1 /* 2 * sd.c Copyright (C) 1992 Drew Eckhardt 3 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale 4 * 5 * Linux scsi disk driver 6 * Initial versions: Drew Eckhardt 7 * Subsequent revisions: Eric Youngdale 8 * Modification history: 9 * - Drew Eckhardt <drew@colorado.edu> original 10 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 11 * outstanding request, and other enhancements. 12 * Support loadable low-level scsi drivers. 13 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 14 * eight major numbers. 15 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs. 16 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 17 * sd_init and cleanups. 18 * - Alex Davis <letmein@erols.com> Fix problem where partition info 19 * not being read in sd_open. Fix problem where removable media 20 * could be ejected after sd_open. 21 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x 22 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 23 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 24 * Support 32k/1M disks. 25 * 26 * Logging policy (needs CONFIG_SCSI_LOGGING defined): 27 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2 28 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1 29 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1 30 * - entering other commands: SCSI_LOG_HLQUEUE level 3 31 * Note: when the logging level is set by the user, it must be greater 32 * than the level indicated above to trigger output. 33 */ 34 35 #include <linux/module.h> 36 #include <linux/fs.h> 37 #include <linux/kernel.h> 38 #include <linux/mm.h> 39 #include <linux/bio.h> 40 #include <linux/genhd.h> 41 #include <linux/hdreg.h> 42 #include <linux/errno.h> 43 #include <linux/idr.h> 44 #include <linux/interrupt.h> 45 #include <linux/init.h> 46 #include <linux/blkdev.h> 47 #include <linux/blkpg.h> 48 #include <linux/delay.h> 49 #include <linux/mutex.h> 50 #include <linux/string_helpers.h> 51 #include <linux/async.h> 52 #include <linux/slab.h> 53 #include <linux/pm_runtime.h> 54 #include <linux/pr.h> 55 #include <linux/t10-pi.h> 56 #include <linux/uaccess.h> 57 #include <asm/unaligned.h> 58 59 #include <scsi/scsi.h> 60 #include <scsi/scsi_cmnd.h> 61 #include <scsi/scsi_dbg.h> 62 #include <scsi/scsi_device.h> 63 #include <scsi/scsi_driver.h> 64 #include <scsi/scsi_eh.h> 65 #include <scsi/scsi_host.h> 66 #include <scsi/scsi_ioctl.h> 67 #include <scsi/scsicam.h> 68 69 #include "sd.h" 70 #include "scsi_priv.h" 71 #include "scsi_logging.h" 72 73 MODULE_AUTHOR("Eric Youngdale"); 74 MODULE_DESCRIPTION("SCSI disk (sd) driver"); 75 MODULE_LICENSE("GPL"); 76 77 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR); 78 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR); 79 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR); 80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR); 81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR); 82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR); 83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR); 84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR); 85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR); 86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR); 87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR); 88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR); 89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR); 90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR); 91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR); 92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR); 93 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK); 94 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD); 95 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC); 96 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC); 97 98 #if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT) 99 #define SD_MINORS 16 100 #else 101 #define SD_MINORS 0 102 #endif 103 104 static void sd_config_discard(struct scsi_disk *, unsigned int); 105 static void sd_config_write_same(struct scsi_disk *); 106 static int sd_revalidate_disk(struct gendisk *); 107 static void sd_unlock_native_capacity(struct gendisk *disk); 108 static int sd_probe(struct device *); 109 static int sd_remove(struct device *); 110 static void sd_shutdown(struct device *); 111 static int sd_suspend_system(struct device *); 112 static int sd_suspend_runtime(struct device *); 113 static int sd_resume(struct device *); 114 static void sd_rescan(struct device *); 115 static int sd_init_command(struct scsi_cmnd *SCpnt); 116 static void sd_uninit_command(struct scsi_cmnd *SCpnt); 117 static int sd_done(struct scsi_cmnd *); 118 static int sd_eh_action(struct scsi_cmnd *, int); 119 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer); 120 static void scsi_disk_release(struct device *cdev); 121 static void sd_print_sense_hdr(struct scsi_disk *, struct scsi_sense_hdr *); 122 static void sd_print_result(const struct scsi_disk *, const char *, int); 123 124 static DEFINE_SPINLOCK(sd_index_lock); 125 static DEFINE_IDA(sd_index_ida); 126 127 /* This semaphore is used to mediate the 0->1 reference get in the 128 * face of object destruction (i.e. we can't allow a get on an 129 * object after last put) */ 130 static DEFINE_MUTEX(sd_ref_mutex); 131 132 static struct kmem_cache *sd_cdb_cache; 133 static mempool_t *sd_cdb_pool; 134 135 static const char *sd_cache_types[] = { 136 "write through", "none", "write back", 137 "write back, no read (daft)" 138 }; 139 140 static void sd_set_flush_flag(struct scsi_disk *sdkp) 141 { 142 bool wc = false, fua = false; 143 144 if (sdkp->WCE) { 145 wc = true; 146 if (sdkp->DPOFUA) 147 fua = true; 148 } 149 150 blk_queue_write_cache(sdkp->disk->queue, wc, fua); 151 } 152 153 static ssize_t 154 cache_type_store(struct device *dev, struct device_attribute *attr, 155 const char *buf, size_t count) 156 { 157 int i, ct = -1, rcd, wce, sp; 158 struct scsi_disk *sdkp = to_scsi_disk(dev); 159 struct scsi_device *sdp = sdkp->device; 160 char buffer[64]; 161 char *buffer_data; 162 struct scsi_mode_data data; 163 struct scsi_sense_hdr sshdr; 164 static const char temp[] = "temporary "; 165 int len; 166 167 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 168 /* no cache control on RBC devices; theoretically they 169 * can do it, but there's probably so many exceptions 170 * it's not worth the risk */ 171 return -EINVAL; 172 173 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) { 174 buf += sizeof(temp) - 1; 175 sdkp->cache_override = 1; 176 } else { 177 sdkp->cache_override = 0; 178 } 179 180 for (i = 0; i < ARRAY_SIZE(sd_cache_types); i++) { 181 len = strlen(sd_cache_types[i]); 182 if (strncmp(sd_cache_types[i], buf, len) == 0 && 183 buf[len] == '\n') { 184 ct = i; 185 break; 186 } 187 } 188 if (ct < 0) 189 return -EINVAL; 190 rcd = ct & 0x01 ? 1 : 0; 191 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0; 192 193 if (sdkp->cache_override) { 194 sdkp->WCE = wce; 195 sdkp->RCD = rcd; 196 sd_set_flush_flag(sdkp); 197 return count; 198 } 199 200 if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT, 201 SD_MAX_RETRIES, &data, NULL)) 202 return -EINVAL; 203 len = min_t(size_t, sizeof(buffer), data.length - data.header_length - 204 data.block_descriptor_length); 205 buffer_data = buffer + data.header_length + 206 data.block_descriptor_length; 207 buffer_data[2] &= ~0x05; 208 buffer_data[2] |= wce << 2 | rcd; 209 sp = buffer_data[0] & 0x80 ? 1 : 0; 210 buffer_data[0] &= ~0x80; 211 212 if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT, 213 SD_MAX_RETRIES, &data, &sshdr)) { 214 if (scsi_sense_valid(&sshdr)) 215 sd_print_sense_hdr(sdkp, &sshdr); 216 return -EINVAL; 217 } 218 revalidate_disk(sdkp->disk); 219 return count; 220 } 221 222 static ssize_t 223 manage_start_stop_show(struct device *dev, struct device_attribute *attr, 224 char *buf) 225 { 226 struct scsi_disk *sdkp = to_scsi_disk(dev); 227 struct scsi_device *sdp = sdkp->device; 228 229 return snprintf(buf, 20, "%u\n", sdp->manage_start_stop); 230 } 231 232 static ssize_t 233 manage_start_stop_store(struct device *dev, struct device_attribute *attr, 234 const char *buf, size_t count) 235 { 236 struct scsi_disk *sdkp = to_scsi_disk(dev); 237 struct scsi_device *sdp = sdkp->device; 238 239 if (!capable(CAP_SYS_ADMIN)) 240 return -EACCES; 241 242 sdp->manage_start_stop = simple_strtoul(buf, NULL, 10); 243 244 return count; 245 } 246 static DEVICE_ATTR_RW(manage_start_stop); 247 248 static ssize_t 249 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf) 250 { 251 struct scsi_disk *sdkp = to_scsi_disk(dev); 252 253 return snprintf(buf, 40, "%d\n", sdkp->device->allow_restart); 254 } 255 256 static ssize_t 257 allow_restart_store(struct device *dev, struct device_attribute *attr, 258 const char *buf, size_t count) 259 { 260 struct scsi_disk *sdkp = to_scsi_disk(dev); 261 struct scsi_device *sdp = sdkp->device; 262 263 if (!capable(CAP_SYS_ADMIN)) 264 return -EACCES; 265 266 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 267 return -EINVAL; 268 269 sdp->allow_restart = simple_strtoul(buf, NULL, 10); 270 271 return count; 272 } 273 static DEVICE_ATTR_RW(allow_restart); 274 275 static ssize_t 276 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf) 277 { 278 struct scsi_disk *sdkp = to_scsi_disk(dev); 279 int ct = sdkp->RCD + 2*sdkp->WCE; 280 281 return snprintf(buf, 40, "%s\n", sd_cache_types[ct]); 282 } 283 static DEVICE_ATTR_RW(cache_type); 284 285 static ssize_t 286 FUA_show(struct device *dev, struct device_attribute *attr, char *buf) 287 { 288 struct scsi_disk *sdkp = to_scsi_disk(dev); 289 290 return snprintf(buf, 20, "%u\n", sdkp->DPOFUA); 291 } 292 static DEVICE_ATTR_RO(FUA); 293 294 static ssize_t 295 protection_type_show(struct device *dev, struct device_attribute *attr, 296 char *buf) 297 { 298 struct scsi_disk *sdkp = to_scsi_disk(dev); 299 300 return snprintf(buf, 20, "%u\n", sdkp->protection_type); 301 } 302 303 static ssize_t 304 protection_type_store(struct device *dev, struct device_attribute *attr, 305 const char *buf, size_t count) 306 { 307 struct scsi_disk *sdkp = to_scsi_disk(dev); 308 unsigned int val; 309 int err; 310 311 if (!capable(CAP_SYS_ADMIN)) 312 return -EACCES; 313 314 err = kstrtouint(buf, 10, &val); 315 316 if (err) 317 return err; 318 319 if (val >= 0 && val <= T10_PI_TYPE3_PROTECTION) 320 sdkp->protection_type = val; 321 322 return count; 323 } 324 static DEVICE_ATTR_RW(protection_type); 325 326 static ssize_t 327 protection_mode_show(struct device *dev, struct device_attribute *attr, 328 char *buf) 329 { 330 struct scsi_disk *sdkp = to_scsi_disk(dev); 331 struct scsi_device *sdp = sdkp->device; 332 unsigned int dif, dix; 333 334 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type); 335 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type); 336 337 if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) { 338 dif = 0; 339 dix = 1; 340 } 341 342 if (!dif && !dix) 343 return snprintf(buf, 20, "none\n"); 344 345 return snprintf(buf, 20, "%s%u\n", dix ? "dix" : "dif", dif); 346 } 347 static DEVICE_ATTR_RO(protection_mode); 348 349 static ssize_t 350 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf) 351 { 352 struct scsi_disk *sdkp = to_scsi_disk(dev); 353 354 return snprintf(buf, 20, "%u\n", sdkp->ATO); 355 } 356 static DEVICE_ATTR_RO(app_tag_own); 357 358 static ssize_t 359 thin_provisioning_show(struct device *dev, struct device_attribute *attr, 360 char *buf) 361 { 362 struct scsi_disk *sdkp = to_scsi_disk(dev); 363 364 return snprintf(buf, 20, "%u\n", sdkp->lbpme); 365 } 366 static DEVICE_ATTR_RO(thin_provisioning); 367 368 static const char *lbp_mode[] = { 369 [SD_LBP_FULL] = "full", 370 [SD_LBP_UNMAP] = "unmap", 371 [SD_LBP_WS16] = "writesame_16", 372 [SD_LBP_WS10] = "writesame_10", 373 [SD_LBP_ZERO] = "writesame_zero", 374 [SD_LBP_DISABLE] = "disabled", 375 }; 376 377 static ssize_t 378 provisioning_mode_show(struct device *dev, struct device_attribute *attr, 379 char *buf) 380 { 381 struct scsi_disk *sdkp = to_scsi_disk(dev); 382 383 return snprintf(buf, 20, "%s\n", lbp_mode[sdkp->provisioning_mode]); 384 } 385 386 static ssize_t 387 provisioning_mode_store(struct device *dev, struct device_attribute *attr, 388 const char *buf, size_t count) 389 { 390 struct scsi_disk *sdkp = to_scsi_disk(dev); 391 struct scsi_device *sdp = sdkp->device; 392 393 if (!capable(CAP_SYS_ADMIN)) 394 return -EACCES; 395 396 if (sd_is_zoned(sdkp)) { 397 sd_config_discard(sdkp, SD_LBP_DISABLE); 398 return count; 399 } 400 401 if (sdp->type != TYPE_DISK) 402 return -EINVAL; 403 404 if (!strncmp(buf, lbp_mode[SD_LBP_UNMAP], 20)) 405 sd_config_discard(sdkp, SD_LBP_UNMAP); 406 else if (!strncmp(buf, lbp_mode[SD_LBP_WS16], 20)) 407 sd_config_discard(sdkp, SD_LBP_WS16); 408 else if (!strncmp(buf, lbp_mode[SD_LBP_WS10], 20)) 409 sd_config_discard(sdkp, SD_LBP_WS10); 410 else if (!strncmp(buf, lbp_mode[SD_LBP_ZERO], 20)) 411 sd_config_discard(sdkp, SD_LBP_ZERO); 412 else if (!strncmp(buf, lbp_mode[SD_LBP_DISABLE], 20)) 413 sd_config_discard(sdkp, SD_LBP_DISABLE); 414 else 415 return -EINVAL; 416 417 return count; 418 } 419 static DEVICE_ATTR_RW(provisioning_mode); 420 421 static const char *zeroing_mode[] = { 422 [SD_ZERO_WRITE] = "write", 423 [SD_ZERO_WS] = "writesame", 424 [SD_ZERO_WS16_UNMAP] = "writesame_16_unmap", 425 [SD_ZERO_WS10_UNMAP] = "writesame_10_unmap", 426 }; 427 428 static ssize_t 429 zeroing_mode_show(struct device *dev, struct