1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * sd.c Copyright (C) 1992 Drew Eckhardt 4 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale 5 * 6 * Linux scsi disk driver 7 * Initial versions: Drew Eckhardt 8 * Subsequent revisions: Eric Youngdale 9 * Modification history: 10 * - Drew Eckhardt <drew@colorado.edu> original 11 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 12 * outstanding request, and other enhancements. 13 * Support loadable low-level scsi drivers. 14 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 15 * eight major numbers. 16 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs. 17 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 18 * sd_init and cleanups. 19 * - Alex Davis <letmein@erols.com> Fix problem where partition info 20 * not being read in sd_open. Fix problem where removable media 21 * could be ejected after sd_open. 22 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x 23 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 24 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 25 * Support 32k/1M disks. 26 * 27 * Logging policy (needs CONFIG_SCSI_LOGGING defined): 28 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2 29 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1 30 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1 31 * - entering other commands: SCSI_LOG_HLQUEUE level 3 32 * Note: when the logging level is set by the user, it must be greater 33 * than the level indicated above to trigger output. 34 */ 35 36 #include <linux/module.h> 37 #include <linux/fs.h> 38 #include <linux/kernel.h> 39 #include <linux/mm.h> 40 #include <linux/bio.h> 41 #include <linux/hdreg.h> 42 #include <linux/errno.h> 43 #include <linux/idr.h> 44 #include <linux/interrupt.h> 45 #include <linux/init.h> 46 #include <linux/blkdev.h> 47 #include <linux/blkpg.h> 48 #include <linux/blk-pm.h> 49 #include <linux/delay.h> 50 #include <linux/rw_hint.h> 51 #include <linux/major.h> 52 #include <linux/mutex.h> 53 #include <linux/string_helpers.h> 54 #include <linux/slab.h> 55 #include <linux/sed-opal.h> 56 #include <linux/pm_runtime.h> 57 #include <linux/pr.h> 58 #include <linux/t10-pi.h> 59 #include <linux/uaccess.h> 60 #include <asm/unaligned.h> 61 62 #include <scsi/scsi.h> 63 #include <scsi/scsi_cmnd.h> 64 #include <scsi/scsi_dbg.h> 65 #include <scsi/scsi_device.h> 66 #include <scsi/scsi_driver.h> 67 #include <scsi/scsi_eh.h> 68 #include <scsi/scsi_host.h> 69 #include <scsi/scsi_ioctl.h> 70 #include <scsi/scsicam.h> 71 #include <scsi/scsi_common.h> 72 73 #include "sd.h" 74 #include "scsi_priv.h" 75 #include "scsi_logging.h" 76 77 MODULE_AUTHOR("Eric Youngdale"); 78 MODULE_DESCRIPTION("SCSI disk (sd) driver"); 79 MODULE_LICENSE("GPL"); 80 81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR); 82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR); 83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR); 84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR); 85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR); 86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR); 87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR); 88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR); 89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR); 90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR); 91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR); 92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR); 93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR); 94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR); 95 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR); 96 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR); 97 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK); 98 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD); 99 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC); 100 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC); 101 102 #define SD_MINORS 16 103 104 static void sd_config_discard(struct scsi_disk *sdkp, struct queue_limits *lim, 105 unsigned int mode); 106 static void sd_config_write_same(struct scsi_disk *sdkp, 107 struct queue_limits *lim); 108 static int sd_revalidate_disk(struct gendisk *); 109 static void sd_unlock_native_capacity(struct gendisk *disk); 110 static void sd_shutdown(struct device *); 111 static void scsi_disk_release(struct device *cdev); 112 113 static DEFINE_IDA(sd_index_ida); 114 115 static mempool_t *sd_page_pool; 116 static struct lock_class_key sd_bio_compl_lkclass; 117 118 static const char *sd_cache_types[] = { 119 "write through", "none", "write back", 120 "write back, no read (daft)" 121 }; 122 123 static void sd_set_flush_flag(struct scsi_disk *sdkp, 124 struct queue_limits *lim) 125 { 126 if (sdkp->WCE) { 127 lim->features |= BLK_FEAT_WRITE_CACHE; 128 if (sdkp->DPOFUA) 129 lim->features |= BLK_FEAT_FUA; 130 else 131 lim->features &= ~BLK_FEAT_FUA; 132 } else { 133 lim->features &= ~(BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA); 134 } 135 } 136 137 static ssize_t 138 cache_type_store(struct device *dev, struct device_attribute *attr, 139 const char *buf, size_t count) 140 { 141 int ct, rcd, wce, sp; 142 struct scsi_disk *sdkp = to_scsi_disk(dev); 143 struct scsi_device *sdp = sdkp->device; 144 char buffer[64]; 145 char *buffer_data; 146 struct scsi_mode_data data; 147 struct scsi_sense_hdr sshdr; 148 static const char temp[] = "temporary "; 149 int len, ret; 150 151 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 152 /* no cache control on RBC devices; theoretically they 153 * can do it, but there's probably so many exceptions 154 * it's not worth the risk */ 155 return -EINVAL; 156 157 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) { 158 buf += sizeof(temp) - 1; 159 sdkp->cache_override = 1; 160 } else { 161 sdkp->cache_override = 0; 162 } 163 164 ct = sysfs_match_string(sd_cache_types, buf); 165 if (ct < 0) 166 return -EINVAL; 167 168 rcd = ct & 0x01 ? 1 : 0; 169 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0; 170 171 if (sdkp->cache_override) { 172 struct queue_limits lim; 173 174 sdkp->WCE = wce; 175 sdkp->RCD = rcd; 176 177 lim = queue_limits_start_update(sdkp->disk->queue); 178 sd_set_flush_flag(sdkp, &lim); 179 blk_mq_freeze_queue(sdkp->disk->queue); 180 ret = queue_limits_commit_update(sdkp->disk->queue, &lim); 181 blk_mq_unfreeze_queue(sdkp->disk->queue); 182 if (ret) 183 return ret; 184 return count; 185 } 186 187 if (scsi_mode_sense(sdp, 0x08, 8, 0, buffer, sizeof(buffer), SD_TIMEOUT, 188 sdkp->max_retries, &data, NULL)) 189 return -EINVAL; 190 len = min_t(size_t, sizeof(buffer), data.length - data.header_length - 191 data.block_descriptor_length); 192 buffer_data = buffer + data.header_length + 193 data.block_descriptor_length; 194 buffer_data[2] &= ~0x05; 195 buffer_data[2] |= wce << 2 | rcd; 196 sp = buffer_data[0] & 0x80 ? 1 : 0; 197 buffer_data[0] &= ~0x80; 198 199 /* 200 * Ensure WP, DPOFUA, and RESERVED fields are cleared in 201 * received mode parameter buffer before doing MODE SELECT. 202 */ 203 data.device_specific = 0; 204 205 ret = scsi_mode_select(sdp, 1, sp, buffer_data, len, SD_TIMEOUT, 206 sdkp->max_retries, &data, &sshdr); 207 if (ret) { 208 if (ret > 0 && scsi_sense_valid(&sshdr)) 209 sd_print_sense_hdr(sdkp, &sshdr); 210 return -EINVAL; 211 } 212 sd_revalidate_disk(sdkp->disk); 213 return count; 214 } 215 216 static ssize_t 217 manage_start_stop_show(struct device *dev, 218 struct device_attribute *attr, char *buf) 219 { 220 struct scsi_disk *sdkp = to_scsi_disk(dev); 221 struct scsi_device *sdp = sdkp->device; 222 223 return sysfs_emit(buf, "%u\n", 224 sdp->manage_system_start_stop && 225 sdp->manage_runtime_start_stop && 226 sdp->manage_shutdown); 227 } 228 static DEVICE_ATTR_RO(manage_start_stop); 229 230 static ssize_t 231 manage_system_start_stop_show(struct device *dev, 232 struct device_attribute *attr, char *buf) 233 { 234 struct scsi_disk *sdkp = to_scsi_disk(dev); 235 struct scsi_device *sdp = sdkp->device; 236 237 return sysfs_emit(buf, "%u\n", sdp->manage_system_start_stop); 238 } 239 240 static ssize_t 241 manage_system_start_stop_store(struct device *dev, 242 struct device_attribute *attr, 243 const char *buf, size_t count) 244 { 245 struct scsi_disk *sdkp = to_scsi_disk(dev); 246 struct scsi_device *sdp = sdkp->device; 247 bool v; 248 249 if (!capable(CAP_SYS_ADMIN)) 250 return -EACCES; 251 252 if (kstrtobool(buf, &v)) 253 return -EINVAL; 254 255 sdp->manage_system_start_stop = v; 256 257 return count; 258 } 259 static DEVICE_ATTR_RW(manage_system_start_stop); 260 261 static ssize_t 262 manage_runtime_start_stop_show(struct device *dev, 263 struct device_attribute *attr, char *buf) 264 { 265 struct scsi_disk *sdkp = to_scsi_disk(dev); 266 struct scsi_device *sdp = sdkp->device; 267 268 return sysfs_emit(buf, "%u\n", sdp->manage_runtime_start_stop); 269 } 270 271 static ssize_t 272 manage_runtime_start_stop_store(struct device *dev, 273 struct device_attribute *attr, 274 const char *buf, size_t count) 275 { 276 struct scsi_disk *sdkp = to_scsi_disk(dev); 277 struct scsi_device *sdp = sdkp->device; 278 bool v; 279 280 if (!capable(CAP_SYS_ADMIN)) 281 return -EACCES; 282 283 if (kstrtobool(buf, &v)) 284 return -EINVAL; 285 286 sdp->manage_runtime_start_stop = v; 287 288 return count; 289 } 290 static DEVICE_ATTR_RW(manage_runtime_start_stop); 291 292 static ssize_t manage_shutdown_show(struct device *dev, 293 struct device_attribute *attr, char *buf) 294 { 295 struct scsi_disk *sdkp = to_scsi_disk(dev); 296 struct scsi_device *sdp = sdkp->device; 297 298 return sysfs_emit(buf, "%u\n", sdp->manage_shutdown); 299 } 300 301 static ssize_t manage_shutdown_store(struct device *dev, 302 struct device_attribute *attr, 303 const char *buf, size_t count) 304 { 305 struct scsi_disk *sdkp = to_scsi_disk(dev); 306 struct scsi_device *sdp = sdkp->device; 307 bool v; 308 309 if (!capable(CAP_SYS_ADMIN)) 310 return -EACCES; 311 312 if (kstrtobool(buf, &v)) 313 return -EINVAL; 314 315 sdp->manage_shutdown = v; 316 317 return count; 318 } 319 static DEVICE_ATTR_RW(manage_shutdown); 320 321 static ssize_t 322 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf) 323 { 324 struct scsi_disk *sdkp = to_scsi_disk(dev); 325 326 return sprintf(buf, "%u\n", sdkp->device->allow_restart); 327 } 328 329 static ssize_t 330 allow_restart_store(struct device *dev, struct device_attribute *attr, 331 const char *buf, size_t count) 332 { 333 bool v; 334 struct scsi_disk *sdkp = to_scsi_disk(dev); 335 struct scsi_device *sdp = sdkp->device; 336 337 if (!capable(CAP_SYS_ADMIN)) 338 return -EACCES; 339 340 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 341 return -EINVAL; 342 343 if (kstrtobool(buf, &v)) 344 return -EINVAL; 345 346 sdp->allow_restart = v; 347 348 return count; 349 } 350 static DEVICE_ATTR_RW(allow_restart); 351 352 static ssize_t 353 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf) 354 { 355 struct scsi_disk *sdkp = to_scsi_disk(dev); 356 int ct = sdkp->RCD + 2*sdkp->WCE; 357 358 return sprintf(buf, "%s\n", sd_cache_types[ct]); 359 } 360 static DEVICE_ATTR_RW(cache_type); 361 362 static ssize_t 363 FUA_show(struct device *dev, struct device_attribute *attr, char *buf) 364 { 365 struct scsi_disk *sdkp = to_scsi_disk(dev); 366 367 return sprintf(buf, "%u\n", sdkp->DPOFUA); 368 } 369 static DEVICE_ATTR_RO(FUA); 370 371 static ssize_t 372 protection_type_show(struct device *dev, struct device_attribute *attr, 373 char *buf) 374 { 375 struct scsi_disk *sdkp = to_scsi_disk(dev); 376 377 return sprintf(buf, "%u\n", sdkp->protection_type); 378 } 379 380 static ssize_t 381 protection_type_store(struct device *dev, struct device_attribute *attr, 382 const char *buf, size_t count) 383 { 384 struct scsi_disk *sdkp = to_scsi_disk(dev); 385 unsigned int val; 386 int err; 387 388 if (!capable(CAP_SYS_ADMIN)) 389 return -EACCES; 390 391 err = kstrtouint(buf, 10, &val); 392 393 if (err) 394 return err; 395 396 if (val <= T10_PI_TYPE3_PROTECTION) 397 sdkp->protection_type = val; 398 399 return count; 400 } 401 static DEVICE_ATTR_RW(protection_type); 402 403 static ssize_t 404 protection_mode_show(struct device *dev, struct device_attribute *attr, 405 char *buf) 406 { 407 struct scsi_disk *sdkp = to_scsi_disk(dev); 408 struct scsi_device *sdp = sdkp->device; 409 unsigned int dif, dix; 410 411 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type); 412 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type); 413 414 if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) { 415 dif = 0; 416 dix = 1; 417 } 418 419 if (!dif && !dix) 420 return sprintf(buf, "none\n"); 421 422 return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif); 423 } 424 static DEVICE_ATTR_RO(protection_mode); 425 426 static ssize_t 427 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf) 428 { 429 struct scsi_disk *sdkp = to_scsi_disk(dev); 430 431 return sprintf(buf, "%u\n", sdkp->ATO); 432 } 433 static DEVICE_ATTR_RO(app_tag_own); 434 435 static ssize_t 436 thin_provisioning_show(struct device *dev, struct device_attribute *attr, 437 char *buf) 438 { 439 struct scsi_disk *sdkp = to_scsi_disk(dev); 440 441 return sprintf(buf, "%u\n", sdkp->lbpme); 442 } 443 static DEVICE_ATTR_RO(thin_provisioning); 444 445 /* sysfs_match_string() requires dense arrays */ 446 static const char *lbp_mode[] = { 447 [SD_LBP_FULL] = "full", 448 [SD_LBP_UNMAP] = "unmap", 449 [SD_LBP_WS16] = "writesame_16", 450 [SD_LBP_WS10] = "writesame_10", 451 [SD_LBP_ZERO] = "writesame_zero", 452 [SD_LBP_DISABLE] = "disabled", 453 }; 454 455 static ssize_t 456 provisioning_mode_show(struct device *dev, struct device_attribute *attr, 457 char *buf) 458 { 459 struct scsi_disk *sdkp = to_scsi_disk(dev); 460 461 return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]); 462 } 463 464 static ssize_t 465 provisioning_mode_store(struct device *dev, struct device_attribute *attr, 466 const char *buf, size_t count) 467 { 468 struct scsi_disk *sdkp = to_scsi_disk(dev); 469 struct scsi_device *sdp = sdkp->device; 470 struct queue_limits lim; 471 int mode, err; 472 473 if (!capable(CAP_SYS_ADMIN)) 474 return -EACCES; 475 476 if (sdp->type != TYPE_DISK) 477 return -EINVAL; 478 479 mode = sysfs_match_string(lbp_mode, buf); 480 if (mode < 0) 481 return -EINVAL; 482 483 lim = queue_limits_start_update(sdkp->disk->queue); 484 sd_config_discard(sdkp, &lim, mode); 485 blk_mq_freeze_queue(sdkp->disk->queue); 486 err = queue_limits_commit_update(sdkp->disk->queue, &lim); 487 blk_mq_unfreeze_queue(sdkp->disk->queue); 488 if (err) 489 return err; 490 return count; 491 } 492 static DEVICE_ATTR_RW(provisioning_mode); 493 494 /* sysfs_match_string() requires dense arrays */ 495 static const char *zeroing_mode[] = { 496 [SD_ZERO_WRITE] = "write", 497 [SD_ZERO_WS] = "writesame", 498 [SD_ZERO_WS16_UNMAP] = "writesame_16_unmap", 499 [SD_ZERO_WS10_UNMAP] = "writesame_10_unmap", 500 }; 501 502 static ssize_t 503 zeroing_mode_show(struct device *dev, struct device_attribute *attr, 504 char *buf) 505 { 506 struct scsi_disk *sdkp = to_scsi_disk(dev); 507 508 return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]); 509 } 510 511 static ssize_t 512 zeroing_mode_store(struct device *dev, struct device_attribute *attr, 513 const char *buf, size_t count) 514 { 515 struct scsi_disk *sdkp = to_scsi_disk(dev); 516 int mode; 517 518 if (!capable(CAP_SYS_ADMIN)) 519 return -EACCES; 520 521 mode = sysfs_match_string(zeroing_mode, buf); 522 if (mode < 0) 523 return -EINVAL; 524 525 sdkp->zeroing_mode = mode; 526 527 return count; 528 } 529 static DEVICE_ATTR_RW(zeroing_mode); 530 531 static ssize_t 532 max_medium_access_timeouts_show(struct device *dev, 533 struct device_attribute *attr, char *buf) 534 { 535 struct scsi_disk *sdkp = to_scsi_disk(dev); 536 537 return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts); 538 } 539 540 static ssize_t 541 