-know SCSI majors 8, 65--71, 136--143.
702  */
703 static int sd_major(int major_idx)
704 {
705 	switch (major_idx) {
706 	case 0:
707 		return SCSI_DISK0_MAJOR;
708 	case 1 ... 7:
709 		return SCSI_DISK1_MAJOR + major_idx - 1;
710 	case 8 ... 15:
711 		return SCSI_DISK8_MAJOR + major_idx - 8;
712 	default:
713 		BUG();
714 		return 0;	/* shut up gcc */
715 	}
716 }
717 
718 #ifdef CONFIG_BLK_SED_OPAL
719 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
720 		size_t len, bool send)
721 {
722 	struct scsi_disk *sdkp = data;
723 	struct scsi_device *sdev = sdkp->device;
724 	u8 cdb[12] = { 0, };
725 	const struct scsi_exec_args exec_args = {
726 		.req_flags = BLK_MQ_REQ_PM,
727 	};
728 	int ret;
729 
730 	cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
731 	cdb[1] = secp;
732 	put_unaligned_be16(spsp, &cdb[2]);
733 	put_unaligned_be32(len, &cdb[6]);
734 
735 	ret = scsi_execute_cmd(sdev, cdb, send ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN,
736 			       buffer, len, SD_TIMEOUT, sdkp->max_retries,
737 			       &exec_args);
738 	return ret <= 0 ? ret : -EIO;
739 }
740 #endif /* CONFIG_BLK_SED_OPAL */
741 
742 /*
743  * Look up the DIX operation based on whether the command is read or
744  * write and whether dix and dif are enabled.
745  */
746 static unsigned int sd_prot_op(bool write, bool dix, bool dif)
747 {
748 	/* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */
749 	static const unsigned int ops[] = {	/* wrt dix dif */
750 		SCSI_PROT_NORMAL,		/*  0	0   0  */
751 		SCSI_PROT_READ_STRIP,		/*  0	0   1  */
752 		SCSI_PROT_READ_INSERT,		/*  0	1   0  */
753 		SCSI_PROT_READ_PASS,		/*  0	1   1  */
754 		SCSI_PROT_NORMAL,		/*  1	0   0  */
755 		SCSI_PROT_WRITE_INSERT,		/*  1	0   1  */
756 		SCSI_PROT_WRITE_STRIP,		/*  1	1   0  */
757 		SCSI_PROT_WRITE_PASS,		/*  1	1   1  */
758 	};
759 
760 	return ops[write << 2 | dix << 1 | dif];
761 }
762 
763 /*
764  * Returns a mask of the protection flags that are valid for a given DIX
765  * operation.
766  */
767 static unsigned int sd_prot_flag_mask(unsigned int prot_op)
768 {
769 	static const unsigned int flag_mask[] = {
770 		[SCSI_PROT_NORMAL]		= 0,
771 
772 		[SCSI_PROT_READ_STRIP]		= SCSI_PROT_TRANSFER_PI |
773 						  SCSI_PROT_GUARD_CHECK |
774 						  SCSI_PROT_REF_CHECK |
775 						  SCSI_PROT_REF_INCREMENT,
776 
777 		[SCSI_PROT_READ_INSERT]		= SCSI_PROT_REF_INCREMENT |
778 						  SCSI_PROT_IP_CHECKSUM,
779 
780 		[SCSI_PROT_READ_PASS]		= SCSI_PROT_TRANSFER_PI |
781 						  SCSI_PROT_GUARD_CHECK |
782 						  SCSI_PROT_REF_CHECK |
783 						  SCSI_PROT_REF_INCREMENT |
784 						  SCSI_PROT_IP_CHECKSUM,
785 
786 		[SCSI_PROT_WRITE_INSERT]	= SCSI_PROT_TRANSFER_PI |
787 						  SCSI_PROT_REF_INCREMENT,
788 
789 		[SCSI_PROT_WRITE_STRIP]		= SCSI_PROT_GUARD_CHECK |
790 						  SCSI_PROT_REF_CHECK |
791 						  SCSI_PROT_REF_INCREMENT |
792 						  SCSI_PROT_IP_CHECKSUM,
793 
794 		[SCSI_PROT_WRITE_PASS]		= SCSI_PROT_TRANSFER_PI |
795 						  SCSI_PROT_GUARD_CHECK |
796 						  SCSI_PROT_REF_CHECK |
797 						  SCSI_PROT_REF_INCREMENT |
798 						  SCSI_PROT_IP_CHECKSUM,
799 	};
800 
801 	return flag_mask[prot_op];
802 }
803 
804 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
805 					   unsigned int dix, unsigned int dif)
806 {
807 	struct request *rq = scsi_cmd_to_rq(scmd);
808 	struct bio *bio = rq->bio;
809 	unsigned int prot_op = sd_prot_op(rq_data_dir(rq), dix, dif);
810 	unsigned int protect = 0;
811 
812 	if (dix) {				/* DIX Type 0, 1, 2, 3 */
813 		if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
814 			scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
815 
816 		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
817 			scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
818 	}
819 
820 	if (dif != T10_PI_TYPE3_PROTECTION) {	/* DIX/DIF Type 0, 1, 2 */
821 		scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
822 
823 		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
824 			scmd->prot_flags |= SCSI_PROT_REF_CHECK;
825 	}
826 
827 	if (dif) {				/* DIX/DIF Type 1, 2, 3 */
828 		scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
829 
830 		if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
831 			protect = 3 << 5;	/* Disable target PI checking */
832 		else
833 			protect = 1 << 5;	/* Enable target PI checking */
834 	}
835 
836 	scsi_set_prot_op(scmd, prot_op);
837 	scsi_set_prot_type(scmd, dif);
838 	scmd->prot_flags &= sd_prot_flag_mask(prot_op);
839 
840 	return protect;
841 }
842 
843 static void sd_disable_discard(struct scsi_disk *sdkp)
844 {
845 	sdkp->provisioning_mode = SD_LBP_DISABLE;
846 	blk_queue_disable_discard(sdkp->disk->queue);
847 }
848 
849 static void sd_config_discard(struct scsi_disk *sdkp, struct queue_limits *lim,
850 		unsigned int mode)
851 {
852 	unsigned int logical_block_size = sdkp->device->sector_size;
853 	unsigned int max_blocks = 0;
854 
855 	lim->discard_alignment = sdkp->unmap_alignment * logical_block_size;
856 	lim->discard_granularity = max(sdkp->physical_block_size,
857 			sdkp->unmap_granularity * logical_block_size);
858 	sdkp->provisioning_mode = mode;
859 
860 	switch (mode) {
861 
862 	case SD_LBP_FULL:
863 	case SD_LBP_DISABLE:
864 		break;
865 
866 	case SD_LBP_UNMAP:
867 		max_blocks = min_not_zero(sdkp->max_unmap_blocks,
868 					  (u32)SD_MAX_WS16_BLOCKS);
869 		break;
870 
871 	case SD_LBP_WS16:
872 		if (sdkp->device->unmap_limit_for_ws)
873 			max_blocks = sdkp->max_unmap_blocks;
874 		else
875 			max_blocks = sdkp->max_ws_blocks;
876 
877 		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
878 		break;
879 
880 	case SD_LBP_WS10:
881 		if (sdkp->device->unmap_limit_for_ws)
882 			max_blocks = sdkp->max_unmap_blocks;
883 		else
884 			max_blocks = sdkp->max_ws_blocks;
885 
886 		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
887 		break;
888 
889 	case SD_LBP_ZERO:
890 		max_blocks = min_not_zero(sdkp->max_ws_blocks,
891 					  (u32)SD_MAX_WS10_BLOCKS);
892 		break;
893 	}
894 
895 	lim->max_hw_discard_sectors = max_blocks *
896 		(logical_block_size >> SECTOR_SHIFT);
897 }
898 
899 static void *sd_set_special_bvec(struct request *rq, unsigned int data_len)
900 {
901 	struct page *page;
902 
903 	page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
904 	if (!page)
905 		return NULL;
906 	clear_highpage(page);
907 	bvec_set_page(&rq->special_vec, page, data_len, 0);
908 	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
909 	return bvec_virt(&rq->special_vec);
910 }
911 
912 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
913 {
914 	struct scsi_device *sdp = cmd->device;
915 	struct request *rq = scsi_cmd_to_rq(cmd);
916 	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
917 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
918 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
919 	unsigned int data_len = 24;
920 	char *buf;
921 
922 	buf = sd_set_special_bvec(rq, data_len);
923 	if (!buf)
924 		return BLK_STS_RESOURCE;
925 
926 	cmd->cmd_len = 10;
927 	cmd->cmnd[0] = UNMAP;
928 	cmd->cmnd[8] = 24;
929 
930 	put_unaligned_be16(6 + 16, &buf[0]);
931 	put_unaligned_be16(16, &buf[2]);
932 	put_unaligned_be64(lba, &buf[8]);
933 	put_unaligned_be32(nr_blocks, &buf[16]);
934 
935 	cmd->allowed = sdkp->max_retries;
936 	cmd->transfersize = data_len;
937 	rq->timeout = SD_TIMEOUT;
938 
939 	return scsi_alloc_sgtables(cmd);
940 }
941 
942 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd,
943 		bool unmap)
944 {
945 	struct scsi_device *sdp = cmd->device;
946 	struct request *rq = scsi_cmd_to_rq(cmd);
947 	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
948 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
949 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
950 	u32 data_len = sdp->sector_size;
951 
952 	if (!sd_set_special_bvec(rq, data_len))
953 		return BLK_STS_RESOURCE;
954 
955 	cmd->cmd_len = 16;
956 	cmd->cmnd[0] = WRITE_SAME_16;
957 	if (unmap)
958 		cmd->cmnd[1] = 0x8; /* UNMAP */
959 	put_unaligned_be64(lba, &cmd->cmnd[2]);
960 	put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
961 
962 	cmd->allowed = sdkp->max_retries;
963 	cmd->transfersize = data_len;
964 	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
965 
966 	return scsi_alloc_sgtables(cmd);
967 }
968 
969 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd,
970 		bool unmap)
971 {
972 	struct scsi_device *sdp = cmd->device;
973 	struct request *rq = scsi_cmd_to_rq(cmd);
974 	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
975 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
976 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
977 	u32 data_len = sdp->sector_size;
978 
979 	if (!sd_set_special_bvec(rq, data_len))
980 		return BLK_STS_RESOURCE;
981 
982 	cmd->cmd_len = 10;
983 	cmd->cmnd[0] = WRITE_SAME;
984 	if (unmap)
985 		cmd->cmnd[1] = 0x8; /* UNMAP */
986 	put_unaligned_be32(lba, &cmd->cmnd[2]);
987 	put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
988 
989 	cmd->allowed = sdkp->max_retries;
990 	cmd->transfersize = data_len;
991 	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
992 
993 	return scsi_alloc_sgtables(cmd);
994 }
995 
996 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
997 {
998 	struct request *rq = scsi_cmd_to_rq(cmd);
999 	struct scsi_device *sdp = cmd->device;
1000 	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1001 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1002 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1003 
1004 	if (!(rq->cmd_flags & REQ_NOUNMAP)) {
1005 		switch (sdkp->zeroing_mode) {
1006 		case SD_ZERO_WS16_UNMAP:
1007 			return sd_setup_write_same16_cmnd(cmd, true);
1008 		case SD_ZERO_WS10_UNMAP:
1009 			return sd_setup_write_same10_cmnd(cmd, true);
1010 		}
1011 	}
1012 
1013 	if (sdp->no_write_same) {
1014 		rq->rq_flags |= RQF_QUIET;
1015 		return BLK_STS_TARGET;
1016 	}
1017 
1018 	if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff)
1019 		return sd_setup_write_same16_cmnd(cmd, false);
1020 
1021 	return sd_setup_write_same10_cmnd(cmd, false);
1022 }
1023 
1024 static void sd_disable_write_same(struct scsi_disk *sdkp)
1025 {
1026 	sdkp->device->no_write_same = 1;
1027 	sdkp->max_ws_blocks = 0;
1028 	blk_queue_disable_write_zeroes(sdkp->disk->queue);
1029 }
1030 
1031 static void sd_config_write_same(struct scsi_disk *sdkp,
1032 		struct queue_limits *lim)
1033 {
1034 	unsigned int logical_block_size = sdkp->device->sector_size;
1035 
1036 	if (sdkp->device->no_write_same) {
1037 		sdkp->max_ws_blocks = 0;
1038 		goto out;
1039 	}
1040 
1041 	/* Some devices can not handle block counts above 0xffff despite
1042 	 * supporting WRITE SAME(16). Consequently we default to 64k
1043 	 * blocks per I/O unless the device explicitly advertises a
1044 	 * bigger limit.
1045 	 */
1046 	if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
1047 		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
1048 						   (u32)SD_MAX_WS16_BLOCKS);
1049 	else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
1050 		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
1051 						   (u32)SD_MAX_WS10_BLOCKS);
1052 	else {
1053 		sdkp->device->no_write_same = 1;
1054 		sdkp->max_ws_blocks = 0;
1055 	}
1056 
1057 	if (sdkp->lbprz && sdkp->lbpws)
1058 		sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
1059 	else if (sdkp->lbprz && sdkp->lbpws10)
1060 		sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
1061 	else if (sdkp->max_ws_blocks)
1062 		sdkp->zeroing_mode = SD_ZERO_WS;
1063 	else
1064 		sdkp->zeroing_mode = SD_ZERO_WRITE;
1065 
1066 	if (sdkp->max_ws_blocks &&
1067 	    sdkp->physical_block_size > logical_block_size) {
1068 		/*
1069 		 * Reporting a maximum number of blocks that is not aligned
1070 		 * on the device physical size would cause a large write same
1071 		 * request to be split into physically unaligned chunks by
1072 		 * __blkdev_issue_write_zeroes() even if the caller of this
1073 		 * functions took care to align the large request. So make sure
1074 		 * the maximum reported is aligned to the device physical block
1075 		 * size. This is only an optional optimization for regular
1076 		 * disks, but this is mandatory to avoid failure of large write
1077 		 * same requests directed at sequential write required zones of
1078 		 * host-managed ZBC disks.
1079 		 */
1080 		sdkp->max_ws_blocks =
1081 			round_down(sdkp->max_ws_blocks,
1082 				   bytes_to_logical(sdkp->device,
1083 						    sdkp->physical_block_size));
1084 	}
1085 
1086 out:
1087 	lim->max_write_zeroes_sectors =
1088 		sdkp->max_ws_blocks * (logical_block_size >> SECTOR_SHIFT);
1089 }
1090 
1091 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
1092 {
1093 	struct request *rq = scsi_cmd_to_rq(cmd);
1094 	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1095 
1096 	/* flush requests don't perform I/O, zero the S/G table */
1097 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1098 
1099 	if (cmd->device->use_16_for_sync) {
1100 		cmd->cmnd[0] = SYNCHRONIZE_CACHE_16;
1101 		cmd->cmd_len = 16;
1102 	} else {
1103 		cmd->cmnd[0] = SYNCHRONIZE_CACHE;
1104 		cmd->cmd_len = 10;
1105 	}
1106 	cmd->transfersize = 0;
1107 	cmd->allowed = sdkp->max_retries;
1108 
1109 	rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
1110 	return BLK_STS_OK;
1111 }
1112 
1113 /**
1114  * sd_group_number() - Compute the GROUP NUMBER field
1115  * @cmd: SCSI command for which to compute the value of the six-bit GROUP NUMBER
1116  *	field.
1117  *
1118  * From SBC-5 r05 (https://www.t10.org/cgi-bin/ac.pl?t=f&f=sbc5r05.pdf):
1119  * 0: no relative lifetime.
1120  * 1: shortest relative lifetime.
1121  * 2: second shortest relative lifetime.
1122  * 3 - 0x3d: intermediate relative lifetimes.
1123  * 0x3e: second longest relative lifetime.
1124  * 0x3f: longest relative lifetime.
