xref: /linux/drivers/scsi/sd.c (revision 564f7dfde24a405d877168f150ae5d29d3ad99c7)
1 /*
2  *      sd.c Copyright (C) 1992 Drew Eckhardt
3  *           Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
4  *
5  *      Linux scsi disk driver
6  *              Initial versions: Drew Eckhardt
7  *              Subsequent revisions: Eric Youngdale
8  *	Modification history:
9  *       - Drew Eckhardt <drew@colorado.edu> original
10  *       - Eric Youngdale <eric@andante.org> add scatter-gather, multiple
11  *         outstanding request, and other enhancements.
12  *         Support loadable low-level scsi drivers.
13  *       - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using
14  *         eight major numbers.
15  *       - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
16  *	 - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in
17  *	   sd_init and cleanups.
18  *	 - Alex Davis <letmein@erols.com> Fix problem where partition info
19  *	   not being read in sd_open. Fix problem where removable media
20  *	   could be ejected after sd_open.
21  *	 - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
22  *	 - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox
23  *	   <willy@debian.org>, Kurt Garloff <garloff@suse.de>:
24  *	   Support 32k/1M disks.
25  *
26  *	Logging policy (needs CONFIG_SCSI_LOGGING defined):
27  *	 - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
28  *	 - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
29  *	 - entering sd_ioctl: SCSI_LOG_IOCTL level 1
30  *	 - entering other commands: SCSI_LOG_HLQUEUE level 3
31  *	Note: when the logging level is set by the user, it must be greater
32  *	than the level indicated above to trigger output.
33  */
34 
35 #include <linux/module.h>
36 #include <linux/fs.h>
37 #include <linux/kernel.h>
38 #include <linux/mm.h>
39 #include <linux/bio.h>
40 #include <linux/genhd.h>
41 #include <linux/hdreg.h>
42 #include <linux/errno.h>
43 #include <linux/idr.h>
44 #include <linux/interrupt.h>
45 #include <linux/init.h>
46 #include <linux/blkdev.h>
47 #include <linux/blkpg.h>
48 #include <linux/delay.h>
49 #include <linux/mutex.h>
50 #include <linux/string_helpers.h>
51 #include <linux/async.h>
52 #include <linux/slab.h>
53 #include <linux/pm_runtime.h>
54 #include <linux/pr.h>
55 #include <linux/t10-pi.h>
56 #include <linux/uaccess.h>
57 #include <asm/unaligned.h>
58 
59 #include <scsi/scsi.h>
60 #include <scsi/scsi_cmnd.h>
61 #include <scsi/scsi_dbg.h>
62 #include <scsi/scsi_device.h>
63 #include <scsi/scsi_driver.h>
64 #include <scsi/scsi_eh.h>
65 #include <scsi/scsi_host.h>
66 #include <scsi/scsi_ioctl.h>
67 #include <scsi/scsicam.h>
68 
69 #include "sd.h"
70 #include "scsi_priv.h"
71 #include "scsi_logging.h"
72 
73 MODULE_AUTHOR("Eric Youngdale");
74 MODULE_DESCRIPTION("SCSI disk (sd) driver");
75 MODULE_LICENSE("GPL");
76 
77 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
78 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
79 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
93 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
94 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
95 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
96 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
97 
98 #if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT)
99 #define SD_MINORS	16
100 #else
101 #define SD_MINORS	0
102 #endif
103 
104 static void sd_config_discard(struct scsi_disk *, unsigned int);
105 static void sd_config_write_same(struct scsi_disk *);
106 static int  sd_revalidate_disk(struct gendisk *);
107 static void sd_unlock_native_capacity(struct gendisk *disk);
108 static int  sd_probe(struct device *);
109 static int  sd_remove(struct device *);
110 static void sd_shutdown(struct device *);
111 static int sd_suspend_system(struct device *);
112 static int sd_suspend_runtime(struct device *);
113 static int sd_resume(struct device *);
114 static void sd_rescan(struct device *);
115 static int sd_init_command(struct scsi_cmnd *SCpnt);
116 static void sd_uninit_command(struct scsi_cmnd *SCpnt);
117 static int sd_done(struct scsi_cmnd *);
118 static int sd_eh_action(struct scsi_cmnd *, int);
119 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
120 static void scsi_disk_release(struct device *cdev);
121 static void sd_print_sense_hdr(struct scsi_disk *, struct scsi_sense_hdr *);
122 static void sd_print_result(const struct scsi_disk *, const char *, int);
123 
124 static DEFINE_SPINLOCK(sd_index_lock);
125 static DEFINE_IDA(sd_index_ida);
126 
127 /* This semaphore is used to mediate the 0->1 reference get in the
128  * face of object destruction (i.e. we can't allow a get on an
129  * object after last put) */
130 static DEFINE_MUTEX(sd_ref_mutex);
131 
132 static struct kmem_cache *sd_cdb_cache;
133 static mempool_t *sd_cdb_pool;
134 
135 static const char *sd_cache_types[] = {
136 	"write through", "none", "write back",
137 	"write back, no read (daft)"
138 };
139 
140 static void sd_set_flush_flag(struct scsi_disk *sdkp)
141 {
142 	bool wc = false, fua = false;
143 
144 	if (sdkp->WCE) {
145 		wc = true;
146 		if (sdkp->DPOFUA)
147 			fua = true;
148 	}
149 
150 	blk_queue_write_cache(sdkp->disk->queue, wc, fua);
151 }
152 
153 static ssize_t
154 cache_type_store(struct device *dev, struct device_attribute *attr,
155 		 const char *buf, size_t count)
156 {
157 	int i, ct = -1, rcd, wce, sp;
158 	struct scsi_disk *sdkp = to_scsi_disk(dev);
159 	struct scsi_device *sdp = sdkp->device;
160 	char buffer[64];
161 	char *buffer_data;
162 	struct scsi_mode_data data;
163 	struct scsi_sense_hdr sshdr;
164 	static const char temp[] = "temporary ";
165 	int len;
166 
167 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
168 		/* no cache control on RBC devices; theoretically they
169 		 * can do it, but there's probably so many exceptions
170 		 * it's not worth the risk */
171 		return -EINVAL;
172 
173 	if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
174 		buf += sizeof(temp) - 1;
175 		sdkp->cache_override = 1;
176 	} else {
177 		sdkp->cache_override = 0;
178 	}
179 
180 	for (i = 0; i < ARRAY_SIZE(sd_cache_types); i++) {
181 		len = strlen(sd_cache_types[i]);
182 		if (strncmp(sd_cache_types[i], buf, len) == 0 &&
183 		    buf[len] == '\n') {
184 			ct = i;
185 			break;
186 		}
187 	}
188 	if (ct < 0)
189 		return -EINVAL;
190 	rcd = ct & 0x01 ? 1 : 0;
191 	wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
192 
193 	if (sdkp->cache_override) {
194 		sdkp->WCE = wce;
195 		sdkp->RCD = rcd;
196 		sd_set_flush_flag(sdkp);
197 		return count;
198 	}
199 
200 	if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT,
201 			    SD_MAX_RETRIES, &data, NULL))
202 		return -EINVAL;
203 	len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
204 		  data.block_descriptor_length);
205 	buffer_data = buffer + data.header_length +
206 		data.block_descriptor_length;
207 	buffer_data[2] &= ~0x05;
208 	buffer_data[2] |= wce << 2 | rcd;
209 	sp = buffer_data[0] & 0x80 ? 1 : 0;
210 	buffer_data[0] &= ~0x80;
211 
212 	if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT,
213 			     SD_MAX_RETRIES, &data, &sshdr)) {
214 		if (scsi_sense_valid(&sshdr))
215 			sd_print_sense_hdr(sdkp, &sshdr);
216 		return -EINVAL;
217 	}
218 	revalidate_disk(sdkp->disk);
219 	return count;
220 }
221 
222 static ssize_t
223 manage_start_stop_show(struct device *dev, struct device_attribute *attr,
224 		       char *buf)
225 {
226 	struct scsi_disk *sdkp = to_scsi_disk(dev);
227 	struct scsi_device *sdp = sdkp->device;
228 
229 	return snprintf(buf, 20, "%u\n", sdp->manage_start_stop);
230 }
231 
232 static ssize_t
233 manage_start_stop_store(struct device *dev, struct device_attribute *attr,
234 			const char *buf, size_t count)
235 {
236 	struct scsi_disk *sdkp = to_scsi_disk(dev);
237 	struct scsi_device *sdp = sdkp->device;
238 
239 	if (!capable(CAP_SYS_ADMIN))
240 		return -EACCES;
241 
242 	sdp->manage_start_stop = simple_strtoul(buf, NULL, 10);
243 
244 	return count;
245 }
246 static DEVICE_ATTR_RW(manage_start_stop);
247 
248 static ssize_t
249 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
250 {
251 	struct scsi_disk *sdkp = to_scsi_disk(dev);
252 
253 	return snprintf(buf, 40, "%d\n", sdkp->device->allow_restart);
254 }
255 
256 static ssize_t
257 allow_restart_store(struct device *dev, struct device_attribute *attr,
258 		    const char *buf, size_t count)
259 {
260 	struct scsi_disk *sdkp = to_scsi_disk(dev);
261 	struct scsi_device *sdp = sdkp->device;
262 
263 	if (!capable(CAP_SYS_ADMIN))
264 		return -EACCES;
265 
266 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
267 		return -EINVAL;
268 
269 	sdp->allow_restart = simple_strtoul(buf, NULL, 10);
270 
271 	return count;
272 }
273 static DEVICE_ATTR_RW(allow_restart);
274 
275 static ssize_t
276 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
277 {
278 	struct scsi_disk *sdkp = to_scsi_disk(dev);
279 	int ct = sdkp->RCD + 2*sdkp->WCE;
280 
281 	return snprintf(buf, 40, "%s\n", sd_cache_types[ct]);
282 }
283 static DEVICE_ATTR_RW(cache_type);
284 
285 static ssize_t
286 FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
287 {
288 	struct scsi_disk *sdkp = to_scsi_disk(dev);
289 
290 	return snprintf(buf, 20, "%u\n", sdkp->DPOFUA);
291 }
292 static DEVICE_ATTR_RO(FUA);
293 
294 static ssize_t
295 protection_type_show(struct device *dev, struct device_attribute *attr,
296 		     char *buf)
297 {
298 	struct scsi_disk *sdkp = to_scsi_disk(dev);
299 
300 	return snprintf(buf, 20, "%u\n", sdkp->protection_type);
301 }
302 
303 static ssize_t
304 protection_type_store(struct device *dev, struct device_attribute *attr,
305 		      const char *buf, size_t count)
306 {
307 	struct scsi_disk *sdkp = to_scsi_disk(dev);
308 	unsigned int val;
309 	int err;
310 
311 	if (!capable(CAP_SYS_ADMIN))
312 		return -EACCES;
313 
314 	err = kstrtouint(buf, 10, &val);
315 
316 	if (err)
317 		return err;
318 
319 	if (val >= 0 && val <= T10_PI_TYPE3_PROTECTION)
320 		sdkp->protection_type = val;
321 
322 	return count;
323 }
324 static DEVICE_ATTR_RW(protection_type);
325 
326 static ssize_t
327 protection_mode_show(struct device *dev, struct device_attribute *attr,
328 		     char *buf)
329 {
330 	struct scsi_disk *sdkp = to_scsi_disk(dev);
331 	struct scsi_device *sdp = sdkp->device;
332 	unsigned int dif, dix;
333 
334 	dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
335 	dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
336 
337 	if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
338 		dif = 0;
339 		dix = 1;
340 	}
341 
342 	if (!dif && !dix)
343 		return snprintf(buf, 20, "none\n");
344 
345 	return snprintf(buf, 20, "%s%u\n", dix ? "dix" : "dif", dif);
346 }
347 static DEVICE_ATTR_RO(protection_mode);
348 
349 static ssize_t
350 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
351 {
352 	struct scsi_disk *sdkp = to_scsi_disk(dev);
353 
354 	return snprintf(buf, 20, "%u\n", sdkp->ATO);
355 }
356 static DEVICE_ATTR_RO(app_tag_own);
357 
358 static ssize_t
359 thin_provisioning_show(struct device *dev, struct device_attribute *attr,
360 		       char *buf)
361 {
362 	struct scsi_disk *sdkp = to_scsi_disk(dev);
363 
364 	return snprintf(buf, 20, "%u\n", sdkp->lbpme);
365 }
366 static DEVICE_ATTR_RO(thin_provisioning);
367 
368 static const char *lbp_mode[] = {
369 	[SD_LBP_FULL]		= "full",
370 	[SD_LBP_UNMAP]		= "unmap",
371 	[SD_LBP_WS16]		= "writesame_16",
372 	[SD_LBP_WS10]		= "writesame_10",
373 	[SD_LBP_ZERO]		= "writesame_zero",
374 	[SD_LBP_DISABLE]	= "disabled",
375 };
376 
377 static ssize_t
378 provisioning_mode_show(struct device *dev, struct device_attribute *attr,
379 		       char *buf)
380 {
381 	struct scsi_disk *sdkp = to_scsi_disk(dev);
382 
383 	return snprintf(buf, 20, "%s\n", lbp_mode[sdkp->provisioning_mode]);
384 }
385 
386 static ssize_t
387 provisioning_mode_store(struct device *dev, struct device_attribute *attr,
388 			const char *buf, size_t count)
389 {
390 	struct scsi_disk *sdkp = to_scsi_disk(dev);
391 	struct scsi_device *sdp = sdkp->device;
392 
393 	if (!capable(CAP_SYS_ADMIN))
394 		return -EACCES;
395 
396 	if (sd_is_zoned(sdkp)) {
397 		sd_config_discard(sdkp, SD_LBP_DISABLE);
398 		return count;
399 	}
400 
401 	if (sdp->type != TYPE_DISK)
402 		return -EINVAL;
403 
404 	if (!strncmp(buf, lbp_mode[SD_LBP_UNMAP], 20))
405 		sd_config_discard(sdkp, SD_LBP_UNMAP);
406 	else if (!strncmp(buf, lbp_mode[SD_LBP_WS16], 20))
407 		sd_config_discard(sdkp, SD_LBP_WS16);
408 	else if (!strncmp(buf, lbp_mode[SD_LBP_WS10], 20))
409 		sd_config_discard(sdkp, SD_LBP_WS10);
410 	else if (!strncmp(buf, lbp_mode[SD_LBP_ZERO], 20))
411 		sd_config_discard(sdkp, SD_LBP_ZERO);
412 	else if (!strncmp(buf, lbp_mode[SD_LBP_DISABLE], 20))
413 		sd_config_discard(sdkp, SD_LBP_DISABLE);
414 	else
415 		return -EINVAL;
416 
417 	return count;
418 }
419 static DEVICE_ATTR_RW(provisioning_mode);
420 
421 static const char *zeroing_mode[] = {
422 	[SD_ZERO_WRITE]		= "write",
423 	[SD_ZERO_WS]		= "writesame",
424 	[SD_ZERO_WS16_UNMAP]	= "writesame_16_unmap",
425 	[SD_ZERO_WS10_UNMAP]	= "writesame_10_unmap",
426 };
427 
428 static ssize_t
429 zeroing_mode_show(struct device *dev, struct device_attribute *attr,
430 		  char *buf)
431 {
432 	struct scsi_disk *sdkp = to_scsi_disk(dev);
433 
434 	return snprintf(buf, 20, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
435 }
436 
437 static ssize_t
438 zeroing_mode_store(struct device *dev, struct device_attribute *attr,
439 		   const char *buf, size_t count)
440 {
441 	struct scsi_disk *sdkp = to_scsi_disk(dev);
442 
443 	if (!capable(CAP_SYS_ADMIN))
444 		return -EACCES;
445 
446 	if (!strncmp(buf, zeroing_mode[SD_ZERO_WRITE], 20))
447 		sdkp->zeroing_mode = SD_ZERO_WRITE;
448 	else if (!strncmp(buf, zeroing_mode[SD_ZERO_WS], 20))
449 		sdkp->zeroing_mode = SD_ZERO_WS;
450 	else if (!strncmp(buf, zeroing_mode[SD_ZERO_WS16_UNMAP], 20))
451 		sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
452 	else if (!strncmp(buf, zeroing_mode[SD_ZERO_WS10_UNMAP], 20))
453 		sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
454 	else
455 		return -EINVAL;
456 
457 	return count;
458 }
459 static DEVICE_ATTR_RW(zeroing_mode);
460 
461 static ssize_t
462 max_medium_access_timeouts_show(struct device *dev,
463 				struct device_attribute *attr, char *buf)
464 {
465 	struct scsi_disk *sdkp = to_scsi_disk(dev);
466 
467 	return snprintf(buf, 20, "%u\n", sdkp->max_medium_access_timeouts);
468 }
469 
470 static ssize_t
471 max_medium_access_timeouts_store(struct device *dev,
472 				 struct device_attribute *attr, const char *buf,
473 				 size_t count)
474 {
475 	struct scsi_disk *sdkp = to_scsi_disk(dev);
476 	int err;
477 
478 	if (!capable(CAP_SYS_ADMIN))
479 		return -EACCES;
480 
481 	err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
482 
483 	return err ? err : count;
484 }
485 static DEVICE_ATTR_RW(max_medium_access_timeouts);
486 
487 static ssize_t
488 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
489 			   char *buf)
490 {
491 	struct scsi_disk *sdkp = to_scsi_disk(dev);
492 
493 	return snprintf(buf, 20, "%u\n", sdkp->max_ws_blocks);
494 }
495 
496 static ssize_t
497 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
498 			    const char *buf, size_t count)
499 {
500 	struct scsi_disk *sdkp = to_scsi_disk(dev);
501 	struct scsi_device *sdp = sdkp->device;
502 	unsigned long max;
503 	int err;
504 
505 	if (!capable(CAP_SYS_ADMIN))
506 		return -EACCES;
507 
508 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
509 		return -EINVAL;
510 
511 	err = kstrtoul(buf, 10, &max);
512 
513 	if (err)
514 		return err;
515 
516 	if (max == 0)
517 		sdp->no_write_same = 1;
518 	else if (max <= SD_MAX_WS16_BLOCKS) {
519 		sdp->no_write_same = 0;
520 		sdkp->max_ws_blocks = max;
521 	}
522 
523 	sd_config_write_same(sdkp);
524 
525 	return count;
526 }
527 static DEVICE_ATTR_RW(max_write_same_blocks);
528 
529 static struct attribute *sd_disk_attrs[] = {
530 	&dev_attr_cache_type.attr,
531 	&dev_attr_FUA.attr,
532 	&dev_attr_allow_restart.attr,
533 	&dev_attr_manage_start_stop.attr,
534 	&dev_attr_protection_type.attr,
535 	&dev_attr_protection_mode.attr,
536 	&dev_attr_app_tag_own.attr,
537 	&dev_attr_thin_provisioning.attr,
538 	&dev_attr_provisioning_mode.attr,
539 	&dev_attr_zeroing_mode.attr,
540 	&dev_attr_max_write_same_blocks.attr,
541 	&dev_attr_max_medium_access_timeouts.attr,
542 	NULL,
543 };
544 ATTRIBUTE_GROUPS(sd_disk);
545 
546 static struct class sd_disk_class = {
547 	.name		= "scsi_disk",
548 	.owner		= THIS_MODULE,
549 	.dev_release	= scsi_disk_release,
550 	.dev_groups	= sd_disk_groups,
551 };
552 
553 static const struct dev_pm_ops sd_pm_ops = {
554 	.suspend		= sd_suspend_system,
555 	.resume			= sd_resume,
556 	.poweroff		= sd_suspend_system,
557 	.restore		= sd_resume,
558 	.runtime_suspend	= sd_suspend_runtime,
559 	.runtime_resume		= sd_resume,
560 };
561 
562 static struct scsi_driver sd_template = {
563 	.gendrv = {
564 		.name		= "sd",
565 		.owner		= THIS_MODULE,
566 		.probe		= sd_probe,
567 		.remove		= sd_remove,
568 		.shutdown	= sd_shutdown,
569 		.pm		= &sd_pm_ops,
570 	},
571 	.rescan			= sd_rescan,
572 	.init_command		= sd_init_command,
573 	.uninit_command		= sd_uninit_command,
574 	.done			= sd_done,
575 	.eh_action		= sd_eh_action,
576 };
577 
578 /*
579  * Dummy kobj_map->probe function.
