1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * sd.c Copyright (C) 1992 Drew Eckhardt 4 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale 5 * 6 * Linux scsi disk driver 7 * Initial versions: Drew Eckhardt 8 * Subsequent revisions: Eric Youngdale 9 * Modification history: 10 * - Drew Eckhardt <drew@colorado.edu> original 11 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 12 * outstanding request, and other enhancements. 13 * Support loadable low-level scsi drivers. 14 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 15 * eight major numbers. 16 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs. 17 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 18 * sd_init and cleanups. 19 * - Alex Davis <letmein@erols.com> Fix problem where partition info 20 * not being read in sd_open. Fix problem where removable media 21 * could be ejected after sd_open. 22 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x 23 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 24 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 25 * Support 32k/1M disks. 26 * 27 * Logging policy (needs CONFIG_SCSI_LOGGING defined): 28 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2 29 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1 30 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1 31 * - entering other commands: SCSI_LOG_HLQUEUE level 3 32 * Note: when the logging level is set by the user, it must be greater 33 * than the level indicated above to trigger output. 34 */ 35 36 #include <linux/bio-integrity.h> 37 #include <linux/module.h> 38 #include <linux/fs.h> 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/hdreg.h> 42 #include <linux/errno.h> 43 #include <linux/idr.h> 44 #include <linux/interrupt.h> 45 #include <linux/init.h> 46 #include <linux/blkdev.h> 47 #include <linux/blkpg.h> 48 #include <linux/blk-pm.h> 49 #include <linux/delay.h> 50 #include <linux/rw_hint.h> 51 #include <linux/major.h> 52 #include <linux/mutex.h> 53 #include <linux/string_helpers.h> 54 #include <linux/slab.h> 55 #include <linux/sed-opal.h> 56 #include <linux/pm_runtime.h> 57 #include <linux/pr.h> 58 #include <linux/t10-pi.h> 59 #include <linux/uaccess.h> 60 #include <linux/unaligned.h> 61 62 #include <scsi/scsi.h> 63 #include <scsi/scsi_cmnd.h> 64 #include <scsi/scsi_dbg.h> 65 #include <scsi/scsi_device.h> 66 #include <scsi/scsi_devinfo.h> 67 #include <scsi/scsi_driver.h> 68 #include <scsi/scsi_eh.h> 69 #include <scsi/scsi_host.h> 70 #include <scsi/scsi_ioctl.h> 71 #include <scsi/scsicam.h> 72 #include <scsi/scsi_common.h> 73 74 #include "sd.h" 75 #include "scsi_priv.h" 76 #include "scsi_logging.h" 77 78 MODULE_AUTHOR("Eric Youngdale"); 79 MODULE_DESCRIPTION("SCSI disk (sd) driver"); 80 MODULE_LICENSE("GPL"); 81 82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR); 83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR); 84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR); 85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR); 86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR); 87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR); 88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR); 89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR); 90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR); 91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR); 92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR); 93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR); 94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR); 95 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR); 96 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR); 97 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR); 98 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK); 99 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD); 100 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC); 101 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC); 102 103 #define SD_MINORS 16 104 105 static void sd_config_discard(struct scsi_disk *sdkp, struct queue_limits *lim, 106 unsigned int mode); 107 static void sd_config_write_same(struct scsi_disk *sdkp, 108 struct queue_limits *lim); 109 static void sd_revalidate_disk(struct gendisk *); 110 static void sd_unlock_native_capacity(struct gendisk *disk); 111 static void sd_shutdown(struct device *); 112 static void scsi_disk_release(struct device *cdev); 113 114 static DEFINE_IDA(sd_index_ida); 115 116 static mempool_t *sd_page_pool; 117 static struct lock_class_key sd_bio_compl_lkclass; 118 119 static const char *sd_cache_types[] = { 120 "write through", "none", "write back", 121 "write back, no read (daft)" 122 }; 123 124 static void sd_set_flush_flag(struct scsi_disk *sdkp, 125 struct queue_limits *lim) 126 { 127 if (sdkp->WCE) { 128 lim->features |= BLK_FEAT_WRITE_CACHE; 129 if (sdkp->DPOFUA) 130 lim->features |= BLK_FEAT_FUA; 131 else 132 lim->features &= ~BLK_FEAT_FUA; 133 } else { 134 lim->features &= ~(BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA); 135 } 136 } 137 138 static ssize_t 139 cache_type_store(struct device *dev, struct device_attribute *attr, 140 const char *buf, size_t count) 141 { 142 int ct, rcd, wce, sp; 143 struct scsi_disk *sdkp = to_scsi_disk(dev); 144 struct scsi_device *sdp = sdkp->device; 145 char buffer[64]; 146 char *buffer_data; 147 struct scsi_mode_data data; 148 struct scsi_sense_hdr sshdr; 149 static const char temp[] = "temporary "; 150 int len, ret; 151 152 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 153 /* no cache control on RBC devices; theoretically they 154 * can do it, but there's probably so many exceptions 155 * it's not worth the risk */ 156 return -EINVAL; 157 158 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) { 159 buf += sizeof(temp) - 1; 160 sdkp->cache_override = 1; 161 } else { 162 sdkp->cache_override = 0; 163 } 164 165 ct = sysfs_match_string(sd_cache_types, buf); 166 if (ct < 0) 167 return -EINVAL; 168 169 rcd = ct & 0x01 ? 1 : 0; 170 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0; 171 172 if (sdkp->cache_override) { 173 struct queue_limits lim; 174 175 sdkp->WCE = wce; 176 sdkp->RCD = rcd; 177 178 lim = queue_limits_start_update(sdkp->disk->queue); 179 sd_set_flush_flag(sdkp, &lim); 180 ret = queue_limits_commit_update_frozen(sdkp->disk->queue, 181 &lim); 182 if (ret) 183 return ret; 184 return count; 185 } 186 187 if (scsi_mode_sense(sdp, 0x08, 8, 0, buffer, sizeof(buffer), SD_TIMEOUT, 188 sdkp->max_retries, &data, NULL)) 189 return -EINVAL; 190 len = min_t(size_t, sizeof(buffer), data.length - data.header_length - 191 data.block_descriptor_length); 192 buffer_data = buffer + data.header_length + 193 data.block_descriptor_length; 194 buffer_data[2] &= ~0x05; 195 buffer_data[2] |= wce << 2 | rcd; 196 sp = buffer_data[0] & 0x80 ? 1 : 0; 197 buffer_data[0] &= ~0x80; 198 199 /* 200 * Ensure WP, DPOFUA, and RESERVED fields are cleared in 201 * received mode parameter buffer before doing MODE SELECT. 202 */ 203 data.device_specific = 0; 204 205 ret = scsi_mode_select(sdp, 1, sp, buffer_data, len, SD_TIMEOUT, 206 sdkp->max_retries, &data, &sshdr); 207 if (ret) { 208 if (ret > 0 && scsi_sense_valid(&sshdr)) 209 sd_print_sense_hdr(sdkp, &sshdr); 210 return -EINVAL; 211 } 212 sd_revalidate_disk(sdkp->disk); 213 return count; 214 } 215 216 static ssize_t 217 manage_start_stop_show(struct device *dev, 218 struct device_attribute *attr, char *buf) 219 { 220 struct scsi_disk *sdkp = to_scsi_disk(dev); 221 struct scsi_device *sdp = sdkp->device; 222 223 return sysfs_emit(buf, "%u\n", 224 sdp->manage_system_start_stop && 225 sdp->manage_runtime_start_stop && 226 sdp->manage_shutdown); 227 } 228 static DEVICE_ATTR_RO(manage_start_stop); 229 230 static ssize_t 231 manage_system_start_stop_show(struct device *dev, 232 struct device_attribute *attr, char *buf) 233 { 234 struct scsi_disk *sdkp = to_scsi_disk(dev); 235 struct scsi_device *sdp = sdkp->device; 236 237 return sysfs_emit(buf, "%u\n", sdp->manage_system_start_stop); 238 } 239 240 static ssize_t 241 manage_system_start_stop_store(struct device *dev, 242 struct device_attribute *attr, 243 const char *buf, size_t count) 244 { 245 struct scsi_disk *sdkp = to_scsi_disk(dev); 246 struct scsi_device *sdp = sdkp->device; 247 bool v; 248 249 if (!capable(CAP_SYS_ADMIN)) 250 return -EACCES; 251 252 if (kstrtobool(buf, &v)) 253 return -EINVAL; 254 255 sdp->manage_system_start_stop = v; 256 257 return count; 258 } 259 static DEVICE_ATTR_RW(manage_system_start_stop); 260 261 static ssize_t 262 manage_runtime_start_stop_show(struct device *dev, 263 struct device_attribute *attr, char *buf) 264 { 265 struct scsi_disk *sdkp = to_scsi_disk(dev); 266 struct scsi_device *sdp = sdkp->device; 267 268 return sysfs_emit(buf, "%u\n", sdp->manage_runtime_start_stop); 269 } 270 271 static ssize_t 272 manage_runtime_start_stop_store(struct device *dev, 273 struct device_attribute *attr, 274 const char *buf, size_t count) 275 { 276 struct scsi_disk *sdkp = to_scsi_disk(dev); 277 struct scsi_device *sdp = sdkp->device; 278 bool v; 279 280 if (!capable(CAP_SYS_ADMIN)) 281 return -EACCES; 282 283 if (kstrtobool(buf, &v)) 284 return -EINVAL; 285 286 sdp->manage_runtime_start_stop = v; 287 288 return count; 289 } 290 static DEVICE_ATTR_RW(manage_runtime_start_stop); 291 292 static ssize_t manage_shutdown_show(struct device *dev, 293 struct device_attribute *attr, char *buf) 294 { 295 struct scsi_disk *sdkp = to_scsi_disk(dev); 296 struct scsi_device *sdp = sdkp->device; 297 298 return sysfs_emit(buf, "%u\n", sdp->manage_shutdown); 299 } 300 301 static ssize_t manage_shutdown_store(struct device *dev, 302 struct device_attribute *attr, 303 const char *buf, size_t count) 304 { 305 struct scsi_disk *sdkp = to_scsi_disk(dev); 306 struct scsi_device *sdp = sdkp->device; 307 bool v; 308 309 if (!capable(CAP_SYS_ADMIN)) 310 return -EACCES; 311 312 if (kstrtobool(buf, &v)) 313 return -EINVAL; 314 315 sdp->manage_shutdown = v; 316 317 return count; 318 } 319 static DEVICE_ATTR_RW(manage_shutdown); 320 321 static ssize_t manage_restart_show(struct device *dev, 322 struct device_attribute *attr, char *buf) 323 { 324 struct scsi_disk *sdkp = to_scsi_disk(dev); 325 struct scsi_device *sdp = sdkp->device; 326 327 return sysfs_emit(buf, "%u\n", sdp->manage_restart); 328 } 329 330 static ssize_t manage_restart_store(struct device *dev, 331 struct device_attribute *attr, 332 const char *buf, size_t count) 333 { 334 struct scsi_disk *sdkp = to_scsi_disk(dev); 335 struct scsi_device *sdp = sdkp->device; 336 bool v; 337 338 if (!capable(CAP_SYS_ADMIN)) 339 return -EACCES; 340 341 if (kstrtobool(buf, &v)) 342 return -EINVAL; 343 344 sdp->manage_restart = v; 345 346 return count; 347 } 348 static DEVICE_ATTR_RW(manage_restart); 349 350 static ssize_t 351 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf) 352 { 353 struct scsi_disk *sdkp = to_scsi_disk(dev); 354 355 return sprintf(buf, "%u\n", sdkp->device->allow_restart); 356 } 357 358 static ssize_t 359 allow_restart_store(struct device *dev, struct device_attribute *attr, 360 const char *buf, size_t count) 361 { 362 bool v; 363 struct scsi_disk *sdkp = to_scsi_disk(dev); 364 struct scsi_device *sdp = sdkp->device; 365 366 if (!capable(CAP_SYS_ADMIN)) 367 return -EACCES; 368 369 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 370 return -EINVAL; 371 372 if (kstrtobool(buf, &v)) 373 return -EINVAL; 374 375 sdp->allow_restart = v; 376 377 return count; 378 } 379 static DEVICE_ATTR_RW(allow_restart); 380 381 static ssize_t 382 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf) 383 { 384 struct scsi_disk *sdkp = to_scsi_disk(dev); 385 int ct = sdkp->RCD + 2*sdkp->WCE; 386 387 return sprintf(buf, "%s\n", sd_cache_types[ct]); 388 } 389 static DEVICE_ATTR_RW(cache_type); 390 391 static ssize_t 392 FUA_show(struct device *dev, struct device_attribute *attr, char *buf) 393 { 394 struct scsi_disk *sdkp = to_scsi_disk(dev); 395 396 return sprintf(buf, "%u\n", sdkp->DPOFUA); 397 } 398 static DEVICE_ATTR_RO(FUA); 399 400 static ssize_t 401 protection_type_show(struct device *dev, struct device_attribute *attr, 402 char *buf) 403 { 404 struct scsi_disk *sdkp = to_scsi_disk(dev); 405 406 return sprintf(buf, "%u\n", sdkp->protection_type); 407 } 408 409 static ssize_t 410 protection_type_store(struct device *dev, struct device_attribute *attr, 411 const char *buf, size_t count) 412 { 413 struct scsi_disk *sdkp = to_scsi_disk(dev); 414 unsigned int val; 415 int err; 416 417 if (!capable(CAP_SYS_ADMIN)) 418 return -EACCES; 419 420 err = kstrtouint(buf, 10, &val); 421 422 if (err) 423 return err; 424 425 if (val <= T10_PI_TYPE3_PROTECTION) 426 sdkp->protection_type = val; 427 428 return count; 429 } 430 static DEVICE_ATTR_RW(protection_type); 431 432 static ssize_t 433 protection_mode_show(struct device *dev, struct device_attribute *attr, 434 char *buf) 435 { 436 struct scsi_disk *sdkp = to_scsi_disk(dev); 437 struct scsi_device *sdp = sdkp->device; 438 unsigned int dif, dix; 439 440 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type); 441 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type); 