device_attribute *attr, 430 char *buf) 431 { 432 struct scsi_disk *sdkp = to_scsi_disk(dev); 433 434 return snprintf(buf, 20, "%s\n", zeroing_mode[sdkp->zeroing_mode]); 435 } 436 437 static ssize_t 438 zeroing_mode_store(struct device *dev, struct device_attribute *attr, 439 const char *buf, size_t count) 440 { 441 struct scsi_disk *sdkp = to_scsi_disk(dev); 442 443 if (!capable(CAP_SYS_ADMIN)) 444 return -EACCES; 445 446 if (!strncmp(buf, zeroing_mode[SD_ZERO_WRITE], 20)) 447 sdkp->zeroing_mode = SD_ZERO_WRITE; 448 else if (!strncmp(buf, zeroing_mode[SD_ZERO_WS], 20)) 449 sdkp->zeroing_mode = SD_ZERO_WS; 450 else if (!strncmp(buf, zeroing_mode[SD_ZERO_WS16_UNMAP], 20)) 451 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP; 452 else if (!strncmp(buf, zeroing_mode[SD_ZERO_WS10_UNMAP], 20)) 453 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP; 454 else 455 return -EINVAL; 456 457 return count; 458 } 459 static DEVICE_ATTR_RW(zeroing_mode); 460 461 static ssize_t 462 max_medium_access_timeouts_show(struct device *dev, 463 struct device_attribute *attr, char *buf) 464 { 465 struct scsi_disk *sdkp = to_scsi_disk(dev); 466 467 return snprintf(buf, 20, "%u\n", sdkp->max_medium_access_timeouts); 468 } 469 470 static ssize_t 471 max_medium_access_timeouts_store(struct device *dev, 472 struct device_attribute *attr, const char *buf, 473 size_t count) 474 { 475 struct scsi_disk *sdkp = to_scsi_disk(dev); 476 int err; 477 478 if (!capable(CAP_SYS_ADMIN)) 479 return -EACCES; 480 481 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts); 482 483 return err ? err : count; 484 } 485 static DEVICE_ATTR_RW(max_medium_access_timeouts); 486 487 static ssize_t 488 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr, 489 char *buf) 490 { 491 struct scsi_disk *sdkp = to_scsi_disk(dev); 492 493 return snprintf(buf, 20, "%u\n", sdkp->max_ws_blocks); 494 } 495 496 static ssize_t 497 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr, 498 const char *buf, size_t count) 499 { 500 struct scsi_disk *sdkp = to_scsi_disk(dev); 501 struct scsi_device *sdp = sdkp->device; 502 unsigned long max; 503 int err; 504 505 if (!capable(CAP_SYS_ADMIN)) 506 return -EACCES; 507 508 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 509 return -EINVAL; 510 511 err = kstrtoul(buf, 10, &max); 512 513 if (err) 514 return err; 515 516 if (max == 0) 517 sdp->no_write_same = 1; 518 else if (max <= SD_MAX_WS16_BLOCKS) { 519 sdp->no_write_same = 0; 520 sdkp->max_ws_blocks = max; 521 } 522 523 sd_config_write_same(sdkp); 524 525 return count; 526 } 527 static DEVICE_ATTR_RW(max_write_same_blocks); 528 529 static struct attribute *sd_disk_attrs[] = { 530 &dev_attr_cache_type.attr, 531 &dev_attr_FUA.attr, 532 &dev_attr_allow_restart.attr, 533 &dev_attr_manage_start_stop.attr, 534 &dev_attr_protection_type.attr, 535 &dev_attr_protection_mode.attr, 536 &dev_attr_app_tag_own.attr, 537 &dev_attr_thin_provisioning.attr, 538 &dev_attr_provisioning_mode.attr, 539 &dev_attr_zeroing_mode.attr, 540 &dev_attr_max_write_same_blocks.attr, 541 &dev_attr_max_medium_access_timeouts.attr, 542 NULL, 543 }; 544 ATTRIBUTE_GROUPS(sd_disk); 545 546 static struct class sd_disk_class = { 547 .name = "scsi_disk", 548 .owner = THIS_MODULE, 549 .dev_release = scsi_disk_release, 550 .dev_groups = sd_disk_groups, 551 }; 552 553 static const struct dev_pm_ops sd_pm_ops = { 554 .suspend = sd_suspend_system, 555 .resume = sd_resume, 556 .poweroff = sd_suspend_system, 557 .restore = sd_resume, 558 .runtime_suspend = sd_suspend_runtime, 559 .runtime_resume = sd_resume, 560 }; 561 562 static struct scsi_driver sd_template = { 563 .gendrv = { 564 .name = "sd", 565 .owner = THIS_MODULE, 566 .probe = sd_probe, 567 .remove = sd_remove, 568 .shutdown = sd_shutdown, 569 .pm = &sd_pm_ops, 570 }, 571 .rescan = sd_rescan, 572 .init_command = sd_init_command, 573 .uninit_command = sd_uninit_command, 574 .done = sd_done, 575 .eh_action = sd_eh_action, 576 }; 577 578 /* 579 * Dummy kobj_map->probe function. 580 * The default ->probe function will call modprobe, which is 581 * pointless as this module is already loaded. 582 */ 583 static struct kobject *sd_default_probe(dev_t devt, int *partno, void *data) 584 { 585 return NULL; 586 } 587 588 /* 589 * Device no to disk mapping: 590 * 591 * major disc2 disc p1 592 * |............|.............|....|....| <- dev_t 593 * 31 20 19 8 7 4 3 0 594 * 595 * Inside a major, we have 16k disks, however mapped non- 596 * contiguously. The first 16 disks are for major0, the next 597 * ones with major1, ... Disk 256 is for major0 again, disk 272 598 * for major1, ... 599 * As we stay compatible with our numbering scheme, we can reuse 600 * the well-know SCSI majors 8, 65--71, 136--143. 601 */ 602 static int sd_major(int major_idx) 603 { 604 switch (major_idx) { 605 case 0: 606 return SCSI_DISK0_MAJOR; 607 case 1 ... 7: 608 return SCSI_DISK1_MAJOR + major_idx - 1; 609 case 8 ... 15: 610 return SCSI_DISK8_MAJOR + major_idx - 8; 611 default: 612 BUG(); 613 return 0; /* shut up gcc */ 614 } 615 } 616 617 static struct scsi_disk *scsi_disk_get(struct gendisk *disk) 618 { 619 struct scsi_disk *sdkp = NULL; 620 621 mutex_lock(&sd_ref_mutex); 622 623 if (disk->private_data) { 624 sdkp = scsi_disk(disk); 625 if (scsi_device_get(sdkp->device) == 0) 626 get_device(&sdkp->dev); 627 else 628 sdkp = NULL; 629 } 630 mutex_unlock(&sd_ref_mutex); 631 return sdkp; 632 } 633 634 static void scsi_disk_put(struct scsi_disk *sdkp) 635 { 636 struct scsi_device *sdev = sdkp->device; 637 638 mutex_lock(&sd_ref_mutex); 639 put_device(&sdkp->dev); 640 scsi_device_put(sdev); 641 mutex_unlock(&sd_ref_mutex); 642 } 643 644 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd, 645 unsigned int dix, unsigned int dif) 646 { 647 struct bio *bio = scmd->request->bio; 648 unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif); 649 unsigned int protect = 0; 650 651 if (dix) { /* DIX Type 0, 1, 2, 3 */ 652 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM)) 653 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM; 654 655 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 656 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK; 657 } 658 659 if (dif != T10_PI_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */ 660 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT; 661 662 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 663 scmd->prot_flags |= SCSI_PROT_REF_CHECK; 664 } 665 666 if (dif) { /* DIX/DIF Type 1, 2, 3 */ 667 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI; 668 669 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK)) 670 protect = 3 << 5; /* Disable target PI checking */ 671 else 672 protect = 1 << 5; /* Enable target PI checking */ 673 } 674 675 scsi_set_prot_op(scmd, prot_op); 676 scsi_set_prot_type(scmd, dif); 677 scmd->prot_flags &= sd_prot_flag_mask(prot_op); 678 679 return protect; 680 } 681 682 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode) 683 { 684 struct request_queue *q = sdkp->disk->queue; 685 unsigned int logical_block_size = sdkp->device->sector_size; 686 unsigned int max_blocks = 0; 687 688 q->limits.discard_alignment = 689 sdkp->unmap_alignment * logical_block_size; 690 q->limits.discard_granularity = 691 max(sdkp->physical_block_size, 692 sdkp->unmap_granularity * logical_block_size); 693 sdkp->provisioning_mode = mode; 694 695 switch (mode) { 696 697 case SD_LBP_DISABLE: 698 blk_queue_max_discard_sectors(q, 0); 699 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q); 700 return; 701 702 case SD_LBP_UNMAP: 703 max_blocks = min_not_zero(sdkp->max_unmap_blocks, 704 (u32)SD_MAX_WS16_BLOCKS); 705 break; 706 707 case SD_LBP_WS16: 708 max_blocks = min_not_zero(sdkp->max_ws_blocks, 709 (u32)SD_MAX_WS16_BLOCKS); 710 break; 711 712 case SD_LBP_WS10: 713 max_blocks = min_not_zero(sdkp->max_ws_blocks, 714 (u32)SD_MAX_WS10_BLOCKS); 715 break; 716 717 case SD_LBP_ZERO: 718 max_blocks = min_not_zero(sdkp->max_ws_blocks, 719 (u32)SD_MAX_WS10_BLOCKS); 720 break; 721 } 722 723 blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9)); 724 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q); 725 } 726 727 static int sd_setup_unmap_cmnd(struct scsi_cmnd *cmd) 728 { 729 struct scsi_device *sdp = cmd->device; 730 struct request *rq = cmd->request; 731 u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9); 732 u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9); 733 unsigned int data_len = 24; 734 char *buf; 735 736 rq->special_vec.bv_page = alloc_page(GFP_ATOMIC | __GFP_ZERO); 737 if (!rq->special_vec.bv_page) 738 return BLKPREP_DEFER; 739 rq->special_vec.bv_offset = 0; 740 rq->special_vec.bv_len = data_len; 741 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 742 743 cmd->cmd_len = 10; 744 cmd->cmnd[0] = UNMAP; 745 cmd->cmnd[8] = 24; 746 747 buf = page_address(rq->special_vec.bv_page); 748 put_unaligned_be16(6 + 16, &buf[0]); 749 put_unaligned_be16(16, &buf[2]); 750 put_unaligned_be64(sector, &buf[8]); 751 put_unaligned_be32(nr_sectors, &buf[16]); 752 753 cmd->allowed = SD_MAX_RETRIES; 754 cmd->transfersize = data_len; 755 rq->timeout = SD_TIMEOUT; 756 scsi_req(rq)->resid_len = data_len; 757 758 return scsi_init_io(cmd); 759 } 760 761 static int sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd, bool unmap) 762 { 763 struct scsi_device *sdp = cmd->device; 764 struct request *rq = cmd->request; 765 u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9); 766 u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9); 767 u32 data_len = sdp->sector_size; 768 769 rq->special_vec.bv_page = alloc_page(GFP_ATOMIC | __GFP_ZERO); 770 if (!rq->special_vec.bv_page) 771 return BLKPREP_DEFER; 772 rq->special_vec.bv_offset = 0; 773 rq->special_vec.bv_len = data_len; 774 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 775 776 cmd->cmd_len = 16; 777 cmd->cmnd[0] = WRITE_SAME_16; 778 if (unmap) 779 cmd->cmnd[1] = 0x8; /* UNMAP */ 780 put_unaligned_be64(sector, &cmd->cmnd[2]); 781 put_unaligned_be32(nr_sectors, &cmd->cmnd[10]); 782 783 cmd->allowed = SD_MAX_RETRIES; 784 cmd->transfersize = data_len; 785 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 786 scsi_req(rq)->resid_len = data_len; 787 788 return scsi_init_io(cmd); 789 } 790 791 static int sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd, bool unmap) 792 { 793 struct scsi_device *sdp = cmd->device; 794 struct request *rq = cmd->request; 795 u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9); 796 u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9); 797 u32 data_len = sdp->sector_size; 798 799 rq->special_vec.bv_page = alloc_page(GFP_ATOMIC | __GFP_ZERO); 800 if (!rq->special_vec.bv_page) 801 return BLKPREP_DEFER; 802 rq->special_vec.bv_offset = 0; 803 rq->special_vec.bv_len = data_len; 804 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 805 806 cmd->cmd_len = 10; 807 cmd->cmnd[0] = WRITE_SAME; 808 if (unmap) 809 cmd->cmnd[1] = 0x8; /* UNMAP */ 810 put_unaligned_be32(sector, &cmd->cmnd[2]); 811 put_unaligned_be16(nr_sectors, &cmd->cmnd[7]); 812 813 cmd->allowed = SD_MAX_RETRIES; 814 cmd->transfersize = data_len; 815 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 816 scsi_req(rq)->resid_len = data_len; 817 818 return scsi_init_io(cmd); 819 } 820 821 static int sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd) 822 { 823 struct request *rq = cmd->request; 824 struct scsi_device *sdp = cmd->device; 825 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 826 u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9); 827 u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9); 828 829 if (!(rq->cmd_flags & REQ_NOUNMAP)) { 830 switch (sdkp->zeroing_mode) { 831 case SD_ZERO_WS16_UNMAP: 832 return sd_setup_write_same16_cmnd(cmd, true); 833 case SD_ZERO_WS10_UNMAP: 834 return sd_setup_write_same10_cmnd(cmd, true); 835 } 836 } 837 838 if (sdp->no_write_same) 839 return BLKPREP_INVALID; 840 if (sdkp->ws16 || sector > 0xffffffff || nr_sectors > 0xffff) 841 return sd_setup_write_same16_cmnd(cmd, false); 842 return sd_setup_write_same10_cmnd(cmd, false); 843 } 844 845 static void sd_config_write_same(struct scsi_disk *sdkp) 846 { 847 struct request_queue *q = sdkp->disk->queue; 848 unsigned int logical_block_size = sdkp->device->sector_size; 849 850 if (sdkp->device->no_write_same) { 851 sdkp->max_ws_blocks = 0; 852 goto out; 853 } 854 855 /* Some devices can not handle block counts above 0xffff despite 856 * supporting WRITE SAME(16). Consequently we default to 64k 857 * blocks per I/O unless the device explicitly advertises a 858 * bigger limit. 859 */ 860 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS) 861 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 862 (u32)SD_MAX_WS16_BLOCKS); 863 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes) 864 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 865 (u32)SD_MAX_WS10_BLOCKS); 866 else { 867 sdkp->device->no_write_same = 1; 868 sdkp->max_ws_blocks = 0; 869 } 870 871 if (sdkp->lbprz && sdkp->lbpws) 872 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP; 873 else if (sdkp->lbprz && sdkp->lbpws10) 874 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP; 875 else if (sdkp->max_ws_blocks) 876 sdkp->zeroing_mode = SD_ZERO_WS; 877 else 878 sdkp->zeroing_mode = SD_ZERO_WRITE; 879 880 out: 881 blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks * 882 (logical_block_size >> 9)); 883 blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks * 884 (logical_block_size >> 9)); 885 } 886 887 /** 888 * sd_setup_write_same_cmnd - write the same data to multiple blocks 889 * @cmd: command to prepare 890 * 891 * Will issue either WRITE SAME(10) or WRITE SAME(16) depending on 892 * preference indicated by target device. 