max_medium_access_timeouts_store(struct device *dev, 542 struct device_attribute *attr, const char *buf, 543 size_t count) 544 { 545 struct scsi_disk *sdkp = to_scsi_disk(dev); 546 int err; 547 548 if (!capable(CAP_SYS_ADMIN)) 549 return -EACCES; 550 551 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts); 552 553 return err ? err : count; 554 } 555 static DEVICE_ATTR_RW(max_medium_access_timeouts); 556 557 static ssize_t 558 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr, 559 char *buf) 560 { 561 struct scsi_disk *sdkp = to_scsi_disk(dev); 562 563 return sprintf(buf, "%u\n", sdkp->max_ws_blocks); 564 } 565 566 static ssize_t 567 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr, 568 const char *buf, size_t count) 569 { 570 struct scsi_disk *sdkp = to_scsi_disk(dev); 571 struct scsi_device *sdp = sdkp->device; 572 struct queue_limits lim; 573 unsigned long max; 574 int err; 575 576 if (!capable(CAP_SYS_ADMIN)) 577 return -EACCES; 578 579 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 580 return -EINVAL; 581 582 err = kstrtoul(buf, 10, &max); 583 584 if (err) 585 return err; 586 587 if (max == 0) 588 sdp->no_write_same = 1; 589 else if (max <= SD_MAX_WS16_BLOCKS) { 590 sdp->no_write_same = 0; 591 sdkp->max_ws_blocks = max; 592 } 593 594 lim = queue_limits_start_update(sdkp->disk->queue); 595 sd_config_write_same(sdkp, &lim); 596 blk_mq_freeze_queue(sdkp->disk->queue); 597 err = queue_limits_commit_update(sdkp->disk->queue, &lim); 598 blk_mq_unfreeze_queue(sdkp->disk->queue); 599 if (err) 600 return err; 601 return count; 602 } 603 static DEVICE_ATTR_RW(max_write_same_blocks); 604 605 static ssize_t 606 zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf) 607 { 608 struct scsi_disk *sdkp = to_scsi_disk(dev); 609 610 if (sdkp->device->type == TYPE_ZBC) 611 return sprintf(buf, "host-managed\n"); 612 if (sdkp->zoned == 1) 613 return sprintf(buf, "host-aware\n"); 614 if (sdkp->zoned == 2) 615 return sprintf(buf, "drive-managed\n"); 616 return sprintf(buf, "none\n"); 617 } 618 static DEVICE_ATTR_RO(zoned_cap); 619 620 static ssize_t 621 max_retries_store(struct device *dev, struct device_attribute *attr, 622 const char *buf, size_t count) 623 { 624 struct scsi_disk *sdkp = to_scsi_disk(dev); 625 struct scsi_device *sdev = sdkp->device; 626 int retries, err; 627 628 err = kstrtoint(buf, 10, &retries); 629 if (err) 630 return err; 631 632 if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) { 633 sdkp->max_retries = retries; 634 return count; 635 } 636 637 sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n", 638 SD_MAX_RETRIES); 639 return -EINVAL; 640 } 641 642 static ssize_t 643 max_retries_show(struct device *dev, struct device_attribute *attr, 644 char *buf) 645 { 646 struct scsi_disk *sdkp = to_scsi_disk(dev); 647 648 return sprintf(buf, "%d\n", sdkp->max_retries); 649 } 650 651 static DEVICE_ATTR_RW(max_retries); 652 653 static struct attribute *sd_disk_attrs[] = { 654 &dev_attr_cache_type.attr, 655 &dev_attr_FUA.attr, 656 &dev_attr_allow_restart.attr, 657 &dev_attr_manage_start_stop.attr, 658 &dev_attr_manage_system_start_stop.attr, 659 &dev_attr_manage_runtime_start_stop.attr, 660 &dev_attr_manage_shutdown.attr, 661 &dev_attr_protection_type.attr, 662 &dev_attr_protection_mode.attr, 663 &dev_attr_app_tag_own.attr, 664 &dev_attr_thin_provisioning.attr, 665 &dev_attr_provisioning_mode.attr, 666 &dev_attr_zeroing_mode.attr, 667 &dev_attr_max_write_same_blocks.attr, 668 &dev_attr_max_medium_access_timeouts.attr, 669 &dev_attr_zoned_cap.attr, 670 &dev_attr_max_retries.attr, 671 NULL, 672 }; 673 ATTRIBUTE_GROUPS(sd_disk); 674 675 static struct class sd_disk_class = { 676 .name = "scsi_disk", 677 .dev_release = scsi_disk_release, 678 .dev_groups = sd_disk_groups, 679 }; 680 681 /* 682 * Don't request a new module, as that could deadlock in multipath 683 * environment. 684 */ 685 static void sd_default_probe(dev_t devt) 686 { 687 } 688 689 /* 690 * Device no to disk mapping: 691 * 692 * major disc2 disc p1 693 * |............|.............|....|....| <- dev_t 694 * 31 20 19 8 7 4 3 0 695 * 696 * Inside a major, we have 16k disks, however mapped non- 697 * contiguously. The first 16 disks are for major0, the next 698 * ones with major1, ... Disk 256 is for major0 again, disk 272 699 * for major1, ... 700 * As we stay compatible with our numbering scheme, we can reuse 701 * the well-know SCSI majors 8, 65--71, 136--143. 702 */ 703 static int sd_major(int major_idx) 704 { 705 switch (major_idx) { 706 case 0: 707 return SCSI_DISK0_MAJOR; 708 case 1 ... 7: 709 return SCSI_DISK1_MAJOR + major_idx - 1; 710 case 8 ... 15: 711 return SCSI_DISK8_MAJOR + major_idx - 8; 712 default: 713 BUG(); 714 return 0; /* shut up gcc */ 715 } 716 } 717 718 #ifdef CONFIG_BLK_SED_OPAL 719 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, 720 size_t len, bool send) 721 { 722 struct scsi_disk *sdkp = data; 723 struct scsi_device *sdev = sdkp->device; 724 u8 cdb[12] = { 0, }; 725 const struct scsi_exec_args exec_args = { 726 .req_flags = BLK_MQ_REQ_PM, 727 }; 728 int ret; 729 730 cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN; 731 cdb[1] = secp; 732 put_unaligned_be16(spsp, &cdb[2]); 733 put_unaligned_be32(len, &cdb[6]); 734 735 ret = scsi_execute_cmd(sdev, cdb, send ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 736 buffer, len, SD_TIMEOUT, sdkp->max_retries, 737 &exec_args); 738 return ret <= 0 ? ret : -EIO; 739 } 740 #endif /* CONFIG_BLK_SED_OPAL */ 741 742 /* 743 * Look up the DIX operation based on whether the command is read or 744 * write and whether dix and dif are enabled. 745 */ 746 static unsigned int sd_prot_op(bool write, bool dix, bool dif) 747 { 748 /* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */ 749 static const unsigned int ops[] = { /* wrt dix dif */ 750 SCSI_PROT_NORMAL, /* 0 0 0 */ 751 SCSI_PROT_READ_STRIP, /* 0 0 1 */ 752 SCSI_PROT_READ_INSERT, /* 0 1 0 */ 753 SCSI_PROT_READ_PASS, /* 0 1 1 */ 754 SCSI_PROT_NORMAL, /* 1 0 0 */ 755 SCSI_PROT_WRITE_INSERT, /* 1 0 1 */ 756 SCSI_PROT_WRITE_STRIP, /* 1 1 0 */ 757 SCSI_PROT_WRITE_PASS, /* 1 1 1 */ 758 }; 759 760 return ops[write << 2 | dix << 1 | dif]; 761 } 762 763 /* 764 * Returns a mask of the protection flags that are valid for a given DIX 765 * operation. 766 */ 767 static unsigned int sd_prot_flag_mask(unsigned int prot_op) 768 { 769 static const unsigned int flag_mask[] = { 770 [SCSI_PROT_NORMAL] = 0, 771 772 [SCSI_PROT_READ_STRIP] = SCSI_PROT_TRANSFER_PI | 773 SCSI_PROT_GUARD_CHECK | 774 SCSI_PROT_REF_CHECK | 775 SCSI_PROT_REF_INCREMENT, 776 777 [SCSI_PROT_READ_INSERT] = SCSI_PROT_REF_INCREMENT | 778 SCSI_PROT_IP_CHECKSUM, 779 780 [SCSI_PROT_READ_PASS] = SCSI_PROT_TRANSFER_PI | 781 SCSI_PROT_GUARD_CHECK | 782 SCSI_PROT_REF_CHECK | 783 SCSI_PROT_REF_INCREMENT | 784 SCSI_PROT_IP_CHECKSUM, 785 786 [SCSI_PROT_WRITE_INSERT] = SCSI_PROT_TRANSFER_PI | 787 SCSI_PROT_REF_INCREMENT, 788 789 [SCSI_PROT_WRITE_STRIP] = SCSI_PROT_GUARD_CHECK | 790 SCSI_PROT_REF_CHECK | 791 SCSI_PROT_REF_INCREMENT | 792 SCSI_PROT_IP_CHECKSUM, 793 794 [SCSI_PROT_WRITE_PASS] = SCSI_PROT_TRANSFER_PI | 795 SCSI_PROT_GUARD_CHECK | 796 SCSI_PROT_REF_CHECK | 797 SCSI_PROT_REF_INCREMENT | 798 SCSI_PROT_IP_CHECKSUM, 799 }; 800 801 return flag_mask[prot_op]; 802 } 803 804 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd, 805 unsigned int dix, unsigned int dif) 806 { 807 struct request *rq = scsi_cmd_to_rq(scmd); 808 struct bio *bio = rq->bio; 809 unsigned int prot_op = sd_prot_op(rq_data_dir(rq), dix, dif); 810 unsigned int protect = 0; 811 812 if (dix) { /* DIX Type 0, 1, 2, 3 */ 813 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM)) 814 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM; 815 816 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 817 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK; 818 } 819 820 if (dif != T10_PI_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */ 821 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT; 822 823 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 824 scmd->prot_flags |= SCSI_PROT_REF_CHECK; 825 } 826 827 if (dif) { /* DIX/DIF Type 1, 2, 3 */ 828 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI; 829 830 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK)) 831 protect = 3 << 5; /* Disable target PI checking */ 832 else 833 protect = 1 << 5; /* Enable target PI checking */ 834 } 835 836 scsi_set_prot_op(scmd, prot_op); 837 scsi_set_prot_type(scmd, dif); 838 scmd->prot_flags &= sd_prot_flag_mask(prot_op); 839 840 return protect; 841 } 842 843 static void sd_disable_discard(struct scsi_disk *sdkp) 844 { 845 sdkp->provisioning_mode = SD_LBP_DISABLE; 846 blk_queue_disable_discard(sdkp->disk->queue); 847 } 848 849 static void sd_config_discard(struct scsi_disk *sdkp, struct queue_limits *lim, 850 unsigned int mode) 851 { 852 unsigned int logical_block_size = sdkp->device->sector_size; 853 unsigned int max_blocks = 0; 854 855 lim->discard_alignment = sdkp->unmap_alignment * logical_block_size; 856 lim->discard_granularity = max(sdkp->physical_block_size, 857 sdkp->unmap_granularity * logical_block_size); 858 sdkp->provisioning_mode = mode; 859 860 switch (mode) { 861 862 case SD_LBP_FULL: 863 case SD_LBP_DISABLE: 864 break; 865 866 case SD_LBP_UNMAP: 867 max_blocks = min_not_zero(sdkp->max_unmap_blocks, 868 (u32)SD_MAX_WS16_BLOCKS); 869 break; 870 871 case SD_LBP_WS16: 872 if (sdkp->device->unmap_limit_for_ws) 873 max_blocks = sdkp->max_unmap_blocks; 874 else 875 max_blocks = sdkp->max_ws_blocks; 876 877 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS); 878 break; 879 880 case SD_LBP_WS10: 881 if (sdkp->device->unmap_limit_for_ws) 882 max_blocks = sdkp->max_unmap_blocks; 883 else 884 max_blocks = sdkp->max_ws_blocks; 885 886 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS); 887 break; 888 889 case SD_LBP_ZERO: 890 max_blocks = min_not_zero(sdkp->max_ws_blocks, 891 (u32)SD_MAX_WS10_BLOCKS); 892 break; 893 } 894 895 lim->max_hw_discard_sectors = max_blocks * 896 (logical_block_size >> SECTOR_SHIFT); 897 } 898 899 static void *sd_set_special_bvec(struct request *rq, unsigned int data_len) 900 { 901 struct page *page; 902 903 page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 904 if (!page) 905 return NULL; 906 clear_highpage(page); 907 bvec_set_page(&rq->special_vec, page, data_len, 0); 908 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 909 return bvec_virt(&rq->special_vec); 910 } 911 912 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd) 913 { 914 struct scsi_device *sdp = cmd->device; 915 struct request *rq = scsi_cmd_to_rq(cmd); 916 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 917 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 918 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 919 unsigned int data_len = 24; 920 char *buf; 921 922 buf = sd_set_special_bvec(rq, data_len); 923 if (!buf) 924 return BLK_STS_RESOURCE; 925 926 cmd->cmd_len = 10; 927 cmd->cmnd[0] = UNMAP; 928 cmd->cmnd[8] = 24; 929 930 put_unaligned_be16(6 + 16, &buf[0]); 931 put_unaligned_be16(16, &buf[2]); 932 put_unaligned_be64(lba, &buf[8]); 933 put_unaligned_be32(nr_blocks, &buf[16]); 934 935 cmd->allowed = sdkp->max_retries; 936 cmd->transfersize = data_len; 937 rq->timeout = SD_TIMEOUT; 938 939 return scsi_alloc_sgtables(cmd); 940 } 941 942 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd, 943 bool unmap) 944 { 945 struct scsi_device *sdp = cmd->device; 946 struct request *rq = scsi_cmd_to_rq(cmd); 947 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 948 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 949 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 950 u32 data_len = sdp->sector_size; 951 952 if (!sd_set_special_bvec(rq, data_len)) 953 return BLK_STS_RESOURCE; 954 955 cmd->cmd_len = 16; 956 cmd->cmnd[0] = WRITE_SAME_16; 957 if (unmap) 958 cmd->cmnd[1] = 0x8; /* UNMAP */ 959 put_unaligned_be64(lba, &cmd->cmnd[2]); 960 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 961 962 cmd->allowed = sdkp->max_retries; 963 cmd->transfersize = data_len; 964 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 965 966 return scsi_alloc_sgtables(cmd); 967 } 968 969 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd, 970 bool unmap) 971 { 972 struct scsi_device *sdp = cmd->device; 973 struct request *rq = scsi_cmd_to_rq(cmd); 974 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 975 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 976 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 977 u32 data_len = sdp->sector_size; 978 979 if (!sd_set_special_bvec(rq, data_len)) 980 return BLK_STS_RESOURCE; 981 982 cmd->cmd_len = 10; 983 cmd->cmnd[0] = WRITE_SAME; 984 if (unmap) 985 cmd->cmnd[1] = 0x8; /* UNMAP */ 986 put_unaligned_be32(lba, &cmd->cmnd[2]); 987 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 988 989 cmd->allowed = sdkp->max_retries; 990 cmd->transfersize = data_len; 991 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 992 993 return scsi_alloc_sgtables(cmd); 994 } 995 996 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd) 997 { 998 struct request *rq = scsi_cmd_to_rq(cmd); 999 struct scsi_device *sdp = cmd->device; 1000 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 1001 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 1002 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 1003 1004 if (!(rq->cmd_flags & REQ_NOUNMAP)) { 1005 switch (sdkp->zeroing_mode) { 1006 case SD_ZERO_WS16_UNMAP: 1007 return sd_setup_write_same16_cmnd(cmd, true); 1008 case SD_ZERO_WS10_UNMAP: 1009 return sd_setup_write_same10_cmnd(cmd, true); 1010 } 1011 } 1012 1013 if (sdp->no_write_same) { 1014 rq->rq_flags |= RQF_QUIET; 1015 return BLK_STS_TARGET; 1016 } 1017 1018 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) 1019 return sd_setup_write_same16_cmnd(cmd, false); 1020 1021 return sd_setup_write_same10_cmnd(cmd, false); 1022 } 1023 1024 static void sd_disable_write_same(struct scsi_disk *sdkp) 1025 { 1026 sdkp->device->no_write_same = 1; 1027 sdkp->max_ws_blocks = 0; 1028 blk_queue_disable_write_zeroes(sdkp->disk->queue); 1029 } 1030 1031 static void sd_config_write_same(struct scsi_disk *sdkp, 1032 struct queue_limits *lim) 1033 { 1034 unsigned int logical_block_size = sdkp->device->sector_size; 1035 1036 if (sdkp->device->no_write_same) { 1037 sdkp->max_ws_blocks = 0; 1038 goto out; 1039 } 1040 1041 /* Some devices can not handle block counts above 0xffff despite 1042 * supporting WRITE SAME(16). Consequently we default to 64k 1043 * blocks per I/O unless the device explicitly advertises a 1044 * bigger limit. 1045 */ 1046 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS) 1047 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 1048 (u32)SD_MAX_WS16_BLOCKS); 1049 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes) 1050 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 1051 (u32)SD_MAX_WS10_BLOCKS); 1052 else { 1053 sdkp->device->no_write_same = 1; 1054 sdkp->max_ws_blocks = 0; 1055 } 1056 1057 if (sdkp->lbprz && sdkp->lbpws) 1058 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP; 1059 else if (sdkp->lbprz && sdkp->lbpws10) 1060 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP; 1061 else if (sdkp->max_ws_blocks) 1062 sdkp->zeroing_mode = SD_ZERO_WS; 1063 else 1064 sdkp->zeroing_mode = SD_ZERO_WRITE; 1065 1066 if (sdkp->max_ws_blocks && 1067 sdkp->physical_block_size > logical_block_size) { 1068 /* 1069 * Reporting a maximum number of blocks that is not aligned 1070 * on the device physical size would cause a large write same 1071 * request to be split into physically unaligned chunks by 1072 * __blkdev_issue_write_zeroes() even if the caller of this 1073 * functions took care to align the large request. So make sure 1074 * the maximum reported is aligned to the device physical block 1075 * size. This is only an optional optimization for regular 1076 * disks, but this is mandatory to avoid failure of large write 1077 * same requests directed at sequential write required zones of 1078 * host-managed ZBC disks. 