1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * sd.c Copyright (C) 1992 Drew Eckhardt 4 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale 5 * 6 * Linux scsi disk driver 7 * Initial versions: Drew Eckhardt 8 * Subsequent revisions: Eric Youngdale 9 * Modification history: 10 * - Drew Eckhardt <drew@colorado.edu> original 11 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 12 * outstanding request, and other enhancements. 13 * Support loadable low-level scsi drivers. 14 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 15 * eight major numbers. 16 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs. 17 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 18 * sd_init and cleanups. 19 * - Alex Davis <letmein@erols.com> Fix problem where partition info 20 * not being read in sd_open. Fix problem where removable media 21 * could be ejected after sd_open. 22 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x 23 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 24 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 25 * Support 32k/1M disks. 26 * 27 * Logging policy (needs CONFIG_SCSI_LOGGING defined): 28 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2 29 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1 30 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1 31 * - entering other commands: SCSI_LOG_HLQUEUE level 3 32 * Note: when the logging level is set by the user, it must be greater 33 * than the level indicated above to trigger output. 34 */ 35 36 #include <linux/module.h> 37 #include <linux/fs.h> 38 #include <linux/kernel.h> 39 #include <linux/mm.h> 40 #include <linux/bio.h> 41 #include <linux/hdreg.h> 42 #include <linux/errno.h> 43 #include <linux/idr.h> 44 #include <linux/interrupt.h> 45 #include <linux/init.h> 46 #include <linux/blkdev.h> 47 #include <linux/blkpg.h> 48 #include <linux/blk-pm.h> 49 #include <linux/delay.h> 50 #include <linux/rw_hint.h> 51 #include <linux/major.h> 52 #include <linux/mutex.h> 53 #include <linux/string_helpers.h> 54 #include <linux/slab.h> 55 #include <linux/sed-opal.h> 56 #include <linux/pm_runtime.h> 57 #include <linux/pr.h> 58 #include <linux/t10-pi.h> 59 #include <linux/uaccess.h> 60 #include <asm/unaligned.h> 61 62 #include <scsi/scsi.h> 63 #include <scsi/scsi_cmnd.h> 64 #include <scsi/scsi_dbg.h> 65 #include <scsi/scsi_device.h> 66 #include <scsi/scsi_driver.h> 67 #include <scsi/scsi_eh.h> 68 #include <scsi/scsi_host.h> 69 #include <scsi/scsi_ioctl.h> 70 #include <scsi/scsicam.h> 71 #include <scsi/scsi_common.h> 72 73 #include "sd.h" 74 #include "scsi_priv.h" 75 #include "scsi_logging.h" 76 77 MODULE_AUTHOR("Eric Youngdale"); 78 MODULE_DESCRIPTION("SCSI disk (sd) driver"); 79 MODULE_LICENSE("GPL"); 80 81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR); 82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR); 83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR); 84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR); 85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR); 86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR); 87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR); 88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR); 89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR); 90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR); 91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR); 92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR); 93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR); 94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR); 95 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR); 96 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR); 97 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK); 98 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD); 99 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC); 100 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC); 101 102 #define SD_MINORS 16 103 104 static void sd_config_discard(struct scsi_disk *sdkp, struct queue_limits *lim, 105 unsigned int mode); 106 static void sd_config_write_same(struct scsi_disk *sdkp, 107 struct queue_limits *lim); 108 static int sd_revalidate_disk(struct gendisk *); 109 static void sd_unlock_native_capacity(struct gendisk *disk); 110 static void sd_shutdown(struct device *); 111 static void scsi_disk_release(struct device *cdev); 112 113 static DEFINE_IDA(sd_index_ida); 114 115 static mempool_t *sd_page_pool; 116 static struct lock_class_key sd_bio_compl_lkclass; 117 118 static const char *sd_cache_types[] = { 119 "write through", "none", "write back", 120 "write back, no read (daft)" 121 }; 122 123 static void sd_set_flush_flag(struct scsi_disk *sdkp, 124 struct queue_limits *lim) 125 { 126 if (sdkp->WCE) { 127 lim->features |= BLK_FEAT_WRITE_CACHE; 128 if (sdkp->DPOFUA) 129 lim->features |= BLK_FEAT_FUA; 130 else 131 lim->features &= ~BLK_FEAT_FUA; 132 } else { 133 lim->features &= ~(BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA); 134 } 135 } 136 137 static ssize_t 138 cache_type_store(struct device *dev, struct device_attribute *attr, 139 const char *buf, size_t count) 140 { 141 int ct, rcd, wce, sp; 142 struct scsi_disk *sdkp = to_scsi_disk(dev); 143 struct scsi_device *sdp = sdkp->device; 144 char buffer[64]; 145 char *buffer_data; 146 struct scsi_mode_data data; 147 struct scsi_sense_hdr sshdr; 148 static const char temp[] = "temporary "; 149 int len, ret; 150 151 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 152 /* no cache control on RBC devices; theoretically they 153 * can do it, but there's probably so many exceptions 154 * it's not worth the risk */ 155 return -EINVAL; 156 157 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) { 158 buf += sizeof(temp) - 1; 159 sdkp->cache_override = 1; 160 } else { 161 sdkp->cache_override = 0; 162 } 163 164 ct = sysfs_match_string(sd_cache_types, buf); 165 if (ct < 0) 166 return -EINVAL; 167 168 rcd = ct & 0x01 ? 1 : 0; 169 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0; 170 171 if (sdkp->cache_override) { 172 struct queue_limits lim; 173 174 sdkp->WCE = wce; 175 sdkp->RCD = rcd; 176 177 lim = queue_limits_start_update(sdkp->disk->queue); 178 sd_set_flush_flag(sdkp, &lim); 179 blk_mq_freeze_queue(sdkp->disk->queue); 180 ret = queue_limits_commit_update(sdkp->disk->queue, &lim); 181 blk_mq_unfreeze_queue(sdkp->disk->queue); 182 if (ret) 183 return ret; 184 return count; 185 } 186 187 if (scsi_mode_sense(sdp, 0x08, 8, 0, buffer, sizeof(buffer), SD_TIMEOUT, 188 sdkp->max_retries, &data, NULL)) 189 return -EINVAL; 190 len = min_t(size_t, sizeof(buffer), data.length - data.header_length - 191 data.block_descriptor_length); 192 buffer_data = buffer + data.header_length + 193 data.block_descriptor_length; 194 buffer_data[2] &= ~0x05; 195 buffer_data[2] |= wce << 2 | rcd; 196 sp = buffer_data[0] & 0x80 ? 1 : 0; 197 buffer_data[0] &= ~0x80; 198 199 /* 200 * Ensure WP, DPOFUA, and RESERVED fields are cleared in 201 * received mode parameter buffer before doing MODE SELECT. 202 */ 203 data.device_specific = 0; 204 205 ret = scsi_mode_select(sdp, 1, sp, buffer_data, len, SD_TIMEOUT, 206 sdkp->max_retries, &data, &sshdr); 207 if (ret) { 208 if (ret > 0 && scsi_sense_valid(&sshdr)) 209 sd_print_sense_hdr(sdkp, &sshdr); 210 return -EINVAL; 211 } 212 sd_revalidate_disk(sdkp->disk); 213 return count; 214 } 215 216 static ssize_t 217 manage_start_stop_show(struct device *dev, 218 struct device_attribute *attr, char *buf) 219 { 220 struct scsi_disk *sdkp = to_scsi_disk(dev); 221 struct scsi_device *sdp = sdkp->device; 222 223 return sysfs_emit(buf, "%u\n", 224 sdp->manage_system_start_stop && 225 sdp->manage_runtime_start_stop && 226 sdp->manage_shutdown); 227 } 228 static DEVICE_ATTR_RO(manage_start_stop); 229 230 static ssize_t 231 manage_system_start_stop_show(struct device *dev, 232 struct device_attribute *attr, char *buf) 233 { 234 struct scsi_disk *sdkp = to_scsi_disk(dev); 235 struct scsi_device *sdp = sdkp->device; 236 237 return sysfs_emit(buf, "%u\n", sdp->manage_system_start_stop); 238 } 239 240 static ssize_t 241 manage_system_start_stop_store(struct device *dev, 242 struct device_attribute *attr, 243 const char *buf, size_t count) 244 { 245 struct scsi_disk *sdkp = to_scsi_disk(dev); 246 struct scsi_device *sdp = sdkp->device; 247 bool v; 248 249 if (!capable(CAP_SYS_ADMIN)) 250 return -EACCES; 251 252 if (kstrtobool(buf, &v)) 253 return -EINVAL; 254 255 sdp->manage_system_start_stop = v; 256 257 return count; 258 } 259 static DEVICE_ATTR_RW(manage_system_start_stop); 260 261 static ssize_t 262 manage_runtime_start_stop_show(struct device *dev, 263 struct device_attribute *attr, char *buf) 264 { 265 struct scsi_disk *sdkp = to_scsi_disk(dev); 266 struct scsi_device *sdp = sdkp->device; 267 268 return sysfs_emit(buf, "%u\n", sdp->manage_runtime_start_stop); 269 } 270 271 static ssize_t 272 manage_runtime_start_stop_store(struct device *dev, 273 struct device_attribute *attr, 274 const char *buf, size_t count) 275 { 276 struct scsi_disk *sdkp = to_scsi_disk(dev); 277 struct scsi_device *sdp = sdkp->device; 278 bool v; 279 280 if (!capable(CAP_SYS_ADMIN)) 281 return -EACCES; 282 283 if (kstrtobool(buf, &v)) 284 return -EINVAL; 285 286 sdp->manage_runtime_start_stop = v; 287 288 return count; 289 } 290 static DEVICE_ATTR_RW(manage_runtime_start_stop); 291 292 static ssize_t manage_shutdown_show(struct device *dev, 293 struct device_attribute *attr, char *buf) 294 { 295 struct scsi_disk *sdkp = to_scsi_disk(dev); 296 struct scsi_device *sdp = sdkp->device; 297 298 return sysfs_emit(buf, "%u\n", sdp->manage_shutdown); 299 } 300 301 static ssize_t manage_shutdown_store(struct device *dev, 302 struct device_attribute *attr, 303 const char *buf, size_t count) 304 { 305 struct scsi_disk *sdkp = to_scsi_disk(dev); 306 struct scsi_device *sdp = sdkp->device; 307 bool v; 308 309 if (!capable(CAP_SYS_ADMIN)) 310 return -EACCES; 311 312 if (kstrtobool(buf, &v)) 313 return -EINVAL; 314 315 sdp->manage_shutdown = v; 316 317 return count; 318 } 319 static DEVICE_ATTR_RW(manage_shutdown); 320 321 static ssize_t 322 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf) 323 { 324 struct scsi_disk *sdkp = to_scsi_disk(dev); 325 326 return sprintf(buf, "%u\n", sdkp->device->allow_restart); 327 } 328 329 static ssize_t 330 allow_restart_store(struct device *dev, struct device_attribute *attr, 331 const char *buf, size_t count) 332 { 333 bool v; 334 struct scsi_disk *sdkp = to_scsi_disk(dev); 335 struct scsi_device *sdp = sdkp->device; 336 337 if (!capable(CAP_SYS_ADMIN)) 338 return -EACCES; 339 340 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 341 return -EINVAL; 342 343 if (kstrtobool(buf, &v)) 344 return -EINVAL; 345 346 sdp->allow_restart = v; 347 348 return count; 349 } 350 static DEVICE_ATTR_RW(allow_restart); 351 352 static ssize_t 353 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf) 354 { 355 struct scsi_disk *sdkp = to_scsi_disk(dev); 356 int ct = sdkp->RCD + 2*sdkp->WCE; 357 358 return sprintf(buf, "%s\n", sd_cache_types[ct]); 359 } 360 static DEVICE_ATTR_RW(cache_type); 361 362 static ssize_t 363 FUA_show(struct device *dev, struct device_attribute *attr, char *buf) 364 { 365 struct scsi_disk *sdkp = to_scsi_disk(dev); 366 367 return sprintf(buf, "%u\n", sdkp->DPOFUA); 368 } 369 static DEVICE_ATTR_RO(FUA); 370 371 static ssize_t 372 protection_type_show(struct device *dev, struct device_attribute *attr, 373 char *buf) 374 { 375 struct scsi_disk *sdkp = to_scsi_disk(dev); 376 377 return sprintf(buf, "%u\n", sdkp->protection_type); 378 } 379 380 static ssize_t 381 protection_type_store(struct device *dev, struct device_attribute *attr, 382 const char *buf, size_t count) 383 { 384 struct scsi_disk *sdkp = to_scsi_disk(dev); 385 unsigned int val; 386 int err; 387 388 if (!capable(CAP_SYS_ADMIN)) 389 return -EACCES; 390 391 err = kstrtouint(buf, 10, &val); 392 393 if (err) 394 return err; 395 396 if (val <= T10_PI_TYPE3_PROTECTION) 397 sdkp->protection_type = val; 398 399 return count; 400 } 401 static DEVICE_ATTR_RW(protection_type); 402 403 static ssize_t 404 protection_mode_show(struct device *dev, struct device_attribute *attr, 405 char *buf) 406 { 407 struct scsi_disk *sdkp = to_scsi_disk(dev); 408 struct scsi_device *sdp = sdkp->device; 409 unsigned int dif, dix; 410 411 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type); 412 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type); 413 414 if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) { 415 dif = 0; 416 dix = 1; 417 } 418 419 if (!dif && !dix) 420 return sprintf(buf, "none\n"); 421 422 return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif); 423 } 424 static DEVICE_ATTR_RO(protection_mode); 425 426 static ssize_t 427 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf) 428 { 429 struct scsi_disk *sdkp = to_scsi_disk(dev); 430 431 return sprintf(buf, "%u\n", sdkp->ATO); 432 } 433 static DEVICE_ATTR_RO(app_tag_own); 434 435 static ssize_t 436 thin_provisioning_show(struct device *dev, struct device_attribute *attr, 437 char *buf) 438 { 439 struct scsi_disk *sdkp = to_scsi_disk(dev); 440 441 return sprintf(buf, "%u\n", sdkp->lbpme); 442 } 443 static DEVICE_ATTR_RO(thin_provisioning); 444 445 /* sysfs_match_string() requires dense arrays */ 446 static const char *lbp_mode[] = { 447 [SD_LBP_FULL] = "full", 448 [SD_LBP_UNMAP] = "unmap", 449 [SD_LBP_WS16] = "writesame_16", 450 [SD_LBP_WS10] = "writesame_10", 451 [SD_LBP_ZERO] = "writesame_zero", 452 [SD_LBP_DISABLE] = "disabled", 453 }; 454 455 static ssize_t 456 provisioning_mode_show(struct device *dev, struct device_attribute *attr, 457 char *buf) 458 { 459 struct scsi_disk *sdkp = to_scsi_disk(dev); 460 461 return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]); 462 } 463 464 static ssize_t 465 provisioning_mode_store(struct device *dev, struct device_attribute *attr, 466 const char *buf, size_t count) 467 { 468 struct scsi_disk *sdkp = to_scsi_disk(dev); 469 struct scsi_device *sdp = sdkp->device; 470 struct queue_limits lim; 471 int mode, err; 472 473 if (!capable(CAP_SYS_ADMIN)) 474 return -EACCES; 475 476 if (sdp->type != TYPE_DISK) 477 return -EINVAL; 478 479 mode = sysfs_match_string(lbp_mode, buf); 480 if (mode < 0) 481 return -EINVAL; 482 483 lim = queue_limits_start_update(sdkp->disk->queue); 484 sd_config_discard(sdkp, &lim, mode); 485 blk_mq_freeze_queue(sdkp->disk->queue); 486 err = queue_limits_commit_update(sdkp->disk->queue, &lim); 487 blk_mq_unfreeze_queue(sdkp->disk->queue); 488 if (err) 489 return err; 490 return count; 491 } 492 static DEVICE_ATTR_RW(provisioning_mode); 493 494 /* sysfs_match_string() requires dense arrays */ 495 static const char *zeroing_mode[] = { 496 [SD_ZERO_WRITE] = "write", 497 [SD_ZERO_WS] = "writesame", 498 [SD_ZERO_WS16_UNMAP] = "writesame_16_unmap", 499 [SD_ZERO_WS10_UNMAP] = "writesame_10_unmap", 500 }; 501 502 static ssize_t 503 zeroing_mode_show(struct device *dev, struct device_attribute *attr, 504 char *buf) 505 { 506 struct scsi_disk *sdkp = to_scsi_disk(dev); 507 508 return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]); 509 } 510 511 static ssize_t 512 zeroing_mode_store(struct device *dev, struct device_attribute *attr, 513 const char *buf, size_t count) 514 { 515 struct scsi_disk *sdkp = to_scsi_disk(dev); 516 int mode; 517 518 if (!capable(CAP_SYS_ADMIN)) 519 return -EACCES; 520 521 mode = sysfs_match_string(zeroing_mode, buf); 522 if (mode < 0) 523 return -EINVAL; 524 525 sdkp->zeroing_mode = mode; 526 527 return count; 528 } 529 static DEVICE_ATTR_RW(zeroing_mode); 530 531 static ssize_t 532 max_medium_access_timeouts_show(struct device *dev, 533 struct device_attribute *attr, char *buf) 534 { 535 struct scsi_disk *sdkp = to_scsi_disk(dev); 536 537 return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts); 538 } 539 540 static ssize_t 541 max_medium_access_timeouts_store(struct device *dev, 542 struct device_attribute *attr, const char *buf, 543 size_t count) 544 { 545 struct scsi_disk *sdkp = to_scsi_disk(dev); 546 int err; 547 548 if (!capable(CAP_SYS_ADMIN)) 549 return -EACCES; 550 551 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts); 552 553 return err ? err : count; 554 } 555 static DEVICE_ATTR_RW(max_medium_access_timeouts); 556 557 