893 **/ 894 static int sd_setup_write_same_cmnd(struct scsi_cmnd *cmd) 895 { 896 struct request *rq = cmd->request; 897 struct scsi_device *sdp = cmd->device; 898 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 899 struct bio *bio = rq->bio; 900 sector_t sector = blk_rq_pos(rq); 901 unsigned int nr_sectors = blk_rq_sectors(rq); 902 unsigned int nr_bytes = blk_rq_bytes(rq); 903 int ret; 904 905 if (sdkp->device->no_write_same) 906 return BLKPREP_INVALID; 907 908 BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size); 909 910 if (sd_is_zoned(sdkp)) { 911 ret = sd_zbc_setup_write_cmnd(cmd); 912 if (ret != BLKPREP_OK) 913 return ret; 914 } 915 916 sector >>= ilog2(sdp->sector_size) - 9; 917 nr_sectors >>= ilog2(sdp->sector_size) - 9; 918 919 rq->timeout = SD_WRITE_SAME_TIMEOUT; 920 921 if (sdkp->ws16 || sector > 0xffffffff || nr_sectors > 0xffff) { 922 cmd->cmd_len = 16; 923 cmd->cmnd[0] = WRITE_SAME_16; 924 put_unaligned_be64(sector, &cmd->cmnd[2]); 925 put_unaligned_be32(nr_sectors, &cmd->cmnd[10]); 926 } else { 927 cmd->cmd_len = 10; 928 cmd->cmnd[0] = WRITE_SAME; 929 put_unaligned_be32(sector, &cmd->cmnd[2]); 930 put_unaligned_be16(nr_sectors, &cmd->cmnd[7]); 931 } 932 933 cmd->transfersize = sdp->sector_size; 934 cmd->allowed = SD_MAX_RETRIES; 935 936 /* 937 * For WRITE SAME the data transferred via the DATA OUT buffer is 938 * different from the amount of data actually written to the target. 939 * 940 * We set up __data_len to the amount of data transferred via the 941 * DATA OUT buffer so that blk_rq_map_sg sets up the proper S/G list 942 * to transfer a single sector of data first, but then reset it to 943 * the amount of data to be written right after so that the I/O path 944 * knows how much to actually write. 945 */ 946 rq->__data_len = sdp->sector_size; 947 ret = scsi_init_io(cmd); 948 rq->__data_len = nr_bytes; 949 return ret; 950 } 951 952 static int sd_setup_flush_cmnd(struct scsi_cmnd *cmd) 953 { 954 struct request *rq = cmd->request; 955 956 /* flush requests don't perform I/O, zero the S/G table */ 957 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 958 959 cmd->cmnd[0] = SYNCHRONIZE_CACHE; 960 cmd->cmd_len = 10; 961 cmd->transfersize = 0; 962 cmd->allowed = SD_MAX_RETRIES; 963 964 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER; 965 return BLKPREP_OK; 966 } 967 968 static int sd_setup_read_write_cmnd(struct scsi_cmnd *SCpnt) 969 { 970 struct request *rq = SCpnt->request; 971 struct scsi_device *sdp = SCpnt->device; 972 struct gendisk *disk = rq->rq_disk; 973 struct scsi_disk *sdkp = scsi_disk(disk); 974 sector_t block = blk_rq_pos(rq); 975 sector_t threshold; 976 unsigned int this_count = blk_rq_sectors(rq); 977 unsigned int dif, dix; 978 bool zoned_write = sd_is_zoned(sdkp) && rq_data_dir(rq) == WRITE; 979 int ret; 980 unsigned char protect; 981 982 if (zoned_write) { 983 ret = sd_zbc_setup_write_cmnd(SCpnt); 984 if (ret != BLKPREP_OK) 985 return ret; 986 } 987 988 ret = scsi_init_io(SCpnt); 989 if (ret != BLKPREP_OK) 990 goto out; 991 SCpnt = rq->special; 992 993 /* from here on until we're complete, any goto out 994 * is used for a killable error condition */ 995 ret = BLKPREP_KILL; 996 997 SCSI_LOG_HLQUEUE(1, 998 scmd_printk(KERN_INFO, SCpnt, 999 "%s: block=%llu, count=%d\n", 1000 __func__, (unsigned long long)block, this_count)); 1001 1002 if (!sdp || !scsi_device_online(sdp) || 1003 block + blk_rq_sectors(rq) > get_capacity(disk)) { 1004 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, 1005 "Finishing %u sectors\n", 1006 blk_rq_sectors(rq))); 1007 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, 1008 "Retry with 0x%p\n", SCpnt)); 1009 goto out; 1010 } 1011 1012 if (sdp->changed) { 1013 /* 1014 * quietly refuse to do anything to a changed disc until 1015 * the changed bit has been reset 1016 */ 1017 /* printk("SCSI disk has been changed or is not present. Prohibiting further I/O.\n"); */ 1018 goto out; 1019 } 1020 1021 /* 1022 * Some SD card readers can't handle multi-sector accesses which touch 1023 * the last one or two hardware sectors. Split accesses as needed. 1024 */ 1025 threshold = get_capacity(disk) - SD_LAST_BUGGY_SECTORS * 1026 (sdp->sector_size / 512); 1027 1028 if (unlikely(sdp->last_sector_bug && block + this_count > threshold)) { 1029 if (block < threshold) { 1030 /* Access up to the threshold but not beyond */ 1031 this_count = threshold - block; 1032 } else { 1033 /* Access only a single hardware sector */ 1034 this_count = sdp->sector_size / 512; 1035 } 1036 } 1037 1038 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, "block=%llu\n", 1039 (unsigned long long)block)); 1040 1041 /* 1042 * If we have a 1K hardware sectorsize, prevent access to single 1043 * 512 byte sectors. In theory we could handle this - in fact 1044 * the scsi cdrom driver must be able to handle this because 1045 * we typically use 1K blocksizes, and cdroms typically have 1046 * 2K hardware sectorsizes. Of course, things are simpler 1047 * with the cdrom, since it is read-only. For performance 1048 * reasons, the filesystems should be able to handle this 1049 * and not force the scsi disk driver to use bounce buffers 1050 * for this. 1051 */ 1052 if (sdp->sector_size == 1024) { 1053 if ((block & 1) || (blk_rq_sectors(rq) & 1)) { 1054 scmd_printk(KERN_ERR, SCpnt, 1055 "Bad block number requested\n"); 1056 goto out; 1057 } else { 1058 block = block >> 1; 1059 this_count = this_count >> 1; 1060 } 1061 } 1062 if (sdp->sector_size == 2048) { 1063 if ((block & 3) || (blk_rq_sectors(rq) & 3)) { 1064 scmd_printk(KERN_ERR, SCpnt, 1065 "Bad block number requested\n"); 1066 goto out; 1067 } else { 1068 block = block >> 2; 1069 this_count = this_count >> 2; 1070 } 1071 } 1072 if (sdp->sector_size == 4096) { 1073 if ((block & 7) || (blk_rq_sectors(rq) & 7)) { 1074 scmd_printk(KERN_ERR, SCpnt, 1075 "Bad block number requested\n"); 1076 goto out; 1077 } else { 1078 block = block >> 3; 1079 this_count = this_count >> 3; 1080 } 1081 } 1082 if (rq_data_dir(rq) == WRITE) { 1083 SCpnt->cmnd[0] = WRITE_6; 1084 1085 if (blk_integrity_rq(rq)) 1086 sd_dif_prepare(SCpnt); 1087 1088 } else if (rq_data_dir(rq) == READ) { 1089 SCpnt->cmnd[0] = READ_6; 1090 } else { 1091 scmd_printk(KERN_ERR, SCpnt, "Unknown command %d\n", req_op(rq)); 1092 goto out; 1093 } 1094 1095 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, 1096 "%s %d/%u 512 byte blocks.\n", 1097 (rq_data_dir(rq) == WRITE) ? 1098 "writing" : "reading", this_count, 1099 blk_rq_sectors(rq))); 1100 1101 dix = scsi_prot_sg_count(SCpnt); 1102 dif = scsi_host_dif_capable(SCpnt->device->host, sdkp->protection_type); 1103 1104 if (dif || dix) 1105 protect = sd_setup_protect_cmnd(SCpnt, dix, dif); 1106 else 1107 protect = 0; 1108 1109 if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) { 1110 SCpnt->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC); 1111 1112 if (unlikely(SCpnt->cmnd == NULL)) { 1113 ret = BLKPREP_DEFER; 1114 goto out; 1115 } 1116 1117 SCpnt->cmd_len = SD_EXT_CDB_SIZE; 1118 memset(SCpnt->cmnd, 0, SCpnt->cmd_len); 1119 SCpnt->cmnd[0] = VARIABLE_LENGTH_CMD; 1120 SCpnt->cmnd[7] = 0x18; 1121 SCpnt->cmnd[9] = (rq_data_dir(rq) == READ) ? READ_32 : WRITE_32; 1122 SCpnt->cmnd[10] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0); 1123 1124 /* LBA */ 1125 SCpnt->cmnd[12] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0; 1126 SCpnt->cmnd[13] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0; 1127 SCpnt->cmnd[14] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0; 1128 SCpnt->cmnd[15] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0; 1129 SCpnt->cmnd[16] = (unsigned char) (block >> 24) & 0xff; 1130 SCpnt->cmnd[17] = (unsigned char) (block >> 16) & 0xff; 1131 SCpnt->cmnd[18] = (unsigned char) (block >> 8) & 0xff; 1132 SCpnt->cmnd[19] = (unsigned char) block & 0xff; 1133 1134 /* Expected Indirect LBA */ 1135 SCpnt->cmnd[20] = (unsigned char) (block >> 24) & 0xff; 1136 SCpnt->cmnd[21] = (unsigned char) (block >> 16) & 0xff; 1137 SCpnt->cmnd[22] = (unsigned char) (block >> 8) & 0xff; 1138 SCpnt->cmnd[23] = (unsigned char) block & 0xff; 1139 1140 /* Transfer length */ 1141 SCpnt->cmnd[28] = (unsigned char) (this_count >> 24) & 0xff; 1142 SCpnt->cmnd[29] = (unsigned char) (this_count >> 16) & 0xff; 1143 SCpnt->cmnd[30] = (unsigned char) (this_count >> 8) & 0xff; 1144 SCpnt->cmnd[31] = (unsigned char) this_count & 0xff; 1145 } else if (sdp->use_16_for_rw || (this_count > 0xffff)) { 1146 SCpnt->cmnd[0] += READ_16 - READ_6; 1147 SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0); 1148 SCpnt->cmnd[2] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0; 1149 SCpnt->cmnd[3] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0; 1150 SCpnt->cmnd[4] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0; 1151 SCpnt->cmnd[5] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0; 1152 SCpnt->cmnd[6] = (unsigned char) (block >> 24) & 0xff; 1153 SCpnt->cmnd[7] = (unsigned char) (block >> 16) & 0xff; 1154 SCpnt->cmnd[8] = (unsigned char) (block >> 8) & 0xff; 1155 SCpnt->cmnd[9] = (unsigned char) block & 0xff; 1156 SCpnt->cmnd[10] = (unsigned char) (this_count >> 24) & 0xff; 1157 SCpnt->cmnd[11] = (unsigned char) (this_count >> 16) & 0xff; 1158 SCpnt->cmnd[12] = (unsigned char) (this_count >> 8) & 0xff; 1159 SCpnt->cmnd[13] = (unsigned char) this_count & 0xff; 1160 SCpnt->cmnd[14] = SCpnt->cmnd[15] = 0; 1161 } else if ((this_count > 0xff) || (block > 0x1fffff) || 1162 scsi_device_protection(SCpnt->device) || 1163 SCpnt->device->use_10_for_rw) { 1164 SCpnt->cmnd[0] += READ_10 - READ_6; 1165 SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0); 1166 SCpnt->cmnd[2] = (unsigned char) (block >> 24) & 0xff; 1167 SCpnt->cmnd[3] = (unsigned char) (block >> 16) & 0xff; 1168 SCpnt->cmnd[4] = (unsigned char) (block >> 8) & 0xff; 1169 SCpnt->cmnd[5] = (unsigned char) block & 0xff; 1170 SCpnt->cmnd[6] = SCpnt->cmnd[9] = 0; 1171 SCpnt->cmnd[7] = (unsigned char) (this_count >> 8) & 0xff; 1172 SCpnt->cmnd[8] = (unsigned char) this_count & 0xff; 1173 } else { 1174 if (unlikely(rq->cmd_flags & REQ_FUA)) { 1175 /* 1176 * This happens only if this drive failed 1177 * 10byte rw command with ILLEGAL_REQUEST 1178 * during operation and thus turned off 1179 * use_10_for_rw. 1180 */ 1181 scmd_printk(KERN_ERR, SCpnt, 1182 "FUA write on READ/WRITE(6) drive\n"); 1183 goto out; 1184 } 1185 1186 SCpnt->cmnd[1] |= (unsigned char) ((block >> 16) & 0x1f); 1187 SCpnt->cmnd[2] = (unsigned char) ((block >> 8) & 0xff); 1188 SCpnt->cmnd[3] = (unsigned char) block & 0xff; 1189 SCpnt->cmnd[4] = (unsigned char) this_count; 1190 SCpnt->cmnd[5] = 0; 1191 } 1192 SCpnt->sdb.length = this_count * sdp->sector_size; 1193 1194 /* 1195 * We shouldn't disconnect in the middle of a sector, so with a dumb 1196 * host adapter, it's safe to assume that we can at least transfer 1197 * this many bytes between each connect / disconnect. 1198 */ 1199 SCpnt->transfersize = sdp->sector_size; 1200 SCpnt->underflow = this_count << 9; 1201 SCpnt->allowed = SD_MAX_RETRIES; 1202 1203 /* 1204 * This indicates that the command is ready from our end to be 1205 * queued. 1206 */ 1207 ret = BLKPREP_OK; 1208 out: 1209 if (zoned_write && ret != BLKPREP_OK) 1210 sd_zbc_cancel_write_cmnd(SCpnt); 1211 1212 return ret; 1213 } 1214 1215 static int sd_init_command(struct scsi_cmnd *cmd) 1216 { 1217 struct request *rq = cmd->request; 1218 1219 switch (req_op(rq)) { 1220 case REQ_OP_DISCARD: 1221 switch (scsi_disk(rq->rq_disk)->provisioning_mode) { 1222 case SD_LBP_UNMAP: 1223 return sd_setup_unmap_cmnd(cmd); 1224 case SD_LBP_WS16: 1225 return sd_setup_write_same16_cmnd(cmd, true); 1226 case SD_LBP_WS10: 1227 return sd_setup_write_same10_cmnd(cmd, true); 1228 case SD_LBP_ZERO: 1229 return sd_setup_write_same10_cmnd(cmd, false); 1230 default: 1231 return BLKPREP_INVALID; 1232 } 1233 case REQ_OP_WRITE_ZEROES: 1234 return sd_setup_write_zeroes_cmnd(cmd); 1235 case REQ_OP_WRITE_SAME: 1236 return sd_setup_write_same_cmnd(cmd); 1237 case REQ_OP_FLUSH: 1238 return sd_setup_flush_cmnd(cmd); 1239 case REQ_OP_READ: 1240 case REQ_OP_WRITE: 1241 return sd_setup_read_write_cmnd(cmd); 1242 case REQ_OP_ZONE_REPORT: 1243 return sd_zbc_setup_report_cmnd(cmd); 1244 case REQ_OP_ZONE_RESET: 1245 return sd_zbc_setup_reset_cmnd(cmd); 1246 default: 1247 BUG(); 1248 } 1249 } 1250 1251 static void sd_uninit_command(struct scsi_cmnd *SCpnt) 1252 { 1253 struct request *rq = SCpnt->request; 1254 1255 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1256 __free_page(rq->special_vec.bv_page); 1257 1258 if (SCpnt->cmnd != scsi_req(rq)->cmd) { 1259 mempool_free(SCpnt->cmnd, sd_cdb_pool); 1260 SCpnt->cmnd = NULL; 1261 SCpnt->cmd_len = 0; 1262 } 1263 } 1264 1265 /** 1266 * sd_open - open a scsi disk device 1267 * @inode: only i_rdev member may be used 1268 * @filp: only f_mode and f_flags may be used 1269 * 1270 * Returns 0 if successful. Returns a negated errno value in case 1271 * of error. 1272 * 1273 * Note: This can be called from a user context (e.g. fsck(1) ) 1274 * or from within the kernel (e.g. as a result of a mount(1) ). 1275 * In the latter case @inode and @filp carry an abridged amount 1276 * of information as noted above. 