580  * The default ->probe function will call modprobe, which is
581  * pointless as this module is already loaded.
582  */
583 static struct kobject *sd_default_probe(dev_t devt, int *partno, void *data)
584 {
585 	return NULL;
586 }
587 
588 /*
589  * Device no to disk mapping:
590  *
591  *       major         disc2     disc  p1
592  *   |............|.............|....|....| <- dev_t
593  *    31        20 19          8 7  4 3  0
594  *
595  * Inside a major, we have 16k disks, however mapped non-
596  * contiguously. The first 16 disks are for major0, the next
597  * ones with major1, ... Disk 256 is for major0 again, disk 272
598  * for major1, ...
599  * As we stay compatible with our numbering scheme, we can reuse
600  * the well-know SCSI majors 8, 65--71, 136--143.
601  */
602 static int sd_major(int major_idx)
603 {
604 	switch (major_idx) {
605 	case 0:
606 		return SCSI_DISK0_MAJOR;
607 	case 1 ... 7:
608 		return SCSI_DISK1_MAJOR + major_idx - 1;
609 	case 8 ... 15:
610 		return SCSI_DISK8_MAJOR + major_idx - 8;
611 	default:
612 		BUG();
613 		return 0;	/* shut up gcc */
614 	}
615 }
616 
617 static struct scsi_disk *scsi_disk_get(struct gendisk *disk)
618 {
619 	struct scsi_disk *sdkp = NULL;
620 
621 	mutex_lock(&sd_ref_mutex);
622 
623 	if (disk->private_data) {
624 		sdkp = scsi_disk(disk);
625 		if (scsi_device_get(sdkp->device) == 0)
626 			get_device(&sdkp->dev);
627 		else
628 			sdkp = NULL;
629 	}
630 	mutex_unlock(&sd_ref_mutex);
631 	return sdkp;
632 }
633 
634 static void scsi_disk_put(struct scsi_disk *sdkp)
635 {
636 	struct scsi_device *sdev = sdkp->device;
637 
638 	mutex_lock(&sd_ref_mutex);
639 	put_device(&sdkp->dev);
640 	scsi_device_put(sdev);
641 	mutex_unlock(&sd_ref_mutex);
642 }
643 
644 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
645 					   unsigned int dix, unsigned int dif)
646 {
647 	struct bio *bio = scmd->request->bio;
648 	unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif);
649 	unsigned int protect = 0;
650 
651 	if (dix) {				/* DIX Type 0, 1, 2, 3 */
652 		if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
653 			scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
654 
655 		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
656 			scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
657 	}
658 
659 	if (dif != T10_PI_TYPE3_PROTECTION) {	/* DIX/DIF Type 0, 1, 2 */
660 		scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
661 
662 		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
663 			scmd->prot_flags |= SCSI_PROT_REF_CHECK;
664 	}
665 
666 	if (dif) {				/* DIX/DIF Type 1, 2, 3 */
667 		scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
668 
669 		if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
670 			protect = 3 << 5;	/* Disable target PI checking */
671 		else
672 			protect = 1 << 5;	/* Enable target PI checking */
673 	}
674 
675 	scsi_set_prot_op(scmd, prot_op);
676 	scsi_set_prot_type(scmd, dif);
677 	scmd->prot_flags &= sd_prot_flag_mask(prot_op);
678 
679 	return protect;
680 }
681 
682 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
683 {
684 	struct request_queue *q = sdkp->disk->queue;
685 	unsigned int logical_block_size = sdkp->device->sector_size;
686 	unsigned int max_blocks = 0;
687 
688 	q->limits.discard_alignment =
689 		sdkp->unmap_alignment * logical_block_size;
690 	q->limits.discard_granularity =
691 		max(sdkp->physical_block_size,
692 		    sdkp->unmap_granularity * logical_block_size);
693 	sdkp->provisioning_mode = mode;
694 
695 	switch (mode) {
696 
697 	case SD_LBP_DISABLE:
698 		blk_queue_max_discard_sectors(q, 0);
699 		queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
700 		return;
701 
702 	case SD_LBP_UNMAP:
703 		max_blocks = min_not_zero(sdkp->max_unmap_blocks,
704 					  (u32)SD_MAX_WS16_BLOCKS);
705 		break;
706 
707 	case SD_LBP_WS16:
708 		max_blocks = min_not_zero(sdkp->max_ws_blocks,
709 					  (u32)SD_MAX_WS16_BLOCKS);
710 		break;
711 
712 	case SD_LBP_WS10:
713 		max_blocks = min_not_zero(sdkp->max_ws_blocks,
714 					  (u32)SD_MAX_WS10_BLOCKS);
715 		break;
716 
717 	case SD_LBP_ZERO:
718 		max_blocks = min_not_zero(sdkp->max_ws_blocks,
719 					  (u32)SD_MAX_WS10_BLOCKS);
720 		break;
721 	}
722 
723 	blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
724 	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
725 }
726 
727 static int sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
728 {
729 	struct scsi_device *sdp = cmd->device;
730 	struct request *rq = cmd->request;
731 	u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
732 	u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
733 	unsigned int data_len = 24;
734 	char *buf;
735 
736 	rq->special_vec.bv_page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
737 	if (!rq->special_vec.bv_page)
738 		return BLKPREP_DEFER;
739 	rq->special_vec.bv_offset = 0;
740 	rq->special_vec.bv_len = data_len;
741 	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
742 
743 	cmd->cmd_len = 10;
744 	cmd->cmnd[0] = UNMAP;
745 	cmd->cmnd[8] = 24;
746 
747 	buf = page_address(rq->special_vec.bv_page);
748 	put_unaligned_be16(6 + 16, &buf[0]);
749 	put_unaligned_be16(16, &buf[2]);
750 	put_unaligned_be64(sector, &buf[8]);
751 	put_unaligned_be32(nr_sectors, &buf[16]);
752 
753 	cmd->allowed = SD_MAX_RETRIES;
754 	cmd->transfersize = data_len;
755 	rq->timeout = SD_TIMEOUT;
756 	scsi_req(rq)->resid_len = data_len;
757 
758 	return scsi_init_io(cmd);
759 }
760 
761 static int sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd, bool unmap)
762 {
763 	struct scsi_device *sdp = cmd->device;
764 	struct request *rq = cmd->request;
765 	u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
766 	u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
767 	u32 data_len = sdp->sector_size;
768 
769 	rq->special_vec.bv_page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
770 	if (!rq->special_vec.bv_page)
771 		return BLKPREP_DEFER;
772 	rq->special_vec.bv_offset = 0;
773 	rq->special_vec.bv_len = data_len;
774 	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
775 
776 	cmd->cmd_len = 16;
777 	cmd->cmnd[0] = WRITE_SAME_16;
778 	if (unmap)
779 		cmd->cmnd[1] = 0x8; /* UNMAP */
780 	put_unaligned_be64(sector, &cmd->cmnd[2]);
781 	put_unaligned_be32(nr_sectors, &cmd->cmnd[10]);
782 
783 	cmd->allowed = SD_MAX_RETRIES;
784 	cmd->transfersize = data_len;
785 	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
786 	scsi_req(rq)->resid_len = data_len;
787 
788 	return scsi_init_io(cmd);
789 }
790 
791 static int sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd, bool unmap)
792 {
793 	struct scsi_device *sdp = cmd->device;
794 	struct request *rq = cmd->request;
795 	u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
796 	u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
797 	u32 data_len = sdp->sector_size;
798 
799 	rq->special_vec.bv_page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
800 	if (!rq->special_vec.bv_page)
801 		return BLKPREP_DEFER;
802 	rq->special_vec.bv_offset = 0;
803 	rq->special_vec.bv_len = data_len;
804 	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
805 
806 	cmd->cmd_len = 10;
807 	cmd->cmnd[0] = WRITE_SAME;
808 	if (unmap)
809 		cmd->cmnd[1] = 0x8; /* UNMAP */
810 	put_unaligned_be32(sector, &cmd->cmnd[2]);
811 	put_unaligned_be16(nr_sectors, &cmd->cmnd[7]);
812 
813 	cmd->allowed = SD_MAX_RETRIES;
814 	cmd->transfersize = data_len;
815 	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
816 	scsi_req(rq)->resid_len = data_len;
817 
818 	return scsi_init_io(cmd);
819 }
820 
821 static int sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
822 {
823 	struct request *rq = cmd->request;
824 	struct scsi_device *sdp = cmd->device;
825 	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
826 	u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
827 	u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
828 
829 	if (!(rq->cmd_flags & REQ_NOUNMAP)) {
830 		switch (sdkp->zeroing_mode) {
831 		case SD_ZERO_WS16_UNMAP:
832 			return sd_setup_write_same16_cmnd(cmd, true);
833 		case SD_ZERO_WS10_UNMAP:
834 			return sd_setup_write_same10_cmnd(cmd, true);
835 		}
836 	}
837 
838 	if (sdp->no_write_same)
839 		return BLKPREP_INVALID;
840 	if (sdkp->ws16 || sector > 0xffffffff || nr_sectors > 0xffff)
841 		return sd_setup_write_same16_cmnd(cmd, false);
842 	return sd_setup_write_same10_cmnd(cmd, false);
843 }
844 
845 static void sd_config_write_same(struct scsi_disk *sdkp)
846 {
847 	struct request_queue *q = sdkp->disk->queue;
848 	unsigned int logical_block_size = sdkp->device->sector_size;
849 
850 	if (sdkp->device->no_write_same) {
851 		sdkp->max_ws_blocks = 0;
852 		goto out;
853 	}
854 
855 	/* Some devices can not handle block counts above 0xffff despite
856 	 * supporting WRITE SAME(16). Consequently we default to 64k
857 	 * blocks per I/O unless the device explicitly advertises a
858 	 * bigger limit.
859 	 */
860 	if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
861 		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
862 						   (u32)SD_MAX_WS16_BLOCKS);
863 	else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
864 		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
865 						   (u32)SD_MAX_WS10_BLOCKS);
866 	else {
867 		sdkp->device->no_write_same = 1;
868 		sdkp->max_ws_blocks = 0;
869 	}
870 
871 	if (sdkp->lbprz && sdkp->lbpws)
872 		sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
873 	else if (sdkp->lbprz && sdkp->lbpws10)
874 		sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
875 	else if (sdkp->max_ws_blocks)
876 		sdkp->zeroing_mode = SD_ZERO_WS;
877 	else
878 		sdkp->zeroing_mode = SD_ZERO_WRITE;
879 
880 out:
881 	blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks *
882 					 (logical_block_size >> 9));
883 	blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks *
884 					 (logical_block_size >> 9));
885 }
886 
887 /**
888  * sd_setup_write_same_cmnd - write the same data to multiple blocks
889  * @cmd: command to prepare
890  *
891  * Will issue either WRITE SAME(10) or WRITE SAME(16) depending on
892  * preference indicated by target device.
893  **/
894 static int sd_setup_write_same_cmnd(struct scsi_cmnd *cmd)
895 {
896 	struct request *rq = cmd->request;
897 	struct scsi_device *sdp = cmd->device;
898 	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
899 	struct bio *bio = rq->bio;
900 	sector_t sector = blk_rq_pos(rq);
901 	unsigned int nr_sectors = blk_rq_sectors(rq);
902 	unsigned int nr_bytes = blk_rq_bytes(rq);
903 	int ret;
904 
905 	if (sdkp->device->no_write_same)
906 		return BLKPREP_INVALID;
907 
908 	BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size);
909 
910 	if (sd_is_zoned(sdkp)) {
911 		ret = sd_zbc_setup_write_cmnd(cmd);
912 		if (ret != BLKPREP_OK)
913 			return ret;
914 	}
915 
916 	sector >>= ilog2(sdp->sector_size) - 9;
917 	nr_sectors >>= ilog2(sdp->sector_size) - 9;
918 
919 	rq->timeout = SD_WRITE_SAME_TIMEOUT;
920 
921 	if (sdkp->ws16 || sector > 0xffffffff || nr_sectors > 0xffff) {
922 		cmd->cmd_len = 16;
923 		cmd->cmnd[0] = WRITE_SAME_16;
924 		put_unaligned_be64(sector, &cmd->cmnd[2]);
925 		put_unaligned_be32(nr_sectors, &cmd->cmnd[10]);
926 	} else {
927 		cmd->cmd_len = 10;
928 		cmd->cmnd[0] = WRITE_SAME;
929 		put_unaligned_be32(sector, &cmd->cmnd[2]);
930 		put_unaligned_be16(nr_sectors, &cmd->cmnd[7]);
931 	}
932 
933 	cmd->transfersize = sdp->sector_size;
934 	cmd->allowed = SD_MAX_RETRIES;
935 
936 	/*
937 	 * For WRITE SAME the data transferred via the DATA OUT buffer is
938 	 * different from the amount of data actually written to the target.