1125  */
1126 static u8 sd_group_number(struct scsi_cmnd *cmd)
1127 {
1128 	const struct request *rq = scsi_cmd_to_rq(cmd);
1129 	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1130 
1131 	if (!sdkp->rscs)
1132 		return 0;
1133 
1134 	return min3((u32)rq->write_hint, (u32)sdkp->permanent_stream_count,
1135 		    0x3fu);
1136 }
1137 
1138 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write,
1139 				       sector_t lba, unsigned int nr_blocks,
1140 				       unsigned char flags, unsigned int dld)
1141 {
1142 	cmd->cmd_len = SD_EXT_CDB_SIZE;
1143 	cmd->cmnd[0]  = VARIABLE_LENGTH_CMD;
1144 	cmd->cmnd[6]  = sd_group_number(cmd);
1145 	cmd->cmnd[7]  = 0x18; /* Additional CDB len */
1146 	cmd->cmnd[9]  = write ? WRITE_32 : READ_32;
1147 	cmd->cmnd[10] = flags;
1148 	cmd->cmnd[11] = dld & 0x07;
1149 	put_unaligned_be64(lba, &cmd->cmnd[12]);
1150 	put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */
1151 	put_unaligned_be32(nr_blocks, &cmd->cmnd[28]);
1152 
1153 	return BLK_STS_OK;
1154 }
1155 
1156 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write,
1157 				       sector_t lba, unsigned int nr_blocks,
1158 				       unsigned char flags, unsigned int dld)
1159 {
1160 	cmd->cmd_len  = 16;
1161 	cmd->cmnd[0]  = write ? WRITE_16 : READ_16;
1162 	cmd->cmnd[1]  = flags | ((dld >> 2) & 0x01);
1163 	cmd->cmnd[14] = ((dld & 0x03) << 6) | sd_group_number(cmd);
1164 	cmd->cmnd[15] = 0;
1165 	put_unaligned_be64(lba, &cmd->cmnd[2]);
1166 	put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1167 
1168 	return BLK_STS_OK;
1169 }
1170 
1171 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write,
1172 				       sector_t lba, unsigned int nr_blocks,
1173 				       unsigned char flags)
1174 {
1175 	cmd->cmd_len = 10;
1176 	cmd->cmnd[0] = write ? WRITE_10 : READ_10;
1177 	cmd->cmnd[1] = flags;
1178 	cmd->cmnd[6] = sd_group_number(cmd);
1179 	cmd->cmnd[9] = 0;
1180 	put_unaligned_be32(lba, &cmd->cmnd[2]);
1181 	put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1182 
1183 	return BLK_STS_OK;
1184 }
1185 
1186 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write,
1187 				      sector_t lba, unsigned int nr_blocks,
1188 				      unsigned char flags)
1189 {
1190 	/* Avoid that 0 blocks gets translated into 256 blocks. */
1191 	if (WARN_ON_ONCE(nr_blocks == 0))
1192 		return BLK_STS_IOERR;
1193 
1194 	if (unlikely(flags & 0x8)) {
1195 		/*
1196 		 * This happens only if this drive failed 10byte rw
1197 		 * command with ILLEGAL_REQUEST during operation and
1198 		 * thus turned off use_10_for_rw.
1199 		 */
1200 		scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n");
1201 		return BLK_STS_IOERR;
1202 	}
1203 
1204 	cmd->cmd_len = 6;
1205 	cmd->cmnd[0] = write ? WRITE_6 : READ_6;
1206 	cmd->cmnd[1] = (lba >> 16) & 0x1f;
1207 	cmd->cmnd[2] = (lba >> 8) & 0xff;
1208 	cmd->cmnd[3] = lba & 0xff;
1209 	cmd->cmnd[4] = nr_blocks;
1210 	cmd->cmnd[5] = 0;
1211 
1212 	return BLK_STS_OK;
1213 }
1214 
1215 /*
1216  * Check if a command has a duration limit set. If it does, and the target
1217  * device supports CDL and the feature is enabled, return the limit
1218  * descriptor index to use. Return 0 (no limit) otherwise.
1219  */
1220 static int sd_cdl_dld(struct scsi_disk *sdkp, struct scsi_cmnd *scmd)
1221 {
1222 	struct scsi_device *sdp = sdkp->device;
1223 	int hint;
1224 
1225 	if (!sdp->cdl_supported || !sdp->cdl_enable)
1226 		return 0;
1227 
1228 	/*
1229 	 * Use "no limit" if the request ioprio does not specify a duration
1230 	 * limit hint.
1231 	 */
1232 	hint = IOPRIO_PRIO_HINT(req_get_ioprio(scsi_cmd_to_rq(scmd)));
1233 	if (hint < IOPRIO_HINT_DEV_DURATION_LIMIT_1 ||
1234 	    hint > IOPRIO_HINT_DEV_DURATION_LIMIT_7)
1235 		return 0;
1236 
1237 	return (hint - IOPRIO_HINT_DEV_DURATION_LIMIT_1) + 1;
1238 }
1239 
1240 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd)
1241 {
1242 	struct request *rq = scsi_cmd_to_rq(cmd);
1243 	struct scsi_device *sdp = cmd->device;
1244 	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1245 	sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1246 	sector_t threshold;
1247 	unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1248 	unsigned int mask = logical_to_sectors(sdp, 1) - 1;
1249 	bool write = rq_data_dir(rq) == WRITE;
1250 	unsigned char protect, fua;
1251 	unsigned int dld;
1252 	blk_status_t ret;
1253 	unsigned int dif;
1254 	bool dix;
1255 
1256 	ret = scsi_alloc_sgtables(cmd);
1257 	if (ret != BLK_STS_OK)
1258 		return ret;
1259 
1260 	ret = BLK_STS_IOERR;
1261 	if (!scsi_device_online(sdp) || sdp->changed) {
1262 		scmd_printk(KERN_ERR, cmd, "device offline or changed\n");
1263 		goto fail;
1264 	}
1265 
1266 	if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->q->disk)) {
1267 		scmd_printk(KERN_ERR, cmd, "access beyond end of device\n");
1268 		goto fail;
1269 	}
1270 
1271 	if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) {
1272 		scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n");
1273 		goto fail;
1274 	}
1275 
1276 	/*
1277 	 * Some SD card readers can't handle accesses which touch the
1278 	 * last one or two logical blocks. Split accesses as needed.
1279 	 */
1280 	threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS;
1281 
1282 	if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) {
1283 		if (lba < threshold) {
1284 			/* Access up to the threshold but not beyond */
1285 			nr_blocks = threshold - lba;
1286 		} else {
1287 			/* Access only a single logical block */
1288 			nr_blocks = 1;
1289 		}
1290 	}
1291 
1292 	fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0;
1293 	dix = scsi_prot_sg_count(cmd);
1294 	dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type);
1295 	dld = sd_cdl_dld(sdkp, cmd);
1296 
1297 	if (dif || dix)
1298 		protect = sd_setup_protect_cmnd(cmd, dix, dif);
1299 	else
1300 		protect = 0;
1301 
1302 	if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1303 		ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks,
1304 					 protect | fua, dld);
1305 	} else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) {
1306 		ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks,
1307 					 protect | fua, dld);
1308 	} else if ((nr_blocks > 0xff) || (lba > 0x1fffff) ||
1309 		   sdp->use_10_for_rw || protect || rq->write_hint) {
1310 		ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks,
1311 					 protect | fua);
1312 	} else {
1313 		ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks,
1314 					protect | fua);
1315 	}
1316 
1317 	if (unlikely(ret != BLK_STS_OK))
1318 		goto fail;
1319 
1320 	/*
1321 	 * We shouldn't disconnect in the middle of a sector, so with a dumb
1322 	 * host adapter, it's safe to assume that we can at least transfer
1323 	 * this many bytes between each connect / disconnect.
1324 	 */
1325 	cmd->transfersize = sdp->sector_size;
1326 	cmd->underflow = nr_blocks << 9;
1327 	cmd->allowed = sdkp->max_retries;
1328 	cmd->sdb.length = nr_blocks * sdp->sector_size;
1329 
1330 	SCSI_LOG_HLQUEUE(1,
1331 			 scmd_printk(KERN_INFO, cmd,
1332 				     "%s: block=%llu, count=%d\n", __func__,
1333 				     (unsigned long long)blk_rq_pos(rq),
1334 				     blk_rq_sectors(rq)));
1335 	SCSI_LOG_HLQUEUE(2,
1336 			 scmd_printk(KERN_INFO, cmd,
1337 				     "%s %d/%u 512 byte blocks.\n",
1338 				     write ? "writing" : "reading", nr_blocks,
1339 				     blk_rq_sectors(rq)));
1340 
1341 	/*
1342 	 * This indicates that the command is ready from our end to be queued.
1343 	 */
1344 	return BLK_STS_OK;
1345 fail:
1346 	scsi_free_sgtables(cmd);
1347 	return ret;
1348 }
1349 
1350 static blk_status_t sd_init_command(struct scsi_cmnd *cmd)
1351 {
1352 	struct request *rq = scsi_cmd_to_rq(cmd);
1353 
1354 	switch (req_op(rq)) {
1355 	case REQ_OP_DISCARD:
1356 		switch (scsi_disk(rq->q->disk)->provisioning_mode) {
1357 		case SD_LBP_UNMAP:
1358 			return sd_setup_unmap_cmnd(cmd);
1359 		case SD_LBP_WS16:
1360 			return sd_setup_write_same16_cmnd(cmd, true);
1361 		case SD_LBP_WS10:
1362 			return sd_setup_write_same10_cmnd(cmd, true);
1363 		case SD_LBP_ZERO:
1364 			return sd_setup_write_same10_cmnd(cmd, false);
1365 		default:
1366 			return BLK_STS_TARGET;
1367 		}
1368 	case REQ_OP_WRITE_ZEROES:
1369 		return sd_setup_write_zeroes_cmnd(cmd);
1370 	case REQ_OP_FLUSH:
1371 		return sd_setup_flush_cmnd(cmd);
1372 	case REQ_OP_READ:
1373 	case REQ_OP_WRITE:
1374 		return sd_setup_read_write_cmnd(cmd);
1375 	case REQ_OP_ZONE_RESET:
1376 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1377 						   false);
1378 	case REQ_OP_ZONE_RESET_ALL:
1379 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1380 						   true);
1381 	case REQ_OP_ZONE_OPEN:
1382 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false);
1383 	case REQ_OP_ZONE_CLOSE:
1384 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false);
1385 	case REQ_OP_ZONE_FINISH:
1386 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false);
1387 	default:
1388 		WARN_ON_ONCE(1);
1389 		return BLK_STS_NOTSUPP;
1390 	}
1391 }
1392 
1393 static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1394 {
1395 	struct request *rq = scsi_cmd_to_rq(SCpnt);
1396 
1397 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1398 		mempool_free(rq->special_vec.bv_page, sd_page_pool);
1399 }
1400 
1401 static bool sd_need_revalidate(struct gendisk *disk, struct scsi_disk *sdkp)
1402 {
1403 	if (sdkp->device->removable || sdkp->write_prot) {
1404 		if (disk_check_media_change(disk))
1405 			return true;
1406 	}
1407 
1408 	/*
1409 	 * Force a full rescan after ioctl(BLKRRPART).  While the disk state has
1410 	 * nothing to do with partitions, BLKRRPART is used to force a full
1411 	 * revalidate after things like a format for historical reasons.
1412 	 */
1413 	return test_bit(GD_NEED_PART_SCAN, &disk->state);
1414 }
1415 
1416 /**
1417  *	sd_open - open a scsi disk device
1418  *	@disk: disk to open
1419  *	@mode: open mode
1420  *
1421  *	Returns 0 if successful. Returns a negated errno value in case
1422  *	of error.
1423  *
1424  *	Note: This can be called from a user context (e.g. fsck(1) )
1425  *	or from within the kernel (e.g. as a result of a mount(1) ).
1426  *	In the latter case @inode and @filp carry an abridged amount
1427  *	of information as noted above.
1428  *
1429  *	Locking: called with disk->open_mutex held.
1430  **/
1431 static int sd_open(struct gendisk *disk, blk_mode_t mode)
1432 {
1433 	struct scsi_disk *sdkp = scsi_disk(disk);
1434 	struct scsi_device *sdev = sdkp->device;
1435 	int retval;
1436 
1437 	if (scsi_device_get(sdev))
1438 		return -ENXIO;
1439 
1440 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1441 
1442 	/*
1443 	 * If the device is in error recovery, wait until it is done.
1444 	 * If the device is offline, then disallow any access to it.
1445 	 */
1446 	retval = -ENXIO;
1447 	if (!scsi_block_when_processing_errors(sdev))
1448 		goto error_out;
1449 
1450 	if (sd_need_revalidate(disk, sdkp))
1451 		sd_revalidate_disk(disk);
1452 
1453 	/*
1454 	 * If the drive is empty, just let the open fail.
1455 	 */
1456 	retval = -ENOMEDIUM;
1457 	if (sdev->removable && !sdkp->media_present &&
1458 	    !(mode & BLK_OPEN_NDELAY))
1459 		goto error_out;
1460 
1461 	/*
1462 	 * If the device has the write protect tab set, have the open fail
1463 	 * if the user expects to be able to write to the thing.
1464 	 */
1465 	retval = -EROFS;
1466 	if (sdkp->write_prot && (mode & BLK_OPEN_WRITE))
1467 		goto error_out;
1468 
1469 	/*
1470 	 * It is possible that the disk changing stuff resulted in
1471 	 * the device being taken offline.  If this is the case,
1472 	 * report this to the user, and don't pretend that the
1473 	 * open actually succeeded.
1474 	 */
1475 	retval = -ENXIO;
1476 	if (!scsi_device_online(sdev))
1477 		goto error_out;
1478 
1479 	if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1480 		if (scsi_block_when_processing_errors(sdev))
1481 			scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1482 	}
1483 
1484 	return 0;
1485 
1486 error_out:
1487 	scsi_device_put(sdev);
1488 	return retval;
1489 }
1490 
1491 /**
1492  *	sd_release - invoked when the (last) close(2) is called on this
1493  *	scsi disk.
1494  *	@disk: disk to release
1495  *
1496  *	Returns 0.
1497  *
1498  *	Note: may block (uninterruptible) if error recovery is underway
1499  *	on this disk.
1500  *
1501  *	Locking: called with disk->open_mutex held.
1502  **/
1503 static void sd_release(struct gendisk *disk)
1504 {
1505 	struct scsi_disk *sdkp = scsi_disk(disk);
1506 	struct scsi_device *sdev = sdkp->device;
1507 
1508 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1509 
1510 	if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1511 		if (scsi_block_when_processing_errors(sdev))
1512 			scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1513 	}
1514 
1515 	scsi_device_put(sdev);
1516 }
1517 
1518 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1519 {
1520 	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1521 	struct scsi_device *sdp = sdkp->device;
1522 	struct Scsi_Host *host = sdp->host;
1523 	sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1524 	int diskinfo[4];
1525 
1526 	/* default to most commonly used values */
1527 	diskinfo[0] = 0x40;	/* 1 << 6 */
1528 	diskinfo[1] = 0x20;	/* 1 << 5 */
1529 	diskinfo[2] = capacity >> 11;
1530 
1531 	/* override with calculated, extended default, or driver values */
1532 	if (host->hostt->bios_param)
1533 		host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1534 	else
1535 		scsicam_bios_param(bdev, capacity, diskinfo);
1536 
1537 	geo->heads = diskinfo[0];
1538 	geo->sectors = diskinfo[1];
1539 	geo->cylinders = diskinfo[2];
1540 	return 0;
1541 }
1542 
1543 /**
1544  *	sd_ioctl - process an ioctl
1545  *	@bdev: target block device
1546  *	@mode: open mode
1547  *	@cmd: ioctl command number
1548  *	@arg: this is third argument given to ioctl(2) system call.
1549  *	Often contains a pointer.
1550  *
1551  *	Returns 0 if successful (some ioctls return positive numbers on
1552  *	success as well). Returns a negated errno value in case of error.
1553  *
1554  *	Note: most ioctls are forward onto the block subsystem or further
1555  *	down in the scsi subsystem.
1556  **/
1557 static int sd_ioctl(struct block_device *bdev, blk_mode_t mode,
1558 		    unsigned int cmd, unsigned long arg)
1559 {
1560 	struct gendisk *disk = bdev->bd_disk;
1561 	struct scsi_disk *sdkp = scsi_disk(disk);
1562 	struct scsi_device *sdp = sdkp->device;
1563 	void __user *p = (void __user *)arg;
1564 	int error;
1565 
1566 	SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1567 				    "cmd=0x%x\n", disk->disk_name, cmd));
1568 
1569 	if (bdev_is_partition(bdev) && !capable(CAP_SYS_RAWIO))
1570 		return -ENOIOCTLCMD;
1571 
1572 	/*
1573 	 * If we are in the middle of error recovery, don't let anyone
1574 	 * else try and use this device.  Also, if error recovery fails, it
1575 	 * may try and take the device offline, in which case all further
1576 	 * access to the device is prohibited.