1277 * 1278 * Locking: called with bdev->bd_mutex held. 1279 **/ 1280 static int sd_open(struct block_device *bdev, fmode_t mode) 1281 { 1282 struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk); 1283 struct scsi_device *sdev; 1284 int retval; 1285 1286 if (!sdkp) 1287 return -ENXIO; 1288 1289 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n")); 1290 1291 sdev = sdkp->device; 1292 1293 /* 1294 * If the device is in error recovery, wait until it is done. 1295 * If the device is offline, then disallow any access to it. 1296 */ 1297 retval = -ENXIO; 1298 if (!scsi_block_when_processing_errors(sdev)) 1299 goto error_out; 1300 1301 if (sdev->removable || sdkp->write_prot) 1302 check_disk_change(bdev); 1303 1304 /* 1305 * If the drive is empty, just let the open fail. 1306 */ 1307 retval = -ENOMEDIUM; 1308 if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY)) 1309 goto error_out; 1310 1311 /* 1312 * If the device has the write protect tab set, have the open fail 1313 * if the user expects to be able to write to the thing. 1314 */ 1315 retval = -EROFS; 1316 if (sdkp->write_prot && (mode & FMODE_WRITE)) 1317 goto error_out; 1318 1319 /* 1320 * It is possible that the disk changing stuff resulted in 1321 * the device being taken offline. If this is the case, 1322 * report this to the user, and don't pretend that the 1323 * open actually succeeded. 1324 */ 1325 retval = -ENXIO; 1326 if (!scsi_device_online(sdev)) 1327 goto error_out; 1328 1329 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) { 1330 if (scsi_block_when_processing_errors(sdev)) 1331 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT); 1332 } 1333 1334 return 0; 1335 1336 error_out: 1337 scsi_disk_put(sdkp); 1338 return retval; 1339 } 1340 1341 /** 1342 * sd_release - invoked when the (last) close(2) is called on this 1343 * scsi disk. 1344 * @inode: only i_rdev member may be used 1345 * @filp: only f_mode and f_flags may be used 1346 * 1347 * Returns 0. 1348 * 1349 * Note: may block (uninterruptible) if error recovery is underway 1350 * on this disk. 1351 * 1352 * Locking: called with bdev->bd_mutex held. 1353 **/ 1354 static void sd_release(struct gendisk *disk, fmode_t mode) 1355 { 1356 struct scsi_disk *sdkp = scsi_disk(disk); 1357 struct scsi_device *sdev = sdkp->device; 1358 1359 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n")); 1360 1361 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) { 1362 if (scsi_block_when_processing_errors(sdev)) 1363 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW); 1364 } 1365 1366 /* 1367 * XXX and what if there are packets in flight and this close() 1368 * XXX is followed by a "rmmod sd_mod"? 1369 */ 1370 1371 scsi_disk_put(sdkp); 1372 } 1373 1374 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1375 { 1376 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1377 struct scsi_device *sdp = sdkp->device; 1378 struct Scsi_Host *host = sdp->host; 1379 sector_t capacity = logical_to_sectors(sdp, sdkp->capacity); 1380 int diskinfo[4]; 1381 1382 /* default to most commonly used values */ 1383 diskinfo[0] = 0x40; /* 1 << 6 */ 1384 diskinfo[1] = 0x20; /* 1 << 5 */ 1385 diskinfo[2] = capacity >> 11; 1386 1387 /* override with calculated, extended default, or driver values */ 1388 if (host->hostt->bios_param) 1389 host->hostt->bios_param(sdp, bdev, capacity, diskinfo); 1390 else 1391 scsicam_bios_param(bdev, capacity, diskinfo); 1392 1393 geo->heads = diskinfo[0]; 1394 geo->sectors = diskinfo[1]; 1395 geo->cylinders = diskinfo[2]; 1396 return 0; 1397 } 1398 1399 /** 1400 * sd_ioctl - process an ioctl 1401 * @inode: only i_rdev/i_bdev members may be used 1402 * @filp: only f_mode and f_flags may be used 1403 * @cmd: ioctl command number 1404 * @arg: this is third argument given to ioctl(2) system call. 1405 * Often contains a pointer. 1406 * 1407 * Returns 0 if successful (some ioctls return positive numbers on 1408 * success as well). Returns a negated errno value in case of error. 1409 * 1410 * Note: most ioctls are forward onto the block subsystem or further 1411 * down in the scsi subsystem. 1412 **/ 1413 static int sd_ioctl(struct block_device *bdev, fmode_t mode, 1414 unsigned int cmd, unsigned long arg) 1415 { 1416 struct gendisk *disk = bdev->bd_disk; 1417 struct scsi_disk *sdkp = scsi_disk(disk); 1418 struct scsi_device *sdp = sdkp->device; 1419 void __user *p = (void __user *)arg; 1420 int error; 1421 1422 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, " 1423 "cmd=0x%x\n", disk->disk_name, cmd)); 1424 1425 error = scsi_verify_blk_ioctl(bdev, cmd); 1426 if (error < 0) 1427 return error; 1428 1429 /* 1430 * If we are in the middle of error recovery, don't let anyone 1431 * else try and use this device. Also, if error recovery fails, it 1432 * may try and take the device offline, in which case all further 1433 * access to the device is prohibited. 1434 */ 1435 error = scsi_ioctl_block_when_processing_errors(sdp, cmd, 1436 (mode & FMODE_NDELAY) != 0); 1437 if (error) 1438 goto out; 1439 1440 /* 1441 * Send SCSI addressing ioctls directly to mid level, send other 1442 * ioctls to block level and then onto mid level if they can't be 1443 * resolved. 1444 */ 1445 switch (cmd) { 1446 case SCSI_IOCTL_GET_IDLUN: 1447 case SCSI_IOCTL_GET_BUS_NUMBER: 1448 error = scsi_ioctl(sdp, cmd, p); 1449 break; 1450 default: 1451 error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p); 1452 if (error != -ENOTTY) 1453 break; 1454 error = scsi_ioctl(sdp, cmd, p); 1455 break; 1456 } 1457 out: 1458 return error; 1459 } 1460 1461 static void set_media_not_present(struct scsi_disk *sdkp) 1462 { 1463 if (sdkp->media_present) 1464 sdkp->device->changed = 1; 1465 1466 if (sdkp->device->removable) { 1467 sdkp->media_present = 0; 1468 sdkp->capacity = 0; 1469 } 1470 } 1471 1472 static int media_not_present(struct scsi_disk *sdkp, 1473 struct scsi_sense_hdr *sshdr) 1474 { 1475 if (!scsi_sense_valid(sshdr)) 1476 return 0; 1477 1478 /* not invoked for commands that could return deferred errors */ 1479 switch (sshdr->sense_key) { 1480 case UNIT_ATTENTION: 1481 case NOT_READY: 1482 /* medium not present */ 1483 if (sshdr->asc == 0x3A) { 1484 set_media_not_present(sdkp); 1485 return 1; 1486 } 1487 } 1488 return 0; 1489 } 1490 1491 /** 1492 * sd_check_events - check media events 1493 * @disk: kernel device descriptor 1494 * @clearing: disk events currently being cleared 1495 * 1496 * Returns mask of DISK_EVENT_*. 1497 * 1498 * Note: this function is invoked from the block subsystem. 1499 **/ 1500 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing) 1501 { 1502 struct scsi_disk *sdkp = scsi_disk_get(disk); 1503 struct scsi_device *sdp; 1504 int retval; 1505 1506 if (!sdkp) 1507 return 0; 1508 1509 sdp = sdkp->device; 1510 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n")); 1511 1512 /* 1513 * If the device is offline, don't send any commands - just pretend as 1514 * if the command failed. If the device ever comes back online, we 1515 * can deal with it then. It is only because of unrecoverable errors 1516 * that we would ever take a device offline in the first place. 1517 */ 1518 if (!scsi_device_online(sdp)) { 1519 set_media_not_present(sdkp); 1520 goto out; 1521 } 1522 1523 /* 1524 * Using TEST_UNIT_READY enables differentiation between drive with 1525 * no cartridge loaded - NOT READY, drive with changed cartridge - 1526 * UNIT ATTENTION, or with same cartridge - GOOD STATUS. 1527 * 1528 * Drives that auto spin down. eg iomega jaz 1G, will be started 1529 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever 1530 * sd_revalidate() is called. 1531 */ 1532 if (scsi_block_when_processing_errors(sdp)) { 1533 struct scsi_sense_hdr sshdr = { 0, }; 1534 1535 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, SD_MAX_RETRIES, 1536 &sshdr); 1537 1538 /* failed to execute TUR, assume media not present */ 1539 if (host_byte(retval)) { 1540 set_media_not_present(sdkp); 1541 goto out; 1542 } 1543 1544 if (media_not_present(sdkp, &sshdr)) 1545 goto out; 1546 } 1547 1548 /* 1549 * For removable scsi disk we have to recognise the presence 1550 * of a disk in the drive. 1551 */ 1552 if (!sdkp->media_present) 1553 sdp->changed = 1; 1554 sdkp->media_present = 1; 1555 out: 1556 /* 1557 * sdp->changed is set under the following conditions: 1558 * 1559 * Medium present state has changed in either direction. 1560 * Device has indicated UNIT_ATTENTION. 1561 */ 1562 retval = sdp->changed ? DISK_EVENT_MEDIA_CHANGE : 0; 1563 sdp->changed = 0; 1564 scsi_disk_put(sdkp); 1565 return retval; 1566 } 1567 1568 static int sd_sync_cache(struct scsi_disk *sdkp) 1569 { 1570 int retries, res; 1571 struct scsi_device *sdp = sdkp->device; 1572 const int timeout = sdp->request_queue->rq_timeout 1573 * SD_FLUSH_TIMEOUT_MULTIPLIER; 1574 struct scsi_sense_hdr sshdr; 1575 1576 if (!scsi_device_online(sdp)) 1577 return -ENODEV; 1578 1579 for (retries = 3; retries > 0; --retries) { 1580 unsigned char cmd[10] = { 0 }; 1581 1582 cmd[0] = SYNCHRONIZE_CACHE; 1583 /* 1584 * Leave the rest of the command zero to indicate 1585 * flush everything. 1586 */ 1587 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr, 1588 timeout, SD_MAX_RETRIES, 0, RQF_PM, NULL); 1589 if (res == 0) 1590 break; 1591 } 1592 1593 if (res) { 1594 sd_print_result(sdkp, "Synchronize Cache(10) failed", res); 1595 1596 if (driver_byte(res) & DRIVER_SENSE) 1597 sd_print_sense_hdr(sdkp, &sshdr); 1598 /* we need to evaluate the error return */ 1599 if (scsi_sense_valid(&sshdr) && 1600 (sshdr.asc == 0x3a || /* medium not present */ 1601 sshdr.asc == 0x20)) /* invalid command */ 1602 /* this is no error here */ 1603 return 0; 1604 1605 switch (host_byte(res)) { 1606 /* ignore errors due to racing a disconnection */ 1607 case DID_BAD_TARGET: 1608 case DID_NO_CONNECT: 1609 return 0; 1610 /* signal the upper layer it might try again */ 1611 case DID_BUS_BUSY: 1612 case DID_IMM_RETRY: 1613 case DID_REQUEUE: 1614 case DID_SOFT_ERROR: 1615 return -EBUSY; 1616 default: 1617 return -EIO; 1618 } 1619 } 1620 return 0; 1621 } 1622 1623 static void sd_rescan(struct device *dev) 1624 { 1625 struct scsi_disk *sdkp = dev_get_drvdata(dev); 1626 1627 revalidate_disk(sdkp->disk); 1628 } 1629 1630 1631 #ifdef CONFIG_COMPAT 1632 /* 1633 * This gets directly called from VFS. When the ioctl 1634 * is not recognized we go back to the other translation paths. 1635 */ 1636 static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode, 1637 unsigned int cmd, unsigned long arg) 1638 { 1639 struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device; 1640 int error; 1641 1642 error = scsi_ioctl_block_when_processing_errors(sdev, cmd, 1643 (mode & FMODE_NDELAY) != 0); 1644 if (error) 1645 return error; 1646 1647 /* 1648 * Let the static ioctl translation table take care of it. 1649 */ 1650 if (!sdev->host->hostt->compat_ioctl) 1651 return -ENOIOCTLCMD; 1652 return sdev->host->hostt->compat_ioctl(sdev, cmd, (void __user *)arg); 1653 } 1654 #endif 1655 1656 static char sd_pr_type(enum pr_type type) 1657 { 1658 switch (type) { 1659 case PR_WRITE_EXCLUSIVE: 1660 return 0x01; 1661 case PR_EXCLUSIVE_ACCESS: 1662 return 0x03; 1663 case PR_WRITE_EXCLUSIVE_REG_ONLY: 1664 return 0x05; 1665 case PR_EXCLUSIVE_ACCESS_REG_ONLY: 1666 return 0x06; 1667 case PR_WRITE_EXCLUSIVE_ALL_REGS: 1668 return 0x07; 1669 case PR_EXCLUSIVE_ACCESS_ALL_REGS: 1670 return 0x08; 1671 default: 1672 return 0; 1673 } 1674 }; 1675 1676 static int sd_pr_command(struct block_device *bdev, u8 sa, 1677 u64 key, u64 sa_key, u8 type, u8 flags) 1678 { 1679 struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device; 1680 struct scsi_sense_hdr sshdr; 1681 int result; 1682 u8 cmd[16] = { 0, }; 1683 u8 data[24] = { 0, }; 1684 1685 cmd[0] = PERSISTENT_RESERVE_OUT; 1686 cmd[1] = sa; 1687 cmd[2] = type; 1688 put_unaligned_be32(sizeof(data), &cmd[5]); 1689 1690 put_unaligned_be64(key, &data[0]); 1691 put_unaligned_be64(sa_key, &data[8]); 1692 data[20] = flags; 1693 1694 result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data), 1695 &sshdr, SD_TIMEOUT, SD_MAX_RETRIES, NULL); 1696 1697 if ((driver_byte(result) & DRIVER_SENSE) && 1698 (scsi_sense_valid(&sshdr))) { 1699 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result); 1700 scsi_print_sense_hdr(sdev, NULL, &sshdr); 1701 } 1702 1703 return result; 1704 } 1705 1706 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 1707 u32 flags) 1708 { 1709 if (flags & ~PR_FL_IGNORE_KEY) 1710 return -EOPNOTSUPP; 1711 return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00, 1712 old_key, new_key, 0, 1713 (1 << 0) /* APTPL */); 1714 } 1715 1716 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 1717 u32 flags) 1718 { 1719 if (flags) 1720 return -EOPNOTSUPP; 1721 return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0); 1722 } 1723 1724 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 1725 { 1726 return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0); 1727 } 1728 1729 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 1730 enum pr_type type, bool abort) 1731 { 1732 return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key, 1733 sd_pr_type(type), 0); 1734 } 1735 1736 static int sd_pr_clear(struct block_device *bdev, u64 key) 1737 { 1738 return sd_pr_command(bdev, 0x03, key, 0, 0, 0); 1739 } 1740 1741 static const struct pr_ops sd_pr_ops = { 1742 .pr_register = sd_pr_register, 1743 .pr_reserve = sd_pr_reserve, 1744 .pr_release = sd_pr_release, 1745 .pr_preempt = sd_pr_preempt, 1746 .pr_clear = sd_pr_clear, 1747 }; 1748 1749 static const struct block_device_operations sd_fops = { 1750 .owner = THIS_MODULE, 1751 .open = sd_open, 1752 .release = sd_release, 1753 .ioctl = sd_ioctl, 1754 .getgeo = sd_getgeo, 1755 #ifdef CONFIG_COMPAT 1756 .compat_ioctl = sd_compat_ioctl, 1757 #endif 1758 .check_events = sd_check_events, 1759 .revalidate_disk = sd_revalidate_disk, 1760 .unlock_native_capacity = sd_unlock_native_capacity, 1761 .pr_ops = &sd_pr_ops, 1762 }; 1763 1764 /** 1765 * sd_eh_action - error handling callback 1766 * @scmd: sd-issued command that has failed 1767 * @eh_disp: The recovery disposition suggested by the midlayer 1768 * 1769 * This function is called by the SCSI midlayer upon completion of an 1770 * error test command (currently TEST UNIT READY). The result of sending 1771 * the eh command is passed in eh_disp. We're looking for devices that 1772 * fail medium access commands but are OK with non access commands like 1773 * test unit ready (so wrongly see the device as having a successful 1774 * recovery) 1775 **/ 1776 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp) 1777 { 1778 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk); 1779 1780 if (!scsi_device_online(scmd->device) || 1781 !scsi_medium_access_command(scmd) || 1782 host_byte(scmd->result) != DID_TIME_OUT || 1783 eh_disp != SUCCESS) 1784 return eh_disp; 1785 1786 /* 1787 * The device has timed out executing a medium access command. 