static ssize_t 558 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr, 559 char *buf) 560 { 561 struct scsi_disk *sdkp = to_scsi_disk(dev); 562 563 return sprintf(buf, "%u\n", sdkp->max_ws_blocks); 564 } 565 566 static ssize_t 567 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr, 568 const char *buf, size_t count) 569 { 570 struct scsi_disk *sdkp = to_scsi_disk(dev); 571 struct scsi_device *sdp = sdkp->device; 572 struct queue_limits lim; 573 unsigned long max; 574 int err; 575 576 if (!capable(CAP_SYS_ADMIN)) 577 return -EACCES; 578 579 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 580 return -EINVAL; 581 582 err = kstrtoul(buf, 10, &max); 583 584 if (err) 585 return err; 586 587 if (max == 0) 588 sdp->no_write_same = 1; 589 else if (max <= SD_MAX_WS16_BLOCKS) { 590 sdp->no_write_same = 0; 591 sdkp->max_ws_blocks = max; 592 } 593 594 lim = queue_limits_start_update(sdkp->disk->queue); 595 sd_config_write_same(sdkp, &lim); 596 blk_mq_freeze_queue(sdkp->disk->queue); 597 err = queue_limits_commit_update(sdkp->disk->queue, &lim); 598 blk_mq_unfreeze_queue(sdkp->disk->queue); 599 if (err) 600 return err; 601 return count; 602 } 603 static DEVICE_ATTR_RW(max_write_same_blocks); 604 605 static ssize_t 606 zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf) 607 { 608 struct scsi_disk *sdkp = to_scsi_disk(dev); 609 610 if (sdkp->device->type == TYPE_ZBC) 611 return sprintf(buf, "host-managed\n"); 612 if (sdkp->zoned == 1) 613 return sprintf(buf, "host-aware\n"); 614 if (sdkp->zoned == 2) 615 return sprintf(buf, "drive-managed\n"); 616 return sprintf(buf, "none\n"); 617 } 618 static DEVICE_ATTR_RO(zoned_cap); 619 620 static ssize_t 621 max_retries_store(struct device *dev, struct device_attribute *attr, 622 const char *buf, size_t count) 623 { 624 struct scsi_disk *sdkp = to_scsi_disk(dev); 625 struct scsi_device *sdev = sdkp->device; 626 int retries, err; 627 628 err = kstrtoint(buf, 10, &retries); 629 if (err) 630 return err; 631 632 if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) { 633 sdkp->max_retries = retries; 634 return count; 635 } 636 637 sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n", 638 SD_MAX_RETRIES); 639 return -EINVAL; 640 } 641 642 static ssize_t 643 max_retries_show(struct device *dev, struct device_attribute *attr, 644 char *buf) 645 { 646 struct scsi_disk *sdkp = to_scsi_disk(dev); 647 648 return sprintf(buf, "%d\n", sdkp->max_retries); 649 } 650 651 static DEVICE_ATTR_RW(max_retries); 652 653 static struct attribute *sd_disk_attrs[] = { 654 &dev_attr_cache_type.attr, 655 &dev_attr_FUA.attr, 656 &dev_attr_allow_restart.attr, 657 &dev_attr_manage_start_stop.attr, 658 &dev_attr_manage_system_start_stop.attr, 659 &dev_attr_manage_runtime_start_stop.attr, 660 &dev_attr_manage_shutdown.attr, 661 &dev_attr_protection_type.attr, 662 &dev_attr_protection_mode.attr, 663 &dev_attr_app_tag_own.attr, 664 &dev_attr_thin_provisioning.attr, 665 &dev_attr_provisioning_mode.attr, 666 &dev_attr_zeroing_mode.attr, 667 &dev_attr_max_write_same_blocks.attr, 668 &dev_attr_max_medium_access_timeouts.attr, 669 &dev_attr_zoned_cap.attr, 670 &dev_attr_max_retries.attr, 671 NULL, 672 }; 673 ATTRIBUTE_GROUPS(sd_disk); 674 675 static struct class sd_disk_class = { 676 .name = "scsi_disk", 677 .dev_release = scsi_disk_release, 678 .dev_groups = sd_disk_groups, 679 }; 680 681 /* 682 * Don't request a new module, as that could deadlock in multipath 683 * environment. 684 */ 685 static void sd_default_probe(dev_t devt) 686 { 687 } 688 689 /* 690 * Device no to disk mapping: 691 * 692 * major disc2 disc p1 693 * |............|.............|....|....| <- dev_t 694 * 31 20 19 8 7 4 3 0 695 * 696 * Inside a major, we have 16k disks, however mapped non- 697 * contiguously. The first 16 disks are for major0, the next 698 * ones with major1, ... Disk 256 is for major0 again, disk 272 699 * for major1, ... 700 * As we stay compatible with our numbering scheme, we can reuse 701 * the well-know SCSI majors 8, 65--71, 136--143. 702 */ 703 static int sd_major(int major_idx) 704 { 705 switch (major_idx) { 706 case 0: 707 return SCSI_DISK0_MAJOR; 708 case 1 ... 7: 709 return SCSI_DISK1_MAJOR + major_idx - 1; 710 case 8 ... 15: 711 return SCSI_DISK8_MAJOR + major_idx - 8; 712 default: 713 BUG(); 714 return 0; /* shut up gcc */ 715 } 716 } 717 718 #ifdef CONFIG_BLK_SED_OPAL 719 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, 720 size_t len, bool send) 721 { 722 struct scsi_disk *sdkp = data; 723 struct scsi_device *sdev = sdkp->device; 724 u8 cdb[12] = { 0, }; 725 const struct scsi_exec_args exec_args = { 726 .req_flags = BLK_MQ_REQ_PM, 727 }; 728 int ret; 729 730 cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN; 731 cdb[1] = secp; 732 put_unaligned_be16(spsp, &cdb[2]); 733 put_unaligned_be32(len, &cdb[6]); 734 735 ret = scsi_execute_cmd(sdev, cdb, send ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 736 buffer, len, SD_TIMEOUT, sdkp->max_retries, 737 &exec_args); 738 return ret <= 0 ? ret : -EIO; 739 } 740 #endif /* CONFIG_BLK_SED_OPAL */ 741 742 /* 743 * Look up the DIX operation based on whether the command is read or 744 * write and whether dix and dif are enabled. 745 */ 746 static unsigned int sd_prot_op(bool write, bool dix, bool dif) 747 { 748 /* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */ 749 static const unsigned int ops[] = { /* wrt dix dif */ 750 SCSI_PROT_NORMAL, /* 0 0 0 */ 751 SCSI_PROT_READ_STRIP, /* 0 0 1 */ 752 SCSI_PROT_READ_INSERT, /* 0 1 0 */ 753 SCSI_PROT_READ_PASS, /* 0 1 1 */ 754 SCSI_PROT_NORMAL, /* 1 0 0 */ 755 SCSI_PROT_WRITE_INSERT, /* 1 0 1 */ 756 SCSI_PROT_WRITE_STRIP, /* 1 1 0 */ 757 SCSI_PROT_WRITE_PASS, /* 1 1 1 */ 758 }; 759 760 return ops[write << 2 | dix << 1 | dif]; 761 } 762 763 /* 764 * Returns a mask of the protection flags that are valid for a given DIX 765 * operation. 766 */ 767 static unsigned int sd_prot_flag_mask(unsigned int prot_op) 768 { 769 static const unsigned int flag_mask[] = { 770 [SCSI_PROT_NORMAL] = 0, 771 772 [SCSI_PROT_READ_STRIP] = SCSI_PROT_TRANSFER_PI | 773 SCSI_PROT_GUARD_CHECK | 774 SCSI_PROT_REF_CHECK | 775 SCSI_PROT_REF_INCREMENT, 776 777 [SCSI_PROT_READ_INSERT] = SCSI_PROT_REF_INCREMENT | 778 SCSI_PROT_IP_CHECKSUM, 779 780 [SCSI_PROT_READ_PASS] = SCSI_PROT_TRANSFER_PI | 781 SCSI_PROT_GUARD_CHECK | 782 SCSI_PROT_REF_CHECK | 783 SCSI_PROT_REF_INCREMENT | 784 SCSI_PROT_IP_CHECKSUM, 785 786 [SCSI_PROT_WRITE_INSERT] = SCSI_PROT_TRANSFER_PI | 787 SCSI_PROT_REF_INCREMENT, 788 789 [SCSI_PROT_WRITE_STRIP] = SCSI_PROT_GUARD_CHECK | 790 SCSI_PROT_REF_CHECK | 791 SCSI_PROT_REF_INCREMENT | 792 SCSI_PROT_IP_CHECKSUM, 793 794 [SCSI_PROT_WRITE_PASS] = SCSI_PROT_TRANSFER_PI | 795 SCSI_PROT_GUARD_CHECK | 796 SCSI_PROT_REF_CHECK | 797 SCSI_PROT_REF_INCREMENT | 798 SCSI_PROT_IP_CHECKSUM, 799 }; 800 801 return flag_mask[prot_op]; 802 } 803 804 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd, 805 unsigned int dix, unsigned int dif) 806 { 807 struct request *rq = scsi_cmd_to_rq(scmd); 808 struct bio *bio = rq->bio; 809 unsigned int prot_op = sd_prot_op(rq_data_dir(rq), dix, dif); 810 unsigned int protect = 0; 811 812 if (dix) { /* DIX Type 0, 1, 2, 3 */ 813 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM)) 814 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM; 815 816 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 817 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK; 818 } 819 820 if (dif != T10_PI_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */ 821 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT; 822 823 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 824 scmd->prot_flags |= SCSI_PROT_REF_CHECK; 825 } 826 827 if (dif) { /* DIX/DIF Type 1, 2, 3 */ 828 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI; 829 830 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK)) 831 protect = 3 << 5; /* Disable target PI checking */ 832 else 833 protect = 1 << 5; /* Enable target PI checking */ 834 } 835 836 scsi_set_prot_op(scmd, prot_op); 837 scsi_set_prot_type(scmd, dif); 838 scmd->prot_flags &= sd_prot_flag_mask(prot_op); 839 840 return protect; 841 } 842 843 static void sd_disable_discard(struct scsi_disk *sdkp) 844 { 845 sdkp->provisioning_mode = SD_LBP_DISABLE; 846 blk_queue_disable_discard(sdkp->disk->queue); 847 } 848 849 static void sd_config_discard(struct scsi_disk *sdkp, struct queue_limits *lim, 850 unsigned int mode) 851 { 852 unsigned int logical_block_size = sdkp->device->sector_size; 853 unsigned int max_blocks = 0; 854 855 lim->discard_alignment = sdkp->unmap_alignment * logical_block_size; 856 lim->discard_granularity = max(sdkp->physical_block_size, 857 sdkp->unmap_granularity * logical_block_size); 858 sdkp->provisioning_mode = mode; 859 860 switch (mode) { 861 862 case SD_LBP_FULL: 863 case SD_LBP_DISABLE: 864 break; 865 866 case SD_LBP_UNMAP: 867 max_blocks = min_not_zero(sdkp->max_unmap_blocks, 868 (u32)SD_MAX_WS16_BLOCKS); 869 break; 870 871 case SD_LBP_WS16: 872 if (sdkp->device->unmap_limit_for_ws) 873 max_blocks = sdkp->max_unmap_blocks; 874 else 875 max_blocks = sdkp->max_ws_blocks; 876 877 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS); 878 break; 879 880 case SD_LBP_WS10: 881 if (sdkp->device->unmap_limit_for_ws) 882 max_blocks = sdkp->max_unmap_blocks; 883 else 884 max_blocks = sdkp->max_ws_blocks; 885 886 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS); 887 break; 888 889 case SD_LBP_ZERO: 890 max_blocks = min_not_zero(sdkp->max_ws_blocks, 891 (u32)SD_MAX_WS10_BLOCKS); 892 break; 893 } 894 895 lim->max_hw_discard_sectors = max_blocks * 896 (logical_block_size >> SECTOR_SHIFT); 897 } 898 899 static void *sd_set_special_bvec(struct request *rq, unsigned int data_len) 900 { 901 struct page *page; 902 903 page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 904 if (!page) 905 return NULL; 906 clear_highpage(page); 907 bvec_set_page(&rq->special_vec, page, data_len, 0); 908 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 909 return bvec_virt(&rq->special_vec); 910 } 911 912 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd) 913 { 914 struct scsi_device *sdp = cmd->device; 915 struct request *rq = scsi_cmd_to_rq(cmd); 916 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 917 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 918 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 919 unsigned int data_len = 24; 920 char *buf; 921 922 buf = sd_set_special_bvec(rq, data_len); 923 if (!buf) 924 return BLK_STS_RESOURCE; 925 926 cmd->cmd_len = 10; 927 cmd->cmnd[0] = UNMAP; 928 cmd->cmnd[8] = 24; 929 930 put_unaligned_be16(6 + 16, &buf[0]); 931 put_unaligned_be16(16, &buf[2]); 932 put_unaligned_be64(lba, &buf[8]); 933 put_unaligned_be32(nr_blocks, &buf[16]); 934 935 cmd->allowed = sdkp->max_retries; 936 cmd->transfersize = data_len; 937 rq->timeout = SD_TIMEOUT; 938 939 return scsi_alloc_sgtables(cmd); 940 } 941 942 static void sd_config_atomic(struct scsi_disk *sdkp, struct queue_limits *lim) 943 { 944 unsigned int logical_block_size = sdkp->device->sector_size, 945 physical_block_size_sectors, max_atomic, unit_min, unit_max; 946 947 if ((!sdkp->max_atomic && !sdkp->max_atomic_with_boundary) || 948 sdkp->protection_type == T10_PI_TYPE2_PROTECTION) 949 return; 950 951 physical_block_size_sectors = sdkp->physical_block_size / 952 sdkp->device->sector_size; 953 954 unit_min = rounddown_pow_of_two(sdkp->atomic_granularity ? 955 sdkp->atomic_granularity : 956 physical_block_size_sectors); 957 958 /* 959 * Only use atomic boundary when we have the odd scenario of 960 * sdkp->max_atomic == 0, which the spec does permit. 961 */ 962 if (sdkp->max_atomic) { 963 max_atomic = sdkp->max_atomic; 964 unit_max = rounddown_pow_of_two(sdkp->max_atomic); 965 sdkp->use_atomic_write_boundary = 0; 966 } else { 967 max_atomic = sdkp->max_atomic_with_boundary; 968 unit_max = rounddown_pow_of_two(sdkp->max_atomic_boundary); 969 sdkp->use_atomic_write_boundary = 1; 970 } 971 972 /* 973 * Ensure compliance with granularity and alignment. For now, keep it 974 * simple and just don't support atomic writes for values mismatched 975 * with max_{boundary}atomic, physical block size, and 976 * atomic_granularity itself. 977 * 978 * We're really being distrustful by checking unit_max also... 979 */ 980 if (sdkp->atomic_granularity > 1) { 981 if (unit_min > 1 && unit_min % sdkp->atomic_granularity) 982 return; 983 if (unit_max > 1 && unit_max % sdkp->atomic_granularity) 984 return; 985 } 986 987 if (sdkp->atomic_alignment > 1) { 988 if (unit_min > 1 && unit_min % sdkp->atomic_alignment) 989 return; 990 if (unit_max > 1 && unit_max % sdkp->atomic_alignment) 991 return; 992 } 993 994 lim->atomic_write_hw_max = max_atomic * logical_block_size; 995 lim->atomic_write_hw_boundary = 0; 996 lim->atomic_write_hw_unit_min = unit_min * logical_block_size; 997 lim->atomic_write_hw_unit_max = unit_max * logical_block_size; 998 } 999 1000 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd, 1001 bool unmap) 1002 { 1003 struct scsi_device *sdp = cmd->device; 1004 struct request *rq = scsi_cmd_to_rq(cmd); 1005 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 1006 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 1007 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 1008 u32 data_len = sdp->sector_size; 1009 1010 if (!sd_set_special_bvec(rq, data_len)) 1011 return BLK_STS_RESOURCE; 1012 1013 cmd->cmd_len = 16; 1014 cmd->cmnd[0] = WRITE_SAME_16; 1015 if (unmap) 1016 cmd->cmnd[1] = 0x8; /* UNMAP */ 1017 put_unaligned_be64(lba, &cmd->cmnd[2]); 1018 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 1019 1020 cmd->allowed = sdkp->max_retries; 1021 cmd->transfersize = data_len; 1022 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 1023 1024 return scsi_alloc_sgtables(cmd); 1025 } 1026 1027 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd, 1028 bool unmap) 1029 { 1030 struct scsi_device *sdp = cmd->device; 1031 struct request *rq = scsi_cmd_to_rq(cmd); 1032 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 1033 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 1034 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 1035 u32 data_len = sdp->sector_size; 1036 1037 if (!sd_set_special_bvec(rq, data_len)) 1038 return BLK_STS_RESOURCE; 1039 1040 cmd->cmd_len = 10; 1041 cmd->cmnd[0] = WRITE_SAME; 1042 if (unmap) 1043 cmd->cmnd[1] = 0x8; /* UNMAP */ 1044 put_unaligned_be32(lba, &cmd->cmnd[2]); 1045 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 1046 1047 cmd->allowed = sdkp->max_retries; 1048 cmd->transfersize = data_len; 1049 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 1050 1051 return scsi_alloc_sgtables(cmd); 1052 } 1053 1054 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd) 1055 { 1056 struct request *rq = scsi_cmd_to_rq(cmd); 1057 struct scsi_device *sdp = cmd->device; 1058 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 1059 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 1060 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 1061 1062 if (!(rq->cmd_flags & REQ_NOUNMAP)) { 1063 switch (sdkp->zeroing_mode) { 1064 case SD_ZERO_WS16_UNMAP: 1065 return sd_setup_write_same16_cmnd(cmd, true); 1066 case SD_ZERO_WS10_UNMAP: 1067 return sd_setup_write_same10_cmnd(cmd, true); 1068 } 1069 } 1070 1071 if (sdp->no_write_same) { 1072 rq->rq_flags |= RQF_QUIET; 1073 return BLK_STS_TARGET; 1074 } 1075 1076 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) 1077 return sd_setup_write_same16_cmnd(cmd, false); 1078 1079 return sd_setup_write_same10_cmnd(cmd, false); 1080 } 1081 1082 static void sd_disable_write_same(struct scsi_disk *sdkp) 1083 { 1084 sdkp->device->no_write_same = 1; 1085 sdkp->max_ws_blocks = 0; 1086 blk_queue_disable_write_zeroes(sdkp->disk->queue); 1087 } 1088 1089 static void sd_config_write_same(struct scsi_disk *sdkp, 1090 struct queue_limits *lim) 1091 { 1092 unsigned int logical_block_size = sdkp->device->sector_size; 1093 1094 if (sdkp->device->no_write_same) { 1095 sdkp->max_ws_blocks = 0; 1096 goto out; 1097 } 1098 1099 /* Some devices can not handle block counts above 0xffff despite 1100 * supporting WRITE SAME(16). Consequently we default to 64k 1101 * blocks per I/O unless the device explicitly advertises a 1102 * bigger limit. 