1079 */ 1080 sdkp->max_ws_blocks = 1081 round_down(sdkp->max_ws_blocks, 1082 bytes_to_logical(sdkp->device, 1083 sdkp->physical_block_size)); 1084 } 1085 1086 out: 1087 lim->max_write_zeroes_sectors = 1088 sdkp->max_ws_blocks * (logical_block_size >> SECTOR_SHIFT); 1089 } 1090 1091 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd) 1092 { 1093 struct request *rq = scsi_cmd_to_rq(cmd); 1094 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 1095 1096 /* flush requests don't perform I/O, zero the S/G table */ 1097 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1098 1099 if (cmd->device->use_16_for_sync) { 1100 cmd->cmnd[0] = SYNCHRONIZE_CACHE_16; 1101 cmd->cmd_len = 16; 1102 } else { 1103 cmd->cmnd[0] = SYNCHRONIZE_CACHE; 1104 cmd->cmd_len = 10; 1105 } 1106 cmd->transfersize = 0; 1107 cmd->allowed = sdkp->max_retries; 1108 1109 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER; 1110 return BLK_STS_OK; 1111 } 1112 1113 /** 1114 * sd_group_number() - Compute the GROUP NUMBER field 1115 * @cmd: SCSI command for which to compute the value of the six-bit GROUP NUMBER 1116 * field. 1117 * 1118 * From SBC-5 r05 (https://www.t10.org/cgi-bin/ac.pl?t=f&f=sbc5r05.pdf): 1119 * 0: no relative lifetime. 1120 * 1: shortest relative lifetime. 1121 * 2: second shortest relative lifetime. 1122 * 3 - 0x3d: intermediate relative lifetimes. 1123 * 0x3e: second longest relative lifetime. 1124 * 0x3f: longest relative lifetime. 1125 */ 1126 static u8 sd_group_number(struct scsi_cmnd *cmd) 1127 { 1128 const struct request *rq = scsi_cmd_to_rq(cmd); 1129 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 1130 1131 if (!sdkp->rscs) 1132 return 0; 1133 1134 return min3((u32)rq->write_hint, (u32)sdkp->permanent_stream_count, 1135 0x3fu); 1136 } 1137 1138 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write, 1139 sector_t lba, unsigned int nr_blocks, 1140 unsigned char flags, unsigned int dld) 1141 { 1142 cmd->cmd_len = SD_EXT_CDB_SIZE; 1143 cmd->cmnd[0] = VARIABLE_LENGTH_CMD; 1144 cmd->cmnd[6] = sd_group_number(cmd); 1145 cmd->cmnd[7] = 0x18; /* Additional CDB len */ 1146 cmd->cmnd[9] = write ? WRITE_32 : READ_32; 1147 cmd->cmnd[10] = flags; 1148 cmd->cmnd[11] = dld & 0x07; 1149 put_unaligned_be64(lba, &cmd->cmnd[12]); 1150 put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */ 1151 put_unaligned_be32(nr_blocks, &cmd->cmnd[28]); 1152 1153 return BLK_STS_OK; 1154 } 1155 1156 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write, 1157 sector_t lba, unsigned int nr_blocks, 1158 unsigned char flags, unsigned int dld) 1159 { 1160 cmd->cmd_len = 16; 1161 cmd->cmnd[0] = write ? WRITE_16 : READ_16; 1162 cmd->cmnd[1] = flags | ((dld >> 2) & 0x01); 1163 cmd->cmnd[14] = ((dld & 0x03) << 6) | sd_group_number(cmd); 1164 cmd->cmnd[15] = 0; 1165 put_unaligned_be64(lba, &cmd->cmnd[2]); 1166 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 1167 1168 return BLK_STS_OK; 1169 } 1170 1171 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write, 1172 sector_t lba, unsigned int nr_blocks, 1173 unsigned char flags) 1174 { 1175 cmd->cmd_len = 10; 1176 cmd->cmnd[0] = write ? WRITE_10 : READ_10; 1177 cmd->cmnd[1] = flags; 1178 cmd->cmnd[6] = sd_group_number(cmd); 1179 cmd->cmnd[9] = 0; 1180 put_unaligned_be32(lba, &cmd->cmnd[2]); 1181 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 1182 1183 return BLK_STS_OK; 1184 } 1185 1186 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write, 1187 sector_t lba, unsigned int nr_blocks, 1188 unsigned char flags) 1189 { 1190 /* Avoid that 0 blocks gets translated into 256 blocks. */ 1191 if (WARN_ON_ONCE(nr_blocks == 0)) 1192 return BLK_STS_IOERR; 1193 1194 if (unlikely(flags & 0x8)) { 1195 /* 1196 * This happens only if this drive failed 10byte rw 1197 * command with ILLEGAL_REQUEST during operation and 1198 * thus turned off use_10_for_rw. 1199 */ 1200 scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n"); 1201 return BLK_STS_IOERR; 1202 } 1203 1204 cmd->cmd_len = 6; 1205 cmd->cmnd[0] = write ? WRITE_6 : READ_6; 1206 cmd->cmnd[1] = (lba >> 16) & 0x1f; 1207 cmd->cmnd[2] = (lba >> 8) & 0xff; 1208 cmd->cmnd[3] = lba & 0xff; 1209 cmd->cmnd[4] = nr_blocks; 1210 cmd->cmnd[5] = 0; 1211 1212 return BLK_STS_OK; 1213 } 1214 1215 /* 1216 * Check if a command has a duration limit set. If it does, and the target 1217 * device supports CDL and the feature is enabled, return the limit 1218 * descriptor index to use. Return 0 (no limit) otherwise. 1219 */ 1220 static int sd_cdl_dld(struct scsi_disk *sdkp, struct scsi_cmnd *scmd) 1221 { 1222 struct scsi_device *sdp = sdkp->device; 1223 int hint; 1224 1225 if (!sdp->cdl_supported || !sdp->cdl_enable) 1226 return 0; 1227 1228 /* 1229 * Use "no limit" if the request ioprio does not specify a duration 1230 * limit hint. 1231 */ 1232 hint = IOPRIO_PRIO_HINT(req_get_ioprio(scsi_cmd_to_rq(scmd))); 1233 if (hint < IOPRIO_HINT_DEV_DURATION_LIMIT_1 || 1234 hint > IOPRIO_HINT_DEV_DURATION_LIMIT_7) 1235 return 0; 1236 1237 return (hint - IOPRIO_HINT_DEV_DURATION_LIMIT_1) + 1; 1238 } 1239 1240 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd) 1241 { 1242 struct request *rq = scsi_cmd_to_rq(cmd); 1243 struct scsi_device *sdp = cmd->device; 1244 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 1245 sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 1246 sector_t threshold; 1247 unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 1248 unsigned int mask = logical_to_sectors(sdp, 1) - 1; 1249 bool write = rq_data_dir(rq) == WRITE; 1250 unsigned char protect, fua; 1251 unsigned int dld; 1252 blk_status_t ret; 1253 unsigned int dif; 1254 bool dix; 1255 1256 ret = scsi_alloc_sgtables(cmd); 1257 if (ret != BLK_STS_OK) 1258 return ret; 1259 1260 ret = BLK_STS_IOERR; 1261 if (!scsi_device_online(sdp) || sdp->changed) { 1262 scmd_printk(KERN_ERR, cmd, "device offline or changed\n"); 1263 goto fail; 1264 } 1265 1266 if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->q->disk)) { 1267 scmd_printk(KERN_ERR, cmd, "access beyond end of device\n"); 1268 goto fail; 1269 } 1270 1271 if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) { 1272 scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n"); 1273 goto fail; 1274 } 1275 1276 /* 1277 * Some SD card readers can't handle accesses which touch the 1278 * last one or two logical blocks. Split accesses as needed. 1279 */ 1280 threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS; 1281 1282 if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) { 1283 if (lba < threshold) { 1284 /* Access up to the threshold but not beyond */ 1285 nr_blocks = threshold - lba; 1286 } else { 1287 /* Access only a single logical block */ 1288 nr_blocks = 1; 1289 } 1290 } 1291 1292 fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0; 1293 dix = scsi_prot_sg_count(cmd); 1294 dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type); 1295 dld = sd_cdl_dld(sdkp, cmd); 1296 1297 if (dif || dix) 1298 protect = sd_setup_protect_cmnd(cmd, dix, dif); 1299 else 1300 protect = 0; 1301 1302 if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) { 1303 ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks, 1304 protect | fua, dld); 1305 } else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) { 1306 ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks, 1307 protect | fua, dld); 1308 } else if ((nr_blocks > 0xff) || (lba > 0x1fffff) || 1309 sdp->use_10_for_rw || protect || rq->write_hint) { 1310 ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks, 1311 protect | fua); 1312 } else { 1313 ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks, 1314 protect | fua); 1315 } 1316 1317 if (unlikely(ret != BLK_STS_OK)) 1318 goto fail; 1319 1320 /* 1321 * We shouldn't disconnect in the middle of a sector, so with a dumb 1322 * host adapter, it's safe to assume that we can at least transfer 1323 * this many bytes between each connect / disconnect. 1324 */ 1325 cmd->transfersize = sdp->sector_size; 1326 cmd->underflow = nr_blocks << 9; 1327 cmd->allowed = sdkp->max_retries; 1328 cmd->sdb.length = nr_blocks * sdp->sector_size; 1329 1330 SCSI_LOG_HLQUEUE(1, 1331 scmd_printk(KERN_INFO, cmd, 1332 "%s: block=%llu, count=%d\n", __func__, 1333 (unsigned long long)blk_rq_pos(rq), 1334 blk_rq_sectors(rq))); 1335 SCSI_LOG_HLQUEUE(2, 1336 scmd_printk(KERN_INFO, cmd, 1337 "%s %d/%u 512 byte blocks.\n", 1338 write ? "writing" : "reading", nr_blocks, 1339 blk_rq_sectors(rq))); 1340 1341 /* 1342 * This indicates that the command is ready from our end to be queued. 1343 */ 1344 return BLK_STS_OK; 1345 fail: 1346 scsi_free_sgtables(cmd); 1347 return ret; 1348 } 1349 1350 static blk_status_t sd_init_command(struct scsi_cmnd *cmd) 1351 { 1352 struct request *rq = scsi_cmd_to_rq(cmd); 1353 1354 switch (req_op(rq)) { 1355 case REQ_OP_DISCARD: 1356 switch (scsi_disk(rq->q->disk)->provisioning_mode) { 1357 case SD_LBP_UNMAP: 1358 return sd_setup_unmap_cmnd(cmd); 1359 case SD_LBP_WS16: 1360 return sd_setup_write_same16_cmnd(cmd, true); 1361 case SD_LBP_WS10: 1362 return sd_setup_write_same10_cmnd(cmd, true); 1363 case SD_LBP_ZERO: 1364 return sd_setup_write_same10_cmnd(cmd, false); 1365 default: 1366 return BLK_STS_TARGET; 1367 } 1368 case REQ_OP_WRITE_ZEROES: 1369 return sd_setup_write_zeroes_cmnd(cmd); 1370 case REQ_OP_FLUSH: 1371 return sd_setup_flush_cmnd(cmd); 1372 case REQ_OP_READ: 1373 case REQ_OP_WRITE: 1374 return sd_setup_read_write_cmnd(cmd); 1375 case REQ_OP_ZONE_RESET: 1376 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER, 1377 false); 1378 case REQ_OP_ZONE_RESET_ALL: 1379 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER, 1380 true); 1381 case REQ_OP_ZONE_OPEN: 1382 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false); 1383 case REQ_OP_ZONE_CLOSE: 1384 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false); 1385 case REQ_OP_ZONE_FINISH: 1386 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false); 1387 default: 1388 WARN_ON_ONCE(1); 1389 return BLK_STS_NOTSUPP; 1390 } 1391 } 1392 1393 static void sd_uninit_command(struct scsi_cmnd *SCpnt) 1394 { 1395 struct request *rq = scsi_cmd_to_rq(SCpnt); 1396 1397 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1398 mempool_free(rq->special_vec.bv_page, sd_page_pool); 1399 } 1400 1401 static bool sd_need_revalidate(struct gendisk *disk, struct scsi_disk *sdkp) 1402 { 1403 if (sdkp->device->removable || sdkp->write_prot) { 1404 if (disk_check_media_change(disk)) 1405 return true; 1406 } 1407 1408 /* 1409 * Force a full rescan after ioctl(BLKRRPART). While the disk state has 1410 * nothing to do with partitions, BLKRRPART is used to force a full 1411 * revalidate after things like a format for historical reasons. 1412 */ 1413 return test_bit(GD_NEED_PART_SCAN, &disk->state); 1414 } 1415 1416 /** 1417 * sd_open - open a scsi disk device 1418 * @disk: disk to open 1419 * @mode: open mode 1420 * 1421 * Returns 0 if successful. Returns a negated errno value in case 1422 * of error. 1423 * 1424 * Note: This can be called from a user context (e.g. fsck(1) ) 1425 * or from within the kernel (e.g. as a result of a mount(1) ). 1426 * In the latter case @inode and @filp carry an abridged amount 1427 * of information as noted above. 1428 * 1429 * Locking: called with disk->open_mutex held. 1430 **/ 1431 static int sd_open(struct gendisk *disk, blk_mode_t mode) 1432 { 1433 struct scsi_disk *sdkp = scsi_disk(disk); 1434 struct scsi_device *sdev = sdkp->device; 1435 int retval; 1436 1437 if (scsi_device_get(sdev)) 1438 return -ENXIO; 1439 1440 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n")); 1441 1442 /* 1443 * If the device is in error recovery, wait until it is done. 1444 * If the device is offline, then disallow any access to it. 1445 */ 1446 retval = -ENXIO; 1447 if (!scsi_block_when_processing_errors(sdev)) 1448 goto error_out; 1449 1450 if (sd_need_revalidate(disk, sdkp)) 1451 sd_revalidate_disk(disk); 1452 1453 /* 1454 * If the drive is empty, just let the open fail. 1455 */ 1456 retval = -ENOMEDIUM; 1457 if (sdev->removable && !sdkp->media_present && 1458 !(mode & BLK_OPEN_NDELAY)) 1459 goto error_out; 1460 1461 /* 1462 * If the device has the write protect tab set, have the open fail 1463 * if the user expects to be able to write to the thing. 1464 */ 1465 retval = -EROFS; 1466 if (sdkp->write_prot && (mode & BLK_OPEN_WRITE)) 1467 goto error_out; 1468 1469 /* 1470 * It is possible that the disk changing stuff resulted in 1471 * the device being taken offline. If this is the case, 1472 * report this to the user, and don't pretend that the 1473 * open actually succeeded. 1474 */ 1475 retval = -ENXIO; 1476 if (!scsi_device_online(sdev)) 1477 goto error_out; 1478 1479 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) { 1480 if (scsi_block_when_processing_errors(sdev)) 1481 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT); 1482 } 1483 1484 return 0; 1485 1486 error_out: 1487 scsi_device_put(sdev); 1488 return retval; 1489 } 1490 1491 /** 1492 * sd_release - invoked when the (last) close(2) is called on this 1493 * scsi disk. 1494 * @disk: disk to release 1495 * 1496 * Returns 0. 1497 * 1498 * Note: may block (uninterruptible) if error recovery is underway 1499 * on this disk. 1500 * 1501 * Locking: called with disk->open_mutex held. 1502 **/ 1503 static void sd_release(struct gendisk *disk) 1504 { 1505 struct scsi_disk *sdkp = scsi_disk(disk); 1506 struct scsi_device *sdev = sdkp->device; 1507 1508 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n")); 1509 1510 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) { 1511 if (scsi_block_when_processing_errors(sdev)) 1512 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW); 1513 } 1514 1515 scsi_device_put(sdev); 1516 } 1517 1518 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1519 { 1520 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1521 struct scsi_device *sdp = sdkp->device; 1522 struct Scsi_Host *host = sdp->host; 1523 sector_t capacity = logical_to_sectors(sdp, sdkp->capacity); 1524 int diskinfo[4]; 1525 1526 /* default to most commonly used values */ 1527 diskinfo[0] = 0x40; /* 1 << 6 */ 1528 diskinfo[1] = 0x20; /* 1 << 5 */ 1529 diskinfo[2] = capacity >> 11; 1530 1531 /* override with calculated, extended default, or driver values */ 1532 if (host->hostt->bios_param) 1533 host->hostt->bios_param(sdp, bdev, capacity, diskinfo); 1534 else 1535 scsicam_bios_param(bdev, capacity, diskinfo); 1536 1537 geo->heads = diskinfo[0]; 1538 geo->sectors = diskinfo[1]; 1539 geo->cylinders = diskinfo[2]; 1540 return 0; 1541 } 1542 1543 /** 1544 * sd_ioctl - process an ioctl 1545 * @bdev: target block device 1546 * @mode: open mode 1547 * @cmd: ioctl command number 1548 * @arg: this is third argument given to ioctl(2) system call. 1549 * Often contains a pointer. 1550 * 1551 * Returns 0 if successful (some ioctls return positive numbers on 1552 * success as well). Returns a negated errno value in case of error. 1553 * 1554 * Note: most ioctls are forward onto the block subsystem or further 1555 * down in the scsi subsystem. 1556 **/ 1557 static int sd_ioctl(struct block_device *bdev, blk_mode_t mode, 1558 unsigned int cmd, unsigned long arg) 1559 { 1560 struct gendisk *disk = bdev->bd_disk; 1561 struct scsi_disk *sdkp = scsi_disk(disk); 1562 struct scsi_device *sdp = sdkp->device; 1563 void __user *p = (void __user *)arg; 1564 int error; 1565 1566 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, " 1567 "cmd=0x%x\n", disk->disk_name, cmd)); 1568 1569 if (bdev_is_partition(bdev) && !capable(CAP_SYS_RAWIO)) 1570 return -ENOIOCTLCMD; 1571 1572 /* 1573 * If we are in the middle of error recovery, don't let anyone 1574 * else try and use this device. Also, if error recovery fails, it 1575 * may try and take the device offline, in which case all further 1576 * access to the device is prohibited. 