1788 * However, the TEST UNIT READY command sent during error 1789 * handling completed successfully. Either the device is in the 1790 * process of recovering or has it suffered an internal failure 1791 * that prevents access to the storage medium. 1792 */ 1793 sdkp->medium_access_timed_out++; 1794 1795 /* 1796 * If the device keeps failing read/write commands but TEST UNIT 1797 * READY always completes successfully we assume that medium 1798 * access is no longer possible and take the device offline. 1799 */ 1800 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) { 1801 scmd_printk(KERN_ERR, scmd, 1802 "Medium access timeout failure. Offlining disk!\n"); 1803 scsi_device_set_state(scmd->device, SDEV_OFFLINE); 1804 1805 return FAILED; 1806 } 1807 1808 return eh_disp; 1809 } 1810 1811 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd) 1812 { 1813 u64 start_lba = blk_rq_pos(scmd->request); 1814 u64 end_lba = blk_rq_pos(scmd->request) + (scsi_bufflen(scmd) / 512); 1815 u64 factor = scmd->device->sector_size / 512; 1816 u64 bad_lba; 1817 int info_valid; 1818 /* 1819 * resid is optional but mostly filled in. When it's unused, 1820 * its value is zero, so we assume the whole buffer transferred 1821 */ 1822 unsigned int transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd); 1823 unsigned int good_bytes; 1824 1825 info_valid = scsi_get_sense_info_fld(scmd->sense_buffer, 1826 SCSI_SENSE_BUFFERSIZE, 1827 &bad_lba); 1828 if (!info_valid) 1829 return 0; 1830 1831 if (scsi_bufflen(scmd) <= scmd->device->sector_size) 1832 return 0; 1833 1834 /* be careful ... don't want any overflows */ 1835 do_div(start_lba, factor); 1836 do_div(end_lba, factor); 1837 1838 /* The bad lba was reported incorrectly, we have no idea where 1839 * the error is. 1840 */ 1841 if (bad_lba < start_lba || bad_lba >= end_lba) 1842 return 0; 1843 1844 /* This computation should always be done in terms of 1845 * the resolution of the device's medium. 1846 */ 1847 good_bytes = (bad_lba - start_lba) * scmd->device->sector_size; 1848 return min(good_bytes, transferred); 1849 } 1850 1851 /** 1852 * sd_done - bottom half handler: called when the lower level 1853 * driver has completed (successfully or otherwise) a scsi command. 1854 * @SCpnt: mid-level's per command structure. 1855 * 1856 * Note: potentially run from within an ISR. Must not block. 1857 **/ 1858 static int sd_done(struct scsi_cmnd *SCpnt) 1859 { 1860 int result = SCpnt->result; 1861 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt); 1862 unsigned int sector_size = SCpnt->device->sector_size; 1863 unsigned int resid; 1864 struct scsi_sense_hdr sshdr; 1865 struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk); 1866 struct request *req = SCpnt->request; 1867 int sense_valid = 0; 1868 int sense_deferred = 0; 1869 unsigned char op = SCpnt->cmnd[0]; 1870 unsigned char unmap = SCpnt->cmnd[1] & 8; 1871 1872 switch (req_op(req)) { 1873 case REQ_OP_DISCARD: 1874 case REQ_OP_WRITE_ZEROES: 1875 case REQ_OP_WRITE_SAME: 1876 case REQ_OP_ZONE_RESET: 1877 if (!result) { 1878 good_bytes = blk_rq_bytes(req); 1879 scsi_set_resid(SCpnt, 0); 1880 } else { 1881 good_bytes = 0; 1882 scsi_set_resid(SCpnt, blk_rq_bytes(req)); 1883 } 1884 break; 1885 case REQ_OP_ZONE_REPORT: 1886 if (!result) { 1887 good_bytes = scsi_bufflen(SCpnt) 1888 - scsi_get_resid(SCpnt); 1889 scsi_set_resid(SCpnt, 0); 1890 } else { 1891 good_bytes = 0; 1892 scsi_set_resid(SCpnt, blk_rq_bytes(req)); 1893 } 1894 break; 1895 default: 1896 /* 1897 * In case of bogus fw or device, we could end up having 1898 * an unaligned partial completion. Check this here and force 1899 * alignment. 1900 */ 1901 resid = scsi_get_resid(SCpnt); 1902 if (resid & (sector_size - 1)) { 1903 sd_printk(KERN_INFO, sdkp, 1904 "Unaligned partial completion (resid=%u, sector_sz=%u)\n", 1905 resid, sector_size); 1906 resid = min(scsi_bufflen(SCpnt), 1907 round_up(resid, sector_size)); 1908 scsi_set_resid(SCpnt, resid); 1909 } 1910 } 1911 1912 if (result) { 1913 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr); 1914 if (sense_valid) 1915 sense_deferred = scsi_sense_is_deferred(&sshdr); 1916 } 1917 sdkp->medium_access_timed_out = 0; 1918 1919 if (driver_byte(result) != DRIVER_SENSE && 1920 (!sense_valid || sense_deferred)) 1921 goto out; 1922 1923 switch (sshdr.sense_key) { 1924 case HARDWARE_ERROR: 1925 case MEDIUM_ERROR: 1926 good_bytes = sd_completed_bytes(SCpnt); 1927 break; 1928 case RECOVERED_ERROR: 1929 good_bytes = scsi_bufflen(SCpnt); 1930 break; 1931 case NO_SENSE: 1932 /* This indicates a false check condition, so ignore it. An 1933 * unknown amount of data was transferred so treat it as an 1934 * error. 1935 */ 1936 SCpnt->result = 0; 1937 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 1938 break; 1939 case ABORTED_COMMAND: 1940 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */ 1941 good_bytes = sd_completed_bytes(SCpnt); 1942 break; 1943 case ILLEGAL_REQUEST: 1944 if (sshdr.asc == 0x10) /* DIX: Host detected corruption */ 1945 good_bytes = sd_completed_bytes(SCpnt); 1946 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */ 1947 if (sshdr.asc == 0x20 || sshdr.asc == 0x24) { 1948 switch (op) { 1949 case UNMAP: 1950 sd_config_discard(sdkp, SD_LBP_DISABLE); 1951 break; 1952 case WRITE_SAME_16: 1953 case WRITE_SAME: 1954 if (unmap) 1955 sd_config_discard(sdkp, SD_LBP_DISABLE); 1956 else { 1957 sdkp->device->no_write_same = 1; 1958 sd_config_write_same(sdkp); 1959 1960 good_bytes = 0; 1961 req->__data_len = blk_rq_bytes(req); 1962 req->rq_flags |= RQF_QUIET; 1963 } 1964 } 1965 } 1966 break; 1967 default: 1968 break; 1969 } 1970 1971 out: 1972 if (sd_is_zoned(sdkp)) 1973 sd_zbc_complete(SCpnt, good_bytes, &sshdr); 1974 1975 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt, 1976 "sd_done: completed %d of %d bytes\n", 1977 good_bytes, scsi_bufflen(SCpnt))); 1978 1979 if (rq_data_dir(SCpnt->request) == READ && scsi_prot_sg_count(SCpnt)) 1980 sd_dif_complete(SCpnt, good_bytes); 1981 1982 return good_bytes; 1983 } 1984 1985 /* 1986 * spinup disk - called only in sd_revalidate_disk() 1987 */ 1988 static void 1989 sd_spinup_disk(struct scsi_disk *sdkp) 1990 { 1991 unsigned char cmd[10]; 1992 unsigned long spintime_expire = 0; 1993 int retries, spintime; 1994 unsigned int the_result; 1995 struct scsi_sense_hdr sshdr; 1996 int sense_valid = 0; 1997 1998 spintime = 0; 1999 2000 /* Spin up drives, as required. Only do this at boot time */ 2001 /* Spinup needs to be done for module loads too. */ 2002 do { 2003 retries = 0; 2004 2005 do { 2006 cmd[0] = TEST_UNIT_READY; 2007 memset((void *) &cmd[1], 0, 9); 2008 2009 the_result = scsi_execute_req(sdkp->device, cmd, 2010 DMA_NONE, NULL, 0, 2011 &sshdr, SD_TIMEOUT, 2012 SD_MAX_RETRIES, NULL); 2013 2014 /* 2015 * If the drive has indicated to us that it 2016 * doesn't have any media in it, don't bother 2017 * with any more polling. 2018 */ 2019 if (media_not_present(sdkp, &sshdr)) 2020 return; 2021 2022 if (the_result) 2023 sense_valid = scsi_sense_valid(&sshdr); 2024 retries++; 2025 } while (retries < 3 && 2026 (!scsi_status_is_good(the_result) || 2027 ((driver_byte(the_result) & DRIVER_SENSE) && 2028 sense_valid && sshdr.sense_key == UNIT_ATTENTION))); 2029 2030 if ((driver_byte(the_result) & DRIVER_SENSE) == 0) { 2031 /* no sense, TUR either succeeded or failed 2032 * with a status error */ 2033 if(!spintime && !scsi_status_is_good(the_result)) { 2034 sd_print_result(sdkp, "Test Unit Ready failed", 2035 the_result); 2036 } 2037 break; 2038 } 2039 2040 /* 2041 * The device does not want the automatic start to be issued. 2042 */ 2043 if (sdkp->device->no_start_on_add) 2044 break; 2045 2046 if (sense_valid && sshdr.sense_key == NOT_READY) { 2047 if (sshdr.asc == 4 && sshdr.ascq == 3) 2048 break; /* manual intervention required */ 2049 if (sshdr.asc == 4 && sshdr.ascq == 0xb) 2050 break; /* standby */ 2051 if (sshdr.asc == 4 && sshdr.ascq == 0xc) 2052 break; /* unavailable */ 2053 /* 2054 * Issue command to spin up drive when not ready 2055 */ 2056 if (!spintime) { 2057 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk..."); 2058 cmd[0] = START_STOP; 2059 cmd[1] = 1; /* Return immediately */ 2060 memset((void *) &cmd[2], 0, 8); 2061 cmd[4] = 1; /* Start spin cycle */ 2062 if (sdkp->device->start_stop_pwr_cond) 2063 cmd[4] |= 1 << 4; 2064 scsi_execute_req(sdkp->device, cmd, DMA_NONE, 2065 NULL, 0, &sshdr, 2066 SD_TIMEOUT, SD_MAX_RETRIES, 2067 NULL); 2068 spintime_expire = jiffies + 100 * HZ; 2069 spintime = 1; 2070 } 2071 /* Wait 1 second for next try */ 2072 msleep(1000); 2073 printk("."); 2074 2075 /* 2076 * Wait for USB flash devices with slow firmware. 2077 * Yes, this sense key/ASC combination shouldn't 2078 * occur here. It's characteristic of these devices. 2079 */ 2080 } else if (sense_valid && 2081 sshdr.sense_key == UNIT_ATTENTION && 2082 sshdr.asc == 0x28) { 2083 if (!spintime) { 2084 spintime_expire = jiffies + 5 * HZ; 2085 spintime = 1; 2086 } 2087 /* Wait 1 second for next try */ 2088 msleep(1000); 2089 } else { 2090 /* we don't understand the sense code, so it's 2091 * probably pointless to loop */ 2092 if(!spintime) { 2093 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n"); 2094 sd_print_sense_hdr(sdkp, &sshdr); 2095 } 2096 break; 2097 } 2098 2099 } while (spintime && time_before_eq(jiffies, spintime_expire)); 2100 2101 if (spintime) { 2102 if (scsi_status_is_good(the_result)) 2103 printk("ready\n"); 2104 else 2105 printk("not responding...\n"); 2106 } 2107 } 2108 2109 /* 2110 * Determine whether disk supports Data Integrity Field. 2111 */ 2112 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer) 2113 { 2114 struct scsi_device *sdp = sdkp->device; 2115 u8 type; 2116 int ret = 0; 2117 2118 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) 2119 return ret; 2120 2121 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */ 2122 2123 if (type > T10_PI_TYPE3_PROTECTION) 2124 ret = -ENODEV; 2125 else if (scsi_host_dif_capable(sdp->host, type)) 2126 ret = 1; 2127 2128 if (sdkp->first_scan || type != sdkp->protection_type) 2129 switch (ret) { 2130 case -ENODEV: 2131 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \ 2132 " protection type %u. Disabling disk!\n", 2133 type); 2134 break; 2135 case 1: 2136 sd_printk(KERN_NOTICE, sdkp, 2137 "Enabling DIF Type %u protection\n", type); 2138 break; 2139 case 0: 2140 sd_printk(KERN_NOTICE, sdkp, 2141 "Disabling DIF Type %u protection\n", type); 2142 break; 2143 } 2144 2145 sdkp->protection_type = type; 2146 2147 return ret; 2148 } 2149 2150 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp, 2151 struct scsi_sense_hdr *sshdr, int sense_valid, 2152 int the_result) 2153 { 2154 if (driver_byte(the_result) & DRIVER_SENSE) 2155 sd_print_sense_hdr(sdkp, sshdr); 2156 else 2157 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n"); 2158 2159 /* 2160 * Set dirty bit for removable devices if not ready - 2161 * sometimes drives will not report this properly. 2162 */ 2163 if (sdp->removable && 2164 sense_valid && sshdr->sense_key == NOT_READY) 2165 set_media_not_present(sdkp); 2166 2167 /* 2168 * We used to set media_present to 0 here to indicate no media 2169 * in the drive, but some drives fail read capacity even with 2170 * media present, so we can't do that. 2171 */ 2172 sdkp->capacity = 0; /* unknown mapped to zero - as usual */ 2173 } 2174 2175 #define RC16_LEN 32 2176 #if RC16_LEN > SD_BUF_SIZE 2177 #error RC16_LEN must not be more than SD_BUF_SIZE 2178 #endif 2179 2180 #define READ_CAPACITY_RETRIES_ON_RESET 10 2181 2182 /* 2183 * Ensure that we don't overflow sector_t when CONFIG_LBDAF is not set 2184 * and the reported logical block size is bigger than 512 bytes. Note 2185 * that last_sector is a u64 and therefore logical_to_sectors() is not 2186 * applicable. 