1103 */ 1104 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS) 1105 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 1106 (u32)SD_MAX_WS16_BLOCKS); 1107 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes) 1108 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 1109 (u32)SD_MAX_WS10_BLOCKS); 1110 else { 1111 sdkp->device->no_write_same = 1; 1112 sdkp->max_ws_blocks = 0; 1113 } 1114 1115 if (sdkp->lbprz && sdkp->lbpws) 1116 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP; 1117 else if (sdkp->lbprz && sdkp->lbpws10) 1118 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP; 1119 else if (sdkp->max_ws_blocks) 1120 sdkp->zeroing_mode = SD_ZERO_WS; 1121 else 1122 sdkp->zeroing_mode = SD_ZERO_WRITE; 1123 1124 if (sdkp->max_ws_blocks && 1125 sdkp->physical_block_size > logical_block_size) { 1126 /* 1127 * Reporting a maximum number of blocks that is not aligned 1128 * on the device physical size would cause a large write same 1129 * request to be split into physically unaligned chunks by 1130 * __blkdev_issue_write_zeroes() even if the caller of this 1131 * functions took care to align the large request. So make sure 1132 * the maximum reported is aligned to the device physical block 1133 * size. This is only an optional optimization for regular 1134 * disks, but this is mandatory to avoid failure of large write 1135 * same requests directed at sequential write required zones of 1136 * host-managed ZBC disks. 1137 */ 1138 sdkp->max_ws_blocks = 1139 round_down(sdkp->max_ws_blocks, 1140 bytes_to_logical(sdkp->device, 1141 sdkp->physical_block_size)); 1142 } 1143 1144 out: 1145 lim->max_write_zeroes_sectors = 1146 sdkp->max_ws_blocks * (logical_block_size >> SECTOR_SHIFT); 1147 } 1148 1149 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd) 1150 { 1151 struct request *rq = scsi_cmd_to_rq(cmd); 1152 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 1153 1154 /* flush requests don't perform I/O, zero the S/G table */ 1155 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1156 1157 if (cmd->device->use_16_for_sync) { 1158 cmd->cmnd[0] = SYNCHRONIZE_CACHE_16; 1159 cmd->cmd_len = 16; 1160 } else { 1161 cmd->cmnd[0] = SYNCHRONIZE_CACHE; 1162 cmd->cmd_len = 10; 1163 } 1164 cmd->transfersize = 0; 1165 cmd->allowed = sdkp->max_retries; 1166 1167 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER; 1168 return BLK_STS_OK; 1169 } 1170 1171 /** 1172 * sd_group_number() - Compute the GROUP NUMBER field 1173 * @cmd: SCSI command for which to compute the value of the six-bit GROUP NUMBER 1174 * field. 1175 * 1176 * From SBC-5 r05 (https://www.t10.org/cgi-bin/ac.pl?t=f&f=sbc5r05.pdf): 1177 * 0: no relative lifetime. 1178 * 1: shortest relative lifetime. 1179 * 2: second shortest relative lifetime. 1180 * 3 - 0x3d: intermediate relative lifetimes. 1181 * 0x3e: second longest relative lifetime. 1182 * 0x3f: longest relative lifetime. 1183 */ 1184 static u8 sd_group_number(struct scsi_cmnd *cmd) 1185 { 1186 const struct request *rq = scsi_cmd_to_rq(cmd); 1187 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 1188 1189 if (!sdkp->rscs) 1190 return 0; 1191 1192 return min3((u32)rq->write_hint, (u32)sdkp->permanent_stream_count, 1193 0x3fu); 1194 } 1195 1196 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write, 1197 sector_t lba, unsigned int nr_blocks, 1198 unsigned char flags, unsigned int dld) 1199 { 1200 cmd->cmd_len = SD_EXT_CDB_SIZE; 1201 cmd->cmnd[0] = VARIABLE_LENGTH_CMD; 1202 cmd->cmnd[6] = sd_group_number(cmd); 1203 cmd->cmnd[7] = 0x18; /* Additional CDB len */ 1204 cmd->cmnd[9] = write ? WRITE_32 : READ_32; 1205 cmd->cmnd[10] = flags; 1206 cmd->cmnd[11] = dld & 0x07; 1207 put_unaligned_be64(lba, &cmd->cmnd[12]); 1208 put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */ 1209 put_unaligned_be32(nr_blocks, &cmd->cmnd[28]); 1210 1211 return BLK_STS_OK; 1212 } 1213 1214 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write, 1215 sector_t lba, unsigned int nr_blocks, 1216 unsigned char flags, unsigned int dld) 1217 { 1218 cmd->cmd_len = 16; 1219 cmd->cmnd[0] = write ? WRITE_16 : READ_16; 1220 cmd->cmnd[1] = flags | ((dld >> 2) & 0x01); 1221 cmd->cmnd[14] = ((dld & 0x03) << 6) | sd_group_number(cmd); 1222 cmd->cmnd[15] = 0; 1223 put_unaligned_be64(lba, &cmd->cmnd[2]); 1224 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 1225 1226 return BLK_STS_OK; 1227 } 1228 1229 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write, 1230 sector_t lba, unsigned int nr_blocks, 1231 unsigned char flags) 1232 { 1233 cmd->cmd_len = 10; 1234 cmd->cmnd[0] = write ? WRITE_10 : READ_10; 1235 cmd->cmnd[1] = flags; 1236 cmd->cmnd[6] = sd_group_number(cmd); 1237 cmd->cmnd[9] = 0; 1238 put_unaligned_be32(lba, &cmd->cmnd[2]); 1239 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 1240 1241 return BLK_STS_OK; 1242 } 1243 1244 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write, 1245 sector_t lba, unsigned int nr_blocks, 1246 unsigned char flags) 1247 { 1248 /* Avoid that 0 blocks gets translated into 256 blocks. */ 1249 if (WARN_ON_ONCE(nr_blocks == 0)) 1250 return BLK_STS_IOERR; 1251 1252 if (unlikely(flags & 0x8)) { 1253 /* 1254 * This happens only if this drive failed 10byte rw 1255 * command with ILLEGAL_REQUEST during operation and 1256 * thus turned off use_10_for_rw. 1257 */ 1258 scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n"); 1259 return BLK_STS_IOERR; 1260 } 1261 1262 cmd->cmd_len = 6; 1263 cmd->cmnd[0] = write ? WRITE_6 : READ_6; 1264 cmd->cmnd[1] = (lba >> 16) & 0x1f; 1265 cmd->cmnd[2] = (lba >> 8) & 0xff; 1266 cmd->cmnd[3] = lba & 0xff; 1267 cmd->cmnd[4] = nr_blocks; 1268 cmd->cmnd[5] = 0; 1269 1270 return BLK_STS_OK; 1271 } 1272 1273 /* 1274 * Check if a command has a duration limit set. If it does, and the target 1275 * device supports CDL and the feature is enabled, return the limit 1276 * descriptor index to use. Return 0 (no limit) otherwise. 1277 */ 1278 static int sd_cdl_dld(struct scsi_disk *sdkp, struct scsi_cmnd *scmd) 1279 { 1280 struct scsi_device *sdp = sdkp->device; 1281 int hint; 1282 1283 if (!sdp->cdl_supported || !sdp->cdl_enable) 1284 return 0; 1285 1286 /* 1287 * Use "no limit" if the request ioprio does not specify a duration 1288 * limit hint. 1289 */ 1290 hint = IOPRIO_PRIO_HINT(req_get_ioprio(scsi_cmd_to_rq(scmd))); 1291 if (hint < IOPRIO_HINT_DEV_DURATION_LIMIT_1 || 1292 hint > IOPRIO_HINT_DEV_DURATION_LIMIT_7) 1293 return 0; 1294 1295 return (hint - IOPRIO_HINT_DEV_DURATION_LIMIT_1) + 1; 1296 } 1297 1298 static blk_status_t sd_setup_atomic_cmnd(struct scsi_cmnd *cmd, 1299 sector_t lba, unsigned int nr_blocks, 1300 bool boundary, unsigned char flags) 1301 { 1302 cmd->cmd_len = 16; 1303 cmd->cmnd[0] = WRITE_ATOMIC_16; 1304 cmd->cmnd[1] = flags; 1305 put_unaligned_be64(lba, &cmd->cmnd[2]); 1306 put_unaligned_be16(nr_blocks, &cmd->cmnd[12]); 1307 if (boundary) 1308 put_unaligned_be16(nr_blocks, &cmd->cmnd[10]); 1309 else 1310 put_unaligned_be16(0, &cmd->cmnd[10]); 1311 put_unaligned_be16(nr_blocks, &cmd->cmnd[12]); 1312 cmd->cmnd[14] = 0; 1313 cmd->cmnd[15] = 0; 1314 1315 return BLK_STS_OK; 1316 } 1317 1318 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd) 1319 { 1320 struct request *rq = scsi_cmd_to_rq(cmd); 1321 struct scsi_device *sdp = cmd->device; 1322 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 1323 sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 1324 sector_t threshold; 1325 unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 1326 unsigned int mask = logical_to_sectors(sdp, 1) - 1; 1327 bool write = rq_data_dir(rq) == WRITE; 1328 unsigned char protect, fua; 1329 unsigned int dld; 1330 blk_status_t ret; 1331 unsigned int dif; 1332 bool dix; 1333 1334 ret = scsi_alloc_sgtables(cmd); 1335 if (ret != BLK_STS_OK) 1336 return ret; 1337 1338 ret = BLK_STS_IOERR; 1339 if (!scsi_device_online(sdp) || sdp->changed) { 1340 scmd_printk(KERN_ERR, cmd, "device offline or changed\n"); 1341 goto fail; 1342 } 1343 1344 if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->q->disk)) { 1345 scmd_printk(KERN_ERR, cmd, "access beyond end of device\n"); 1346 goto fail; 1347 } 1348 1349 if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) { 1350 scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n"); 1351 goto fail; 1352 } 1353 1354 /* 1355 * Some SD card readers can't handle accesses which touch the 1356 * last one or two logical blocks. Split accesses as needed. 1357 */ 1358 threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS; 1359 1360 if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) { 1361 if (lba < threshold) { 1362 /* Access up to the threshold but not beyond */ 1363 nr_blocks = threshold - lba; 1364 } else { 1365 /* Access only a single logical block */ 1366 nr_blocks = 1; 1367 } 1368 } 1369 1370 fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0; 1371 dix = scsi_prot_sg_count(cmd); 1372 dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type); 1373 dld = sd_cdl_dld(sdkp, cmd); 1374 1375 if (dif || dix) 1376 protect = sd_setup_protect_cmnd(cmd, dix, dif); 1377 else 1378 protect = 0; 1379 1380 if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) { 1381 ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks, 1382 protect | fua, dld); 1383 } else if (rq->cmd_flags & REQ_ATOMIC && write) { 1384 ret = sd_setup_atomic_cmnd(cmd, lba, nr_blocks, 1385 sdkp->use_atomic_write_boundary, 1386 protect | fua); 1387 } else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) { 1388 ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks, 1389 protect | fua, dld); 1390 } else if ((nr_blocks > 0xff) || (lba > 0x1fffff) || 1391 sdp->use_10_for_rw || protect || rq->write_hint) { 1392 ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks, 1393 protect | fua); 1394 } else { 1395 ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks, 1396 protect | fua); 1397 } 1398 1399 if (unlikely(ret != BLK_STS_OK)) 1400 goto fail; 1401 1402 /* 1403 * We shouldn't disconnect in the middle of a sector, so with a dumb 1404 * host adapter, it's safe to assume that we can at least transfer 1405 * this many bytes between each connect / disconnect. 1406 */ 1407 cmd->transfersize = sdp->sector_size; 1408 cmd->underflow = nr_blocks << 9; 1409 cmd->allowed = sdkp->max_retries; 1410 cmd->sdb.length = nr_blocks * sdp->sector_size; 1411 1412 SCSI_LOG_HLQUEUE(1, 1413 scmd_printk(KERN_INFO, cmd, 1414 "%s: block=%llu, count=%d\n", __func__, 1415 (unsigned long long)blk_rq_pos(rq), 1416 blk_rq_sectors(rq))); 1417 SCSI_LOG_HLQUEUE(2, 1418 scmd_printk(KERN_INFO, cmd, 1419 "%s %d/%u 512 byte blocks.\n", 1420 write ? "writing" : "reading", nr_blocks, 1421 blk_rq_sectors(rq))); 1422 1423 /* 1424 * This indicates that the command is ready from our end to be queued. 1425 */ 1426 return BLK_STS_OK; 1427 fail: 1428 scsi_free_sgtables(cmd); 1429 return ret; 1430 } 1431 1432 static blk_status_t sd_init_command(struct scsi_cmnd *cmd) 1433 { 1434 struct request *rq = scsi_cmd_to_rq(cmd); 1435 1436 switch (req_op(rq)) { 1437 case REQ_OP_DISCARD: 1438 switch (scsi_disk(rq->q->disk)->provisioning_mode) { 1439 case SD_LBP_UNMAP: 1440 return sd_setup_unmap_cmnd(cmd); 1441 case SD_LBP_WS16: 1442 return sd_setup_write_same16_cmnd(cmd, true); 1443 case SD_LBP_WS10: 1444 return sd_setup_write_same10_cmnd(cmd, true); 1445 case SD_LBP_ZERO: 1446 return sd_setup_write_same10_cmnd(cmd, false); 1447 default: 1448 return BLK_STS_TARGET; 1449 } 1450 case REQ_OP_WRITE_ZEROES: 1451 return sd_setup_write_zeroes_cmnd(cmd); 1452 case REQ_OP_FLUSH: 1453 return sd_setup_flush_cmnd(cmd); 1454 case REQ_OP_READ: 1455 case REQ_OP_WRITE: 1456 return sd_setup_read_write_cmnd(cmd); 1457 case REQ_OP_ZONE_RESET: 1458 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER, 1459 false); 1460 case REQ_OP_ZONE_RESET_ALL: 1461 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER, 1462 true); 1463 case REQ_OP_ZONE_OPEN: 1464 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false); 1465 case REQ_OP_ZONE_CLOSE: 1466 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false); 1467 case REQ_OP_ZONE_FINISH: 1468 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false); 1469 default: 1470 WARN_ON_ONCE(1); 1471 return BLK_STS_NOTSUPP; 1472 } 1473 } 1474 1475 static void sd_uninit_command(struct scsi_cmnd *SCpnt) 1476 { 1477 struct request *rq = scsi_cmd_to_rq(SCpnt); 1478 1479 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1480 mempool_free(rq->special_vec.bv_page, sd_page_pool); 1481 } 1482 1483 static bool sd_need_revalidate(struct gendisk *disk, struct scsi_disk *sdkp) 1484 { 1485 if (sdkp->device->removable || sdkp->write_prot) { 1486 if (disk_check_media_change(disk)) 1487 return true; 1488 } 1489 1490 /* 1491 * Force a full rescan after ioctl(BLKRRPART). While the disk state has 1492 * nothing to do with partitions, BLKRRPART is used to force a full 1493 * revalidate after things like a format for historical reasons. 1494 */ 1495 return test_bit(GD_NEED_PART_SCAN, &disk->state); 1496 } 1497 1498 /** 1499 * sd_open - open a scsi disk device 1500 * @disk: disk to open 1501 * @mode: open mode 1502 * 1503 * Returns 0 if successful. Returns a negated errno value in case 1504 * of error. 1505 * 1506 * Note: This can be called from a user context (e.g. fsck(1) ) 1507 * or from within the kernel (e.g. as a result of a mount(1) ). 1508 * In the latter case @inode and @filp carry an abridged amount 1509 * of information as noted above. 1510 * 1511 * Locking: called with disk->open_mutex held. 1512 **/ 1513 static int sd_open(struct gendisk *disk, blk_mode_t mode) 1514 { 1515 struct scsi_disk *sdkp = scsi_disk(disk); 1516 struct scsi_device *sdev = sdkp->device; 1517 int retval; 1518 1519 if (scsi_device_get(sdev)) 1520 return -ENXIO; 1521 1522 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n")); 1523 1524 /* 1525 * If the device is in error recovery, wait until it is done. 1526 * If the device is offline, then disallow any access to it. 1527 */ 1528 retval = -ENXIO; 1529 if (!scsi_block_when_processing_errors(sdev)) 1530 goto error_out; 1531 1532 if (sd_need_revalidate(disk, sdkp)) 1533 sd_revalidate_disk(disk); 1534 1535 /* 1536 * If the drive is empty, just let the open fail. 1537 */ 1538 retval = -ENOMEDIUM; 1539 if (sdev->removable && !sdkp->media_present && 1540 !(mode & BLK_OPEN_NDELAY)) 1541 goto error_out; 1542 1543 /* 1544 * If the device has the write protect tab set, have the open fail 1545 * if the user expects to be able to write to the thing. 1546 */ 1547 retval = -EROFS; 1548 if (sdkp->write_prot && (mode & BLK_OPEN_WRITE)) 1549 goto error_out; 1550 1551 /* 1552 * It is possible that the disk changing stuff resulted in 1553 * the device being taken offline. If this is the case, 1554 * report this to the user, and don't pretend that the 1555 * open actually succeeded. 1556 */ 1557 retval = -ENXIO; 1558 if (!scsi_device_online(sdev)) 1559 goto error_out; 1560 1561 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) { 1562 if (scsi_block_when_processing_errors(sdev)) 1563 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT); 1564 } 1565 1566 return 0; 1567 1568 error_out: 1569 scsi_device_put(sdev); 1570 return retval; 1571 } 1572 1573 /** 1574 * sd_release - invoked when the (last) close(2) is called on this 1575 * scsi disk. 1576 * @disk: disk to release 1577 * 1578 * Returns 0. 1579 * 1580 * Note: may block (uninterruptible) if error recovery is underway 1581 * on this disk. 1582 * 1583 * Locking: called with disk->open_mutex held. 1584 **/ 1585 static void sd_release(struct gendisk *disk) 1586 { 1587 struct scsi_disk *sdkp = scsi_disk(disk); 1588 struct scsi_device *sdev = sdkp->device; 1589 1590 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n")); 1591 1592 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) { 1593 if (scsi_block_when_processing_errors(sdev)) 1594 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW); 1595 } 1596 1597 scsi_device_put(sdev); 1598 } 1599 1600 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1601 { 1602 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1603 struct scsi_device *sdp = sdkp->device; 1604 struct Scsi_Host *host = sdp->host; 1605 sector_t capacity = logical_to_sectors(sdp, sdkp->capacity); 1606 int diskinfo[4]; 1607 1608 /* default to most commonly used values */ 1609 diskinfo[0] = 0x40; /* 1 << 6 */ 1610 diskinfo[1] = 0x20; /* 1 << 5 */ 1611 diskinfo[2] = capacity >> 11; 1612 1613 /* override with calculated, extended default, or driver values */ 1614 if (host->hostt->bios_param) 1615 host->hostt->bios_param(sdp, bdev, capacity, diskinfo); 1616 else 1617 scsicam_bios_param(bdev, capacity, diskinfo); 1618 1619 geo->heads = diskinfo[0]; 1620 geo->sectors = diskinfo[1]; 1621 geo->cylinders = diskinfo[2]; 1622 return 0; 1623 } 1624 1625 /** 1626 * sd_ioctl - process an ioctl 1627 * @bdev: target block device 1628 * @mode: open mode 1629 * @cmd: ioctl command number 1630 * @arg: this is third argument given to ioctl(2) system call. 1631 * Often contains a pointer. 