939 	 *
940 	 * We set up __data_len to the amount of data transferred via the
941 	 * DATA OUT buffer so that blk_rq_map_sg sets up the proper S/G list
942 	 * to transfer a single sector of data first, but then reset it to
943 	 * the amount of data to be written right after so that the I/O path
944 	 * knows how much to actually write.
945 	 */
946 	rq->__data_len = sdp->sector_size;
947 	ret = scsi_init_io(cmd);
948 	rq->__data_len = nr_bytes;
949 	return ret;
950 }
951 
952 static int sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
953 {
954 	struct request *rq = cmd->request;
955 
956 	/* flush requests don't perform I/O, zero the S/G table */
957 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
958 
959 	cmd->cmnd[0] = SYNCHRONIZE_CACHE;
960 	cmd->cmd_len = 10;
961 	cmd->transfersize = 0;
962 	cmd->allowed = SD_MAX_RETRIES;
963 
964 	rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
965 	return BLKPREP_OK;
966 }
967 
968 static int sd_setup_read_write_cmnd(struct scsi_cmnd *SCpnt)
969 {
970 	struct request *rq = SCpnt->request;
971 	struct scsi_device *sdp = SCpnt->device;
972 	struct gendisk *disk = rq->rq_disk;
973 	struct scsi_disk *sdkp = scsi_disk(disk);
974 	sector_t block = blk_rq_pos(rq);
975 	sector_t threshold;
976 	unsigned int this_count = blk_rq_sectors(rq);
977 	unsigned int dif, dix;
978 	bool zoned_write = sd_is_zoned(sdkp) && rq_data_dir(rq) == WRITE;
979 	int ret;
980 	unsigned char protect;
981 
982 	if (zoned_write) {
983 		ret = sd_zbc_setup_write_cmnd(SCpnt);
984 		if (ret != BLKPREP_OK)
985 			return ret;
986 	}
987 
988 	ret = scsi_init_io(SCpnt);
989 	if (ret != BLKPREP_OK)
990 		goto out;
991 	SCpnt = rq->special;
992 
993 	/* from here on until we're complete, any goto out
994 	 * is used for a killable error condition */
995 	ret = BLKPREP_KILL;
996 
997 	SCSI_LOG_HLQUEUE(1,
998 		scmd_printk(KERN_INFO, SCpnt,
999 			"%s: block=%llu, count=%d\n",
1000 			__func__, (unsigned long long)block, this_count));
1001 
1002 	if (!sdp || !scsi_device_online(sdp) ||
1003 	    block + blk_rq_sectors(rq) > get_capacity(disk)) {
1004 		SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
1005 						"Finishing %u sectors\n",
1006 						blk_rq_sectors(rq)));
1007 		SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
1008 						"Retry with 0x%p\n", SCpnt));
1009 		goto out;
1010 	}
1011 
1012 	if (sdp->changed) {
1013 		/*
1014 		 * quietly refuse to do anything to a changed disc until
1015 		 * the changed bit has been reset
1016 		 */
1017 		/* printk("SCSI disk has been changed or is not present. Prohibiting further I/O.\n"); */
1018 		goto out;
1019 	}
1020 
1021 	/*
1022 	 * Some SD card readers can't handle multi-sector accesses which touch
1023 	 * the last one or two hardware sectors.  Split accesses as needed.
1024 	 */
1025 	threshold = get_capacity(disk) - SD_LAST_BUGGY_SECTORS *
1026 		(sdp->sector_size / 512);
1027 
1028 	if (unlikely(sdp->last_sector_bug && block + this_count > threshold)) {
1029 		if (block < threshold) {
1030 			/* Access up to the threshold but not beyond */
1031 			this_count = threshold - block;
1032 		} else {
1033 			/* Access only a single hardware sector */
1034 			this_count = sdp->sector_size / 512;
1035 		}
1036 	}
1037 
1038 	SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, "block=%llu\n",
1039 					(unsigned long long)block));
1040 
1041 	/*
1042 	 * If we have a 1K hardware sectorsize, prevent access to single
1043 	 * 512 byte sectors.  In theory we could handle this - in fact
1044 	 * the scsi cdrom driver must be able to handle this because
1045 	 * we typically use 1K blocksizes, and cdroms typically have
1046 	 * 2K hardware sectorsizes.  Of course, things are simpler
1047 	 * with the cdrom, since it is read-only.  For performance
1048 	 * reasons, the filesystems should be able to handle this
1049 	 * and not force the scsi disk driver to use bounce buffers
1050 	 * for this.
1051 	 */
1052 	if (sdp->sector_size == 1024) {
1053 		if ((block & 1) || (blk_rq_sectors(rq) & 1)) {
1054 			scmd_printk(KERN_ERR, SCpnt,
1055 				    "Bad block number requested\n");
1056 			goto out;
1057 		} else {
1058 			block = block >> 1;
1059 			this_count = this_count >> 1;
1060 		}
1061 	}
1062 	if (sdp->sector_size == 2048) {
1063 		if ((block & 3) || (blk_rq_sectors(rq) & 3)) {
1064 			scmd_printk(KERN_ERR, SCpnt,
1065 				    "Bad block number requested\n");
1066 			goto out;
1067 		} else {
1068 			block = block >> 2;
1069 			this_count = this_count >> 2;
1070 		}
1071 	}
1072 	if (sdp->sector_size == 4096) {
1073 		if ((block & 7) || (blk_rq_sectors(rq) & 7)) {
1074 			scmd_printk(KERN_ERR, SCpnt,
1075 				    "Bad block number requested\n");
1076 			goto out;
1077 		} else {
1078 			block = block >> 3;
1079 			this_count = this_count >> 3;
1080 		}
1081 	}
1082 	if (rq_data_dir(rq) == WRITE) {
1083 		SCpnt->cmnd[0] = WRITE_6;
1084 
1085 		if (blk_integrity_rq(rq))
1086 			sd_dif_prepare(SCpnt);
1087 
1088 	} else if (rq_data_dir(rq) == READ) {
1089 		SCpnt->cmnd[0] = READ_6;
1090 	} else {
1091 		scmd_printk(KERN_ERR, SCpnt, "Unknown command %d\n", req_op(rq));
1092 		goto out;
1093 	}
1094 
1095 	SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
1096 					"%s %d/%u 512 byte blocks.\n",
1097 					(rq_data_dir(rq) == WRITE) ?
1098 					"writing" : "reading", this_count,
1099 					blk_rq_sectors(rq)));
1100 
1101 	dix = scsi_prot_sg_count(SCpnt);
1102 	dif = scsi_host_dif_capable(SCpnt->device->host, sdkp->protection_type);
1103 
1104 	if (dif || dix)
1105 		protect = sd_setup_protect_cmnd(SCpnt, dix, dif);
1106 	else
1107 		protect = 0;
1108 
1109 	if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1110 		SCpnt->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC);
1111 
1112 		if (unlikely(SCpnt->cmnd == NULL)) {
1113 			ret = BLKPREP_DEFER;
1114 			goto out;
1115 		}
1116 
1117 		SCpnt->cmd_len = SD_EXT_CDB_SIZE;
1118 		memset(SCpnt->cmnd, 0, SCpnt->cmd_len);
1119 		SCpnt->cmnd[0] = VARIABLE_LENGTH_CMD;
1120 		SCpnt->cmnd[7] = 0x18;
1121 		SCpnt->cmnd[9] = (rq_data_dir(rq) == READ) ? READ_32 : WRITE_32;
1122 		SCpnt->cmnd[10] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1123 
1124 		/* LBA */
1125 		SCpnt->cmnd[12] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0;
1126 		SCpnt->cmnd[13] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0;
1127 		SCpnt->cmnd[14] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0;
1128 		SCpnt->cmnd[15] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0;
1129 		SCpnt->cmnd[16] = (unsigned char) (block >> 24) & 0xff;
1130 		SCpnt->cmnd[17] = (unsigned char) (block >> 16) & 0xff;
1131 		SCpnt->cmnd[18] = (unsigned char) (block >> 8) & 0xff;
1132 		SCpnt->cmnd[19] = (unsigned char) block & 0xff;
1133 
1134 		/* Expected Indirect LBA */
1135 		SCpnt->cmnd[20] = (unsigned char) (block >> 24) & 0xff;
1136 		SCpnt->cmnd[21] = (unsigned char) (block >> 16) & 0xff;
1137 		SCpnt->cmnd[22] = (unsigned char) (block >> 8) & 0xff;
1138 		SCpnt->cmnd[23] = (unsigned char) block & 0xff;
1139 
1140 		/* Transfer length */
1141 		SCpnt->cmnd[28] = (unsigned char) (this_count >> 24) & 0xff;
1142 		SCpnt->cmnd[29] = (unsigned char) (this_count >> 16) & 0xff;
1143 		SCpnt->cmnd[30] = (unsigned char) (this_count >> 8) & 0xff;
1144 		SCpnt->cmnd[31] = (unsigned char) this_count & 0xff;
1145 	} else if (sdp->use_16_for_rw || (this_count > 0xffff)) {
1146 		SCpnt->cmnd[0] += READ_16 - READ_6;
1147 		SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1148 		SCpnt->cmnd[2] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0;
1149 		SCpnt->cmnd[3] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0;
1150 		SCpnt->cmnd[4] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0;
1151 		SCpnt->cmnd[5] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0;
1152 		SCpnt->cmnd[6] = (unsigned char) (block >> 24) & 0xff;
1153 		SCpnt->cmnd[7] = (unsigned char) (block >> 16) & 0xff;
1154 		SCpnt->cmnd[8] = (unsigned char) (block >> 8) & 0xff;
1155 		SCpnt->cmnd[9] = (unsigned char) block & 0xff;
1156 		SCpnt->cmnd[10] = (unsigned char) (this_count >> 24) & 0xff;
1157 		SCpnt->cmnd[11] = (unsigned char) (this_count >> 16) & 0xff;
1158 		SCpnt->cmnd[12] = (unsigned char) (this_count >> 8) & 0xff;
1159 		SCpnt->cmnd[13] = (unsigned char) this_count & 0xff;
1160 		SCpnt->cmnd[14] = SCpnt->cmnd[15] = 0;
1161 	} else if ((this_count > 0xff) || (block > 0x1fffff) ||
1162 		   scsi_device_protection(SCpnt->device) ||
1163 		   SCpnt->device->use_10_for_rw) {
1164 		SCpnt->cmnd[0] += READ_10 - READ_6;
1165 		SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1166 		SCpnt->cmnd[2] = (unsigned char) (block >> 24) & 0xff;
1167 		SCpnt->cmnd[3] = (unsigned char) (block >> 16) & 0xff;
1168 		SCpnt->cmnd[4] = (unsigned char) (block >> 8) & 0xff;
1169 		SCpnt->cmnd[5] = (unsigned char) block & 0xff;
1170 		SCpnt->cmnd[6] = SCpnt->cmnd[9] = 0;
1171 		SCpnt->cmnd[7] = (unsigned char) (this_count >> 8) & 0xff;
1172 		SCpnt->cmnd[8] = (unsigned char) this_count & 0xff;
1173 	} else {
1174 		if (unlikely(rq->cmd_flags & REQ_FUA)) {
1175 			/*
1176 			 * This happens only if this drive failed
1177 			 * 10byte rw command with ILLEGAL_REQUEST
1178 			 * during operation and thus turned off
1179 			 * use_10_for_rw.
1180 			 */
1181 			scmd_printk(KERN_ERR, SCpnt,
1182 				    "FUA write on READ/WRITE(6) drive\n");
1183 			goto out;
1184 		}
1185 
1186 		SCpnt->cmnd[1] |= (unsigned char) ((block >> 16) & 0x1f);
1187 		SCpnt->cmnd[2] = (unsigned char) ((block >> 8) & 0xff);
1188 		SCpnt->cmnd[3] = (unsigned char) block & 0xff;
1189 		SCpnt->cmnd[4] = (unsigned char) this_count;
1190 		SCpnt->cmnd[5] = 0;
1191 	}
1192 	SCpnt->sdb.length = this_count * sdp->sector_size;
1193 
1194 	/*
1195 	 * We shouldn't disconnect in the middle of a sector, so with a dumb
1196 	 * host adapter, it's safe to assume that we can at least transfer
1197 	 * this many bytes between each connect / disconnect.
1198 	 */
1199 	SCpnt->transfersize = sdp->sector_size;
1200 	SCpnt->underflow = this_count << 9;
1201 	SCpnt->allowed = SD_MAX_RETRIES;
1202 
1203 	/*
1204 	 * This indicates that the command is ready from our end to be
1205 	 * queued.
1206 	 */
1207 	ret = BLKPREP_OK;
1208  out:
1209 	if (zoned_write && ret != BLKPREP_OK)
1210 		sd_zbc_cancel_write_cmnd(SCpnt);
1211 
1212 	return ret;
1213 }
1214 
1215 static int sd_init_command(struct scsi_cmnd *cmd)
1216 {
1217 	struct request *rq = cmd->request;
1218 
1219 	switch (req_op(rq)) {
1220 	case REQ_OP_DISCARD:
1221 		switch (scsi_disk(rq->rq_disk)->provisioning_mode) {
1222 		case SD_LBP_UNMAP:
1223 			return sd_setup_unmap_cmnd(cmd);
1224 		case SD_LBP_WS16:
1225 			return sd_setup_write_same16_cmnd(cmd, true);
1226 		case SD_LBP_WS10:
1227 			return sd_setup_write_same10_cmnd(cmd, true);
1228 		case SD_LBP_ZERO:
1229 			return sd_setup_write_same10_cmnd(cmd, false);
1230 		default:
1231 			return BLKPREP_INVALID;
1232 		}
1233 	case REQ_OP_WRITE_ZEROES:
1234 		return sd_setup_write_zeroes_cmnd(cmd);
1235 	case REQ_OP_WRITE_SAME:
1236 		return sd_setup_write_same_cmnd(cmd);
1237 	case REQ_OP_FLUSH:
1238 		return sd_setup_flush_cmnd(cmd);
1239 	case REQ_OP_READ:
1240 	case REQ_OP_WRITE:
1241 		return sd_setup_read_write_cmnd(cmd);
1242 	case REQ_OP_ZONE_REPORT:
1243 		return sd_zbc_setup_report_cmnd(cmd);
1244 	case REQ_OP_ZONE_RESET:
1245 		return sd_zbc_setup_reset_cmnd(cmd);
1246 	default:
1247 		BUG();
1248 	}
1249 }
1250 
1251 static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1252 {
1253 	struct request *rq = SCpnt->request;
1254 
1255 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1256 		__free_page(rq->special_vec.bv_page);
1257 
1258 	if (SCpnt->cmnd != scsi_req(rq)->cmd) {
1259 		mempool_free(SCpnt->cmnd, sd_cdb_pool);
1260 		SCpnt->cmnd = NULL;
1261 		SCpnt->cmd_len = 0;
1262 	}
1263 }
1264 
1265 /**
1266  *	sd_open - open a scsi disk device
1267  *	@inode: only i_rdev member may be used
1268  *	@filp: only f_mode and f_flags may be used
1269  *
1270  *	Returns 0 if successful. Returns a negated errno value in case
1271  *	of error.
1272  *
1273  *	Note: This can be called from a user context (e.g. fsck(1) )
1274  *	or from within the kernel (e.g. as a result of a mount(1) ).