2187 */ 2188 static bool sd_addressable_capacity(u64 lba, unsigned int sector_size) 2189 { 2190 u64 last_sector = (lba + 1ULL) << (ilog2(sector_size) - 9); 2191 2192 if (sizeof(sector_t) == 4 && last_sector > U32_MAX) 2193 return false; 2194 2195 return true; 2196 } 2197 2198 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp, 2199 unsigned char *buffer) 2200 { 2201 unsigned char cmd[16]; 2202 struct scsi_sense_hdr sshdr; 2203 int sense_valid = 0; 2204 int the_result; 2205 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2206 unsigned int alignment; 2207 unsigned long long lba; 2208 unsigned sector_size; 2209 2210 if (sdp->no_read_capacity_16) 2211 return -EINVAL; 2212 2213 do { 2214 memset(cmd, 0, 16); 2215 cmd[0] = SERVICE_ACTION_IN_16; 2216 cmd[1] = SAI_READ_CAPACITY_16; 2217 cmd[13] = RC16_LEN; 2218 memset(buffer, 0, RC16_LEN); 2219 2220 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, 2221 buffer, RC16_LEN, &sshdr, 2222 SD_TIMEOUT, SD_MAX_RETRIES, NULL); 2223 2224 if (media_not_present(sdkp, &sshdr)) 2225 return -ENODEV; 2226 2227 if (the_result) { 2228 sense_valid = scsi_sense_valid(&sshdr); 2229 if (sense_valid && 2230 sshdr.sense_key == ILLEGAL_REQUEST && 2231 (sshdr.asc == 0x20 || sshdr.asc == 0x24) && 2232 sshdr.ascq == 0x00) 2233 /* Invalid Command Operation Code or 2234 * Invalid Field in CDB, just retry 2235 * silently with RC10 */ 2236 return -EINVAL; 2237 if (sense_valid && 2238 sshdr.sense_key == UNIT_ATTENTION && 2239 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2240 /* Device reset might occur several times, 2241 * give it one more chance */ 2242 if (--reset_retries > 0) 2243 continue; 2244 } 2245 retries--; 2246 2247 } while (the_result && retries); 2248 2249 if (the_result) { 2250 sd_print_result(sdkp, "Read Capacity(16) failed", the_result); 2251 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2252 return -EINVAL; 2253 } 2254 2255 sector_size = get_unaligned_be32(&buffer[8]); 2256 lba = get_unaligned_be64(&buffer[0]); 2257 2258 if (sd_read_protection_type(sdkp, buffer) < 0) { 2259 sdkp->capacity = 0; 2260 return -ENODEV; 2261 } 2262 2263 if (!sd_addressable_capacity(lba, sector_size)) { 2264 sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a " 2265 "kernel compiled with support for large block " 2266 "devices.\n"); 2267 sdkp->capacity = 0; 2268 return -EOVERFLOW; 2269 } 2270 2271 /* Logical blocks per physical block exponent */ 2272 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size; 2273 2274 /* RC basis */ 2275 sdkp->rc_basis = (buffer[12] >> 4) & 0x3; 2276 2277 /* Lowest aligned logical block */ 2278 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size; 2279 blk_queue_alignment_offset(sdp->request_queue, alignment); 2280 if (alignment && sdkp->first_scan) 2281 sd_printk(KERN_NOTICE, sdkp, 2282 "physical block alignment offset: %u\n", alignment); 2283 2284 if (buffer[14] & 0x80) { /* LBPME */ 2285 sdkp->lbpme = 1; 2286 2287 if (buffer[14] & 0x40) /* LBPRZ */ 2288 sdkp->lbprz = 1; 2289 2290 sd_config_discard(sdkp, SD_LBP_WS16); 2291 } 2292 2293 sdkp->capacity = lba + 1; 2294 return sector_size; 2295 } 2296 2297 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp, 2298 unsigned char *buffer) 2299 { 2300 unsigned char cmd[16]; 2301 struct scsi_sense_hdr sshdr; 2302 int sense_valid = 0; 2303 int the_result; 2304 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2305 sector_t lba; 2306 unsigned sector_size; 2307 2308 do { 2309 cmd[0] = READ_CAPACITY; 2310 memset(&cmd[1], 0, 9); 2311 memset(buffer, 0, 8); 2312 2313 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, 2314 buffer, 8, &sshdr, 2315 SD_TIMEOUT, SD_MAX_RETRIES, NULL); 2316 2317 if (media_not_present(sdkp, &sshdr)) 2318 return -ENODEV; 2319 2320 if (the_result) { 2321 sense_valid = scsi_sense_valid(&sshdr); 2322 if (sense_valid && 2323 sshdr.sense_key == UNIT_ATTENTION && 2324 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2325 /* Device reset might occur several times, 2326 * give it one more chance */ 2327 if (--reset_retries > 0) 2328 continue; 2329 } 2330 retries--; 2331 2332 } while (the_result && retries); 2333 2334 if (the_result) { 2335 sd_print_result(sdkp, "Read Capacity(10) failed", the_result); 2336 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2337 return -EINVAL; 2338 } 2339 2340 sector_size = get_unaligned_be32(&buffer[4]); 2341 lba = get_unaligned_be32(&buffer[0]); 2342 2343 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) { 2344 /* Some buggy (usb cardreader) devices return an lba of 2345 0xffffffff when the want to report a size of 0 (with 2346 which they really mean no media is present) */ 2347 sdkp->capacity = 0; 2348 sdkp->physical_block_size = sector_size; 2349 return sector_size; 2350 } 2351 2352 if (!sd_addressable_capacity(lba, sector_size)) { 2353 sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a " 2354 "kernel compiled with support for large block " 2355 "devices.\n"); 2356 sdkp->capacity = 0; 2357 return -EOVERFLOW; 2358 } 2359 2360 sdkp->capacity = lba + 1; 2361 sdkp->physical_block_size = sector_size; 2362 return sector_size; 2363 } 2364 2365 static int sd_try_rc16_first(struct scsi_device *sdp) 2366 { 2367 if (sdp->host->max_cmd_len < 16) 2368 return 0; 2369 if (sdp->try_rc_10_first) 2370 return 0; 2371 if (sdp->scsi_level > SCSI_SPC_2) 2372 return 1; 2373 if (scsi_device_protection(sdp)) 2374 return 1; 2375 return 0; 2376 } 2377 2378 /* 2379 * read disk capacity 2380 */ 2381 static void 2382 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer) 2383 { 2384 int sector_size; 2385 struct scsi_device *sdp = sdkp->device; 2386 2387 if (sd_try_rc16_first(sdp)) { 2388 sector_size = read_capacity_16(sdkp, sdp, buffer); 2389 if (sector_size == -EOVERFLOW) 2390 goto got_data; 2391 if (sector_size == -ENODEV) 2392 return; 2393 if (sector_size < 0) 2394 sector_size = read_capacity_10(sdkp, sdp, buffer); 2395 if (sector_size < 0) 2396 return; 2397 } else { 2398 sector_size = read_capacity_10(sdkp, sdp, buffer); 2399 if (sector_size == -EOVERFLOW) 2400 goto got_data; 2401 if (sector_size < 0) 2402 return; 2403 if ((sizeof(sdkp->capacity) > 4) && 2404 (sdkp->capacity > 0xffffffffULL)) { 2405 int old_sector_size = sector_size; 2406 sd_printk(KERN_NOTICE, sdkp, "Very big device. " 2407 "Trying to use READ CAPACITY(16).\n"); 2408 sector_size = read_capacity_16(sdkp, sdp, buffer); 2409 if (sector_size < 0) { 2410 sd_printk(KERN_NOTICE, sdkp, 2411 "Using 0xffffffff as device size\n"); 2412 sdkp->capacity = 1 + (sector_t) 0xffffffff; 2413 sector_size = old_sector_size; 2414 goto got_data; 2415 } 2416 } 2417 } 2418 2419 /* Some devices are known to return the total number of blocks, 2420 * not the highest block number. Some devices have versions 2421 * which do this and others which do not. Some devices we might 2422 * suspect of doing this but we don't know for certain. 2423 * 2424 * If we know the reported capacity is wrong, decrement it. If 2425 * we can only guess, then assume the number of blocks is even 2426 * (usually true but not always) and err on the side of lowering 2427 * the capacity. 2428 */ 2429 if (sdp->fix_capacity || 2430 (sdp->guess_capacity && (sdkp->capacity & 0x01))) { 2431 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count " 2432 "from its reported value: %llu\n", 2433 (unsigned long long) sdkp->capacity); 2434 --sdkp->capacity; 2435 } 2436 2437 got_data: 2438 if (sector_size == 0) { 2439 sector_size = 512; 2440 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, " 2441 "assuming 512.\n"); 2442 } 2443 2444 if (sector_size != 512 && 2445 sector_size != 1024 && 2446 sector_size != 2048 && 2447 sector_size != 4096) { 2448 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n", 2449 sector_size); 2450 /* 2451 * The user might want to re-format the drive with 2452 * a supported sectorsize. Once this happens, it 2453 * would be relatively trivial to set the thing up. 2454 * For this reason, we leave the thing in the table. 2455 */ 2456 sdkp->capacity = 0; 2457 /* 2458 * set a bogus sector size so the normal read/write 2459 * logic in the block layer will eventually refuse any 2460 * request on this device without tripping over power 2461 * of two sector size assumptions 2462 */ 2463 sector_size = 512; 2464 } 2465 blk_queue_logical_block_size(sdp->request_queue, sector_size); 2466 blk_queue_physical_block_size(sdp->request_queue, 2467 sdkp->physical_block_size); 2468 sdkp->device->sector_size = sector_size; 2469 2470 if (sdkp->capacity > 0xffffffff) 2471 sdp->use_16_for_rw = 1; 2472 2473 } 2474 2475 /* 2476 * Print disk capacity 2477 */ 2478 static void 2479 sd_print_capacity(struct scsi_disk *sdkp, 2480 sector_t old_capacity) 2481 { 2482 int sector_size = sdkp->device->sector_size; 2483 char cap_str_2[10], cap_str_10[10]; 2484 2485 string_get_size(sdkp->capacity, sector_size, 2486 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2)); 2487 string_get_size(sdkp->capacity, sector_size, 2488 STRING_UNITS_10, cap_str_10, 2489 sizeof(cap_str_10)); 2490 2491 if (sdkp->first_scan || old_capacity != sdkp->capacity) { 2492 sd_printk(KERN_NOTICE, sdkp, 2493 "%llu %d-byte logical blocks: (%s/%s)\n", 2494 (unsigned long long)sdkp->capacity, 2495 sector_size, cap_str_10, cap_str_2); 2496 2497 if (sdkp->physical_block_size != sector_size) 2498 sd_printk(KERN_NOTICE, sdkp, 2499 "%u-byte physical blocks\n", 2500 sdkp->physical_block_size); 2501 2502 sd_zbc_print_zones(sdkp); 2503 } 2504 } 2505 2506 /* called with buffer of length 512 */ 2507 static inline int 2508 sd_do_mode_sense(struct scsi_device *sdp, int dbd, int modepage, 2509 unsigned char *buffer, int len, struct scsi_mode_data *data, 2510 struct scsi_sense_hdr *sshdr) 2511 { 2512 return scsi_mode_sense(sdp, dbd, modepage, buffer, len, 2513 SD_TIMEOUT, SD_MAX_RETRIES, data, 2514 sshdr); 2515 } 2516 2517 /* 2518 * read write protect setting, if possible - called only in sd_revalidate_disk() 2519 * called with buffer of length SD_BUF_SIZE 2520 */ 2521 static void 2522 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer) 2523 { 2524 int res; 2525 struct scsi_device *sdp = sdkp->device; 2526 struct scsi_mode_data data; 2527 int old_wp = sdkp->write_prot; 2528 2529 set_disk_ro(sdkp->disk, 0); 2530 if (sdp->skip_ms_page_3f) { 2531 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n"); 2532 return; 2533 } 2534 2535 if (sdp->use_192_bytes_for_3f) { 2536 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 192, &data, NULL); 2537 } else { 2538 /* 2539 * First attempt: ask for all pages (0x3F), but only 4 bytes. 2540 * We have to start carefully: some devices hang if we ask 2541 * for more than is available. 2542 */ 2543 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 4, &data, NULL); 2544 2545 /* 2546 * Second attempt: ask for page 0 When only page 0 is 2547 * implemented, a request for page 3F may return Sense Key 2548 * 5: Illegal Request, Sense Code 24: Invalid field in 2549 * CDB. 2550 */ 2551 if (!scsi_status_is_good(res)) 2552 res = sd_do_mode_sense(sdp, 0, 0, buffer, 4, &data, NULL); 2553 2554 /* 2555 * Third attempt: ask 255 bytes, as we did earlier. 2556 */ 2557 if (!scsi_status_is_good(res)) 2558 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 255, 2559 &data, NULL); 2560 } 2561 2562 if (!scsi_status_is_good(res)) { 2563 sd_first_printk(KERN_WARNING, sdkp, 2564 "Test WP failed, assume Write Enabled\n"); 2565 } else { 2566 sdkp->write_prot = ((data.device_specific & 0x80) != 0); 2567 set_disk_ro(sdkp->disk, sdkp->write_prot); 2568 if (sdkp->first_scan || old_wp != sdkp->write_prot) { 2569 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n", 2570 sdkp->write_prot ? "on" : "off"); 2571 sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer); 2572 } 2573 } 2574 } 2575 2576 /* 2577 * sd_read_cache_type - called only from sd_revalidate_disk() 2578 * called with buffer of length SD_BUF_SIZE 2579 */ 2580 static void 2581 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer) 2582 { 2583 int len = 0, res; 2584 struct scsi_device *sdp = sdkp->device; 2585 2586 int dbd; 2587 int modepage; 2588 int first_len; 2589 struct scsi_mode_data data; 2590 struct scsi_sense_hdr sshdr; 2591 int old_wce = sdkp->WCE; 2592 int old_rcd = sdkp->RCD; 2593 int old_dpofua = sdkp->DPOFUA; 2594 2595 2596 if (sdkp->cache_override) 2597 return; 2598 2599 first_len = 4; 2600 if (sdp->skip_ms_page_8) { 2601 if (sdp->type == TYPE_RBC) 2602 goto defaults; 2603 else { 2604 if (sdp->skip_ms_page_3f) 2605 goto defaults; 2606 modepage = 0x3F; 2607 if (sdp->use_192_bytes_for_3f) 2608 first_len = 192; 2609 dbd = 0; 2610 } 2611 } else if (sdp->type == TYPE_RBC) { 2612 modepage = 6; 2613 dbd = 8; 2614 } else { 2615 modepage = 8; 2616 dbd = 0; 2617 } 2618 2619 /* cautiously ask */ 2620 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, first_len, 2621 &data, &sshdr); 2622 2623 if (!scsi_status_is_good(res)) 2624 goto bad_sense; 2625 2626 if (!data.header_length) { 2627 modepage = 6; 2628 first_len = 0; 2629 sd_first_printk(KERN_ERR, sdkp, 2630 "Missing header in MODE_SENSE response\n"); 2631 } 2632 2633 /* that went OK, now ask for the proper length */ 2634 len = data.length; 2635 2636 /* 2637 * We're only interested in the first three bytes, actually. 2638 * But the data cache page is defined for the first 20. 