1632 * 1633 * Returns 0 if successful (some ioctls return positive numbers on 1634 * success as well). Returns a negated errno value in case of error. 1635 * 1636 * Note: most ioctls are forward onto the block subsystem or further 1637 * down in the scsi subsystem. 1638 **/ 1639 static int sd_ioctl(struct block_device *bdev, blk_mode_t mode, 1640 unsigned int cmd, unsigned long arg) 1641 { 1642 struct gendisk *disk = bdev->bd_disk; 1643 struct scsi_disk *sdkp = scsi_disk(disk); 1644 struct scsi_device *sdp = sdkp->device; 1645 void __user *p = (void __user *)arg; 1646 int error; 1647 1648 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, " 1649 "cmd=0x%x\n", disk->disk_name, cmd)); 1650 1651 if (bdev_is_partition(bdev) && !capable(CAP_SYS_RAWIO)) 1652 return -ENOIOCTLCMD; 1653 1654 /* 1655 * If we are in the middle of error recovery, don't let anyone 1656 * else try and use this device. Also, if error recovery fails, it 1657 * may try and take the device offline, in which case all further 1658 * access to the device is prohibited. 1659 */ 1660 error = scsi_ioctl_block_when_processing_errors(sdp, cmd, 1661 (mode & BLK_OPEN_NDELAY)); 1662 if (error) 1663 return error; 1664 1665 if (is_sed_ioctl(cmd)) 1666 return sed_ioctl(sdkp->opal_dev, cmd, p); 1667 return scsi_ioctl(sdp, mode & BLK_OPEN_WRITE, cmd, p); 1668 } 1669 1670 static void set_media_not_present(struct scsi_disk *sdkp) 1671 { 1672 if (sdkp->media_present) 1673 sdkp->device->changed = 1; 1674 1675 if (sdkp->device->removable) { 1676 sdkp->media_present = 0; 1677 sdkp->capacity = 0; 1678 } 1679 } 1680 1681 static int media_not_present(struct scsi_disk *sdkp, 1682 struct scsi_sense_hdr *sshdr) 1683 { 1684 if (!scsi_sense_valid(sshdr)) 1685 return 0; 1686 1687 /* not invoked for commands that could return deferred errors */ 1688 switch (sshdr->sense_key) { 1689 case UNIT_ATTENTION: 1690 case NOT_READY: 1691 /* medium not present */ 1692 if (sshdr->asc == 0x3A) { 1693 set_media_not_present(sdkp); 1694 return 1; 1695 } 1696 } 1697 return 0; 1698 } 1699 1700 /** 1701 * sd_check_events - check media events 1702 * @disk: kernel device descriptor 1703 * @clearing: disk events currently being cleared 1704 * 1705 * Returns mask of DISK_EVENT_*. 1706 * 1707 * Note: this function is invoked from the block subsystem. 1708 **/ 1709 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing) 1710 { 1711 struct scsi_disk *sdkp = disk->private_data; 1712 struct scsi_device *sdp; 1713 int retval; 1714 bool disk_changed; 1715 1716 if (!sdkp) 1717 return 0; 1718 1719 sdp = sdkp->device; 1720 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n")); 1721 1722 /* 1723 * If the device is offline, don't send any commands - just pretend as 1724 * if the command failed. If the device ever comes back online, we 1725 * can deal with it then. It is only because of unrecoverable errors 1726 * that we would ever take a device offline in the first place. 1727 */ 1728 if (!scsi_device_online(sdp)) { 1729 set_media_not_present(sdkp); 1730 goto out; 1731 } 1732 1733 /* 1734 * Using TEST_UNIT_READY enables differentiation between drive with 1735 * no cartridge loaded - NOT READY, drive with changed cartridge - 1736 * UNIT ATTENTION, or with same cartridge - GOOD STATUS. 1737 * 1738 * Drives that auto spin down. eg iomega jaz 1G, will be started 1739 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever 1740 * sd_revalidate() is called. 1741 */ 1742 if (scsi_block_when_processing_errors(sdp)) { 1743 struct scsi_sense_hdr sshdr = { 0, }; 1744 1745 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries, 1746 &sshdr); 1747 1748 /* failed to execute TUR, assume media not present */ 1749 if (retval < 0 || host_byte(retval)) { 1750 set_media_not_present(sdkp); 1751 goto out; 1752 } 1753 1754 if (media_not_present(sdkp, &sshdr)) 1755 goto out; 1756 } 1757 1758 /* 1759 * For removable scsi disk we have to recognise the presence 1760 * of a disk in the drive. 1761 */ 1762 if (!sdkp->media_present) 1763 sdp->changed = 1; 1764 sdkp->media_present = 1; 1765 out: 1766 /* 1767 * sdp->changed is set under the following conditions: 1768 * 1769 * Medium present state has changed in either direction. 1770 * Device has indicated UNIT_ATTENTION. 1771 */ 1772 disk_changed = sdp->changed; 1773 sdp->changed = 0; 1774 return disk_changed ? DISK_EVENT_MEDIA_CHANGE : 0; 1775 } 1776 1777 static int sd_sync_cache(struct scsi_disk *sdkp) 1778 { 1779 int res; 1780 struct scsi_device *sdp = sdkp->device; 1781 const int timeout = sdp->request_queue->rq_timeout 1782 * SD_FLUSH_TIMEOUT_MULTIPLIER; 1783 /* Leave the rest of the command zero to indicate flush everything. */ 1784 const unsigned char cmd[16] = { sdp->use_16_for_sync ? 1785 SYNCHRONIZE_CACHE_16 : SYNCHRONIZE_CACHE }; 1786 struct scsi_sense_hdr sshdr; 1787 struct scsi_failure failure_defs[] = { 1788 { 1789 .allowed = 3, 1790 .result = SCMD_FAILURE_RESULT_ANY, 1791 }, 1792 {} 1793 }; 1794 struct scsi_failures failures = { 1795 .failure_definitions = failure_defs, 1796 }; 1797 const struct scsi_exec_args exec_args = { 1798 .req_flags = BLK_MQ_REQ_PM, 1799 .sshdr = &sshdr, 1800 .failures = &failures, 1801 }; 1802 1803 if (!scsi_device_online(sdp)) 1804 return -ENODEV; 1805 1806 res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, timeout, 1807 sdkp->max_retries, &exec_args); 1808 if (res) { 1809 sd_print_result(sdkp, "Synchronize Cache(10) failed", res); 1810 1811 if (res < 0) 1812 return res; 1813 1814 if (scsi_status_is_check_condition(res) && 1815 scsi_sense_valid(&sshdr)) { 1816 sd_print_sense_hdr(sdkp, &sshdr); 1817 1818 /* we need to evaluate the error return */ 1819 if (sshdr.asc == 0x3a || /* medium not present */ 1820 sshdr.asc == 0x20 || /* invalid command */ 1821 (sshdr.asc == 0x74 && sshdr.ascq == 0x71)) /* drive is password locked */ 1822 /* this is no error here */ 1823 return 0; 1824 /* 1825 * This drive doesn't support sync and there's not much 1826 * we can do because this is called during shutdown 1827 * or suspend so just return success so those operations 1828 * can proceed. 1829 */ 1830 if (sshdr.sense_key == ILLEGAL_REQUEST) 1831 return 0; 1832 } 1833 1834 switch (host_byte(res)) { 1835 /* ignore errors due to racing a disconnection */ 1836 case DID_BAD_TARGET: 1837 case DID_NO_CONNECT: 1838 return 0; 1839 /* signal the upper layer it might try again */ 1840 case DID_BUS_BUSY: 1841 case DID_IMM_RETRY: 1842 case DID_REQUEUE: 1843 case DID_SOFT_ERROR: 1844 return -EBUSY; 1845 default: 1846 return -EIO; 1847 } 1848 } 1849 return 0; 1850 } 1851 1852 static void sd_rescan(struct device *dev) 1853 { 1854 struct scsi_disk *sdkp = dev_get_drvdata(dev); 1855 1856 sd_revalidate_disk(sdkp->disk); 1857 } 1858 1859 static int sd_get_unique_id(struct gendisk *disk, u8 id[16], 1860 enum blk_unique_id type) 1861 { 1862 struct scsi_device *sdev = scsi_disk(disk)->device; 1863 const struct scsi_vpd *vpd; 1864 const unsigned char *d; 1865 int ret = -ENXIO, len; 1866 1867 rcu_read_lock(); 1868 vpd = rcu_dereference(sdev->vpd_pg83); 1869 if (!vpd) 1870 goto out_unlock; 1871 1872 ret = -EINVAL; 1873 for (d = vpd->data + 4; d < vpd->data + vpd->len; d += d[3] + 4) { 1874 /* we only care about designators with LU association */ 1875 if (((d[1] >> 4) & 0x3) != 0x00) 1876 continue; 1877 if ((d[1] & 0xf) != type) 1878 continue; 1879 1880 /* 1881 * Only exit early if a 16-byte descriptor was found. Otherwise 1882 * keep looking as one with more entropy might still show up. 1883 */ 1884 len = d[3]; 1885 if (len != 8 && len != 12 && len != 16) 1886 continue; 1887 ret = len; 1888 memcpy(id, d + 4, len); 1889 if (len == 16) 1890 break; 1891 } 1892 out_unlock: 1893 rcu_read_unlock(); 1894 return ret; 1895 } 1896 1897 static int sd_scsi_to_pr_err(struct scsi_sense_hdr *sshdr, int result) 1898 { 1899 switch (host_byte(result)) { 1900 case DID_TRANSPORT_MARGINAL: 1901 case DID_TRANSPORT_DISRUPTED: 1902 case DID_BUS_BUSY: 1903 return PR_STS_RETRY_PATH_FAILURE; 1904 case DID_NO_CONNECT: 1905 return PR_STS_PATH_FAILED; 1906 case DID_TRANSPORT_FAILFAST: 1907 return PR_STS_PATH_FAST_FAILED; 1908 } 1909 1910 switch (status_byte(result)) { 1911 case SAM_STAT_RESERVATION_CONFLICT: 1912 return PR_STS_RESERVATION_CONFLICT; 1913 case SAM_STAT_CHECK_CONDITION: 1914 if (!scsi_sense_valid(sshdr)) 1915 return PR_STS_IOERR; 1916 1917 if (sshdr->sense_key == ILLEGAL_REQUEST && 1918 (sshdr->asc == 0x26 || sshdr->asc == 0x24)) 1919 return -EINVAL; 1920 1921 fallthrough; 1922 default: 1923 return PR_STS_IOERR; 1924 } 1925 } 1926 1927 static int sd_pr_in_command(struct block_device *bdev, u8 sa, 1928 unsigned char *data, int data_len) 1929 { 1930 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1931 struct scsi_device *sdev = sdkp->device; 1932 struct scsi_sense_hdr sshdr; 1933 u8 cmd[10] = { PERSISTENT_RESERVE_IN, sa }; 1934 struct scsi_failure failure_defs[] = { 1935 { 1936 .sense = UNIT_ATTENTION, 1937 .asc = SCMD_FAILURE_ASC_ANY, 1938 .ascq = SCMD_FAILURE_ASCQ_ANY, 1939 .allowed = 5, 1940 .result = SAM_STAT_CHECK_CONDITION, 1941 }, 1942 {} 1943 }; 1944 struct scsi_failures failures = { 1945 .failure_definitions = failure_defs, 1946 }; 1947 const struct scsi_exec_args exec_args = { 1948 .sshdr = &sshdr, 1949 .failures = &failures, 1950 }; 1951 int result; 1952 1953 put_unaligned_be16(data_len, &cmd[7]); 1954 1955 result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, data, data_len, 1956 SD_TIMEOUT, sdkp->max_retries, &exec_args); 1957 if (scsi_status_is_check_condition(result) && 1958 scsi_sense_valid(&sshdr)) { 1959 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result); 1960 scsi_print_sense_hdr(sdev, NULL, &sshdr); 1961 } 1962 1963 if (result <= 0) 1964 return result; 1965 1966 return sd_scsi_to_pr_err(&sshdr, result); 1967 } 1968 1969 static int sd_pr_read_keys(struct block_device *bdev, struct pr_keys *keys_info) 1970 { 1971 int result, i, data_offset, num_copy_keys; 1972 u32 num_keys = keys_info->num_keys; 1973 int data_len = num_keys * 8 + 8; 1974 u8 *data; 1975 1976 data = kzalloc(data_len, GFP_KERNEL); 1977 if (!data) 1978 return -ENOMEM; 1979 1980 result = sd_pr_in_command(bdev, READ_KEYS, data, data_len); 1981 if (result) 1982 goto free_data; 1983 1984 keys_info->generation = get_unaligned_be32(&data[0]); 1985 keys_info->num_keys = get_unaligned_be32(&data[4]) / 8; 1986 1987 data_offset = 8; 1988 num_copy_keys = min(num_keys, keys_info->num_keys); 1989 1990 for (i = 0; i < num_copy_keys; i++) { 1991 keys_info->keys[i] = get_unaligned_be64(&data[data_offset]); 1992 data_offset += 8; 1993 } 1994 1995 free_data: 1996 kfree(data); 1997 return result; 1998 } 1999 2000 static int sd_pr_read_reservation(struct block_device *bdev, 2001 struct pr_held_reservation *rsv) 2002 { 2003 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 2004 struct scsi_device *sdev = sdkp->device; 2005 u8 data[24] = { }; 2006 int result, len; 2007 2008 result = sd_pr_in_command(bdev, READ_RESERVATION, data, sizeof(data)); 2009 if (result) 2010 return result; 2011 2012 len = get_unaligned_be32(&data[4]); 2013 if (!len) 2014 return 0; 2015 2016 /* Make sure we have at least the key and type */ 2017 if (len < 14) { 2018 sdev_printk(KERN_INFO, sdev, 2019 "READ RESERVATION failed due to short return buffer of %d bytes\n", 2020 len); 2021 return -EINVAL; 2022 } 2023 2024 rsv->generation = get_unaligned_be32(&data[0]); 2025 rsv->key = get_unaligned_be64(&data[8]); 2026 rsv->type = scsi_pr_type_to_block(data[21] & 0x0f); 2027 return 0; 2028 } 2029 2030 static int sd_pr_out_command(struct block_device *bdev, u8 sa, u64 key, 2031 u64 sa_key, enum scsi_pr_type type, u8 flags) 2032 { 2033 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 2034 struct scsi_device *sdev = sdkp->device; 2035 struct scsi_sense_hdr sshdr; 2036 struct scsi_failure failure_defs[] = { 2037 { 2038 .sense = UNIT_ATTENTION, 2039 .asc = SCMD_FAILURE_ASC_ANY, 2040 .ascq = SCMD_FAILURE_ASCQ_ANY, 2041 .allowed = 5, 2042 .result = SAM_STAT_CHECK_CONDITION, 2043 }, 2044 {} 2045 }; 2046 struct scsi_failures failures = { 2047 .failure_definitions = failure_defs, 2048 }; 2049 const struct scsi_exec_args exec_args = { 2050 .sshdr = &sshdr, 2051 .failures = &failures, 2052 }; 2053 int result; 2054 u8 cmd[16] = { 0, }; 2055 u8 data[24] = { 0, }; 2056 2057 cmd[0] = PERSISTENT_RESERVE_OUT; 2058 cmd[1] = sa; 2059 cmd[2] = type; 2060 put_unaligned_be32(sizeof(data), &cmd[5]); 2061 2062 put_unaligned_be64(key, &data[0]); 2063 put_unaligned_be64(sa_key, &data[8]); 2064 data[20] = flags; 2065 2066 result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, &data, 2067 sizeof(data), SD_TIMEOUT, sdkp->max_retries, 2068 &exec_args); 2069 2070 if (scsi_status_is_check_condition(result) && 2071 scsi_sense_valid(&sshdr)) { 2072 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result); 2073 scsi_print_sense_hdr(sdev, NULL, &sshdr); 2074 } 2075 2076 if (result <= 0) 2077 return result; 2078 2079 return sd_scsi_to_pr_err(&sshdr, result); 2080 } 2081 2082 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 2083 u32 flags) 2084 { 2085 if (flags & ~PR_FL_IGNORE_KEY) 2086 return -EOPNOTSUPP; 2087 return sd_pr_out_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00, 2088 old_key, new_key, 0, 2089 (1 << 0) /* APTPL */); 2090 } 2091 2092 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 2093 u32 flags) 2094 { 2095 if (flags) 2096 return -EOPNOTSUPP; 2097 return sd_pr_out_command(bdev, 0x01, key, 0, 2098 block_pr_type_to_scsi(type), 0); 2099 } 2100 2101 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 2102 { 2103 return sd_pr_out_command(bdev, 0x02, key, 0, 2104 block_pr_type_to_scsi(type), 0); 2105 } 2106 2107 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 2108 enum pr_type type, bool abort) 2109 { 2110 return sd_pr_out_command(bdev, abort ? 0x05 : 0x04, old_key, new_key, 2111 block_pr_type_to_scsi(type), 0); 2112 } 2113 2114 static int sd_pr_clear(struct block_device *bdev, u64 key) 2115 { 2116 return sd_pr_out_command(bdev, 0x03, key, 0, 0, 0); 2117 } 2118 2119 static const struct pr_ops sd_pr_ops = { 2120 .pr_register = sd_pr_register, 2121 .pr_reserve = sd_pr_reserve, 2122 .pr_release = sd_pr_release, 2123 .pr_preempt = sd_pr_preempt, 2124 .pr_clear = sd_pr_clear, 2125 .pr_read_keys = sd_pr_read_keys, 2126 .pr_read_reservation = sd_pr_read_reservation, 2127 }; 2128 2129 static void scsi_disk_free_disk(struct gendisk *disk) 2130 { 2131 struct scsi_disk *sdkp = scsi_disk(disk); 2132 2133 put_device(&sdkp->disk_dev); 2134 } 2135 2136 static const struct block_device_operations sd_fops = { 2137 .owner = THIS_MODULE, 2138 .open = sd_open, 2139 .release = sd_release, 2140 .ioctl = sd_ioctl, 2141 .getgeo = sd_getgeo, 2142 .compat_ioctl = blkdev_compat_ptr_ioctl, 2143 .check_events = sd_check_events, 2144 .unlock_native_capacity = sd_unlock_native_capacity, 2145 .report_zones = sd_zbc_report_zones, 2146 .get_unique_id = sd_get_unique_id, 2147 .free_disk = scsi_disk_free_disk, 2148 .pr_ops = &sd_pr_ops, 2149 }; 2150 2151 /** 2152 * sd_eh_reset - reset error handling callback 2153 * @scmd: sd-issued command that has failed 2154 * 2155 * This function is called by the SCSI midlayer before starting 2156 * SCSI EH. When counting medium access failures we have to be 2157 * careful to register it only only once per device and SCSI EH run; 2158 * there might be several timed out commands which will cause the 2159 * 'max_medium_access_timeouts' counter to trigger after the first 2160 * SCSI EH run already and set the device to offline. 