1275  *	In the latter case @inode and @filp carry an abridged amount
1276  *	of information as noted above.
1277  *
1278  *	Locking: called with bdev->bd_mutex held.
1279  **/
1280 static int sd_open(struct block_device *bdev, fmode_t mode)
1281 {
1282 	struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk);
1283 	struct scsi_device *sdev;
1284 	int retval;
1285 
1286 	if (!sdkp)
1287 		return -ENXIO;
1288 
1289 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1290 
1291 	sdev = sdkp->device;
1292 
1293 	/*
1294 	 * If the device is in error recovery, wait until it is done.
1295 	 * If the device is offline, then disallow any access to it.
1296 	 */
1297 	retval = -ENXIO;
1298 	if (!scsi_block_when_processing_errors(sdev))
1299 		goto error_out;
1300 
1301 	if (sdev->removable || sdkp->write_prot)
1302 		check_disk_change(bdev);
1303 
1304 	/*
1305 	 * If the drive is empty, just let the open fail.
1306 	 */
1307 	retval = -ENOMEDIUM;
1308 	if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY))
1309 		goto error_out;
1310 
1311 	/*
1312 	 * If the device has the write protect tab set, have the open fail
1313 	 * if the user expects to be able to write to the thing.
1314 	 */
1315 	retval = -EROFS;
1316 	if (sdkp->write_prot && (mode & FMODE_WRITE))
1317 		goto error_out;
1318 
1319 	/*
1320 	 * It is possible that the disk changing stuff resulted in
1321 	 * the device being taken offline.  If this is the case,
1322 	 * report this to the user, and don't pretend that the
1323 	 * open actually succeeded.
1324 	 */
1325 	retval = -ENXIO;
1326 	if (!scsi_device_online(sdev))
1327 		goto error_out;
1328 
1329 	if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1330 		if (scsi_block_when_processing_errors(sdev))
1331 			scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1332 	}
1333 
1334 	return 0;
1335 
1336 error_out:
1337 	scsi_disk_put(sdkp);
1338 	return retval;
1339 }
1340 
1341 /**
1342  *	sd_release - invoked when the (last) close(2) is called on this
1343  *	scsi disk.
1344  *	@inode: only i_rdev member may be used
1345  *	@filp: only f_mode and f_flags may be used
1346  *
1347  *	Returns 0.
1348  *
1349  *	Note: may block (uninterruptible) if error recovery is underway
1350  *	on this disk.
1351  *
1352  *	Locking: called with bdev->bd_mutex held.
1353  **/
1354 static void sd_release(struct gendisk *disk, fmode_t mode)
1355 {
1356 	struct scsi_disk *sdkp = scsi_disk(disk);
1357 	struct scsi_device *sdev = sdkp->device;
1358 
1359 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1360 
1361 	if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1362 		if (scsi_block_when_processing_errors(sdev))
1363 			scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1364 	}
1365 
1366 	/*
1367 	 * XXX and what if there are packets in flight and this close()
1368 	 * XXX is followed by a "rmmod sd_mod"?
1369 	 */
1370 
1371 	scsi_disk_put(sdkp);
1372 }
1373 
1374 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1375 {
1376 	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1377 	struct scsi_device *sdp = sdkp->device;
1378 	struct Scsi_Host *host = sdp->host;
1379 	sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1380 	int diskinfo[4];
1381 
1382 	/* default to most commonly used values */
1383 	diskinfo[0] = 0x40;	/* 1 << 6 */
1384 	diskinfo[1] = 0x20;	/* 1 << 5 */
1385 	diskinfo[2] = capacity >> 11;
1386 
1387 	/* override with calculated, extended default, or driver values */
1388 	if (host->hostt->bios_param)
1389 		host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1390 	else
1391 		scsicam_bios_param(bdev, capacity, diskinfo);
1392 
1393 	geo->heads = diskinfo[0];
1394 	geo->sectors = diskinfo[1];
1395 	geo->cylinders = diskinfo[2];
1396 	return 0;
1397 }
1398 
1399 /**
1400  *	sd_ioctl - process an ioctl
1401  *	@inode: only i_rdev/i_bdev members may be used
1402  *	@filp: only f_mode and f_flags may be used
1403  *	@cmd: ioctl command number
1404  *	@arg: this is third argument given to ioctl(2) system call.
1405  *	Often contains a pointer.
1406  *
1407  *	Returns 0 if successful (some ioctls return positive numbers on
1408  *	success as well). Returns a negated errno value in case of error.
1409  *
1410  *	Note: most ioctls are forward onto the block subsystem or further
1411  *	down in the scsi subsystem.
1412  **/
1413 static int sd_ioctl(struct block_device *bdev, fmode_t mode,
1414 		    unsigned int cmd, unsigned long arg)
1415 {
1416 	struct gendisk *disk = bdev->bd_disk;
1417 	struct scsi_disk *sdkp = scsi_disk(disk);
1418 	struct scsi_device *sdp = sdkp->device;
1419 	void __user *p = (void __user *)arg;
1420 	int error;
1421 
1422 	SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1423 				    "cmd=0x%x\n", disk->disk_name, cmd));
1424 
1425 	error = scsi_verify_blk_ioctl(bdev, cmd);
1426 	if (error < 0)
1427 		return error;
1428 
1429 	/*
1430 	 * If we are in the middle of error recovery, don't let anyone
1431 	 * else try and use this device.  Also, if error recovery fails, it
1432 	 * may try and take the device offline, in which case all further
1433 	 * access to the device is prohibited.
1434 	 */
1435 	error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1436 			(mode & FMODE_NDELAY) != 0);
1437 	if (error)
1438 		goto out;
1439 
1440 	/*
1441 	 * Send SCSI addressing ioctls directly to mid level, send other
1442 	 * ioctls to block level and then onto mid level if they can't be
1443 	 * resolved.
1444 	 */
1445 	switch (cmd) {
1446 		case SCSI_IOCTL_GET_IDLUN:
1447 		case SCSI_IOCTL_GET_BUS_NUMBER:
1448 			error = scsi_ioctl(sdp, cmd, p);
1449 			break;
1450 		default:
1451 			error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p);
1452 			if (error != -ENOTTY)
1453 				break;
1454 			error = scsi_ioctl(sdp, cmd, p);
1455 			break;
1456 	}
1457 out:
1458 	return error;
1459 }
1460 
1461 static void set_media_not_present(struct scsi_disk *sdkp)
1462 {
1463 	if (sdkp->media_present)
1464 		sdkp->device->changed = 1;
1465 
1466 	if (sdkp->device->removable) {
1467 		sdkp->media_present = 0;
1468 		sdkp->capacity = 0;
1469 	}
1470 }
1471 
1472 static int media_not_present(struct scsi_disk *sdkp,
1473 			     struct scsi_sense_hdr *sshdr)
1474 {
1475 	if (!scsi_sense_valid(sshdr))
1476 		return 0;
1477 
1478 	/* not invoked for commands that could return deferred errors */
1479 	switch (sshdr->sense_key) {
1480 	case UNIT_ATTENTION:
1481 	case NOT_READY:
1482 		/* medium not present */
1483 		if (sshdr->asc == 0x3A) {
1484 			set_media_not_present(sdkp);
1485 			return 1;
1486 		}
1487 	}
1488 	return 0;
1489 }
1490 
1491 /**
1492  *	sd_check_events - check media events
1493  *	@disk: kernel device descriptor
1494  *	@clearing: disk events currently being cleared
1495  *
1496  *	Returns mask of DISK_EVENT_*.
1497  *
1498  *	Note: this function is invoked from the block subsystem.
1499  **/
1500 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1501 {
1502 	struct scsi_disk *sdkp = scsi_disk_get(disk);
1503 	struct scsi_device *sdp;
1504 	int retval;
1505 
1506 	if (!sdkp)
1507 		return 0;
1508 
1509 	sdp = sdkp->device;
1510 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1511 
1512 	/*
1513 	 * If the device is offline, don't send any commands - just pretend as
1514 	 * if the command failed.  If the device ever comes back online, we
1515 	 * can deal with it then.  It is only because of unrecoverable errors
1516 	 * that we would ever take a device offline in the first place.
1517 	 */
1518 	if (!scsi_device_online(sdp)) {
1519 		set_media_not_present(sdkp);
1520 		goto out;
1521 	}
1522 
1523 	/*
1524 	 * Using TEST_UNIT_READY enables differentiation between drive with
1525 	 * no cartridge loaded - NOT READY, drive with changed cartridge -
1526 	 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1527 	 *
1528 	 * Drives that auto spin down. eg iomega jaz 1G, will be started
1529 	 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1530 	 * sd_revalidate() is called.
1531 	 */
1532 	if (scsi_block_when_processing_errors(sdp)) {
1533 		struct scsi_sense_hdr sshdr = { 0, };
1534 
1535 		retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, SD_MAX_RETRIES,
1536 					      &sshdr);
1537 
1538 		/* failed to execute TUR, assume media not present */
1539 		if (host_byte(retval)) {
1540 			set_media_not_present(sdkp);
1541 			goto out;
1542 		}
1543 
1544 		if (media_not_present(sdkp, &sshdr))
1545 			goto out;
1546 	}
1547 
1548 	/*
1549 	 * For removable scsi disk we have to recognise the presence
1550 	 * of a disk in the drive.
1551 	 */
1552 	if (!sdkp->media_present)
1553 		sdp->changed = 1;
1554 	sdkp->media_present = 1;
1555 out:
1556 	/*
1557 	 * sdp->changed is set under the following conditions:
1558 	 *
1559 	 *	Medium present state has changed in either direction.
1560 	 *	Device has indicated UNIT_ATTENTION.
1561 	 */
1562 	retval = sdp->changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1563 	sdp->changed = 0;
1564 	scsi_disk_put(sdkp);
1565 	return retval;
1566 }
1567 
1568 static int sd_sync_cache(struct scsi_disk *sdkp)
1569 {
1570 	int retries, res;
1571 	struct scsi_device *sdp = sdkp->device;
1572 	const int timeout = sdp->request_queue->rq_timeout
1573 		* SD_FLUSH_TIMEOUT_MULTIPLIER;
1574 	struct scsi_sense_hdr sshdr;
1575 
1576 	if (!scsi_device_online(sdp))
1577 		return -ENODEV;
1578 
1579 	for (retries = 3; retries > 0; --retries) {
1580 		unsigned char cmd[10] = { 0 };
1581 
1582 		cmd[0] = SYNCHRONIZE_CACHE;
1583 		/*
1584 		 * Leave the rest of the command zero to indicate
1585 		 * flush everything.
1586 		 */
1587 		res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr,
1588 				timeout, SD_MAX_RETRIES, 0, RQF_PM, NULL);
1589 		if (res == 0)
1590 			break;
1591 	}
1592 
1593 	if (res) {
1594 		sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1595 
1596 		if (driver_byte(res) & DRIVER_SENSE)
1597 			sd_print_sense_hdr(sdkp, &sshdr);
1598 		/* we need to evaluate the error return  */
1599 		if (scsi_sense_valid(&sshdr) &&
1600 			(sshdr.asc == 0x3a ||	/* medium not present */
1601 			 sshdr.asc == 0x20))	/* invalid command */
1602 				/* this is no error here */
1603 				return 0;
1604 
1605 		switch (host_byte(res)) {
1606 		/* ignore errors due to racing a disconnection */
1607 		case DID_BAD_TARGET:
1608 		case DID_NO_CONNECT:
1609 			return 0;
1610 		/* signal the upper layer it might try again */
1611 		case DID_BUS_BUSY:
1612 		case DID_IMM_RETRY:
1613 		case DID_REQUEUE:
1614 		case DID_SOFT_ERROR:
1615 			return -EBUSY;
1616 		default:
1617 			return -EIO;
1618 		}
1619 	}
1620 	return 0;
1621 }
1622 
1623 static void sd_rescan(struct device *dev)
1624 {
1625 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
1626 
1627 	revalidate_disk(sdkp->disk);
1628 }
1629 
1630 
1631 #ifdef CONFIG_COMPAT
1632 /*
1633  * This gets directly called from VFS. When the ioctl
1634  * is not recognized we go back to the other translation paths.
1635  */
1636 static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode,
1637 			   unsigned int cmd, unsigned long arg)
1638 {
1639 	struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
1640 	int error;
1641 
1642 	error = scsi_ioctl_block_when_processing_errors(sdev, cmd,
1643 			(mode & FMODE_NDELAY) != 0);
1644 	if (error)
1645 		return error;
1646 
1647 	/*
1648 	 * Let the static ioctl translation table take care of it.
1649 	 */
1650 	if (!sdev->host->hostt->compat_ioctl)
1651 		return -ENOIOCTLCMD;
1652 	return sdev->host->hostt->compat_ioctl(sdev, cmd, (void __user *)arg);
1653 }
1654 #endif
1655 
1656 static char sd_pr_type(enum pr_type type)
1657 {
1658 	switch (type) {
1659 	case PR_WRITE_EXCLUSIVE:
1660 		return 0x01;
1661 	case PR_EXCLUSIVE_ACCESS:
1662 		return 0x03;
1663 	case PR_WRITE_EXCLUSIVE_REG_ONLY:
1664 		return 0x05;
1665 	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1666 		return 0x06;
1667 	case PR_WRITE_EXCLUSIVE_ALL_REGS:
1668 		return 0x07;
1669 	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1670 		return 0x08;
1671 	default:
1672 		return 0;
1673 	}
1674 };
1675 
1676 static int sd_pr_command(struct block_device *bdev, u8 sa,
1677 		u64 key, u64 sa_key, u8 type, u8 flags)
1678 {
1679 	struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
1680 	struct scsi_sense_hdr sshdr;
1681 	int result;
1682 	u8 cmd[16] = { 0, };
1683 	u8 data[24] = { 0, };
1684 
1685 	cmd[0] = PERSISTENT_RESERVE_OUT;
1686 	cmd[1] = sa;
1687 	cmd[2] = type;
1688 	put_unaligned_be32(sizeof(data), &cmd[5]);
1689 
1690 	put_unaligned_be64(key, &data[0]);
1691 	put_unaligned_be64(sa_key, &data[8]);
1692 	data[20] = flags;
1693 
1694 	result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data),
1695 			&sshdr, SD_TIMEOUT, SD_MAX_RETRIES, NULL);
1696 
1697 	if ((driver_byte(result) & DRIVER_SENSE) &&
1698 	    (scsi_sense_valid(&sshdr))) {
1699 		sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1700 		scsi_print_sense_hdr(sdev, NULL, &sshdr);
1701 	}
1702 
1703 	return result;
1704 }
1705 
1706 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1707 		u32 flags)
1708 {
1709 	if (flags & ~PR_FL_IGNORE_KEY)
1710 		return -EOPNOTSUPP;
1711 	return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1712 			old_key, new_key, 0,
1713 			(1 << 0) /* APTPL */);
1714 }
1715 
1716 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1717 		u32 flags)
1718 {
1719 	if (flags)
1720 		return -EOPNOTSUPP;
1721 	return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0);
1722 }
1723 
1724 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1725 {
1726 	return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0);
1727 }
1728 
1729 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1730 		enum pr_type type, bool abort)
1731 {
1732 	return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
1733 			     sd_pr_type(type), 0);
1734 }
1735 
1736 static int sd_pr_clear(struct block_device *bdev, u64 key)
1737 {
1738 	return sd_pr_command(bdev, 0x03, key, 0, 0, 0);
1739 }
1740 
1741 static const struct pr_ops sd_pr_ops = {
1742 	.pr_register	= sd_pr_register,
1743 	.pr_reserve	= sd_pr_reserve,
1744 	.pr_release	= sd_pr_release,
1745 	.pr_preempt	= sd_pr_preempt,
1746 	.pr_clear	= sd_pr_clear,
1747 };
1748 
1749 static const struct block_device_operations sd_fops = {
1750 	.owner			= THIS_MODULE,
1751 	.open			= sd_open,
1752 	.release		= sd_release,
1753 	.ioctl			= sd_ioctl,
1754 	.getgeo			= sd_getgeo,
1755 #ifdef CONFIG_COMPAT
1756 	.compat_ioctl		= sd_compat_ioctl,
1757 #endif
1758 	.check_events		= sd_check_events,
1759 	.revalidate_disk	= sd_revalidate_disk,
1760 	.unlock_native_capacity	= sd_unlock_native_capacity,
1761 	.pr_ops			= &sd_pr_ops,
1762 };
1763 
1764 /**
1765  *	sd_eh_action - error handling callback
1766  *	@scmd:		sd-issued command that has failed
1767  *	@eh_disp:	The recovery disposition suggested by the midlayer
1768  *
1769  *	This function is called by the SCSI midlayer upon completion of an
1770  *	error test command (currently TEST UNIT READY). The result of sending
1771  *	the eh command is passed in eh_disp.  We're looking for devices that
1772  *	fail medium access commands but are OK with non access commands like
1773  *	test unit ready (so wrongly see the device as having a successful
1774  *	recovery)
1775  **/
1776 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
1777 {
1778 	struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1779 
1780 	if (!scsi_device_online(scmd->device) ||
1781 	    !scsi_medium_access_command(scmd) ||
1782 	    host_byte(scmd->result) != DID_TIME_OUT ||
1783 	    eh_disp != SUCCESS)
1784 		return eh_disp;
1785 
1786 	/*
1787 	 * The device has timed out executing a medium access command.