442 443 if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) { 444 dif = 0; 445 dix = 1; 446 } 447 448 if (!dif && !dix) 449 return sprintf(buf, "none\n"); 450 451 return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif); 452 } 453 static DEVICE_ATTR_RO(protection_mode); 454 455 static ssize_t 456 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf) 457 { 458 struct scsi_disk *sdkp = to_scsi_disk(dev); 459 460 return sprintf(buf, "%u\n", sdkp->ATO); 461 } 462 static DEVICE_ATTR_RO(app_tag_own); 463 464 static ssize_t 465 thin_provisioning_show(struct device *dev, struct device_attribute *attr, 466 char *buf) 467 { 468 struct scsi_disk *sdkp = to_scsi_disk(dev); 469 470 return sprintf(buf, "%u\n", sdkp->lbpme); 471 } 472 static DEVICE_ATTR_RO(thin_provisioning); 473 474 /* sysfs_match_string() requires dense arrays */ 475 static const char *lbp_mode[] = { 476 [SD_LBP_FULL] = "full", 477 [SD_LBP_UNMAP] = "unmap", 478 [SD_LBP_WS16] = "writesame_16", 479 [SD_LBP_WS10] = "writesame_10", 480 [SD_LBP_ZERO] = "writesame_zero", 481 [SD_LBP_DISABLE] = "disabled", 482 }; 483 484 static ssize_t 485 provisioning_mode_show(struct device *dev, struct device_attribute *attr, 486 char *buf) 487 { 488 struct scsi_disk *sdkp = to_scsi_disk(dev); 489 490 return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]); 491 } 492 493 static ssize_t 494 provisioning_mode_store(struct device *dev, struct device_attribute *attr, 495 const char *buf, size_t count) 496 { 497 struct scsi_disk *sdkp = to_scsi_disk(dev); 498 struct scsi_device *sdp = sdkp->device; 499 struct queue_limits lim; 500 int mode, err; 501 502 if (!capable(CAP_SYS_ADMIN)) 503 return -EACCES; 504 505 if (sdp->type != TYPE_DISK) 506 return -EINVAL; 507 508 mode = sysfs_match_string(lbp_mode, buf); 509 if (mode < 0) 510 return -EINVAL; 511 512 lim = queue_limits_start_update(sdkp->disk->queue); 513 sd_config_discard(sdkp, &lim, mode); 514 err = queue_limits_commit_update_frozen(sdkp->disk->queue, &lim); 515 if (err) 516 return err; 517 return count; 518 } 519 static DEVICE_ATTR_RW(provisioning_mode); 520 521 /* sysfs_match_string() requires dense arrays */ 522 static const char *zeroing_mode[] = { 523 [SD_ZERO_WRITE] = "write", 524 [SD_ZERO_WS] = "writesame", 525 [SD_ZERO_WS16_UNMAP] = "writesame_16_unmap", 526 [SD_ZERO_WS10_UNMAP] = "writesame_10_unmap", 527 }; 528 529 static ssize_t 530 zeroing_mode_show(struct device *dev, struct device_attribute *attr, 531 char *buf) 532 { 533 struct scsi_disk *sdkp = to_scsi_disk(dev); 534 535 return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]); 536 } 537 538 static ssize_t 539 zeroing_mode_store(struct device *dev, struct device_attribute *attr, 540 const char *buf, size_t count) 541 { 542 struct scsi_disk *sdkp = to_scsi_disk(dev); 543 int mode; 544 545 if (!capable(CAP_SYS_ADMIN)) 546 return -EACCES; 547 548 mode = sysfs_match_string(zeroing_mode, buf); 549 if (mode < 0) 550 return -EINVAL; 551 552 sdkp->zeroing_mode = mode; 553 554 return count; 555 } 556 static DEVICE_ATTR_RW(zeroing_mode); 557 558 static ssize_t 559 max_medium_access_timeouts_show(struct device *dev, 560 struct device_attribute *attr, char *buf) 561 { 562 struct scsi_disk *sdkp = to_scsi_disk(dev); 563 564 return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts); 565 } 566 567 static ssize_t 568 max_medium_access_timeouts_store(struct device *dev, 569 struct device_attribute *attr, const char *buf, 570 size_t count) 571 { 572 struct scsi_disk *sdkp = to_scsi_disk(dev); 573 int err; 574 575 if (!capable(CAP_SYS_ADMIN)) 576 return -EACCES; 577 578 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts); 579 580 return err ? err : count; 581 } 582 static DEVICE_ATTR_RW(max_medium_access_timeouts); 583 584 static ssize_t 585 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr, 586 char *buf) 587 { 588 struct scsi_disk *sdkp = to_scsi_disk(dev); 589 590 return sprintf(buf, "%u\n", sdkp->max_ws_blocks); 591 } 592 593 static ssize_t 594 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr, 595 const char *buf, size_t count) 596 { 597 struct scsi_disk *sdkp = to_scsi_disk(dev); 598 struct scsi_device *sdp = sdkp->device; 599 struct queue_limits lim; 600 unsigned long max; 601 int err; 602 603 if (!capable(CAP_SYS_ADMIN)) 604 return -EACCES; 605 606 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 607 return -EINVAL; 608 609 err = kstrtoul(buf, 10, &max); 610 611 if (err) 612 return err; 613 614 if (max == 0) 615 sdp->no_write_same = 1; 616 else if (max <= SD_MAX_WS16_BLOCKS) { 617 sdp->no_write_same = 0; 618 sdkp->max_ws_blocks = max; 619 } 620 621 lim = queue_limits_start_update(sdkp->disk->queue); 622 sd_config_write_same(sdkp, &lim); 623 err = queue_limits_commit_update_frozen(sdkp->disk->queue, &lim); 624 if (err) 625 return err; 626 return count; 627 } 628 static DEVICE_ATTR_RW(max_write_same_blocks); 629 630 static ssize_t 631 zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf) 632 { 633 struct scsi_disk *sdkp = to_scsi_disk(dev); 634 635 if (sdkp->device->type == TYPE_ZBC) 636 return sprintf(buf, "host-managed\n"); 637 if (sdkp->zoned == 1) 638 return sprintf(buf, "host-aware\n"); 639 if (sdkp->zoned == 2) 640 return sprintf(buf, "drive-managed\n"); 641 return sprintf(buf, "none\n"); 642 } 643 static DEVICE_ATTR_RO(zoned_cap); 644 645 static ssize_t 646 max_retries_store(struct device *dev, struct device_attribute *attr, 647 const char *buf, size_t count) 648 { 649 struct scsi_disk *sdkp = to_scsi_disk(dev); 650 struct scsi_device *sdev = sdkp->device; 651 int retries, err; 652 653 err = kstrtoint(buf, 10, &retries); 654 if (err) 655 return err; 656 657 if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) { 658 sdkp->max_retries = retries; 659 return count; 660 } 661 662 sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n", 663 SD_MAX_RETRIES); 664 return -EINVAL; 665 } 666 667 static ssize_t 668 max_retries_show(struct device *dev, struct device_attribute *attr, 669 char *buf) 670 { 671 struct scsi_disk *sdkp = to_scsi_disk(dev); 672 673 return sprintf(buf, "%d\n", sdkp->max_retries); 674 } 675 676 static DEVICE_ATTR_RW(max_retries); 677 678 static struct attribute *sd_disk_attrs[] = { 679 &dev_attr_cache_type.attr, 680 &dev_attr_FUA.attr, 681 &dev_attr_allow_restart.attr, 682 &dev_attr_manage_start_stop.attr, 683 &dev_attr_manage_system_start_stop.attr, 684 &dev_attr_manage_runtime_start_stop.attr, 685 &dev_attr_manage_shutdown.attr, 686 &dev_attr_manage_restart.attr, 687 &dev_attr_protection_type.attr, 688 &dev_attr_protection_mode.attr, 689 &dev_attr_app_tag_own.attr, 690 &dev_attr_thin_provisioning.attr, 691 &dev_attr_provisioning_mode.attr, 692 &dev_attr_zeroing_mode.attr, 693 &dev_attr_max_write_same_blocks.attr, 694 &dev_attr_max_medium_access_timeouts.attr, 695 &dev_attr_zoned_cap.attr, 696 &dev_attr_max_retries.attr, 697 NULL, 698 }; 699 ATTRIBUTE_GROUPS(sd_disk); 700 701 static struct class sd_disk_class = { 702 .name = "scsi_disk", 703 .dev_release = scsi_disk_release, 704 .dev_groups = sd_disk_groups, 705 }; 706 707 /* 708 * Don't request a new module, as that could deadlock in multipath 709 * environment. 710 */ 711 static void sd_default_probe(dev_t devt) 712 { 713 } 714 715 /* 716 * Device no to disk mapping: 717 * 718 * major disc2 disc p1 719 * |............|.............|....|....| <- dev_t 720 * 31 20 19 8 7 4 3 0 721 * 722 * Inside a major, we have 16k disks, however mapped non- 723 * contiguously. The first 16 disks are for major0, the next 724 * ones with major1, ... Disk 256 is for major0 again, disk 272 725 * for major1, ... 726 * As we stay compatible with our numbering scheme, we can reuse 727 * the well-know SCSI majors 8, 65--71, 136--143. 728 */ 729 static int sd_major(int major_idx) 730 { 731 switch (major_idx) { 732 case 0: 733 return SCSI_DISK0_MAJOR; 734 case 1 ... 7: 735 return SCSI_DISK1_MAJOR + major_idx - 1; 736 case 8 ... 15: 737 return SCSI_DISK8_MAJOR + major_idx - 8; 738 default: 739 BUG(); 740 return 0; /* shut up gcc */ 741 } 742 } 743 744 #ifdef CONFIG_BLK_SED_OPAL 745 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, 746 size_t len, bool send) 747 { 748 struct scsi_disk *sdkp = data; 749 struct scsi_device *sdev = sdkp->device; 750 u8 cdb[12] = { 0, }; 751 const struct scsi_exec_args exec_args = { 752 .req_flags = BLK_MQ_REQ_PM, 753 }; 754 int ret; 755 756 cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN; 757 cdb[1] = secp; 758 put_unaligned_be16(spsp, &cdb[2]); 759 put_unaligned_be32(len, &cdb[6]); 760 761 ret = scsi_execute_cmd(sdev, cdb, send ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 762 buffer, len, SD_TIMEOUT, sdkp->max_retries, 763 &exec_args); 764 return ret <= 0 ? ret : -EIO; 765 } 766 #endif /* CONFIG_BLK_SED_OPAL */ 767 768 /* 769 * Look up the DIX operation based on whether the command is read or 770 * write and whether dix and dif are enabled. 771 */ 772 static unsigned int sd_prot_op(bool write, bool dix, bool dif) 773 { 774 /* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */ 775 static const unsigned int ops[] = { /* wrt dix dif */ 776 SCSI_PROT_NORMAL, /* 0 0 0 */ 777 SCSI_PROT_READ_STRIP, /* 0 0 1 */ 778 SCSI_PROT_READ_INSERT, /* 0 1 0 */ 779 SCSI_PROT_READ_PASS, /* 0 1 1 */ 780 SCSI_PROT_NORMAL, /* 1 0 0 */ 781 SCSI_PROT_WRITE_INSERT, /* 1 0 1 */ 782 SCSI_PROT_WRITE_STRIP, /* 1 1 0 */ 783 SCSI_PROT_WRITE_PASS, /* 1 1 1 */ 784 }; 785 786 return ops[write << 2 | dix << 1 | dif]; 787 } 788 789 /* 790 * Returns a mask of the protection flags that are valid for a given DIX 791 * operation. 792 */ 793 static unsigned int sd_prot_flag_mask(unsigned int prot_op) 794 { 795 static const unsigned int flag_mask[] = { 796 [SCSI_PROT_NORMAL] = 0, 797 798 [SCSI_PROT_READ_STRIP] = SCSI_PROT_TRANSFER_PI | 799 SCSI_PROT_GUARD_CHECK | 800 SCSI_PROT_REF_CHECK | 801 SCSI_PROT_REF_INCREMENT, 802 803 [SCSI_PROT_READ_INSERT] = SCSI_PROT_REF_INCREMENT | 804 SCSI_PROT_IP_CHECKSUM, 805 806 [SCSI_PROT_READ_PASS] = SCSI_PROT_TRANSFER_PI | 807 SCSI_PROT_GUARD_CHECK | 808 SCSI_PROT_REF_CHECK | 809 SCSI_PROT_REF_INCREMENT | 810 SCSI_PROT_IP_CHECKSUM, 811 812 [SCSI_PROT_WRITE_INSERT] = SCSI_PROT_TRANSFER_PI | 813 SCSI_PROT_REF_INCREMENT, 814 815 [SCSI_PROT_WRITE_STRIP] = SCSI_PROT_GUARD_CHECK | 816 SCSI_PROT_REF_CHECK | 817 SCSI_PROT_REF_INCREMENT | 818 SCSI_PROT_IP_CHECKSUM, 819 820 [SCSI_PROT_WRITE_PASS] = SCSI_PROT_TRANSFER_PI | 821 SCSI_PROT_GUARD_CHECK | 822 SCSI_PROT_REF_CHECK | 823 SCSI_PROT_REF_INCREMENT | 824 SCSI_PROT_IP_CHECKSUM, 825 }; 826 827 return flag_mask[prot_op]; 828 } 829 830 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd, 831 unsigned int dix, unsigned int dif) 832 { 833 struct request *rq = scsi_cmd_to_rq(scmd); 834 struct bio *bio = rq->bio; 835 unsigned int prot_op = sd_prot_op(rq_data_dir(rq), dix, dif); 836 unsigned int protect = 0; 837 838 if (dix) { /* DIX Type 0, 1, 2, 3 */ 839 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM)) 840 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM; 841 842 if (bio_integrity_flagged(bio, BIP_CHECK_GUARD)) 843 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK; 844 } 845 846 if (dif != T10_PI_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */ 847 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT; 848 849 if (bio_integrity_flagged(bio, BIP_CHECK_REFTAG)) 850 scmd->prot_flags |= SCSI_PROT_REF_CHECK; 851 } 852 853 if (dif) { /* DIX/DIF Type 1, 2, 3 */ 854 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI; 855 856 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK)) 857 protect = 3 << 5; /* Disable target PI checking */ 858 else 859 protect = 1 << 5; /* Enable target PI checking */ 860 } 861 862 scsi_set_prot_op(scmd, prot_op); 863 scsi_set_prot_type(scmd, dif); 864 scmd->prot_flags &= sd_prot_flag_mask(prot_op); 865 866 return protect; 867 } 868 869 static void sd_disable_discard(struct scsi_disk *sdkp) 870 { 871 sdkp->provisioning_mode = SD_LBP_DISABLE; 872 blk_queue_disable_discard(sdkp->disk->queue); 873 } 874 875 static void sd_config_discard(struct scsi_disk *sdkp, struct queue_limits *lim, 876 unsigned int mode) 877 { 878 unsigned int logical_block_size = sdkp->device->sector_size; 879 unsigned int max_blocks = 0; 880 881 lim->discard_alignment = sdkp->unmap_alignment * logical_block_size; 882 lim->discard_granularity = max(sdkp->physical_block_size, 883 sdkp->unmap_granularity * logical_block_size); 884 sdkp->provisioning_mode = mode; 885 886 switch (mode) { 887 888 case SD_LBP_FULL: 889 case SD_LBP_DISABLE: 890 break; 891 892 case SD_LBP_UNMAP: 893 max_blocks = min_not_zero(sdkp->max_unmap_blocks, 894 (u32)SD_MAX_WS16_BLOCKS); 895 break; 896 897 case SD_LBP_WS16: 898 if (sdkp->device->unmap_limit_for_ws) 899 max_blocks = sdkp->max_unmap_blocks; 900 else 901 max_blocks = sdkp->max_ws_blocks; 902 903 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS); 904 break; 905 906 case SD_LBP_WS10: 907 if (sdkp->device->unmap_limit_for_ws) 908 max_blocks = sdkp->max_unmap_blocks; 909 else 910 max_blocks = sdkp->max_ws_blocks; 911 912 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS); 