1577 	 */
1578 	error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1579 			(mode & BLK_OPEN_NDELAY));
1580 	if (error)
1581 		return error;
1582 
1583 	if (is_sed_ioctl(cmd))
1584 		return sed_ioctl(sdkp->opal_dev, cmd, p);
1585 	return scsi_ioctl(sdp, mode & BLK_OPEN_WRITE, cmd, p);
1586 }
1587 
1588 static void set_media_not_present(struct scsi_disk *sdkp)
1589 {
1590 	if (sdkp->media_present)
1591 		sdkp->device->changed = 1;
1592 
1593 	if (sdkp->device->removable) {
1594 		sdkp->media_present = 0;
1595 		sdkp->capacity = 0;
1596 	}
1597 }
1598 
1599 static int media_not_present(struct scsi_disk *sdkp,
1600 			     struct scsi_sense_hdr *sshdr)
1601 {
1602 	if (!scsi_sense_valid(sshdr))
1603 		return 0;
1604 
1605 	/* not invoked for commands that could return deferred errors */
1606 	switch (sshdr->sense_key) {
1607 	case UNIT_ATTENTION:
1608 	case NOT_READY:
1609 		/* medium not present */
1610 		if (sshdr->asc == 0x3A) {
1611 			set_media_not_present(sdkp);
1612 			return 1;
1613 		}
1614 	}
1615 	return 0;
1616 }
1617 
1618 /**
1619  *	sd_check_events - check media events
1620  *	@disk: kernel device descriptor
1621  *	@clearing: disk events currently being cleared
1622  *
1623  *	Returns mask of DISK_EVENT_*.
1624  *
1625  *	Note: this function is invoked from the block subsystem.
1626  **/
1627 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1628 {
1629 	struct scsi_disk *sdkp = disk->private_data;
1630 	struct scsi_device *sdp;
1631 	int retval;
1632 	bool disk_changed;
1633 
1634 	if (!sdkp)
1635 		return 0;
1636 
1637 	sdp = sdkp->device;
1638 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1639 
1640 	/*
1641 	 * If the device is offline, don't send any commands - just pretend as
1642 	 * if the command failed.  If the device ever comes back online, we
1643 	 * can deal with it then.  It is only because of unrecoverable errors
1644 	 * that we would ever take a device offline in the first place.
1645 	 */
1646 	if (!scsi_device_online(sdp)) {
1647 		set_media_not_present(sdkp);
1648 		goto out;
1649 	}
1650 
1651 	/*
1652 	 * Using TEST_UNIT_READY enables differentiation between drive with
1653 	 * no cartridge loaded - NOT READY, drive with changed cartridge -
1654 	 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1655 	 *
1656 	 * Drives that auto spin down. eg iomega jaz 1G, will be started
1657 	 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1658 	 * sd_revalidate() is called.
1659 	 */
1660 	if (scsi_block_when_processing_errors(sdp)) {
1661 		struct scsi_sense_hdr sshdr = { 0, };
1662 
1663 		retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries,
1664 					      &sshdr);
1665 
1666 		/* failed to execute TUR, assume media not present */
1667 		if (retval < 0 || host_byte(retval)) {
1668 			set_media_not_present(sdkp);
1669 			goto out;
1670 		}
1671 
1672 		if (media_not_present(sdkp, &sshdr))
1673 			goto out;
1674 	}
1675 
1676 	/*
1677 	 * For removable scsi disk we have to recognise the presence
1678 	 * of a disk in the drive.
1679 	 */
1680 	if (!sdkp->media_present)
1681 		sdp->changed = 1;
1682 	sdkp->media_present = 1;
1683 out:
1684 	/*
1685 	 * sdp->changed is set under the following conditions:
1686 	 *
1687 	 *	Medium present state has changed in either direction.
1688 	 *	Device has indicated UNIT_ATTENTION.
1689 	 */
1690 	disk_changed = sdp->changed;
1691 	sdp->changed = 0;
1692 	return disk_changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1693 }
1694 
1695 static int sd_sync_cache(struct scsi_disk *sdkp)
1696 {
1697 	int res;
1698 	struct scsi_device *sdp = sdkp->device;
1699 	const int timeout = sdp->request_queue->rq_timeout
1700 		* SD_FLUSH_TIMEOUT_MULTIPLIER;
1701 	/* Leave the rest of the command zero to indicate flush everything. */
1702 	const unsigned char cmd[16] = { sdp->use_16_for_sync ?
1703 				SYNCHRONIZE_CACHE_16 : SYNCHRONIZE_CACHE };
1704 	struct scsi_sense_hdr sshdr;
1705 	struct scsi_failure failure_defs[] = {
1706 		{
1707 			.allowed = 3,
1708 			.result = SCMD_FAILURE_RESULT_ANY,
1709 		},
1710 		{}
1711 	};
1712 	struct scsi_failures failures = {
1713 		.failure_definitions = failure_defs,
1714 	};
1715 	const struct scsi_exec_args exec_args = {
1716 		.req_flags = BLK_MQ_REQ_PM,
1717 		.sshdr = &sshdr,
1718 		.failures = &failures,
1719 	};
1720 
1721 	if (!scsi_device_online(sdp))
1722 		return -ENODEV;
1723 
1724 	res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, timeout,
1725 			       sdkp->max_retries, &exec_args);
1726 	if (res) {
1727 		sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1728 
1729 		if (res < 0)
1730 			return res;
1731 
1732 		if (scsi_status_is_check_condition(res) &&
1733 		    scsi_sense_valid(&sshdr)) {
1734 			sd_print_sense_hdr(sdkp, &sshdr);
1735 
1736 			/* we need to evaluate the error return  */
1737 			if (sshdr.asc == 0x3a ||	/* medium not present */
1738 			    sshdr.asc == 0x20 ||	/* invalid command */
1739 			    (sshdr.asc == 0x74 && sshdr.ascq == 0x71))	/* drive is password locked */
1740 				/* this is no error here */
1741 				return 0;
1742 			/*
1743 			 * This drive doesn't support sync and there's not much
1744 			 * we can do because this is called during shutdown
1745 			 * or suspend so just return success so those operations
1746 			 * can proceed.
1747 			 */
1748 			if (sshdr.sense_key == ILLEGAL_REQUEST)
1749 				return 0;
1750 		}
1751 
1752 		switch (host_byte(res)) {
1753 		/* ignore errors due to racing a disconnection */
1754 		case DID_BAD_TARGET:
1755 		case DID_NO_CONNECT:
1756 			return 0;
1757 		/* signal the upper layer it might try again */
1758 		case DID_BUS_BUSY:
1759 		case DID_IMM_RETRY:
1760 		case DID_REQUEUE:
1761 		case DID_SOFT_ERROR:
1762 			return -EBUSY;
1763 		default:
1764 			return -EIO;
1765 		}
1766 	}
1767 	return 0;
1768 }
1769 
1770 static void sd_rescan(struct device *dev)
1771 {
1772 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
1773 
1774 	sd_revalidate_disk(sdkp->disk);
1775 }
1776 
1777 static int sd_get_unique_id(struct gendisk *disk, u8 id[16],
1778 		enum blk_unique_id type)
1779 {
1780 	struct scsi_device *sdev = scsi_disk(disk)->device;
1781 	const struct scsi_vpd *vpd;
1782 	const unsigned char *d;
1783 	int ret = -ENXIO, len;
1784 
1785 	rcu_read_lock();
1786 	vpd = rcu_dereference(sdev->vpd_pg83);
1787 	if (!vpd)
1788 		goto out_unlock;
1789 
1790 	ret = -EINVAL;
1791 	for (d = vpd->data + 4; d < vpd->data + vpd->len; d += d[3] + 4) {
1792 		/* we only care about designators with LU association */
1793 		if (((d[1] >> 4) & 0x3) != 0x00)
1794 			continue;
1795 		if ((d[1] & 0xf) != type)
1796 			continue;
1797 
1798 		/*
1799 		 * Only exit early if a 16-byte descriptor was found.  Otherwise
1800 		 * keep looking as one with more entropy might still show up.
1801 		 */
1802 		len = d[3];
1803 		if (len != 8 && len != 12 && len != 16)
1804 			continue;
1805 		ret = len;
1806 		memcpy(id, d + 4, len);
1807 		if (len == 16)
1808 			break;
1809 	}
1810 out_unlock:
1811 	rcu_read_unlock();
1812 	return ret;
1813 }
1814 
1815 static int sd_scsi_to_pr_err(struct scsi_sense_hdr *sshdr, int result)
1816 {
1817 	switch (host_byte(result)) {
1818 	case DID_TRANSPORT_MARGINAL:
1819 	case DID_TRANSPORT_DISRUPTED:
1820 	case DID_BUS_BUSY:
1821 		return PR_STS_RETRY_PATH_FAILURE;
1822 	case DID_NO_CONNECT:
1823 		return PR_STS_PATH_FAILED;
1824 	case DID_TRANSPORT_FAILFAST:
1825 		return PR_STS_PATH_FAST_FAILED;
1826 	}
1827 
1828 	switch (status_byte(result)) {
1829 	case SAM_STAT_RESERVATION_CONFLICT:
1830 		return PR_STS_RESERVATION_CONFLICT;
1831 	case SAM_STAT_CHECK_CONDITION:
1832 		if (!scsi_sense_valid(sshdr))
1833 			return PR_STS_IOERR;
1834 
1835 		if (sshdr->sense_key == ILLEGAL_REQUEST &&
1836 		    (sshdr->asc == 0x26 || sshdr->asc == 0x24))
1837 			return -EINVAL;
1838 
1839 		fallthrough;
1840 	default:
1841 		return PR_STS_IOERR;
1842 	}
1843 }
1844 
1845 static int sd_pr_in_command(struct block_device *bdev, u8 sa,
1846 			    unsigned char *data, int data_len)
1847 {
1848 	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1849 	struct scsi_device *sdev = sdkp->device;
1850 	struct scsi_sense_hdr sshdr;
1851 	u8 cmd[10] = { PERSISTENT_RESERVE_IN, sa };
1852 	struct scsi_failure failure_defs[] = {
1853 		{
1854 			.sense = UNIT_ATTENTION,
1855 			.asc = SCMD_FAILURE_ASC_ANY,
1856 			.ascq = SCMD_FAILURE_ASCQ_ANY,
1857 			.allowed = 5,
1858 			.result = SAM_STAT_CHECK_CONDITION,
1859 		},
1860 		{}
1861 	};
1862 	struct scsi_failures failures = {
1863 		.failure_definitions = failure_defs,
1864 	};
1865 	const struct scsi_exec_args exec_args = {
1866 		.sshdr = &sshdr,
1867 		.failures = &failures,
1868 	};
1869 	int result;
1870 
1871 	put_unaligned_be16(data_len, &cmd[7]);
1872 
1873 	result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, data, data_len,
1874 				  SD_TIMEOUT, sdkp->max_retries, &exec_args);
1875 	if (scsi_status_is_check_condition(result) &&
1876 	    scsi_sense_valid(&sshdr)) {
1877 		sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1878 		scsi_print_sense_hdr(sdev, NULL, &sshdr);
1879 	}
1880 
1881 	if (result <= 0)
1882 		return result;
1883 
1884 	return sd_scsi_to_pr_err(&sshdr, result);
1885 }
1886 
1887 static int sd_pr_read_keys(struct block_device *bdev, struct pr_keys *keys_info)
1888 {
1889 	int result, i, data_offset, num_copy_keys;
1890 	u32 num_keys = keys_info->num_keys;
1891 	int data_len = num_keys * 8 + 8;
1892 	u8 *data;
1893 
1894 	data = kzalloc(data_len, GFP_KERNEL);
1895 	if (!data)
1896 		return -ENOMEM;
1897 
1898 	result = sd_pr_in_command(bdev, READ_KEYS, data, data_len);
1899 	if (result)
1900 		goto free_data;
1901 
1902 	keys_info->generation = get_unaligned_be32(&data[0]);
1903 	keys_info->num_keys = get_unaligned_be32(&data[4]) / 8;
1904 
1905 	data_offset = 8;
1906 	num_copy_keys = min(num_keys, keys_info->num_keys);
1907 
1908 	for (i = 0; i < num_copy_keys; i++) {
1909 		keys_info->keys[i] = get_unaligned_be64(&data[data_offset]);
1910 		data_offset += 8;
1911 	}
1912 
1913 free_data:
1914 	kfree(data);
1915 	return result;
1916 }
1917 
1918 static int sd_pr_read_reservation(struct block_device *bdev,
1919 				  struct pr_held_reservation *rsv)
1920 {
1921 	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1922 	struct scsi_device *sdev = sdkp->device;
1923 	u8 data[24] = { };
1924 	int result, len;
1925 
1926 	result = sd_pr_in_command(bdev, READ_RESERVATION, data, sizeof(data));
1927 	if (result)
1928 		return result;
1929 
1930 	len = get_unaligned_be32(&data[4]);
1931 	if (!len)
1932 		return 0;
1933 
1934 	/* Make sure we have at least the key and type */
1935 	if (len < 14) {
1936 		sdev_printk(KERN_INFO, sdev,
1937 			    "READ RESERVATION failed due to short return buffer of %d bytes\n",
1938 			    len);
1939 		return -EINVAL;
1940 	}
1941 
1942 	rsv->generation = get_unaligned_be32(&data[0]);
1943 	rsv->key = get_unaligned_be64(&data[8]);
1944 	rsv->type = scsi_pr_type_to_block(data[21] & 0x0f);
1945 	return 0;
1946 }
1947 
1948 static int sd_pr_out_command(struct block_device *bdev, u8 sa, u64 key,
1949 			     u64 sa_key, enum scsi_pr_type type, u8 flags)
1950 {
1951 	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1952 	struct scsi_device *sdev = sdkp->device;
1953 	struct scsi_sense_hdr sshdr;
1954 	struct scsi_failure failure_defs[] = {
1955 		{
1956 			.sense = UNIT_ATTENTION,
1957 			.asc = SCMD_FAILURE_ASC_ANY,
1958 			.ascq = SCMD_FAILURE_ASCQ_ANY,
1959 			.allowed = 5,
1960 			.result = SAM_STAT_CHECK_CONDITION,
1961 		},
1962 		{}
1963 	};
1964 	struct scsi_failures failures = {
1965 		.failure_definitions = failure_defs,
1966 	};
1967 	const struct scsi_exec_args exec_args = {
1968 		.sshdr = &sshdr,
1969 		.failures = &failures,
1970 	};
1971 	int result;
1972 	u8 cmd[16] = { 0, };
1973 	u8 data[24] = { 0, };
1974 
1975 	cmd[0] = PERSISTENT_RESERVE_OUT;
1976 	cmd[1] = sa;
1977 	cmd[2] = type;
1978 	put_unaligned_be32(sizeof(data), &cmd[5]);
1979 
1980 	put_unaligned_be64(key, &data[0]);
1981 	put_unaligned_be64(sa_key, &data[8]);
1982 	data[20] = flags;
1983 
1984 	result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, &data,
1985 				  sizeof(data), SD_TIMEOUT, sdkp->max_retries,
1986 				  &exec_args);
1987 
1988 	if (scsi_status_is_check_condition(result) &&
1989 	    scsi_sense_valid(&sshdr)) {
1990 		sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1991 		scsi_print_sense_hdr(sdev, NULL, &sshdr);
1992 	}
1993 
1994 	if (result <= 0)
1995 		return result;
1996 
1997 	return sd_scsi_to_pr_err(&sshdr, result);
1998 }
1999 
2000 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
2001 		u32 flags)
2002 {
2003 	if (flags & ~PR_FL_IGNORE_KEY)
2004 		return -EOPNOTSUPP;
2005 	return sd_pr_out_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
2006 			old_key, new_key, 0,
2007 			(1 << 0) /* APTPL */);
2008 }
2009 
2010 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
2011 		u32 flags)
2012 {
2013 	if (flags)
2014 		return -EOPNOTSUPP;
2015 	return sd_pr_out_command(bdev, 0x01, key, 0,
2016 				 block_pr_type_to_scsi(type), 0);
2017 }
2018 
2019 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2020 {
2021 	return sd_pr_out_command(bdev, 0x02, key, 0,
2022 				 block_pr_type_to_scsi(type), 0);
2023 }
2024 
2025 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
2026 		enum pr_type type, bool abort)
2027 {
2028 	return sd_pr_out_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
2029 				 block_pr_type_to_scsi(type), 0);
2030 }
2031 
2032 static int sd_pr_clear(struct block_device *bdev, u64 key)
2033 {
2034 	return sd_pr_out_command(bdev, 0x03, key, 0, 0, 0);
2035 }
2036 
2037 static const struct pr_ops sd_pr_ops = {
2038 	.pr_register	= sd_pr_register,
2039 	.pr_reserve	= sd_pr_reserve,
2040 	.pr_release	= sd_pr_release,
2041 	.pr_preempt	= sd_pr_preempt,
2042 	.pr_clear	= sd_pr_clear,
2043 	.pr_read_keys	= sd_pr_read_keys,
2044 	.pr_read_reservation = sd_pr_read_reservation,
2045 };
2046 
2047 static void scsi_disk_free_disk(struct gendisk *disk)
2048 {
2049 	struct scsi_disk *sdkp = scsi_disk(disk);
2050 
2051 	put_device(&sdkp->disk_dev);
2052 }
2053 
2054 static const struct block_device_operations sd_fops = {
2055 	.owner			= THIS_MODULE,
2056 	.open			= sd_open,
2057 	.release		= sd_release,
2058 	.ioctl			= sd_ioctl,
2059 	.getgeo			= sd_getgeo,
2060 	.compat_ioctl		= blkdev_compat_ptr_ioctl,
2061 	.check_events		= sd_check_events,
2062 	.unlock_native_capacity	= sd_unlock_native_capacity,
2063 	.report_zones		= sd_zbc_report_zones,
2064 	.get_unique_id		= sd_get_unique_id,
2065 	.free_disk		= scsi_disk_free_disk,
2066 	.pr_ops			= &sd_pr_ops,
2067 };
2068 
2069 /**
2070  *	sd_eh_reset - reset error handling callback
2071  *	@scmd:		sd-issued command that has failed
2072  *
2073  *	This function is called by the SCSI midlayer before starting
2074  *	SCSI EH. When counting medium access failures we have to be
2075  *	careful to register it only only once per device and SCSI EH run;
2076  *	there might be several timed out commands which will cause the
2077  *	'max_medium_access_timeouts' counter to trigger after the first
2078  *	SCSI EH run already and set the device to offline.