1788 	 * However, the TEST UNIT READY command sent during error
1789 	 * handling completed successfully. Either the device is in the
1790 	 * process of recovering or has it suffered an internal failure
1791 	 * that prevents access to the storage medium.
1792 	 */
1793 	sdkp->medium_access_timed_out++;
1794 
1795 	/*
1796 	 * If the device keeps failing read/write commands but TEST UNIT
1797 	 * READY always completes successfully we assume that medium
1798 	 * access is no longer possible and take the device offline.
1799 	 */
1800 	if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
1801 		scmd_printk(KERN_ERR, scmd,
1802 			    "Medium access timeout failure. Offlining disk!\n");
1803 		scsi_device_set_state(scmd->device, SDEV_OFFLINE);
1804 
1805 		return FAILED;
1806 	}
1807 
1808 	return eh_disp;
1809 }
1810 
1811 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
1812 {
1813 	u64 start_lba = blk_rq_pos(scmd->request);
1814 	u64 end_lba = blk_rq_pos(scmd->request) + (scsi_bufflen(scmd) / 512);
1815 	u64 factor = scmd->device->sector_size / 512;
1816 	u64 bad_lba;
1817 	int info_valid;
1818 	/*
1819 	 * resid is optional but mostly filled in.  When it's unused,
1820 	 * its value is zero, so we assume the whole buffer transferred
1821 	 */
1822 	unsigned int transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
1823 	unsigned int good_bytes;
1824 
1825 	info_valid = scsi_get_sense_info_fld(scmd->sense_buffer,
1826 					     SCSI_SENSE_BUFFERSIZE,
1827 					     &bad_lba);
1828 	if (!info_valid)
1829 		return 0;
1830 
1831 	if (scsi_bufflen(scmd) <= scmd->device->sector_size)
1832 		return 0;
1833 
1834 	/* be careful ... don't want any overflows */
1835 	do_div(start_lba, factor);
1836 	do_div(end_lba, factor);
1837 
1838 	/* The bad lba was reported incorrectly, we have no idea where
1839 	 * the error is.
1840 	 */
1841 	if (bad_lba < start_lba  || bad_lba >= end_lba)
1842 		return 0;
1843 
1844 	/* This computation should always be done in terms of
1845 	 * the resolution of the device's medium.
1846 	 */
1847 	good_bytes = (bad_lba - start_lba) * scmd->device->sector_size;
1848 	return min(good_bytes, transferred);
1849 }
1850 
1851 /**
1852  *	sd_done - bottom half handler: called when the lower level
1853  *	driver has completed (successfully or otherwise) a scsi command.
1854  *	@SCpnt: mid-level's per command structure.
1855  *
1856  *	Note: potentially run from within an ISR. Must not block.
1857  **/
1858 static int sd_done(struct scsi_cmnd *SCpnt)
1859 {
1860 	int result = SCpnt->result;
1861 	unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
1862 	unsigned int sector_size = SCpnt->device->sector_size;
1863 	unsigned int resid;
1864 	struct scsi_sense_hdr sshdr;
1865 	struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk);
1866 	struct request *req = SCpnt->request;
1867 	int sense_valid = 0;
1868 	int sense_deferred = 0;
1869 	unsigned char op = SCpnt->cmnd[0];
1870 	unsigned char unmap = SCpnt->cmnd[1] & 8;
1871 
1872 	switch (req_op(req)) {
1873 	case REQ_OP_DISCARD:
1874 	case REQ_OP_WRITE_ZEROES:
1875 	case REQ_OP_WRITE_SAME:
1876 	case REQ_OP_ZONE_RESET:
1877 		if (!result) {
1878 			good_bytes = blk_rq_bytes(req);
1879 			scsi_set_resid(SCpnt, 0);
1880 		} else {
1881 			good_bytes = 0;
1882 			scsi_set_resid(SCpnt, blk_rq_bytes(req));
1883 		}
1884 		break;
1885 	case REQ_OP_ZONE_REPORT:
1886 		if (!result) {
1887 			good_bytes = scsi_bufflen(SCpnt)
1888 				- scsi_get_resid(SCpnt);
1889 			scsi_set_resid(SCpnt, 0);
1890 		} else {
1891 			good_bytes = 0;
1892 			scsi_set_resid(SCpnt, blk_rq_bytes(req));
1893 		}
1894 		break;
1895 	default:
1896 		/*
1897 		 * In case of bogus fw or device, we could end up having
1898 		 * an unaligned partial completion. Check this here and force
1899 		 * alignment.
1900 		 */
1901 		resid = scsi_get_resid(SCpnt);
1902 		if (resid & (sector_size - 1)) {
1903 			sd_printk(KERN_INFO, sdkp,
1904 				"Unaligned partial completion (resid=%u, sector_sz=%u)\n",
1905 				resid, sector_size);
1906 			resid = min(scsi_bufflen(SCpnt),
1907 				    round_up(resid, sector_size));
1908 			scsi_set_resid(SCpnt, resid);
1909 		}
1910 	}
1911 
1912 	if (result) {
1913 		sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
1914 		if (sense_valid)
1915 			sense_deferred = scsi_sense_is_deferred(&sshdr);
1916 	}
1917 	sdkp->medium_access_timed_out = 0;
1918 
1919 	if (driver_byte(result) != DRIVER_SENSE &&
1920 	    (!sense_valid || sense_deferred))
1921 		goto out;
1922 
1923 	switch (sshdr.sense_key) {
1924 	case HARDWARE_ERROR:
1925 	case MEDIUM_ERROR:
1926 		good_bytes = sd_completed_bytes(SCpnt);
1927 		break;
1928 	case RECOVERED_ERROR:
1929 		good_bytes = scsi_bufflen(SCpnt);
1930 		break;
1931 	case NO_SENSE:
1932 		/* This indicates a false check condition, so ignore it.  An
1933 		 * unknown amount of data was transferred so treat it as an
1934 		 * error.
1935 		 */
1936 		SCpnt->result = 0;
1937 		memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1938 		break;
1939 	case ABORTED_COMMAND:
1940 		if (sshdr.asc == 0x10)  /* DIF: Target detected corruption */
1941 			good_bytes = sd_completed_bytes(SCpnt);
1942 		break;
1943 	case ILLEGAL_REQUEST:
1944 		if (sshdr.asc == 0x10)  /* DIX: Host detected corruption */
1945 			good_bytes = sd_completed_bytes(SCpnt);
1946 		/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
1947 		if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
1948 			switch (op) {
1949 			case UNMAP:
1950 				sd_config_discard(sdkp, SD_LBP_DISABLE);
1951 				break;
1952 			case WRITE_SAME_16:
1953 			case WRITE_SAME:
1954 				if (unmap)
1955 					sd_config_discard(sdkp, SD_LBP_DISABLE);
1956 				else {
1957 					sdkp->device->no_write_same = 1;
1958 					sd_config_write_same(sdkp);
1959 
1960 					good_bytes = 0;
1961 					req->__data_len = blk_rq_bytes(req);
1962 					req->rq_flags |= RQF_QUIET;
1963 				}
1964 			}
1965 		}
1966 		break;
1967 	default:
1968 		break;
1969 	}
1970 
1971  out:
1972 	if (sd_is_zoned(sdkp))
1973 		sd_zbc_complete(SCpnt, good_bytes, &sshdr);
1974 
1975 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
1976 					   "sd_done: completed %d of %d bytes\n",
1977 					   good_bytes, scsi_bufflen(SCpnt)));
1978 
1979 	if (rq_data_dir(SCpnt->request) == READ && scsi_prot_sg_count(SCpnt))
1980 		sd_dif_complete(SCpnt, good_bytes);
1981 
1982 	return good_bytes;
1983 }
1984 
1985 /*
1986  * spinup disk - called only in sd_revalidate_disk()
1987  */
1988 static void
1989 sd_spinup_disk(struct scsi_disk *sdkp)
1990 {
1991 	unsigned char cmd[10];
1992 	unsigned long spintime_expire = 0;
1993 	int retries, spintime;
1994 	unsigned int the_result;
1995 	struct scsi_sense_hdr sshdr;
1996 	int sense_valid = 0;
1997 
1998 	spintime = 0;
1999 
2000 	/* Spin up drives, as required.  Only do this at boot time */
2001 	/* Spinup needs to be done for module loads too. */
2002 	do {
2003 		retries = 0;
2004 
2005 		do {
2006 			cmd[0] = TEST_UNIT_READY;
2007 			memset((void *) &cmd[1], 0, 9);
2008 
2009 			the_result = scsi_execute_req(sdkp->device, cmd,
2010 						      DMA_NONE, NULL, 0,
2011 						      &sshdr, SD_TIMEOUT,
2012 						      SD_MAX_RETRIES, NULL);
2013 
2014 			/*
2015 			 * If the drive has indicated to us that it
2016 			 * doesn't have any media in it, don't bother
2017 			 * with any more polling.
2018 			 */
2019 			if (media_not_present(sdkp, &sshdr))
2020 				return;
2021 
2022 			if (the_result)
2023 				sense_valid = scsi_sense_valid(&sshdr);
2024 			retries++;
2025 		} while (retries < 3 &&
2026 			 (!scsi_status_is_good(the_result) ||
2027 			  ((driver_byte(the_result) & DRIVER_SENSE) &&
2028 			  sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
2029 
2030 		if ((driver_byte(the_result) & DRIVER_SENSE) == 0) {
2031 			/* no sense, TUR either succeeded or failed
2032 			 * with a status error */
2033 			if(!spintime && !scsi_status_is_good(the_result)) {
2034 				sd_print_result(sdkp, "Test Unit Ready failed",
2035 						the_result);
2036 			}
2037 			break;
2038 		}
2039 
2040 		/*
2041 		 * The device does not want the automatic start to be issued.
2042 		 */
2043 		if (sdkp->device->no_start_on_add)
2044 			break;
2045 
2046 		if (sense_valid && sshdr.sense_key == NOT_READY) {
2047 			if (sshdr.asc == 4 && sshdr.ascq == 3)
2048 				break;	/* manual intervention required */
2049 			if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2050 				break;	/* standby */
2051 			if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2052 				break;	/* unavailable */
2053 			/*
2054 			 * Issue command to spin up drive when not ready
2055 			 */
2056 			if (!spintime) {
2057 				sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2058 				cmd[0] = START_STOP;
2059 				cmd[1] = 1;	/* Return immediately */
2060 				memset((void *) &cmd[2], 0, 8);
2061 				cmd[4] = 1;	/* Start spin cycle */
2062 				if (sdkp->device->start_stop_pwr_cond)
2063 					cmd[4] |= 1 << 4;
2064 				scsi_execute_req(sdkp->device, cmd, DMA_NONE,
2065 						 NULL, 0, &sshdr,
2066 						 SD_TIMEOUT, SD_MAX_RETRIES,
2067 						 NULL);
2068 				spintime_expire = jiffies + 100 * HZ;
2069 				spintime = 1;
2070 			}
2071 			/* Wait 1 second for next try */
2072 			msleep(1000);
2073 			printk(".");
2074 
2075 		/*
2076 		 * Wait for USB flash devices with slow firmware.
2077 		 * Yes, this sense key/ASC combination shouldn't
2078 		 * occur here.  It's characteristic of these devices.
2079 		 */
2080 		} else if (sense_valid &&
2081 				sshdr.sense_key == UNIT_ATTENTION &&
2082 				sshdr.asc == 0x28) {
2083 			if (!spintime) {
2084 				spintime_expire = jiffies + 5 * HZ;
2085 				spintime = 1;
2086 			}
2087 			/* Wait 1 second for next try */
2088 			msleep(1000);
2089 		} else {
2090 			/* we don't understand the sense code, so it's
2091 			 * probably pointless to loop */
2092 			if(!spintime) {
2093 				sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2094 				sd_print_sense_hdr(sdkp, &sshdr);
2095 			}
2096 			break;
2097 		}
2098 
2099 	} while (spintime && time_before_eq(jiffies, spintime_expire));
2100 
2101 	if (spintime) {
2102 		if (scsi_status_is_good(the_result))
2103 			printk("ready\n");
2104 		else
2105 			printk("not responding...\n");
2106 	}
2107 }
2108 
2109 /*
2110  * Determine whether disk supports Data Integrity Field.
2111  */
2112 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2113 {
2114 	struct scsi_device *sdp = sdkp->device;
2115 	u8 type;
2116 	int ret = 0;
2117 
2118 	if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0)
2119 		return ret;
2120 
2121 	type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2122 
2123 	if (type > T10_PI_TYPE3_PROTECTION)
2124 		ret = -ENODEV;
2125 	else if (scsi_host_dif_capable(sdp->host, type))
2126 		ret = 1;
2127 
2128 	if (sdkp->first_scan || type != sdkp->protection_type)
2129 		switch (ret) {
2130 		case -ENODEV:
2131 			sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \
2132 				  " protection type %u. Disabling disk!\n",
2133 				  type);
2134 			break;
2135 		case 1:
2136 			sd_printk(KERN_NOTICE, sdkp,
2137 				  "Enabling DIF Type %u protection\n", type);
2138 			break;
2139 		case 0:
2140 			sd_printk(KERN_NOTICE, sdkp,
2141 				  "Disabling DIF Type %u protection\n", type);
2142 			break;
2143 		}
2144 
2145 	sdkp->protection_type = type;
2146 
2147 	return ret;
2148 }
2149 
2150 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2151 			struct scsi_sense_hdr *sshdr, int sense_valid,
2152 			int the_result)
2153 {
2154 	if (driver_byte(the_result) & DRIVER_SENSE)
2155 		sd_print_sense_hdr(sdkp, sshdr);
2156 	else
2157 		sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2158 
2159 	/*
2160 	 * Set dirty bit for removable devices if not ready -
2161 	 * sometimes drives will not report this properly.
2162 	 */
2163 	if (sdp->removable &&
2164 	    sense_valid && sshdr->sense_key == NOT_READY)
2165 		set_media_not_present(sdkp);
2166 
2167 	/*
2168 	 * We used to set media_present to 0 here to indicate no media
2169 	 * in the drive, but some drives fail read capacity even with
2170 	 * media present, so we can't do that.
2171 	 */
2172 	sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2173 }
2174 
2175 #define RC16_LEN 32
2176 #if RC16_LEN > SD_BUF_SIZE
2177 #error RC16_LEN must not be more than SD_BUF_SIZE
2178 #endif
2179 
2180 #define READ_CAPACITY_RETRIES_ON_RESET	10
2181 
2182 /*
2183  * Ensure that we don't overflow sector_t when CONFIG_LBDAF is not set
2184  * and the reported logical block size is bigger than 512 bytes. Note
2185  * that last_sector is a u64 and therefore logical_to_sectors() is not
2186  * applicable.