913 break; 914 915 case SD_LBP_ZERO: 916 max_blocks = min_not_zero(sdkp->max_ws_blocks, 917 (u32)SD_MAX_WS10_BLOCKS); 918 break; 919 } 920 921 lim->max_hw_discard_sectors = max_blocks * 922 (logical_block_size >> SECTOR_SHIFT); 923 } 924 925 static void *sd_set_special_bvec(struct request *rq, unsigned int data_len) 926 { 927 struct page *page; 928 929 page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 930 if (!page) 931 return NULL; 932 clear_highpage(page); 933 bvec_set_page(&rq->special_vec, page, data_len, 0); 934 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 935 return bvec_virt(&rq->special_vec); 936 } 937 938 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd) 939 { 940 struct scsi_device *sdp = cmd->device; 941 struct request *rq = scsi_cmd_to_rq(cmd); 942 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 943 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 944 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 945 unsigned int data_len = 24; 946 char *buf; 947 948 buf = sd_set_special_bvec(rq, data_len); 949 if (!buf) 950 return BLK_STS_RESOURCE; 951 952 cmd->cmd_len = 10; 953 cmd->cmnd[0] = UNMAP; 954 cmd->cmnd[8] = 24; 955 956 put_unaligned_be16(6 + 16, &buf[0]); 957 put_unaligned_be16(16, &buf[2]); 958 put_unaligned_be64(lba, &buf[8]); 959 put_unaligned_be32(nr_blocks, &buf[16]); 960 961 cmd->allowed = sdkp->max_retries; 962 cmd->transfersize = data_len; 963 rq->timeout = SD_TIMEOUT; 964 965 return scsi_alloc_sgtables(cmd); 966 } 967 968 static void sd_config_atomic(struct scsi_disk *sdkp, struct queue_limits *lim) 969 { 970 unsigned int logical_block_size = sdkp->device->sector_size, 971 physical_block_size_sectors, max_atomic, unit_min, unit_max; 972 973 if ((!sdkp->max_atomic && !sdkp->max_atomic_with_boundary) || 974 sdkp->protection_type == T10_PI_TYPE2_PROTECTION) 975 return; 976 977 physical_block_size_sectors = sdkp->physical_block_size / 978 sdkp->device->sector_size; 979 980 unit_min = rounddown_pow_of_two(sdkp->atomic_granularity ? 981 sdkp->atomic_granularity : 982 physical_block_size_sectors); 983 984 /* 985 * Only use atomic boundary when we have the odd scenario of 986 * sdkp->max_atomic == 0, which the spec does permit. 987 */ 988 if (sdkp->max_atomic) { 989 max_atomic = sdkp->max_atomic; 990 unit_max = rounddown_pow_of_two(sdkp->max_atomic); 991 sdkp->use_atomic_write_boundary = 0; 992 } else { 993 max_atomic = sdkp->max_atomic_with_boundary; 994 unit_max = rounddown_pow_of_two(sdkp->max_atomic_boundary); 995 sdkp->use_atomic_write_boundary = 1; 996 } 997 998 /* 999 * Ensure compliance with granularity and alignment. For now, keep it 1000 * simple and just don't support atomic writes for values mismatched 1001 * with max_{boundary}atomic, physical block size, and 1002 * atomic_granularity itself. 1003 * 1004 * We're really being distrustful by checking unit_max also... 1005 */ 1006 if (sdkp->atomic_granularity > 1) { 1007 if (unit_min > 1 && unit_min % sdkp->atomic_granularity) 1008 return; 1009 if (unit_max > 1 && unit_max % sdkp->atomic_granularity) 1010 return; 1011 } 1012 1013 if (sdkp->atomic_alignment > 1) { 1014 if (unit_min > 1 && unit_min % sdkp->atomic_alignment) 1015 return; 1016 if (unit_max > 1 && unit_max % sdkp->atomic_alignment) 1017 return; 1018 } 1019 1020 lim->atomic_write_hw_max = max_atomic * logical_block_size; 1021 lim->atomic_write_hw_boundary = 0; 1022 lim->atomic_write_hw_unit_min = unit_min * logical_block_size; 1023 lim->atomic_write_hw_unit_max = unit_max * logical_block_size; 1024 lim->features |= BLK_FEAT_ATOMIC_WRITES; 1025 } 1026 1027 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd, 1028 bool unmap) 1029 { 1030 struct scsi_device *sdp = cmd->device; 1031 struct request *rq = scsi_cmd_to_rq(cmd); 1032 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 1033 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 1034 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 1035 u32 data_len = sdp->sector_size; 1036 1037 if (!sd_set_special_bvec(rq, data_len)) 1038 return BLK_STS_RESOURCE; 1039 1040 cmd->cmd_len = 16; 1041 cmd->cmnd[0] = WRITE_SAME_16; 1042 if (unmap) 1043 cmd->cmnd[1] = 0x8; /* UNMAP */ 1044 put_unaligned_be64(lba, &cmd->cmnd[2]); 1045 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 1046 1047 cmd->allowed = sdkp->max_retries; 1048 cmd->transfersize = data_len; 1049 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 1050 1051 return scsi_alloc_sgtables(cmd); 1052 } 1053 1054 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd, 1055 bool unmap) 1056 { 1057 struct scsi_device *sdp = cmd->device; 1058 struct request *rq = scsi_cmd_to_rq(cmd); 1059 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 1060 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 1061 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 1062 u32 data_len = sdp->sector_size; 1063 1064 if (!sd_set_special_bvec(rq, data_len)) 1065 return BLK_STS_RESOURCE; 1066 1067 cmd->cmd_len = 10; 1068 cmd->cmnd[0] = WRITE_SAME; 1069 if (unmap) 1070 cmd->cmnd[1] = 0x8; /* UNMAP */ 1071 put_unaligned_be32(lba, &cmd->cmnd[2]); 1072 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 1073 1074 cmd->allowed = sdkp->max_retries; 1075 cmd->transfersize = data_len; 1076 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 1077 1078 return scsi_alloc_sgtables(cmd); 1079 } 1080 1081 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd) 1082 { 1083 struct request *rq = scsi_cmd_to_rq(cmd); 1084 struct scsi_device *sdp = cmd->device; 1085 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 1086 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 1087 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 1088 1089 if (!(rq->cmd_flags & REQ_NOUNMAP)) { 1090 switch (sdkp->zeroing_mode) { 1091 case SD_ZERO_WS16_UNMAP: 1092 return sd_setup_write_same16_cmnd(cmd, true); 1093 case SD_ZERO_WS10_UNMAP: 1094 return sd_setup_write_same10_cmnd(cmd, true); 1095 } 1096 } 1097 1098 if (sdp->no_write_same) { 1099 rq->rq_flags |= RQF_QUIET; 1100 return BLK_STS_TARGET; 1101 } 1102 1103 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) 1104 return sd_setup_write_same16_cmnd(cmd, false); 1105 1106 return sd_setup_write_same10_cmnd(cmd, false); 1107 } 1108 1109 static void sd_disable_write_same(struct scsi_disk *sdkp) 1110 { 1111 sdkp->device->no_write_same = 1; 1112 sdkp->max_ws_blocks = 0; 1113 blk_queue_disable_write_zeroes(sdkp->disk->queue); 1114 } 1115 1116 static void sd_config_write_same(struct scsi_disk *sdkp, 1117 struct queue_limits *lim) 1118 { 1119 unsigned int logical_block_size = sdkp->device->sector_size; 1120 1121 if (sdkp->device->no_write_same) { 1122 sdkp->max_ws_blocks = 0; 1123 goto out; 1124 } 1125 1126 /* Some devices can not handle block counts above 0xffff despite 1127 * supporting WRITE SAME(16). Consequently we default to 64k 1128 * blocks per I/O unless the device explicitly advertises a 1129 * bigger limit. 1130 */ 1131 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS) 1132 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 1133 (u32)SD_MAX_WS16_BLOCKS); 1134 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes) 1135 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 1136 (u32)SD_MAX_WS10_BLOCKS); 1137 else { 1138 sdkp->device->no_write_same = 1; 1139 sdkp->max_ws_blocks = 0; 1140 } 1141 1142 if (sdkp->lbprz && sdkp->lbpws) 1143 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP; 1144 else if (sdkp->lbprz && sdkp->lbpws10) 1145 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP; 1146 else if (sdkp->max_ws_blocks) 1147 sdkp->zeroing_mode = SD_ZERO_WS; 1148 else 1149 sdkp->zeroing_mode = SD_ZERO_WRITE; 1150 1151 if (sdkp->max_ws_blocks && 1152 sdkp->physical_block_size > logical_block_size) { 1153 /* 1154 * Reporting a maximum number of blocks that is not aligned 1155 * on the device physical size would cause a large write same 1156 * request to be split into physically unaligned chunks by 1157 * __blkdev_issue_write_zeroes() even if the caller of this 1158 * functions took care to align the large request. So make sure 1159 * the maximum reported is aligned to the device physical block 1160 * size. This is only an optional optimization for regular 1161 * disks, but this is mandatory to avoid failure of large write 1162 * same requests directed at sequential write required zones of 1163 * host-managed ZBC disks. 1164 */ 1165 sdkp->max_ws_blocks = 1166 round_down(sdkp->max_ws_blocks, 1167 bytes_to_logical(sdkp->device, 1168 sdkp->physical_block_size)); 1169 } 1170 1171 out: 1172 lim->max_write_zeroes_sectors = 1173 sdkp->max_ws_blocks * (logical_block_size >> SECTOR_SHIFT); 1174 1175 if (sdkp->zeroing_mode == SD_ZERO_WS16_UNMAP || 1176 sdkp->zeroing_mode == SD_ZERO_WS10_UNMAP) 1177 lim->max_hw_wzeroes_unmap_sectors = 1178 lim->max_write_zeroes_sectors; 1179 } 1180 1181 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd) 1182 { 1183 struct request *rq = scsi_cmd_to_rq(cmd); 1184 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 1185 1186 /* flush requests don't perform I/O, zero the S/G table */ 1187 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1188 1189 if (cmd->device->use_16_for_sync) { 1190 cmd->cmnd[0] = SYNCHRONIZE_CACHE_16; 1191 cmd->cmd_len = 16; 1192 } else { 1193 cmd->cmnd[0] = SYNCHRONIZE_CACHE; 1194 cmd->cmd_len = 10; 1195 } 1196 cmd->transfersize = 0; 1197 cmd->allowed = sdkp->max_retries; 1198 1199 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER; 1200 return BLK_STS_OK; 1201 } 1202 1203 /** 1204 * sd_group_number() - Compute the GROUP NUMBER field 1205 * @cmd: SCSI command for which to compute the value of the six-bit GROUP NUMBER 1206 * field. 1207 * 1208 * From SBC-5 r05 (https://www.t10.org/cgi-bin/ac.pl?t=f&f=sbc5r05.pdf): 1209 * 0: no relative lifetime. 1210 * 1: shortest relative lifetime. 1211 * 2: second shortest relative lifetime. 1212 * 3 - 0x3d: intermediate relative lifetimes. 1213 * 0x3e: second longest relative lifetime. 1214 * 0x3f: longest relative lifetime. 1215 */ 1216 static u8 sd_group_number(struct scsi_cmnd *cmd) 1217 { 1218 const struct request *rq = scsi_cmd_to_rq(cmd); 1219 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 1220 1221 if (!sdkp->rscs) 1222 return 0; 1223 1224 return min3((u32)rq->bio->bi_write_hint, 1225 (u32)sdkp->permanent_stream_count, 0x3fu); 1226 } 1227 1228 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write, 1229 sector_t lba, unsigned int nr_blocks, 1230 unsigned char flags, unsigned int dld) 1231 { 1232 cmd->cmd_len = SD_EXT_CDB_SIZE; 1233 cmd->cmnd[0] = VARIABLE_LENGTH_CMD; 1234 cmd->cmnd[6] = sd_group_number(cmd); 1235 cmd->cmnd[7] = 0x18; /* Additional CDB len */ 1236 cmd->cmnd[9] = write ? WRITE_32 : READ_32; 1237 cmd->cmnd[10] = flags; 1238 cmd->cmnd[11] = dld & 0x07; 1239 put_unaligned_be64(lba, &cmd->cmnd[12]); 1240 put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */ 1241 put_unaligned_be32(nr_blocks, &cmd->cmnd[28]); 1242 1243 return BLK_STS_OK; 1244 } 1245 1246 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write, 1247 sector_t lba, unsigned int nr_blocks, 1248 unsigned char flags, unsigned int dld) 1249 { 1250 cmd->cmd_len = 16; 1251 cmd->cmnd[0] = write ? WRITE_16 : READ_16; 1252 cmd->cmnd[1] = flags | ((dld >> 2) & 0x01); 1253 cmd->cmnd[14] = ((dld & 0x03) << 6) | sd_group_number(cmd); 1254 cmd->cmnd[15] = 0; 1255 put_unaligned_be64(lba, &cmd->cmnd[2]); 1256 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 1257 1258 return BLK_STS_OK; 1259 } 1260 1261 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write, 1262 sector_t lba, unsigned int nr_blocks, 1263 unsigned char flags) 1264 { 1265 cmd->cmd_len = 10; 1266 cmd->cmnd[0] = write ? WRITE_10 : READ_10; 1267 cmd->cmnd[1] = flags; 1268 cmd->cmnd[6] = sd_group_number(cmd); 1269 cmd->cmnd[9] = 0; 1270 put_unaligned_be32(lba, &cmd->cmnd[2]); 1271 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 1272 1273 return BLK_STS_OK; 1274 } 1275 1276 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write, 1277 sector_t lba, unsigned int nr_blocks, 1278 unsigned char flags) 1279 { 1280 /* Avoid that 0 blocks gets translated into 256 blocks. */ 1281 if (WARN_ON_ONCE(nr_blocks == 0)) 1282 return BLK_STS_IOERR; 1283 1284 if (unlikely(flags & 0x8)) { 1285 /* 1286 * This happens only if this drive failed 10byte rw 1287 * command with ILLEGAL_REQUEST during operation and 1288 * thus turned off use_10_for_rw. 1289 */ 1290 scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n"); 1291 return BLK_STS_IOERR; 1292 } 1293 1294 cmd->cmd_len = 6; 1295 cmd->cmnd[0] = write ? WRITE_6 : READ_6; 1296 cmd->cmnd[1] = (lba >> 16) & 0x1f; 1297 cmd->cmnd[2] = (lba >> 8) & 0xff; 1298 cmd->cmnd[3] = lba & 0xff; 1299 cmd->cmnd[4] = nr_blocks; 1300 cmd->cmnd[5] = 0; 1301 1302 return BLK_STS_OK; 1303 } 1304 1305 /* 1306 * Check if a command has a duration limit set. If it does, and the target 1307 * device supports CDL and the feature is enabled, return the limit 1308 * descriptor index to use. Return 0 (no limit) otherwise. 