2079  *	So this function resets the internal counter before starting SCSI EH.
2080  **/
2081 static void sd_eh_reset(struct scsi_cmnd *scmd)
2082 {
2083 	struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk);
2084 
2085 	/* New SCSI EH run, reset gate variable */
2086 	sdkp->ignore_medium_access_errors = false;
2087 }
2088 
2089 /**
2090  *	sd_eh_action - error handling callback
2091  *	@scmd:		sd-issued command that has failed
2092  *	@eh_disp:	The recovery disposition suggested by the midlayer
2093  *
2094  *	This function is called by the SCSI midlayer upon completion of an
2095  *	error test command (currently TEST UNIT READY). The result of sending
2096  *	the eh command is passed in eh_disp.  We're looking for devices that
2097  *	fail medium access commands but are OK with non access commands like
2098  *	test unit ready (so wrongly see the device as having a successful
2099  *	recovery)
2100  **/
2101 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
2102 {
2103 	struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk);
2104 	struct scsi_device *sdev = scmd->device;
2105 
2106 	if (!scsi_device_online(sdev) ||
2107 	    !scsi_medium_access_command(scmd) ||
2108 	    host_byte(scmd->result) != DID_TIME_OUT ||
2109 	    eh_disp != SUCCESS)
2110 		return eh_disp;
2111 
2112 	/*
2113 	 * The device has timed out executing a medium access command.
2114 	 * However, the TEST UNIT READY command sent during error
2115 	 * handling completed successfully. Either the device is in the
2116 	 * process of recovering or has it suffered an internal failure
2117 	 * that prevents access to the storage medium.
2118 	 */
2119 	if (!sdkp->ignore_medium_access_errors) {
2120 		sdkp->medium_access_timed_out++;
2121 		sdkp->ignore_medium_access_errors = true;
2122 	}
2123 
2124 	/*
2125 	 * If the device keeps failing read/write commands but TEST UNIT
2126 	 * READY always completes successfully we assume that medium
2127 	 * access is no longer possible and take the device offline.
2128 	 */
2129 	if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
2130 		scmd_printk(KERN_ERR, scmd,
2131 			    "Medium access timeout failure. Offlining disk!\n");
2132 		mutex_lock(&sdev->state_mutex);
2133 		scsi_device_set_state(sdev, SDEV_OFFLINE);
2134 		mutex_unlock(&sdev->state_mutex);
2135 
2136 		return SUCCESS;
2137 	}
2138 
2139 	return eh_disp;
2140 }
2141 
2142 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
2143 {
2144 	struct request *req = scsi_cmd_to_rq(scmd);
2145 	struct scsi_device *sdev = scmd->device;
2146 	unsigned int transferred, good_bytes;
2147 	u64 start_lba, end_lba, bad_lba;
2148 
2149 	/*
2150 	 * Some commands have a payload smaller than the device logical
2151 	 * block size (e.g. INQUIRY on a 4K disk).
2152 	 */
2153 	if (scsi_bufflen(scmd) <= sdev->sector_size)
2154 		return 0;
2155 
2156 	/* Check if we have a 'bad_lba' information */
2157 	if (!scsi_get_sense_info_fld(scmd->sense_buffer,
2158 				     SCSI_SENSE_BUFFERSIZE,
2159 				     &bad_lba))
2160 		return 0;
2161 
2162 	/*
2163 	 * If the bad lba was reported incorrectly, we have no idea where
2164 	 * the error is.
2165 	 */
2166 	start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
2167 	end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
2168 	if (bad_lba < start_lba || bad_lba >= end_lba)
2169 		return 0;
2170 
2171 	/*
2172 	 * resid is optional but mostly filled in.  When it's unused,
2173 	 * its value is zero, so we assume the whole buffer transferred
2174 	 */
2175 	transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
2176 
2177 	/* This computation should always be done in terms of the
2178 	 * resolution of the device's medium.
2179 	 */
2180 	good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
2181 
2182 	return min(good_bytes, transferred);
2183 }
2184 
2185 /**
2186  *	sd_done - bottom half handler: called when the lower level
2187  *	driver has completed (successfully or otherwise) a scsi command.
2188  *	@SCpnt: mid-level's per command structure.
2189  *
2190  *	Note: potentially run from within an ISR. Must not block.
2191  **/
2192 static int sd_done(struct scsi_cmnd *SCpnt)
2193 {
2194 	int result = SCpnt->result;
2195 	unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
2196 	unsigned int sector_size = SCpnt->device->sector_size;
2197 	unsigned int resid;
2198 	struct scsi_sense_hdr sshdr;
2199 	struct request *req = scsi_cmd_to_rq(SCpnt);
2200 	struct scsi_disk *sdkp = scsi_disk(req->q->disk);
2201 	int sense_valid = 0;
2202 	int sense_deferred = 0;
2203 
2204 	switch (req_op(req)) {
2205 	case REQ_OP_DISCARD:
2206 	case REQ_OP_WRITE_ZEROES:
2207 	case REQ_OP_ZONE_RESET:
2208 	case REQ_OP_ZONE_RESET_ALL:
2209 	case REQ_OP_ZONE_OPEN:
2210 	case REQ_OP_ZONE_CLOSE:
2211 	case REQ_OP_ZONE_FINISH:
2212 		if (!result) {
2213 			good_bytes = blk_rq_bytes(req);
2214 			scsi_set_resid(SCpnt, 0);
2215 		} else {
2216 			good_bytes = 0;
2217 			scsi_set_resid(SCpnt, blk_rq_bytes(req));
2218 		}
2219 		break;
2220 	default:
2221 		/*
2222 		 * In case of bogus fw or device, we could end up having
2223 		 * an unaligned partial completion. Check this here and force
2224 		 * alignment.
2225 		 */
2226 		resid = scsi_get_resid(SCpnt);
2227 		if (resid & (sector_size - 1)) {
2228 			sd_printk(KERN_INFO, sdkp,
2229 				"Unaligned partial completion (resid=%u, sector_sz=%u)\n",
2230 				resid, sector_size);
2231 			scsi_print_command(SCpnt);
2232 			resid = min(scsi_bufflen(SCpnt),
2233 				    round_up(resid, sector_size));
2234 			scsi_set_resid(SCpnt, resid);
2235 		}
2236 	}
2237 
2238 	if (result) {
2239 		sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
2240 		if (sense_valid)
2241 			sense_deferred = scsi_sense_is_deferred(&sshdr);
2242 	}
2243 	sdkp->medium_access_timed_out = 0;
2244 
2245 	if (!scsi_status_is_check_condition(result) &&
2246 	    (!sense_valid || sense_deferred))
2247 		goto out;
2248 
2249 	switch (sshdr.sense_key) {
2250 	case HARDWARE_ERROR:
2251 	case MEDIUM_ERROR:
2252 		good_bytes = sd_completed_bytes(SCpnt);
2253 		break;
2254 	case RECOVERED_ERROR:
2255 		good_bytes = scsi_bufflen(SCpnt);
2256 		break;
2257 	case NO_SENSE:
2258 		/* This indicates a false check condition, so ignore it.  An
2259 		 * unknown amount of data was transferred so treat it as an
2260 		 * error.
2261 		 */
2262 		SCpnt->result = 0;
2263 		memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
2264 		break;
2265 	case ABORTED_COMMAND:
2266 		if (sshdr.asc == 0x10)  /* DIF: Target detected corruption */
2267 			good_bytes = sd_completed_bytes(SCpnt);
2268 		break;
2269 	case ILLEGAL_REQUEST:
2270 		switch (sshdr.asc) {
2271 		case 0x10:	/* DIX: Host detected corruption */
2272 			good_bytes = sd_completed_bytes(SCpnt);
2273 			break;
2274 		case 0x20:	/* INVALID COMMAND OPCODE */
2275 		case 0x24:	/* INVALID FIELD IN CDB */
2276 			switch (SCpnt->cmnd[0]) {
2277 			case UNMAP:
2278 				sd_disable_discard(sdkp);
2279 				break;
2280 			case WRITE_SAME_16:
2281 			case WRITE_SAME:
2282 				if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2283 					sd_disable_discard(sdkp);
2284 				} else {
2285 					sd_disable_write_same(sdkp);
2286 					req->rq_flags |= RQF_QUIET;
2287 				}
2288 				break;
2289 			}
2290 		}
2291 		break;
2292 	default:
2293 		break;
2294 	}
2295 
2296  out:
2297 	if (sdkp->device->type == TYPE_ZBC)
2298 		good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2299 
2300 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2301 					   "sd_done: completed %d of %d bytes\n",
2302 					   good_bytes, scsi_bufflen(SCpnt)));
2303 
2304 	return good_bytes;
2305 }
2306 
2307 /*
2308  * spinup disk - called only in sd_revalidate_disk()
2309  */
2310 static void
2311 sd_spinup_disk(struct scsi_disk *sdkp)
2312 {
2313 	static const u8 cmd[10] = { TEST_UNIT_READY };
2314 	unsigned long spintime_expire = 0;
2315 	int spintime, sense_valid = 0;
2316 	unsigned int the_result;
2317 	struct scsi_sense_hdr sshdr;
2318 	struct scsi_failure failure_defs[] = {
2319 		/* Do not retry Medium Not Present */
2320 		{
2321 			.sense = UNIT_ATTENTION,
2322 			.asc = 0x3A,
2323 			.ascq = SCMD_FAILURE_ASCQ_ANY,
2324 			.result = SAM_STAT_CHECK_CONDITION,
2325 		},
2326 		{
2327 			.sense = NOT_READY,
2328 			.asc = 0x3A,
2329 			.ascq = SCMD_FAILURE_ASCQ_ANY,
2330 			.result = SAM_STAT_CHECK_CONDITION,
2331 		},
2332 		/* Retry when scsi_status_is_good would return false 3 times */
2333 		{
2334 			.result = SCMD_FAILURE_STAT_ANY,
2335 			.allowed = 3,
2336 		},
2337 		{}
2338 	};
2339 	struct scsi_failures failures = {
2340 		.failure_definitions = failure_defs,
2341 	};
2342 	const struct scsi_exec_args exec_args = {
2343 		.sshdr = &sshdr,
2344 		.failures = &failures,
2345 	};
2346 
2347 	spintime = 0;
2348 
2349 	/* Spin up drives, as required.  Only do this at boot time */
2350 	/* Spinup needs to be done for module loads too. */
2351 	do {
2352 		bool media_was_present = sdkp->media_present;
2353 
2354 		scsi_failures_reset_retries(&failures);
2355 
2356 		the_result = scsi_execute_cmd(sdkp->device, cmd, REQ_OP_DRV_IN,
2357 					      NULL, 0, SD_TIMEOUT,
2358 					      sdkp->max_retries, &exec_args);
2359 
2360 
2361 		if (the_result > 0) {
2362 			/*
2363 			 * If the drive has indicated to us that it doesn't
2364 			 * have any media in it, don't bother with any more
2365 			 * polling.
2366 			 */
2367 			if (media_not_present(sdkp, &sshdr)) {
2368 				if (media_was_present)
2369 					sd_printk(KERN_NOTICE, sdkp,
2370 						  "Media removed, stopped polling\n");
2371 				return;
2372 			}
2373 			sense_valid = scsi_sense_valid(&sshdr);
2374 		}
2375 
2376 		if (!scsi_status_is_check_condition(the_result)) {
2377 			/* no sense, TUR either succeeded or failed
2378 			 * with a status error */
2379 			if(!spintime && !scsi_status_is_good(the_result)) {
2380 				sd_print_result(sdkp, "Test Unit Ready failed",
2381 						the_result);
2382 			}
2383 			break;
2384 		}
2385 
2386 		/*
2387 		 * The device does not want the automatic start to be issued.
2388 		 */
2389 		if (sdkp->device->no_start_on_add)
2390 			break;
2391 
2392 		if (sense_valid && sshdr.sense_key == NOT_READY) {
2393 			if (sshdr.asc == 4 && sshdr.ascq == 3)
2394 				break;	/* manual intervention required */
2395 			if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2396 				break;	/* standby */
2397 			if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2398 				break;	/* unavailable */
2399 			if (sshdr.asc == 4 && sshdr.ascq == 0x1b)
2400 				break;	/* sanitize in progress */
2401 			if (sshdr.asc == 4 && sshdr.ascq == 0x24)
2402 				break;	/* depopulation in progress */
2403 			if (sshdr.asc == 4 && sshdr.ascq == 0x25)
2404 				break;	/* depopulation restoration in progress */
2405 			/*
2406 			 * Issue command to spin up drive when not ready
2407 			 */
2408 			if (!spintime) {
2409 				/* Return immediately and start spin cycle */
2410 				const u8 start_cmd[10] = {
2411 					[0] = START_STOP,
2412 					[1] = 1,
2413 					[4] = sdkp->device->start_stop_pwr_cond ?
2414 						0x11 : 1,
2415 				};
2416 
2417 				sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2418 				scsi_execute_cmd(sdkp->device, start_cmd,
2419 						 REQ_OP_DRV_IN, NULL, 0,
2420 						 SD_TIMEOUT, sdkp->max_retries,
2421 						 &exec_args);
2422 				spintime_expire = jiffies + 100 * HZ;
2423 				spintime = 1;
2424 			}
2425 			/* Wait 1 second for next try */
2426 			msleep(1000);
2427 			printk(KERN_CONT ".");
2428 
2429 		/*
2430 		 * Wait for USB flash devices with slow firmware.
2431 		 * Yes, this sense key/ASC combination shouldn't
2432 		 * occur here.  It's characteristic of these devices.
2433 		 */
2434 		} else if (sense_valid &&
2435 				sshdr.sense_key == UNIT_ATTENTION &&
2436 				sshdr.asc == 0x28) {
2437 			if (!spintime) {
2438 				spintime_expire = jiffies + 5 * HZ;
2439 				spintime = 1;
2440 			}
2441 			/* Wait 1 second for next try */
2442 			msleep(1000);
2443 		} else {
2444 			/* we don't understand the sense code, so it's
2445 			 * probably pointless to loop */
2446 			if(!spintime) {
2447 				sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2448 				sd_print_sense_hdr(sdkp, &sshdr);
2449 			}
2450 			break;
2451 		}
2452 
2453 	} while (spintime && time_before_eq(jiffies, spintime_expire));
2454 
2455 	if (spintime) {
2456 		if (scsi_status_is_good(the_result))
2457 			printk(KERN_CONT "ready\n");
2458 		else
2459 			printk(KERN_CONT "not responding...\n");
2460 	}
2461 }
2462 
2463 /*
2464  * Determine whether disk supports Data Integrity Field.