2187  */
2188 static bool sd_addressable_capacity(u64 lba, unsigned int sector_size)
2189 {
2190 	u64 last_sector = (lba + 1ULL) << (ilog2(sector_size) - 9);
2191 
2192 	if (sizeof(sector_t) == 4 && last_sector > U32_MAX)
2193 		return false;
2194 
2195 	return true;
2196 }
2197 
2198 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2199 						unsigned char *buffer)
2200 {
2201 	unsigned char cmd[16];
2202 	struct scsi_sense_hdr sshdr;
2203 	int sense_valid = 0;
2204 	int the_result;
2205 	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2206 	unsigned int alignment;
2207 	unsigned long long lba;
2208 	unsigned sector_size;
2209 
2210 	if (sdp->no_read_capacity_16)
2211 		return -EINVAL;
2212 
2213 	do {
2214 		memset(cmd, 0, 16);
2215 		cmd[0] = SERVICE_ACTION_IN_16;
2216 		cmd[1] = SAI_READ_CAPACITY_16;
2217 		cmd[13] = RC16_LEN;
2218 		memset(buffer, 0, RC16_LEN);
2219 
2220 		the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2221 					buffer, RC16_LEN, &sshdr,
2222 					SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2223 
2224 		if (media_not_present(sdkp, &sshdr))
2225 			return -ENODEV;
2226 
2227 		if (the_result) {
2228 			sense_valid = scsi_sense_valid(&sshdr);
2229 			if (sense_valid &&
2230 			    sshdr.sense_key == ILLEGAL_REQUEST &&
2231 			    (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2232 			    sshdr.ascq == 0x00)
2233 				/* Invalid Command Operation Code or
2234 				 * Invalid Field in CDB, just retry
2235 				 * silently with RC10 */
2236 				return -EINVAL;
2237 			if (sense_valid &&
2238 			    sshdr.sense_key == UNIT_ATTENTION &&
2239 			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2240 				/* Device reset might occur several times,
2241 				 * give it one more chance */
2242 				if (--reset_retries > 0)
2243 					continue;
2244 		}
2245 		retries--;
2246 
2247 	} while (the_result && retries);
2248 
2249 	if (the_result) {
2250 		sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2251 		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2252 		return -EINVAL;
2253 	}
2254 
2255 	sector_size = get_unaligned_be32(&buffer[8]);
2256 	lba = get_unaligned_be64(&buffer[0]);
2257 
2258 	if (sd_read_protection_type(sdkp, buffer) < 0) {
2259 		sdkp->capacity = 0;
2260 		return -ENODEV;
2261 	}
2262 
2263 	if (!sd_addressable_capacity(lba, sector_size)) {
2264 		sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a "
2265 			"kernel compiled with support for large block "
2266 			"devices.\n");
2267 		sdkp->capacity = 0;
2268 		return -EOVERFLOW;
2269 	}
2270 
2271 	/* Logical blocks per physical block exponent */
2272 	sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2273 
2274 	/* RC basis */
2275 	sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2276 
2277 	/* Lowest aligned logical block */
2278 	alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2279 	blk_queue_alignment_offset(sdp->request_queue, alignment);
2280 	if (alignment && sdkp->first_scan)
2281 		sd_printk(KERN_NOTICE, sdkp,
2282 			  "physical block alignment offset: %u\n", alignment);
2283 
2284 	if (buffer[14] & 0x80) { /* LBPME */
2285 		sdkp->lbpme = 1;
2286 
2287 		if (buffer[14] & 0x40) /* LBPRZ */
2288 			sdkp->lbprz = 1;
2289 
2290 		sd_config_discard(sdkp, SD_LBP_WS16);
2291 	}
2292 
2293 	sdkp->capacity = lba + 1;
2294 	return sector_size;
2295 }
2296 
2297 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2298 						unsigned char *buffer)
2299 {
2300 	unsigned char cmd[16];
2301 	struct scsi_sense_hdr sshdr;
2302 	int sense_valid = 0;
2303 	int the_result;
2304 	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2305 	sector_t lba;
2306 	unsigned sector_size;
2307 
2308 	do {
2309 		cmd[0] = READ_CAPACITY;
2310 		memset(&cmd[1], 0, 9);
2311 		memset(buffer, 0, 8);
2312 
2313 		the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2314 					buffer, 8, &sshdr,
2315 					SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2316 
2317 		if (media_not_present(sdkp, &sshdr))
2318 			return -ENODEV;
2319 
2320 		if (the_result) {
2321 			sense_valid = scsi_sense_valid(&sshdr);
2322 			if (sense_valid &&
2323 			    sshdr.sense_key == UNIT_ATTENTION &&
2324 			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2325 				/* Device reset might occur several times,
2326 				 * give it one more chance */
2327 				if (--reset_retries > 0)
2328 					continue;
2329 		}
2330 		retries--;
2331 
2332 	} while (the_result && retries);
2333 
2334 	if (the_result) {
2335 		sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2336 		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2337 		return -EINVAL;
2338 	}
2339 
2340 	sector_size = get_unaligned_be32(&buffer[4]);
2341 	lba = get_unaligned_be32(&buffer[0]);
2342 
2343 	if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2344 		/* Some buggy (usb cardreader) devices return an lba of
2345 		   0xffffffff when the want to report a size of 0 (with
2346 		   which they really mean no media is present) */
2347 		sdkp->capacity = 0;
2348 		sdkp->physical_block_size = sector_size;
2349 		return sector_size;
2350 	}
2351 
2352 	if (!sd_addressable_capacity(lba, sector_size)) {
2353 		sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a "
2354 			"kernel compiled with support for large block "
2355 			"devices.\n");
2356 		sdkp->capacity = 0;
2357 		return -EOVERFLOW;
2358 	}
2359 
2360 	sdkp->capacity = lba + 1;
2361 	sdkp->physical_block_size = sector_size;
2362 	return sector_size;
2363 }
2364 
2365 static int sd_try_rc16_first(struct scsi_device *sdp)
2366 {
2367 	if (sdp->host->max_cmd_len < 16)
2368 		return 0;
2369 	if (sdp->try_rc_10_first)
2370 		return 0;
2371 	if (sdp->scsi_level > SCSI_SPC_2)
2372 		return 1;
2373 	if (scsi_device_protection(sdp))
2374 		return 1;
2375 	return 0;
2376 }
2377 
2378 /*
2379  * read disk capacity
2380  */
2381 static void
2382 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2383 {
2384 	int sector_size;
2385 	struct scsi_device *sdp = sdkp->device;
2386 
2387 	if (sd_try_rc16_first(sdp)) {
2388 		sector_size = read_capacity_16(sdkp, sdp, buffer);
2389 		if (sector_size == -EOVERFLOW)
2390 			goto got_data;
2391 		if (sector_size == -ENODEV)
2392 			return;
2393 		if (sector_size < 0)
2394 			sector_size = read_capacity_10(sdkp, sdp, buffer);
2395 		if (sector_size < 0)
2396 			return;
2397 	} else {
2398 		sector_size = read_capacity_10(sdkp, sdp, buffer);
2399 		if (sector_size == -EOVERFLOW)
2400 			goto got_data;
2401 		if (sector_size < 0)
2402 			return;
2403 		if ((sizeof(sdkp->capacity) > 4) &&
2404 		    (sdkp->capacity > 0xffffffffULL)) {
2405 			int old_sector_size = sector_size;
2406 			sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2407 					"Trying to use READ CAPACITY(16).\n");
2408 			sector_size = read_capacity_16(sdkp, sdp, buffer);
2409 			if (sector_size < 0) {
2410 				sd_printk(KERN_NOTICE, sdkp,
2411 					"Using 0xffffffff as device size\n");
2412 				sdkp->capacity = 1 + (sector_t) 0xffffffff;
2413 				sector_size = old_sector_size;
2414 				goto got_data;
2415 			}
2416 		}
2417 	}
2418 
2419 	/* Some devices are known to return the total number of blocks,
2420 	 * not the highest block number.  Some devices have versions
2421 	 * which do this and others which do not.  Some devices we might
2422 	 * suspect of doing this but we don't know for certain.
2423 	 *
2424 	 * If we know the reported capacity is wrong, decrement it.  If
2425 	 * we can only guess, then assume the number of blocks is even
2426 	 * (usually true but not always) and err on the side of lowering
2427 	 * the capacity.
2428 	 */
2429 	if (sdp->fix_capacity ||
2430 	    (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2431 		sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2432 				"from its reported value: %llu\n",
2433 				(unsigned long long) sdkp->capacity);
2434 		--sdkp->capacity;
2435 	}
2436 
2437 got_data:
2438 	if (sector_size == 0) {
2439 		sector_size = 512;
2440 		sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2441 			  "assuming 512.\n");
2442 	}
2443 
2444 	if (sector_size != 512 &&
2445 	    sector_size != 1024 &&
2446 	    sector_size != 2048 &&
2447 	    sector_size != 4096) {
2448 		sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2449 			  sector_size);
2450 		/*
2451 		 * The user might want to re-format the drive with
2452 		 * a supported sectorsize.  Once this happens, it
2453 		 * would be relatively trivial to set the thing up.
2454 		 * For this reason, we leave the thing in the table.
2455 		 */
2456 		sdkp->capacity = 0;
2457 		/*
2458 		 * set a bogus sector size so the normal read/write
2459 		 * logic in the block layer will eventually refuse any
2460 		 * request on this device without tripping over power
2461 		 * of two sector size assumptions
2462 		 */
2463 		sector_size = 512;
2464 	}
2465 	blk_queue_logical_block_size(sdp->request_queue, sector_size);
2466 	blk_queue_physical_block_size(sdp->request_queue,
2467 				      sdkp->physical_block_size);
2468 	sdkp->device->sector_size = sector_size;
2469 
2470 	if (sdkp->capacity > 0xffffffff)
2471 		sdp->use_16_for_rw = 1;
2472 
2473 }
2474 
2475 /*
2476  * Print disk capacity
2477  */
2478 static void
2479 sd_print_capacity(struct scsi_disk *sdkp,
2480 		  sector_t old_capacity)
2481 {
2482 	int sector_size = sdkp->device->sector_size;
2483 	char cap_str_2[10], cap_str_10[10];
2484 
2485 	string_get_size(sdkp->capacity, sector_size,
2486 			STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2487 	string_get_size(sdkp->capacity, sector_size,
2488 			STRING_UNITS_10, cap_str_10,
2489 			sizeof(cap_str_10));
2490 
2491 	if (sdkp->first_scan || old_capacity != sdkp->capacity) {
2492 		sd_printk(KERN_NOTICE, sdkp,
2493 			  "%llu %d-byte logical blocks: (%s/%s)\n",
2494 			  (unsigned long long)sdkp->capacity,
2495 			  sector_size, cap_str_10, cap_str_2);
2496 
2497 		if (sdkp->physical_block_size != sector_size)
2498 			sd_printk(KERN_NOTICE, sdkp,
2499 				  "%u-byte physical blocks\n",
2500 				  sdkp->physical_block_size);
2501 
2502 		sd_zbc_print_zones(sdkp);
2503 	}
2504 }
2505 
2506 /* called with buffer of length 512 */
2507 static inline int
2508 sd_do_mode_sense(struct scsi_device *sdp, int dbd, int modepage,
2509 		 unsigned char *buffer, int len, struct scsi_mode_data *data,
2510 		 struct scsi_sense_hdr *sshdr)
2511 {
2512 	return scsi_mode_sense(sdp, dbd, modepage, buffer, len,
2513 			       SD_TIMEOUT, SD_MAX_RETRIES, data,
2514 			       sshdr);
2515 }
2516 
2517 /*
2518  * read write protect setting, if possible - called only in sd_revalidate_disk()
2519  * called with buffer of length SD_BUF_SIZE
2520  */
2521 static void
2522 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2523 {
2524 	int res;
2525 	struct scsi_device *sdp = sdkp->device;
2526 	struct scsi_mode_data data;
2527 	int old_wp = sdkp->write_prot;
2528 
2529 	set_disk_ro(sdkp->disk, 0);
2530 	if (sdp->skip_ms_page_3f) {
2531 		sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2532 		return;
2533 	}
2534 
2535 	if (sdp->use_192_bytes_for_3f) {
2536 		res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 192, &data, NULL);
2537 	} else {
2538 		/*
2539 		 * First attempt: ask for all pages (0x3F), but only 4 bytes.
2540 		 * We have to start carefully: some devices hang if we ask
2541 		 * for more than is available.
2542 		 */
2543 		res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 4, &data, NULL);
2544 
2545 		/*
2546 		 * Second attempt: ask for page 0 When only page 0 is
2547 		 * implemented, a request for page 3F may return Sense Key
2548 		 * 5: Illegal Request, Sense Code 24: Invalid field in
2549 		 * CDB.
2550 		 */
2551 		if (!scsi_status_is_good(res))
2552 			res = sd_do_mode_sense(sdp, 0, 0, buffer, 4, &data, NULL);
2553 
2554 		/*
2555 		 * Third attempt: ask 255 bytes, as we did earlier.
2556 		 */
2557 		if (!scsi_status_is_good(res))
2558 			res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 255,
2559 					       &data, NULL);
2560 	}
2561 
2562 	if (!scsi_status_is_good(res)) {
2563 		sd_first_printk(KERN_WARNING, sdkp,
2564 			  "Test WP failed, assume Write Enabled\n");
2565 	} else {
2566 		sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2567 		set_disk_ro(sdkp->disk, sdkp->write_prot);
2568 		if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2569 			sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2570 				  sdkp->write_prot ? "on" : "off");
2571 			sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
2572 		}
2573 	}
2574 }
2575 
2576 /*
2577  * sd_read_cache_type - called only from sd_revalidate_disk()
2578  * called with buffer of length SD_BUF_SIZE
2579  */
2580 static void
2581 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2582 {
2583 	int len = 0, res;
2584 	struct scsi_device *sdp = sdkp->device;
2585 
2586 	int dbd;
2587 	int modepage;
2588 	int first_len;
2589 	struct scsi_mode_data data;
2590 	struct scsi_sense_hdr sshdr;
2591 	int old_wce = sdkp->WCE;
2592 	int old_rcd = sdkp->RCD;
2593 	int old_dpofua = sdkp->DPOFUA;
2594 
2595 
2596 	if (sdkp->cache_override)
2597 		return;
2598 
2599 	first_len = 4;
2600 	if (sdp->skip_ms_page_8) {
2601 		if (sdp->type == TYPE_RBC)
2602 			goto defaults;
2603 		else {
2604 			if (sdp->skip_ms_page_3f)
2605 				goto defaults;
2606 			modepage = 0x3F;
2607 			if (sdp->use_192_bytes_for_3f)
2608 				first_len = 192;
2609 			dbd = 0;
2610 		}
2611 	} else if (sdp->type == TYPE_RBC) {
2612 		modepage = 6;
2613 		dbd = 8;
2614 	} else {
2615 		modepage = 8;
2616 		dbd = 0;
2617 	}
2618 
2619 	/* cautiously ask */
2620 	res = sd_do_mode_sense(sdp, dbd, modepage, buffer, first_len,
2621 			&data, &sshdr);
2622 
2623 	if (!scsi_status_is_good(res))
2624 		goto bad_sense;
2625 
2626 	if (!data.header_length) {
2627 		modepage = 6;
2628 		first_len = 0;
2629 		sd_first_printk(KERN_ERR, sdkp,
2630 				"Missing header in MODE_SENSE response\n");
2631 	}
2632 
2633 	/* that went OK, now ask for the proper length */
2634 	len = data.length;
2635 
2636 	/*
2637 	 * We're only interested in the first three bytes, actually.
2638 	 * But the data cache page is defined for the first 20.
2639 	 */
2640 	if (len < 3)
2641 		goto bad_sense;
2642 	else if (len > SD_BUF_SIZE) {
2643 		sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2644 			  "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2645 		len = SD_BUF_SIZE;
2646 	}
2647 	if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2648 		len = 192;
2649 
2650 	/* Get the data */
2651 	if (len > first_len)
2652 		res = sd_do_mode_sense(sdp, dbd, modepage, buffer, len,
2653 				&data, &sshdr);
2654 
2655 	if (scsi_status_is_good(res)) {
2656 		int offset = data.header_length + data.block_descriptor_length;
2657 
2658 		while (offset < len) {
2659 			u8 page_code = buffer[offset] & 0x3F;
2660 			u8 spf       = buffer[offset] & 0x40;
2661 
2662 			if (page_code == 8 || page_code == 6) {
2663 				/* We're interested only in the first 3 bytes.