1577 */ 1578 error = scsi_ioctl_block_when_processing_errors(sdp, cmd, 1579 (mode & BLK_OPEN_NDELAY)); 1580 if (error) 1581 return error; 1582 1583 if (is_sed_ioctl(cmd)) 1584 return sed_ioctl(sdkp->opal_dev, cmd, p); 1585 return scsi_ioctl(sdp, mode & BLK_OPEN_WRITE, cmd, p); 1586 } 1587 1588 static void set_media_not_present(struct scsi_disk *sdkp) 1589 { 1590 if (sdkp->media_present) 1591 sdkp->device->changed = 1; 1592 1593 if (sdkp->device->removable) { 1594 sdkp->media_present = 0; 1595 sdkp->capacity = 0; 1596 } 1597 } 1598 1599 static int media_not_present(struct scsi_disk *sdkp, 1600 struct scsi_sense_hdr *sshdr) 1601 { 1602 if (!scsi_sense_valid(sshdr)) 1603 return 0; 1604 1605 /* not invoked for commands that could return deferred errors */ 1606 switch (sshdr->sense_key) { 1607 case UNIT_ATTENTION: 1608 case NOT_READY: 1609 /* medium not present */ 1610 if (sshdr->asc == 0x3A) { 1611 set_media_not_present(sdkp); 1612 return 1; 1613 } 1614 } 1615 return 0; 1616 } 1617 1618 /** 1619 * sd_check_events - check media events 1620 * @disk: kernel device descriptor 1621 * @clearing: disk events currently being cleared 1622 * 1623 * Returns mask of DISK_EVENT_*. 1624 * 1625 * Note: this function is invoked from the block subsystem. 1626 **/ 1627 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing) 1628 { 1629 struct scsi_disk *sdkp = disk->private_data; 1630 struct scsi_device *sdp; 1631 int retval; 1632 bool disk_changed; 1633 1634 if (!sdkp) 1635 return 0; 1636 1637 sdp = sdkp->device; 1638 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n")); 1639 1640 /* 1641 * If the device is offline, don't send any commands - just pretend as 1642 * if the command failed. If the device ever comes back online, we 1643 * can deal with it then. It is only because of unrecoverable errors 1644 * that we would ever take a device offline in the first place. 1645 */ 1646 if (!scsi_device_online(sdp)) { 1647 set_media_not_present(sdkp); 1648 goto out; 1649 } 1650 1651 /* 1652 * Using TEST_UNIT_READY enables differentiation between drive with 1653 * no cartridge loaded - NOT READY, drive with changed cartridge - 1654 * UNIT ATTENTION, or with same cartridge - GOOD STATUS. 1655 * 1656 * Drives that auto spin down. eg iomega jaz 1G, will be started 1657 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever 1658 * sd_revalidate() is called. 1659 */ 1660 if (scsi_block_when_processing_errors(sdp)) { 1661 struct scsi_sense_hdr sshdr = { 0, }; 1662 1663 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries, 1664 &sshdr); 1665 1666 /* failed to execute TUR, assume media not present */ 1667 if (retval < 0 || host_byte(retval)) { 1668 set_media_not_present(sdkp); 1669 goto out; 1670 } 1671 1672 if (media_not_present(sdkp, &sshdr)) 1673 goto out; 1674 } 1675 1676 /* 1677 * For removable scsi disk we have to recognise the presence 1678 * of a disk in the drive. 1679 */ 1680 if (!sdkp->media_present) 1681 sdp->changed = 1; 1682 sdkp->media_present = 1; 1683 out: 1684 /* 1685 * sdp->changed is set under the following conditions: 1686 * 1687 * Medium present state has changed in either direction. 1688 * Device has indicated UNIT_ATTENTION. 1689 */ 1690 disk_changed = sdp->changed; 1691 sdp->changed = 0; 1692 return disk_changed ? DISK_EVENT_MEDIA_CHANGE : 0; 1693 } 1694 1695 static int sd_sync_cache(struct scsi_disk *sdkp) 1696 { 1697 int res; 1698 struct scsi_device *sdp = sdkp->device; 1699 const int timeout = sdp->request_queue->rq_timeout 1700 * SD_FLUSH_TIMEOUT_MULTIPLIER; 1701 /* Leave the rest of the command zero to indicate flush everything. */ 1702 const unsigned char cmd[16] = { sdp->use_16_for_sync ? 1703 SYNCHRONIZE_CACHE_16 : SYNCHRONIZE_CACHE }; 1704 struct scsi_sense_hdr sshdr; 1705 struct scsi_failure failure_defs[] = { 1706 { 1707 .allowed = 3, 1708 .result = SCMD_FAILURE_RESULT_ANY, 1709 }, 1710 {} 1711 }; 1712 struct scsi_failures failures = { 1713 .failure_definitions = failure_defs, 1714 }; 1715 const struct scsi_exec_args exec_args = { 1716 .req_flags = BLK_MQ_REQ_PM, 1717 .sshdr = &sshdr, 1718 .failures = &failures, 1719 }; 1720 1721 if (!scsi_device_online(sdp)) 1722 return -ENODEV; 1723 1724 res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, timeout, 1725 sdkp->max_retries, &exec_args); 1726 if (res) { 1727 sd_print_result(sdkp, "Synchronize Cache(10) failed", res); 1728 1729 if (res < 0) 1730 return res; 1731 1732 if (scsi_status_is_check_condition(res) && 1733 scsi_sense_valid(&sshdr)) { 1734 sd_print_sense_hdr(sdkp, &sshdr); 1735 1736 /* we need to evaluate the error return */ 1737 if (sshdr.asc == 0x3a || /* medium not present */ 1738 sshdr.asc == 0x20 || /* invalid command */ 1739 (sshdr.asc == 0x74 && sshdr.ascq == 0x71)) /* drive is password locked */ 1740 /* this is no error here */ 1741 return 0; 1742 /* 1743 * This drive doesn't support sync and there's not much 1744 * we can do because this is called during shutdown 1745 * or suspend so just return success so those operations 1746 * can proceed. 1747 */ 1748 if (sshdr.sense_key == ILLEGAL_REQUEST) 1749 return 0; 1750 } 1751 1752 switch (host_byte(res)) { 1753 /* ignore errors due to racing a disconnection */ 1754 case DID_BAD_TARGET: 1755 case DID_NO_CONNECT: 1756 return 0; 1757 /* signal the upper layer it might try again */ 1758 case DID_BUS_BUSY: 1759 case DID_IMM_RETRY: 1760 case DID_REQUEUE: 1761 case DID_SOFT_ERROR: 1762 return -EBUSY; 1763 default: 1764 return -EIO; 1765 } 1766 } 1767 return 0; 1768 } 1769 1770 static void sd_rescan(struct device *dev) 1771 { 1772 struct scsi_disk *sdkp = dev_get_drvdata(dev); 1773 1774 sd_revalidate_disk(sdkp->disk); 1775 } 1776 1777 static int sd_get_unique_id(struct gendisk *disk, u8 id[16], 1778 enum blk_unique_id type) 1779 { 1780 struct scsi_device *sdev = scsi_disk(disk)->device; 1781 const struct scsi_vpd *vpd; 1782 const unsigned char *d; 1783 int ret = -ENXIO, len; 1784 1785 rcu_read_lock(); 1786 vpd = rcu_dereference(sdev->vpd_pg83); 1787 if (!vpd) 1788 goto out_unlock; 1789 1790 ret = -EINVAL; 1791 for (d = vpd->data + 4; d < vpd->data + vpd->len; d += d[3] + 4) { 1792 /* we only care about designators with LU association */ 1793 if (((d[1] >> 4) & 0x3) != 0x00) 1794 continue; 1795 if ((d[1] & 0xf) != type) 1796 continue; 1797 1798 /* 1799 * Only exit early if a 16-byte descriptor was found. Otherwise 1800 * keep looking as one with more entropy might still show up. 1801 */ 1802 len = d[3]; 1803 if (len != 8 && len != 12 && len != 16) 1804 continue; 1805 ret = len; 1806 memcpy(id, d + 4, len); 1807 if (len == 16) 1808 break; 1809 } 1810 out_unlock: 1811 rcu_read_unlock(); 1812 return ret; 1813 } 1814 1815 static int sd_scsi_to_pr_err(struct scsi_sense_hdr *sshdr, int result) 1816 { 1817 switch (host_byte(result)) { 1818 case DID_TRANSPORT_MARGINAL: 1819 case DID_TRANSPORT_DISRUPTED: 1820 case DID_BUS_BUSY: 1821 return PR_STS_RETRY_PATH_FAILURE; 1822 case DID_NO_CONNECT: 1823 return PR_STS_PATH_FAILED; 1824 case DID_TRANSPORT_FAILFAST: 1825 return PR_STS_PATH_FAST_FAILED; 1826 } 1827 1828 switch (status_byte(result)) { 1829 case SAM_STAT_RESERVATION_CONFLICT: 1830 return PR_STS_RESERVATION_CONFLICT; 1831 case SAM_STAT_CHECK_CONDITION: 1832 if (!scsi_sense_valid(sshdr)) 1833 return PR_STS_IOERR; 1834 1835 if (sshdr->sense_key == ILLEGAL_REQUEST && 1836 (sshdr->asc == 0x26 || sshdr->asc == 0x24)) 1837 return -EINVAL; 1838 1839 fallthrough; 1840 default: 1841 return PR_STS_IOERR; 1842 } 1843 } 1844 1845 static int sd_pr_in_command(struct block_device *bdev, u8 sa, 1846 unsigned char *data, int data_len) 1847 { 1848 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1849 struct scsi_device *sdev = sdkp->device; 1850 struct scsi_sense_hdr sshdr; 1851 u8 cmd[10] = { PERSISTENT_RESERVE_IN, sa }; 1852 struct scsi_failure failure_defs[] = { 1853 { 1854 .sense = UNIT_ATTENTION, 1855 .asc = SCMD_FAILURE_ASC_ANY, 1856 .ascq = SCMD_FAILURE_ASCQ_ANY, 1857 .allowed = 5, 1858 .result = SAM_STAT_CHECK_CONDITION, 1859 }, 1860 {} 1861 }; 1862 struct scsi_failures failures = { 1863 .failure_definitions = failure_defs, 1864 }; 1865 const struct scsi_exec_args exec_args = { 1866 .sshdr = &sshdr, 1867 .failures = &failures, 1868 }; 1869 int result; 1870 1871 put_unaligned_be16(data_len, &cmd[7]); 1872 1873 result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, data, data_len, 1874 SD_TIMEOUT, sdkp->max_retries, &exec_args); 1875 if (scsi_status_is_check_condition(result) && 1876 scsi_sense_valid(&sshdr)) { 1877 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result); 1878 scsi_print_sense_hdr(sdev, NULL, &sshdr); 1879 } 1880 1881 if (result <= 0) 1882 return result; 1883 1884 return sd_scsi_to_pr_err(&sshdr, result); 1885 } 1886 1887 static int sd_pr_read_keys(struct block_device *bdev, struct pr_keys *keys_info) 1888 { 1889 int result, i, data_offset, num_copy_keys; 1890 u32 num_keys = keys_info->num_keys; 1891 int data_len = num_keys * 8 + 8; 1892 u8 *data; 1893 1894 data = kzalloc(data_len, GFP_KERNEL); 1895 if (!data) 1896 return -ENOMEM; 1897 1898 result = sd_pr_in_command(bdev, READ_KEYS, data, data_len); 1899 if (result) 1900 goto free_data; 1901 1902 keys_info->generation = get_unaligned_be32(&data[0]); 1903 keys_info->num_keys = get_unaligned_be32(&data[4]) / 8; 1904 1905 data_offset = 8; 1906 num_copy_keys = min(num_keys, keys_info->num_keys); 1907 1908 for (i = 0; i < num_copy_keys; i++) { 1909 keys_info->keys[i] = get_unaligned_be64(&data[data_offset]); 1910 data_offset += 8; 1911 } 1912 1913 free_data: 1914 kfree(data); 1915 return result; 1916 } 1917 1918 static int sd_pr_read_reservation(struct block_device *bdev, 1919 struct pr_held_reservation *rsv) 1920 { 1921 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1922 struct scsi_device *sdev = sdkp->device; 1923 u8 data[24] = { }; 1924 int result, len; 1925 1926 result = sd_pr_in_command(bdev, READ_RESERVATION, data, sizeof(data)); 1927 if (result) 1928 return result; 1929 1930 len = get_unaligned_be32(&data[4]); 1931 if (!len) 1932 return 0; 1933 1934 /* Make sure we have at least the key and type */ 1935 if (len < 14) { 1936 sdev_printk(KERN_INFO, sdev, 1937 "READ RESERVATION failed due to short return buffer of %d bytes\n", 1938 len); 1939 return -EINVAL; 1940 } 1941 1942 rsv->generation = get_unaligned_be32(&data[0]); 1943 rsv->key = get_unaligned_be64(&data[8]); 1944 rsv->type = scsi_pr_type_to_block(data[21] & 0x0f); 1945 return 0; 1946 } 1947 1948 static int sd_pr_out_command(struct block_device *bdev, u8 sa, u64 key, 1949 u64 sa_key, enum scsi_pr_type type, u8 flags) 1950 { 1951 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1952 struct scsi_device *sdev = sdkp->device; 1953 struct scsi_sense_hdr sshdr; 1954 struct scsi_failure failure_defs[] = { 1955 { 1956 .sense = UNIT_ATTENTION, 1957 .asc = SCMD_FAILURE_ASC_ANY, 1958 .ascq = SCMD_FAILURE_ASCQ_ANY, 1959 .allowed = 5, 1960 .result = SAM_STAT_CHECK_CONDITION, 1961 }, 1962 {} 1963 }; 1964 struct scsi_failures failures = { 1965 .failure_definitions = failure_defs, 1966 }; 1967 const struct scsi_exec_args exec_args = { 1968 .sshdr = &sshdr, 1969 .failures = &failures, 1970 }; 1971 int result; 1972 u8 cmd[16] = { 0, }; 1973 u8 data[24] = { 0, }; 1974 1975 cmd[0] = PERSISTENT_RESERVE_OUT; 1976 cmd[1] = sa; 1977 cmd[2] = type; 1978 put_unaligned_be32(sizeof(data), &cmd[5]); 1979 1980 put_unaligned_be64(key, &data[0]); 1981 put_unaligned_be64(sa_key, &data[8]); 1982 data[20] = flags; 1983 1984 result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, &data, 1985 sizeof(data), SD_TIMEOUT, sdkp->max_retries, 1986 &exec_args); 1987 1988 if (scsi_status_is_check_condition(result) && 1989 scsi_sense_valid(&sshdr)) { 1990 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result); 1991 scsi_print_sense_hdr(sdev, NULL, &sshdr); 1992 } 1993 1994 if (result <= 0) 1995 return result; 1996 1997 return sd_scsi_to_pr_err(&sshdr, result); 1998 } 1999 2000 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 2001 u32 flags) 2002 { 2003 if (flags & ~PR_FL_IGNORE_KEY) 2004 return -EOPNOTSUPP; 2005 return sd_pr_out_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00, 2006 old_key, new_key, 0, 2007 (1 << 0) /* APTPL */); 2008 } 2009 2010 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 2011 u32 flags) 2012 { 2013 if (flags) 2014 return -EOPNOTSUPP; 2015 return sd_pr_out_command(bdev, 0x01, key, 0, 2016 block_pr_type_to_scsi(type), 0); 2017 } 2018 2019 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 2020 { 2021 return sd_pr_out_command(bdev, 0x02, key, 0, 2022 block_pr_type_to_scsi(type), 0); 2023 } 2024 2025 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 2026 enum pr_type type, bool abort) 2027 { 2028 return sd_pr_out_command(bdev, abort ? 0x05 : 0x04, old_key, new_key, 2029 block_pr_type_to_scsi(type), 0); 2030 } 2031 2032 static int sd_pr_clear(struct block_device *bdev, u64 key) 2033 { 2034 return sd_pr_out_command(bdev, 0x03, key, 0, 0, 0); 2035 } 2036 2037 static const struct pr_ops sd_pr_ops = { 2038 .pr_register = sd_pr_register, 2039 .pr_reserve = sd_pr_reserve, 2040 .pr_release = sd_pr_release, 2041 .pr_preempt = sd_pr_preempt, 2042 .pr_clear = sd_pr_clear, 2043 .pr_read_keys = sd_pr_read_keys, 2044 .pr_read_reservation = sd_pr_read_reservation, 2045 }; 2046 2047 static void scsi_disk_free_disk(struct gendisk *disk) 2048 { 2049 struct scsi_disk *sdkp = scsi_disk(disk); 2050 2051 put_device(&sdkp->disk_dev); 2052 } 2053 2054 static const struct block_device_operations sd_fops = { 2055 .owner = THIS_MODULE, 2056 .open = sd_open, 2057 .release = sd_release, 2058 .ioctl = sd_ioctl, 2059 .getgeo = sd_getgeo, 2060 .compat_ioctl = blkdev_compat_ptr_ioctl, 2061 .check_events = sd_check_events, 2062 .unlock_native_capacity = sd_unlock_native_capacity, 2063 .report_zones = sd_zbc_report_zones, 2064 .get_unique_id = sd_get_unique_id, 2065 .free_disk = scsi_disk_free_disk, 2066 .pr_ops = &sd_pr_ops, 2067 }; 2068 2069 /** 2070 * sd_eh_reset - reset error handling callback 2071 * @scmd: sd-issued command that has failed 2072 * 2073 * This function is called by the SCSI midlayer before starting 2074 * SCSI EH. When counting medium access failures we have to be 2075 * careful to register it only only once per device and SCSI EH run; 2076 * there might be several timed out commands which will cause the 2077 * 'max_medium_access_timeouts' counter to trigger after the first 2078 * SCSI EH run already and set the device to offline. 2079 * So this function resets the internal counter before starting SCSI EH. 2080 **/ 2081 static void sd_eh_reset(struct scsi_cmnd *scmd) 2082 { 2083 struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk); 2084 2085 /* New SCSI EH run, reset gate variable */ 2086 sdkp->ignore_medium_access_errors = false; 2087 } 2088 2089 /** 2090 * sd_eh_action - error handling callback 2091 * @scmd: sd-issued command that has failed 2092 * @eh_disp: The recovery disposition suggested by the midlayer 2093 * 2094 * This function is called by the SCSI midlayer upon completion of an 2095 * error test command (currently TEST UNIT READY). The result of sending 2096 * the eh command is passed in eh_disp. We're looking for devices that 2097 * fail medium access commands but are OK with non access commands like 2098 * test unit ready (so wrongly see the device as having a successful 2099 * recovery) 2100 **/ 2101 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp) 2102 { 2103 struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk); 2104 struct scsi_device *sdev = scmd->device; 2105 2106 if (!scsi_device_online(sdev) || 2107 !scsi_medium_access_command(scmd) || 2108 host_byte(scmd->result) != DID_TIME_OUT || 2109 eh_disp != SUCCESS) 2110 return eh_disp; 2111 2112 /* 2113 * The device has timed out executing a medium access command. 