1309 */ 1310 static int sd_cdl_dld(struct scsi_disk *sdkp, struct scsi_cmnd *scmd) 1311 { 1312 struct scsi_device *sdp = sdkp->device; 1313 int hint; 1314 1315 if (!sdp->cdl_supported || !sdp->cdl_enable) 1316 return 0; 1317 1318 /* 1319 * Use "no limit" if the request ioprio does not specify a duration 1320 * limit hint. 1321 */ 1322 hint = IOPRIO_PRIO_HINT(req_get_ioprio(scsi_cmd_to_rq(scmd))); 1323 if (hint < IOPRIO_HINT_DEV_DURATION_LIMIT_1 || 1324 hint > IOPRIO_HINT_DEV_DURATION_LIMIT_7) 1325 return 0; 1326 1327 return (hint - IOPRIO_HINT_DEV_DURATION_LIMIT_1) + 1; 1328 } 1329 1330 static blk_status_t sd_setup_atomic_cmnd(struct scsi_cmnd *cmd, 1331 sector_t lba, unsigned int nr_blocks, 1332 bool boundary, unsigned char flags) 1333 { 1334 cmd->cmd_len = 16; 1335 cmd->cmnd[0] = WRITE_ATOMIC_16; 1336 cmd->cmnd[1] = flags; 1337 put_unaligned_be64(lba, &cmd->cmnd[2]); 1338 put_unaligned_be16(nr_blocks, &cmd->cmnd[12]); 1339 if (boundary) 1340 put_unaligned_be16(nr_blocks, &cmd->cmnd[10]); 1341 else 1342 put_unaligned_be16(0, &cmd->cmnd[10]); 1343 put_unaligned_be16(nr_blocks, &cmd->cmnd[12]); 1344 cmd->cmnd[14] = 0; 1345 cmd->cmnd[15] = 0; 1346 1347 return BLK_STS_OK; 1348 } 1349 1350 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd) 1351 { 1352 struct request *rq = scsi_cmd_to_rq(cmd); 1353 struct scsi_device *sdp = cmd->device; 1354 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 1355 sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 1356 sector_t threshold; 1357 unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 1358 unsigned int mask = logical_to_sectors(sdp, 1) - 1; 1359 bool write = rq_data_dir(rq) == WRITE; 1360 unsigned char protect, fua; 1361 unsigned int dld; 1362 blk_status_t ret; 1363 unsigned int dif; 1364 bool dix; 1365 1366 ret = scsi_alloc_sgtables(cmd); 1367 if (ret != BLK_STS_OK) 1368 return ret; 1369 1370 ret = BLK_STS_IOERR; 1371 if (!scsi_device_online(sdp) || sdp->changed) { 1372 scmd_printk(KERN_ERR, cmd, "device offline or changed\n"); 1373 goto fail; 1374 } 1375 1376 if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->q->disk)) { 1377 scmd_printk(KERN_ERR, cmd, "access beyond end of device\n"); 1378 goto fail; 1379 } 1380 1381 if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) { 1382 scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n"); 1383 goto fail; 1384 } 1385 1386 /* 1387 * Some SD card readers can't handle accesses which touch the 1388 * last one or two logical blocks. Split accesses as needed. 1389 */ 1390 threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS; 1391 1392 if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) { 1393 if (lba < threshold) { 1394 /* Access up to the threshold but not beyond */ 1395 nr_blocks = threshold - lba; 1396 } else { 1397 /* Access only a single logical block */ 1398 nr_blocks = 1; 1399 } 1400 } 1401 1402 fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0; 1403 dix = scsi_prot_sg_count(cmd); 1404 dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type); 1405 dld = sd_cdl_dld(sdkp, cmd); 1406 1407 if (dif || dix) 1408 protect = sd_setup_protect_cmnd(cmd, dix, dif); 1409 else 1410 protect = 0; 1411 1412 if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) { 1413 ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks, 1414 protect | fua, dld); 1415 } else if (rq->cmd_flags & REQ_ATOMIC) { 1416 ret = sd_setup_atomic_cmnd(cmd, lba, nr_blocks, 1417 sdkp->use_atomic_write_boundary, 1418 protect | fua); 1419 } else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) { 1420 ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks, 1421 protect | fua, dld); 1422 } else if ((nr_blocks > 0xff) || (lba > 0x1fffff) || 1423 sdp->use_10_for_rw || protect || rq->bio->bi_write_hint) { 1424 ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks, 1425 protect | fua); 1426 } else { 1427 ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks, 1428 protect | fua); 1429 } 1430 1431 if (unlikely(ret != BLK_STS_OK)) 1432 goto fail; 1433 1434 /* 1435 * We shouldn't disconnect in the middle of a sector, so with a dumb 1436 * host adapter, it's safe to assume that we can at least transfer 1437 * this many bytes between each connect / disconnect. 1438 */ 1439 cmd->transfersize = sdp->sector_size; 1440 cmd->underflow = nr_blocks << 9; 1441 cmd->allowed = sdkp->max_retries; 1442 cmd->sdb.length = nr_blocks * sdp->sector_size; 1443 1444 SCSI_LOG_HLQUEUE(1, 1445 scmd_printk(KERN_INFO, cmd, 1446 "%s: block=%llu, count=%d\n", __func__, 1447 (unsigned long long)blk_rq_pos(rq), 1448 blk_rq_sectors(rq))); 1449 SCSI_LOG_HLQUEUE(2, 1450 scmd_printk(KERN_INFO, cmd, 1451 "%s %d/%u 512 byte blocks.\n", 1452 write ? "writing" : "reading", nr_blocks, 1453 blk_rq_sectors(rq))); 1454 1455 /* 1456 * This indicates that the command is ready from our end to be queued. 1457 */ 1458 return BLK_STS_OK; 1459 fail: 1460 scsi_free_sgtables(cmd); 1461 return ret; 1462 } 1463 1464 static blk_status_t sd_init_command(struct scsi_cmnd *cmd) 1465 { 1466 struct request *rq = scsi_cmd_to_rq(cmd); 1467 1468 switch (req_op(rq)) { 1469 case REQ_OP_DISCARD: 1470 switch (scsi_disk(rq->q->disk)->provisioning_mode) { 1471 case SD_LBP_UNMAP: 1472 return sd_setup_unmap_cmnd(cmd); 1473 case SD_LBP_WS16: 1474 return sd_setup_write_same16_cmnd(cmd, true); 1475 case SD_LBP_WS10: 1476 return sd_setup_write_same10_cmnd(cmd, true); 1477 case SD_LBP_ZERO: 1478 return sd_setup_write_same10_cmnd(cmd, false); 1479 default: 1480 return BLK_STS_TARGET; 1481 } 1482 case REQ_OP_WRITE_ZEROES: 1483 return sd_setup_write_zeroes_cmnd(cmd); 1484 case REQ_OP_FLUSH: 1485 return sd_setup_flush_cmnd(cmd); 1486 case REQ_OP_READ: 1487 case REQ_OP_WRITE: 1488 return sd_setup_read_write_cmnd(cmd); 1489 case REQ_OP_ZONE_RESET: 1490 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER, 1491 false); 1492 case REQ_OP_ZONE_RESET_ALL: 1493 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER, 1494 true); 1495 case REQ_OP_ZONE_OPEN: 1496 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false); 1497 case REQ_OP_ZONE_CLOSE: 1498 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false); 1499 case REQ_OP_ZONE_FINISH: 1500 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false); 1501 default: 1502 WARN_ON_ONCE(1); 1503 return BLK_STS_NOTSUPP; 1504 } 1505 } 1506 1507 static void sd_uninit_command(struct scsi_cmnd *SCpnt) 1508 { 1509 struct request *rq = scsi_cmd_to_rq(SCpnt); 1510 1511 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1512 mempool_free(rq->special_vec.bv_page, sd_page_pool); 1513 } 1514 1515 static bool sd_need_revalidate(struct gendisk *disk, struct scsi_disk *sdkp) 1516 { 1517 if (sdkp->device->removable || sdkp->write_prot) { 1518 if (disk_check_media_change(disk)) 1519 return true; 1520 } 1521 1522 /* 1523 * Force a full rescan after ioctl(BLKRRPART). While the disk state has 1524 * nothing to do with partitions, BLKRRPART is used to force a full 1525 * revalidate after things like a format for historical reasons. 1526 */ 1527 return test_bit(GD_NEED_PART_SCAN, &disk->state); 1528 } 1529 1530 /** 1531 * sd_open - open a scsi disk device 1532 * @disk: disk to open 1533 * @mode: open mode 1534 * 1535 * Returns 0 if successful. Returns a negated errno value in case 1536 * of error. 1537 * 1538 * Note: This can be called from a user context (e.g. fsck(1) ) 1539 * or from within the kernel (e.g. as a result of a mount(1) ). 1540 * In the latter case @inode and @filp carry an abridged amount 1541 * of information as noted above. 1542 * 1543 * Locking: called with disk->open_mutex held. 1544 **/ 1545 static int sd_open(struct gendisk *disk, blk_mode_t mode) 1546 { 1547 struct scsi_disk *sdkp = scsi_disk(disk); 1548 struct scsi_device *sdev = sdkp->device; 1549 int retval; 1550 1551 if (scsi_device_get(sdev)) 1552 return -ENXIO; 1553 1554 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n")); 1555 1556 /* 1557 * If the device is in error recovery, wait until it is done. 1558 * If the device is offline, then disallow any access to it. 1559 */ 1560 retval = -ENXIO; 1561 if (!scsi_block_when_processing_errors(sdev)) 1562 goto error_out; 1563 1564 if (sd_need_revalidate(disk, sdkp)) 1565 sd_revalidate_disk(disk); 1566 1567 /* 1568 * If the drive is empty, just let the open fail. 1569 */ 1570 retval = -ENOMEDIUM; 1571 if (sdev->removable && !sdkp->media_present && 1572 !(mode & BLK_OPEN_NDELAY)) 1573 goto error_out; 1574 1575 /* 1576 * If the device has the write protect tab set, have the open fail 1577 * if the user expects to be able to write to the thing. 1578 */ 1579 retval = -EROFS; 1580 if (sdkp->write_prot && (mode & BLK_OPEN_WRITE)) 1581 goto error_out; 1582 1583 /* 1584 * It is possible that the disk changing stuff resulted in 1585 * the device being taken offline. If this is the case, 1586 * report this to the user, and don't pretend that the 1587 * open actually succeeded. 1588 */ 1589 retval = -ENXIO; 1590 if (!scsi_device_online(sdev)) 1591 goto error_out; 1592 1593 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) { 1594 if (scsi_block_when_processing_errors(sdev)) 1595 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT); 1596 } 1597 1598 return 0; 1599 1600 error_out: 1601 scsi_device_put(sdev); 1602 return retval; 1603 } 1604 1605 /** 1606 * sd_release - invoked when the (last) close(2) is called on this 1607 * scsi disk. 1608 * @disk: disk to release 1609 * 1610 * Returns 0. 1611 * 1612 * Note: may block (uninterruptible) if error recovery is underway 1613 * on this disk. 1614 * 1615 * Locking: called with disk->open_mutex held. 1616 **/ 1617 static void sd_release(struct gendisk *disk) 1618 { 1619 struct scsi_disk *sdkp = scsi_disk(disk); 1620 struct scsi_device *sdev = sdkp->device; 1621 1622 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n")); 1623 1624 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) { 1625 if (scsi_block_when_processing_errors(sdev)) 1626 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW); 1627 } 1628 1629 scsi_device_put(sdev); 1630 } 1631 1632 static int sd_getgeo(struct gendisk *disk, struct hd_geometry *geo) 1633 { 1634 struct scsi_disk *sdkp = scsi_disk(disk); 1635 struct scsi_device *sdp = sdkp->device; 1636 struct Scsi_Host *host = sdp->host; 1637 sector_t capacity = logical_to_sectors(sdp, sdkp->capacity); 1638 int diskinfo[4]; 1639 1640 /* default to most commonly used values */ 1641 diskinfo[0] = 0x40; /* 1 << 6 */ 1642 diskinfo[1] = 0x20; /* 1 << 5 */ 1643 diskinfo[2] = capacity >> 11; 1644 1645 /* override with calculated, extended default, or driver values */ 1646 if (host->hostt->bios_param) 1647 host->hostt->bios_param(sdp, disk, capacity, diskinfo); 1648 else 1649 scsicam_bios_param(disk, capacity, diskinfo); 1650 1651 geo->heads = diskinfo[0]; 1652 geo->sectors = diskinfo[1]; 1653 geo->cylinders = diskinfo[2]; 1654 return 0; 1655 } 1656 1657 /** 1658 * sd_ioctl - process an ioctl 1659 * @bdev: target block device 1660 * @mode: open mode 1661 * @cmd: ioctl command number 1662 * @arg: this is third argument given to ioctl(2) system call. 1663 * Often contains a pointer. 1664 * 1665 * Returns 0 if successful (some ioctls return positive numbers on 1666 * success as well). Returns a negated errno value in case of error. 1667 * 1668 * Note: most ioctls are forward onto the block subsystem or further 1669 * down in the scsi subsystem. 1670 **/ 1671 static int sd_ioctl(struct block_device *bdev, blk_mode_t mode, 1672 unsigned int cmd, unsigned long arg) 1673 { 1674 struct gendisk *disk = bdev->bd_disk; 1675 struct scsi_disk *sdkp = scsi_disk(disk); 1676 struct scsi_device *sdp = sdkp->device; 1677 void __user *p = (void __user *)arg; 1678 int error; 1679 1680 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, " 1681 "cmd=0x%x\n", disk->disk_name, cmd)); 1682 1683 if (bdev_is_partition(bdev) && !capable(CAP_SYS_RAWIO)) 1684 return -ENOIOCTLCMD; 1685 1686 /* 1687 * If we are in the middle of error recovery, don't let anyone 1688 * else try and use this device. Also, if error recovery fails, it 1689 * may try and take the device offline, in which case all further 1690 * access to the device is prohibited. 1691 */ 1692 error = scsi_ioctl_block_when_processing_errors(sdp, cmd, 1693 (mode & BLK_OPEN_NDELAY)); 1694 if (error) 1695 return error; 1696 1697 if (is_sed_ioctl(cmd)) 1698 return sed_ioctl(sdkp->opal_dev, cmd, p); 1699 return scsi_ioctl(sdp, mode & BLK_OPEN_WRITE, cmd, p); 1700 } 1701 1702 static void set_media_not_present(struct scsi_disk *sdkp) 1703 { 1704 if (sdkp->media_present) 1705 sdkp->device->changed = 1; 1706 1707 if (sdkp->device->removable) { 1708 sdkp->media_present = 0; 1709 sdkp->capacity = 0; 1710 } 1711 } 1712 1713 static int media_not_present(struct scsi_disk *sdkp, 1714 struct scsi_sense_hdr *sshdr) 1715 { 1716 if (!scsi_sense_valid(sshdr)) 1717 return 0; 1718 1719 /* not invoked for commands that could return deferred errors */ 1720 switch (sshdr->sense_key) { 1721 case UNIT_ATTENTION: 1722 case NOT_READY: 1723 /* medium not present */ 1724 if (sshdr->asc == 0x3A) { 1725 set_media_not_present(sdkp); 1726 return 1; 1727 } 1728 } 1729 return 0; 1730 } 1731 1732 /** 1733 * sd_check_events - check media events 1734 * @disk: kernel device descriptor 1735 * @clearing: disk events currently being cleared 1736 * 1737 * Returns mask of DISK_EVENT_*. 