2639 */ 2640 if (len < 3) 2641 goto bad_sense; 2642 else if (len > SD_BUF_SIZE) { 2643 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter " 2644 "data from %d to %d bytes\n", len, SD_BUF_SIZE); 2645 len = SD_BUF_SIZE; 2646 } 2647 if (modepage == 0x3F && sdp->use_192_bytes_for_3f) 2648 len = 192; 2649 2650 /* Get the data */ 2651 if (len > first_len) 2652 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, len, 2653 &data, &sshdr); 2654 2655 if (scsi_status_is_good(res)) { 2656 int offset = data.header_length + data.block_descriptor_length; 2657 2658 while (offset < len) { 2659 u8 page_code = buffer[offset] & 0x3F; 2660 u8 spf = buffer[offset] & 0x40; 2661 2662 if (page_code == 8 || page_code == 6) { 2663 /* We're interested only in the first 3 bytes. 2664 */ 2665 if (len - offset <= 2) { 2666 sd_first_printk(KERN_ERR, sdkp, 2667 "Incomplete mode parameter " 2668 "data\n"); 2669 goto defaults; 2670 } else { 2671 modepage = page_code; 2672 goto Page_found; 2673 } 2674 } else { 2675 /* Go to the next page */ 2676 if (spf && len - offset > 3) 2677 offset += 4 + (buffer[offset+2] << 8) + 2678 buffer[offset+3]; 2679 else if (!spf && len - offset > 1) 2680 offset += 2 + buffer[offset+1]; 2681 else { 2682 sd_first_printk(KERN_ERR, sdkp, 2683 "Incomplete mode " 2684 "parameter data\n"); 2685 goto defaults; 2686 } 2687 } 2688 } 2689 2690 sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n"); 2691 goto defaults; 2692 2693 Page_found: 2694 if (modepage == 8) { 2695 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0); 2696 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0); 2697 } else { 2698 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0); 2699 sdkp->RCD = 0; 2700 } 2701 2702 sdkp->DPOFUA = (data.device_specific & 0x10) != 0; 2703 if (sdp->broken_fua) { 2704 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n"); 2705 sdkp->DPOFUA = 0; 2706 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw && 2707 !sdkp->device->use_16_for_rw) { 2708 sd_first_printk(KERN_NOTICE, sdkp, 2709 "Uses READ/WRITE(6), disabling FUA\n"); 2710 sdkp->DPOFUA = 0; 2711 } 2712 2713 /* No cache flush allowed for write protected devices */ 2714 if (sdkp->WCE && sdkp->write_prot) 2715 sdkp->WCE = 0; 2716 2717 if (sdkp->first_scan || old_wce != sdkp->WCE || 2718 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA) 2719 sd_printk(KERN_NOTICE, sdkp, 2720 "Write cache: %s, read cache: %s, %s\n", 2721 sdkp->WCE ? "enabled" : "disabled", 2722 sdkp->RCD ? "disabled" : "enabled", 2723 sdkp->DPOFUA ? "supports DPO and FUA" 2724 : "doesn't support DPO or FUA"); 2725 2726 return; 2727 } 2728 2729 bad_sense: 2730 if (scsi_sense_valid(&sshdr) && 2731 sshdr.sense_key == ILLEGAL_REQUEST && 2732 sshdr.asc == 0x24 && sshdr.ascq == 0x0) 2733 /* Invalid field in CDB */ 2734 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n"); 2735 else 2736 sd_first_printk(KERN_ERR, sdkp, 2737 "Asking for cache data failed\n"); 2738 2739 defaults: 2740 if (sdp->wce_default_on) { 2741 sd_first_printk(KERN_NOTICE, sdkp, 2742 "Assuming drive cache: write back\n"); 2743 sdkp->WCE = 1; 2744 } else { 2745 sd_first_printk(KERN_ERR, sdkp, 2746 "Assuming drive cache: write through\n"); 2747 sdkp->WCE = 0; 2748 } 2749 sdkp->RCD = 0; 2750 sdkp->DPOFUA = 0; 2751 } 2752 2753 /* 2754 * The ATO bit indicates whether the DIF application tag is available 2755 * for use by the operating system. 2756 */ 2757 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer) 2758 { 2759 int res, offset; 2760 struct scsi_device *sdp = sdkp->device; 2761 struct scsi_mode_data data; 2762 struct scsi_sense_hdr sshdr; 2763 2764 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 2765 return; 2766 2767 if (sdkp->protection_type == 0) 2768 return; 2769 2770 res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT, 2771 SD_MAX_RETRIES, &data, &sshdr); 2772 2773 if (!scsi_status_is_good(res) || !data.header_length || 2774 data.length < 6) { 2775 sd_first_printk(KERN_WARNING, sdkp, 2776 "getting Control mode page failed, assume no ATO\n"); 2777 2778 if (scsi_sense_valid(&sshdr)) 2779 sd_print_sense_hdr(sdkp, &sshdr); 2780 2781 return; 2782 } 2783 2784 offset = data.header_length + data.block_descriptor_length; 2785 2786 if ((buffer[offset] & 0x3f) != 0x0a) { 2787 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n"); 2788 return; 2789 } 2790 2791 if ((buffer[offset + 5] & 0x80) == 0) 2792 return; 2793 2794 sdkp->ATO = 1; 2795 2796 return; 2797 } 2798 2799 /** 2800 * sd_read_block_limits - Query disk device for preferred I/O sizes. 2801 * @disk: disk to query 2802 */ 2803 static void sd_read_block_limits(struct scsi_disk *sdkp) 2804 { 2805 unsigned int sector_sz = sdkp->device->sector_size; 2806 const int vpd_len = 64; 2807 unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL); 2808 2809 if (!buffer || 2810 /* Block Limits VPD */ 2811 scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len)) 2812 goto out; 2813 2814 blk_queue_io_min(sdkp->disk->queue, 2815 get_unaligned_be16(&buffer[6]) * sector_sz); 2816 2817 sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]); 2818 sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]); 2819 2820 if (buffer[3] == 0x3c) { 2821 unsigned int lba_count, desc_count; 2822 2823 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]); 2824 2825 if (!sdkp->lbpme) 2826 goto out; 2827 2828 lba_count = get_unaligned_be32(&buffer[20]); 2829 desc_count = get_unaligned_be32(&buffer[24]); 2830 2831 if (lba_count && desc_count) 2832 sdkp->max_unmap_blocks = lba_count; 2833 2834 sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]); 2835 2836 if (buffer[32] & 0x80) 2837 sdkp->unmap_alignment = 2838 get_unaligned_be32(&buffer[32]) & ~(1 << 31); 2839 2840 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */ 2841 2842 if (sdkp->max_unmap_blocks) 2843 sd_config_discard(sdkp, SD_LBP_UNMAP); 2844 else 2845 sd_config_discard(sdkp, SD_LBP_WS16); 2846 2847 } else { /* LBP VPD page tells us what to use */ 2848 if (sdkp->lbpu && sdkp->max_unmap_blocks) 2849 sd_config_discard(sdkp, SD_LBP_UNMAP); 2850 else if (sdkp->lbpws) 2851 sd_config_discard(sdkp, SD_LBP_WS16); 2852 else if (sdkp->lbpws10) 2853 sd_config_discard(sdkp, SD_LBP_WS10); 2854 else if (sdkp->lbpu && sdkp->max_unmap_blocks) 2855 sd_config_discard(sdkp, SD_LBP_UNMAP); 2856 else 2857 sd_config_discard(sdkp, SD_LBP_DISABLE); 2858 } 2859 } 2860 2861 out: 2862 kfree(buffer); 2863 } 2864 2865 /** 2866 * sd_read_block_characteristics - Query block dev. characteristics 2867 * @disk: disk to query 2868 */ 2869 static void sd_read_block_characteristics(struct scsi_disk *sdkp) 2870 { 2871 struct request_queue *q = sdkp->disk->queue; 2872 unsigned char *buffer; 2873 u16 rot; 2874 const int vpd_len = 64; 2875 2876 buffer = kmalloc(vpd_len, GFP_KERNEL); 2877 2878 if (!buffer || 2879 /* Block Device Characteristics VPD */ 2880 scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len)) 2881 goto out; 2882 2883 rot = get_unaligned_be16(&buffer[4]); 2884 2885 if (rot == 1) { 2886 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q); 2887 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q); 2888 } 2889 2890 if (sdkp->device->type == TYPE_ZBC) { 2891 /* Host-managed */ 2892 q->limits.zoned = BLK_ZONED_HM; 2893 } else { 2894 sdkp->zoned = (buffer[8] >> 4) & 3; 2895 if (sdkp->zoned == 1) 2896 /* Host-aware */ 2897 q->limits.zoned = BLK_ZONED_HA; 2898 else 2899 /* 2900 * Treat drive-managed devices as 2901 * regular block devices. 2902 */ 2903 q->limits.zoned = BLK_ZONED_NONE; 2904 } 2905 if (blk_queue_is_zoned(q) && sdkp->first_scan) 2906 sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n", 2907 q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware"); 2908 2909 out: 2910 kfree(buffer); 2911 } 2912 2913 /** 2914 * sd_read_block_provisioning - Query provisioning VPD page 2915 * @disk: disk to query 2916 */ 2917 static void sd_read_block_provisioning(struct scsi_disk *sdkp) 2918 { 2919 unsigned char *buffer; 2920 const int vpd_len = 8; 2921 2922 if (sdkp->lbpme == 0) 2923 return; 2924 2925 buffer = kmalloc(vpd_len, GFP_KERNEL); 2926 2927 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len)) 2928 goto out; 2929 2930 sdkp->lbpvpd = 1; 2931 sdkp->lbpu = (buffer[5] >> 7) & 1; /* UNMAP */ 2932 sdkp->lbpws = (buffer[5] >> 6) & 1; /* WRITE SAME(16) with UNMAP */ 2933 sdkp->lbpws10 = (buffer[5] >> 5) & 1; /* WRITE SAME(10) with UNMAP */ 2934 2935 out: 2936 kfree(buffer); 2937 } 2938 2939 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer) 2940 { 2941 struct scsi_device *sdev = sdkp->device; 2942 2943 if (sdev->host->no_write_same) { 2944 sdev->no_write_same = 1; 2945 2946 return; 2947 } 2948 2949 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) { 2950 /* too large values might cause issues with arcmsr */ 2951 int vpd_buf_len = 64; 2952 2953 sdev->no_report_opcodes = 1; 2954 2955 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION 2956 * CODES is unsupported and the device has an ATA 2957 * Information VPD page (SAT). 2958 */ 2959 if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len)) 2960 sdev->no_write_same = 1; 2961 } 2962 2963 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1) 2964 sdkp->ws16 = 1; 2965 2966 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1) 2967 sdkp->ws10 = 1; 2968 } 2969 2970 /** 2971 * sd_revalidate_disk - called the first time a new disk is seen, 2972 * performs disk spin up, read_capacity, etc. 2973 * @disk: struct gendisk we care about 2974 **/ 2975 static int sd_revalidate_disk(struct gendisk *disk) 2976 { 2977 struct scsi_disk *sdkp = scsi_disk(disk); 2978 struct scsi_device *sdp = sdkp->device; 2979 struct request_queue *q = sdkp->disk->queue; 2980 sector_t old_capacity = sdkp->capacity; 2981 unsigned char *buffer; 2982 unsigned int dev_max, rw_max; 2983 2984 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, 2985 "sd_revalidate_disk\n")); 2986 2987 /* 2988 * If the device is offline, don't try and read capacity or any 2989 * of the other niceties. 2990 */ 2991 if (!scsi_device_online(sdp)) 2992 goto out; 2993 2994 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL); 2995 if (!buffer) { 2996 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory " 2997 "allocation failure.\n"); 2998 goto out; 2999 } 3000 3001 sd_spinup_disk(sdkp); 3002 3003 /* 3004 * Without media there is no reason to ask; moreover, some devices 3005 * react badly if we do. 3006 */ 3007 if (sdkp->media_present) { 3008 sd_read_capacity(sdkp, buffer); 3009 3010 if (scsi_device_supports_vpd(sdp)) { 3011 sd_read_block_provisioning(sdkp); 3012 sd_read_block_limits(sdkp); 3013 sd_read_block_characteristics(sdkp); 3014 sd_zbc_read_zones(sdkp, buffer); 3015 } 3016 3017 sd_print_capacity(sdkp, old_capacity); 3018 3019 sd_read_write_protect_flag(sdkp, buffer); 3020 sd_read_cache_type(sdkp, buffer); 3021 sd_read_app_tag_own(sdkp, buffer); 3022 sd_read_write_same(sdkp, buffer); 3023 } 3024 3025 sdkp->first_scan = 0; 3026 3027 /* 3028 * We now have all cache related info, determine how we deal 3029 * with flush requests. 3030 */ 3031 sd_set_flush_flag(sdkp); 3032 3033 /* Initial block count limit based on CDB TRANSFER LENGTH field size. */ 3034 dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS; 3035 3036 /* Some devices report a maximum block count for READ/WRITE requests. */ 3037 dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks); 3038 q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max); 3039 3040 /* 3041 * Use the device's preferred I/O size for reads and writes 3042 * unless the reported value is unreasonably small, large, or 3043 * garbage. 3044 */ 3045 if (sdkp->opt_xfer_blocks && 3046 sdkp->opt_xfer_blocks <= dev_max && 3047 sdkp->opt_xfer_blocks <= SD_DEF_XFER_BLOCKS && 3048 logical_to_bytes(sdp, sdkp->opt_xfer_blocks) >= PAGE_SIZE) { 3049 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 3050 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks); 3051 } else 3052 rw_max = min_not_zero(logical_to_sectors(sdp, dev_max), 3053 (sector_t)BLK_DEF_MAX_SECTORS); 3054 3055 /* Combine with controller limits */ 3056 q->limits.max_sectors = min(rw_max, queue_max_hw_sectors(q)); 3057 3058 set_capacity(disk, logical_to_sectors(sdp, sdkp->capacity)); 3059 sd_config_write_same(sdkp); 3060 kfree(buffer); 3061 3062 out: 3063 return 0; 3064 } 3065 3066 /** 3067 * sd_unlock_native_capacity - unlock native capacity 3068 * @disk: struct gendisk to set capacity for 3069 * 3070 * Block layer calls this function if it detects that partitions 3071 * on @disk reach beyond the end of the device. If the SCSI host 3072 * implements ->unlock_native_capacity() method, it's invoked to 3073 * give it a chance to adjust the device capacity. 3074 * 3075 * CONTEXT: 3076 * Defined by block layer. Might sleep. 3077 */ 3078 static void sd_unlock_native_capacity(struct gendisk *disk) 3079 { 3080 struct scsi_device *sdev = scsi_disk(disk)->device; 3081 3082 if (sdev->host->hostt->unlock_native_capacity) 3083 sdev->host->hostt->unlock_native_capacity(sdev); 3084 } 3085 3086 /** 3087 * sd_format_disk_name - format disk name 3088 * @prefix: name prefix - ie. "sd" for SCSI disks 3089 * @index: index of the disk to format name for 3090 * @buf: output buffer 3091 * @buflen: length of the output buffer 3092 * 3093 * SCSI disk names starts at sda. The 26th device is sdz and the 3094 * 27th is sdaa. The last one for two lettered suffix is sdzz 3095 * which is followed by sdaaa. 3096 * 3097 * This is basically 26 base counting with one extra 'nil' entry 3098 * at the beginning from the second digit on and can be 3099 * determined using similar method as 26 base conversion with the 3100 * index shifted -1 after each digit is computed. 3101 * 3102 * CONTEXT: 3103 * Don't care. 3104 * 3105 * RETURNS: 3106 * 0 on success, -errno on failure. 