2465  */
2466 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2467 {
2468 	struct scsi_device *sdp = sdkp->device;
2469 	u8 type;
2470 
2471 	if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) {
2472 		sdkp->protection_type = 0;
2473 		return 0;
2474 	}
2475 
2476 	type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2477 
2478 	if (type > T10_PI_TYPE3_PROTECTION) {
2479 		sd_printk(KERN_ERR, sdkp, "formatted with unsupported"	\
2480 			  " protection type %u. Disabling disk!\n",
2481 			  type);
2482 		sdkp->protection_type = 0;
2483 		return -ENODEV;
2484 	}
2485 
2486 	sdkp->protection_type = type;
2487 
2488 	return 0;
2489 }
2490 
2491 static void sd_config_protection(struct scsi_disk *sdkp,
2492 		struct queue_limits *lim)
2493 {
2494 	struct scsi_device *sdp = sdkp->device;
2495 
2496 	if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY))
2497 		sd_dif_config_host(sdkp, lim);
2498 
2499 	if (!sdkp->protection_type)
2500 		return;
2501 
2502 	if (!scsi_host_dif_capable(sdp->host, sdkp->protection_type)) {
2503 		sd_first_printk(KERN_NOTICE, sdkp,
2504 				"Disabling DIF Type %u protection\n",
2505 				sdkp->protection_type);
2506 		sdkp->protection_type = 0;
2507 	}
2508 
2509 	sd_first_printk(KERN_NOTICE, sdkp, "Enabling DIF Type %u protection\n",
2510 			sdkp->protection_type);
2511 }
2512 
2513 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2514 			struct scsi_sense_hdr *sshdr, int sense_valid,
2515 			int the_result)
2516 {
2517 	if (sense_valid)
2518 		sd_print_sense_hdr(sdkp, sshdr);
2519 	else
2520 		sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2521 
2522 	/*
2523 	 * Set dirty bit for removable devices if not ready -
2524 	 * sometimes drives will not report this properly.
2525 	 */
2526 	if (sdp->removable &&
2527 	    sense_valid && sshdr->sense_key == NOT_READY)
2528 		set_media_not_present(sdkp);
2529 
2530 	/*
2531 	 * We used to set media_present to 0 here to indicate no media
2532 	 * in the drive, but some drives fail read capacity even with
2533 	 * media present, so we can't do that.
2534 	 */
2535 	sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2536 }
2537 
2538 #define RC16_LEN 32
2539 #if RC16_LEN > SD_BUF_SIZE
2540 #error RC16_LEN must not be more than SD_BUF_SIZE
2541 #endif
2542 
2543 #define READ_CAPACITY_RETRIES_ON_RESET	10
2544 
2545 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2546 		struct queue_limits *lim, unsigned char *buffer)
2547 {
2548 	unsigned char cmd[16];
2549 	struct scsi_sense_hdr sshdr;
2550 	const struct scsi_exec_args exec_args = {
2551 		.sshdr = &sshdr,
2552 	};
2553 	int sense_valid = 0;
2554 	int the_result;
2555 	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2556 	unsigned int alignment;
2557 	unsigned long long lba;
2558 	unsigned sector_size;
2559 
2560 	if (sdp->no_read_capacity_16)
2561 		return -EINVAL;
2562 
2563 	do {
2564 		memset(cmd, 0, 16);
2565 		cmd[0] = SERVICE_ACTION_IN_16;
2566 		cmd[1] = SAI_READ_CAPACITY_16;
2567 		cmd[13] = RC16_LEN;
2568 		memset(buffer, 0, RC16_LEN);
2569 
2570 		the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN,
2571 					      buffer, RC16_LEN, SD_TIMEOUT,
2572 					      sdkp->max_retries, &exec_args);
2573 		if (the_result > 0) {
2574 			if (media_not_present(sdkp, &sshdr))
2575 				return -ENODEV;
2576 
2577 			sense_valid = scsi_sense_valid(&sshdr);
2578 			if (sense_valid &&
2579 			    sshdr.sense_key == ILLEGAL_REQUEST &&
2580 			    (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2581 			    sshdr.ascq == 0x00)
2582 				/* Invalid Command Operation Code or
2583 				 * Invalid Field in CDB, just retry
2584 				 * silently with RC10 */
2585 				return -EINVAL;
2586 			if (sense_valid &&
2587 			    sshdr.sense_key == UNIT_ATTENTION &&
2588 			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2589 				/* Device reset might occur several times,
2590 				 * give it one more chance */
2591 				if (--reset_retries > 0)
2592 					continue;
2593 		}
2594 		retries--;
2595 
2596 	} while (the_result && retries);
2597 
2598 	if (the_result) {
2599 		sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2600 		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2601 		return -EINVAL;
2602 	}
2603 
2604 	sector_size = get_unaligned_be32(&buffer[8]);
2605 	lba = get_unaligned_be64(&buffer[0]);
2606 
2607 	if (sd_read_protection_type(sdkp, buffer) < 0) {
2608 		sdkp->capacity = 0;
2609 		return -ENODEV;
2610 	}
2611 
2612 	/* Logical blocks per physical block exponent */
2613 	sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2614 
2615 	/* RC basis */
2616 	sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2617 
2618 	/* Lowest aligned logical block */
2619 	alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2620 	lim->alignment_offset = alignment;
2621 	if (alignment && sdkp->first_scan)
2622 		sd_printk(KERN_NOTICE, sdkp,
2623 			  "physical block alignment offset: %u\n", alignment);
2624 
2625 	if (buffer[14] & 0x80) { /* LBPME */
2626 		sdkp->lbpme = 1;
2627 
2628 		if (buffer[14] & 0x40) /* LBPRZ */
2629 			sdkp->lbprz = 1;
2630 
2631 		sd_config_discard(sdkp, lim, SD_LBP_WS16);
2632 	}
2633 
2634 	sdkp->capacity = lba + 1;
2635 	return sector_size;
2636 }
2637 
2638 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2639 						unsigned char *buffer)
2640 {
2641 	static const u8 cmd[10] = { READ_CAPACITY };
2642 	struct scsi_sense_hdr sshdr;
2643 	struct scsi_failure failure_defs[] = {
2644 		/* Do not retry Medium Not Present */
2645 		{
2646 			.sense = UNIT_ATTENTION,
2647 			.asc = 0x3A,
2648 			.result = SAM_STAT_CHECK_CONDITION,
2649 		},
2650 		{
2651 			.sense = NOT_READY,
2652 			.asc = 0x3A,
2653 			.result = SAM_STAT_CHECK_CONDITION,
2654 		},
2655 		 /* Device reset might occur several times so retry a lot */
2656 		{
2657 			.sense = UNIT_ATTENTION,
2658 			.asc = 0x29,
2659 			.allowed = READ_CAPACITY_RETRIES_ON_RESET,
2660 			.result = SAM_STAT_CHECK_CONDITION,
2661 		},
2662 		/* Any other error not listed above retry 3 times */
2663 		{
2664 			.result = SCMD_FAILURE_RESULT_ANY,
2665 			.allowed = 3,
2666 		},
2667 		{}
2668 	};
2669 	struct scsi_failures failures = {
2670 		.failure_definitions = failure_defs,
2671 	};
2672 	const struct scsi_exec_args exec_args = {
2673 		.sshdr = &sshdr,
2674 		.failures = &failures,
2675 	};
2676 	int sense_valid = 0;
2677 	int the_result;
2678 	sector_t lba;
2679 	unsigned sector_size;
2680 
2681 	memset(buffer, 0, 8);
2682 
2683 	the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, buffer,
2684 				      8, SD_TIMEOUT, sdkp->max_retries,
2685 				      &exec_args);
2686 
2687 	if (the_result > 0) {
2688 		sense_valid = scsi_sense_valid(&sshdr);
2689 
2690 		if (media_not_present(sdkp, &sshdr))
2691 			return -ENODEV;
2692 	}
2693 
2694 	if (the_result) {
2695 		sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2696 		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2697 		return -EINVAL;
2698 	}
2699 
2700 	sector_size = get_unaligned_be32(&buffer[4]);
2701 	lba = get_unaligned_be32(&buffer[0]);
2702 
2703 	if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2704 		/* Some buggy (usb cardreader) devices return an lba of
2705 		   0xffffffff when the want to report a size of 0 (with
2706 		   which they really mean no media is present) */
2707 		sdkp->capacity = 0;
2708 		sdkp->physical_block_size = sector_size;
2709 		return sector_size;
2710 	}
2711 
2712 	sdkp->capacity = lba + 1;
2713 	sdkp->physical_block_size = sector_size;
2714 	return sector_size;
2715 }
2716 
2717 static int sd_try_rc16_first(struct scsi_device *sdp)
2718 {
2719 	if (sdp->host->max_cmd_len < 16)
2720 		return 0;
2721 	if (sdp->try_rc_10_first)
2722 		return 0;
2723 	if (sdp->scsi_level > SCSI_SPC_2)
2724 		return 1;
2725 	if (scsi_device_protection(sdp))
2726 		return 1;
2727 	return 0;
2728 }
2729 
2730 /*
2731  * read disk capacity
2732  */
2733 static void
2734 sd_read_capacity(struct scsi_disk *sdkp, struct queue_limits *lim,
2735 		unsigned char *buffer)
2736 {
2737 	int sector_size;
2738 	struct scsi_device *sdp = sdkp->device;
2739 
2740 	if (sd_try_rc16_first(sdp)) {
2741 		sector_size = read_capacity_16(sdkp, sdp, lim, buffer);
2742 		if (sector_size == -EOVERFLOW)
2743 			goto got_data;
2744 		if (sector_size == -ENODEV)
2745 			return;
2746 		if (sector_size < 0)
2747 			sector_size = read_capacity_10(sdkp, sdp, buffer);
2748 		if (sector_size < 0)
2749 			return;
2750 	} else {
2751 		sector_size = read_capacity_10(sdkp, sdp, buffer);
2752 		if (sector_size == -EOVERFLOW)
2753 			goto got_data;
2754 		if (sector_size < 0)
2755 			return;
2756 		if ((sizeof(sdkp->capacity) > 4) &&
2757 		    (sdkp->capacity > 0xffffffffULL)) {
2758 			int old_sector_size = sector_size;
2759 			sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2760 					"Trying to use READ CAPACITY(16).\n");
2761 			sector_size = read_capacity_16(sdkp, sdp, lim, buffer);
2762 			if (sector_size < 0) {
2763 				sd_printk(KERN_NOTICE, sdkp,
2764 					"Using 0xffffffff as device size\n");
2765 				sdkp->capacity = 1 + (sector_t) 0xffffffff;
2766 				sector_size = old_sector_size;
2767 				goto got_data;
2768 			}
2769 			/* Remember that READ CAPACITY(16) succeeded */
2770 			sdp->try_rc_10_first = 0;
2771 		}
2772 	}
2773 
2774 	/* Some devices are known to return the total number of blocks,
2775 	 * not the highest block number.  Some devices have versions
2776 	 * which do this and others which do not.  Some devices we might
2777 	 * suspect of doing this but we don't know for certain.
2778 	 *
2779 	 * If we know the reported capacity is wrong, decrement it.  If
2780 	 * we can only guess, then assume the number of blocks is even
2781 	 * (usually true but not always) and err on the side of lowering
2782 	 * the capacity.
2783 	 */
2784 	if (sdp->fix_capacity ||
2785 	    (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2786 		sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2787 				"from its reported value: %llu\n",
2788 				(unsigned long long) sdkp->capacity);
2789 		--sdkp->capacity;
2790 	}
2791 
2792 got_data:
2793 	if (sector_size == 0) {
2794 		sector_size = 512;
2795 		sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2796 			  "assuming 512.\n");
2797 	}
2798 
2799 	if (sector_size != 512 &&
2800 	    sector_size != 1024 &&
2801 	    sector_size != 2048 &&
2802 	    sector_size != 4096) {
2803 		sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2804 			  sector_size);
2805 		/*
2806 		 * The user might want to re-format the drive with
2807 		 * a supported sectorsize.  Once this happens, it
2808 		 * would be relatively trivial to set the thing up.
2809 		 * For this reason, we leave the thing in the table.
2810 		 */
2811 		sdkp->capacity = 0;
2812 		/*
2813 		 * set a bogus sector size so the normal read/write
2814 		 * logic in the block layer will eventually refuse any
2815 		 * request on this device without tripping over power
2816 		 * of two sector size assumptions
2817 		 */
2818 		sector_size = 512;
2819 	}
2820 	lim->logical_block_size = sector_size;
2821 	lim->physical_block_size = sdkp->physical_block_size;
2822 	sdkp->device->sector_size = sector_size;
2823 
2824 	if (sdkp->capacity > 0xffffffff)
2825 		sdp->use_16_for_rw = 1;
2826 
2827 }
2828 
2829 /*
2830  * Print disk capacity
2831  */
2832 static void
2833 sd_print_capacity(struct scsi_disk *sdkp,
2834 		  sector_t old_capacity)
2835 {
2836 	int sector_size = sdkp->device->sector_size;
2837 	char cap_str_2[10], cap_str_10[10];
2838 
2839 	if (!sdkp->first_scan && old_capacity == sdkp->capacity)
2840 		return;
2841 
2842 	string_get_size(sdkp->capacity, sector_size,
2843 			STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2844 	string_get_size(sdkp->capacity, sector_size,
2845 			STRING_UNITS_10, cap_str_10, sizeof(cap_str_10));
2846 
2847 	sd_printk(KERN_NOTICE, sdkp,
2848 		  "%llu %d-byte logical blocks: (%s/%s)\n",
2849 		  (unsigned long long)sdkp->capacity,
2850 		  sector_size, cap_str_10, cap_str_2);
2851 
2852 	if (sdkp->physical_block_size != sector_size)
2853 		sd_printk(KERN_NOTICE, sdkp,
2854 			  "%u-byte physical blocks\n",
2855 			  sdkp->physical_block_size);
2856 }
2857 
2858 /* called with buffer of length 512 */
2859 static inline int
2860 sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage,
2861 		 unsigned char *buffer, int len, struct scsi_mode_data *data,
2862 		 struct scsi_sense_hdr *sshdr)
2863 {
2864 	/*
2865 	 * If we must use MODE SENSE(10), make sure that the buffer length
2866 	 * is at least 8 bytes so that the mode sense header fits.
2867 	 */
2868 	if (sdkp->device->use_10_for_ms && len < 8)
2869 		len = 8;
2870 
2871 	return scsi_mode_sense(sdkp->device, dbd, modepage, 0, buffer, len,
2872 			       SD_TIMEOUT, sdkp->max_retries, data, sshdr);
2873 }
2874 
2875 /*
2876  * read write protect setting, if possible - called only in sd_revalidate_disk()
2877  * called with buffer of length SD_BUF_SIZE
2878  */
2879 static void
2880 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2881 {
2882 	int res;
2883 	struct scsi_device *sdp = sdkp->device;
2884 	struct scsi_mode_data data;
2885 	int old_wp = sdkp->write_prot;
2886 
2887 	set_disk_ro(sdkp->disk, 0);
2888 	if (sdp->skip_ms_page_3f) {
2889 		sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2890 		return;
2891 	}
2892 
2893 	if (sdp->use_192_bytes_for_3f) {
2894 		res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL);
2895 	} else {
2896 		/*
2897 		 * First attempt: ask for all pages (0x3F), but only 4 bytes.
2898 		 * We have to start carefully: some devices hang if we ask
2899 		 * for more than is available.
2900 		 */
2901 		res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL);
2902 
2903 		/*
2904 		 * Second attempt: ask for page 0 When only page 0 is
2905 		 * implemented, a request for page 3F may return Sense Key
2906 		 * 5: Illegal Request, Sense Code 24: Invalid field in
2907 		 * CDB.
2908 		 */
2909 		if (res < 0)
2910 			res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL);
2911 
2912 		/*
2913 		 * Third attempt: ask 255 bytes, as we did earlier.