2664 				 */
2665 				if (len - offset <= 2) {
2666 					sd_first_printk(KERN_ERR, sdkp,
2667 						"Incomplete mode parameter "
2668 							"data\n");
2669 					goto defaults;
2670 				} else {
2671 					modepage = page_code;
2672 					goto Page_found;
2673 				}
2674 			} else {
2675 				/* Go to the next page */
2676 				if (spf && len - offset > 3)
2677 					offset += 4 + (buffer[offset+2] << 8) +
2678 						buffer[offset+3];
2679 				else if (!spf && len - offset > 1)
2680 					offset += 2 + buffer[offset+1];
2681 				else {
2682 					sd_first_printk(KERN_ERR, sdkp,
2683 							"Incomplete mode "
2684 							"parameter data\n");
2685 					goto defaults;
2686 				}
2687 			}
2688 		}
2689 
2690 		sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n");
2691 		goto defaults;
2692 
2693 	Page_found:
2694 		if (modepage == 8) {
2695 			sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2696 			sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2697 		} else {
2698 			sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2699 			sdkp->RCD = 0;
2700 		}
2701 
2702 		sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2703 		if (sdp->broken_fua) {
2704 			sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2705 			sdkp->DPOFUA = 0;
2706 		} else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
2707 			   !sdkp->device->use_16_for_rw) {
2708 			sd_first_printk(KERN_NOTICE, sdkp,
2709 				  "Uses READ/WRITE(6), disabling FUA\n");
2710 			sdkp->DPOFUA = 0;
2711 		}
2712 
2713 		/* No cache flush allowed for write protected devices */
2714 		if (sdkp->WCE && sdkp->write_prot)
2715 			sdkp->WCE = 0;
2716 
2717 		if (sdkp->first_scan || old_wce != sdkp->WCE ||
2718 		    old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2719 			sd_printk(KERN_NOTICE, sdkp,
2720 				  "Write cache: %s, read cache: %s, %s\n",
2721 				  sdkp->WCE ? "enabled" : "disabled",
2722 				  sdkp->RCD ? "disabled" : "enabled",
2723 				  sdkp->DPOFUA ? "supports DPO and FUA"
2724 				  : "doesn't support DPO or FUA");
2725 
2726 		return;
2727 	}
2728 
2729 bad_sense:
2730 	if (scsi_sense_valid(&sshdr) &&
2731 	    sshdr.sense_key == ILLEGAL_REQUEST &&
2732 	    sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2733 		/* Invalid field in CDB */
2734 		sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2735 	else
2736 		sd_first_printk(KERN_ERR, sdkp,
2737 				"Asking for cache data failed\n");
2738 
2739 defaults:
2740 	if (sdp->wce_default_on) {
2741 		sd_first_printk(KERN_NOTICE, sdkp,
2742 				"Assuming drive cache: write back\n");
2743 		sdkp->WCE = 1;
2744 	} else {
2745 		sd_first_printk(KERN_ERR, sdkp,
2746 				"Assuming drive cache: write through\n");
2747 		sdkp->WCE = 0;
2748 	}
2749 	sdkp->RCD = 0;
2750 	sdkp->DPOFUA = 0;
2751 }
2752 
2753 /*
2754  * The ATO bit indicates whether the DIF application tag is available
2755  * for use by the operating system.
2756  */
2757 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
2758 {
2759 	int res, offset;
2760 	struct scsi_device *sdp = sdkp->device;
2761 	struct scsi_mode_data data;
2762 	struct scsi_sense_hdr sshdr;
2763 
2764 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
2765 		return;
2766 
2767 	if (sdkp->protection_type == 0)
2768 		return;
2769 
2770 	res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT,
2771 			      SD_MAX_RETRIES, &data, &sshdr);
2772 
2773 	if (!scsi_status_is_good(res) || !data.header_length ||
2774 	    data.length < 6) {
2775 		sd_first_printk(KERN_WARNING, sdkp,
2776 			  "getting Control mode page failed, assume no ATO\n");
2777 
2778 		if (scsi_sense_valid(&sshdr))
2779 			sd_print_sense_hdr(sdkp, &sshdr);
2780 
2781 		return;
2782 	}
2783 
2784 	offset = data.header_length + data.block_descriptor_length;
2785 
2786 	if ((buffer[offset] & 0x3f) != 0x0a) {
2787 		sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
2788 		return;
2789 	}
2790 
2791 	if ((buffer[offset + 5] & 0x80) == 0)
2792 		return;
2793 
2794 	sdkp->ATO = 1;
2795 
2796 	return;
2797 }
2798 
2799 /**
2800  * sd_read_block_limits - Query disk device for preferred I/O sizes.
2801  * @disk: disk to query
2802  */
2803 static void sd_read_block_limits(struct scsi_disk *sdkp)
2804 {
2805 	unsigned int sector_sz = sdkp->device->sector_size;
2806 	const int vpd_len = 64;
2807 	unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL);
2808 
2809 	if (!buffer ||
2810 	    /* Block Limits VPD */
2811 	    scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len))
2812 		goto out;
2813 
2814 	blk_queue_io_min(sdkp->disk->queue,
2815 			 get_unaligned_be16(&buffer[6]) * sector_sz);
2816 
2817 	sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]);
2818 	sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]);
2819 
2820 	if (buffer[3] == 0x3c) {
2821 		unsigned int lba_count, desc_count;
2822 
2823 		sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]);
2824 
2825 		if (!sdkp->lbpme)
2826 			goto out;
2827 
2828 		lba_count = get_unaligned_be32(&buffer[20]);
2829 		desc_count = get_unaligned_be32(&buffer[24]);
2830 
2831 		if (lba_count && desc_count)
2832 			sdkp->max_unmap_blocks = lba_count;
2833 
2834 		sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]);
2835 
2836 		if (buffer[32] & 0x80)
2837 			sdkp->unmap_alignment =
2838 				get_unaligned_be32(&buffer[32]) & ~(1 << 31);
2839 
2840 		if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
2841 
2842 			if (sdkp->max_unmap_blocks)
2843 				sd_config_discard(sdkp, SD_LBP_UNMAP);
2844 			else
2845 				sd_config_discard(sdkp, SD_LBP_WS16);
2846 
2847 		} else {	/* LBP VPD page tells us what to use */
2848 			if (sdkp->lbpu && sdkp->max_unmap_blocks)
2849 				sd_config_discard(sdkp, SD_LBP_UNMAP);
2850 			else if (sdkp->lbpws)
2851 				sd_config_discard(sdkp, SD_LBP_WS16);
2852 			else if (sdkp->lbpws10)
2853 				sd_config_discard(sdkp, SD_LBP_WS10);
2854 			else if (sdkp->lbpu && sdkp->max_unmap_blocks)
2855 				sd_config_discard(sdkp, SD_LBP_UNMAP);
2856 			else
2857 				sd_config_discard(sdkp, SD_LBP_DISABLE);
2858 		}
2859 	}
2860 
2861  out:
2862 	kfree(buffer);
2863 }
2864 
2865 /**
2866  * sd_read_block_characteristics - Query block dev. characteristics
2867  * @disk: disk to query
2868  */
2869 static void sd_read_block_characteristics(struct scsi_disk *sdkp)
2870 {
2871 	struct request_queue *q = sdkp->disk->queue;
2872 	unsigned char *buffer;
2873 	u16 rot;
2874 	const int vpd_len = 64;
2875 
2876 	buffer = kmalloc(vpd_len, GFP_KERNEL);
2877 
2878 	if (!buffer ||
2879 	    /* Block Device Characteristics VPD */
2880 	    scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len))
2881 		goto out;
2882 
2883 	rot = get_unaligned_be16(&buffer[4]);
2884 
2885 	if (rot == 1) {
2886 		queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
2887 		queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
2888 	}
2889 
2890 	if (sdkp->device->type == TYPE_ZBC) {
2891 		/* Host-managed */
2892 		q->limits.zoned = BLK_ZONED_HM;
2893 	} else {
2894 		sdkp->zoned = (buffer[8] >> 4) & 3;
2895 		if (sdkp->zoned == 1)
2896 			/* Host-aware */
2897 			q->limits.zoned = BLK_ZONED_HA;
2898 		else
2899 			/*
2900 			 * Treat drive-managed devices as
2901 			 * regular block devices.
2902 			 */
2903 			q->limits.zoned = BLK_ZONED_NONE;
2904 	}
2905 	if (blk_queue_is_zoned(q) && sdkp->first_scan)
2906 		sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n",
2907 		      q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware");
2908 
2909  out:
2910 	kfree(buffer);
2911 }
2912 
2913 /**
2914  * sd_read_block_provisioning - Query provisioning VPD page
2915  * @disk: disk to query
2916  */
2917 static void sd_read_block_provisioning(struct scsi_disk *sdkp)
2918 {
2919 	unsigned char *buffer;
2920 	const int vpd_len = 8;
2921 
2922 	if (sdkp->lbpme == 0)
2923 		return;
2924 
2925 	buffer = kmalloc(vpd_len, GFP_KERNEL);
2926 
2927 	if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len))
2928 		goto out;
2929 
2930 	sdkp->lbpvpd	= 1;
2931 	sdkp->lbpu	= (buffer[5] >> 7) & 1;	/* UNMAP */
2932 	sdkp->lbpws	= (buffer[5] >> 6) & 1;	/* WRITE SAME(16) with UNMAP */
2933 	sdkp->lbpws10	= (buffer[5] >> 5) & 1;	/* WRITE SAME(10) with UNMAP */
2934 
2935  out:
2936 	kfree(buffer);
2937 }
2938 
2939 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
2940 {
2941 	struct scsi_device *sdev = sdkp->device;
2942 
2943 	if (sdev->host->no_write_same) {
2944 		sdev->no_write_same = 1;
2945 
2946 		return;
2947 	}
2948 
2949 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) {
2950 		/* too large values might cause issues with arcmsr */
2951 		int vpd_buf_len = 64;
2952 
2953 		sdev->no_report_opcodes = 1;
2954 
2955 		/* Disable WRITE SAME if REPORT SUPPORTED OPERATION
2956 		 * CODES is unsupported and the device has an ATA
2957 		 * Information VPD page (SAT).
2958 		 */
2959 		if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len))
2960 			sdev->no_write_same = 1;
2961 	}
2962 
2963 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1)
2964 		sdkp->ws16 = 1;
2965 
2966 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1)
2967 		sdkp->ws10 = 1;
2968 }
2969 
2970 /**
2971  *	sd_revalidate_disk - called the first time a new disk is seen,
2972  *	performs disk spin up, read_capacity, etc.
2973  *	@disk: struct gendisk we care about
2974  **/
2975 static int sd_revalidate_disk(struct gendisk *disk)
2976 {
2977 	struct scsi_disk *sdkp = scsi_disk(disk);
2978 	struct scsi_device *sdp = sdkp->device;
2979 	struct request_queue *q = sdkp->disk->queue;
2980 	sector_t old_capacity = sdkp->capacity;
2981 	unsigned char *buffer;
2982 	unsigned int dev_max, rw_max;
2983 
2984 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
2985 				      "sd_revalidate_disk\n"));
2986 
2987 	/*
2988 	 * If the device is offline, don't try and read capacity or any
2989 	 * of the other niceties.
2990 	 */
2991 	if (!scsi_device_online(sdp))
2992 		goto out;
2993 
2994 	buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
2995 	if (!buffer) {
2996 		sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
2997 			  "allocation failure.\n");
2998 		goto out;
2999 	}
3000 
3001 	sd_spinup_disk(sdkp);
3002 
3003 	/*
3004 	 * Without media there is no reason to ask; moreover, some devices
3005 	 * react badly if we do.
3006 	 */
3007 	if (sdkp->media_present) {
3008 		sd_read_capacity(sdkp, buffer);
3009 
3010 		if (scsi_device_supports_vpd(sdp)) {
3011 			sd_read_block_provisioning(sdkp);
3012 			sd_read_block_limits(sdkp);
3013 			sd_read_block_characteristics(sdkp);
3014 			sd_zbc_read_zones(sdkp, buffer);
3015 		}
3016 
3017 		sd_print_capacity(sdkp, old_capacity);
3018 
3019 		sd_read_write_protect_flag(sdkp, buffer);
3020 		sd_read_cache_type(sdkp, buffer);
3021 		sd_read_app_tag_own(sdkp, buffer);
3022 		sd_read_write_same(sdkp, buffer);
3023 	}
3024 
3025 	sdkp->first_scan = 0;
3026 
3027 	/*
3028 	 * We now have all cache related info, determine how we deal
3029 	 * with flush requests.
3030 	 */
3031 	sd_set_flush_flag(sdkp);
3032 
3033 	/* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3034 	dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3035 
3036 	/* Some devices report a maximum block count for READ/WRITE requests. */
3037 	dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3038 	q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3039 
3040 	/*
3041 	 * Use the device's preferred I/O size for reads and writes
3042 	 * unless the reported value is unreasonably small, large, or
3043 	 * garbage.
3044 	 */
3045 	if (sdkp->opt_xfer_blocks &&
3046 	    sdkp->opt_xfer_blocks <= dev_max &&
3047 	    sdkp->opt_xfer_blocks <= SD_DEF_XFER_BLOCKS &&
3048 	    logical_to_bytes(sdp, sdkp->opt_xfer_blocks) >= PAGE_SIZE) {
3049 		q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3050 		rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
3051 	} else
3052 		rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
3053 				      (sector_t)BLK_DEF_MAX_SECTORS);
3054 
3055 	/* Combine with controller limits */
3056 	q->limits.max_sectors = min(rw_max, queue_max_hw_sectors(q));
3057 
3058 	set_capacity(disk, logical_to_sectors(sdp, sdkp->capacity));
3059 	sd_config_write_same(sdkp);
3060 	kfree(buffer);
3061 
3062  out:
3063 	return 0;
3064 }
3065 
3066 /**
3067  *	sd_unlock_native_capacity - unlock native capacity
3068  *	@disk: struct gendisk to set capacity for
3069  *
3070  *	Block layer calls this function if it detects that partitions
3071  *	on @disk reach beyond the end of the device.  If the SCSI host
3072  *	implements ->unlock_native_capacity() method, it's invoked to
3073  *	give it a chance to adjust the device capacity.
3074  *
3075  *	CONTEXT:
3076  *	Defined by block layer.  Might sleep.
3077  */
3078 static void sd_unlock_native_capacity(struct gendisk *disk)
3079 {
3080 	struct scsi_device *sdev = scsi_disk(disk)->device;
3081 
3082 	if (sdev->host->hostt->unlock_native_capacity)
3083 		sdev->host->hostt->unlock_native_capacity(sdev);
3084 }
3085 
3086 /**
3087  *	sd_format_disk_name - format disk name
3088  *	@prefix: name prefix - ie. "sd" for SCSI disks
3089  *	@index: index of the disk to format name for
3090  *	@buf: output buffer
3091  *	@buflen: length of the output buffer
3092  *
3093  *	SCSI disk names starts at sda.  The 26th device is sdz and the
3094  *	27th is sdaa.  The last one for two lettered suffix is sdzz
3095  *	which is followed by sdaaa.
3096  *
3097  *	This is basically 26 base counting with one extra 'nil' entry
3098  *	at the beginning from the second digit on and can be
3099  *	determined using similar method as 26 base conversion with the
3100  *	index shifted -1 after each digit is computed.
3101  *
3102  *	CONTEXT:
3103  *	Don't care.
3104  *
3105  *	RETURNS:
3106  *	0 on success, -errno on failure.