1738 * 1739 * Note: this function is invoked from the block subsystem. 1740 **/ 1741 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing) 1742 { 1743 struct scsi_disk *sdkp = disk->private_data; 1744 struct scsi_device *sdp; 1745 int retval; 1746 bool disk_changed; 1747 1748 if (!sdkp) 1749 return 0; 1750 1751 sdp = sdkp->device; 1752 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n")); 1753 1754 /* 1755 * If the device is offline, don't send any commands - just pretend as 1756 * if the command failed. If the device ever comes back online, we 1757 * can deal with it then. It is only because of unrecoverable errors 1758 * that we would ever take a device offline in the first place. 1759 */ 1760 if (!scsi_device_online(sdp)) { 1761 set_media_not_present(sdkp); 1762 goto out; 1763 } 1764 1765 /* 1766 * Using TEST_UNIT_READY enables differentiation between drive with 1767 * no cartridge loaded - NOT READY, drive with changed cartridge - 1768 * UNIT ATTENTION, or with same cartridge - GOOD STATUS. 1769 * 1770 * Drives that auto spin down. eg iomega jaz 1G, will be started 1771 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever 1772 * sd_revalidate() is called. 1773 */ 1774 if (scsi_block_when_processing_errors(sdp)) { 1775 struct scsi_sense_hdr sshdr = { 0, }; 1776 1777 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries, 1778 &sshdr); 1779 1780 /* failed to execute TUR, assume media not present */ 1781 if (retval < 0 || host_byte(retval)) { 1782 set_media_not_present(sdkp); 1783 goto out; 1784 } 1785 1786 if (media_not_present(sdkp, &sshdr)) 1787 goto out; 1788 } 1789 1790 /* 1791 * For removable scsi disk we have to recognise the presence 1792 * of a disk in the drive. 1793 */ 1794 if (!sdkp->media_present) 1795 sdp->changed = 1; 1796 sdkp->media_present = 1; 1797 out: 1798 /* 1799 * sdp->changed is set under the following conditions: 1800 * 1801 * Medium present state has changed in either direction. 1802 * Device has indicated UNIT_ATTENTION. 1803 */ 1804 disk_changed = sdp->changed; 1805 sdp->changed = 0; 1806 return disk_changed ? DISK_EVENT_MEDIA_CHANGE : 0; 1807 } 1808 1809 static int sd_sync_cache(struct scsi_disk *sdkp) 1810 { 1811 int res; 1812 struct scsi_device *sdp = sdkp->device; 1813 const int timeout = sdp->request_queue->rq_timeout 1814 * SD_FLUSH_TIMEOUT_MULTIPLIER; 1815 /* Leave the rest of the command zero to indicate flush everything. */ 1816 const unsigned char cmd[16] = { sdp->use_16_for_sync ? 1817 SYNCHRONIZE_CACHE_16 : SYNCHRONIZE_CACHE }; 1818 struct scsi_sense_hdr sshdr; 1819 struct scsi_failure failure_defs[] = { 1820 { 1821 .allowed = 3, 1822 .result = SCMD_FAILURE_RESULT_ANY, 1823 }, 1824 {} 1825 }; 1826 struct scsi_failures failures = { 1827 .failure_definitions = failure_defs, 1828 }; 1829 const struct scsi_exec_args exec_args = { 1830 .req_flags = BLK_MQ_REQ_PM, 1831 .sshdr = &sshdr, 1832 .failures = &failures, 1833 }; 1834 1835 if (!scsi_device_online(sdp)) 1836 return -ENODEV; 1837 1838 res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, timeout, 1839 sdkp->max_retries, &exec_args); 1840 if (res) { 1841 sd_print_result(sdkp, "Synchronize Cache(10) failed", res); 1842 1843 if (res < 0) 1844 return res; 1845 1846 if (scsi_status_is_check_condition(res) && 1847 scsi_sense_valid(&sshdr)) { 1848 sd_print_sense_hdr(sdkp, &sshdr); 1849 1850 /* we need to evaluate the error return */ 1851 if (sshdr.asc == 0x3a || /* medium not present */ 1852 sshdr.asc == 0x20 || /* invalid command */ 1853 (sshdr.asc == 0x74 && sshdr.ascq == 0x71)) /* drive is password locked */ 1854 /* this is no error here */ 1855 return 0; 1856 1857 /* 1858 * If a format is in progress or if the drive does not 1859 * support sync, there is not much we can do because 1860 * this is called during shutdown or suspend so just 1861 * return success so those operations can proceed. 1862 */ 1863 if ((sshdr.asc == 0x04 && sshdr.ascq == 0x04) || 1864 sshdr.sense_key == ILLEGAL_REQUEST) 1865 return 0; 1866 } 1867 1868 switch (host_byte(res)) { 1869 /* ignore errors due to racing a disconnection */ 1870 case DID_BAD_TARGET: 1871 case DID_NO_CONNECT: 1872 return 0; 1873 /* signal the upper layer it might try again */ 1874 case DID_BUS_BUSY: 1875 case DID_IMM_RETRY: 1876 case DID_REQUEUE: 1877 case DID_SOFT_ERROR: 1878 return -EBUSY; 1879 default: 1880 return -EIO; 1881 } 1882 } 1883 return 0; 1884 } 1885 1886 static void sd_rescan(struct device *dev) 1887 { 1888 struct scsi_disk *sdkp = dev_get_drvdata(dev); 1889 1890 sd_revalidate_disk(sdkp->disk); 1891 } 1892 1893 static int sd_get_unique_id(struct gendisk *disk, u8 id[16], 1894 enum blk_unique_id type) 1895 { 1896 struct scsi_device *sdev = scsi_disk(disk)->device; 1897 const struct scsi_vpd *vpd; 1898 const unsigned char *d; 1899 int ret = -ENXIO, len; 1900 1901 rcu_read_lock(); 1902 vpd = rcu_dereference(sdev->vpd_pg83); 1903 if (!vpd) 1904 goto out_unlock; 1905 1906 ret = -EINVAL; 1907 for (d = vpd->data + 4; d < vpd->data + vpd->len; d += d[3] + 4) { 1908 /* we only care about designators with LU association */ 1909 if (((d[1] >> 4) & 0x3) != 0x00) 1910 continue; 1911 if ((d[1] & 0xf) != type) 1912 continue; 1913 1914 /* 1915 * Only exit early if a 16-byte descriptor was found. Otherwise 1916 * keep looking as one with more entropy might still show up. 1917 */ 1918 len = d[3]; 1919 if (len != 8 && len != 12 && len != 16) 1920 continue; 1921 ret = len; 1922 memcpy(id, d + 4, len); 1923 if (len == 16) 1924 break; 1925 } 1926 out_unlock: 1927 rcu_read_unlock(); 1928 return ret; 1929 } 1930 1931 static int sd_scsi_to_pr_err(struct scsi_sense_hdr *sshdr, int result) 1932 { 1933 switch (host_byte(result)) { 1934 case DID_TRANSPORT_MARGINAL: 1935 case DID_TRANSPORT_DISRUPTED: 1936 case DID_BUS_BUSY: 1937 return PR_STS_RETRY_PATH_FAILURE; 1938 case DID_NO_CONNECT: 1939 return PR_STS_PATH_FAILED; 1940 case DID_TRANSPORT_FAILFAST: 1941 return PR_STS_PATH_FAST_FAILED; 1942 } 1943 1944 switch (status_byte(result)) { 1945 case SAM_STAT_RESERVATION_CONFLICT: 1946 return PR_STS_RESERVATION_CONFLICT; 1947 case SAM_STAT_CHECK_CONDITION: 1948 if (!scsi_sense_valid(sshdr)) 1949 return PR_STS_IOERR; 1950 1951 if (sshdr->sense_key == ILLEGAL_REQUEST && 1952 (sshdr->asc == 0x26 || sshdr->asc == 0x24)) 1953 return -EINVAL; 1954 1955 fallthrough; 1956 default: 1957 return PR_STS_IOERR; 1958 } 1959 } 1960 1961 static int sd_pr_in_command(struct block_device *bdev, u8 sa, 1962 unsigned char *data, int data_len) 1963 { 1964 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1965 struct scsi_device *sdev = sdkp->device; 1966 struct scsi_sense_hdr sshdr; 1967 u8 cmd[10] = { PERSISTENT_RESERVE_IN, sa }; 1968 struct scsi_failure failure_defs[] = { 1969 { 1970 .sense = UNIT_ATTENTION, 1971 .asc = SCMD_FAILURE_ASC_ANY, 1972 .ascq = SCMD_FAILURE_ASCQ_ANY, 1973 .allowed = 5, 1974 .result = SAM_STAT_CHECK_CONDITION, 1975 }, 1976 {} 1977 }; 1978 struct scsi_failures failures = { 1979 .failure_definitions = failure_defs, 1980 }; 1981 const struct scsi_exec_args exec_args = { 1982 .sshdr = &sshdr, 1983 .failures = &failures, 1984 }; 1985 int result; 1986 1987 put_unaligned_be16(data_len, &cmd[7]); 1988 1989 result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, data, data_len, 1990 SD_TIMEOUT, sdkp->max_retries, &exec_args); 1991 if (scsi_status_is_check_condition(result) && 1992 scsi_sense_valid(&sshdr)) { 1993 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result); 1994 scsi_print_sense_hdr(sdev, NULL, &sshdr); 1995 } 1996 1997 if (result <= 0) 1998 return result; 1999 2000 return sd_scsi_to_pr_err(&sshdr, result); 2001 } 2002 2003 static int sd_pr_read_keys(struct block_device *bdev, struct pr_keys *keys_info) 2004 { 2005 int result, i, data_offset, num_copy_keys; 2006 u32 num_keys = keys_info->num_keys; 2007 int data_len = num_keys * 8 + 8; 2008 u8 *data; 2009 2010 data = kzalloc(data_len, GFP_KERNEL); 2011 if (!data) 2012 return -ENOMEM; 2013 2014 result = sd_pr_in_command(bdev, READ_KEYS, data, data_len); 2015 if (result) 2016 goto free_data; 2017 2018 keys_info->generation = get_unaligned_be32(&data[0]); 2019 keys_info->num_keys = get_unaligned_be32(&data[4]) / 8; 2020 2021 data_offset = 8; 2022 num_copy_keys = min(num_keys, keys_info->num_keys); 2023 2024 for (i = 0; i < num_copy_keys; i++) { 2025 keys_info->keys[i] = get_unaligned_be64(&data[data_offset]); 2026 data_offset += 8; 2027 } 2028 2029 free_data: 2030 kfree(data); 2031 return result; 2032 } 2033 2034 static int sd_pr_read_reservation(struct block_device *bdev, 2035 struct pr_held_reservation *rsv) 2036 { 2037 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 2038 struct scsi_device *sdev = sdkp->device; 2039 u8 data[24] = { }; 2040 int result, len; 2041 2042 result = sd_pr_in_command(bdev, READ_RESERVATION, data, sizeof(data)); 2043 if (result) 2044 return result; 2045 2046 len = get_unaligned_be32(&data[4]); 2047 if (!len) 2048 return 0; 2049 2050 /* Make sure we have at least the key and type */ 2051 if (len < 14) { 2052 sdev_printk(KERN_INFO, sdev, 2053 "READ RESERVATION failed due to short return buffer of %d bytes\n", 2054 len); 2055 return -EINVAL; 2056 } 2057 2058 rsv->generation = get_unaligned_be32(&data[0]); 2059 rsv->key = get_unaligned_be64(&data[8]); 2060 rsv->type = scsi_pr_type_to_block(data[21] & 0x0f); 2061 return 0; 2062 } 2063 2064 static int sd_pr_out_command(struct block_device *bdev, u8 sa, u64 key, 2065 u64 sa_key, enum scsi_pr_type type, u8 flags) 2066 { 2067 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 2068 struct scsi_device *sdev = sdkp->device; 2069 struct scsi_sense_hdr sshdr; 2070 struct scsi_failure failure_defs[] = { 2071 { 2072 .sense = UNIT_ATTENTION, 2073 .asc = SCMD_FAILURE_ASC_ANY, 2074 .ascq = SCMD_FAILURE_ASCQ_ANY, 2075 .allowed = 5, 2076 .result = SAM_STAT_CHECK_CONDITION, 2077 }, 2078 {} 2079 }; 2080 struct scsi_failures failures = { 2081 .failure_definitions = failure_defs, 2082 }; 2083 const struct scsi_exec_args exec_args = { 2084 .sshdr = &sshdr, 2085 .failures = &failures, 2086 }; 2087 int result; 2088 u8 cmd[16] = { 0, }; 2089 u8 data[24] = { 0, }; 2090 2091 cmd[0] = PERSISTENT_RESERVE_OUT; 2092 cmd[1] = sa; 2093 cmd[2] = type; 2094 put_unaligned_be32(sizeof(data), &cmd[5]); 2095 2096 put_unaligned_be64(key, &data[0]); 2097 put_unaligned_be64(sa_key, &data[8]); 2098 data[20] = flags; 2099 2100 result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, &data, 2101 sizeof(data), SD_TIMEOUT, sdkp->max_retries, 2102 &exec_args); 2103 2104 if (scsi_status_is_check_condition(result) && 2105 scsi_sense_valid(&sshdr)) { 2106 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result); 2107 scsi_print_sense_hdr(sdev, NULL, &sshdr); 2108 } 2109 2110 if (result <= 0) 2111 return result; 2112 2113 return sd_scsi_to_pr_err(&sshdr, result); 2114 } 2115 2116 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 2117 u32 flags) 2118 { 2119 if (flags & ~PR_FL_IGNORE_KEY) 2120 return -EOPNOTSUPP; 2121 return sd_pr_out_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00, 2122 old_key, new_key, 0, 2123 (1 << 0) /* APTPL */); 2124 } 2125 2126 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 2127 u32 flags) 2128 { 2129 if (flags) 2130 return -EOPNOTSUPP; 2131 return sd_pr_out_command(bdev, 0x01, key, 0, 2132 block_pr_type_to_scsi(type), 0); 2133 } 2134 2135 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 2136 { 2137 return sd_pr_out_command(bdev, 0x02, key, 0, 2138 block_pr_type_to_scsi(type), 0); 2139 } 2140 2141 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 2142 enum pr_type type, bool abort) 2143 { 2144 return sd_pr_out_command(bdev, abort ? 0x05 : 0x04, old_key, new_key, 2145 block_pr_type_to_scsi(type), 0); 2146 } 2147 2148 static int sd_pr_clear(struct block_device *bdev, u64 key) 2149 { 2150 return sd_pr_out_command(bdev, 0x03, key, 0, 0, 0); 2151 } 2152 2153 static const struct pr_ops sd_pr_ops = { 2154 .pr_register = sd_pr_register, 2155 .pr_reserve = sd_pr_reserve, 2156 .pr_release = sd_pr_release, 2157 .pr_preempt = sd_pr_preempt, 2158 .pr_clear = sd_pr_clear, 2159 .pr_read_keys = sd_pr_read_keys, 2160 .pr_read_reservation = sd_pr_read_reservation, 2161 }; 2162 2163 static void scsi_disk_free_disk(struct gendisk *disk) 2164 { 2165 struct scsi_disk *sdkp = scsi_disk(disk); 2166 2167 put_device(&sdkp->disk_dev); 2168 } 2169 2170 static const struct block_device_operations sd_fops = { 2171 .owner = THIS_MODULE, 2172 .open = sd_open, 2173 .release = sd_release, 2174 .ioctl = sd_ioctl, 2175 .getgeo = sd_getgeo, 2176 .compat_ioctl = blkdev_compat_ptr_ioctl, 2177 .check_events = sd_check_events, 2178 .unlock_native_capacity = sd_unlock_native_capacity, 2179 .report_zones = sd_zbc_report_zones, 2180 .get_unique_id = sd_get_unique_id, 2181 .free_disk = scsi_disk_free_disk, 2182 .pr_ops = &sd_pr_ops, 2183 }; 2184 2185 /** 2186 * sd_eh_reset - reset error handling callback 2187 * @scmd: sd-issued command that has failed 2188 * 2189 * This function is called by the SCSI midlayer before starting 2190 * SCSI EH. When counting medium access failures we have to be 2191 * careful to register it only only once per device and SCSI EH run; 2192 * there might be several timed out commands which will cause the 2193 * 'max_medium_access_timeouts' counter to trigger after the first 2194 * SCSI EH run already and set the device to offline. 