2114 * However, the TEST UNIT READY command sent during error 2115 * handling completed successfully. Either the device is in the 2116 * process of recovering or has it suffered an internal failure 2117 * that prevents access to the storage medium. 2118 */ 2119 if (!sdkp->ignore_medium_access_errors) { 2120 sdkp->medium_access_timed_out++; 2121 sdkp->ignore_medium_access_errors = true; 2122 } 2123 2124 /* 2125 * If the device keeps failing read/write commands but TEST UNIT 2126 * READY always completes successfully we assume that medium 2127 * access is no longer possible and take the device offline. 2128 */ 2129 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) { 2130 scmd_printk(KERN_ERR, scmd, 2131 "Medium access timeout failure. Offlining disk!\n"); 2132 mutex_lock(&sdev->state_mutex); 2133 scsi_device_set_state(sdev, SDEV_OFFLINE); 2134 mutex_unlock(&sdev->state_mutex); 2135 2136 return SUCCESS; 2137 } 2138 2139 return eh_disp; 2140 } 2141 2142 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd) 2143 { 2144 struct request *req = scsi_cmd_to_rq(scmd); 2145 struct scsi_device *sdev = scmd->device; 2146 unsigned int transferred, good_bytes; 2147 u64 start_lba, end_lba, bad_lba; 2148 2149 /* 2150 * Some commands have a payload smaller than the device logical 2151 * block size (e.g. INQUIRY on a 4K disk). 2152 */ 2153 if (scsi_bufflen(scmd) <= sdev->sector_size) 2154 return 0; 2155 2156 /* Check if we have a 'bad_lba' information */ 2157 if (!scsi_get_sense_info_fld(scmd->sense_buffer, 2158 SCSI_SENSE_BUFFERSIZE, 2159 &bad_lba)) 2160 return 0; 2161 2162 /* 2163 * If the bad lba was reported incorrectly, we have no idea where 2164 * the error is. 2165 */ 2166 start_lba = sectors_to_logical(sdev, blk_rq_pos(req)); 2167 end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd)); 2168 if (bad_lba < start_lba || bad_lba >= end_lba) 2169 return 0; 2170 2171 /* 2172 * resid is optional but mostly filled in. When it's unused, 2173 * its value is zero, so we assume the whole buffer transferred 2174 */ 2175 transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd); 2176 2177 /* This computation should always be done in terms of the 2178 * resolution of the device's medium. 2179 */ 2180 good_bytes = logical_to_bytes(sdev, bad_lba - start_lba); 2181 2182 return min(good_bytes, transferred); 2183 } 2184 2185 /** 2186 * sd_done - bottom half handler: called when the lower level 2187 * driver has completed (successfully or otherwise) a scsi command. 2188 * @SCpnt: mid-level's per command structure. 2189 * 2190 * Note: potentially run from within an ISR. Must not block. 2191 **/ 2192 static int sd_done(struct scsi_cmnd *SCpnt) 2193 { 2194 int result = SCpnt->result; 2195 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt); 2196 unsigned int sector_size = SCpnt->device->sector_size; 2197 unsigned int resid; 2198 struct scsi_sense_hdr sshdr; 2199 struct request *req = scsi_cmd_to_rq(SCpnt); 2200 struct scsi_disk *sdkp = scsi_disk(req->q->disk); 2201 int sense_valid = 0; 2202 int sense_deferred = 0; 2203 2204 switch (req_op(req)) { 2205 case REQ_OP_DISCARD: 2206 case REQ_OP_WRITE_ZEROES: 2207 case REQ_OP_ZONE_RESET: 2208 case REQ_OP_ZONE_RESET_ALL: 2209 case REQ_OP_ZONE_OPEN: 2210 case REQ_OP_ZONE_CLOSE: 2211 case REQ_OP_ZONE_FINISH: 2212 if (!result) { 2213 good_bytes = blk_rq_bytes(req); 2214 scsi_set_resid(SCpnt, 0); 2215 } else { 2216 good_bytes = 0; 2217 scsi_set_resid(SCpnt, blk_rq_bytes(req)); 2218 } 2219 break; 2220 default: 2221 /* 2222 * In case of bogus fw or device, we could end up having 2223 * an unaligned partial completion. Check this here and force 2224 * alignment. 2225 */ 2226 resid = scsi_get_resid(SCpnt); 2227 if (resid & (sector_size - 1)) { 2228 sd_printk(KERN_INFO, sdkp, 2229 "Unaligned partial completion (resid=%u, sector_sz=%u)\n", 2230 resid, sector_size); 2231 scsi_print_command(SCpnt); 2232 resid = min(scsi_bufflen(SCpnt), 2233 round_up(resid, sector_size)); 2234 scsi_set_resid(SCpnt, resid); 2235 } 2236 } 2237 2238 if (result) { 2239 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr); 2240 if (sense_valid) 2241 sense_deferred = scsi_sense_is_deferred(&sshdr); 2242 } 2243 sdkp->medium_access_timed_out = 0; 2244 2245 if (!scsi_status_is_check_condition(result) && 2246 (!sense_valid || sense_deferred)) 2247 goto out; 2248 2249 switch (sshdr.sense_key) { 2250 case HARDWARE_ERROR: 2251 case MEDIUM_ERROR: 2252 good_bytes = sd_completed_bytes(SCpnt); 2253 break; 2254 case RECOVERED_ERROR: 2255 good_bytes = scsi_bufflen(SCpnt); 2256 break; 2257 case NO_SENSE: 2258 /* This indicates a false check condition, so ignore it. An 2259 * unknown amount of data was transferred so treat it as an 2260 * error. 2261 */ 2262 SCpnt->result = 0; 2263 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 2264 break; 2265 case ABORTED_COMMAND: 2266 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */ 2267 good_bytes = sd_completed_bytes(SCpnt); 2268 break; 2269 case ILLEGAL_REQUEST: 2270 switch (sshdr.asc) { 2271 case 0x10: /* DIX: Host detected corruption */ 2272 good_bytes = sd_completed_bytes(SCpnt); 2273 break; 2274 case 0x20: /* INVALID COMMAND OPCODE */ 2275 case 0x24: /* INVALID FIELD IN CDB */ 2276 switch (SCpnt->cmnd[0]) { 2277 case UNMAP: 2278 sd_disable_discard(sdkp); 2279 break; 2280 case WRITE_SAME_16: 2281 case WRITE_SAME: 2282 if (SCpnt->cmnd[1] & 8) { /* UNMAP */ 2283 sd_disable_discard(sdkp); 2284 } else { 2285 sd_disable_write_same(sdkp); 2286 req->rq_flags |= RQF_QUIET; 2287 } 2288 break; 2289 } 2290 } 2291 break; 2292 default: 2293 break; 2294 } 2295 2296 out: 2297 if (sdkp->device->type == TYPE_ZBC) 2298 good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr); 2299 2300 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt, 2301 "sd_done: completed %d of %d bytes\n", 2302 good_bytes, scsi_bufflen(SCpnt))); 2303 2304 return good_bytes; 2305 } 2306 2307 /* 2308 * spinup disk - called only in sd_revalidate_disk() 2309 */ 2310 static void 2311 sd_spinup_disk(struct scsi_disk *sdkp) 2312 { 2313 static const u8 cmd[10] = { TEST_UNIT_READY }; 2314 unsigned long spintime_expire = 0; 2315 int spintime, sense_valid = 0; 2316 unsigned int the_result; 2317 struct scsi_sense_hdr sshdr; 2318 struct scsi_failure failure_defs[] = { 2319 /* Do not retry Medium Not Present */ 2320 { 2321 .sense = UNIT_ATTENTION, 2322 .asc = 0x3A, 2323 .ascq = SCMD_FAILURE_ASCQ_ANY, 2324 .result = SAM_STAT_CHECK_CONDITION, 2325 }, 2326 { 2327 .sense = NOT_READY, 2328 .asc = 0x3A, 2329 .ascq = SCMD_FAILURE_ASCQ_ANY, 2330 .result = SAM_STAT_CHECK_CONDITION, 2331 }, 2332 /* Retry when scsi_status_is_good would return false 3 times */ 2333 { 2334 .result = SCMD_FAILURE_STAT_ANY, 2335 .allowed = 3, 2336 }, 2337 {} 2338 }; 2339 struct scsi_failures failures = { 2340 .failure_definitions = failure_defs, 2341 }; 2342 const struct scsi_exec_args exec_args = { 2343 .sshdr = &sshdr, 2344 .failures = &failures, 2345 }; 2346 2347 spintime = 0; 2348 2349 /* Spin up drives, as required. Only do this at boot time */ 2350 /* Spinup needs to be done for module loads too. */ 2351 do { 2352 bool media_was_present = sdkp->media_present; 2353 2354 scsi_failures_reset_retries(&failures); 2355 2356 the_result = scsi_execute_cmd(sdkp->device, cmd, REQ_OP_DRV_IN, 2357 NULL, 0, SD_TIMEOUT, 2358 sdkp->max_retries, &exec_args); 2359 2360 2361 if (the_result > 0) { 2362 /* 2363 * If the drive has indicated to us that it doesn't 2364 * have any media in it, don't bother with any more 2365 * polling. 2366 */ 2367 if (media_not_present(sdkp, &sshdr)) { 2368 if (media_was_present) 2369 sd_printk(KERN_NOTICE, sdkp, 2370 "Media removed, stopped polling\n"); 2371 return; 2372 } 2373 sense_valid = scsi_sense_valid(&sshdr); 2374 } 2375 2376 if (!scsi_status_is_check_condition(the_result)) { 2377 /* no sense, TUR either succeeded or failed 2378 * with a status error */ 2379 if(!spintime && !scsi_status_is_good(the_result)) { 2380 sd_print_result(sdkp, "Test Unit Ready failed", 2381 the_result); 2382 } 2383 break; 2384 } 2385 2386 /* 2387 * The device does not want the automatic start to be issued. 2388 */ 2389 if (sdkp->device->no_start_on_add) 2390 break; 2391 2392 if (sense_valid && sshdr.sense_key == NOT_READY) { 2393 if (sshdr.asc == 4 && sshdr.ascq == 3) 2394 break; /* manual intervention required */ 2395 if (sshdr.asc == 4 && sshdr.ascq == 0xb) 2396 break; /* standby */ 2397 if (sshdr.asc == 4 && sshdr.ascq == 0xc) 2398 break; /* unavailable */ 2399 if (sshdr.asc == 4 && sshdr.ascq == 0x1b) 2400 break; /* sanitize in progress */ 2401 if (sshdr.asc == 4 && sshdr.ascq == 0x24) 2402 break; /* depopulation in progress */ 2403 if (sshdr.asc == 4 && sshdr.ascq == 0x25) 2404 break; /* depopulation restoration in progress */ 2405 /* 2406 * Issue command to spin up drive when not ready 2407 */ 2408 if (!spintime) { 2409 /* Return immediately and start spin cycle */ 2410 const u8 start_cmd[10] = { 2411 [0] = START_STOP, 2412 [1] = 1, 2413 [4] = sdkp->device->start_stop_pwr_cond ? 2414 0x11 : 1, 2415 }; 2416 2417 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk..."); 2418 scsi_execute_cmd(sdkp->device, start_cmd, 2419 REQ_OP_DRV_IN, NULL, 0, 2420 SD_TIMEOUT, sdkp->max_retries, 2421 &exec_args); 2422 spintime_expire = jiffies + 100 * HZ; 2423 spintime = 1; 2424 } 2425 /* Wait 1 second for next try */ 2426 msleep(1000); 2427 printk(KERN_CONT "."); 2428 2429 /* 2430 * Wait for USB flash devices with slow firmware. 2431 * Yes, this sense key/ASC combination shouldn't 2432 * occur here. It's characteristic of these devices. 2433 */ 2434 } else if (sense_valid && 2435 sshdr.sense_key == UNIT_ATTENTION && 2436 sshdr.asc == 0x28) { 2437 if (!spintime) { 2438 spintime_expire = jiffies + 5 * HZ; 2439 spintime = 1; 2440 } 2441 /* Wait 1 second for next try */ 2442 msleep(1000); 2443 } else { 2444 /* we don't understand the sense code, so it's 2445 * probably pointless to loop */ 2446 if(!spintime) { 2447 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n"); 2448 sd_print_sense_hdr(sdkp, &sshdr); 2449 } 2450 break; 2451 } 2452 2453 } while (spintime && time_before_eq(jiffies, spintime_expire)); 2454 2455 if (spintime) { 2456 if (scsi_status_is_good(the_result)) 2457 printk(KERN_CONT "ready\n"); 2458 else 2459 printk(KERN_CONT "not responding...\n"); 2460 } 2461 } 2462 2463 /* 2464 * Determine whether disk supports Data Integrity Field. 2465 */ 2466 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer) 2467 { 2468 struct scsi_device *sdp = sdkp->device; 2469 u8 type; 2470 2471 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) { 2472 sdkp->protection_type = 0; 2473 return 0; 2474 } 2475 2476 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */ 2477 2478 if (type > T10_PI_TYPE3_PROTECTION) { 2479 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \ 2480 " protection type %u. Disabling disk!\n", 2481 type); 2482 sdkp->protection_type = 0; 2483 return -ENODEV; 2484 } 2485 2486 sdkp->protection_type = type; 2487 2488 return 0; 2489 } 2490 2491 static void sd_config_protection(struct scsi_disk *sdkp, 2492 struct queue_limits *lim) 2493 { 2494 struct scsi_device *sdp = sdkp->device; 2495 2496 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY)) 2497 sd_dif_config_host(sdkp, lim); 2498 2499 if (!sdkp->protection_type) 2500 return; 2501 2502 if (!scsi_host_dif_capable(sdp->host, sdkp->protection_type)) { 2503 sd_first_printk(KERN_NOTICE, sdkp, 2504 "Disabling DIF Type %u protection\n", 2505 sdkp->protection_type); 2506 sdkp->protection_type = 0; 2507 } 2508 2509 sd_first_printk(KERN_NOTICE, sdkp, "Enabling DIF Type %u protection\n", 2510 sdkp->protection_type); 2511 } 2512 2513 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp, 2514 struct scsi_sense_hdr *sshdr, int sense_valid, 2515 int the_result) 2516 { 2517 if (sense_valid) 2518 sd_print_sense_hdr(sdkp, sshdr); 2519 else 2520 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n"); 2521 2522 /* 2523 * Set dirty bit for removable devices if not ready - 2524 * sometimes drives will not report this properly. 2525 */ 2526 if (sdp->removable && 2527 sense_valid && sshdr->sense_key == NOT_READY) 2528 set_media_not_present(sdkp); 2529 2530 /* 2531 * We used to set media_present to 0 here to indicate no media 2532 * in the drive, but some drives fail read capacity even with 2533 * media present, so we can't do that. 2534 */ 2535 sdkp->capacity = 0; /* unknown mapped to zero - as usual */ 2536 } 2537 2538 #define RC16_LEN 32 2539 #if RC16_LEN > SD_BUF_SIZE 2540 #error RC16_LEN must not be more than SD_BUF_SIZE 2541 #endif 2542 2543 #define READ_CAPACITY_RETRIES_ON_RESET 10 2544 2545 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp, 2546 struct queue_limits *lim, unsigned char *buffer) 2547 { 2548 unsigned char cmd[16]; 2549 struct scsi_sense_hdr sshdr; 2550 const struct scsi_exec_args exec_args = { 2551 .sshdr = &sshdr, 2552 }; 2553 int sense_valid = 0; 2554 int the_result; 2555 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2556 unsigned int alignment; 2557 unsigned long long lba; 2558 unsigned sector_size; 2559 2560 if (sdp->no_read_capacity_16) 2561 return -EINVAL; 2562 2563 do { 2564 memset(cmd, 0, 16); 2565 cmd[0] = SERVICE_ACTION_IN_16; 2566 cmd[1] = SAI_READ_CAPACITY_16; 2567 cmd[13] = RC16_LEN; 2568 memset(buffer, 0, RC16_LEN); 2569 2570 the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, 2571 buffer, RC16_LEN, SD_TIMEOUT, 2572 sdkp->max_retries, &exec_args); 2573 if (the_result > 0) { 2574 if (media_not_present(sdkp, &sshdr)) 2575 return -ENODEV; 2576 2577 sense_valid = scsi_sense_valid(&sshdr); 2578 if (sense_valid && 2579 sshdr.sense_key == ILLEGAL_REQUEST && 2580 (sshdr.asc == 0x20 || sshdr.asc == 0x24) && 2581 sshdr.ascq == 0x00) 2582 /* Invalid Command Operation Code or 2583 * Invalid Field in CDB, just retry 2584 * silently with RC10 */ 2585 return -EINVAL; 2586 if (sense_valid && 2587 sshdr.sense_key == UNIT_ATTENTION && 2588 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2589 /* Device reset might occur several times, 2590 * give it one more chance */ 2591 if (--reset_retries > 0) 2592 continue; 2593 } 2594 retries--; 2595 2596 } while (the_result && retries); 2597 2598 if (the_result) { 2599 sd_print_result(sdkp, "Read Capacity(16) failed", the_result); 2600 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2601 return -EINVAL; 2602 } 2603 2604 sector_size = get_unaligned_be32(&buffer[8]); 2605 lba = get_unaligned_be64(&buffer[0]); 2606 2607 if (sd_read_protection_type(sdkp, buffer) < 0) { 2608 sdkp->capacity = 0; 2609 return -ENODEV; 2610 } 2611 2612 /* Logical blocks per physical block exponent */ 2613 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size; 2614 2615 /* RC basis */ 2616 sdkp->rc_basis = (buffer[12] >> 4) & 0x3; 2617 2618 /* Lowest aligned logical block */ 2619 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size; 2620 lim->alignment_offset = alignment; 2621 if (alignment && sdkp->first_scan) 2622 sd_printk(KERN_NOTICE, sdkp, 2623 "physical block alignment offset: %u\n", alignment); 2624 2625 if (buffer[14] & 0x80) { /* LBPME */ 2626 sdkp->lbpme = 1; 2627 2628 if (buffer[14] & 0x40) /* LBPRZ */ 2629 sdkp->lbprz = 1; 2630 2631 sd_config_discard(sdkp, lim, SD_LBP_WS16); 2632 } 2633 2634 sdkp->capacity = lba + 1; 2635 return sector_size; 2636 } 2637 2638 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp, 2639 unsigned char *buffer) 2640 { 2641 static const u8 cmd[10] = { READ_CAPACITY }; 2642 struct scsi_sense_hdr sshdr; 2643 struct scsi_failure failure_defs[] = { 2644 /* Do not retry Medium Not Present */ 2645 { 2646 .sense = UNIT_ATTENTION, 2647 .asc = 0x3A, 2648 .result = SAM_STAT_CHECK_CONDITION, 2649 }, 2650 { 2651 .sense = NOT_READY, 2652 .asc = 0x3A, 2653 .result = SAM_STAT_CHECK_CONDITION, 2654 }, 2655 /* Device reset might occur several times so retry a lot */ 2656 { 2657 .sense = UNIT_ATTENTION, 2658 .asc = 0x29, 2659 .allowed = READ_CAPACITY_RETRIES_ON_RESET, 2660 .result = SAM_STAT_CHECK_CONDITION, 2661 }, 2662 /* Any other error not listed above retry 3 times */ 2663 { 2664 .result = SCMD_FAILURE_RESULT_ANY, 2665 .allowed = 3, 2666 }, 2667 {} 2668 }; 2669 struct scsi_failures failures = { 2670 .failure_definitions = failure_defs, 2671 }; 2672 const struct scsi_exec_args exec_args = { 2673 .sshdr = &sshdr, 2674 .failures = &failures, 2675 }; 2676 int sense_valid = 0; 2677 int the_result; 2678 sector_t lba; 2679 unsigned sector_size; 2680 2681 memset(buffer, 0, 8); 2682 2683 the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, buffer, 2684 8, SD_TIMEOUT, sdkp->max_retries, 2685 &exec_args); 2686 2687 if (the_result > 0) { 2688 sense_valid = scsi_sense_valid(&sshdr); 2689 2690 if (media_not_present(sdkp, &sshdr)) 2691 return -ENODEV; 2692 } 2693 2694 if (the_result) { 2695 sd_print_result(sdkp, "Read Capacity(10) failed", the_result); 2696 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2697 return -EINVAL; 2698 } 2699 2700 sector_size = get_unaligned_be32(&buffer[4]); 2701 lba = get_unaligned_be32(&buffer[0]); 2702 2703 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) { 2704 /* Some buggy (usb cardreader) devices return an lba of 2705 0xffffffff when the want to report a size of 0 (with 2706 which they really mean no media is present) */ 2707 sdkp->capacity = 0; 2708 sdkp->physical_block_size = sector_size; 2709 return sector_size; 2710 } 2711 2712 sdkp->capacity = lba + 1; 2713 sdkp->physical_block_size = sector_size; 2714 return sector_size; 2715 } 2716 2717 static int sd_try_rc16_first(struct scsi_device *sdp) 2718 { 2719 if (sdp->host->max_cmd_len < 16) 2720 return 0; 2721 if (sdp->try_rc_10_first) 2722 return 0; 2723 if (sdp->scsi_level > SCSI_SPC_2) 2724 return 1; 2725 if (scsi_device_protection(sdp)) 2726 return 1; 2727 return 0; 2728 } 2729 2730 /* 2731 * read disk capacity 2732 */ 2733 static void 2734 sd_read_capacity(struct scsi_disk *sdkp, struct queue_limits *lim, 2735 unsigned char *buffer) 2736 { 2737 int sector_size; 2738 struct scsi_device *sdp = sdkp->device; 2739 2740 if (sd_try_rc16_first(sdp)) { 2741 sector_size = read_capacity_16(sdkp, sdp, lim, buffer); 2742 if (sector_size == -EOVERFLOW) 2743 goto got_data; 2744 if (sector_size == -ENODEV) 2745 return; 2746 if (sector_size < 0) 2747 sector_size = read_capacity_10(sdkp, sdp, buffer); 2748 if (sector_size < 0) 2749 return; 2750 } else { 2751 sector_size = read_capacity_10(sdkp, sdp, buffer); 2752 if (sector_size == -EOVERFLOW) 2753 goto got_data; 2754 if (sector_size < 0) 2755 return; 2756 if ((sizeof(sdkp->capacity) > 4) && 2757 (sdkp->capacity > 0xffffffffULL)) { 2758 int old_sector_size = sector_size; 2759 sd_printk(KERN_NOTICE, sdkp, "Very big device. " 2760 "Trying to use READ CAPACITY(16).\n"); 2761 sector_size = read_capacity_16(sdkp, sdp, lim, buffer); 2762 if (sector_size < 0) { 2763 sd_printk(KERN_NOTICE, sdkp, 2764 "Using 0xffffffff as device size\n"); 2765 sdkp->capacity = 1 + (sector_t) 0xffffffff; 2766 sector_size = old_sector_size; 2767 goto got_data; 2768 } 2769 /* Remember that READ CAPACITY(16) succeeded */ 2770 sdp->try_rc_10_first = 0; 2771 } 2772 } 2773 2774 /* Some devices are known to return the total number of blocks, 2775 * not the highest block number. Some devices have versions 2776 * which do this and others which do not. Some devices we might 2777 * suspect of doing this but we don't know for certain. 2778 * 2779 * If we know the reported capacity is wrong, decrement it. If 2780 * we can only guess, then assume the number of blocks is even 2781 * (usually true but not always) and err on the side of lowering 2782 * the capacity. 2783 */ 2784 if (sdp->fix_capacity || 2785 (sdp->guess_capacity && (sdkp->capacity & 0x01))) { 2786 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count " 2787 "from its reported value: %llu\n", 2788 (unsigned long long) sdkp->capacity); 2789 --sdkp->capacity; 2790 } 2791 2792 got_data: 2793 if (sector_size == 0) { 2794 sector_size = 512; 2795 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, " 2796 "assuming 512.\n"); 2797 } 2798 2799 if (sector_size != 512 && 2800 sector_size != 1024 && 2801 sector_size != 2048 && 2802 sector_size != 4096) { 2803 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n", 2804 sector_size); 2805 /* 2806 * The user might want to re-format the drive with 2807 * a supported sectorsize. Once this happens, it 2808 * would be relatively trivial to set the thing up. 2809 * For this reason, we leave the thing in the table. 2810 */ 2811 sdkp->capacity = 0; 2812 /* 2813 * set a bogus sector size so the normal read/write 2814 * logic in the block layer will eventually refuse any 2815 * request on this device without tripping over power 2816 * of two sector size assumptions 2817 */ 2818 sector_size = 512; 2819 } 2820 lim->logical_block_size = sector_size; 2821 lim->physical_block_size = sdkp->physical_block_size; 2822 sdkp->device->sector_size = sector_size; 2823 2824 if (sdkp->capacity > 0xffffffff) 2825 sdp->use_16_for_rw = 1; 2826 2827 } 2828 2829 /* 2830 * Print disk capacity 2831 */ 2832 static void 2833 sd_print_capacity(struct scsi_disk *sdkp, 2834 sector_t old_capacity) 2835 { 2836 int sector_size = sdkp->device->sector_size; 2837 char cap_str_2[10], cap_str_10[10]; 2838 2839 if (!sdkp->first_scan && old_capacity == sdkp->capacity) 2840 return; 2841 2842 string_get_size(sdkp->capacity, sector_size, 2843 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2)); 2844 string_get_size(sdkp->capacity, sector_size, 2845 STRING_UNITS_10, cap_str_10, sizeof(cap_str_10)); 2846 2847 sd_printk(KERN_NOTICE, sdkp, 2848 "%llu %d-byte logical blocks: (%s/%s)\n", 2849 (unsigned long long)sdkp->capacity, 2850 sector_size, cap_str_10, cap_str_2); 2851 2852 if (sdkp->physical_block_size != sector_size) 2853 sd_printk(KERN_NOTICE, sdkp, 2854 "%u-byte physical blocks\n", 2855 sdkp->physical_block_size); 2856 } 2857 2858 /* called with buffer of length 512 */ 2859 static inline int 2860 sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage, 2861 unsigned char *buffer, int len, struct scsi_mode_data *data, 2862 struct scsi_sense_hdr *sshdr) 2863 { 2864 /* 2865 * If we must use MODE SENSE(10), make sure that the buffer length 2866 * is at least 8 bytes so that the mode sense header fits. 2867 */ 2868 if (sdkp->device->use_10_for_ms && len < 8) 2869 len = 8; 2870 2871 return scsi_mode_sense(sdkp->device, dbd, modepage, 0, buffer, len, 2872 SD_TIMEOUT, sdkp->max_retries, data, sshdr); 2873 } 2874 2875 /* 2876 * read write protect setting, if possible - called only in sd_revalidate_disk() 2877 * called with buffer of length SD_BUF_SIZE 2878 */ 2879 static void 2880 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer) 2881 { 2882 int res; 2883 struct scsi_device *sdp = sdkp->device; 2884 struct scsi_mode_data data; 2885 int old_wp = sdkp->write_prot; 2886 2887 set_disk_ro(sdkp->disk, 0); 2888 if (sdp->skip_ms_page_3f) { 2889 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n"); 2890 return; 2891 } 2892 2893 if (sdp->use_192_bytes_for_3f) { 2894 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL); 2895 } else { 2896 /* 2897 * First attempt: ask for all pages (0x3F), but only 4 bytes. 2898 * We have to start carefully: some devices hang if we ask 2899 * for more than is available. 2900 */ 2901 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL); 2902 2903 /* 2904 * Second attempt: ask for page 0 When only page 0 is 2905 * implemented, a request for page 3F may return Sense Key 2906 * 5: Illegal Request, Sense Code 24: Invalid field in 2907 * CDB. 2908 */ 2909 if (res < 0) 2910 res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL); 2911 2912 /* 2913 * Third attempt: ask 255 bytes, as we did earlier. 2914 */ 2915 if (res < 0) 2916 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255, 2917 &data, NULL); 2918 } 2919 2920 if (res < 0) { 2921 sd_first_printk(KERN_WARNING, sdkp, 2922 "Test WP failed, assume Write Enabled\n"); 2923 } else { 2924 sdkp->write_prot = ((data.device_specific & 0x80) != 0); 2925 set_disk_ro(sdkp->disk, sdkp->write_prot); 2926 if (sdkp->first_scan || old_wp != sdkp->write_prot) { 2927 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n", 2928 sdkp->write_prot ? "on" : "off"); 2929 sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer); 2930 } 2931 } 2932 } 2933 2934 /* 2935 * sd_read_cache_type - called only from sd_revalidate_disk() 2936 * called with buffer of length SD_BUF_SIZE 2937 */ 2938 static void 2939 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer) 2940 { 2941 int len = 0, res; 2942 struct scsi_device *sdp = sdkp->device; 2943 2944 int dbd; 2945 int modepage; 2946 int first_len; 2947 struct scsi_mode_data data; 2948 struct scsi_sense_hdr sshdr; 2949 int old_wce = sdkp->WCE; 2950 int old_rcd = sdkp->RCD; 2951 int old_dpofua = sdkp->DPOFUA; 2952 2953 2954 if (sdkp->cache_override) 2955 return; 2956 2957 first_len = 4; 2958 if (sdp->skip_ms_page_8) { 2959 if (sdp->type == TYPE_RBC) 2960 goto defaults; 2961 else { 2962 if (sdp->skip_ms_page_3f) 2963 goto defaults; 2964 modepage = 0x3F; 2965 if (sdp->use_192_bytes_for_3f) 2966 first_len = 192; 2967 dbd = 0; 2968 } 2969 } else if (sdp->type == TYPE_RBC) { 2970 modepage = 6; 2971 dbd = 8; 2972 } else { 2973 modepage = 8; 2974 dbd = 0; 2975 } 2976 2977 /* cautiously ask */ 2978 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len, 2979 &data, &sshdr); 2980 2981 if (res < 0) 2982 goto bad_sense; 2983 2984 if (!data.header_length) { 2985 modepage = 6; 2986 first_len = 0; 2987 sd_first_printk(KERN_ERR, sdkp, 2988 "Missing header in MODE_SENSE response\n"); 2989 } 2990 2991 /* that went OK, now ask for the proper length */ 2992 len = data.length; 2993 2994 /* 2995 * We're only interested in the first three bytes, actually. 2996 * But the data cache page is defined for the first 20. 2997 */ 2998 if (len < 3) 2999 goto bad_sense; 3000 else if (len > SD_BUF_SIZE) { 3001 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter " 3002 "data from %d to %d bytes\n", len, SD_BUF_SIZE); 3003 len = SD_BUF_SIZE; 3004 } 3005 if (modepage == 0x3F && sdp->use_192_bytes_for_3f) 3006 len = 192; 3007 3008 /* Get the data */ 3009 if (len > first_len) 3010 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len, 3011 &data, &sshdr); 3012 3013 if (!res) { 3014 int offset = data.header_length + data.block_descriptor_length; 3015 3016 while (offset < len) { 3017 u8 page_code = buffer[offset] & 0x3F; 3018 u8 spf = buffer[offset] & 0x40; 3019 3020 if (page_code == 8 || page_code == 6) { 3021 /* We're interested only in the first 3 bytes. 3022 */ 3023 if (len - offset <= 2) { 3024 sd_first_printk(KERN_ERR, sdkp, 3025 "Incomplete mode parameter " 3026 "data\n"); 3027 goto defaults; 3028 } else { 3029 modepage = page_code; 3030 goto Page_found; 3031 } 3032 } else { 3033 /* Go to the next page */ 3034 if (spf && len - offset > 3) 3035 offset += 4 + (buffer[offset+2] << 8) + 3036 buffer[offset+3]; 3037 else if (!spf && len - offset > 1) 3038 offset += 2 + buffer[offset+1]; 3039 else { 3040 sd_first_printk(KERN_ERR, sdkp, 3041 "Incomplete mode " 3042 "parameter data\n"); 3043 goto defaults; 3044 } 3045 } 3046 } 3047 3048 sd_first_printk(KERN_WARNING, sdkp, 3049 "No Caching mode page found\n"); 3050 goto defaults; 3051 3052 Page_found: 3053 if (modepage == 8) { 3054 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0); 3055 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0); 3056 } else { 3057 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0); 3058 sdkp->RCD = 0; 3059 } 3060 3061 sdkp->DPOFUA = (data.device_specific & 0x10) != 0; 3062 if (sdp->broken_fua) { 3063 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n"); 3064 sdkp->DPOFUA = 0; 3065 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw && 3066 !sdkp->device->use_16_for_rw) { 3067 sd_first_printk(KERN_NOTICE, sdkp, 3068 "Uses READ/WRITE(6), disabling FUA\n"); 3069 sdkp->DPOFUA = 0; 3070 } 3071 3072 /* No cache flush allowed for write protected devices */ 3073 if (sdkp->WCE && sdkp->write_prot) 3074 sdkp->WCE = 0; 3075 3076 if (sdkp->first_scan || old_wce != sdkp->WCE || 3077 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA) 3078 sd_printk(KERN_NOTICE, sdkp, 3079 "Write cache: %s, read cache: %s, %s\n", 3080 sdkp->WCE ? "enabled" : "disabled", 3081 sdkp->RCD ? "disabled" : "enabled", 3082 sdkp->DPOFUA ? "supports DPO and FUA" 3083 : "doesn't support DPO or FUA"); 3084 3085 return; 3086 } 3087 3088 bad_sense: 3089 if (res == -EIO && scsi_sense_valid(&sshdr) && 3090 sshdr.sense_key == ILLEGAL_REQUEST && 3091 sshdr.asc == 0x24 && sshdr.ascq == 0x0) 3092 /* Invalid field in CDB */ 3093 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n"); 3094 else 3095 sd_first_printk(KERN_ERR, sdkp, 3096 "Asking for cache data failed\n"); 3097 3098 defaults: 3099 if (sdp->wce_default_on) { 3100 sd_first_printk(KERN_NOTICE, sdkp, 3101 "Assuming drive cache: write back\n"); 3102 sdkp->WCE = 1; 3103 } else { 3104 sd_first_printk(KERN_WARNING, sdkp, 3105 "Assuming drive cache: write through\n"); 3106 sdkp->WCE = 0; 3107 } 3108 sdkp->RCD = 0; 3109 sdkp->DPOFUA = 0; 3110 } 3111 3112 static bool sd_is_perm_stream(struct scsi_disk *sdkp, unsigned int stream_id) 3113 { 3114 u8 cdb[16] = { SERVICE_ACTION_IN_16, SAI_GET_STREAM_STATUS }; 3115 struct { 3116 struct scsi_stream_status_header h; 3117 struct scsi_stream_status s; 3118 } buf; 3119 struct scsi_device *sdev = sdkp->device; 3120 struct scsi_sense_hdr sshdr; 3121 const struct scsi_exec_args exec_args = { 3122 .sshdr = &sshdr, 3123 }; 3124 int res; 3125 3126 put_unaligned_be16(stream_id, &cdb[4]); 3127 put_unaligned_be32(sizeof(buf), &cdb[10]); 3128 3129 res = scsi_execute_cmd(sdev, cdb, REQ_OP_DRV_IN, &buf, sizeof(buf), 3130 SD_TIMEOUT, sdkp->max_retries, &exec_args); 3131 if (res < 0) 3132 return false; 3133 if (scsi_status_is_check_condition(res) && scsi_sense_valid(&sshdr)) 3134 sd_print_sense_hdr(sdkp, &sshdr); 3135 if (res) 3136 return false; 3137 if (get_unaligned_be32(&buf.h.len) < sizeof(struct scsi_stream_status)) 3138 return false; 3139 return buf.h.stream_status[0].perm; 3140 } 3141 3142 static void sd_read_io_hints(struct scsi_disk *sdkp, unsigned char *buffer) 3143 { 3144 struct scsi_device *sdp = sdkp->device; 3145 const struct scsi_io_group_descriptor *desc, *start, *end; 3146 u16 permanent_stream_count_old; 3147 struct scsi_sense_hdr sshdr; 3148 struct scsi_mode_data data; 3149 int res; 3150 3151 res = scsi_mode_sense(sdp, /*dbd=*/0x8, /*modepage=*/0x0a, 3152 /*subpage=*/0x05, buffer, SD_BUF_SIZE, SD_TIMEOUT, 3153 sdkp->max_retries, &data, &sshdr); 3154 if (res < 0) 3155 return; 3156 start = (void *)buffer + data.header_length + 16; 3157 end = (void *)buffer + ALIGN_DOWN(data.header_length + data.length, 3158 sizeof(*end)); 3159 /* 3160 * From "SBC-5 Constrained Streams with Data Lifetimes": Device severs 3161 * should assign the lowest numbered stream identifiers to permanent 3162 * streams. 3163 */ 3164 for (desc = start; desc < end; desc++) 3165 if (!desc->st_enble || !sd_is_perm_stream(sdkp, desc - start)) 3166 break; 3167 permanent_stream_count_old = sdkp->permanent_stream_count; 3168 sdkp->permanent_stream_count = desc - start; 3169 if (sdkp->rscs && sdkp->permanent_stream_count < 2) 3170 sd_printk(KERN_INFO, sdkp, 3171 "Unexpected: RSCS has been set and the permanent stream count is %u\n", 3172 sdkp->permanent_stream_count); 3173 else if (sdkp->permanent_stream_count != permanent_stream_count_old) 3174 sd_printk(KERN_INFO, sdkp, "permanent stream count = %d\n", 3175 sdkp->permanent_stream_count); 3176 } 3177 3178 /* 3179 * The ATO bit indicates whether the DIF application tag is available 3180 * for use by the operating system. 