3107  */
3108 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3109 {
3110 	const int base = 'z' - 'a' + 1;
3111 	char *begin = buf + strlen(prefix);
3112 	char *end = buf + buflen;
3113 	char *p;
3114 	int unit;
3115 
3116 	p = end - 1;
3117 	*p = '\0';
3118 	unit = base;
3119 	do {
3120 		if (p == begin)
3121 			return -EINVAL;
3122 		*--p = 'a' + (index % unit);
3123 		index = (index / unit) - 1;
3124 	} while (index >= 0);
3125 
3126 	memmove(begin, p, end - p);
3127 	memcpy(buf, prefix, strlen(prefix));
3128 
3129 	return 0;
3130 }
3131 
3132 /*
3133  * The asynchronous part of sd_probe
3134  */
3135 static void sd_probe_async(void *data, async_cookie_t cookie)
3136 {
3137 	struct scsi_disk *sdkp = data;
3138 	struct scsi_device *sdp;
3139 	struct gendisk *gd;
3140 	u32 index;
3141 	struct device *dev;
3142 
3143 	sdp = sdkp->device;
3144 	gd = sdkp->disk;
3145 	index = sdkp->index;
3146 	dev = &sdp->sdev_gendev;
3147 
3148 	gd->major = sd_major((index & 0xf0) >> 4);
3149 	gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3150 	gd->minors = SD_MINORS;
3151 
3152 	gd->fops = &sd_fops;
3153 	gd->private_data = &sdkp->driver;
3154 	gd->queue = sdkp->device->request_queue;
3155 
3156 	/* defaults, until the device tells us otherwise */
3157 	sdp->sector_size = 512;
3158 	sdkp->capacity = 0;
3159 	sdkp->media_present = 1;
3160 	sdkp->write_prot = 0;
3161 	sdkp->cache_override = 0;
3162 	sdkp->WCE = 0;
3163 	sdkp->RCD = 0;
3164 	sdkp->ATO = 0;
3165 	sdkp->first_scan = 1;
3166 	sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3167 
3168 	sd_revalidate_disk(gd);
3169 
3170 	gd->flags = GENHD_FL_EXT_DEVT;
3171 	if (sdp->removable) {
3172 		gd->flags |= GENHD_FL_REMOVABLE;
3173 		gd->events |= DISK_EVENT_MEDIA_CHANGE;
3174 	}
3175 
3176 	blk_pm_runtime_init(sdp->request_queue, dev);
3177 	device_add_disk(dev, gd);
3178 	if (sdkp->capacity)
3179 		sd_dif_config_host(sdkp);
3180 
3181 	sd_revalidate_disk(gd);
3182 
3183 	sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3184 		  sdp->removable ? "removable " : "");
3185 	scsi_autopm_put_device(sdp);
3186 	put_device(&sdkp->dev);
3187 }
3188 
3189 /**
3190  *	sd_probe - called during driver initialization and whenever a
3191  *	new scsi device is attached to the system. It is called once
3192  *	for each scsi device (not just disks) present.
3193  *	@dev: pointer to device object
3194  *
3195  *	Returns 0 if successful (or not interested in this scsi device
3196  *	(e.g. scanner)); 1 when there is an error.
3197  *
3198  *	Note: this function is invoked from the scsi mid-level.
3199  *	This function sets up the mapping between a given
3200  *	<host,channel,id,lun> (found in sdp) and new device name
3201  *	(e.g. /dev/sda). More precisely it is the block device major
3202  *	and minor number that is chosen here.
3203  *
3204  *	Assume sd_probe is not re-entrant (for time being)
3205  *	Also think about sd_probe() and sd_remove() running coincidentally.
3206  **/
3207 static int sd_probe(struct device *dev)
3208 {
3209 	struct scsi_device *sdp = to_scsi_device(dev);
3210 	struct scsi_disk *sdkp;
3211 	struct gendisk *gd;
3212 	int index;
3213 	int error;
3214 
3215 	scsi_autopm_get_device(sdp);
3216 	error = -ENODEV;
3217 	if (sdp->type != TYPE_DISK &&
3218 	    sdp->type != TYPE_ZBC &&
3219 	    sdp->type != TYPE_MOD &&
3220 	    sdp->type != TYPE_RBC)
3221 		goto out;
3222 
3223 #ifndef CONFIG_BLK_DEV_ZONED
3224 	if (sdp->type == TYPE_ZBC)
3225 		goto out;
3226 #endif
3227 	SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3228 					"sd_probe\n"));
3229 
3230 	error = -ENOMEM;
3231 	sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3232 	if (!sdkp)
3233 		goto out;
3234 
3235 	gd = alloc_disk(SD_MINORS);
3236 	if (!gd)
3237 		goto out_free;
3238 
3239 	do {
3240 		if (!ida_pre_get(&sd_index_ida, GFP_KERNEL))
3241 			goto out_put;
3242 
3243 		spin_lock(&sd_index_lock);
3244 		error = ida_get_new(&sd_index_ida, &index);
3245 		spin_unlock(&sd_index_lock);
3246 	} while (error == -EAGAIN);
3247 
3248 	if (error) {
3249 		sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3250 		goto out_put;
3251 	}
3252 
3253 	error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3254 	if (error) {
3255 		sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3256 		goto out_free_index;
3257 	}
3258 
3259 	sdkp->device = sdp;
3260 	sdkp->driver = &sd_template;
3261 	sdkp->disk = gd;
3262 	sdkp->index = index;
3263 	atomic_set(&sdkp->openers, 0);
3264 	atomic_set(&sdkp->device->ioerr_cnt, 0);
3265 
3266 	if (!sdp->request_queue->rq_timeout) {
3267 		if (sdp->type != TYPE_MOD)
3268 			blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3269 		else
3270 			blk_queue_rq_timeout(sdp->request_queue,
3271 					     SD_MOD_TIMEOUT);
3272 	}
3273 
3274 	device_initialize(&sdkp->dev);
3275 	sdkp->dev.parent = dev;
3276 	sdkp->dev.class = &sd_disk_class;
3277 	dev_set_name(&sdkp->dev, "%s", dev_name(dev));
3278 
3279 	error = device_add(&sdkp->dev);
3280 	if (error)
3281 		goto out_free_index;
3282 
3283 	get_device(dev);
3284 	dev_set_drvdata(dev, sdkp);
3285 
3286 	get_device(&sdkp->dev);	/* prevent release before async_schedule */
3287 	async_schedule_domain(sd_probe_async, sdkp, &scsi_sd_probe_domain);
3288 
3289 	return 0;
3290 
3291  out_free_index:
3292 	spin_lock(&sd_index_lock);
3293 	ida_remove(&sd_index_ida, index);
3294 	spin_unlock(&sd_index_lock);
3295  out_put:
3296 	put_disk(gd);
3297  out_free:
3298 	kfree(sdkp);
3299  out:
3300 	scsi_autopm_put_device(sdp);
3301 	return error;
3302 }
3303 
3304 /**
3305  *	sd_remove - called whenever a scsi disk (previously recognized by
3306  *	sd_probe) is detached from the system. It is called (potentially
3307  *	multiple times) during sd module unload.
3308  *	@dev: pointer to device object
3309  *
3310  *	Note: this function is invoked from the scsi mid-level.
3311  *	This function potentially frees up a device name (e.g. /dev/sdc)
3312  *	that could be re-used by a subsequent sd_probe().
3313  *	This function is not called when the built-in sd driver is "exit-ed".
3314  **/
3315 static int sd_remove(struct device *dev)
3316 {
3317 	struct scsi_disk *sdkp;
3318 	dev_t devt;
3319 
3320 	sdkp = dev_get_drvdata(dev);
3321 	devt = disk_devt(sdkp->disk);
3322 	scsi_autopm_get_device(sdkp->device);
3323 
3324 	async_synchronize_full_domain(&scsi_sd_pm_domain);
3325 	async_synchronize_full_domain(&scsi_sd_probe_domain);
3326 	device_del(&sdkp->dev);
3327 	del_gendisk(sdkp->disk);
3328 	sd_shutdown(dev);
3329 
3330 	sd_zbc_remove(sdkp);
3331 
3332 	blk_register_region(devt, SD_MINORS, NULL,
3333 			    sd_default_probe, NULL, NULL);
3334 
3335 	mutex_lock(&sd_ref_mutex);
3336 	dev_set_drvdata(dev, NULL);
3337 	put_device(&sdkp->dev);
3338 	mutex_unlock(&sd_ref_mutex);
3339 
3340 	return 0;
3341 }
3342 
3343 /**
3344  *	scsi_disk_release - Called to free the scsi_disk structure
3345  *	@dev: pointer to embedded class device
3346  *
3347  *	sd_ref_mutex must be held entering this routine.  Because it is
3348  *	called on last put, you should always use the scsi_disk_get()
3349  *	scsi_disk_put() helpers which manipulate the semaphore directly
3350  *	and never do a direct put_device.
3351  **/
3352 static void scsi_disk_release(struct device *dev)
3353 {
3354 	struct scsi_disk *sdkp = to_scsi_disk(dev);
3355 	struct gendisk *disk = sdkp->disk;
3356 
3357 	spin_lock(&sd_index_lock);
3358 	ida_remove(&sd_index_ida, sdkp->index);
3359 	spin_unlock(&sd_index_lock);
3360 
3361 	disk->private_data = NULL;
3362 	put_disk(disk);
3363 	put_device(&sdkp->device->sdev_gendev);
3364 
3365 	kfree(sdkp);
3366 }
3367 
3368 static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3369 {
3370 	unsigned char cmd[6] = { START_STOP };	/* START_VALID */
3371 	struct scsi_sense_hdr sshdr;
3372 	struct scsi_device *sdp = sdkp->device;
3373 	int res;
3374 
3375 	if (start)
3376 		cmd[4] |= 1;	/* START */
3377 
3378 	if (sdp->start_stop_pwr_cond)
3379 		cmd[4] |= start ? 1 << 4 : 3 << 4;	/* Active or Standby */
3380 
3381 	if (!scsi_device_online(sdp))
3382 		return -ENODEV;
3383 
3384 	res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr,
3385 			SD_TIMEOUT, SD_MAX_RETRIES, 0, RQF_PM, NULL);
3386 	if (res) {
3387 		sd_print_result(sdkp, "Start/Stop Unit failed", res);
3388 		if (driver_byte(res) & DRIVER_SENSE)
3389 			sd_print_sense_hdr(sdkp, &sshdr);
3390 		if (scsi_sense_valid(&sshdr) &&
3391 			/* 0x3a is medium not present */
3392 			sshdr.asc == 0x3a)
3393 			res = 0;
3394 	}
3395 
3396 	/* SCSI error codes must not go to the generic layer */
3397 	if (res)
3398 		return -EIO;
3399 
3400 	return 0;
3401 }
3402 
3403 /*
3404  * Send a SYNCHRONIZE CACHE instruction down to the device through
3405  * the normal SCSI command structure.  Wait for the command to
3406  * complete.
3407  */
3408 static void sd_shutdown(struct device *dev)
3409 {
3410 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3411 
3412 	if (!sdkp)
3413 		return;         /* this can happen */
3414 
3415 	if (pm_runtime_suspended(dev))
3416 		return;
3417 
3418 	if (sdkp->WCE && sdkp->media_present) {
3419 		sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3420 		sd_sync_cache(sdkp);
3421 	}
3422 
3423 	if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) {
3424 		sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3425 		sd_start_stop_device(sdkp, 0);
3426 	}
3427 }
3428 
3429 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors)
3430 {
3431 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3432 	int ret = 0;
3433 
3434 	if (!sdkp)	/* E.g.: runtime suspend following sd_remove() */
3435 		return 0;
3436 
3437 	if (sdkp->WCE && sdkp->media_present) {
3438 		sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3439 		ret = sd_sync_cache(sdkp);
3440 		if (ret) {
3441 			/* ignore OFFLINE device */
3442 			if (ret == -ENODEV)
3443 				ret = 0;
3444 			goto done;
3445 		}
3446 	}
3447 
3448 	if (sdkp->device->manage_start_stop) {
3449 		sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3450 		/* an error is not worth aborting a system sleep */
3451 		ret = sd_start_stop_device(sdkp, 0);
3452 		if (ignore_stop_errors)
3453 			ret = 0;
3454 	}
3455 
3456 done:
3457 	return ret;
3458 }
3459 
3460 static int sd_suspend_system(struct device *dev)
3461 {
3462 	return sd_suspend_common(dev, true);
3463 }
3464 
3465 static int sd_suspend_runtime(struct device *dev)
3466 {
3467 	return sd_suspend_common(dev, false);
3468 }
3469 
3470 static int sd_resume(struct device *dev)
3471 {
3472 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3473 
3474 	if (!sdkp)	/* E.g.: runtime resume at the start of sd_probe() */
3475 		return 0;
3476 
3477 	if (!sdkp->device->manage_start_stop)
3478 		return 0;
3479 
3480 	sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3481 	return sd_start_stop_device(sdkp, 1);
3482 }
3483 
3484 /**
3485  *	init_sd - entry point for this driver (both when built in or when
3486  *	a module).
3487  *
3488  *	Note: this function registers this driver with the scsi mid-level.
3489  **/
3490 static int __init init_sd(void)
3491 {
3492 	int majors = 0, i, err;
3493 
3494 	SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
3495 
3496 	for (i = 0; i < SD_MAJORS; i++) {
3497 		if (register_blkdev(sd_major(i), "sd") != 0)
3498 			continue;
3499 		majors++;
3500 		blk_register_region(sd_major(i), SD_MINORS, NULL,
3501 				    sd_default_probe, NULL, NULL);
3502 	}
3503 
3504 	if (!majors)
3505 		return -ENODEV;
3506 
3507 	err = class_register(&sd_disk_class);
3508 	if (err)
3509 		goto err_out;
3510 
3511 	sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE,
3512 					 0, 0, NULL);
3513 	if (!sd_cdb_cache) {
3514 		printk(KERN_ERR "sd: can't init extended cdb cache\n");
3515 		err = -ENOMEM;
3516 		goto err_out_class;
3517 	}
3518 
3519 	sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache);
3520 	if (!sd_cdb_pool) {
3521 		printk(KERN_ERR "sd: can't init extended cdb pool\n");
3522 		err = -ENOMEM;
3523 		goto err_out_cache;
3524 	}
3525 
3526 	err = scsi_register_driver(&sd_template.gendrv);
3527 	if (err)
3528 		goto err_out_driver;
3529 
3530 	return 0;
3531 
3532 err_out_driver:
3533 	mempool_destroy(sd_cdb_pool);
3534 
3535 err_out_cache:
3536 	kmem_cache_destroy(sd_cdb_cache);
3537 
3538 err_out_class:
3539 	class_unregister(&sd_disk_class);
3540 err_out:
3541 	for (i = 0; i < SD_MAJORS; i++)
3542 		unregister_blkdev(sd_major(i), "sd");
3543 	return err;
3544 }
3545 
3546 /**
3547  *	exit_sd - exit point for this driver (when it is a module).
3548  *
3549  *	Note: this function unregisters this driver from the scsi mid-level.
3550  **/
3551 static void __exit exit_sd(void)
3552 {
3553 	int i;
3554 
3555 	SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
3556 
3557 	scsi_unregister_driver(&sd_template.gendrv);
3558 	mempool_destroy(sd_cdb_pool);
3559 	kmem_cache_destroy(sd_cdb_cache);
3560 
3561 	class_unregister(&sd_disk_class);
3562 
3563 	for (i = 0; i < SD_MAJORS; i++) {
3564 		blk_unregister_region(sd_major(i), SD_MINORS);
3565 		unregister_blkdev(sd_major(i), "sd");
3566 	}
3567 }
3568 
3569 module_init(init_sd);
3570 module_exit(exit_sd);
3571 
3572 static void sd_print_sense_hdr(struct scsi_disk *sdkp,
3573 			       struct scsi_sense_hdr *sshdr)
3574 {
3575 	scsi_print_sense_hdr(sdkp->device,
3576 			     sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
3577 }
3578 
3579 static void sd_print_result(const struct scsi_disk *sdkp, const char *msg,
3580 			    int result)
3581 {
3582 	const char *hb_string = scsi_hostbyte_string(result);
3583 	const char *db_string = scsi_driverbyte_string(result);
3584 
3585 	if (hb_string || db_string)
3586 		sd_printk(KERN_INFO, sdkp,
3587 			  "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
3588 			  hb_string ? hb_string : "invalid",
3589 			  db_string ? db_string : "invalid");
3590 	else
3591 		sd_printk(KERN_INFO, sdkp,
3592 			  "%s: Result: hostbyte=0x%02x driverbyte=0x%02x\n",
3593 			  msg, host_byte(result), driver_byte(result));
3594 }
3595 
3596