2195 * So this function resets the internal counter before starting SCSI EH. 2196 **/ 2197 static void sd_eh_reset(struct scsi_cmnd *scmd) 2198 { 2199 struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk); 2200 2201 /* New SCSI EH run, reset gate variable */ 2202 sdkp->ignore_medium_access_errors = false; 2203 } 2204 2205 /** 2206 * sd_eh_action - error handling callback 2207 * @scmd: sd-issued command that has failed 2208 * @eh_disp: The recovery disposition suggested by the midlayer 2209 * 2210 * This function is called by the SCSI midlayer upon completion of an 2211 * error test command (currently TEST UNIT READY). The result of sending 2212 * the eh command is passed in eh_disp. We're looking for devices that 2213 * fail medium access commands but are OK with non access commands like 2214 * test unit ready (so wrongly see the device as having a successful 2215 * recovery) 2216 **/ 2217 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp) 2218 { 2219 struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk); 2220 struct scsi_device *sdev = scmd->device; 2221 2222 if (!scsi_device_online(sdev) || 2223 !scsi_medium_access_command(scmd) || 2224 host_byte(scmd->result) != DID_TIME_OUT || 2225 eh_disp != SUCCESS) 2226 return eh_disp; 2227 2228 /* 2229 * The device has timed out executing a medium access command. 2230 * However, the TEST UNIT READY command sent during error 2231 * handling completed successfully. Either the device is in the 2232 * process of recovering or has it suffered an internal failure 2233 * that prevents access to the storage medium. 2234 */ 2235 if (!sdkp->ignore_medium_access_errors) { 2236 sdkp->medium_access_timed_out++; 2237 sdkp->ignore_medium_access_errors = true; 2238 } 2239 2240 /* 2241 * If the device keeps failing read/write commands but TEST UNIT 2242 * READY always completes successfully we assume that medium 2243 * access is no longer possible and take the device offline. 2244 */ 2245 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) { 2246 scmd_printk(KERN_ERR, scmd, 2247 "Medium access timeout failure. Offlining disk!\n"); 2248 mutex_lock(&sdev->state_mutex); 2249 scsi_device_set_state(sdev, SDEV_OFFLINE); 2250 mutex_unlock(&sdev->state_mutex); 2251 2252 return SUCCESS; 2253 } 2254 2255 return eh_disp; 2256 } 2257 2258 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd) 2259 { 2260 struct request *req = scsi_cmd_to_rq(scmd); 2261 struct scsi_device *sdev = scmd->device; 2262 unsigned int transferred, good_bytes; 2263 u64 start_lba, end_lba, bad_lba; 2264 2265 /* 2266 * Some commands have a payload smaller than the device logical 2267 * block size (e.g. INQUIRY on a 4K disk). 2268 */ 2269 if (scsi_bufflen(scmd) <= sdev->sector_size) 2270 return 0; 2271 2272 /* Check if we have a 'bad_lba' information */ 2273 if (!scsi_get_sense_info_fld(scmd->sense_buffer, 2274 SCSI_SENSE_BUFFERSIZE, 2275 &bad_lba)) 2276 return 0; 2277 2278 /* 2279 * If the bad lba was reported incorrectly, we have no idea where 2280 * the error is. 2281 */ 2282 start_lba = sectors_to_logical(sdev, blk_rq_pos(req)); 2283 end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd)); 2284 if (bad_lba < start_lba || bad_lba >= end_lba) 2285 return 0; 2286 2287 /* 2288 * resid is optional but mostly filled in. When it's unused, 2289 * its value is zero, so we assume the whole buffer transferred 2290 */ 2291 transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd); 2292 2293 /* This computation should always be done in terms of the 2294 * resolution of the device's medium. 2295 */ 2296 good_bytes = logical_to_bytes(sdev, bad_lba - start_lba); 2297 2298 return min(good_bytes, transferred); 2299 } 2300 2301 /** 2302 * sd_done - bottom half handler: called when the lower level 2303 * driver has completed (successfully or otherwise) a scsi command. 2304 * @SCpnt: mid-level's per command structure. 2305 * 2306 * Note: potentially run from within an ISR. Must not block. 2307 **/ 2308 static int sd_done(struct scsi_cmnd *SCpnt) 2309 { 2310 int result = SCpnt->result; 2311 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt); 2312 unsigned int sector_size = SCpnt->device->sector_size; 2313 unsigned int resid; 2314 struct scsi_sense_hdr sshdr; 2315 struct request *req = scsi_cmd_to_rq(SCpnt); 2316 struct scsi_disk *sdkp = scsi_disk(req->q->disk); 2317 int sense_valid = 0; 2318 int sense_deferred = 0; 2319 2320 switch (req_op(req)) { 2321 case REQ_OP_DISCARD: 2322 case REQ_OP_WRITE_ZEROES: 2323 case REQ_OP_ZONE_RESET: 2324 case REQ_OP_ZONE_RESET_ALL: 2325 case REQ_OP_ZONE_OPEN: 2326 case REQ_OP_ZONE_CLOSE: 2327 case REQ_OP_ZONE_FINISH: 2328 if (!result) { 2329 good_bytes = blk_rq_bytes(req); 2330 scsi_set_resid(SCpnt, 0); 2331 } else { 2332 good_bytes = 0; 2333 scsi_set_resid(SCpnt, blk_rq_bytes(req)); 2334 } 2335 break; 2336 default: 2337 /* 2338 * In case of bogus fw or device, we could end up having 2339 * an unaligned partial completion. Check this here and force 2340 * alignment. 2341 */ 2342 resid = scsi_get_resid(SCpnt); 2343 if (resid & (sector_size - 1)) { 2344 sd_printk(KERN_INFO, sdkp, 2345 "Unaligned partial completion (resid=%u, sector_sz=%u)\n", 2346 resid, sector_size); 2347 scsi_print_command(SCpnt); 2348 resid = min(scsi_bufflen(SCpnt), 2349 round_up(resid, sector_size)); 2350 scsi_set_resid(SCpnt, resid); 2351 } 2352 } 2353 2354 if (result) { 2355 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr); 2356 if (sense_valid) 2357 sense_deferred = scsi_sense_is_deferred(&sshdr); 2358 } 2359 sdkp->medium_access_timed_out = 0; 2360 2361 if (!scsi_status_is_check_condition(result) && 2362 (!sense_valid || sense_deferred)) 2363 goto out; 2364 2365 switch (sshdr.sense_key) { 2366 case HARDWARE_ERROR: 2367 case MEDIUM_ERROR: 2368 good_bytes = sd_completed_bytes(SCpnt); 2369 break; 2370 case RECOVERED_ERROR: 2371 good_bytes = scsi_bufflen(SCpnt); 2372 break; 2373 case NO_SENSE: 2374 /* This indicates a false check condition, so ignore it. An 2375 * unknown amount of data was transferred so treat it as an 2376 * error. 2377 */ 2378 SCpnt->result = 0; 2379 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 2380 break; 2381 case ABORTED_COMMAND: 2382 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */ 2383 good_bytes = sd_completed_bytes(SCpnt); 2384 break; 2385 case ILLEGAL_REQUEST: 2386 switch (sshdr.asc) { 2387 case 0x10: /* DIX: Host detected corruption */ 2388 good_bytes = sd_completed_bytes(SCpnt); 2389 break; 2390 case 0x20: /* INVALID COMMAND OPCODE */ 2391 case 0x24: /* INVALID FIELD IN CDB */ 2392 switch (SCpnt->cmnd[0]) { 2393 case UNMAP: 2394 sd_disable_discard(sdkp); 2395 break; 2396 case WRITE_SAME_16: 2397 case WRITE_SAME: 2398 if (SCpnt->cmnd[1] & 8) { /* UNMAP */ 2399 sd_disable_discard(sdkp); 2400 } else { 2401 sd_disable_write_same(sdkp); 2402 req->rq_flags |= RQF_QUIET; 2403 } 2404 break; 2405 } 2406 } 2407 break; 2408 default: 2409 break; 2410 } 2411 2412 out: 2413 if (sdkp->device->type == TYPE_ZBC) 2414 good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr); 2415 2416 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt, 2417 "sd_done: completed %d of %d bytes\n", 2418 good_bytes, scsi_bufflen(SCpnt))); 2419 2420 return good_bytes; 2421 } 2422 2423 /* 2424 * spinup disk - called only in sd_revalidate_disk() 2425 */ 2426 static void 2427 sd_spinup_disk(struct scsi_disk *sdkp) 2428 { 2429 static const u8 cmd[10] = { TEST_UNIT_READY }; 2430 unsigned long spintime_expire = 0; 2431 int spintime, sense_valid = 0; 2432 unsigned int the_result; 2433 struct scsi_sense_hdr sshdr; 2434 struct scsi_failure failure_defs[] = { 2435 /* Do not retry Medium Not Present */ 2436 { 2437 .sense = UNIT_ATTENTION, 2438 .asc = 0x3A, 2439 .ascq = SCMD_FAILURE_ASCQ_ANY, 2440 .result = SAM_STAT_CHECK_CONDITION, 2441 }, 2442 { 2443 .sense = NOT_READY, 2444 .asc = 0x3A, 2445 .ascq = SCMD_FAILURE_ASCQ_ANY, 2446 .result = SAM_STAT_CHECK_CONDITION, 2447 }, 2448 /* Retry when scsi_status_is_good would return false 3 times */ 2449 { 2450 .result = SCMD_FAILURE_STAT_ANY, 2451 .allowed = 3, 2452 }, 2453 {} 2454 }; 2455 struct scsi_failures failures = { 2456 .failure_definitions = failure_defs, 2457 }; 2458 const struct scsi_exec_args exec_args = { 2459 .sshdr = &sshdr, 2460 .failures = &failures, 2461 }; 2462 2463 spintime = 0; 2464 2465 /* Spin up drives, as required. Only do this at boot time */ 2466 /* Spinup needs to be done for module loads too. */ 2467 do { 2468 bool media_was_present = sdkp->media_present; 2469 2470 scsi_failures_reset_retries(&failures); 2471 2472 the_result = scsi_execute_cmd(sdkp->device, cmd, REQ_OP_DRV_IN, 2473 NULL, 0, SD_TIMEOUT, 2474 sdkp->max_retries, &exec_args); 2475 2476 2477 if (the_result > 0) { 2478 /* 2479 * If the drive has indicated to us that it doesn't 2480 * have any media in it, don't bother with any more 2481 * polling. 2482 */ 2483 if (media_not_present(sdkp, &sshdr)) { 2484 if (media_was_present) 2485 sd_printk(KERN_NOTICE, sdkp, 2486 "Media removed, stopped polling\n"); 2487 return; 2488 } 2489 sense_valid = scsi_sense_valid(&sshdr); 2490 } 2491 2492 if (!scsi_status_is_check_condition(the_result)) { 2493 /* no sense, TUR either succeeded or failed 2494 * with a status error */ 2495 if(!spintime && !scsi_status_is_good(the_result)) { 2496 sd_print_result(sdkp, "Test Unit Ready failed", 2497 the_result); 2498 } 2499 break; 2500 } 2501 2502 /* 2503 * The device does not want the automatic start to be issued. 2504 */ 2505 if (sdkp->device->no_start_on_add) 2506 break; 2507 2508 if (sense_valid && sshdr.sense_key == NOT_READY) { 2509 if (sshdr.asc == 4 && sshdr.ascq == 3) 2510 break; /* manual intervention required */ 2511 if (sshdr.asc == 4 && sshdr.ascq == 0xb) 2512 break; /* standby */ 2513 if (sshdr.asc == 4 && sshdr.ascq == 0xc) 2514 break; /* unavailable */ 2515 if (sshdr.asc == 4 && sshdr.ascq == 0x1b) 2516 break; /* sanitize in progress */ 2517 if (sshdr.asc == 4 && sshdr.ascq == 0x24) 2518 break; /* depopulation in progress */ 2519 if (sshdr.asc == 4 && sshdr.ascq == 0x25) 2520 break; /* depopulation restoration in progress */ 2521 /* 2522 * Issue command to spin up drive when not ready 2523 */ 2524 if (!spintime) { 2525 /* Return immediately and start spin cycle */ 2526 const u8 start_cmd[10] = { 2527 [0] = START_STOP, 2528 [1] = 1, 2529 [4] = sdkp->device->start_stop_pwr_cond ? 2530 0x11 : 1, 2531 }; 2532 2533 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk..."); 2534 scsi_execute_cmd(sdkp->device, start_cmd, 2535 REQ_OP_DRV_IN, NULL, 0, 2536 SD_TIMEOUT, sdkp->max_retries, 2537 &exec_args); 2538 spintime_expire = jiffies + 100 * HZ; 2539 spintime = 1; 2540 } 2541 /* Wait 1 second for next try */ 2542 msleep(1000); 2543 printk(KERN_CONT "."); 2544 2545 /* 2546 * Wait for USB flash devices with slow firmware. 2547 * Yes, this sense key/ASC combination shouldn't 2548 * occur here. It's characteristic of these devices. 2549 */ 2550 } else if (sense_valid && 2551 sshdr.sense_key == UNIT_ATTENTION && 2552 sshdr.asc == 0x28) { 2553 if (!spintime) { 2554 spintime_expire = jiffies + 5 * HZ; 2555 spintime = 1; 2556 } 2557 /* Wait 1 second for next try */ 2558 msleep(1000); 2559 } else { 2560 /* we don't understand the sense code, so it's 2561 * probably pointless to loop */ 2562 if(!spintime) { 2563 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n"); 2564 sd_print_sense_hdr(sdkp, &sshdr); 2565 } 2566 break; 2567 } 2568 2569 } while (spintime && time_before_eq(jiffies, spintime_expire)); 2570 2571 if (spintime) { 2572 if (scsi_status_is_good(the_result)) 2573 printk(KERN_CONT "ready\n"); 2574 else 2575 printk(KERN_CONT "not responding...\n"); 2576 } 2577 } 2578 2579 /* 2580 * Determine whether disk supports Data Integrity Field. 2581 */ 2582 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer) 2583 { 2584 struct scsi_device *sdp = sdkp->device; 2585 u8 type; 2586 2587 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) { 2588 sdkp->protection_type = 0; 2589 return 0; 2590 } 2591 2592 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */ 2593 2594 if (type > T10_PI_TYPE3_PROTECTION) { 2595 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \ 2596 " protection type %u. Disabling disk!