2161 * So this function resets the internal counter before starting SCSI EH. 2162 **/ 2163 static void sd_eh_reset(struct scsi_cmnd *scmd) 2164 { 2165 struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk); 2166 2167 /* New SCSI EH run, reset gate variable */ 2168 sdkp->ignore_medium_access_errors = false; 2169 } 2170 2171 /** 2172 * sd_eh_action - error handling callback 2173 * @scmd: sd-issued command that has failed 2174 * @eh_disp: The recovery disposition suggested by the midlayer 2175 * 2176 * This function is called by the SCSI midlayer upon completion of an 2177 * error test command (currently TEST UNIT READY). The result of sending 2178 * the eh command is passed in eh_disp. We're looking for devices that 2179 * fail medium access commands but are OK with non access commands like 2180 * test unit ready (so wrongly see the device as having a successful 2181 * recovery) 2182 **/ 2183 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp) 2184 { 2185 struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk); 2186 struct scsi_device *sdev = scmd->device; 2187 2188 if (!scsi_device_online(sdev) || 2189 !scsi_medium_access_command(scmd) || 2190 host_byte(scmd->result) != DID_TIME_OUT || 2191 eh_disp != SUCCESS) 2192 return eh_disp; 2193 2194 /* 2195 * The device has timed out executing a medium access command. 2196 * However, the TEST UNIT READY command sent during error 2197 * handling completed successfully. Either the device is in the 2198 * process of recovering or has it suffered an internal failure 2199 * that prevents access to the storage medium. 2200 */ 2201 if (!sdkp->ignore_medium_access_errors) { 2202 sdkp->medium_access_timed_out++; 2203 sdkp->ignore_medium_access_errors = true; 2204 } 2205 2206 /* 2207 * If the device keeps failing read/write commands but TEST UNIT 2208 * READY always completes successfully we assume that medium 2209 * access is no longer possible and take the device offline. 2210 */ 2211 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) { 2212 scmd_printk(KERN_ERR, scmd, 2213 "Medium access timeout failure. Offlining disk!\n"); 2214 mutex_lock(&sdev->state_mutex); 2215 scsi_device_set_state(sdev, SDEV_OFFLINE); 2216 mutex_unlock(&sdev->state_mutex); 2217 2218 return SUCCESS; 2219 } 2220 2221 return eh_disp; 2222 } 2223 2224 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd) 2225 { 2226 struct request *req = scsi_cmd_to_rq(scmd); 2227 struct scsi_device *sdev = scmd->device; 2228 unsigned int transferred, good_bytes; 2229 u64 start_lba, end_lba, bad_lba; 2230 2231 /* 2232 * Some commands have a payload smaller than the device logical 2233 * block size (e.g. INQUIRY on a 4K disk). 2234 */ 2235 if (scsi_bufflen(scmd) <= sdev->sector_size) 2236 return 0; 2237 2238 /* Check if we have a 'bad_lba' information */ 2239 if (!scsi_get_sense_info_fld(scmd->sense_buffer, 2240 SCSI_SENSE_BUFFERSIZE, 2241 &bad_lba)) 2242 return 0; 2243 2244 /* 2245 * If the bad lba was reported incorrectly, we have no idea where 2246 * the error is. 2247 */ 2248 start_lba = sectors_to_logical(sdev, blk_rq_pos(req)); 2249 end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd)); 2250 if (bad_lba < start_lba || bad_lba >= end_lba) 2251 return 0; 2252 2253 /* 2254 * resid is optional but mostly filled in. When it's unused, 2255 * its value is zero, so we assume the whole buffer transferred 2256 */ 2257 transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd); 2258 2259 /* This computation should always be done in terms of the 2260 * resolution of the device's medium. 2261 */ 2262 good_bytes = logical_to_bytes(sdev, bad_lba - start_lba); 2263 2264 return min(good_bytes, transferred); 2265 } 2266 2267 /** 2268 * sd_done - bottom half handler: called when the lower level 2269 * driver has completed (successfully or otherwise) a scsi command. 2270 * @SCpnt: mid-level's per command structure. 2271 * 2272 * Note: potentially run from within an ISR. Must not block. 2273 **/ 2274 static int sd_done(struct scsi_cmnd *SCpnt) 2275 { 2276 int result = SCpnt->result; 2277 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt); 2278 unsigned int sector_size = SCpnt->device->sector_size; 2279 unsigned int resid; 2280 struct scsi_sense_hdr sshdr; 2281 struct request *req = scsi_cmd_to_rq(SCpnt); 2282 struct scsi_disk *sdkp = scsi_disk(req->q->disk); 2283 int sense_valid = 0; 2284 int sense_deferred = 0; 2285 2286 switch (req_op(req)) { 2287 case REQ_OP_DISCARD: 2288 case REQ_OP_WRITE_ZEROES: 2289 case REQ_OP_ZONE_RESET: 2290 case REQ_OP_ZONE_RESET_ALL: 2291 case REQ_OP_ZONE_OPEN: 2292 case REQ_OP_ZONE_CLOSE: 2293 case REQ_OP_ZONE_FINISH: 2294 if (!result) { 2295 good_bytes = blk_rq_bytes(req); 2296 scsi_set_resid(SCpnt, 0); 2297 } else { 2298 good_bytes = 0; 2299 scsi_set_resid(SCpnt, blk_rq_bytes(req)); 2300 } 2301 break; 2302 default: 2303 /* 2304 * In case of bogus fw or device, we could end up having 2305 * an unaligned partial completion. Check this here and force 2306 * alignment. 2307 */ 2308 resid = scsi_get_resid(SCpnt); 2309 if (resid & (sector_size - 1)) { 2310 sd_printk(KERN_INFO, sdkp, 2311 "Unaligned partial completion (resid=%u, sector_sz=%u)\n", 2312 resid, sector_size); 2313 scsi_print_command(SCpnt); 2314 resid = min(scsi_bufflen(SCpnt), 2315 round_up(resid, sector_size)); 2316 scsi_set_resid(SCpnt, resid); 2317 } 2318 } 2319 2320 if (result) { 2321 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr); 2322 if (sense_valid) 2323 sense_deferred = scsi_sense_is_deferred(&sshdr); 2324 } 2325 sdkp->medium_access_timed_out = 0; 2326 2327 if (!scsi_status_is_check_condition(result) && 2328 (!sense_valid || sense_deferred)) 2329 goto out; 2330 2331 switch (sshdr.sense_key) { 2332 case HARDWARE_ERROR: 2333 case MEDIUM_ERROR: 2334 good_bytes = sd_completed_bytes(SCpnt); 2335 break; 2336 case RECOVERED_ERROR: 2337 good_bytes = scsi_bufflen(SCpnt); 2338 break; 2339 case NO_SENSE: 2340 /* This indicates a false check condition, so ignore it. An 2341 * unknown amount of data was transferred so treat it as an 2342 * error. 2343 */ 2344 SCpnt->result = 0; 2345 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 2346 break; 2347 case ABORTED_COMMAND: 2348 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */ 2349 good_bytes = sd_completed_bytes(SCpnt); 2350 break; 2351 case ILLEGAL_REQUEST: 2352 switch (sshdr.asc) { 2353 case 0x10: /* DIX: Host detected corruption */ 2354 good_bytes = sd_completed_bytes(SCpnt); 2355 break; 2356 case 0x20: /* INVALID COMMAND OPCODE */ 2357 case 0x24: /* INVALID FIELD IN CDB */ 2358 switch (SCpnt->cmnd[0]) { 2359 case UNMAP: 2360 sd_disable_discard(sdkp); 2361 break; 2362 case WRITE_SAME_16: 2363 case WRITE_SAME: 2364 if (SCpnt->cmnd[1] & 8) { /* UNMAP */ 2365 sd_disable_discard(sdkp); 2366 } else { 2367 sd_disable_write_same(sdkp); 2368 req->rq_flags |= RQF_QUIET; 2369 } 2370 break; 2371 } 2372 } 2373 break; 2374 default: 2375 break; 2376 } 2377 2378 out: 2379 if (sdkp->device->type == TYPE_ZBC) 2380 good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr); 2381 2382 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt, 2383 "sd_done: completed %d of %d bytes\n", 2384 good_bytes, scsi_bufflen(SCpnt))); 2385 2386 return good_bytes; 2387 } 2388 2389 /* 2390 * spinup disk - called only in sd_revalidate_disk() 2391 */ 2392 static void 2393 sd_spinup_disk(struct scsi_disk *sdkp) 2394 { 2395 static const u8 cmd[10] = { TEST_UNIT_READY }; 2396 unsigned long spintime_expire = 0; 2397 int spintime, sense_valid = 0; 2398 unsigned int the_result; 2399 struct scsi_sense_hdr sshdr; 2400 struct scsi_failure failure_defs[] = { 2401 /* Do not retry Medium Not Present */ 2402 { 2403 .sense = UNIT_ATTENTION, 2404 .asc = 0x3A, 2405 .ascq = SCMD_FAILURE_ASCQ_ANY, 2406 .result = SAM_STAT_CHECK_CONDITION, 2407 }, 2408 { 2409 .sense = NOT_READY, 2410 .asc = 0x3A, 2411 .ascq = SCMD_FAILURE_ASCQ_ANY, 2412 .result = SAM_STAT_CHECK_CONDITION, 2413 }, 2414 /* Retry when scsi_status_is_good would return false 3 times */ 2415 { 2416 .result = SCMD_FAILURE_STAT_ANY, 2417 .allowed = 3, 2418 }, 2419 {} 2420 }; 2421 struct scsi_failures failures = { 2422 .failure_definitions = failure_defs, 2423 }; 2424 const struct scsi_exec_args exec_args = { 2425 .sshdr = &sshdr, 2426 .failures = &failures, 2427 }; 2428 2429 spintime = 0; 2430 2431 /* Spin up drives, as required. Only do this at boot time */ 2432 /* Spinup needs to be done for module loads too. */ 2433 do { 2434 bool media_was_present = sdkp->media_present; 2435 2436 scsi_failures_reset_retries(&failures); 2437 2438 the_result = scsi_execute_cmd(sdkp->device, cmd, REQ_OP_DRV_IN, 2439 NULL, 0, SD_TIMEOUT, 2440 sdkp->max_retries, &exec_args); 2441 2442 2443 if (the_result > 0) { 2444 /* 2445 * If the drive has indicated to us that it doesn't 2446 * have any media in it, don't bother with any more 2447 * polling. 2448 */ 2449 if (media_not_present(sdkp, &sshdr)) { 2450 if (media_was_present) 2451 sd_printk(KERN_NOTICE, sdkp, 2452 "Media removed, stopped polling\n"); 2453 return; 2454 } 2455 sense_valid = scsi_sense_valid(&sshdr); 2456 } 2457 2458 if (!scsi_status_is_check_condition(the_result)) { 2459 /* no sense, TUR either succeeded or failed 2460 * with a status error */ 2461 if(!spintime && !scsi_status_is_good(the_result)) { 2462 sd_print_result(sdkp, "Test Unit Ready failed", 2463 the_result); 2464 } 2465 break; 2466 } 2467 2468 /* 2469 * The device does not want the automatic start to be issued. 2470 */ 2471 if (sdkp->device->no_start_on_add) 2472 break; 2473 2474 if (sense_valid && sshdr.sense_key == NOT_READY) { 2475 if (sshdr.asc == 4 && sshdr.ascq == 3) 2476 break; /* manual intervention required */ 2477 if (sshdr.asc == 4 && sshdr.ascq == 0xb) 2478 break; /* standby */ 2479 if (sshdr.asc == 4 && sshdr.ascq == 0xc) 2480 break; /* unavailable */ 2481 if (sshdr.asc == 4 && sshdr.ascq == 0x1b) 2482 break; /* sanitize in progress */ 2483 if (sshdr.asc == 4 && sshdr.ascq == 0x24) 2484 break; /* depopulation in progress */ 2485 if (sshdr.asc == 4 && sshdr.ascq == 0x25) 2486 break; /* depopulation restoration in progress */ 2487 /* 2488 * Issue command to spin up drive when not ready 2489 */ 2490 if (!spintime) { 2491 /* Return immediately and start spin cycle */ 2492 const u8 start_cmd[10] = { 2493 [0] = START_STOP, 2494 [1] = 1, 2495 [4] = sdkp->device->start_stop_pwr_cond ? 2496 0x11 : 1, 2497 }; 2498 2499 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk..."); 2500 scsi_execute_cmd(sdkp->device, start_cmd, 2501 REQ_OP_DRV_IN, NULL, 0, 2502 SD_TIMEOUT, sdkp->max_retries, 2503 &exec_args); 2504 spintime_expire = jiffies + 100 * HZ; 2505 spintime = 1; 2506 } 2507 /* Wait 1 second for next try */ 2508 msleep(1000); 2509 printk(KERN_CONT "."); 2510 2511 /* 2512 * Wait for USB flash devices with slow firmware. 2513 * Yes, this sense key/ASC combination shouldn't 2514 * occur here. It's characteristic of these devices. 2515 */ 2516 } else if (sense_valid && 2517 sshdr.sense_key == UNIT_ATTENTION && 2518 sshdr.asc == 0x28) { 2519 if (!spintime) { 2520 spintime_expire = jiffies + 5 * HZ; 2521 spintime = 1; 2522 } 2523 /* Wait 1 second for next try */ 2524 msleep(1000); 2525 } else { 2526 /* we don't understand the sense code, so it's 2527 * probably pointless to loop */ 2528 if(!spintime) { 2529 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n"); 2530 sd_print_sense_hdr(sdkp, &sshdr); 2531 } 2532 break; 2533 } 2534 2535 } while (spintime && time_before_eq(jiffies, spintime_expire)); 2536 2537 if (spintime) { 2538 if (scsi_status_is_good(the_result)) 2539 printk(KERN_CONT "ready\n"); 2540 else 2541 printk(KERN_CONT "not responding...\n"); 2542 } 2543 } 2544 2545 /* 2546 * Determine whether disk supports Data Integrity Field. 2547 */ 2548 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer) 2549 { 2550 struct scsi_device *sdp = sdkp->device; 2551 u8 type; 2552 2553 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) { 2554 sdkp->protection_type = 0; 2555 return 0; 2556 } 2557 2558 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */ 2559 2560 if (type > T10_PI_TYPE3_PROTECTION) { 2561 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \ 2562 " protection type %u. Disabling disk!\n", 2563 type); 2564 sdkp->protection_type = 0; 2565 return -ENODEV; 2566 } 2567 2568 sdkp->protection_type = type; 2569 2570 return 0; 2571 } 2572 2573 static void sd_config_protection(struct scsi_disk *sdkp, 2574 struct queue_limits *lim) 2575 { 2576 struct scsi_device *sdp = sdkp->device; 2577 2578 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY)) 2579 sd_dif_config_host(sdkp, lim); 2580 2581 if (!sdkp->protection_type) 2582 return; 2583 2584 if (!scsi_host_dif_capable(sdp->host, sdkp->protection_type)) { 2585 sd_first_printk(KERN_NOTICE, sdkp, 2586 "Disabling DIF Type %u protection\n", 2587 sdkp->protection_type); 2588 sdkp->protection_type = 0; 2589 } 2590 2591 sd_first_printk(KERN_NOTICE, sdkp, "Enabling DIF Type %u protection\n", 2592 sdkp->protection_type); 2593 } 2594 2595 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp, 2596 struct scsi_sense_hdr *sshdr, int sense_valid, 2597 int the_result) 2598 { 2599 if (sense_valid) 2600 sd_print_sense_hdr(sdkp, sshdr); 2601 else 2602 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n"); 2603 2604 /* 2605 * Set dirty bit for removable devices if not ready - 2606 * sometimes drives will not report this properly. 2607 */ 2608 if (sdp->removable && 2609 sense_valid && sshdr->sense_key == NOT_READY) 2610 set_media_not_present(sdkp); 2611 2612 /* 2613 * We used to set media_present to 0 here to indicate no media 2614 * in the drive, but some drives fail read capacity even with 2615 * media present, so we can't do that. 2616 */ 2617 sdkp->capacity = 0; /* unknown mapped to zero - as usual */ 2618 } 2619 2620 #define RC16_LEN 32 2621 #if RC16_LEN > SD_BUF_SIZE 2622 #error RC16_LEN must not be more than SD_BUF_SIZE 2623 #endif 2624 2625 #define READ_CAPACITY_RETRIES_ON_RESET 10 2626 2627 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp, 2628 struct queue_limits *lim, unsigned char *buffer) 2629 { 2630 unsigned char cmd[16]; 2631 struct scsi_sense_hdr sshdr; 2632 const struct scsi_exec_args exec_args = { 2633 .sshdr = &sshdr, 2634 }; 2635 int sense_valid = 0; 2636 int the_result; 2637 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2638 unsigned int alignment; 2639 unsigned long long lba; 2640 unsigned sector_size; 2641 2642 if (sdp->no_read_capacity_16) 2643 return -EINVAL; 2644 2645 do { 2646 memset(cmd, 0, 16); 2647 cmd[0] = SERVICE_ACTION_IN_16; 2648 cmd[1] = SAI_READ_CAPACITY_16; 2649 cmd[13] = RC16_LEN; 2650 memset(buffer, 0, RC16_LEN); 2651 2652 the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, 2653 buffer, RC16_LEN, SD_TIMEOUT, 2654 sdkp->max_retries, &exec_args); 2655 if (the_result > 0) { 2656 if (media_not_present(sdkp, &sshdr)) 2657 return -ENODEV; 2658 2659 sense_valid = scsi_sense_valid(&sshdr); 2660 if (sense_valid && 2661 sshdr.sense_key == ILLEGAL_REQUEST && 2662 (sshdr.asc == 0x20 || sshdr.asc == 0x24) && 2663 sshdr.ascq == 0x00) 2664 /* Invalid Command Operation Code or 2665 * Invalid Field in CDB, just retry 2666 * silently with RC10 */ 2667 return -EINVAL; 2668 if (sense_valid && 2669 sshdr.sense_key == UNIT_ATTENTION && 2670 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2671 /* Device reset might occur several times, 2672 * give it one more chance */ 2673 if (--reset_retries > 0) 2674 continue; 2675 } 2676 retries--; 2677 2678 } while (the_result && retries); 2679 2680 if (the_result) { 2681 sd_print_result(sdkp, "Read Capacity(16) failed", the_result); 2682 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2683 return -EINVAL; 2684 } 2685 2686 sector_size = get_unaligned_be32(&buffer[8]); 2687 lba = get_unaligned_be64(&buffer[0]); 2688 2689 if (sd_read_protection_type(sdkp, buffer) < 0) { 2690 sdkp->capacity = 0; 2691 return -ENODEV; 2692 } 2693 2694 /* Logical blocks per physical block exponent */ 2695 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size; 2696 2697 /* RC basis */ 2698 sdkp->rc_basis = (buffer[12] >> 4) & 0x3; 2699 2700 /* Lowest aligned logical block */ 2701 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size; 2702 lim->alignment_offset = alignment; 2703 if (alignment && sdkp->first_scan) 2704 sd_printk(KERN_NOTICE, sdkp, 2705 "physical block alignment offset: %u\n", alignment); 2706 2707 if (buffer[14] & 0x80) { /* LBPME */ 2708 sdkp->lbpme = 1; 2709 