2914 		 */
2915 		if (res < 0)
2916 			res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255,
2917 					       &data, NULL);
2918 	}
2919 
2920 	if (res < 0) {
2921 		sd_first_printk(KERN_WARNING, sdkp,
2922 			  "Test WP failed, assume Write Enabled\n");
2923 	} else {
2924 		sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2925 		set_disk_ro(sdkp->disk, sdkp->write_prot);
2926 		if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2927 			sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2928 				  sdkp->write_prot ? "on" : "off");
2929 			sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
2930 		}
2931 	}
2932 }
2933 
2934 /*
2935  * sd_read_cache_type - called only from sd_revalidate_disk()
2936  * called with buffer of length SD_BUF_SIZE
2937  */
2938 static void
2939 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2940 {
2941 	int len = 0, res;
2942 	struct scsi_device *sdp = sdkp->device;
2943 
2944 	int dbd;
2945 	int modepage;
2946 	int first_len;
2947 	struct scsi_mode_data data;
2948 	struct scsi_sense_hdr sshdr;
2949 	int old_wce = sdkp->WCE;
2950 	int old_rcd = sdkp->RCD;
2951 	int old_dpofua = sdkp->DPOFUA;
2952 
2953 
2954 	if (sdkp->cache_override)
2955 		return;
2956 
2957 	first_len = 4;
2958 	if (sdp->skip_ms_page_8) {
2959 		if (sdp->type == TYPE_RBC)
2960 			goto defaults;
2961 		else {
2962 			if (sdp->skip_ms_page_3f)
2963 				goto defaults;
2964 			modepage = 0x3F;
2965 			if (sdp->use_192_bytes_for_3f)
2966 				first_len = 192;
2967 			dbd = 0;
2968 		}
2969 	} else if (sdp->type == TYPE_RBC) {
2970 		modepage = 6;
2971 		dbd = 8;
2972 	} else {
2973 		modepage = 8;
2974 		dbd = 0;
2975 	}
2976 
2977 	/* cautiously ask */
2978 	res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len,
2979 			&data, &sshdr);
2980 
2981 	if (res < 0)
2982 		goto bad_sense;
2983 
2984 	if (!data.header_length) {
2985 		modepage = 6;
2986 		first_len = 0;
2987 		sd_first_printk(KERN_ERR, sdkp,
2988 				"Missing header in MODE_SENSE response\n");
2989 	}
2990 
2991 	/* that went OK, now ask for the proper length */
2992 	len = data.length;
2993 
2994 	/*
2995 	 * We're only interested in the first three bytes, actually.
2996 	 * But the data cache page is defined for the first 20.
2997 	 */
2998 	if (len < 3)
2999 		goto bad_sense;
3000 	else if (len > SD_BUF_SIZE) {
3001 		sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
3002 			  "data from %d to %d bytes\n", len, SD_BUF_SIZE);
3003 		len = SD_BUF_SIZE;
3004 	}
3005 	if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
3006 		len = 192;
3007 
3008 	/* Get the data */
3009 	if (len > first_len)
3010 		res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len,
3011 				&data, &sshdr);
3012 
3013 	if (!res) {
3014 		int offset = data.header_length + data.block_descriptor_length;
3015 
3016 		while (offset < len) {
3017 			u8 page_code = buffer[offset] & 0x3F;
3018 			u8 spf       = buffer[offset] & 0x40;
3019 
3020 			if (page_code == 8 || page_code == 6) {
3021 				/* We're interested only in the first 3 bytes.
3022 				 */
3023 				if (len - offset <= 2) {
3024 					sd_first_printk(KERN_ERR, sdkp,
3025 						"Incomplete mode parameter "
3026 							"data\n");
3027 					goto defaults;
3028 				} else {
3029 					modepage = page_code;
3030 					goto Page_found;
3031 				}
3032 			} else {
3033 				/* Go to the next page */
3034 				if (spf && len - offset > 3)
3035 					offset += 4 + (buffer[offset+2] << 8) +
3036 						buffer[offset+3];
3037 				else if (!spf && len - offset > 1)
3038 					offset += 2 + buffer[offset+1];
3039 				else {
3040 					sd_first_printk(KERN_ERR, sdkp,
3041 							"Incomplete mode "
3042 							"parameter data\n");
3043 					goto defaults;
3044 				}
3045 			}
3046 		}
3047 
3048 		sd_first_printk(KERN_WARNING, sdkp,
3049 				"No Caching mode page found\n");
3050 		goto defaults;
3051 
3052 	Page_found:
3053 		if (modepage == 8) {
3054 			sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
3055 			sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
3056 		} else {
3057 			sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
3058 			sdkp->RCD = 0;
3059 		}
3060 
3061 		sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
3062 		if (sdp->broken_fua) {
3063 			sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
3064 			sdkp->DPOFUA = 0;
3065 		} else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
3066 			   !sdkp->device->use_16_for_rw) {
3067 			sd_first_printk(KERN_NOTICE, sdkp,
3068 				  "Uses READ/WRITE(6), disabling FUA\n");
3069 			sdkp->DPOFUA = 0;
3070 		}
3071 
3072 		/* No cache flush allowed for write protected devices */
3073 		if (sdkp->WCE && sdkp->write_prot)
3074 			sdkp->WCE = 0;
3075 
3076 		if (sdkp->first_scan || old_wce != sdkp->WCE ||
3077 		    old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
3078 			sd_printk(KERN_NOTICE, sdkp,
3079 				  "Write cache: %s, read cache: %s, %s\n",
3080 				  sdkp->WCE ? "enabled" : "disabled",
3081 				  sdkp->RCD ? "disabled" : "enabled",
3082 				  sdkp->DPOFUA ? "supports DPO and FUA"
3083 				  : "doesn't support DPO or FUA");
3084 
3085 		return;
3086 	}
3087 
3088 bad_sense:
3089 	if (res == -EIO && scsi_sense_valid(&sshdr) &&
3090 	    sshdr.sense_key == ILLEGAL_REQUEST &&
3091 	    sshdr.asc == 0x24 && sshdr.ascq == 0x0)
3092 		/* Invalid field in CDB */
3093 		sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
3094 	else
3095 		sd_first_printk(KERN_ERR, sdkp,
3096 				"Asking for cache data failed\n");
3097 
3098 defaults:
3099 	if (sdp->wce_default_on) {
3100 		sd_first_printk(KERN_NOTICE, sdkp,
3101 				"Assuming drive cache: write back\n");
3102 		sdkp->WCE = 1;
3103 	} else {
3104 		sd_first_printk(KERN_WARNING, sdkp,
3105 				"Assuming drive cache: write through\n");
3106 		sdkp->WCE = 0;
3107 	}
3108 	sdkp->RCD = 0;
3109 	sdkp->DPOFUA = 0;
3110 }
3111 
3112 static bool sd_is_perm_stream(struct scsi_disk *sdkp, unsigned int stream_id)
3113 {
3114 	u8 cdb[16] = { SERVICE_ACTION_IN_16, SAI_GET_STREAM_STATUS };
3115 	struct {
3116 		struct scsi_stream_status_header h;
3117 		struct scsi_stream_status s;
3118 	} buf;
3119 	struct scsi_device *sdev = sdkp->device;
3120 	struct scsi_sense_hdr sshdr;
3121 	const struct scsi_exec_args exec_args = {
3122 		.sshdr = &sshdr,
3123 	};
3124 	int res;
3125 
3126 	put_unaligned_be16(stream_id, &cdb[4]);
3127 	put_unaligned_be32(sizeof(buf), &cdb[10]);
3128 
3129 	res = scsi_execute_cmd(sdev, cdb, REQ_OP_DRV_IN, &buf, sizeof(buf),
3130 			       SD_TIMEOUT, sdkp->max_retries, &exec_args);
3131 	if (res < 0)
3132 		return false;
3133 	if (scsi_status_is_check_condition(res) && scsi_sense_valid(&sshdr))
3134 		sd_print_sense_hdr(sdkp, &sshdr);
3135 	if (res)
3136 		return false;
3137 	if (get_unaligned_be32(&buf.h.len) < sizeof(struct scsi_stream_status))
3138 		return false;
3139 	return buf.h.stream_status[0].perm;
3140 }
3141 
3142 static void sd_read_io_hints(struct scsi_disk *sdkp, unsigned char *buffer)
3143 {
3144 	struct scsi_device *sdp = sdkp->device;
3145 	const struct scsi_io_group_descriptor *desc, *start, *end;
3146 	u16 permanent_stream_count_old;
3147 	struct scsi_sense_hdr sshdr;
3148 	struct scsi_mode_data data;
3149 	int res;
3150 
3151 	res = scsi_mode_sense(sdp, /*dbd=*/0x8, /*modepage=*/0x0a,
3152 			      /*subpage=*/0x05, buffer, SD_BUF_SIZE, SD_TIMEOUT,
3153 			      sdkp->max_retries, &data, &sshdr);
3154 	if (res < 0)
3155 		return;
3156 	start = (void *)buffer + data.header_length + 16;
3157 	end = (void *)buffer + ALIGN_DOWN(data.header_length + data.length,
3158 					  sizeof(*end));
3159 	/*
3160 	 * From "SBC-5 Constrained Streams with Data Lifetimes": Device severs
3161 	 * should assign the lowest numbered stream identifiers to permanent
3162 	 * streams.
3163 	 */
3164 	for (desc = start; desc < end; desc++)
3165 		if (!desc->st_enble || !sd_is_perm_stream(sdkp, desc - start))
3166 			break;
3167 	permanent_stream_count_old = sdkp->permanent_stream_count;
3168 	sdkp->permanent_stream_count = desc - start;
3169 	if (sdkp->rscs && sdkp->permanent_stream_count < 2)
3170 		sd_printk(KERN_INFO, sdkp,
3171 			  "Unexpected: RSCS has been set and the permanent stream count is %u\n",
3172 			  sdkp->permanent_stream_count);
3173 	else if (sdkp->permanent_stream_count != permanent_stream_count_old)
3174 		sd_printk(KERN_INFO, sdkp, "permanent stream count = %d\n",
3175 			  sdkp->permanent_stream_count);
3176 }
3177 
3178 /*
3179  * The ATO bit indicates whether the DIF application tag is available
3180  * for use by the operating system.
3181  */
3182 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
3183 {
3184 	int res, offset;
3185 	struct scsi_device *sdp = sdkp->device;
3186 	struct scsi_mode_data data;
3187 	struct scsi_sense_hdr sshdr;
3188 
3189 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
3190 		return;
3191 
3192 	if (sdkp->protection_type == 0)
3193 		return;
3194 
3195 	res = scsi_mode_sense(sdp, 1, 0x0a, 0, buffer, 36, SD_TIMEOUT,
3196 			      sdkp->max_retries, &data, &sshdr);
3197 
3198 	if (res < 0 || !data.header_length ||
3199 	    data.length < 6) {
3200 		sd_first_printk(KERN_WARNING, sdkp,
3201 			  "getting Control mode page failed, assume no ATO\n");
3202 
3203 		if (res == -EIO && scsi_sense_valid(&sshdr))
3204 			sd_print_sense_hdr(sdkp, &sshdr);
3205 
3206 		return;
3207 	}
3208 
3209 	offset = data.header_length + data.block_descriptor_length;
3210 
3211 	if ((buffer[offset] & 0x3f) != 0x0a) {
3212 		sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
3213 		return;
3214 	}
3215 
3216 	if ((buffer[offset + 5] & 0x80) == 0)
3217 		return;
3218 
3219 	sdkp->ATO = 1;
3220 
3221 	return;
3222 }
3223 
3224 static unsigned int sd_discard_mode(struct scsi_disk *sdkp)
3225 {
3226 	if (!sdkp->lbpvpd) {
3227 		/* LBP VPD page not provided */
3228 		if (sdkp->max_unmap_blocks)
3229 			return SD_LBP_UNMAP;
3230 		return SD_LBP_WS16;
3231 	}
3232 
3233 	/* LBP VPD page tells us what to use */
3234 	if (sdkp->lbpu && sdkp->max_unmap_blocks)
3235 		return SD_LBP_UNMAP;
3236 	if (sdkp->lbpws)
3237 		return SD_LBP_WS16;
3238 	if (sdkp->lbpws10)
3239 		return SD_LBP_WS10;
3240 	return SD_LBP_DISABLE;
3241 }
3242 
3243 /*
3244  * Query disk device for preferred I/O sizes.
3245  */
3246 static void sd_read_block_limits(struct scsi_disk *sdkp,
3247 		struct queue_limits *lim)
3248 {
3249 	struct scsi_vpd *vpd;
3250 
3251 	rcu_read_lock();
3252 
3253 	vpd = rcu_dereference(sdkp->device->vpd_pgb0);
3254 	if (!vpd || vpd->len < 16)
3255 		goto out;
3256 
3257 	sdkp->min_xfer_blocks = get_unaligned_be16(&vpd->data[6]);
3258 	sdkp->max_xfer_blocks = get_unaligned_be32(&vpd->data[8]);
3259 	sdkp->opt_xfer_blocks = get_unaligned_be32(&vpd->data[12]);
3260 
3261 	if (vpd->len >= 64) {
3262 		unsigned int lba_count, desc_count;
3263 
3264 		sdkp->max_ws_blocks = (u32)get_unaligned_be64(&vpd->data[36]);
3265 
3266 		if (!sdkp->lbpme)
3267 			goto out;
3268 
3269 		lba_count = get_unaligned_be32(&vpd->data[20]);
3270 		desc_count = get_unaligned_be32(&vpd->data[24]);
3271 
3272 		if (lba_count && desc_count)
3273 			sdkp->max_unmap_blocks = lba_count;
3274 
3275 		sdkp->unmap_granularity = get_unaligned_be32(&vpd->data[28]);
3276 
3277 		if (vpd->data[32] & 0x80)
3278 			sdkp->unmap_alignment =
3279 				get_unaligned_be32(&vpd->data[32]) & ~(1 << 31);
3280 
3281 		sd_config_discard(sdkp, lim, sd_discard_mode(sdkp));
3282 	}
3283 
3284  out:
3285 	rcu_read_unlock();
3286 }
3287 
3288 /* Parse the Block Limits Extension VPD page (0xb7) */
3289 static void sd_read_block_limits_ext(struct scsi_disk *sdkp)
3290 {
3291 	struct scsi_vpd *vpd;
3292 
3293 	rcu_read_lock();
3294 	vpd = rcu_dereference(sdkp->device->vpd_pgb7);
3295 	if (vpd && vpd->len >= 2)
3296 		sdkp->rscs = vpd->data[5] & 1;
3297 	rcu_read_unlock();
3298 }
3299 
3300 /* Query block device characteristics */
3301 static void sd_read_block_characteristics(struct scsi_disk *sdkp,
3302 		struct queue_limits *lim)
3303 {
3304 	struct scsi_vpd *vpd;
3305 	u16 rot;
3306 
3307 	rcu_read_lock();
3308 	vpd = rcu_dereference(sdkp->device->vpd_pgb1);
3309 
3310 	if (!vpd || vpd->len < 8) {
3311 		rcu_read_unlock();
3312 	        return;
3313 	}
3314 
3315 	rot = get_unaligned_be16(&vpd->data[4]);
3316 	sdkp->zoned = (vpd->data[8] >> 4) & 3;
3317 	rcu_read_unlock();
3318 
3319 	if (rot == 1)
3320 		lim->features &= ~(BLK_FEAT_ROTATIONAL | BLK_FEAT_ADD_RANDOM);
3321 
3322 	if (!sdkp->first_scan)
3323 		return;
3324 
3325 	if (sdkp->device->type == TYPE_ZBC)
3326 		sd_printk(KERN_NOTICE, sdkp, "Host-managed zoned block device\n");
3327 	else if (sdkp->zoned == 1)
3328 		sd_printk(KERN_NOTICE, sdkp, "Host-aware SMR disk used as regular disk\n");
3329 	else if (sdkp->zoned == 2)
3330 		sd_printk(KERN_NOTICE, sdkp, "Drive-managed SMR disk\n");
3331 }
3332 
3333 /**
3334  * sd_read_block_provisioning - Query provisioning VPD page
3335  * @sdkp: disk to query
3336  */
3337 static void sd_read_block_provisioning(struct scsi_disk *sdkp)
3338 {
3339 	struct scsi_vpd *vpd;
3340 
3341 	if (sdkp->lbpme == 0)
3342 		return;
3343 
3344 	rcu_read_lock();
3345 	vpd = rcu_dereference(sdkp->device->vpd_pgb2);
3346 
3347 	if (!vpd || vpd->len < 8) {
3348 		rcu_read_unlock();
3349 		return;
3350 	}
3351 
3352 	sdkp->lbpvpd	= 1;
3353 	sdkp->lbpu	= (vpd->data[5] >> 7) & 1; /* UNMAP */
3354 	sdkp->lbpws	= (vpd->data[5] >> 6) & 1; /* WRITE SAME(16) w/ UNMAP */
3355 	sdkp->lbpws10	= (vpd->data[5] >> 5) & 1; /* WRITE SAME(10) w/ UNMAP */
3356 	rcu_read_unlock();
3357 }
3358 
3359 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
3360 {
3361 	struct scsi_device *sdev = sdkp->device;
3362 
3363 	if (sdev->host->no_write_same) {
3364 		sdev->no_write_same = 1;
3365 
3366 		return;
3367 	}
3368 
3369 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY, 0) < 0) {
3370 		struct scsi_vpd *vpd;
3371 
3372 		sdev->no_report_opcodes = 1;
3373 
3374 		/* Disable WRITE SAME if REPORT SUPPORTED OPERATION
3375 		 * CODES is unsupported and the device has an ATA
3376 		 * Information VPD page (SAT).