3107 */ 3108 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen) 3109 { 3110 const int base = 'z' - 'a' + 1; 3111 char *begin = buf + strlen(prefix); 3112 char *end = buf + buflen; 3113 char *p; 3114 int unit; 3115 3116 p = end - 1; 3117 *p = '\0'; 3118 unit = base; 3119 do { 3120 if (p == begin) 3121 return -EINVAL; 3122 *--p = 'a' + (index % unit); 3123 index = (index / unit) - 1; 3124 } while (index >= 0); 3125 3126 memmove(begin, p, end - p); 3127 memcpy(buf, prefix, strlen(prefix)); 3128 3129 return 0; 3130 } 3131 3132 /* 3133 * The asynchronous part of sd_probe 3134 */ 3135 static void sd_probe_async(void *data, async_cookie_t cookie) 3136 { 3137 struct scsi_disk *sdkp = data; 3138 struct scsi_device *sdp; 3139 struct gendisk *gd; 3140 u32 index; 3141 struct device *dev; 3142 3143 sdp = sdkp->device; 3144 gd = sdkp->disk; 3145 index = sdkp->index; 3146 dev = &sdp->sdev_gendev; 3147 3148 gd->major = sd_major((index & 0xf0) >> 4); 3149 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00); 3150 gd->minors = SD_MINORS; 3151 3152 gd->fops = &sd_fops; 3153 gd->private_data = &sdkp->driver; 3154 gd->queue = sdkp->device->request_queue; 3155 3156 /* defaults, until the device tells us otherwise */ 3157 sdp->sector_size = 512; 3158 sdkp->capacity = 0; 3159 sdkp->media_present = 1; 3160 sdkp->write_prot = 0; 3161 sdkp->cache_override = 0; 3162 sdkp->WCE = 0; 3163 sdkp->RCD = 0; 3164 sdkp->ATO = 0; 3165 sdkp->first_scan = 1; 3166 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS; 3167 3168 sd_revalidate_disk(gd); 3169 3170 gd->flags = GENHD_FL_EXT_DEVT; 3171 if (sdp->removable) { 3172 gd->flags |= GENHD_FL_REMOVABLE; 3173 gd->events |= DISK_EVENT_MEDIA_CHANGE; 3174 } 3175 3176 blk_pm_runtime_init(sdp->request_queue, dev); 3177 device_add_disk(dev, gd); 3178 if (sdkp->capacity) 3179 sd_dif_config_host(sdkp); 3180 3181 sd_revalidate_disk(gd); 3182 3183 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n", 3184 sdp->removable ? "removable " : ""); 3185 scsi_autopm_put_device(sdp); 3186 put_device(&sdkp->dev); 3187 } 3188 3189 /** 3190 * sd_probe - called during driver initialization and whenever a 3191 * new scsi device is attached to the system. It is called once 3192 * for each scsi device (not just disks) present. 3193 * @dev: pointer to device object 3194 * 3195 * Returns 0 if successful (or not interested in this scsi device 3196 * (e.g. scanner)); 1 when there is an error. 3197 * 3198 * Note: this function is invoked from the scsi mid-level. 3199 * This function sets up the mapping between a given 3200 * <host,channel,id,lun> (found in sdp) and new device name 3201 * (e.g. /dev/sda). More precisely it is the block device major 3202 * and minor number that is chosen here. 3203 * 3204 * Assume sd_probe is not re-entrant (for time being) 3205 * Also think about sd_probe() and sd_remove() running coincidentally. 3206 **/ 3207 static int sd_probe(struct device *dev) 3208 { 3209 struct scsi_device *sdp = to_scsi_device(dev); 3210 struct scsi_disk *sdkp; 3211 struct gendisk *gd; 3212 int index; 3213 int error; 3214 3215 scsi_autopm_get_device(sdp); 3216 error = -ENODEV; 3217 if (sdp->type != TYPE_DISK && 3218 sdp->type != TYPE_ZBC && 3219 sdp->type != TYPE_MOD && 3220 sdp->type != TYPE_RBC) 3221 goto out; 3222 3223 #ifndef CONFIG_BLK_DEV_ZONED 3224 if (sdp->type == TYPE_ZBC) 3225 goto out; 3226 #endif 3227 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp, 3228 "sd_probe\n")); 3229 3230 error = -ENOMEM; 3231 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL); 3232 if (!sdkp) 3233 goto out; 3234 3235 gd = alloc_disk(SD_MINORS); 3236 if (!gd) 3237 goto out_free; 3238 3239 do { 3240 if (!ida_pre_get(&sd_index_ida, GFP_KERNEL)) 3241 goto out_put; 3242 3243 spin_lock(&sd_index_lock); 3244 error = ida_get_new(&sd_index_ida, &index); 3245 spin_unlock(&sd_index_lock); 3246 } while (error == -EAGAIN); 3247 3248 if (error) { 3249 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n"); 3250 goto out_put; 3251 } 3252 3253 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN); 3254 if (error) { 3255 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n"); 3256 goto out_free_index; 3257 } 3258 3259 sdkp->device = sdp; 3260 sdkp->driver = &sd_template; 3261 sdkp->disk = gd; 3262 sdkp->index = index; 3263 atomic_set(&sdkp->openers, 0); 3264 atomic_set(&sdkp->device->ioerr_cnt, 0); 3265 3266 if (!sdp->request_queue->rq_timeout) { 3267 if (sdp->type != TYPE_MOD) 3268 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT); 3269 else 3270 blk_queue_rq_timeout(sdp->request_queue, 3271 SD_MOD_TIMEOUT); 3272 } 3273 3274 device_initialize(&sdkp->dev); 3275 sdkp->dev.parent = dev; 3276 sdkp->dev.class = &sd_disk_class; 3277 dev_set_name(&sdkp->dev, "%s", dev_name(dev)); 3278 3279 error = device_add(&sdkp->dev); 3280 if (error) 3281 goto out_free_index; 3282 3283 get_device(dev); 3284 dev_set_drvdata(dev, sdkp); 3285 3286 get_device(&sdkp->dev); /* prevent release before async_schedule */ 3287 async_schedule_domain(sd_probe_async, sdkp, &scsi_sd_probe_domain); 3288 3289 return 0; 3290 3291 out_free_index: 3292 spin_lock(&sd_index_lock); 3293 ida_remove(&sd_index_ida, index); 3294 spin_unlock(&sd_index_lock); 3295 out_put: 3296 put_disk(gd); 3297 out_free: 3298 kfree(sdkp); 3299 out: 3300 scsi_autopm_put_device(sdp); 3301 return error; 3302 } 3303 3304 /** 3305 * sd_remove - called whenever a scsi disk (previously recognized by 3306 * sd_probe) is detached from the system. It is called (potentially 3307 * multiple times) during sd module unload. 3308 * @dev: pointer to device object 3309 * 3310 * Note: this function is invoked from the scsi mid-level. 3311 * This function potentially frees up a device name (e.g. /dev/sdc) 3312 * that could be re-used by a subsequent sd_probe(). 3313 * This function is not called when the built-in sd driver is "exit-ed". 3314 **/ 3315 static int sd_remove(struct device *dev) 3316 { 3317 struct scsi_disk *sdkp; 3318 dev_t devt; 3319 3320 sdkp = dev_get_drvdata(dev); 3321 devt = disk_devt(sdkp->disk); 3322 scsi_autopm_get_device(sdkp->device); 3323 3324 async_synchronize_full_domain(&scsi_sd_pm_domain); 3325 async_synchronize_full_domain(&scsi_sd_probe_domain); 3326 device_del(&sdkp->dev); 3327 del_gendisk(sdkp->disk); 3328 sd_shutdown(dev); 3329 3330 sd_zbc_remove(sdkp); 3331 3332 blk_register_region(devt, SD_MINORS, NULL, 3333 sd_default_probe, NULL, NULL); 3334 3335 mutex_lock(&sd_ref_mutex); 3336 dev_set_drvdata(dev, NULL); 3337 put_device(&sdkp->dev); 3338 mutex_unlock(&sd_ref_mutex); 3339 3340 return 0; 3341 } 3342 3343 /** 3344 * scsi_disk_release - Called to free the scsi_disk structure 3345 * @dev: pointer to embedded class device 3346 * 3347 * sd_ref_mutex must be held entering this routine. Because it is 3348 * called on last put, you should always use the scsi_disk_get() 3349 * scsi_disk_put() helpers which manipulate the semaphore directly 3350 * and never do a direct put_device. 3351 **/ 3352 static void scsi_disk_release(struct device *dev) 3353 { 3354 struct scsi_disk *sdkp = to_scsi_disk(dev); 3355 struct gendisk *disk = sdkp->disk; 3356 3357 spin_lock(&sd_index_lock); 3358 ida_remove(&sd_index_ida, sdkp->index); 3359 spin_unlock(&sd_index_lock); 3360 3361 disk->private_data = NULL; 3362 put_disk(disk); 3363 put_device(&sdkp->device->sdev_gendev); 3364 3365 kfree(sdkp); 3366 } 3367 3368 static int sd_start_stop_device(struct scsi_disk *sdkp, int start) 3369 { 3370 unsigned char cmd[6] = { START_STOP }; /* START_VALID */ 3371 struct scsi_sense_hdr sshdr; 3372 struct scsi_device *sdp = sdkp->device; 3373 int res; 3374 3375 if (start) 3376 cmd[4] |= 1; /* START */ 3377 3378 if (sdp->start_stop_pwr_cond) 3379 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */ 3380 3381 if (!scsi_device_online(sdp)) 3382 return -ENODEV; 3383 3384 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr, 3385 SD_TIMEOUT, SD_MAX_RETRIES, 0, RQF_PM, NULL); 3386 if (res) { 3387 sd_print_result(sdkp, "Start/Stop Unit failed", res); 3388 if (driver_byte(res) & DRIVER_SENSE) 3389 sd_print_sense_hdr(sdkp, &sshdr); 3390 if (scsi_sense_valid(&sshdr) && 3391 /* 0x3a is medium not present */ 3392 sshdr.asc == 0x3a) 3393 res = 0; 3394 } 3395 3396 /* SCSI error codes must not go to the generic layer */ 3397 if (res) 3398 return -EIO; 3399 3400 return 0; 3401 } 3402 3403 /* 3404 * Send a SYNCHRONIZE CACHE instruction down to the device through 3405 * the normal SCSI command structure. Wait for the command to 3406 * complete. 3407 */ 3408 static void sd_shutdown(struct device *dev) 3409 { 3410 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3411 3412 if (!sdkp) 3413 return; /* this can happen */ 3414 3415 if (pm_runtime_suspended(dev)) 3416 return; 3417 3418 if (sdkp->WCE && sdkp->media_present) { 3419 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3420 sd_sync_cache(sdkp); 3421 } 3422 3423 if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) { 3424 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3425 sd_start_stop_device(sdkp, 0); 3426 } 3427 } 3428 3429 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors) 3430 { 3431 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3432 int ret = 0; 3433 3434 if (!sdkp) /* E.g.: runtime suspend following sd_remove() */ 3435 return 0; 3436 3437 if (sdkp->WCE && sdkp->media_present) { 3438 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3439 ret = sd_sync_cache(sdkp); 3440 if (ret) { 3441 /* ignore OFFLINE device */ 3442 if (ret == -ENODEV) 3443 ret = 0; 3444 goto done; 3445 } 3446 } 3447 3448 if (sdkp->device->manage_start_stop) { 3449 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3450 /* an error is not worth aborting a system sleep */ 3451 ret = sd_start_stop_device(sdkp, 0); 3452 if (ignore_stop_errors) 3453 ret = 0; 3454 } 3455 3456 done: 3457 return ret; 3458 } 3459 3460 static int sd_suspend_system(struct device *dev) 3461 { 3462 return sd_suspend_common(dev, true); 3463 } 3464 3465 static int sd_suspend_runtime(struct device *dev) 3466 { 3467 return sd_suspend_common(dev, false); 3468 } 3469 3470 static int sd_resume(struct device *dev) 3471 { 3472 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3473 3474 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */ 3475 return 0; 3476 3477 if (!sdkp->device->manage_start_stop) 3478 return 0; 3479 3480 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n"); 3481 return sd_start_stop_device(sdkp, 1); 3482 } 3483 3484 /** 3485 * init_sd - entry point for this driver (both when built in or when 3486 * a module). 3487 * 3488 * Note: this function registers this driver with the scsi mid-level. 3489 **/ 3490 static int __init init_sd(void) 3491 { 3492 int majors = 0, i, err; 3493 3494 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n")); 3495 3496 for (i = 0; i < SD_MAJORS; i++) { 3497 if (register_blkdev(sd_major(i), "sd") != 0) 3498 continue; 3499 majors++; 3500 blk_register_region(sd_major(i), SD_MINORS, NULL, 3501 sd_default_probe, NULL, NULL); 3502 } 3503 3504 if (!majors) 3505 return -ENODEV; 3506 3507 err = class_register(&sd_disk_class); 3508 if (err) 3509 goto err_out; 3510 3511 sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE, 3512 0, 0, NULL); 3513 if (!sd_cdb_cache) { 3514 printk(KERN_ERR "sd: can't init extended cdb cache\n"); 3515 err = -ENOMEM; 3516 goto err_out_class; 3517 } 3518 3519 sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache); 3520 if (!sd_cdb_pool) { 3521 printk(KERN_ERR "sd: can't init extended cdb pool\n"); 3522 err = -ENOMEM; 3523 goto err_out_cache; 3524 } 3525 3526 err = scsi_register_driver(&sd_template.gendrv); 3527 if (err) 3528 goto err_out_driver; 3529 3530 return 0; 3531 3532 err_out_driver: 3533 mempool_destroy(sd_cdb_pool); 3534 3535 err_out_cache: 3536 kmem_cache_destroy(sd_cdb_cache); 3537 3538 err_out_class: 3539 class_unregister(&sd_disk_class); 3540 err_out: 3541 for (i = 0; i < SD_MAJORS; i++) 3542 unregister_blkdev(sd_major(i), "sd"); 3543 return err; 3544 } 3545 3546 /** 3547 * exit_sd - exit point for this driver (when it is a module). 3548 * 3549 * Note: this function unregisters this driver from the scsi mid-level. 3550 **/ 3551 static void __exit exit_sd(void) 3552 { 3553 int i; 3554 3555 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n")); 3556 3557 scsi_unregister_driver(&sd_template.gendrv); 3558 mempool_destroy(sd_cdb_pool); 3559 kmem_cache_destroy(sd_cdb_cache); 3560 3561 class_unregister(&sd_disk_class); 3562 3563 for (i = 0; i < SD_MAJORS; i++) { 3564 blk_unregister_region(sd_major(i), SD_MINORS); 3565 unregister_blkdev(sd_major(i), "sd"); 3566 } 3567 } 3568 3569 module_init(init_sd); 3570 module_exit(exit_sd); 3571 3572 static void sd_print_sense_hdr(struct scsi_disk *sdkp, 3573 struct scsi_sense_hdr *sshdr) 3574 { 3575 scsi_print_sense_hdr(sdkp->device, 3576 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr); 3577 } 3578 3579 static void sd_print_result(const struct scsi_disk *sdkp, const char *msg, 3580 int result) 3581 { 3582 const char *hb_string = scsi_hostbyte_string(result); 3583 const char *db_string = scsi_driverbyte_string(result); 3584 3585 if (hb_string || db_string) 3586 sd_printk(KERN_INFO, sdkp, 3587 "%s: Result: hostbyte=%s driverbyte=%s\n", msg, 3588 hb_string ? hb_string : "invalid", 3589 db_string ? db_string : "invalid"); 3590 else 3591 sd_printk(KERN_INFO, sdkp, 3592 "%s: Result: hostbyte=0x%02x driverbyte=0x%02x\n", 3593 msg, host_byte(result), driver_byte(result)); 3594 } 3595 3596