2710 if (buffer[14] & 0x40) /* LBPRZ */ 2711 sdkp->lbprz = 1; 2712 2713 sd_config_discard(sdkp, lim, SD_LBP_WS16); 2714 } 2715 2716 sdkp->capacity = lba + 1; 2717 return sector_size; 2718 } 2719 2720 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp, 2721 unsigned char *buffer) 2722 { 2723 static const u8 cmd[10] = { READ_CAPACITY }; 2724 struct scsi_sense_hdr sshdr; 2725 struct scsi_failure failure_defs[] = { 2726 /* Do not retry Medium Not Present */ 2727 { 2728 .sense = UNIT_ATTENTION, 2729 .asc = 0x3A, 2730 .result = SAM_STAT_CHECK_CONDITION, 2731 }, 2732 { 2733 .sense = NOT_READY, 2734 .asc = 0x3A, 2735 .result = SAM_STAT_CHECK_CONDITION, 2736 }, 2737 /* Device reset might occur several times so retry a lot */ 2738 { 2739 .sense = UNIT_ATTENTION, 2740 .asc = 0x29, 2741 .allowed = READ_CAPACITY_RETRIES_ON_RESET, 2742 .result = SAM_STAT_CHECK_CONDITION, 2743 }, 2744 /* Any other error not listed above retry 3 times */ 2745 { 2746 .result = SCMD_FAILURE_RESULT_ANY, 2747 .allowed = 3, 2748 }, 2749 {} 2750 }; 2751 struct scsi_failures failures = { 2752 .failure_definitions = failure_defs, 2753 }; 2754 const struct scsi_exec_args exec_args = { 2755 .sshdr = &sshdr, 2756 .failures = &failures, 2757 }; 2758 int sense_valid = 0; 2759 int the_result; 2760 sector_t lba; 2761 unsigned sector_size; 2762 2763 memset(buffer, 0, 8); 2764 2765 the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, buffer, 2766 8, SD_TIMEOUT, sdkp->max_retries, 2767 &exec_args); 2768 2769 if (the_result > 0) { 2770 sense_valid = scsi_sense_valid(&sshdr); 2771 2772 if (media_not_present(sdkp, &sshdr)) 2773 return -ENODEV; 2774 } 2775 2776 if (the_result) { 2777 sd_print_result(sdkp, "Read Capacity(10) failed", the_result); 2778 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2779 return -EINVAL; 2780 } 2781 2782 sector_size = get_unaligned_be32(&buffer[4]); 2783 lba = get_unaligned_be32(&buffer[0]); 2784 2785 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) { 2786 /* Some buggy (usb cardreader) devices return an lba of 2787 0xffffffff when the want to report a size of 0 (with 2788 which they really mean no media is present) */ 2789 sdkp->capacity = 0; 2790 sdkp->physical_block_size = sector_size; 2791 return sector_size; 2792 } 2793 2794 sdkp->capacity = lba + 1; 2795 sdkp->physical_block_size = sector_size; 2796 return sector_size; 2797 } 2798 2799 static int sd_try_rc16_first(struct scsi_device *sdp) 2800 { 2801 if (sdp->host->max_cmd_len < 16) 2802 return 0; 2803 if (sdp->try_rc_10_first) 2804 return 0; 2805 if (sdp->scsi_level > SCSI_SPC_2) 2806 return 1; 2807 if (scsi_device_protection(sdp)) 2808 return 1; 2809 return 0; 2810 } 2811 2812 /* 2813 * read disk capacity 2814 */ 2815 static void 2816 sd_read_capacity(struct scsi_disk *sdkp, struct queue_limits *lim, 2817 unsigned char *buffer) 2818 { 2819 int sector_size; 2820 struct scsi_device *sdp = sdkp->device; 2821 2822 if (sd_try_rc16_first(sdp)) { 2823 sector_size = read_capacity_16(sdkp, sdp, lim, buffer); 2824 if (sector_size == -EOVERFLOW) 2825 goto got_data; 2826 if (sector_size == -ENODEV) 2827 return; 2828 if (sector_size < 0) 2829 sector_size = read_capacity_10(sdkp, sdp, buffer); 2830 if (sector_size < 0) 2831 return; 2832 } else { 2833 sector_size = read_capacity_10(sdkp, sdp, buffer); 2834 if (sector_size == -EOVERFLOW) 2835 goto got_data; 2836 if (sector_size < 0) 2837 return; 2838 if ((sizeof(sdkp->capacity) > 4) && 2839 (sdkp->capacity > 0xffffffffULL)) { 2840 int old_sector_size = sector_size; 2841 sd_printk(KERN_NOTICE, sdkp, "Very big device. " 2842 "Trying to use READ CAPACITY(16).\n"); 2843 sector_size = read_capacity_16(sdkp, sdp, lim, buffer); 2844 if (sector_size < 0) { 2845 sd_printk(KERN_NOTICE, sdkp, 2846 "Using 0xffffffff as device size\n"); 2847 sdkp->capacity = 1 + (sector_t) 0xffffffff; 2848 sector_size = old_sector_size; 2849 goto got_data; 2850 } 2851 /* Remember that READ CAPACITY(16) succeeded */ 2852 sdp->try_rc_10_first = 0; 2853 } 2854 } 2855 2856 /* Some devices are known to return the total number of blocks, 2857 * not the highest block number. Some devices have versions 2858 * which do this and others which do not. Some devices we might 2859 * suspect of doing this but we don't know for certain. 2860 * 2861 * If we know the reported capacity is wrong, decrement it. If 2862 * we can only guess, then assume the number of blocks is even 2863 * (usually true but not always) and err on the side of lowering 2864 * the capacity. 2865 */ 2866 if (sdp->fix_capacity || 2867 (sdp->guess_capacity && (sdkp->capacity & 0x01))) { 2868 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count " 2869 "from its reported value: %llu\n", 2870 (unsigned long long) sdkp->capacity); 2871 --sdkp->capacity; 2872 } 2873 2874 got_data: 2875 if (sector_size == 0) { 2876 sector_size = 512; 2877 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, " 2878 "assuming 512.\n"); 2879 } 2880 2881 if (sector_size != 512 && 2882 sector_size != 1024 && 2883 sector_size != 2048 && 2884 sector_size != 4096) { 2885 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n", 2886 sector_size); 2887 /* 2888 * The user might want to re-format the drive with 2889 * a supported sectorsize. Once this happens, it 2890 * would be relatively trivial to set the thing up. 2891 * For this reason, we leave the thing in the table. 2892 */ 2893 sdkp->capacity = 0; 2894 /* 2895 * set a bogus sector size so the normal read/write 2896 * logic in the block layer will eventually refuse any 2897 * request on this device without tripping over power 2898 * of two sector size assumptions 2899 */ 2900 sector_size = 512; 2901 } 2902 lim->logical_block_size = sector_size; 2903 lim->physical_block_size = sdkp->physical_block_size; 2904 sdkp->device->sector_size = sector_size; 2905 2906 if (sdkp->capacity > 0xffffffff) 2907 sdp->use_16_for_rw = 1; 2908 2909 } 2910 2911 /* 2912 * Print disk capacity 2913 */ 2914 static void 2915 sd_print_capacity(struct scsi_disk *sdkp, 2916 sector_t old_capacity) 2917 { 2918 int sector_size = sdkp->device->sector_size; 2919 char cap_str_2[10], cap_str_10[10]; 2920 2921 if (!sdkp->first_scan && old_capacity == sdkp->capacity) 2922 return; 2923 2924 string_get_size(sdkp->capacity, sector_size, 2925 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2)); 2926 string_get_size(sdkp->capacity, sector_size, 2927 STRING_UNITS_10, cap_str_10, sizeof(cap_str_10)); 2928 2929 sd_printk(KERN_NOTICE, sdkp, 2930 "%llu %d-byte logical blocks: (%s/%s)\n", 2931 (unsigned long long)sdkp->capacity, 2932 sector_size, cap_str_10, cap_str_2); 2933 2934 if (sdkp->physical_block_size != sector_size) 2935 sd_printk(KERN_NOTICE, sdkp, 2936 "%u-byte physical blocks\n", 2937 sdkp->physical_block_size); 2938 } 2939 2940 /* called with buffer of length 512 */ 2941 static inline int 2942 sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage, 2943 unsigned char *buffer, int len, struct scsi_mode_data *data, 2944 struct scsi_sense_hdr *sshdr) 2945 { 2946 /* 2947 * If we must use MODE SENSE(10), make sure that the buffer length 2948 * is at least 8 bytes so that the mode sense header fits. 2949 */ 2950 if (sdkp->device->use_10_for_ms && len < 8) 2951 len = 8; 2952 2953 return scsi_mode_sense(sdkp->device, dbd, modepage, 0, buffer, len, 2954 SD_TIMEOUT, sdkp->max_retries, data, sshdr); 2955 } 2956 2957 /* 2958 * read write protect setting, if possible - called only in sd_revalidate_disk() 2959 * called with buffer of length SD_BUF_SIZE 2960 */ 2961 static void 2962 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer) 2963 { 2964 int res; 2965 struct scsi_device *sdp = sdkp->device; 2966 struct scsi_mode_data data; 2967 int old_wp = sdkp->write_prot; 2968 2969 set_disk_ro(sdkp->disk, 0); 2970 if (sdp->skip_ms_page_3f) { 2971 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n"); 2972 return; 2973 } 2974 2975 if (sdp->use_192_bytes_for_3f) { 2976 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL); 2977 } else { 2978 /* 2979 * First attempt: ask for all pages (0x3F), but only 4 bytes. 2980 * We have to start carefully: some devices hang if we ask 2981 * for more than is available. 2982 */ 2983 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL); 2984 2985 /* 2986 * Second attempt: ask for page 0 When only page 0 is 2987 * implemented, a request for page 3F may return Sense Key 2988 * 5: Illegal Request, Sense Code 24: Invalid field in 2989 * CDB. 2990 */ 2991 if (res < 0) 2992 res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL); 2993 2994 /* 2995 * Third attempt: ask 255 bytes, as we did earlier. 2996 */ 2997 if (res < 0) 2998 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255, 2999 &data, NULL); 3000 } 3001 3002 if (res < 0) { 3003 sd_first_printk(KERN_WARNING, sdkp, 3004 "Test WP failed, assume Write Enabled\n"); 3005 } else { 3006 sdkp->write_prot = ((data.device_specific & 0x80) != 0); 3007 set_disk_ro(sdkp->disk, sdkp->write_prot); 3008 if (sdkp->first_scan || old_wp != sdkp->write_prot) { 3009 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n", 3010 sdkp->write_prot ? "on" : "off"); 3011 sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer); 3012 } 3013 } 3014 } 3015 3016 /* 3017 * sd_read_cache_type - called only from sd_revalidate_disk() 3018 * called with buffer of length SD_BUF_SIZE 3019 */ 3020 static void 3021 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer) 3022 { 3023 int len = 0, res; 3024 struct scsi_device *sdp = sdkp->device; 3025 3026 int dbd; 3027 int modepage; 3028 int first_len; 3029 struct scsi_mode_data data; 3030 struct scsi_sense_hdr sshdr; 3031 int old_wce = sdkp->WCE; 3032 int old_rcd = sdkp->RCD; 3033 int old_dpofua = sdkp->DPOFUA; 3034 3035 3036 if (sdkp->cache_override) 3037 return; 3038 3039 first_len = 4; 3040 if (sdp->skip_ms_page_8) { 3041 if (sdp->type == TYPE_RBC) 3042 goto defaults; 3043 else { 3044 if (sdp->skip_ms_page_3f) 3045 goto defaults; 3046 modepage = 0x3F; 3047 if (sdp->use_192_bytes_for_3f) 3048 first_len = 192; 3049 dbd = 0; 3050 } 3051 } else if (sdp->type == TYPE_RBC) { 3052 modepage = 6; 3053 dbd = 8; 3054 } else { 3055 modepage = 8; 3056 dbd = 0; 3057 } 3058 3059 /* cautiously ask */ 3060 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len, 3061 &data, &sshdr); 3062 3063 if (res < 0) 3064 goto bad_sense; 3065 3066 if (!data.header_length) { 3067 modepage = 6; 3068 first_len = 0; 3069 sd_first_printk(KERN_ERR, sdkp, 3070 "Missing header in MODE_SENSE response\n"); 3071 } 3072 3073 /* that went OK, now ask for the proper length */ 3074 len = data.length; 3075 3076 /* 3077 * We're only interested in the first three bytes, actually. 3078 * But the data cache page is defined for the first 20. 3079 */ 3080 if (len < 3) 3081 goto bad_sense; 3082 else if (len > SD_BUF_SIZE) { 3083 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter " 3084 "data from %d to %d bytes\n", len, SD_BUF_SIZE); 3085 len = SD_BUF_SIZE; 3086 } 3087 if (modepage == 0x3F && sdp->use_192_bytes_for_3f) 3088 len = 192; 3089 3090 /* Get the data */ 3091 if (len > first_len) 3092 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len, 3093 &data, &sshdr); 3094 3095 if (!res) { 3096 int offset = data.header_length + data.block_descriptor_length; 3097 3098 while (offset < len) { 3099 u8 page_code = buffer[offset] & 0x3F; 3100 u8 spf = buffer[offset] & 0x40; 3101 3102 if (page_code == 8 || page_code == 6) { 3103 /* We're interested only in the first 3 bytes. 3104 */ 3105 if (len - offset <= 2) { 3106 sd_first_printk(KERN_ERR, sdkp, 3107 "Incomplete mode parameter " 3108 "data\n"); 3109 goto defaults; 3110 } else { 3111 modepage = page_code; 3112 goto Page_found; 3113 } 3114 } else { 3115 /* Go to the next page */ 3116 if (spf && len - offset > 3) 3117 offset += 4 + (buffer[offset+2] << 8) + 3118 buffer[offset+3]; 3119 else if (!spf && len - offset > 1) 3120 offset += 2 + buffer[offset+1]; 3121 else { 3122 sd_first_printk(KERN_ERR, sdkp, 3123 "Incomplete mode " 3124 "parameter data\n"); 3125 goto defaults; 3126 } 3127 } 3128 } 3129 3130 sd_first_printk(KERN_WARNING, sdkp, 3131 "No Caching mode page found\n"); 3132 goto defaults; 3133 3134 Page_found: 3135 if (modepage == 8) { 3136 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0); 3137 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0); 3138 } else { 3139 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0); 3140 sdkp->RCD = 0; 3141 } 3142 3143 sdkp->DPOFUA = (data.device_specific & 0x10) != 0; 3144 if (sdp->broken_fua) { 3145 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n"); 3146 sdkp->DPOFUA = 0; 3147 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw && 3148 !sdkp->device->use_16_for_rw) { 3149 sd_first_printk(KERN_NOTICE, sdkp, 3150 "Uses READ/WRITE(6), disabling FUA\n"); 3151 sdkp->DPOFUA = 0; 3152 } 3153 3154 /* No cache flush allowed for write protected devices */ 3155 if (sdkp->WCE && sdkp->write_prot) 3156 sdkp->WCE = 0; 3157 3158 if (sdkp->first_scan || old_wce != sdkp->WCE || 3159 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA) 3160 sd_printk(KERN_NOTICE, sdkp, 3161 "Write cache: %s, read cache: %s, %s\n", 3162 sdkp->WCE ? "enabled" : "disabled", 3163 sdkp->RCD ? "disabled" : "enabled", 3164 sdkp->DPOFUA ? "supports DPO and FUA" 3165 : "doesn't support DPO or FUA"); 3166 3167 return; 3168 } 3169 3170 bad_sense: 3171 if (res == -EIO && scsi_sense_valid(&sshdr) && 3172 sshdr.sense_key == ILLEGAL_REQUEST && 3173 sshdr.asc == 0x24 && sshdr.ascq == 0x0) 3174 /* Invalid field in CDB */ 3175 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n"); 3176 else 3177 sd_first_printk(KERN_ERR, sdkp, 3178 "Asking for cache data failed\n"); 3179 3180 defaults: 3181 if (sdp->wce_default_on) { 3182 sd_first_printk(KERN_NOTICE, sdkp, 3183 "Assuming drive cache: write back\n"); 3184 sdkp->WCE = 1; 3185 } else { 3186 sd_first_printk(KERN_WARNING, sdkp, 3187 "Assuming drive cache: write through\n"); 3188 sdkp->WCE = 0; 3189 } 3190 sdkp->RCD = 0; 3191 sdkp->DPOFUA = 0; 3192 } 3193 3194 static bool sd_is_perm_stream(struct scsi_disk *sdkp, unsigned int stream_id) 3195 { 3196 u8 cdb[16] = { SERVICE_ACTION_IN_16, SAI_GET_STREAM_STATUS }; 3197 struct { 3198 struct scsi_stream_status_header h; 3199 struct scsi_stream_status s; 3200 } buf; 3201 struct scsi_device *sdev = sdkp->device; 3202 struct scsi_sense_hdr sshdr; 3203 const struct scsi_exec_args exec_args = { 3204 .sshdr = &sshdr, 3205 }; 3206 int res; 3207 3208 put_unaligned_be16(stream_id, &cdb[4]); 3209 put_unaligned_be32(sizeof(buf), &cdb[10]); 3210 3211 res = scsi_execute_cmd(sdev, cdb, REQ_OP_DRV_IN, &buf, sizeof(buf), 3212 SD_TIMEOUT, sdkp->max_retries, &exec_args); 3213 if (res < 0) 3214 return false; 3215 if (scsi_status_is_check_condition(res) && scsi_sense_valid(&sshdr)) 3216 sd_print_sense_hdr(sdkp, &sshdr); 3217 if (res) 3218 return false; 3219 if (get_unaligned_be32(&buf.h.len) < sizeof(struct scsi_stream_status)) 3220 return false; 3221 return buf.h.stream_status[0].perm; 3222 } 3223 3224 static void sd_read_io_hints(struct scsi_disk *sdkp, unsigned char *buffer) 3225 { 3226 struct scsi_device *sdp = sdkp->device; 3227 const struct scsi_io_group_descriptor *desc, *start, *end; 3228 u16 permanent_stream_count_old; 3229 struct scsi_sense_hdr sshdr; 3230 struct scsi_mode_data data; 3231 int res; 3232 3233 res = scsi_mode_sense(sdp, /*dbd=*/0x8, /*modepage=*/0x0a, 3234 /*subpage=*/0x05, buffer, SD_BUF_SIZE, SD_TIMEOUT, 3235 sdkp->max_retries, &data, &sshdr); 3236 if (res < 0) 3237 return; 3238 start = (void *)buffer + data.header_length + 16; 3239 end = (void *)buffer + ALIGN_DOWN(data.header_length + data.length, 3240 sizeof(*end)); 3241 /* 3242 * From "SBC-5 Constrained Streams with Data Lifetimes": Device severs 3243 * should assign the lowest numbered stream identifiers to permanent 3244 * streams. 3245 */ 3246 for (desc = start; desc < end; desc++) 3247 if (!desc->st_enble || !sd_is_perm_stream(sdkp, desc - start)) 3248 break; 3249 permanent_stream_count_old = sdkp->permanent_stream_count; 3250 sdkp->permanent_stream_count = desc - start; 3251 if (sdkp->rscs && sdkp->permanent_stream_count < 2) 3252 sd_printk(KERN_INFO, sdkp, 3253 "Unexpected: RSCS has been set and the permanent stream count is %u\n", 3254 sdkp->permanent_stream_count); 3255 else if (sdkp->permanent_stream_count != permanent_stream_count_old) 3256 sd_printk(KERN_INFO, sdkp, "permanent stream count = %d\n", 3257 sdkp->permanent_stream_count); 3258 } 3259 3260 /* 3261 * The ATO bit indicates whether the DIF application tag is available 3262 * for use by the operating system. 