\n", 2597 type); 2598 sdkp->protection_type = 0; 2599 return -ENODEV; 2600 } 2601 2602 sdkp->protection_type = type; 2603 2604 return 0; 2605 } 2606 2607 static void sd_config_protection(struct scsi_disk *sdkp, 2608 struct queue_limits *lim) 2609 { 2610 struct scsi_device *sdp = sdkp->device; 2611 2612 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY)) 2613 sd_dif_config_host(sdkp, lim); 2614 2615 if (!sdkp->protection_type) 2616 return; 2617 2618 if (!scsi_host_dif_capable(sdp->host, sdkp->protection_type)) { 2619 sd_first_printk(KERN_NOTICE, sdkp, 2620 "Disabling DIF Type %u protection\n", 2621 sdkp->protection_type); 2622 sdkp->protection_type = 0; 2623 } 2624 2625 sd_first_printk(KERN_NOTICE, sdkp, "Enabling DIF Type %u protection\n", 2626 sdkp->protection_type); 2627 } 2628 2629 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp, 2630 struct scsi_sense_hdr *sshdr, int sense_valid, 2631 int the_result) 2632 { 2633 if (sense_valid) 2634 sd_print_sense_hdr(sdkp, sshdr); 2635 else 2636 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n"); 2637 2638 /* 2639 * Set dirty bit for removable devices if not ready - 2640 * sometimes drives will not report this properly. 2641 */ 2642 if (sdp->removable && 2643 sense_valid && sshdr->sense_key == NOT_READY) 2644 set_media_not_present(sdkp); 2645 2646 /* 2647 * We used to set media_present to 0 here to indicate no media 2648 * in the drive, but some drives fail read capacity even with 2649 * media present, so we can't do that. 2650 */ 2651 sdkp->capacity = 0; /* unknown mapped to zero - as usual */ 2652 } 2653 2654 #define RC16_LEN 32 2655 #if RC16_LEN > SD_BUF_SIZE 2656 #error RC16_LEN must not be more than SD_BUF_SIZE 2657 #endif 2658 2659 #define READ_CAPACITY_RETRIES_ON_RESET 10 2660 2661 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp, 2662 struct queue_limits *lim, unsigned char *buffer) 2663 { 2664 unsigned char cmd[16]; 2665 struct scsi_sense_hdr sshdr; 2666 const struct scsi_exec_args exec_args = { 2667 .sshdr = &sshdr, 2668 }; 2669 int sense_valid = 0; 2670 int the_result; 2671 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2672 unsigned int alignment; 2673 unsigned long long lba; 2674 unsigned sector_size; 2675 2676 if (sdp->no_read_capacity_16) 2677 return -EINVAL; 2678 2679 do { 2680 memset(cmd, 0, 16); 2681 cmd[0] = SERVICE_ACTION_IN_16; 2682 cmd[1] = SAI_READ_CAPACITY_16; 2683 cmd[13] = RC16_LEN; 2684 memset(buffer, 0, RC16_LEN); 2685 2686 the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, 2687 buffer, RC16_LEN, SD_TIMEOUT, 2688 sdkp->max_retries, &exec_args); 2689 if (the_result > 0) { 2690 if (media_not_present(sdkp, &sshdr)) 2691 return -ENODEV; 2692 2693 sense_valid = scsi_sense_valid(&sshdr); 2694 if (sense_valid && 2695 sshdr.sense_key == ILLEGAL_REQUEST && 2696 (sshdr.asc == 0x20 || sshdr.asc == 0x24) && 2697 sshdr.ascq == 0x00) 2698 /* Invalid Command Operation Code or 2699 * Invalid Field in CDB, just retry 2700 * silently with RC10 */ 2701 return -EINVAL; 2702 if (sense_valid && 2703 sshdr.sense_key == UNIT_ATTENTION && 2704 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2705 /* Device reset might occur several times, 2706 * give it one more chance */ 2707 if (--reset_retries > 0) 2708 continue; 2709 } 2710 retries--; 2711 2712 } while (the_result && retries); 2713 2714 if (the_result) { 2715 sd_print_result(sdkp, "Read Capacity(16) failed", the_result); 2716 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2717 return -EINVAL; 2718 } 2719 2720 sector_size = get_unaligned_be32(&buffer[8]); 2721 lba = get_unaligned_be64(&buffer[0]); 2722 2723 if (sd_read_protection_type(sdkp, buffer) < 0) { 2724 sdkp->capacity = 0; 2725 return -ENODEV; 2726 } 2727 2728 /* Logical blocks per physical block exponent */ 2729 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size; 2730 2731 /* RC basis */ 2732 sdkp->rc_basis = (buffer[12] >> 4) & 0x3; 2733 2734 /* Lowest aligned logical block */ 2735 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size; 2736 lim->alignment_offset = alignment; 2737 if (alignment && sdkp->first_scan) 2738 sd_printk(KERN_NOTICE, sdkp, 2739 "physical block alignment offset: %u\n", alignment); 2740 2741 if (buffer[14] & 0x80) { /* LBPME */ 2742 sdkp->lbpme = 1; 2743 2744 if (buffer[14] & 0x40) /* LBPRZ */ 2745 sdkp->lbprz = 1; 2746 } 2747 2748 sdkp->capacity = lba + 1; 2749 return sector_size; 2750 } 2751 2752 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp, 2753 unsigned char *buffer) 2754 { 2755 static const u8 cmd[10] = { READ_CAPACITY }; 2756 struct scsi_sense_hdr sshdr; 2757 struct scsi_failure failure_defs[] = { 2758 /* Do not retry Medium Not Present */ 2759 { 2760 .sense = UNIT_ATTENTION, 2761 .asc = 0x3A, 2762 .result = SAM_STAT_CHECK_CONDITION, 2763 }, 2764 { 2765 .sense = NOT_READY, 2766 .asc = 0x3A, 2767 .result = SAM_STAT_CHECK_CONDITION, 2768 }, 2769 /* Device reset might occur several times so retry a lot */ 2770 { 2771 .sense = UNIT_ATTENTION, 2772 .asc = 0x29, 2773 .allowed = READ_CAPACITY_RETRIES_ON_RESET, 2774 .result = SAM_STAT_CHECK_CONDITION, 2775 }, 2776 /* Any other error not listed above retry 3 times */ 2777 { 2778 .result = SCMD_FAILURE_RESULT_ANY, 2779 .allowed = 3, 2780 }, 2781 {} 2782 }; 2783 struct scsi_failures failures = { 2784 .failure_definitions = failure_defs, 2785 }; 2786 const struct scsi_exec_args exec_args = { 2787 .sshdr = &sshdr, 2788 .failures = &failures, 2789 }; 2790 int sense_valid = 0; 2791 int the_result; 2792 sector_t lba; 2793 unsigned sector_size; 2794 2795 memset(buffer, 0, 8); 2796 2797 the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, buffer, 2798 8, SD_TIMEOUT, sdkp->max_retries, 2799 &exec_args); 2800 2801 if (the_result > 0) { 2802 sense_valid = scsi_sense_valid(&sshdr); 2803 2804 if (media_not_present(sdkp, &sshdr)) 2805 return -ENODEV; 2806 } 2807 2808 if (the_result) { 2809 sd_print_result(sdkp, "Read Capacity(10) failed", the_result); 2810 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2811 return -EINVAL; 2812 } 2813 2814 sector_size = get_unaligned_be32(&buffer[4]); 2815 lba = get_unaligned_be32(&buffer[0]); 2816 2817 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) { 2818 /* Some buggy (usb cardreader) devices return an lba of 2819 0xffffffff when the want to report a size of 0 (with 2820 which they really mean no media is present) */ 2821 sdkp->capacity = 0; 2822 sdkp->physical_block_size = sector_size; 2823 return sector_size; 2824 } 2825 2826 sdkp->capacity = lba + 1; 2827 sdkp->physical_block_size = sector_size; 2828 return sector_size; 2829 } 2830 2831 static int sd_try_rc16_first(struct scsi_device *sdp) 2832 { 2833 if (sdp->host->max_cmd_len < 16) 2834 return 0; 2835 if (sdp->try_rc_10_first) 2836 return 0; 2837 if (sdp->scsi_level > SCSI_SPC_2) 2838 return 1; 2839 if (scsi_device_protection(sdp)) 2840 return 1; 2841 return 0; 2842 } 2843 2844 /* 2845 * read disk capacity 2846 */ 2847 static void 2848 sd_read_capacity(struct scsi_disk *sdkp, struct queue_limits *lim, 2849 unsigned char *buffer) 2850 { 2851 int sector_size; 2852 struct scsi_device *sdp = sdkp->device; 2853 2854 if (sd_try_rc16_first(sdp)) { 2855 sector_size = read_capacity_16(sdkp, sdp, lim, buffer); 2856 if (sector_size == -EOVERFLOW) 2857 goto got_data; 2858 if (sector_size == -ENODEV) 2859 return; 2860 if (sector_size < 0) 2861 sector_size = read_capacity_10(sdkp, sdp, buffer); 2862 if (sector_size < 0) 2863 return; 2864 } else { 2865 sector_size = read_capacity_10(sdkp, sdp, buffer); 2866 if (sector_size == -EOVERFLOW) 2867 goto got_data; 2868 if (sector_size < 0) 2869 return; 2870 if ((sizeof(sdkp->capacity) > 4) && 2871 (sdkp->capacity > 0xffffffffULL)) { 2872 int old_sector_size = sector_size; 2873 sd_printk(KERN_NOTICE, sdkp, "Very big device. " 2874 "Trying to use READ CAPACITY(16).\n"); 2875 sector_size = read_capacity_16(sdkp, sdp, lim, buffer); 2876 if (sector_size < 0) { 2877 sd_printk(KERN_NOTICE, sdkp, 2878 "Using 0xffffffff as device size\n"); 2879 sdkp->capacity = 1 + (sector_t) 0xffffffff; 2880 sector_size = old_sector_size; 2881 goto got_data; 2882 } 2883 /* Remember that READ CAPACITY(16) succeeded */ 2884 sdp->try_rc_10_first = 0; 2885 } 2886 } 2887 2888 /* Some devices are known to return the total number of blocks, 2889 * not the highest block number. Some devices have versions 2890 * which do this and others which do not. Some devices we might 2891 * suspect of doing this but we don't know for certain. 2892 * 2893 * If we know the reported capacity is wrong, decrement it. If 2894 * we can only guess, then assume the number of blocks is even 2895 * (usually true but not always) and err on the side of lowering 2896 * the capacity. 2897 */ 2898 if (sdp->fix_capacity || 2899 (sdp->guess_capacity && (sdkp->capacity & 0x01))) { 2900 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count " 2901 "from its reported value: %llu\n", 2902 (unsigned long long) sdkp->capacity); 2903 --sdkp->capacity; 2904 } 2905 2906 got_data: 2907 if (sector_size == 0) { 2908 sector_size = 512; 2909 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, " 2910 "assuming 512.\n"); 2911 } 2912 2913 if (sector_size != 512 && 2914 sector_size != 1024 && 2915 sector_size != 2048 && 2916 sector_size != 4096) { 2917 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n", 2918 sector_size); 2919 /* 2920 * The user might want to re-format the drive with 2921 * a supported sectorsize. Once this happens, it 2922 * would be relatively trivial to set the thing up. 2923 * For this reason, we leave the thing in the table. 2924 */ 2925 sdkp->capacity = 0; 2926 /* 2927 * set a bogus sector size so the normal read/write 2928 * logic in the block layer will eventually refuse any 2929 * request on this device without tripping over power 2930 * of two sector size assumptions 2931 */ 2932 sector_size = 512; 2933 } 2934 lim->logical_block_size = sector_size; 2935 lim->physical_block_size = sdkp->physical_block_size; 2936 sdkp->device->sector_size = sector_size; 2937 2938 if (sdkp->capacity > 0xffffffff) 2939 sdp->use_16_for_rw = 1; 2940 2941 } 2942 2943 /* 2944 * Print disk capacity 2945 */ 2946 static void 2947 sd_print_capacity(struct scsi_disk *sdkp, 2948 sector_t old_capacity) 2949 { 2950 int sector_size = sdkp->device->sector_size; 2951 char cap_str_2[10], cap_str_10[10]; 2952 2953 if (!sdkp->first_scan && old_capacity == sdkp->capacity) 2954 return; 2955 2956 string_get_size(sdkp->capacity, sector_size, 2957 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2)); 2958 string_get_size(sdkp->capacity, sector_size, 2959 STRING_UNITS_10, cap_str_10, sizeof(cap_str_10)); 2960 2961 sd_printk(KERN_NOTICE, sdkp, 2962 "%llu %d-byte logical blocks: (%s/%s)\n", 2963 (unsigned long long)sdkp->capacity, 2964 sector_size, cap_str_10, cap_str_2); 2965 2966 if (sdkp->physical_block_size != sector_size) 2967 sd_printk(KERN_NOTICE, sdkp, 2968 "%u-byte physical blocks\n", 2969 sdkp->physical_block_size); 2970 } 2971 2972 /* called with buffer of length 512 */ 2973 static inline int 2974 sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage, 2975 unsigned char *buffer, int len, struct scsi_mode_data *data, 2976 struct scsi_sense_hdr *sshdr) 2977 { 2978 /* 2979 * If we must use MODE SENSE(10), make sure that the buffer length 2980 * is at least 8 bytes so that the mode sense header fits. 2981 */ 2982 if (sdkp->device->use_10_for_ms && len < 8) 2983 len = 8; 2984 2985 return scsi_mode_sense(sdkp->device, dbd, modepage, 0, buffer, len, 2986 SD_TIMEOUT, sdkp->max_retries, data, sshdr); 2987 } 2988 2989 /* 2990 * read write protect setting, if possible - called only in sd_revalidate_disk() 2991 * called with buffer of length SD_BUF_SIZE 2992 */ 2993 static void 2994 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer) 2995 { 2996 int res; 2997 struct scsi_device *sdp = sdkp->device; 2998 struct scsi_mode_data data; 2999 int old_wp = sdkp->write_prot; 3000 3001 set_disk_ro(sdkp->disk, 0); 3002 if (sdp->skip_ms_page_3f) { 3003 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n"); 3004 return; 3005 } 3006 3007 if (sdp->use_192_bytes_for_3f) { 3008 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL); 3009 } else { 3010 /* 3011 * First attempt: ask for all pages (0x3F), but only 4 bytes. 3012 * We have to start carefully: some devices hang if we ask 3013 * for more than is available. 3014 */ 3015 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL); 3016 3017 /* 3018 * Second attempt: ask for page 0 When only page 0 is 3019 * implemented, a request for page 3F may return Sense Key 3020 * 5: Illegal Request, Sense Code 24: Invalid field in 3021 * CDB. 3022 */ 3023 if (res < 0) 3024 res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL); 3025 3026 /* 3027 * Third attempt: ask 255 bytes, as we did earlier. 