3377 		 */
3378 		rcu_read_lock();
3379 		vpd = rcu_dereference(sdev->vpd_pg89);
3380 		if (vpd)
3381 			sdev->no_write_same = 1;
3382 		rcu_read_unlock();
3383 	}
3384 
3385 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16, 0) == 1)
3386 		sdkp->ws16 = 1;
3387 
3388 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME, 0) == 1)
3389 		sdkp->ws10 = 1;
3390 }
3391 
3392 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3393 {
3394 	struct scsi_device *sdev = sdkp->device;
3395 
3396 	if (!sdev->security_supported)
3397 		return;
3398 
3399 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3400 			SECURITY_PROTOCOL_IN, 0) == 1 &&
3401 	    scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3402 			SECURITY_PROTOCOL_OUT, 0) == 1)
3403 		sdkp->security = 1;
3404 }
3405 
3406 static inline sector_t sd64_to_sectors(struct scsi_disk *sdkp, u8 *buf)
3407 {
3408 	return logical_to_sectors(sdkp->device, get_unaligned_be64(buf));
3409 }
3410 
3411 /**
3412  * sd_read_cpr - Query concurrent positioning ranges
3413  * @sdkp:	disk to query
3414  */
3415 static void sd_read_cpr(struct scsi_disk *sdkp)
3416 {
3417 	struct blk_independent_access_ranges *iars = NULL;
3418 	unsigned char *buffer = NULL;
3419 	unsigned int nr_cpr = 0;
3420 	int i, vpd_len, buf_len = SD_BUF_SIZE;
3421 	u8 *desc;
3422 
3423 	/*
3424 	 * We need to have the capacity set first for the block layer to be
3425 	 * able to check the ranges.
3426 	 */
3427 	if (sdkp->first_scan)
3428 		return;
3429 
3430 	if (!sdkp->capacity)
3431 		goto out;
3432 
3433 	/*
3434 	 * Concurrent Positioning Ranges VPD: there can be at most 256 ranges,
3435 	 * leading to a maximum page size of 64 + 256*32 bytes.
3436 	 */
3437 	buf_len = 64 + 256*32;
3438 	buffer = kmalloc(buf_len, GFP_KERNEL);
3439 	if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb9, buffer, buf_len))
3440 		goto out;
3441 
3442 	/* We must have at least a 64B header and one 32B range descriptor */
3443 	vpd_len = get_unaligned_be16(&buffer[2]) + 4;
3444 	if (vpd_len > buf_len || vpd_len < 64 + 32 || (vpd_len & 31)) {
3445 		sd_printk(KERN_ERR, sdkp,
3446 			  "Invalid Concurrent Positioning Ranges VPD page\n");
3447 		goto out;
3448 	}
3449 
3450 	nr_cpr = (vpd_len - 64) / 32;
3451 	if (nr_cpr == 1) {
3452 		nr_cpr = 0;
3453 		goto out;
3454 	}
3455 
3456 	iars = disk_alloc_independent_access_ranges(sdkp->disk, nr_cpr);
3457 	if (!iars) {
3458 		nr_cpr = 0;
3459 		goto out;
3460 	}
3461 
3462 	desc = &buffer[64];
3463 	for (i = 0; i < nr_cpr; i++, desc += 32) {
3464 		if (desc[0] != i) {
3465 			sd_printk(KERN_ERR, sdkp,
3466 				"Invalid Concurrent Positioning Range number\n");
3467 			nr_cpr = 0;
3468 			break;
3469 		}
3470 
3471 		iars->ia_range[i].sector = sd64_to_sectors(sdkp, desc + 8);
3472 		iars->ia_range[i].nr_sectors = sd64_to_sectors(sdkp, desc + 16);
3473 	}
3474 
3475 out:
3476 	disk_set_independent_access_ranges(sdkp->disk, iars);
3477 	if (nr_cpr && sdkp->nr_actuators != nr_cpr) {
3478 		sd_printk(KERN_NOTICE, sdkp,
3479 			  "%u concurrent positioning ranges\n", nr_cpr);
3480 		sdkp->nr_actuators = nr_cpr;
3481 	}
3482 
3483 	kfree(buffer);
3484 }
3485 
3486 static bool sd_validate_min_xfer_size(struct scsi_disk *sdkp)
3487 {
3488 	struct scsi_device *sdp = sdkp->device;
3489 	unsigned int min_xfer_bytes =
3490 		logical_to_bytes(sdp, sdkp->min_xfer_blocks);
3491 
3492 	if (sdkp->min_xfer_blocks == 0)
3493 		return false;
3494 
3495 	if (min_xfer_bytes & (sdkp->physical_block_size - 1)) {
3496 		sd_first_printk(KERN_WARNING, sdkp,
3497 				"Preferred minimum I/O size %u bytes not a " \
3498 				"multiple of physical block size (%u bytes)\n",
3499 				min_xfer_bytes, sdkp->physical_block_size);
3500 		sdkp->min_xfer_blocks = 0;
3501 		return false;
3502 	}
3503 
3504 	sd_first_printk(KERN_INFO, sdkp, "Preferred minimum I/O size %u bytes\n",
3505 			min_xfer_bytes);
3506 	return true;
3507 }
3508 
3509 /*
3510  * Determine the device's preferred I/O size for reads and writes
3511  * unless the reported value is unreasonably small, large, not a
3512  * multiple of the physical block size, or simply garbage.
3513  */
3514 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp,
3515 				      unsigned int dev_max)
3516 {
3517 	struct scsi_device *sdp = sdkp->device;
3518 	unsigned int opt_xfer_bytes =
3519 		logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3520 	unsigned int min_xfer_bytes =
3521 		logical_to_bytes(sdp, sdkp->min_xfer_blocks);
3522 
3523 	if (sdkp->opt_xfer_blocks == 0)
3524 		return false;
3525 
3526 	if (sdkp->opt_xfer_blocks > dev_max) {
3527 		sd_first_printk(KERN_WARNING, sdkp,
3528 				"Optimal transfer size %u logical blocks " \
3529 				"> dev_max (%u logical blocks)\n",
3530 				sdkp->opt_xfer_blocks, dev_max);
3531 		return false;
3532 	}
3533 
3534 	if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) {
3535 		sd_first_printk(KERN_WARNING, sdkp,
3536 				"Optimal transfer size %u logical blocks " \
3537 				"> sd driver limit (%u logical blocks)\n",
3538 				sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS);
3539 		return false;
3540 	}
3541 
3542 	if (opt_xfer_bytes < PAGE_SIZE) {
3543 		sd_first_printk(KERN_WARNING, sdkp,
3544 				"Optimal transfer size %u bytes < " \
3545 				"PAGE_SIZE (%u bytes)\n",
3546 				opt_xfer_bytes, (unsigned int)PAGE_SIZE);
3547 		return false;
3548 	}
3549 
3550 	if (min_xfer_bytes && opt_xfer_bytes % min_xfer_bytes) {
3551 		sd_first_printk(KERN_WARNING, sdkp,
3552 				"Optimal transfer size %u bytes not a " \
3553 				"multiple of preferred minimum block " \
3554 				"size (%u bytes)\n",
3555 				opt_xfer_bytes, min_xfer_bytes);
3556 		return false;
3557 	}
3558 
3559 	if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) {
3560 		sd_first_printk(KERN_WARNING, sdkp,
3561 				"Optimal transfer size %u bytes not a " \
3562 				"multiple of physical block size (%u bytes)\n",
3563 				opt_xfer_bytes, sdkp->physical_block_size);
3564 		return false;
3565 	}
3566 
3567 	sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n",
3568 			opt_xfer_bytes);
3569 	return true;
3570 }
3571 
3572 static void sd_read_block_zero(struct scsi_disk *sdkp)
3573 {
3574 	unsigned int buf_len = sdkp->device->sector_size;
3575 	char *buffer, cmd[10] = { };
3576 
3577 	buffer = kmalloc(buf_len, GFP_KERNEL);
3578 	if (!buffer)
3579 		return;
3580 
3581 	cmd[0] = READ_10;
3582 	put_unaligned_be32(0, &cmd[2]); /* Logical block address 0 */
3583 	put_unaligned_be16(1, &cmd[7]);	/* Transfer 1 logical block */
3584 
3585 	scsi_execute_cmd(sdkp->device, cmd, REQ_OP_DRV_IN, buffer, buf_len,
3586 			 SD_TIMEOUT, sdkp->max_retries, NULL);
3587 	kfree(buffer);
3588 }
3589 
3590 /**
3591  *	sd_revalidate_disk - called the first time a new disk is seen,
3592  *	performs disk spin up, read_capacity, etc.
3593  *	@disk: struct gendisk we care about
3594  **/
3595 static int sd_revalidate_disk(struct gendisk *disk)
3596 {
3597 	struct scsi_disk *sdkp = scsi_disk(disk);
3598 	struct scsi_device *sdp = sdkp->device;
3599 	sector_t old_capacity = sdkp->capacity;
3600 	struct queue_limits lim;
3601 	unsigned char *buffer;
3602 	unsigned int dev_max;
3603 	int err;
3604 
3605 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3606 				      "sd_revalidate_disk\n"));
3607 
3608 	/*
3609 	 * If the device is offline, don't try and read capacity or any
3610 	 * of the other niceties.
3611 	 */
3612 	if (!scsi_device_online(sdp))
3613 		goto out;
3614 
3615 	buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3616 	if (!buffer) {
3617 		sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3618 			  "allocation failure.\n");
3619 		goto out;
3620 	}
3621 
3622 	sd_spinup_disk(sdkp);
3623 
3624 	lim = queue_limits_start_update(sdkp->disk->queue);
3625 
3626 	/*
3627 	 * Without media there is no reason to ask; moreover, some devices
3628 	 * react badly if we do.
3629 	 */
3630 	if (sdkp->media_present) {
3631 		sd_read_capacity(sdkp, &lim, buffer);
3632 		/*
3633 		 * Some USB/UAS devices return generic values for mode pages
3634 		 * until the media has been accessed. Trigger a READ operation
3635 		 * to force the device to populate mode pages.
3636 		 */
3637 		if (sdp->read_before_ms)
3638 			sd_read_block_zero(sdkp);
3639 		/*
3640 		 * set the default to rotational.  All non-rotational devices
3641 		 * support the block characteristics VPD page, which will
3642 		 * cause this to be updated correctly and any device which
3643 		 * doesn't support it should be treated as rotational.
3644 		 */
3645 		lim.features |= (BLK_FEAT_ROTATIONAL | BLK_FEAT_ADD_RANDOM);
3646 
3647 		if (scsi_device_supports_vpd(sdp)) {
3648 			sd_read_block_provisioning(sdkp);
3649 			sd_read_block_limits(sdkp, &lim);
3650 			sd_read_block_limits_ext(sdkp);
3651 			sd_read_block_characteristics(sdkp, &lim);
3652 			sd_zbc_read_zones(sdkp, &lim, buffer);
3653 			sd_read_cpr(sdkp);
3654 		}
3655 
3656 		sd_print_capacity(sdkp, old_capacity);
3657 
3658 		sd_read_write_protect_flag(sdkp, buffer);
3659 		sd_read_cache_type(sdkp, buffer);
3660 		sd_read_io_hints(sdkp, buffer);
3661 		sd_read_app_tag_own(sdkp, buffer);
3662 		sd_read_write_same(sdkp, buffer);
3663 		sd_read_security(sdkp, buffer);
3664 		sd_config_protection(sdkp, &lim);
3665 	}
3666 
3667 	/*
3668 	 * We now have all cache related info, determine how we deal
3669 	 * with flush requests.
3670 	 */
3671 	sd_set_flush_flag(sdkp, &lim);
3672 
3673 	/* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3674 	dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3675 
3676 	/* Some devices report a maximum block count for READ/WRITE requests. */
3677 	dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3678 	lim.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3679 
3680 	if (sd_validate_min_xfer_size(sdkp))
3681 		lim.io_min = logical_to_bytes(sdp, sdkp->min_xfer_blocks);
3682 	else
3683 		lim.io_min = 0;
3684 
3685 	/*
3686 	 * Limit default to SCSI host optimal sector limit if set. There may be
3687 	 * an impact on performance for when the size of a request exceeds this
3688 	 * host limit.
3689 	 */
3690 	lim.io_opt = sdp->host->opt_sectors << SECTOR_SHIFT;
3691 	if (sd_validate_opt_xfer_size(sdkp, dev_max)) {
3692 		lim.io_opt = min_not_zero(lim.io_opt,
3693 				logical_to_bytes(sdp, sdkp->opt_xfer_blocks));
3694 	}
3695 
3696 	sdkp->first_scan = 0;
3697 
3698 	set_capacity_and_notify(disk, logical_to_sectors(sdp, sdkp->capacity));
3699 	sd_config_write_same(sdkp, &lim);
3700 	kfree(buffer);
3701 
3702 	blk_mq_freeze_queue(sdkp->disk->queue);
3703 	err = queue_limits_commit_update(sdkp->disk->queue, &lim);
3704 	blk_mq_unfreeze_queue(sdkp->disk->queue);
3705 	if (err)
3706 		return err;
3707 
3708 	/*
3709 	 * For a zoned drive, revalidating the zones can be done only once
3710 	 * the gendisk capacity is set. So if this fails, set back the gendisk
3711 	 * capacity to 0.
3712 	 */
3713 	if (sd_zbc_revalidate_zones(sdkp))
3714 		set_capacity_and_notify(disk, 0);
3715 
3716  out:
3717 	return 0;
3718 }
3719 
3720 /**
3721  *	sd_unlock_native_capacity - unlock native capacity
3722  *	@disk: struct gendisk to set capacity for
3723  *
3724  *	Block layer calls this function if it detects that partitions
3725  *	on @disk reach beyond the end of the device.  If the SCSI host
3726  *	implements ->unlock_native_capacity() method, it's invoked to
3727  *	give it a chance to adjust the device capacity.
3728  *
3729  *	CONTEXT:
3730  *	Defined by block layer.  Might sleep.
3731  */
3732 static void sd_unlock_native_capacity(struct gendisk *disk)
3733 {
3734 	struct scsi_device *sdev = scsi_disk(disk)->device;
3735 
3736 	if (sdev->host->hostt->unlock_native_capacity)
3737 		sdev->host->hostt->unlock_native_capacity(sdev);
3738 }
3739 
3740 /**
3741  *	sd_format_disk_name - format disk name
3742  *	@prefix: name prefix - ie. "sd" for SCSI disks
3743  *	@index: index of the disk to format name for
3744  *	@buf: output buffer
3745  *	@buflen: length of the output buffer
3746  *
3747  *	SCSI disk names starts at sda.  The 26th device is sdz and the
3748  *	27th is sdaa.  The last one for two lettered suffix is sdzz
3749  *	which is followed by sdaaa.
3750  *
3751  *	This is basically 26 base counting with one extra 'nil' entry
3752  *	at the beginning from the second digit on and can be
3753  *	determined using similar method as 26 base conversion with the
3754  *	index shifted -1 after each digit is computed.
3755  *
3756  *	CONTEXT:
3757  *	Don't care.
3758  *
3759  *	RETURNS:
3760  *	0 on success, -errno on failure.
3761  */
3762 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3763 {
3764 	const int base = 'z' - 'a' + 1;
3765 	char *begin = buf + strlen(prefix);
3766 	char *end = buf + buflen;
3767 	char *p;
3768 	int unit;
3769 
3770 	p = end - 1;
3771 	*p = '\0';
3772 	unit = base;
3773 	do {
3774 		if (p == begin)
3775 			return -EINVAL;
3776 		*--p = 'a' + (index % unit);
3777 		index = (index / unit) - 1;
3778 	} while (index >= 0);
3779 
3780 	memmove(begin, p, end - p);
3781 	memcpy(buf, prefix, strlen(prefix));
3782 
3783 	return 0;
3784 }
3785 
3786 /**
3787  *	sd_probe - called during driver initialization and whenever a
3788  *	new scsi device is attached to the system. It is called once
3789  *	for each scsi device (not just disks) present.
3790  *	@dev: pointer to device object
3791  *
3792  *	Returns 0 if successful (or not interested in this scsi device
3793  *	(e.g. scanner)); 1 when there is an error.
3794  *
3795  *	Note: this function is invoked from the scsi mid-level.
3796  *	This function sets up the mapping between a given
3797  *	<host,channel,id,lun> (found in sdp) and new device name
3798  *	(e.g. /dev/sda). More precisely it is the block device major
3799  *	and minor number that is chosen here.
3800  *
3801  *	Assume sd_probe is not re-entrant (for time being)
3802  *	Also think about sd_probe() and sd_remove() running coincidentally.