3181 */ 3182 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer) 3183 { 3184 int res, offset; 3185 struct scsi_device *sdp = sdkp->device; 3186 struct scsi_mode_data data; 3187 struct scsi_sense_hdr sshdr; 3188 3189 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 3190 return; 3191 3192 if (sdkp->protection_type == 0) 3193 return; 3194 3195 res = scsi_mode_sense(sdp, 1, 0x0a, 0, buffer, 36, SD_TIMEOUT, 3196 sdkp->max_retries, &data, &sshdr); 3197 3198 if (res < 0 || !data.header_length || 3199 data.length < 6) { 3200 sd_first_printk(KERN_WARNING, sdkp, 3201 "getting Control mode page failed, assume no ATO\n"); 3202 3203 if (res == -EIO && scsi_sense_valid(&sshdr)) 3204 sd_print_sense_hdr(sdkp, &sshdr); 3205 3206 return; 3207 } 3208 3209 offset = data.header_length + data.block_descriptor_length; 3210 3211 if ((buffer[offset] & 0x3f) != 0x0a) { 3212 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n"); 3213 return; 3214 } 3215 3216 if ((buffer[offset + 5] & 0x80) == 0) 3217 return; 3218 3219 sdkp->ATO = 1; 3220 3221 return; 3222 } 3223 3224 static unsigned int sd_discard_mode(struct scsi_disk *sdkp) 3225 { 3226 if (!sdkp->lbpvpd) { 3227 /* LBP VPD page not provided */ 3228 if (sdkp->max_unmap_blocks) 3229 return SD_LBP_UNMAP; 3230 return SD_LBP_WS16; 3231 } 3232 3233 /* LBP VPD page tells us what to use */ 3234 if (sdkp->lbpu && sdkp->max_unmap_blocks) 3235 return SD_LBP_UNMAP; 3236 if (sdkp->lbpws) 3237 return SD_LBP_WS16; 3238 if (sdkp->lbpws10) 3239 return SD_LBP_WS10; 3240 return SD_LBP_DISABLE; 3241 } 3242 3243 /* 3244 * Query disk device for preferred I/O sizes. 3245 */ 3246 static void sd_read_block_limits(struct scsi_disk *sdkp, 3247 struct queue_limits *lim) 3248 { 3249 struct scsi_vpd *vpd; 3250 3251 rcu_read_lock(); 3252 3253 vpd = rcu_dereference(sdkp->device->vpd_pgb0); 3254 if (!vpd || vpd->len < 16) 3255 goto out; 3256 3257 sdkp->min_xfer_blocks = get_unaligned_be16(&vpd->data[6]); 3258 sdkp->max_xfer_blocks = get_unaligned_be32(&vpd->data[8]); 3259 sdkp->opt_xfer_blocks = get_unaligned_be32(&vpd->data[12]); 3260 3261 if (vpd->len >= 64) { 3262 unsigned int lba_count, desc_count; 3263 3264 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&vpd->data[36]); 3265 3266 if (!sdkp->lbpme) 3267 goto out; 3268 3269 lba_count = get_unaligned_be32(&vpd->data[20]); 3270 desc_count = get_unaligned_be32(&vpd->data[24]); 3271 3272 if (lba_count && desc_count) 3273 sdkp->max_unmap_blocks = lba_count; 3274 3275 sdkp->unmap_granularity = get_unaligned_be32(&vpd->data[28]); 3276 3277 if (vpd->data[32] & 0x80) 3278 sdkp->unmap_alignment = 3279 get_unaligned_be32(&vpd->data[32]) & ~(1 << 31); 3280 3281 sd_config_discard(sdkp, lim, sd_discard_mode(sdkp)); 3282 } 3283 3284 out: 3285 rcu_read_unlock(); 3286 } 3287 3288 /* Parse the Block Limits Extension VPD page (0xb7) */ 3289 static void sd_read_block_limits_ext(struct scsi_disk *sdkp) 3290 { 3291 struct scsi_vpd *vpd; 3292 3293 rcu_read_lock(); 3294 vpd = rcu_dereference(sdkp->device->vpd_pgb7); 3295 if (vpd && vpd->len >= 2) 3296 sdkp->rscs = vpd->data[5] & 1; 3297 rcu_read_unlock(); 3298 } 3299 3300 /* Query block device characteristics */ 3301 static void sd_read_block_characteristics(struct scsi_disk *sdkp, 3302 struct queue_limits *lim) 3303 { 3304 struct scsi_vpd *vpd; 3305 u16 rot; 3306 3307 rcu_read_lock(); 3308 vpd = rcu_dereference(sdkp->device->vpd_pgb1); 3309 3310 if (!vpd || vpd->len < 8) { 3311 rcu_read_unlock(); 3312 return; 3313 } 3314 3315 rot = get_unaligned_be16(&vpd->data[4]); 3316 sdkp->zoned = (vpd->data[8] >> 4) & 3; 3317 rcu_read_unlock(); 3318 3319 if (rot == 1) 3320 lim->features &= ~(BLK_FEAT_ROTATIONAL | BLK_FEAT_ADD_RANDOM); 3321 3322 if (!sdkp->first_scan) 3323 return; 3324 3325 if (sdkp->device->type == TYPE_ZBC) 3326 sd_printk(KERN_NOTICE, sdkp, "Host-managed zoned block device\n"); 3327 else if (sdkp->zoned == 1) 3328 sd_printk(KERN_NOTICE, sdkp, "Host-aware SMR disk used as regular disk\n"); 3329 else if (sdkp->zoned == 2) 3330 sd_printk(KERN_NOTICE, sdkp, "Drive-managed SMR disk\n"); 3331 } 3332 3333 /** 3334 * sd_read_block_provisioning - Query provisioning VPD page 3335 * @sdkp: disk to query 3336 */ 3337 static void sd_read_block_provisioning(struct scsi_disk *sdkp) 3338 { 3339 struct scsi_vpd *vpd; 3340 3341 if (sdkp->lbpme == 0) 3342 return; 3343 3344 rcu_read_lock(); 3345 vpd = rcu_dereference(sdkp->device->vpd_pgb2); 3346 3347 if (!vpd || vpd->len < 8) { 3348 rcu_read_unlock(); 3349 return; 3350 } 3351 3352 sdkp->lbpvpd = 1; 3353 sdkp->lbpu = (vpd->data[5] >> 7) & 1; /* UNMAP */ 3354 sdkp->lbpws = (vpd->data[5] >> 6) & 1; /* WRITE SAME(16) w/ UNMAP */ 3355 sdkp->lbpws10 = (vpd->data[5] >> 5) & 1; /* WRITE SAME(10) w/ UNMAP */ 3356 rcu_read_unlock(); 3357 } 3358 3359 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer) 3360 { 3361 struct scsi_device *sdev = sdkp->device; 3362 3363 if (sdev->host->no_write_same) { 3364 sdev->no_write_same = 1; 3365 3366 return; 3367 } 3368 3369 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY, 0) < 0) { 3370 struct scsi_vpd *vpd; 3371 3372 sdev->no_report_opcodes = 1; 3373 3374 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION 3375 * CODES is unsupported and the device has an ATA 3376 * Information VPD page (SAT). 3377 */ 3378 rcu_read_lock(); 3379 vpd = rcu_dereference(sdev->vpd_pg89); 3380 if (vpd) 3381 sdev->no_write_same = 1; 3382 rcu_read_unlock(); 3383 } 3384 3385 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16, 0) == 1) 3386 sdkp->ws16 = 1; 3387 3388 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME, 0) == 1) 3389 sdkp->ws10 = 1; 3390 } 3391 3392 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer) 3393 { 3394 struct scsi_device *sdev = sdkp->device; 3395 3396 if (!sdev->security_supported) 3397 return; 3398 3399 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3400 SECURITY_PROTOCOL_IN, 0) == 1 && 3401 scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3402 SECURITY_PROTOCOL_OUT, 0) == 1) 3403 sdkp->security = 1; 3404 } 3405 3406 static inline sector_t sd64_to_sectors(struct scsi_disk *sdkp, u8 *buf) 3407 { 3408 return logical_to_sectors(sdkp->device, get_unaligned_be64(buf)); 3409 } 3410 3411 /** 3412 * sd_read_cpr - Query concurrent positioning ranges 3413 * @sdkp: disk to query 3414 */ 3415 static void sd_read_cpr(struct scsi_disk *sdkp) 3416 { 3417 struct blk_independent_access_ranges *iars = NULL; 3418 unsigned char *buffer = NULL; 3419 unsigned int nr_cpr = 0; 3420 int i, vpd_len, buf_len = SD_BUF_SIZE; 3421 u8 *desc; 3422 3423 /* 3424 * We need to have the capacity set first for the block layer to be 3425 * able to check the ranges. 3426 */ 3427 if (sdkp->first_scan) 3428 return; 3429 3430 if (!sdkp->capacity) 3431 goto out; 3432 3433 /* 3434 * Concurrent Positioning Ranges VPD: there can be at most 256 ranges, 3435 * leading to a maximum page size of 64 + 256*32 bytes. 3436 */ 3437 buf_len = 64 + 256*32; 3438 buffer = kmalloc(buf_len, GFP_KERNEL); 3439 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb9, buffer, buf_len)) 3440 goto out; 3441 3442 /* We must have at least a 64B header and one 32B range descriptor */ 3443 vpd_len = get_unaligned_be16(&buffer[2]) + 4; 3444 if (vpd_len > buf_len || vpd_len < 64 + 32 || (vpd_len & 31)) { 3445 sd_printk(KERN_ERR, sdkp, 3446 "Invalid Concurrent Positioning Ranges VPD page\n"); 3447 goto out; 3448 } 3449 3450 nr_cpr = (vpd_len - 64) / 32; 3451 if (nr_cpr == 1) { 3452 nr_cpr = 0; 3453 goto out; 3454 } 3455 3456 iars = disk_alloc_independent_access_ranges(sdkp->disk, nr_cpr); 3457 if (!iars) { 3458 nr_cpr = 0; 3459 goto out; 3460 } 3461 3462 desc = &buffer[64]; 3463 for (i = 0; i < nr_cpr; i++, desc += 32) { 3464 if (desc[0] != i) { 3465 sd_printk(KERN_ERR, sdkp, 3466 "Invalid Concurrent Positioning Range number\n"); 3467 nr_cpr = 0; 3468 break; 3469 } 3470 3471 iars->ia_range[i].sector = sd64_to_sectors(sdkp, desc + 8); 3472 iars->ia_range[i].nr_sectors = sd64_to_sectors(sdkp, desc + 16); 3473 } 3474 3475 out: 3476 disk_set_independent_access_ranges(sdkp->disk, iars); 3477 if (nr_cpr && sdkp->nr_actuators != nr_cpr) { 3478 sd_printk(KERN_NOTICE, sdkp, 3479 "%u concurrent positioning ranges\n", nr_cpr); 3480 sdkp->nr_actuators = nr_cpr; 3481 } 3482 3483 kfree(buffer); 3484 } 3485 3486 static bool sd_validate_min_xfer_size(struct scsi_disk *sdkp) 3487 { 3488 struct scsi_device *sdp = sdkp->device; 3489 unsigned int min_xfer_bytes = 3490 logical_to_bytes(sdp, sdkp->min_xfer_blocks); 3491 3492 if (sdkp->min_xfer_blocks == 0) 3493 return false; 3494 3495 if (min_xfer_bytes & (sdkp->physical_block_size - 1)) { 3496 sd_first_printk(KERN_WARNING, sdkp, 3497 "Preferred minimum I/O size %u bytes not a " \ 3498 "multiple of physical block size (%u bytes)\n", 3499 min_xfer_bytes, sdkp->physical_block_size); 3500 sdkp->min_xfer_blocks = 0; 3501 return false; 3502 } 3503 3504 sd_first_printk(KERN_INFO, sdkp, "Preferred minimum I/O size %u bytes\n", 3505 min_xfer_bytes); 3506 return true; 3507 } 3508 3509 /* 3510 * Determine the device's preferred I/O size for reads and writes 3511 * unless the reported value is unreasonably small, large, not a 3512 * multiple of the physical block size, or simply garbage. 3513 */ 3514 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp, 3515 unsigned int dev_max) 3516 { 3517 struct scsi_device *sdp = sdkp->device; 3518 unsigned int opt_xfer_bytes = 3519 logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 3520 unsigned int min_xfer_bytes = 3521 logical_to_bytes(sdp, sdkp->min_xfer_blocks); 3522 3523 if (sdkp->opt_xfer_blocks == 0) 3524 return false; 3525 3526 if (sdkp->opt_xfer_blocks > dev_max) { 3527 sd_first_printk(KERN_WARNING, sdkp, 3528 "Optimal transfer size %u logical blocks " \ 3529 "> dev_max (%u logical blocks)\n", 3530 sdkp->opt_xfer_blocks, dev_max); 3531 return false; 3532 } 3533 3534 if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) { 3535 sd_first_printk(KERN_WARNING, sdkp, 3536 "Optimal transfer size %u logical blocks " \ 3537 "> sd driver limit (%u logical blocks)\n", 3538 sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS); 3539 return false; 3540 } 3541 3542 if (opt_xfer_bytes < PAGE_SIZE) { 3543 sd_first_printk(KERN_WARNING, sdkp, 3544 "Optimal transfer size %u bytes < " \ 3545 "PAGE_SIZE (%u bytes)\n", 3546 opt_xfer_bytes, (unsigned int)PAGE_SIZE); 3547 return false; 3548 } 3549 3550 if (min_xfer_bytes && opt_xfer_bytes % min_xfer_bytes) { 3551 sd_first_printk(KERN_WARNING, sdkp, 3552 "Optimal transfer size %u bytes not a " \ 3553 "multiple of preferred minimum block " \ 3554 "size (%u bytes)\n", 3555 opt_xfer_bytes, min_xfer_bytes); 3556 return false; 3557 } 3558 3559 if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) { 3560 sd_first_printk(KERN_WARNING, sdkp, 3561 "Optimal transfer size %u bytes not a " \ 3562 "multiple of physical block size (%u bytes)\n", 3563 opt_xfer_bytes, sdkp->physical_block_size); 3564 return false; 3565 } 3566 3567 sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n", 3568 opt_xfer_bytes); 3569 return true; 3570 } 3571 3572 static void sd_read_block_zero(struct scsi_disk *sdkp) 3573 { 3574 unsigned int buf_len = sdkp->device->sector_size; 3575 char *buffer, cmd[10] = { }; 3576 3577 buffer = kmalloc(buf_len, GFP_KERNEL); 3578 if (!buffer) 3579 return; 3580 3581 cmd[0] = READ_10; 3582 put_unaligned_be32(0, &cmd[2]); /* Logical block address 0 */ 3583 put_unaligned_be16(1, &cmd[7]); /* Transfer 1 logical block */ 3584 3585 scsi_execute_cmd(sdkp->device, cmd, REQ_OP_DRV_IN, buffer, buf_len, 3586 SD_TIMEOUT, sdkp->max_retries, NULL); 3587 kfree(buffer); 3588 } 3589 3590 /** 3591 * sd_revalidate_disk - called the first time a new disk is seen, 3592 * performs disk spin up, read_capacity, etc. 3593 * @disk: struct gendisk we care about 3594 **/ 3595 static int sd_revalidate_disk(struct gendisk *disk) 3596 { 3597 struct scsi_disk *sdkp = scsi_disk(disk); 3598 struct scsi_device *sdp = sdkp->device; 3599 sector_t old_capacity = sdkp->capacity; 3600 struct queue_limits lim; 3601 unsigned char *buffer; 3602 unsigned int dev_max; 3603 int err; 3604 3605 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, 3606 "sd_revalidate_disk\n")); 3607 3608 /* 3609 * If the device is offline, don't try and read capacity or any 3610 * of the other niceties. 3611 */ 3612 if (!scsi_device_online(sdp)) 3613 goto out; 3614 3615 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL); 3616 if (!buffer) { 3617 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory " 3618 "allocation failure.\n"); 3619 goto out; 3620 } 3621 3622 sd_spinup_disk(sdkp); 3623 3624 lim = queue_limits_start_update(sdkp->disk->queue); 3625 3626 /* 3627 * Without media there is no reason to ask; moreover, some devices 3628 * react badly if we do. 3629 */ 3630 if (sdkp->media_present) { 3631 sd_read_capacity(sdkp, &lim, buffer); 3632 /* 3633 * Some USB/UAS devices return generic values for mode pages 3634 * until the media has been accessed. Trigger a READ operation 3635 * to force the device to populate mode pages. 3636 */ 3637 if (sdp->read_before_ms) 3638 sd_read_block_zero(sdkp); 3639 /* 3640 * set the default to rotational. All non-rotational devices 3641 * support the block characteristics VPD page, which will 3642 * cause this to be updated correctly and any device which 3643 * doesn't support it should be treated as rotational. 3644 */ 3645 lim.features |= (BLK_FEAT_ROTATIONAL | BLK_FEAT_ADD_RANDOM); 3646 3647 if (scsi_device_supports_vpd(sdp)) { 3648 sd_read_block_provisioning(sdkp); 3649 sd_read_block_limits(sdkp, &lim); 3650 sd_read_block_limits_ext(sdkp); 3651 sd_read_block_characteristics(sdkp, &lim); 3652 sd_zbc_read_zones(sdkp, &lim, buffer); 3653 sd_read_cpr(sdkp); 3654 } 3655 3656 sd_print_capacity(sdkp, old_capacity); 3657 3658 sd_read_write_protect_flag(sdkp, buffer); 3659 sd_read_cache_type(sdkp, buffer); 3660 sd_read_io_hints(sdkp, buffer); 3661 sd_read_app_tag_own(sdkp, buffer); 3662 sd_read_write_same(sdkp, buffer); 3663 sd_read_security(sdkp, buffer); 3664 sd_config_protection(sdkp, &lim); 3665 } 3666 3667 /* 3668 * We now have all cache related info, determine how we deal 3669 * with flush requests. 3670 */ 3671 sd_set_flush_flag(sdkp, &lim); 3672 3673 /* Initial block count limit based on CDB TRANSFER LENGTH field size. */ 3674 dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS; 3675 3676 /* Some devices report a maximum block count for READ/WRITE requests. */ 3677 dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks); 3678 lim.max_dev_sectors = logical_to_sectors(sdp, dev_max); 3679 3680 if (sd_validate_min_xfer_size(sdkp)) 3681 lim.io_min = logical_to_bytes(sdp, sdkp->min_xfer_blocks); 3682 else 3683 lim.io_min = 0; 3684 3685 /* 3686 * Limit default to SCSI host optimal sector limit if set. There may be 3687 * an impact on performance for when the size of a request exceeds this 3688 * host limit. 3689 */ 3690 lim.io_opt = sdp->host->opt_sectors << SECTOR_SHIFT; 3691 if (sd_validate_opt_xfer_size(sdkp, dev_max)) { 3692 lim.io_opt = min_not_zero(lim.io_opt, 3693 logical_to_bytes(sdp, sdkp->opt_xfer_blocks)); 3694 } 3695 3696 sdkp->first_scan = 0; 3697 3698 set_capacity_and_notify(disk, logical_to_sectors(sdp, sdkp->capacity)); 3699 sd_config_write_same(sdkp, &lim); 3700 kfree(buffer); 3701 3702 blk_mq_freeze_queue(sdkp->disk->queue); 3703 err = queue_limits_commit_update(sdkp->disk->queue, &lim); 3704 blk_mq_unfreeze_queue(sdkp->disk->queue); 3705 if (err) 3706 return err; 3707 3708 /* 3709 * For a zoned drive, revalidating the zones can be done only once 3710 * the gendisk capacity is set. So if this fails, set back the gendisk 3711 * capacity to 0. 3712 */ 3713 if (sd_zbc_revalidate_zones(sdkp)) 3714 set_capacity_and_notify(disk, 0); 3715 3716 out: 3717 return 0; 3718 } 3719 3720 /** 3721 * sd_unlock_native_capacity - unlock native capacity 3722 * @disk: struct gendisk to set capacity for 3723 * 3724 * Block layer calls this function if it detects that partitions 3725 * on @disk reach beyond the end of the device. If the SCSI host 3726 * implements ->unlock_native_capacity() method, it's invoked to 3727 * give it a chance to adjust the device capacity. 