3263 */ 3264 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer) 3265 { 3266 int res, offset; 3267 struct scsi_device *sdp = sdkp->device; 3268 struct scsi_mode_data data; 3269 struct scsi_sense_hdr sshdr; 3270 3271 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 3272 return; 3273 3274 if (sdkp->protection_type == 0) 3275 return; 3276 3277 res = scsi_mode_sense(sdp, 1, 0x0a, 0, buffer, 36, SD_TIMEOUT, 3278 sdkp->max_retries, &data, &sshdr); 3279 3280 if (res < 0 || !data.header_length || 3281 data.length < 6) { 3282 sd_first_printk(KERN_WARNING, sdkp, 3283 "getting Control mode page failed, assume no ATO\n"); 3284 3285 if (res == -EIO && scsi_sense_valid(&sshdr)) 3286 sd_print_sense_hdr(sdkp, &sshdr); 3287 3288 return; 3289 } 3290 3291 offset = data.header_length + data.block_descriptor_length; 3292 3293 if ((buffer[offset] & 0x3f) != 0x0a) { 3294 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n"); 3295 return; 3296 } 3297 3298 if ((buffer[offset + 5] & 0x80) == 0) 3299 return; 3300 3301 sdkp->ATO = 1; 3302 3303 return; 3304 } 3305 3306 static unsigned int sd_discard_mode(struct scsi_disk *sdkp) 3307 { 3308 if (!sdkp->lbpvpd) { 3309 /* LBP VPD page not provided */ 3310 if (sdkp->max_unmap_blocks) 3311 return SD_LBP_UNMAP; 3312 return SD_LBP_WS16; 3313 } 3314 3315 /* LBP VPD page tells us what to use */ 3316 if (sdkp->lbpu && sdkp->max_unmap_blocks) 3317 return SD_LBP_UNMAP; 3318 if (sdkp->lbpws) 3319 return SD_LBP_WS16; 3320 if (sdkp->lbpws10) 3321 return SD_LBP_WS10; 3322 return SD_LBP_DISABLE; 3323 } 3324 3325 /* 3326 * Query disk device for preferred I/O sizes. 3327 */ 3328 static void sd_read_block_limits(struct scsi_disk *sdkp, 3329 struct queue_limits *lim) 3330 { 3331 struct scsi_vpd *vpd; 3332 3333 rcu_read_lock(); 3334 3335 vpd = rcu_dereference(sdkp->device->vpd_pgb0); 3336 if (!vpd || vpd->len < 16) 3337 goto out; 3338 3339 sdkp->min_xfer_blocks = get_unaligned_be16(&vpd->data[6]); 3340 sdkp->max_xfer_blocks = get_unaligned_be32(&vpd->data[8]); 3341 sdkp->opt_xfer_blocks = get_unaligned_be32(&vpd->data[12]); 3342 3343 if (vpd->len >= 64) { 3344 unsigned int lba_count, desc_count; 3345 3346 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&vpd->data[36]); 3347 3348 if (!sdkp->lbpme) 3349 goto config_atomic; 3350 3351 lba_count = get_unaligned_be32(&vpd->data[20]); 3352 desc_count = get_unaligned_be32(&vpd->data[24]); 3353 3354 if (lba_count && desc_count) 3355 sdkp->max_unmap_blocks = lba_count; 3356 3357 sdkp->unmap_granularity = get_unaligned_be32(&vpd->data[28]); 3358 3359 if (vpd->data[32] & 0x80) 3360 sdkp->unmap_alignment = 3361 get_unaligned_be32(&vpd->data[32]) & ~(1 << 31); 3362 3363 sd_config_discard(sdkp, lim, sd_discard_mode(sdkp)); 3364 3365 config_atomic: 3366 sdkp->max_atomic = get_unaligned_be32(&vpd->data[44]); 3367 sdkp->atomic_alignment = get_unaligned_be32(&vpd->data[48]); 3368 sdkp->atomic_granularity = get_unaligned_be32(&vpd->data[52]); 3369 sdkp->max_atomic_with_boundary = get_unaligned_be32(&vpd->data[56]); 3370 sdkp->max_atomic_boundary = get_unaligned_be32(&vpd->data[60]); 3371 3372 sd_config_atomic(sdkp, lim); 3373 } 3374 3375 out: 3376 rcu_read_unlock(); 3377 } 3378 3379 /* Parse the Block Limits Extension VPD page (0xb7) */ 3380 static void sd_read_block_limits_ext(struct scsi_disk *sdkp) 3381 { 3382 struct scsi_vpd *vpd; 3383 3384 rcu_read_lock(); 3385 vpd = rcu_dereference(sdkp->device->vpd_pgb7); 3386 if (vpd && vpd->len >= 2) 3387 sdkp->rscs = vpd->data[5] & 1; 3388 rcu_read_unlock(); 3389 } 3390 3391 /* Query block device characteristics */ 3392 static void sd_read_block_characteristics(struct scsi_disk *sdkp, 3393 struct queue_limits *lim) 3394 { 3395 struct scsi_vpd *vpd; 3396 u16 rot; 3397 3398 rcu_read_lock(); 3399 vpd = rcu_dereference(sdkp->device->vpd_pgb1); 3400 3401 if (!vpd || vpd->len < 8) { 3402 rcu_read_unlock(); 3403 return; 3404 } 3405 3406 rot = get_unaligned_be16(&vpd->data[4]); 3407 sdkp->zoned = (vpd->data[8] >> 4) & 3; 3408 rcu_read_unlock(); 3409 3410 if (rot == 1) 3411 lim->features &= ~(BLK_FEAT_ROTATIONAL | BLK_FEAT_ADD_RANDOM); 3412 3413 if (!sdkp->first_scan) 3414 return; 3415 3416 if (sdkp->device->type == TYPE_ZBC) 3417 sd_printk(KERN_NOTICE, sdkp, "Host-managed zoned block device\n"); 3418 else if (sdkp->zoned == 1) 3419 sd_printk(KERN_NOTICE, sdkp, "Host-aware SMR disk used as regular disk\n"); 3420 else if (sdkp->zoned == 2) 3421 sd_printk(KERN_NOTICE, sdkp, "Drive-managed SMR disk\n"); 3422 } 3423 3424 /** 3425 * sd_read_block_provisioning - Query provisioning VPD page 3426 * @sdkp: disk to query 3427 */ 3428 static void sd_read_block_provisioning(struct scsi_disk *sdkp) 3429 { 3430 struct scsi_vpd *vpd; 3431 3432 if (sdkp->lbpme == 0) 3433 return; 3434 3435 rcu_read_lock(); 3436 vpd = rcu_dereference(sdkp->device->vpd_pgb2); 3437 3438 if (!vpd || vpd->len < 8) { 3439 rcu_read_unlock(); 3440 return; 3441 } 3442 3443 sdkp->lbpvpd = 1; 3444 sdkp->lbpu = (vpd->data[5] >> 7) & 1; /* UNMAP */ 3445 sdkp->lbpws = (vpd->data[5] >> 6) & 1; /* WRITE SAME(16) w/ UNMAP */ 3446 sdkp->lbpws10 = (vpd->data[5] >> 5) & 1; /* WRITE SAME(10) w/ UNMAP */ 3447 rcu_read_unlock(); 3448 } 3449 3450 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer) 3451 { 3452 struct scsi_device *sdev = sdkp->device; 3453 3454 if (sdev->host->no_write_same) { 3455 sdev->no_write_same = 1; 3456 3457 return; 3458 } 3459 3460 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY, 0) < 0) { 3461 struct scsi_vpd *vpd; 3462 3463 sdev->no_report_opcodes = 1; 3464 3465 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION 3466 * CODES is unsupported and the device has an ATA 3467 * Information VPD page (SAT). 3468 */ 3469 rcu_read_lock(); 3470 vpd = rcu_dereference(sdev->vpd_pg89); 3471 if (vpd) 3472 sdev->no_write_same = 1; 3473 rcu_read_unlock(); 3474 } 3475 3476 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16, 0) == 1) 3477 sdkp->ws16 = 1; 3478 3479 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME, 0) == 1) 3480 sdkp->ws10 = 1; 3481 } 3482 3483 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer) 3484 { 3485 struct scsi_device *sdev = sdkp->device; 3486 3487 if (!sdev->security_supported) 3488 return; 3489 3490 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3491 SECURITY_PROTOCOL_IN, 0) == 1 && 3492 scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3493 SECURITY_PROTOCOL_OUT, 0) == 1) 3494 sdkp->security = 1; 3495 } 3496 3497 static inline sector_t sd64_to_sectors(struct scsi_disk *sdkp, u8 *buf) 3498 { 3499 return logical_to_sectors(sdkp->device, get_unaligned_be64(buf)); 3500 } 3501 3502 /** 3503 * sd_read_cpr - Query concurrent positioning ranges 3504 * @sdkp: disk to query 3505 */ 3506 static void sd_read_cpr(struct scsi_disk *sdkp) 3507 { 3508 struct blk_independent_access_ranges *iars = NULL; 3509 unsigned char *buffer = NULL; 3510 unsigned int nr_cpr = 0; 3511 int i, vpd_len, buf_len = SD_BUF_SIZE; 3512 u8 *desc; 3513 3514 /* 3515 * We need to have the capacity set first for the block layer to be 3516 * able to check the ranges. 3517 */ 3518 if (sdkp->first_scan) 3519 return; 3520 3521 if (!sdkp->capacity) 3522 goto out; 3523 3524 /* 3525 * Concurrent Positioning Ranges VPD: there can be at most 256 ranges, 3526 * leading to a maximum page size of 64 + 256*32 bytes. 3527 */ 3528 buf_len = 64 + 256*32; 3529 buffer = kmalloc(buf_len, GFP_KERNEL); 3530 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb9, buffer, buf_len)) 3531 goto out; 3532 3533 /* We must have at least a 64B header and one 32B range descriptor */ 3534 vpd_len = get_unaligned_be16(&buffer[2]) + 4; 3535 if (vpd_len > buf_len || vpd_len < 64 + 32 || (vpd_len & 31)) { 3536 sd_printk(KERN_ERR, sdkp, 3537 "Invalid Concurrent Positioning Ranges VPD page\n"); 3538 goto out; 3539 } 3540 3541 nr_cpr = (vpd_len - 64) / 32; 3542 if (nr_cpr == 1) { 3543 nr_cpr = 0; 3544 goto out; 3545 } 3546 3547 iars = disk_alloc_independent_access_ranges(sdkp->disk, nr_cpr); 3548 if (!iars) { 3549 nr_cpr = 0; 3550 goto out; 3551 } 3552 3553 desc = &buffer[64]; 3554 for (i = 0; i < nr_cpr; i++, desc += 32) { 3555 if (desc[0] != i) { 3556 sd_printk(KERN_ERR, sdkp, 3557 "Invalid Concurrent Positioning Range number\n"); 3558 nr_cpr = 0; 3559 break; 3560 } 3561 3562 iars->ia_range[i].sector = sd64_to_sectors(sdkp, desc + 8); 3563 iars->ia_range[i].nr_sectors = sd64_to_sectors(sdkp, desc + 16); 3564 } 3565 3566 out: 3567 disk_set_independent_access_ranges(sdkp->disk, iars); 3568 if (nr_cpr && sdkp->nr_actuators != nr_cpr) { 3569 sd_printk(KERN_NOTICE, sdkp, 3570 "%u concurrent positioning ranges\n", nr_cpr); 3571 sdkp->nr_actuators = nr_cpr; 3572 } 3573 3574 kfree(buffer); 3575 } 3576 3577 static bool sd_validate_min_xfer_size(struct scsi_disk *sdkp) 3578 { 3579 struct scsi_device *sdp = sdkp->device; 3580 unsigned int min_xfer_bytes = 3581 logical_to_bytes(sdp, sdkp->min_xfer_blocks); 3582 3583 if (sdkp->min_xfer_blocks == 0) 3584 return false; 3585 3586 if (min_xfer_bytes & (sdkp->physical_block_size - 1)) { 3587 sd_first_printk(KERN_WARNING, sdkp, 3588 "Preferred minimum I/O size %u bytes not a " \ 3589 "multiple of physical block size (%u bytes)\n", 3590 min_xfer_bytes, sdkp->physical_block_size); 3591 sdkp->min_xfer_blocks = 0; 3592 return false; 3593 } 3594 3595 sd_first_printk(KERN_INFO, sdkp, "Preferred minimum I/O size %u bytes\n", 3596 min_xfer_bytes); 3597 return true; 3598 } 3599 3600 /* 3601 * Determine the device's preferred I/O size for reads and writes 3602 * unless the reported value is unreasonably small, large, not a 3603 * multiple of the physical block size, or simply garbage. 3604 */ 3605 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp, 3606 unsigned int dev_max) 3607 { 3608 struct scsi_device *sdp = sdkp->device; 3609 unsigned int opt_xfer_bytes = 3610 logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 3611 unsigned int min_xfer_bytes = 3612 logical_to_bytes(sdp, sdkp->min_xfer_blocks); 3613 3614 if (sdkp->opt_xfer_blocks == 0) 3615 return false; 3616 3617 if (sdkp->opt_xfer_blocks > dev_max) { 3618 sd_first_printk(KERN_WARNING, sdkp, 3619 "Optimal transfer size %u logical blocks " \ 3620 "> dev_max (%u logical blocks)\n", 3621 sdkp->opt_xfer_blocks, dev_max); 3622 return false; 3623 } 3624 3625 if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) { 3626 sd_first_printk(KERN_WARNING, sdkp, 3627 "Optimal transfer size %u logical blocks " \ 3628 "> sd driver limit (%u logical blocks)\n", 3629 sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS); 3630 return false; 3631 } 3632 3633 if (opt_xfer_bytes < PAGE_SIZE) { 3634 sd_first_printk(KERN_WARNING, sdkp, 3635 "Optimal transfer size %u bytes < " \ 3636 "PAGE_SIZE (%u bytes)\n", 3637 opt_xfer_bytes, (unsigned int)PAGE_SIZE); 3638 return false; 3639 } 3640 3641 if (min_xfer_bytes && opt_xfer_bytes % min_xfer_bytes) { 3642 sd_first_printk(KERN_WARNING, sdkp, 3643 "Optimal transfer size %u bytes not a " \ 3644 "multiple of preferred minimum block " \ 3645 "size (%u bytes)\n", 3646 opt_xfer_bytes, min_xfer_bytes); 3647 return false; 3648 } 3649 3650 if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) { 3651 sd_first_printk(KERN_WARNING, sdkp, 3652 "Optimal transfer size %u bytes not a " \ 3653 "multiple of physical block size (%u bytes)\n", 3654 opt_xfer_bytes, sdkp->physical_block_size); 3655 return false; 3656 } 3657 3658 sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n", 3659 opt_xfer_bytes); 3660 return true; 3661 } 3662 3663 static void sd_read_block_zero(struct scsi_disk *sdkp) 3664 { 3665 unsigned int buf_len = sdkp->device->sector_size; 3666 char *buffer, cmd[10] = { }; 3667 3668 buffer = kmalloc(buf_len, GFP_KERNEL); 3669 if (!buffer) 3670 return; 3671 3672 cmd[0] = READ_10; 3673 put_unaligned_be32(0, &cmd[2]); /* Logical block address 0 */ 3674 put_unaligned_be16(1, &cmd[7]); /* Transfer 1 logical block */ 3675 3676 scsi_execute_cmd(sdkp->device, cmd, REQ_OP_DRV_IN, buffer, buf_len, 3677 SD_TIMEOUT, sdkp->max_retries, NULL); 3678 kfree(buffer); 3679 } 3680 3681 /** 3682 * sd_revalidate_disk - called the first time a new disk is seen, 3683 * performs disk spin up, read_capacity, etc. 3684 * @disk: struct gendisk we care about 3685 **/ 3686 static int sd_revalidate_disk(struct gendisk *disk) 3687 { 3688 struct scsi_disk *sdkp = scsi_disk(disk); 3689 struct scsi_device *sdp = sdkp->device; 3690 sector_t old_capacity = sdkp->capacity; 3691 struct queue_limits lim; 3692 unsigned char *buffer; 3693 unsigned int dev_max; 3694 int err; 3695 3696 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, 3697 "sd_revalidate_disk\n")); 3698 3699 /* 3700 * If the device is offline, don't try and read capacity or any 3701 * of the other niceties. 3702 */ 3703 if (!scsi_device_online(sdp)) 3704 goto out; 3705 3706 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL); 3707 if (!buffer) { 3708 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory " 3709 "allocation failure.\n"); 3710 goto out; 3711 } 3712 3713 sd_spinup_disk(sdkp); 3714 3715 lim = queue_limits_start_update(sdkp->disk->queue); 3716 3717 /* 3718 * Without media there is no reason to ask; moreover, some devices 3719 * react badly if we do. 3720 */ 3721 if (sdkp->media_present) { 3722 sd_read_capacity(sdkp, &lim, buffer); 3723 /* 3724 * Some USB/UAS devices return generic values for mode pages 3725 * until the media has been accessed. Trigger a READ operation 3726 * to force the device to populate mode pages. 3727 */ 3728 if (sdp->read_before_ms) 3729 sd_read_block_zero(sdkp); 3730 /* 3731 * set the default to rotational. All non-rotational devices 3732 * support the block characteristics VPD page, which will 3733 * cause this to be updated correctly and any device which 3734 * doesn't support it should be treated as rotational. 3735 */ 3736 lim.features |= (BLK_FEAT_ROTATIONAL | BLK_FEAT_ADD_RANDOM); 3737 3738 if (scsi_device_supports_vpd(sdp)) { 3739 sd_read_block_provisioning(sdkp); 3740 sd_read_block_limits(sdkp, &lim); 3741 sd_read_block_limits_ext(sdkp); 3742 sd_read_block_characteristics(sdkp, &lim); 3743 sd_zbc_read_zones(sdkp, &lim, buffer); 3744 sd_read_cpr(sdkp); 3745 } 3746 3747 sd_print_capacity(sdkp, old_capacity); 3748 3749 sd_read_write_protect_flag(sdkp, buffer); 3750 sd_read_cache_type(sdkp, buffer); 3751 sd_read_io_hints(sdkp, buffer); 3752 sd_read_app_tag_own(sdkp, buffer); 3753 sd_read_write_same(sdkp, buffer); 3754 sd_read_security(sdkp, buffer); 3755 sd_config_protection(sdkp, &lim); 3756 } 3757 3758 /* 3759 * We now have all cache related info, determine how we deal 3760 * with flush requests. 3761 */ 3762 sd_set_flush_flag(sdkp, &lim); 3763 3764 /* Initial block count limit based on CDB TRANSFER LENGTH field size. */ 3765 dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS; 3766 3767 /* Some devices report a maximum block count for READ/WRITE requests. */ 3768 dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks); 3769 lim.max_dev_sectors = logical_to_sectors(sdp, dev_max); 3770 3771 if (sd_validate_min_xfer_size(sdkp)) 3772 lim.io_min = logical_to_bytes(sdp, sdkp->min_xfer_blocks); 3773 else 3774 lim.io_min = 0; 3775 3776 /* 3777 * Limit default to SCSI host optimal sector limit if set. There may be 3778 * an impact on performance for when the size of a request exceeds this 3779 * host limit. 3780 */ 3781 lim.io_opt = sdp->host->opt_sectors << SECTOR_SHIFT; 3782 if (sd_validate_opt_xfer_size(sdkp, dev_max)) { 3783 lim.io_opt = min_not_zero(lim.io_opt, 3784 logical_to_bytes(sdp, sdkp->opt_xfer_blocks)); 3785 } 3786 3787 sdkp->first_scan = 0; 3788 3789 set_capacity_and_notify(disk, logical_to_sectors(sdp, sdkp->capacity)); 3790 sd_config_write_same(sdkp, &lim); 3791 kfree(buffer); 3792 3793 blk_mq_freeze_queue(sdkp->disk->queue); 3794 err = queue_limits_commit_update(sdkp->disk->queue, &lim); 3795 blk_mq_unfreeze_queue(sdkp->disk->queue); 3796 if (err) 3797 return err; 3798 3799 /* 3800 * For a zoned drive, revalidating the zones can be done only once 3801 * the gendisk capacity is set. So if this fails, set back the gendisk 3802 * capacity to 0. 