3803  **/
3804 static int sd_probe(struct device *dev)
3805 {
3806 	struct scsi_device *sdp = to_scsi_device(dev);
3807 	struct scsi_disk *sdkp;
3808 	struct gendisk *gd;
3809 	int index;
3810 	int error;
3811 
3812 	scsi_autopm_get_device(sdp);
3813 	error = -ENODEV;
3814 	if (sdp->type != TYPE_DISK &&
3815 	    sdp->type != TYPE_ZBC &&
3816 	    sdp->type != TYPE_MOD &&
3817 	    sdp->type != TYPE_RBC)
3818 		goto out;
3819 
3820 	if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) && sdp->type == TYPE_ZBC) {
3821 		sdev_printk(KERN_WARNING, sdp,
3822 			    "Unsupported ZBC host-managed device.\n");
3823 		goto out;
3824 	}
3825 
3826 	SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3827 					"sd_probe\n"));
3828 
3829 	error = -ENOMEM;
3830 	sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3831 	if (!sdkp)
3832 		goto out;
3833 
3834 	gd = blk_mq_alloc_disk_for_queue(sdp->request_queue,
3835 					 &sd_bio_compl_lkclass);
3836 	if (!gd)
3837 		goto out_free;
3838 
3839 	index = ida_alloc(&sd_index_ida, GFP_KERNEL);
3840 	if (index < 0) {
3841 		sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3842 		goto out_put;
3843 	}
3844 
3845 	error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3846 	if (error) {
3847 		sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3848 		goto out_free_index;
3849 	}
3850 
3851 	sdkp->device = sdp;
3852 	sdkp->disk = gd;
3853 	sdkp->index = index;
3854 	sdkp->max_retries = SD_MAX_RETRIES;
3855 	atomic_set(&sdkp->openers, 0);
3856 	atomic_set(&sdkp->device->ioerr_cnt, 0);
3857 
3858 	if (!sdp->request_queue->rq_timeout) {
3859 		if (sdp->type != TYPE_MOD)
3860 			blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3861 		else
3862 			blk_queue_rq_timeout(sdp->request_queue,
3863 					     SD_MOD_TIMEOUT);
3864 	}
3865 
3866 	device_initialize(&sdkp->disk_dev);
3867 	sdkp->disk_dev.parent = get_device(dev);
3868 	sdkp->disk_dev.class = &sd_disk_class;
3869 	dev_set_name(&sdkp->disk_dev, "%s", dev_name(dev));
3870 
3871 	error = device_add(&sdkp->disk_dev);
3872 	if (error) {
3873 		put_device(&sdkp->disk_dev);
3874 		goto out;
3875 	}
3876 
3877 	dev_set_drvdata(dev, sdkp);
3878 
3879 	gd->major = sd_major((index & 0xf0) >> 4);
3880 	gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3881 	gd->minors = SD_MINORS;
3882 
3883 	gd->fops = &sd_fops;
3884 	gd->private_data = sdkp;
3885 
3886 	/* defaults, until the device tells us otherwise */
3887 	sdp->sector_size = 512;
3888 	sdkp->capacity = 0;
3889 	sdkp->media_present = 1;
3890 	sdkp->write_prot = 0;
3891 	sdkp->cache_override = 0;
3892 	sdkp->WCE = 0;
3893 	sdkp->RCD = 0;
3894 	sdkp->ATO = 0;
3895 	sdkp->first_scan = 1;
3896 	sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3897 
3898 	sd_revalidate_disk(gd);
3899 
3900 	if (sdp->removable) {
3901 		gd->flags |= GENHD_FL_REMOVABLE;
3902 		gd->events |= DISK_EVENT_MEDIA_CHANGE;
3903 		gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT;
3904 	}
3905 
3906 	blk_pm_runtime_init(sdp->request_queue, dev);
3907 	if (sdp->rpm_autosuspend) {
3908 		pm_runtime_set_autosuspend_delay(dev,
3909 			sdp->host->rpm_autosuspend_delay);
3910 	}
3911 
3912 	error = device_add_disk(dev, gd, NULL);
3913 	if (error) {
3914 		device_unregister(&sdkp->disk_dev);
3915 		put_disk(gd);
3916 		goto out;
3917 	}
3918 
3919 	if (sdkp->security) {
3920 		sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit);
3921 		if (sdkp->opal_dev)
3922 			sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
3923 	}
3924 
3925 	sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3926 		  sdp->removable ? "removable " : "");
3927 	scsi_autopm_put_device(sdp);
3928 
3929 	return 0;
3930 
3931  out_free_index:
3932 	ida_free(&sd_index_ida, index);
3933  out_put:
3934 	put_disk(gd);
3935  out_free:
3936 	kfree(sdkp);
3937  out:
3938 	scsi_autopm_put_device(sdp);
3939 	return error;
3940 }
3941 
3942 /**
3943  *	sd_remove - called whenever a scsi disk (previously recognized by
3944  *	sd_probe) is detached from the system. It is called (potentially
3945  *	multiple times) during sd module unload.
3946  *	@dev: pointer to device object
3947  *
3948  *	Note: this function is invoked from the scsi mid-level.
3949  *	This function potentially frees up a device name (e.g. /dev/sdc)
3950  *	that could be re-used by a subsequent sd_probe().
3951  *	This function is not called when the built-in sd driver is "exit-ed".
3952  **/
3953 static int sd_remove(struct device *dev)
3954 {
3955 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3956 
3957 	scsi_autopm_get_device(sdkp->device);
3958 
3959 	device_del(&sdkp->disk_dev);
3960 	del_gendisk(sdkp->disk);
3961 	if (!sdkp->suspended)
3962 		sd_shutdown(dev);
3963 
3964 	put_disk(sdkp->disk);
3965 	return 0;
3966 }
3967 
3968 static void scsi_disk_release(struct device *dev)
3969 {
3970 	struct scsi_disk *sdkp = to_scsi_disk(dev);
3971 
3972 	ida_free(&sd_index_ida, sdkp->index);
3973 	put_device(&sdkp->device->sdev_gendev);
3974 	free_opal_dev(sdkp->opal_dev);
3975 
3976 	kfree(sdkp);
3977 }
3978 
3979 static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3980 {
3981 	unsigned char cmd[6] = { START_STOP };	/* START_VALID */
3982 	struct scsi_sense_hdr sshdr;
3983 	const struct scsi_exec_args exec_args = {
3984 		.sshdr = &sshdr,
3985 		.req_flags = BLK_MQ_REQ_PM,
3986 	};
3987 	struct scsi_device *sdp = sdkp->device;
3988 	int res;
3989 
3990 	if (start)
3991 		cmd[4] |= 1;	/* START */
3992 
3993 	if (sdp->start_stop_pwr_cond)
3994 		cmd[4] |= start ? 1 << 4 : 3 << 4;	/* Active or Standby */
3995 
3996 	if (!scsi_device_online(sdp))
3997 		return -ENODEV;
3998 
3999 	res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, SD_TIMEOUT,
4000 			       sdkp->max_retries, &exec_args);
4001 	if (res) {
4002 		sd_print_result(sdkp, "Start/Stop Unit failed", res);
4003 		if (res > 0 && scsi_sense_valid(&sshdr)) {
4004 			sd_print_sense_hdr(sdkp, &sshdr);
4005 			/* 0x3a is medium not present */
4006 			if (sshdr.asc == 0x3a)
4007 				res = 0;
4008 		}
4009 	}
4010 
4011 	/* SCSI error codes must not go to the generic layer */
4012 	if (res)
4013 		return -EIO;
4014 
4015 	return 0;
4016 }
4017 
4018 /*
4019  * Send a SYNCHRONIZE CACHE instruction down to the device through
4020  * the normal SCSI command structure.  Wait for the command to
4021  * complete.
4022  */
4023 static void sd_shutdown(struct device *dev)
4024 {
4025 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
4026 
4027 	if (!sdkp)
4028 		return;         /* this can happen */
4029 
4030 	if (pm_runtime_suspended(dev))
4031 		return;
4032 
4033 	if (sdkp->WCE && sdkp->media_present) {
4034 		sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
4035 		sd_sync_cache(sdkp);
4036 	}
4037 
4038 	if ((system_state != SYSTEM_RESTART &&
4039 	     sdkp->device->manage_system_start_stop) ||
4040 	    (system_state == SYSTEM_POWER_OFF &&
4041 	     sdkp->device->manage_shutdown)) {
4042 		sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
4043 		sd_start_stop_device(sdkp, 0);
4044 	}
4045 }
4046 
4047 static inline bool sd_do_start_stop(struct scsi_device *sdev, bool runtime)
4048 {
4049 	return (sdev->manage_system_start_stop && !runtime) ||
4050 		(sdev->manage_runtime_start_stop && runtime);
4051 }
4052 
4053 static int sd_suspend_common(struct device *dev, bool runtime)
4054 {
4055 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
4056 	int ret = 0;
4057 
4058 	if (!sdkp)	/* E.g.: runtime suspend following sd_remove() */
4059 		return 0;
4060 
4061 	if (sdkp->WCE && sdkp->media_present) {
4062 		if (!sdkp->device->silence_suspend)
4063 			sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
4064 		ret = sd_sync_cache(sdkp);
4065 		/* ignore OFFLINE device */
4066 		if (ret == -ENODEV)
4067 			return 0;
4068 
4069 		if (ret)
4070 			return ret;
4071 	}
4072 
4073 	if (sd_do_start_stop(sdkp->device, runtime)) {
4074 		if (!sdkp->device->silence_suspend)
4075 			sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
4076 		/* an error is not worth aborting a system sleep */
4077 		ret = sd_start_stop_device(sdkp, 0);
4078 		if (!runtime)
4079 			ret = 0;
4080 	}
4081 
4082 	if (!ret)
4083 		sdkp->suspended = true;
4084 
4085 	return ret;
4086 }
4087 
4088 static int sd_suspend_system(struct device *dev)
4089 {
4090 	if (pm_runtime_suspended(dev))
4091 		return 0;
4092 
4093 	return sd_suspend_common(dev, false);
4094 }
4095 
4096 static int sd_suspend_runtime(struct device *dev)
4097 {
4098 	return sd_suspend_common(dev, true);
4099 }
4100 
4101 static int sd_resume(struct device *dev)
4102 {
4103 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
4104 
4105 	sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
4106 
4107 	if (opal_unlock_from_suspend(sdkp->opal_dev)) {
4108 		sd_printk(KERN_NOTICE, sdkp, "OPAL unlock failed\n");
4109 		return -EIO;
4110 	}
4111 
4112 	return 0;
4113 }
4114 
4115 static int sd_resume_common(struct device *dev, bool runtime)
4116 {
4117 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
4118 	int ret;
4119 
4120 	if (!sdkp)	/* E.g.: runtime resume at the start of sd_probe() */
4121 		return 0;
4122 
4123 	if (!sd_do_start_stop(sdkp->device, runtime)) {
4124 		sdkp->suspended = false;
4125 		return 0;
4126 	}
4127 
4128 	sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
4129 	ret = sd_start_stop_device(sdkp, 1);
4130 	if (!ret) {
4131 		sd_resume(dev);
4132 		sdkp->suspended = false;
4133 	}
4134 
4135 	return ret;
4136 }
4137 
4138 static int sd_resume_system(struct device *dev)
4139 {
4140 	if (pm_runtime_suspended(dev)) {
4141 		struct scsi_disk *sdkp = dev_get_drvdata(dev);
4142 		struct scsi_device *sdp = sdkp ? sdkp->device : NULL;
4143 
4144 		if (sdp && sdp->force_runtime_start_on_system_start)
4145 			pm_request_resume(dev);
4146 
4147 		return 0;
4148 	}
4149 
4150 	return sd_resume_common(dev, false);
4151 }
4152 
4153 static int sd_resume_runtime(struct device *dev)
4154 {
4155 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
4156 	struct scsi_device *sdp;
4157 
4158 	if (!sdkp)	/* E.g.: runtime resume at the start of sd_probe() */
4159 		return 0;
4160 
4161 	sdp = sdkp->device;
4162 
4163 	if (sdp->ignore_media_change) {
4164 		/* clear the device's sense data */
4165 		static const u8 cmd[10] = { REQUEST_SENSE };
4166 		const struct scsi_exec_args exec_args = {
4167 			.req_flags = BLK_MQ_REQ_PM,
4168 		};
4169 
4170 		if (scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0,
4171 				     sdp->request_queue->rq_timeout, 1,
4172 				     &exec_args))
4173 			sd_printk(KERN_NOTICE, sdkp,
4174 				  "Failed to clear sense data\n");
4175 	}
4176 
4177 	return sd_resume_common(dev, true);
4178 }
4179 
4180 static const struct dev_pm_ops sd_pm_ops = {
4181 	.suspend		= sd_suspend_system,
4182 	.resume			= sd_resume_system,
4183 	.poweroff		= sd_suspend_system,
4184 	.restore		= sd_resume_system,
4185 	.runtime_suspend	= sd_suspend_runtime,
4186 	.runtime_resume		= sd_resume_runtime,
4187 };
4188 
4189 static struct scsi_driver sd_template = {
4190 	.gendrv = {
4191 		.name		= "sd",
4192 		.probe		= sd_probe,
4193 		.probe_type	= PROBE_PREFER_ASYNCHRONOUS,
4194 		.remove		= sd_remove,
4195 		.shutdown	= sd_shutdown,
4196 		.pm		= &sd_pm_ops,
4197 	},
4198 	.rescan			= sd_rescan,
4199 	.resume			= sd_resume,
4200 	.init_command		= sd_init_command,
4201 	.uninit_command		= sd_uninit_command,
4202 	.done			= sd_done,
4203 	.eh_action		= sd_eh_action,
4204 	.eh_reset		= sd_eh_reset,
4205 };
4206 
4207 /**
4208  *	init_sd - entry point for this driver (both when built in or when
4209  *	a module).
4210  *
4211  *	Note: this function registers this driver with the scsi mid-level.
4212  **/
4213 static int __init init_sd(void)
4214 {
4215 	int majors = 0, i, err;
4216 
4217 	SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
4218 
4219 	for (i = 0; i < SD_MAJORS; i++) {
4220 		if (__register_blkdev(sd_major(i), "sd", sd_default_probe))
4221 			continue;
4222 		majors++;
4223 	}
4224 
4225 	if (!majors)
4226 		return -ENODEV;
4227 
4228 	err = class_register(&sd_disk_class);
4229 	if (err)
4230 		goto err_out;
4231 
4232 	sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0);
4233 	if (!sd_page_pool) {
4234 		printk(KERN_ERR "sd: can't init discard page pool\n");
4235 		err = -ENOMEM;
4236 		goto err_out_class;
4237 	}
4238 
4239 	err = scsi_register_driver(&sd_template.gendrv);
4240 	if (err)
4241 		goto err_out_driver;
4242 
4243 	return 0;
4244 
4245 err_out_driver:
4246 	mempool_destroy(sd_page_pool);
4247 err_out_class:
4248 	class_unregister(&sd_disk_class);
4249 err_out:
4250 	for (i = 0; i < SD_MAJORS; i++)
4251 		unregister_blkdev(sd_major(i), "sd");
4252 	return err;
4253 }
4254 
4255 /**
4256  *	exit_sd - exit point for this driver (when it is a module).
4257  *
4258  *	Note: this function unregisters this driver from the scsi mid-level.
4259  **/
4260 static void __exit exit_sd(void)
4261 {
4262 	int i;
4263 
4264 	SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
4265 
4266 	scsi_unregister_driver(&sd_template.gendrv);
4267 	mempool_destroy(sd_page_pool);
4268 
4269 	class_unregister(&sd_disk_class);
4270 
4271 	for (i = 0; i < SD_MAJORS; i++)
4272 		unregister_blkdev(sd_major(i), "sd");
4273 }
4274 
4275 module_init(init_sd);
4276 module_exit(exit_sd);
4277 
4278 void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
4279 {
4280 	scsi_print_sense_hdr(sdkp->device,
4281 			     sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
4282 }
4283 
4284 void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result)
4285 {
4286 	const char *hb_string = scsi_hostbyte_string(result);
4287 
4288 	if (hb_string)
4289 		sd_printk(KERN_INFO, sdkp,
4290 			  "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
4291 			  hb_string ? hb_string : "invalid",
4292 			  "DRIVER_OK");
4293 	else
4294 		sd_printk(KERN_INFO, sdkp,
4295 			  "%s: Result: hostbyte=0x%02x driverbyte=%s\n",
4296 			  msg, host_byte(result), "DRIVER_OK");
4297 }
4298