3728 * 3729 * CONTEXT: 3730 * Defined by block layer. Might sleep. 3731 */ 3732 static void sd_unlock_native_capacity(struct gendisk *disk) 3733 { 3734 struct scsi_device *sdev = scsi_disk(disk)->device; 3735 3736 if (sdev->host->hostt->unlock_native_capacity) 3737 sdev->host->hostt->unlock_native_capacity(sdev); 3738 } 3739 3740 /** 3741 * sd_format_disk_name - format disk name 3742 * @prefix: name prefix - ie. "sd" for SCSI disks 3743 * @index: index of the disk to format name for 3744 * @buf: output buffer 3745 * @buflen: length of the output buffer 3746 * 3747 * SCSI disk names starts at sda. The 26th device is sdz and the 3748 * 27th is sdaa. The last one for two lettered suffix is sdzz 3749 * which is followed by sdaaa. 3750 * 3751 * This is basically 26 base counting with one extra 'nil' entry 3752 * at the beginning from the second digit on and can be 3753 * determined using similar method as 26 base conversion with the 3754 * index shifted -1 after each digit is computed. 3755 * 3756 * CONTEXT: 3757 * Don't care. 3758 * 3759 * RETURNS: 3760 * 0 on success, -errno on failure. 3761 */ 3762 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen) 3763 { 3764 const int base = 'z' - 'a' + 1; 3765 char *begin = buf + strlen(prefix); 3766 char *end = buf + buflen; 3767 char *p; 3768 int unit; 3769 3770 p = end - 1; 3771 *p = '\0'; 3772 unit = base; 3773 do { 3774 if (p == begin) 3775 return -EINVAL; 3776 *--p = 'a' + (index % unit); 3777 index = (index / unit) - 1; 3778 } while (index >= 0); 3779 3780 memmove(begin, p, end - p); 3781 memcpy(buf, prefix, strlen(prefix)); 3782 3783 return 0; 3784 } 3785 3786 /** 3787 * sd_probe - called during driver initialization and whenever a 3788 * new scsi device is attached to the system. It is called once 3789 * for each scsi device (not just disks) present. 3790 * @dev: pointer to device object 3791 * 3792 * Returns 0 if successful (or not interested in this scsi device 3793 * (e.g. scanner)); 1 when there is an error. 3794 * 3795 * Note: this function is invoked from the scsi mid-level. 3796 * This function sets up the mapping between a given 3797 * <host,channel,id,lun> (found in sdp) and new device name 3798 * (e.g. /dev/sda). More precisely it is the block device major 3799 * and minor number that is chosen here. 3800 * 3801 * Assume sd_probe is not re-entrant (for time being) 3802 * Also think about sd_probe() and sd_remove() running coincidentally. 3803 **/ 3804 static int sd_probe(struct device *dev) 3805 { 3806 struct scsi_device *sdp = to_scsi_device(dev); 3807 struct scsi_disk *sdkp; 3808 struct gendisk *gd; 3809 int index; 3810 int error; 3811 3812 scsi_autopm_get_device(sdp); 3813 error = -ENODEV; 3814 if (sdp->type != TYPE_DISK && 3815 sdp->type != TYPE_ZBC && 3816 sdp->type != TYPE_MOD && 3817 sdp->type != TYPE_RBC) 3818 goto out; 3819 3820 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) && sdp->type == TYPE_ZBC) { 3821 sdev_printk(KERN_WARNING, sdp, 3822 "Unsupported ZBC host-managed device.\n"); 3823 goto out; 3824 } 3825 3826 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp, 3827 "sd_probe\n")); 3828 3829 error = -ENOMEM; 3830 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL); 3831 if (!sdkp) 3832 goto out; 3833 3834 gd = blk_mq_alloc_disk_for_queue(sdp->request_queue, 3835 &sd_bio_compl_lkclass); 3836 if (!gd) 3837 goto out_free; 3838 3839 index = ida_alloc(&sd_index_ida, GFP_KERNEL); 3840 if (index < 0) { 3841 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n"); 3842 goto out_put; 3843 } 3844 3845 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN); 3846 if (error) { 3847 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n"); 3848 goto out_free_index; 3849 } 3850 3851 sdkp->device = sdp; 3852 sdkp->disk = gd; 3853 sdkp->index = index; 3854 sdkp->max_retries = SD_MAX_RETRIES; 3855 atomic_set(&sdkp->openers, 0); 3856 atomic_set(&sdkp->device->ioerr_cnt, 0); 3857 3858 if (!sdp->request_queue->rq_timeout) { 3859 if (sdp->type != TYPE_MOD) 3860 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT); 3861 else 3862 blk_queue_rq_timeout(sdp->request_queue, 3863 SD_MOD_TIMEOUT); 3864 } 3865 3866 device_initialize(&sdkp->disk_dev); 3867 sdkp->disk_dev.parent = get_device(dev); 3868 sdkp->disk_dev.class = &sd_disk_class; 3869 dev_set_name(&sdkp->disk_dev, "%s", dev_name(dev)); 3870 3871 error = device_add(&sdkp->disk_dev); 3872 if (error) { 3873 put_device(&sdkp->disk_dev); 3874 goto out; 3875 } 3876 3877 dev_set_drvdata(dev, sdkp); 3878 3879 gd->major = sd_major((index & 0xf0) >> 4); 3880 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00); 3881 gd->minors = SD_MINORS; 3882 3883 gd->fops = &sd_fops; 3884 gd->private_data = sdkp; 3885 3886 /* defaults, until the device tells us otherwise */ 3887 sdp->sector_size = 512; 3888 sdkp->capacity = 0; 3889 sdkp->media_present = 1; 3890 sdkp->write_prot = 0; 3891 sdkp->cache_override = 0; 3892 sdkp->WCE = 0; 3893 sdkp->RCD = 0; 3894 sdkp->ATO = 0; 3895 sdkp->first_scan = 1; 3896 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS; 3897 3898 sd_revalidate_disk(gd); 3899 3900 if (sdp->removable) { 3901 gd->flags |= GENHD_FL_REMOVABLE; 3902 gd->events |= DISK_EVENT_MEDIA_CHANGE; 3903 gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT; 3904 } 3905 3906 blk_pm_runtime_init(sdp->request_queue, dev); 3907 if (sdp->rpm_autosuspend) { 3908 pm_runtime_set_autosuspend_delay(dev, 3909 sdp->host->rpm_autosuspend_delay); 3910 } 3911 3912 error = device_add_disk(dev, gd, NULL); 3913 if (error) { 3914 device_unregister(&sdkp->disk_dev); 3915 put_disk(gd); 3916 goto out; 3917 } 3918 3919 if (sdkp->security) { 3920 sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit); 3921 if (sdkp->opal_dev) 3922 sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n"); 3923 } 3924 3925 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n", 3926 sdp->removable ? "removable " : ""); 3927 scsi_autopm_put_device(sdp); 3928 3929 return 0; 3930 3931 out_free_index: 3932 ida_free(&sd_index_ida, index); 3933 out_put: 3934 put_disk(gd); 3935 out_free: 3936 kfree(sdkp); 3937 out: 3938 scsi_autopm_put_device(sdp); 3939 return error; 3940 } 3941 3942 /** 3943 * sd_remove - called whenever a scsi disk (previously recognized by 3944 * sd_probe) is detached from the system. It is called (potentially 3945 * multiple times) during sd module unload. 3946 * @dev: pointer to device object 3947 * 3948 * Note: this function is invoked from the scsi mid-level. 3949 * This function potentially frees up a device name (e.g. /dev/sdc) 3950 * that could be re-used by a subsequent sd_probe(). 3951 * This function is not called when the built-in sd driver is "exit-ed". 3952 **/ 3953 static int sd_remove(struct device *dev) 3954 { 3955 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3956 3957 scsi_autopm_get_device(sdkp->device); 3958 3959 device_del(&sdkp->disk_dev); 3960 del_gendisk(sdkp->disk); 3961 if (!sdkp->suspended) 3962 sd_shutdown(dev); 3963 3964 put_disk(sdkp->disk); 3965 return 0; 3966 } 3967 3968 static void scsi_disk_release(struct device *dev) 3969 { 3970 struct scsi_disk *sdkp = to_scsi_disk(dev); 3971 3972 ida_free(&sd_index_ida, sdkp->index); 3973 put_device(&sdkp->device->sdev_gendev); 3974 free_opal_dev(sdkp->opal_dev); 3975 3976 kfree(sdkp); 3977 } 3978 3979 static int sd_start_stop_device(struct scsi_disk *sdkp, int start) 3980 { 3981 unsigned char cmd[6] = { START_STOP }; /* START_VALID */ 3982 struct scsi_sense_hdr sshdr; 3983 const struct scsi_exec_args exec_args = { 3984 .sshdr = &sshdr, 3985 .req_flags = BLK_MQ_REQ_PM, 3986 }; 3987 struct scsi_device *sdp = sdkp->device; 3988 int res; 3989 3990 if (start) 3991 cmd[4] |= 1; /* START */ 3992 3993 if (sdp->start_stop_pwr_cond) 3994 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */ 3995 3996 if (!scsi_device_online(sdp)) 3997 return -ENODEV; 3998 3999 res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, SD_TIMEOUT, 4000 sdkp->max_retries, &exec_args); 4001 if (res) { 4002 sd_print_result(sdkp, "Start/Stop Unit failed", res); 4003 if (res > 0 && scsi_sense_valid(&sshdr)) { 4004 sd_print_sense_hdr(sdkp, &sshdr); 4005 /* 0x3a is medium not present */ 4006 if (sshdr.asc == 0x3a) 4007 res = 0; 4008 } 4009 } 4010 4011 /* SCSI error codes must not go to the generic layer */ 4012 if (res) 4013 return -EIO; 4014 4015 return 0; 4016 } 4017 4018 /* 4019 * Send a SYNCHRONIZE CACHE instruction down to the device through 4020 * the normal SCSI command structure. Wait for the command to 4021 * complete. 4022 */ 4023 static void sd_shutdown(struct device *dev) 4024 { 4025 struct scsi_disk *sdkp = dev_get_drvdata(dev); 4026 4027 if (!sdkp) 4028 return; /* this can happen */ 4029 4030 if (pm_runtime_suspended(dev)) 4031 return; 4032 4033 if (sdkp->WCE && sdkp->media_present) { 4034 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 4035 sd_sync_cache(sdkp); 4036 } 4037 4038 if ((system_state != SYSTEM_RESTART && 4039 sdkp->device->manage_system_start_stop) || 4040 (system_state == SYSTEM_POWER_OFF && 4041 sdkp->device->manage_shutdown)) { 4042 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 4043 sd_start_stop_device(sdkp, 0); 4044 } 4045 } 4046 4047 static inline bool sd_do_start_stop(struct scsi_device *sdev, bool runtime) 4048 { 4049 return (sdev->manage_system_start_stop && !runtime) || 4050 (sdev->manage_runtime_start_stop && runtime); 4051 } 4052 4053 static int sd_suspend_common(struct device *dev, bool runtime) 4054 { 4055 struct scsi_disk *sdkp = dev_get_drvdata(dev); 4056 int ret = 0; 4057 4058 if (!sdkp) /* E.g.: runtime suspend following sd_remove() */ 4059 return 0; 4060 4061 if (sdkp->WCE && sdkp->media_present) { 4062 if (!sdkp->device->silence_suspend) 4063 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 4064 ret = sd_sync_cache(sdkp); 4065 /* ignore OFFLINE device */ 4066 if (ret == -ENODEV) 4067 return 0; 4068 4069 if (ret) 4070 return ret; 4071 } 4072 4073 if (sd_do_start_stop(sdkp->device, runtime)) { 4074 if (!sdkp->device->silence_suspend) 4075 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 4076 /* an error is not worth aborting a system sleep */ 4077 ret = sd_start_stop_device(sdkp, 0); 4078 if (!runtime) 4079 ret = 0; 4080 } 4081 4082 if (!ret) 4083 sdkp->suspended = true; 4084 4085 return ret; 4086 } 4087 4088 static int sd_suspend_system(struct device *dev) 4089 { 4090 if (pm_runtime_suspended(dev)) 4091 return 0; 4092 4093 return sd_suspend_common(dev, false); 4094 } 4095 4096 static int sd_suspend_runtime(struct device *dev) 4097 { 4098 return sd_suspend_common(dev, true); 4099 } 4100 4101 static int sd_resume(struct device *dev) 4102 { 4103 struct scsi_disk *sdkp = dev_get_drvdata(dev); 4104 4105 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n"); 4106 4107 if (opal_unlock_from_suspend(sdkp->opal_dev)) { 4108 sd_printk(KERN_NOTICE, sdkp, "OPAL unlock failed\n"); 4109 return -EIO; 4110 } 4111 4112 return 0; 4113 } 4114 4115 static int sd_resume_common(struct device *dev, bool runtime) 4116 { 4117 struct scsi_disk *sdkp = dev_get_drvdata(dev); 4118 int ret; 4119 4120 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */ 4121 return 0; 4122 4123 if (!sd_do_start_stop(sdkp->device, runtime)) { 4124 sdkp->suspended = false; 4125 return 0; 4126 } 4127 4128 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n"); 4129 ret = sd_start_stop_device(sdkp, 1); 4130 if (!ret) { 4131 sd_resume(dev); 4132 sdkp->suspended = false; 4133 } 4134 4135 return ret; 4136 } 4137 4138 static int sd_resume_system(struct device *dev) 4139 { 4140 if (pm_runtime_suspended(dev)) { 4141 struct scsi_disk *sdkp = dev_get_drvdata(dev); 4142 struct scsi_device *sdp = sdkp ? sdkp->device : NULL; 4143 4144 if (sdp && sdp->force_runtime_start_on_system_start) 4145 pm_request_resume(dev); 4146 4147 return 0; 4148 } 4149 4150 return sd_resume_common(dev, false); 4151 } 4152 4153 static int sd_resume_runtime(struct device *dev) 4154 { 4155 struct scsi_disk *sdkp = dev_get_drvdata(dev); 4156 struct scsi_device *sdp; 4157 4158 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */ 4159 return 0; 4160 4161 sdp = sdkp->device; 4162 4163 if (sdp->ignore_media_change) { 4164 /* clear the device's sense data */ 4165 static const u8 cmd[10] = { REQUEST_SENSE }; 4166 const struct scsi_exec_args exec_args = { 4167 .req_flags = BLK_MQ_REQ_PM, 4168 }; 4169 4170 if (scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, 4171 sdp->request_queue->rq_timeout, 1, 4172 &exec_args)) 4173 sd_printk(KERN_NOTICE, sdkp, 4174 "Failed to clear sense data\n"); 4175 } 4176 4177 return sd_resume_common(dev, true); 4178 } 4179 4180 static const struct dev_pm_ops sd_pm_ops = { 4181 .suspend = sd_suspend_system, 4182 .resume = sd_resume_system, 4183 .poweroff = sd_suspend_system, 4184 .restore = sd_resume_system, 4185 .runtime_suspend = sd_suspend_runtime, 4186 .runtime_resume = sd_resume_runtime, 4187 }; 4188 4189 static struct scsi_driver sd_template = { 4190 .gendrv = { 4191 .name = "sd", 4192 .probe = sd_probe, 4193 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 4194 .remove = sd_remove, 4195 .shutdown = sd_shutdown, 4196 .pm = &sd_pm_ops, 4197 }, 4198 .rescan = sd_rescan, 4199 .resume = sd_resume, 4200 .init_command = sd_init_command, 4201 .uninit_command = sd_uninit_command, 4202 .done = sd_done, 4203 .eh_action = sd_eh_action, 4204 .eh_reset = sd_eh_reset, 4205 }; 4206 4207 /** 4208 * init_sd - entry point for this driver (both when built in or when 4209 * a module). 4210 * 4211 * Note: this function registers this driver with the scsi mid-level. 4212 **/ 4213 static int __init init_sd(void) 4214 { 4215 int majors = 0, i, err; 4216 4217 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n")); 4218 4219 for (i = 0; i < SD_MAJORS; i++) { 4220 if (__register_blkdev(sd_major(i), "sd", sd_default_probe)) 4221 continue; 4222 majors++; 4223 } 4224 4225 if (!majors) 4226 return -ENODEV; 4227 4228 err = class_register(&sd_disk_class); 4229 if (err) 4230 goto err_out; 4231 4232 sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0); 4233 if (!sd_page_pool) { 4234 printk(KERN_ERR "sd: can't init discard page pool\n"); 4235 err = -ENOMEM; 4236 goto err_out_class; 4237 } 4238 4239 err = scsi_register_driver(&sd_template.gendrv); 4240 if (err) 4241 goto err_out_driver; 4242 4243 return 0; 4244 4245 err_out_driver: 4246 mempool_destroy(sd_page_pool); 4247 err_out_class: 4248 class_unregister(&sd_disk_class); 4249 err_out: 4250 for (i = 0; i < SD_MAJORS; i++) 4251 unregister_blkdev(sd_major(i), "sd"); 4252 return err; 4253 } 4254 4255 /** 4256 * exit_sd - exit point for this driver (when it is a module). 4257 * 4258 * Note: this function unregisters this driver from the scsi mid-level. 4259 **/ 4260 static void __exit exit_sd(void) 4261 { 4262 int i; 4263 4264 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n")); 4265 4266 scsi_unregister_driver(&sd_template.gendrv); 4267 mempool_destroy(sd_page_pool); 4268 4269 class_unregister(&sd_disk_class); 4270 4271 for (i = 0; i < SD_MAJORS; i++) 4272 unregister_blkdev(sd_major(i), "sd"); 4273 } 4274 4275 module_init(init_sd); 4276 module_exit(exit_sd); 4277 4278 void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr) 4279 { 4280 scsi_print_sense_hdr(sdkp->device, 4281 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr); 4282 } 4283 4284 void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result) 4285 { 4286 const char *hb_string = scsi_hostbyte_string(result); 4287 4288 if (hb_string) 4289 sd_printk(KERN_INFO, sdkp, 4290 "%s: Result: hostbyte=%s driverbyte=%s\n", msg, 4291 hb_string ? hb_string : "invalid", 4292 "DRIVER_OK"); 4293 else 4294 sd_printk(KERN_INFO, sdkp, 4295 "%s: Result: hostbyte=0x%02x driverbyte=%s\n", 4296 msg, host_byte(result), "DRIVER_OK"); 4297 } 4298