3803 */ 3804 if (sd_zbc_revalidate_zones(sdkp)) 3805 set_capacity_and_notify(disk, 0); 3806 3807 out: 3808 return 0; 3809 } 3810 3811 /** 3812 * sd_unlock_native_capacity - unlock native capacity 3813 * @disk: struct gendisk to set capacity for 3814 * 3815 * Block layer calls this function if it detects that partitions 3816 * on @disk reach beyond the end of the device. If the SCSI host 3817 * implements ->unlock_native_capacity() method, it's invoked to 3818 * give it a chance to adjust the device capacity. 3819 * 3820 * CONTEXT: 3821 * Defined by block layer. Might sleep. 3822 */ 3823 static void sd_unlock_native_capacity(struct gendisk *disk) 3824 { 3825 struct scsi_device *sdev = scsi_disk(disk)->device; 3826 3827 if (sdev->host->hostt->unlock_native_capacity) 3828 sdev->host->hostt->unlock_native_capacity(sdev); 3829 } 3830 3831 /** 3832 * sd_format_disk_name - format disk name 3833 * @prefix: name prefix - ie. "sd" for SCSI disks 3834 * @index: index of the disk to format name for 3835 * @buf: output buffer 3836 * @buflen: length of the output buffer 3837 * 3838 * SCSI disk names starts at sda. The 26th device is sdz and the 3839 * 27th is sdaa. The last one for two lettered suffix is sdzz 3840 * which is followed by sdaaa. 3841 * 3842 * This is basically 26 base counting with one extra 'nil' entry 3843 * at the beginning from the second digit on and can be 3844 * determined using similar method as 26 base conversion with the 3845 * index shifted -1 after each digit is computed. 3846 * 3847 * CONTEXT: 3848 * Don't care. 3849 * 3850 * RETURNS: 3851 * 0 on success, -errno on failure. 3852 */ 3853 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen) 3854 { 3855 const int base = 'z' - 'a' + 1; 3856 char *begin = buf + strlen(prefix); 3857 char *end = buf + buflen; 3858 char *p; 3859 int unit; 3860 3861 p = end - 1; 3862 *p = '\0'; 3863 unit = base; 3864 do { 3865 if (p == begin) 3866 return -EINVAL; 3867 *--p = 'a' + (index % unit); 3868 index = (index / unit) - 1; 3869 } while (index >= 0); 3870 3871 memmove(begin, p, end - p); 3872 memcpy(buf, prefix, strlen(prefix)); 3873 3874 return 0; 3875 } 3876 3877 /** 3878 * sd_probe - called during driver initialization and whenever a 3879 * new scsi device is attached to the system. It is called once 3880 * for each scsi device (not just disks) present. 3881 * @dev: pointer to device object 3882 * 3883 * Returns 0 if successful (or not interested in this scsi device 3884 * (e.g. scanner)); 1 when there is an error. 3885 * 3886 * Note: this function is invoked from the scsi mid-level. 3887 * This function sets up the mapping between a given 3888 * <host,channel,id,lun> (found in sdp) and new device name 3889 * (e.g. /dev/sda). More precisely it is the block device major 3890 * and minor number that is chosen here. 3891 * 3892 * Assume sd_probe is not re-entrant (for time being) 3893 * Also think about sd_probe() and sd_remove() running coincidentally. 3894 **/ 3895 static int sd_probe(struct device *dev) 3896 { 3897 struct scsi_device *sdp = to_scsi_device(dev); 3898 struct scsi_disk *sdkp; 3899 struct gendisk *gd; 3900 int index; 3901 int error; 3902 3903 scsi_autopm_get_device(sdp); 3904 error = -ENODEV; 3905 if (sdp->type != TYPE_DISK && 3906 sdp->type != TYPE_ZBC && 3907 sdp->type != TYPE_MOD && 3908 sdp->type != TYPE_RBC) 3909 goto out; 3910 3911 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) && sdp->type == TYPE_ZBC) { 3912 sdev_printk(KERN_WARNING, sdp, 3913 "Unsupported ZBC host-managed device.\n"); 3914 goto out; 3915 } 3916 3917 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp, 3918 "sd_probe\n")); 3919 3920 error = -ENOMEM; 3921 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL); 3922 if (!sdkp) 3923 goto out; 3924 3925 gd = blk_mq_alloc_disk_for_queue(sdp->request_queue, 3926 &sd_bio_compl_lkclass); 3927 if (!gd) 3928 goto out_free; 3929 3930 index = ida_alloc(&sd_index_ida, GFP_KERNEL); 3931 if (index < 0) { 3932 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n"); 3933 goto out_put; 3934 } 3935 3936 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN); 3937 if (error) { 3938 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n"); 3939 goto out_free_index; 3940 } 3941 3942 sdkp->device = sdp; 3943 sdkp->disk = gd; 3944 sdkp->index = index; 3945 sdkp->max_retries = SD_MAX_RETRIES; 3946 atomic_set(&sdkp->openers, 0); 3947 atomic_set(&sdkp->device->ioerr_cnt, 0); 3948 3949 if (!sdp->request_queue->rq_timeout) { 3950 if (sdp->type != TYPE_MOD) 3951 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT); 3952 else 3953 blk_queue_rq_timeout(sdp->request_queue, 3954 SD_MOD_TIMEOUT); 3955 } 3956 3957 device_initialize(&sdkp->disk_dev); 3958 sdkp->disk_dev.parent = get_device(dev); 3959 sdkp->disk_dev.class = &sd_disk_class; 3960 dev_set_name(&sdkp->disk_dev, "%s", dev_name(dev)); 3961 3962 error = device_add(&sdkp->disk_dev); 3963 if (error) { 3964 put_device(&sdkp->disk_dev); 3965 goto out; 3966 } 3967 3968 dev_set_drvdata(dev, sdkp); 3969 3970 gd->major = sd_major((index & 0xf0) >> 4); 3971 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00); 3972 gd->minors = SD_MINORS; 3973 3974 gd->fops = &sd_fops; 3975 gd->private_data = sdkp; 3976 3977 /* defaults, until the device tells us otherwise */ 3978 sdp->sector_size = 512; 3979 sdkp->capacity = 0; 3980 sdkp->media_present = 1; 3981 sdkp->write_prot = 0; 3982 sdkp->cache_override = 0; 3983 sdkp->WCE = 0; 3984 sdkp->RCD = 0; 3985 sdkp->ATO = 0; 3986 sdkp->first_scan = 1; 3987 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS; 3988 3989 sd_revalidate_disk(gd); 3990 3991 if (sdp->removable) { 3992 gd->flags |= GENHD_FL_REMOVABLE; 3993 gd->events |= DISK_EVENT_MEDIA_CHANGE; 3994 gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT; 3995 } 3996 3997 blk_pm_runtime_init(sdp->request_queue, dev); 3998 if (sdp->rpm_autosuspend) { 3999 pm_runtime_set_autosuspend_delay(dev, 4000 sdp->host->rpm_autosuspend_delay); 4001 } 4002 4003 error = device_add_disk(dev, gd, NULL); 4004 if (error) { 4005 device_unregister(&sdkp->disk_dev); 4006 put_disk(gd); 4007 goto out; 4008 } 4009 4010 if (sdkp->security) { 4011 sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit); 4012 if (sdkp->opal_dev) 4013 sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n"); 4014 } 4015 4016 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n", 4017 sdp->removable ? "removable " : ""); 4018 scsi_autopm_put_device(sdp); 4019 4020 return 0; 4021 4022 out_free_index: 4023 ida_free(&sd_index_ida, index); 4024 out_put: 4025 put_disk(gd); 4026 out_free: 4027 kfree(sdkp); 4028 out: 4029 scsi_autopm_put_device(sdp); 4030 return error; 4031 } 4032 4033 /** 4034 * sd_remove - called whenever a scsi disk (previously recognized by 4035 * sd_probe) is detached from the system. It is called (potentially 4036 * multiple times) during sd module unload. 4037 * @dev: pointer to device object 4038 * 4039 * Note: this function is invoked from the scsi mid-level. 4040 * This function potentially frees up a device name (e.g. /dev/sdc) 4041 * that could be re-used by a subsequent sd_probe(). 4042 * This function is not called when the built-in sd driver is "exit-ed". 4043 **/ 4044 static int sd_remove(struct device *dev) 4045 { 4046 struct scsi_disk *sdkp = dev_get_drvdata(dev); 4047 4048 scsi_autopm_get_device(sdkp->device); 4049 4050 device_del(&sdkp->disk_dev); 4051 del_gendisk(sdkp->disk); 4052 if (!sdkp->suspended) 4053 sd_shutdown(dev); 4054 4055 put_disk(sdkp->disk); 4056 return 0; 4057 } 4058 4059 static void scsi_disk_release(struct device *dev) 4060 { 4061 struct scsi_disk *sdkp = to_scsi_disk(dev); 4062 4063 ida_free(&sd_index_ida, sdkp->index); 4064 put_device(&sdkp->device->sdev_gendev); 4065 free_opal_dev(sdkp->opal_dev); 4066 4067 kfree(sdkp); 4068 } 4069 4070 static int sd_start_stop_device(struct scsi_disk *sdkp, int start) 4071 { 4072 unsigned char cmd[6] = { START_STOP }; /* START_VALID */ 4073 struct scsi_sense_hdr sshdr; 4074 const struct scsi_exec_args exec_args = { 4075 .sshdr = &sshdr, 4076 .req_flags = BLK_MQ_REQ_PM, 4077 }; 4078 struct scsi_device *sdp = sdkp->device; 4079 int res; 4080 4081 if (start) 4082 cmd[4] |= 1; /* START */ 4083 4084 if (sdp->start_stop_pwr_cond) 4085 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */ 4086 4087 if (!scsi_device_online(sdp)) 4088 return -ENODEV; 4089 4090 res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, SD_TIMEOUT, 4091 sdkp->max_retries, &exec_args); 4092 if (res) { 4093 sd_print_result(sdkp, "Start/Stop Unit failed", res); 4094 if (res > 0 && scsi_sense_valid(&sshdr)) { 4095 sd_print_sense_hdr(sdkp, &sshdr); 4096 /* 0x3a is medium not present */ 4097 if (sshdr.asc == 0x3a) 4098 res = 0; 4099 } 4100 } 4101 4102 /* SCSI error codes must not go to the generic layer */ 4103 if (res) 4104 return -EIO; 4105 4106 return 0; 4107 } 4108 4109 /* 4110 * Send a SYNCHRONIZE CACHE instruction down to the device through 4111 * the normal SCSI command structure. Wait for the command to 4112 * complete. 4113 */ 4114 static void sd_shutdown(struct device *dev) 4115 { 4116 struct scsi_disk *sdkp = dev_get_drvdata(dev); 4117 4118 if (!sdkp) 4119 return; /* this can happen */ 4120 4121 if (pm_runtime_suspended(dev)) 4122 return; 4123 4124 if (sdkp->WCE && sdkp->media_present) { 4125 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 4126 sd_sync_cache(sdkp); 4127 } 4128 4129 if ((system_state != SYSTEM_RESTART && 4130 sdkp->device->manage_system_start_stop) || 4131 (system_state == SYSTEM_POWER_OFF && 4132 sdkp->device->manage_shutdown)) { 4133 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 4134 sd_start_stop_device(sdkp, 0); 4135 } 4136 } 4137 4138 static inline bool sd_do_start_stop(struct scsi_device *sdev, bool runtime) 4139 { 4140 return (sdev->manage_system_start_stop && !runtime) || 4141 (sdev->manage_runtime_start_stop && runtime); 4142 } 4143 4144 static int sd_suspend_common(struct device *dev, bool runtime) 4145 { 4146 struct scsi_disk *sdkp = dev_get_drvdata(dev); 4147 int ret = 0; 4148 4149 if (!sdkp) /* E.g.: runtime suspend following sd_remove() */ 4150 return 0; 4151 4152 if (sdkp->WCE && sdkp->media_present) { 4153 if (!sdkp->device->silence_suspend) 4154 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 4155 ret = sd_sync_cache(sdkp); 4156 /* ignore OFFLINE device */ 4157 if (ret == -ENODEV) 4158 return 0; 4159 4160 if (ret) 4161 return ret; 4162 } 4163 4164 if (sd_do_start_stop(sdkp->device, runtime)) { 4165 if (!sdkp->device->silence_suspend) 4166 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 4167 /* an error is not worth aborting a system sleep */ 4168 ret = sd_start_stop_device(sdkp, 0); 4169 if (!runtime) 4170 ret = 0; 4171 } 4172 4173 if (!ret) 4174 sdkp->suspended = true; 4175 4176 return ret; 4177 } 4178 4179 static int sd_suspend_system(struct device *dev) 4180 { 4181 if (pm_runtime_suspended(dev)) 4182 return 0; 4183 4184 return sd_suspend_common(dev, false); 4185 } 4186 4187 static int sd_suspend_runtime(struct device *dev) 4188 { 4189 return sd_suspend_common(dev, true); 4190 } 4191 4192 static int sd_resume(struct device *dev) 4193 { 4194 struct scsi_disk *sdkp = dev_get_drvdata(dev); 4195 4196 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n"); 4197 4198 if (opal_unlock_from_suspend(sdkp->opal_dev)) { 4199 sd_printk(KERN_NOTICE, sdkp, "OPAL unlock failed\n"); 4200 return -EIO; 4201 } 4202 4203 return 0; 4204 } 4205 4206 static int sd_resume_common(struct device *dev, bool runtime) 4207 { 4208 struct scsi_disk *sdkp = dev_get_drvdata(dev); 4209 int ret; 4210 4211 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */ 4212 return 0; 4213 4214 if (!sd_do_start_stop(sdkp->device, runtime)) { 4215 sdkp->suspended = false; 4216 return 0; 4217 } 4218 4219 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n"); 4220 ret = sd_start_stop_device(sdkp, 1); 4221 if (!ret) { 4222 sd_resume(dev); 4223 sdkp->suspended = false; 4224 } 4225 4226 return ret; 4227 } 4228 4229 static int sd_resume_system(struct device *dev) 4230 { 4231 if (pm_runtime_suspended(dev)) { 4232 struct scsi_disk *sdkp = dev_get_drvdata(dev); 4233 struct scsi_device *sdp = sdkp ? sdkp->device : NULL; 4234 4235 if (sdp && sdp->force_runtime_start_on_system_start) 4236 pm_request_resume(dev); 4237 4238 return 0; 4239 } 4240 4241 return sd_resume_common(dev, false); 4242 } 4243 4244 static int sd_resume_runtime(struct device *dev) 4245 { 4246 struct scsi_disk *sdkp = dev_get_drvdata(dev); 4247 struct scsi_device *sdp; 4248 4249 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */ 4250 return 0; 4251 4252 sdp = sdkp->device; 4253 4254 if (sdp->ignore_media_change) { 4255 /* clear the device's sense data */ 4256 static const u8 cmd[10] = { REQUEST_SENSE }; 4257 const struct scsi_exec_args exec_args = { 4258 .req_flags = BLK_MQ_REQ_PM, 4259 }; 4260 4261 if (scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, 4262 sdp->request_queue->rq_timeout, 1, 4263 &exec_args)) 4264 sd_printk(KERN_NOTICE, sdkp, 4265 "Failed to clear sense data\n"); 4266 } 4267 4268 return sd_resume_common(dev, true); 4269 } 4270 4271 static const struct dev_pm_ops sd_pm_ops = { 4272 .suspend = sd_suspend_system, 4273 .resume = sd_resume_system, 4274 .poweroff = sd_suspend_system, 4275 .restore = sd_resume_system, 4276 .runtime_suspend = sd_suspend_runtime, 4277 .runtime_resume = sd_resume_runtime, 4278 }; 4279 4280 static struct scsi_driver sd_template = { 4281 .gendrv = { 4282 .name = "sd", 4283 .probe = sd_probe, 4284 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 4285 .remove = sd_remove, 4286 .shutdown = sd_shutdown, 4287 .pm = &sd_pm_ops, 4288 }, 4289 .rescan = sd_rescan, 4290 .resume = sd_resume, 4291 .init_command = sd_init_command, 4292 .uninit_command = sd_uninit_command, 4293 .done = sd_done, 4294 .eh_action = sd_eh_action, 4295 .eh_reset = sd_eh_reset, 4296 }; 4297 4298 /** 4299 * init_sd - entry point for this driver (both when built in or when 4300 * a module). 4301 * 4302 * Note: this function registers this driver with the scsi mid-level. 4303 **/ 4304 static int __init init_sd(void) 4305 { 4306 int majors = 0, i, err; 4307 4308 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n")); 4309 4310 for (i = 0; i < SD_MAJORS; i++) { 4311 if (__register_blkdev(sd_major(i), "sd", sd_default_probe)) 4312 continue; 4313 majors++; 4314 } 4315 4316 if (!majors) 4317 return -ENODEV; 4318 4319 err = class_register(&sd_disk_class); 4320 if (err) 4321 goto err_out; 4322 4323 sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0); 4324 if (!sd_page_pool) { 4325 printk(KERN_ERR "sd: can't init discard page pool\n"); 4326 err = -ENOMEM; 4327 goto err_out_class; 4328 } 4329 4330 err = scsi_register_driver(&sd_template.gendrv); 4331 if (err) 4332 goto err_out_driver; 4333 4334 return 0; 4335 4336 err_out_driver: 4337 mempool_destroy(sd_page_pool); 4338 err_out_class: 4339 class_unregister(&sd_disk_class); 4340 err_out: 4341 for (i = 0; i < SD_MAJORS; i++) 4342 unregister_blkdev(sd_major(i), "sd"); 4343 return err; 4344 } 4345 4346 /** 4347 * exit_sd - exit point for this driver (when it is a module). 4348 * 4349 * Note: this function unregisters this driver from the scsi mid-level. 4350 **/ 4351 static void __exit exit_sd(void) 4352 { 4353 int i; 4354 4355 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n")); 4356 4357 scsi_unregister_driver(&sd_template.gendrv); 4358 mempool_destroy(sd_page_pool); 4359 4360 class_unregister(&sd_disk_class); 4361 4362 for (i = 0; i < SD_MAJORS; i++) 4363 unregister_blkdev(sd_major(i), "sd"); 4364 } 4365 4366 module_init(init_sd); 4367 module_exit(exit_sd); 4368 4369 void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr) 4370 { 4371 scsi_print_sense_hdr(sdkp->device, 4372 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr); 4373 } 4374 4375 void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result) 4376 { 4377 const char *hb_string = scsi_hostbyte_string(result); 4378 4379 if (hb_string) 4380 sd_printk(KERN_INFO, sdkp, 4381 "%s: Result: hostbyte=%s driverbyte=%s\n", msg, 4382 hb_string ? hb_string : "invalid", 4383 "DRIVER_OK"); 4384 else 4385 sd_printk(KERN_INFO, sdkp, 4386 "%s: Result: hostbyte=0x%02x driverbyte=%s\n", 4387 msg, host_byte(result), "DRIVER_OK"); 4388 } 4389