3028 */ 3029 if (res < 0) 3030 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255, 3031 &data, NULL); 3032 } 3033 3034 if (res < 0) { 3035 sd_first_printk(KERN_WARNING, sdkp, 3036 "Test WP failed, assume Write Enabled\n"); 3037 } else { 3038 sdkp->write_prot = ((data.device_specific & 0x80) != 0); 3039 set_disk_ro(sdkp->disk, sdkp->write_prot); 3040 if (sdkp->first_scan || old_wp != sdkp->write_prot) { 3041 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n", 3042 sdkp->write_prot ? "on" : "off"); 3043 sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer); 3044 } 3045 } 3046 } 3047 3048 /* 3049 * sd_read_cache_type - called only from sd_revalidate_disk() 3050 * called with buffer of length SD_BUF_SIZE 3051 */ 3052 static void 3053 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer) 3054 { 3055 int len = 0, res; 3056 struct scsi_device *sdp = sdkp->device; 3057 3058 int dbd; 3059 int modepage; 3060 int first_len; 3061 struct scsi_mode_data data; 3062 struct scsi_sense_hdr sshdr; 3063 int old_wce = sdkp->WCE; 3064 int old_rcd = sdkp->RCD; 3065 int old_dpofua = sdkp->DPOFUA; 3066 3067 3068 if (sdkp->cache_override) 3069 return; 3070 3071 first_len = 4; 3072 if (sdp->skip_ms_page_8) { 3073 if (sdp->type == TYPE_RBC) 3074 goto defaults; 3075 else { 3076 if (sdp->skip_ms_page_3f) 3077 goto defaults; 3078 modepage = 0x3F; 3079 if (sdp->use_192_bytes_for_3f) 3080 first_len = 192; 3081 dbd = 0; 3082 } 3083 } else if (sdp->type == TYPE_RBC) { 3084 modepage = 6; 3085 dbd = 8; 3086 } else { 3087 modepage = 8; 3088 dbd = 0; 3089 } 3090 3091 /* cautiously ask */ 3092 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len, 3093 &data, &sshdr); 3094 3095 if (res < 0) 3096 goto bad_sense; 3097 3098 if (!data.header_length) { 3099 modepage = 6; 3100 first_len = 0; 3101 sd_first_printk(KERN_ERR, sdkp, 3102 "Missing header in MODE_SENSE response\n"); 3103 } 3104 3105 /* that went OK, now ask for the proper length */ 3106 len = data.length; 3107 3108 /* 3109 * We're only interested in the first three bytes, actually. 3110 * But the data cache page is defined for the first 20. 3111 */ 3112 if (len < 3) 3113 goto bad_sense; 3114 else if (len > SD_BUF_SIZE) { 3115 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter " 3116 "data from %d to %d bytes\n", len, SD_BUF_SIZE); 3117 len = SD_BUF_SIZE; 3118 } 3119 if (modepage == 0x3F && sdp->use_192_bytes_for_3f) 3120 len = 192; 3121 3122 /* Get the data */ 3123 if (len > first_len) 3124 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len, 3125 &data, &sshdr); 3126 3127 if (!res) { 3128 int offset = data.header_length + data.block_descriptor_length; 3129 3130 while (offset < len) { 3131 u8 page_code = buffer[offset] & 0x3F; 3132 u8 spf = buffer[offset] & 0x40; 3133 3134 if (page_code == 8 || page_code == 6) { 3135 /* We're interested only in the first 3 bytes. 3136 */ 3137 if (len - offset <= 2) { 3138 sd_first_printk(KERN_ERR, sdkp, 3139 "Incomplete mode parameter " 3140 "data\n"); 3141 goto defaults; 3142 } else { 3143 modepage = page_code; 3144 goto Page_found; 3145 } 3146 } else { 3147 /* Go to the next page */ 3148 if (spf && len - offset > 3) 3149 offset += 4 + (buffer[offset+2] << 8) + 3150 buffer[offset+3]; 3151 else if (!spf && len - offset > 1) 3152 offset += 2 + buffer[offset+1]; 3153 else { 3154 sd_first_printk(KERN_ERR, sdkp, 3155 "Incomplete mode " 3156 "parameter data\n"); 3157 goto defaults; 3158 } 3159 } 3160 } 3161 3162 sd_first_printk(KERN_WARNING, sdkp, 3163 "No Caching mode page found\n"); 3164 goto defaults; 3165 3166 Page_found: 3167 if (modepage == 8) { 3168 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0); 3169 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0); 3170 } else { 3171 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0); 3172 sdkp->RCD = 0; 3173 } 3174 3175 sdkp->DPOFUA = (data.device_specific & 0x10) != 0; 3176 if (sdp->broken_fua) { 3177 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n"); 3178 sdkp->DPOFUA = 0; 3179 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw && 3180 !sdkp->device->use_16_for_rw) { 3181 sd_first_printk(KERN_NOTICE, sdkp, 3182 "Uses READ/WRITE(6), disabling FUA\n"); 3183 sdkp->DPOFUA = 0; 3184 } 3185 3186 /* No cache flush allowed for write protected devices */ 3187 if (sdkp->WCE && sdkp->write_prot) 3188 sdkp->WCE = 0; 3189 3190 if (sdkp->first_scan || old_wce != sdkp->WCE || 3191 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA) 3192 sd_printk(KERN_NOTICE, sdkp, 3193 "Write cache: %s, read cache: %s, %s\n", 3194 sdkp->WCE ? "enabled" : "disabled", 3195 sdkp->RCD ? "disabled" : "enabled", 3196 sdkp->DPOFUA ? "supports DPO and FUA" 3197 : "doesn't support DPO or FUA"); 3198 3199 return; 3200 } 3201 3202 bad_sense: 3203 if (res == -EIO && scsi_sense_valid(&sshdr) && 3204 sshdr.sense_key == ILLEGAL_REQUEST && 3205 sshdr.asc == 0x24 && sshdr.ascq == 0x0) 3206 /* Invalid field in CDB */ 3207 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n"); 3208 else 3209 sd_first_printk(KERN_ERR, sdkp, 3210 "Asking for cache data failed\n"); 3211 3212 defaults: 3213 if (sdp->wce_default_on) { 3214 sd_first_printk(KERN_NOTICE, sdkp, 3215 "Assuming drive cache: write back\n"); 3216 sdkp->WCE = 1; 3217 } else { 3218 sd_first_printk(KERN_WARNING, sdkp, 3219 "Assuming drive cache: write through\n"); 3220 sdkp->WCE = 0; 3221 } 3222 sdkp->RCD = 0; 3223 sdkp->DPOFUA = 0; 3224 } 3225 3226 static bool sd_is_perm_stream(struct scsi_disk *sdkp, unsigned int stream_id) 3227 { 3228 u8 cdb[16] = { SERVICE_ACTION_IN_16, SAI_GET_STREAM_STATUS }; 3229 struct { 3230 struct scsi_stream_status_header h; 3231 struct scsi_stream_status s; 3232 } buf; 3233 struct scsi_device *sdev = sdkp->device; 3234 struct scsi_sense_hdr sshdr; 3235 const struct scsi_exec_args exec_args = { 3236 .sshdr = &sshdr, 3237 }; 3238 int res; 3239 3240 put_unaligned_be16(stream_id, &cdb[4]); 3241 put_unaligned_be32(sizeof(buf), &cdb[10]); 3242 3243 res = scsi_execute_cmd(sdev, cdb, REQ_OP_DRV_IN, &buf, sizeof(buf), 3244 SD_TIMEOUT, sdkp->max_retries, &exec_args); 3245 if (res < 0) 3246 return false; 3247 if (scsi_status_is_check_condition(res) && scsi_sense_valid(&sshdr)) 3248 sd_print_sense_hdr(sdkp, &sshdr); 3249 if (res) 3250 return false; 3251 if (get_unaligned_be32(&buf.h.len) < sizeof(struct scsi_stream_status)) 3252 return false; 3253 return buf.s.perm; 3254 } 3255 3256 static void sd_read_io_hints(struct scsi_disk *sdkp, unsigned char *buffer) 3257 { 3258 struct scsi_device *sdp = sdkp->device; 3259 const struct scsi_io_group_descriptor *desc, *start, *end; 3260 u16 permanent_stream_count_old; 3261 struct scsi_sense_hdr sshdr; 3262 struct scsi_mode_data data; 3263 int res; 3264 3265 if (sdp->sdev_bflags & BLIST_SKIP_IO_HINTS) 3266 return; 3267 3268 res = scsi_mode_sense(sdp, /*dbd=*/0x8, /*modepage=*/0x0a, 3269 /*subpage=*/0x05, buffer, SD_BUF_SIZE, SD_TIMEOUT, 3270 sdkp->max_retries, &data, &sshdr); 3271 if (res < 0) 3272 return; 3273 start = (void *)buffer + data.header_length + 16; 3274 end = (void *)buffer + ALIGN_DOWN(data.header_length + data.length, 3275 sizeof(*end)); 3276 /* 3277 * From "SBC-5 Constrained Streams with Data Lifetimes": Device severs 3278 * should assign the lowest numbered stream identifiers to permanent 3279 * streams. 3280 */ 3281 for (desc = start; desc < end; desc++) 3282 if (!desc->st_enble || !sd_is_perm_stream(sdkp, desc - start)) 3283 break; 3284 permanent_stream_count_old = sdkp->permanent_stream_count; 3285 sdkp->permanent_stream_count = desc - start; 3286 if (sdkp->rscs && sdkp->permanent_stream_count < 2) 3287 sd_printk(KERN_INFO, sdkp, 3288 "Unexpected: RSCS has been set and the permanent stream count is %u\n", 3289 sdkp->permanent_stream_count); 3290 else if (sdkp->permanent_stream_count != permanent_stream_count_old) 3291 sd_printk(KERN_INFO, sdkp, "permanent stream count = %d\n", 3292 sdkp->permanent_stream_count); 3293 } 3294 3295 /* 3296 * The ATO bit indicates whether the DIF application tag is available 3297 * for use by the operating system. 3298 */ 3299 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer) 3300 { 3301 int res, offset; 3302 struct scsi_device *sdp = sdkp->device; 3303 struct scsi_mode_data data; 3304 struct scsi_sense_hdr sshdr; 3305 3306 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 3307 return; 3308 3309 if (sdkp->protection_type == 0) 3310 return; 3311 3312 res = scsi_mode_sense(sdp, 1, 0x0a, 0, buffer, 36, SD_TIMEOUT, 3313 sdkp->max_retries, &data, &sshdr); 3314 3315 if (res < 0 || !data.header_length || 3316 data.length < 6) { 3317 sd_first_printk(KERN_WARNING, sdkp, 3318 "getting Control mode page failed, assume no ATO\n"); 3319 3320 if (res == -EIO && scsi_sense_valid(&sshdr)) 3321 sd_print_sense_hdr(sdkp, &sshdr); 3322 3323 return; 3324 } 3325 3326 offset = data.header_length + data.block_descriptor_length; 3327 3328 if ((buffer[offset] & 0x3f) != 0x0a) { 3329 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n"); 3330 return; 3331 } 3332 3333 if ((buffer[offset + 5] & 0x80) == 0) 3334 return; 3335 3336 sdkp->ATO = 1; 3337 3338 return; 3339 } 3340 3341 static unsigned int sd_discard_mode(struct scsi_disk *sdkp) 3342 { 3343 if (!sdkp->lbpme) 3344 return SD_LBP_FULL; 3345 3346 if (!sdkp->lbpvpd) { 3347 /* LBP VPD page not provided */ 3348 if (sdkp->max_unmap_blocks) 3349 return SD_LBP_UNMAP; 3350 return SD_LBP_WS16; 3351 } 3352 3353 /* LBP VPD page tells us what to use */ 3354 if (sdkp->lbpu && sdkp->max_unmap_blocks) 3355 return SD_LBP_UNMAP; 3356 if (sdkp->lbpws) 3357 return SD_LBP_WS16; 3358 if (sdkp->lbpws10) 3359 return SD_LBP_WS10; 3360 return SD_LBP_DISABLE; 3361 } 3362 3363 /* 3364 * Query disk device for preferred I/O sizes. 3365 */ 3366 static void sd_read_block_limits(struct scsi_disk *sdkp, 3367 struct queue_limits *lim) 3368 { 3369 struct scsi_vpd *vpd; 3370 3371 rcu_read_lock(); 3372 3373 vpd = rcu_dereference(sdkp->device->vpd_pgb0); 3374 if (!vpd || vpd->len < 16) 3375 goto out; 3376 3377 sdkp->min_xfer_blocks = get_unaligned_be16(&vpd->data[6]); 3378 sdkp->max_xfer_blocks = get_unaligned_be32(&vpd->data[8]); 3379 sdkp->opt_xfer_blocks = get_unaligned_be32(&vpd->data[12]); 3380 3381 if (vpd->len >= 64) { 3382 unsigned int lba_count, desc_count; 3383 3384 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&vpd->data[36]); 3385 3386 if (!sdkp->lbpme) 3387 goto config_atomic; 3388 3389 lba_count = get_unaligned_be32(&vpd->data[20]); 3390 desc_count = get_unaligned_be32(&vpd->data[24]); 3391 3392 if (lba_count && desc_count) 3393 sdkp->max_unmap_blocks = lba_count; 3394 3395 sdkp->unmap_granularity = get_unaligned_be32(&vpd->data[28]); 3396 3397 if (vpd->data[32] & 0x80) 3398 sdkp->unmap_alignment = 3399 get_unaligned_be32(&vpd->data[32]) & ~(1 << 31); 3400 3401 config_atomic: 3402 sdkp->max_atomic = get_unaligned_be32(&vpd->data[44]); 3403 sdkp->atomic_alignment = get_unaligned_be32(&vpd->data[48]); 3404 sdkp->atomic_granularity = get_unaligned_be32(&vpd->data[52]); 3405 sdkp->max_atomic_with_boundary = get_unaligned_be32(&vpd->data[56]); 3406 sdkp->max_atomic_boundary = get_unaligned_be32(&vpd->data[60]); 3407 3408 sd_config_atomic(sdkp, lim); 3409 } 3410 3411 out: 3412 rcu_read_unlock(); 3413 } 3414 3415 /* Parse the Block Limits Extension VPD page (0xb7) */ 3416 static void sd_read_block_limits_ext(struct scsi_disk *sdkp) 3417 { 3418 struct scsi_vpd *vpd; 3419 3420 rcu_read_lock(); 3421 vpd = rcu_dereference(sdkp->device->vpd_pgb7); 3422 if (vpd && vpd->len >= 6) 3423 sdkp->rscs = vpd->data[5] & 1; 3424 rcu_read_unlock(); 3425 } 3426 3427 /* Query block device characteristics */ 3428 static void sd_read_block_characteristics(struct scsi_disk *sdkp, 3429 struct queue_limits *lim) 3430 { 3431 struct scsi_vpd *vpd; 3432 u16 rot; 3433 3434 rcu_read_lock(); 3435 vpd = rcu_dereference(sdkp->device->vpd_pgb1); 3436 3437 if (!vpd || vpd->len <= 8) { 3438 rcu_read_unlock(); 3439 return; 3440 } 3441 3442 rot = get_unaligned_be16(&vpd->data[4]); 3443 sdkp->zoned = (vpd->data[8] >> 4) & 3; 3444 rcu_read_unlock(); 3445 3446 if (rot == 1) 3447 lim->features &= ~(BLK_FEAT_ROTATIONAL | BLK_FEAT_ADD_RANDOM); 3448 3449 if (!sdkp->first_scan) 3450 return; 3451 3452 if (sdkp->device->type == TYPE_ZBC) 3453 sd_printk(KERN_NOTICE, sdkp, "Host-managed zoned block device\n"); 3454 else if (sdkp->zoned == 1) 3455 sd_printk(KERN_NOTICE, sdkp, "Host-aware SMR disk used as regular disk\n"); 3456 else if (sdkp->zoned == 2) 3457 sd_printk(KERN_NOTICE, sdkp, "Drive-managed SMR disk\n"); 3458 } 3459 3460 /** 3461 * sd_read_block_provisioning - Query provisioning VPD page 3462 * @sdkp: disk to query 3463 */ 3464 static void sd_read_block_provisioning(struct scsi_disk *sdkp) 3465 { 3466 struct scsi_vpd *vpd; 3467 3468 if (sdkp->lbpme == 0) 3469 return; 3470 3471 rcu_read_lock(); 3472 vpd = rcu_dereference(sdkp->device->vpd_pgb2); 3473 3474 if (!vpd || vpd->len < 8) { 3475 rcu_read_unlock(); 3476 return; 3477 } 3478 3479 sdkp->lbpvpd = 1; 3480 sdkp->lbpu = (vpd->data[5] >> 7) & 1; /* UNMAP */ 3481 sdkp->lbpws = (vpd->data[5] >> 6) & 1; /* WRITE SAME(16) w/ UNMAP */ 3482 sdkp->lbpws10 = (vpd->data[5] >> 5) & 1; /* WRITE SAME(10) w/ UNMAP */ 3483 rcu_read_unlock(); 3484 } 3485 3486 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer) 3487 { 3488 struct scsi_device *sdev = sdkp->device; 3489 3490 if (sdev->host->no_write_same) { 3491 sdev->no_write_same = 1; 3492 3493 return; 3494 } 3495 3496 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY, 0) < 0) { 3497 sdev->no_report_opcodes = 1; 3498 3499 /* 3500 * Disable WRITE SAME if REPORT SUPPORTED OPERATION CODES is 3501 * unsupported and this is an ATA device. 3502 */ 3503 if (sdev->is_ata) 3504 sdev->no_write_same = 1; 3505 } 3506 3507 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16, 0) == 1) 3508 sdkp->ws16 = 1; 3509 3510 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME, 0) == 1) 3511 sdkp->ws10 = 1; 3512 } 3513 3514 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer) 3515 { 3516 struct scsi_device *sdev = sdkp->device; 3517 3518 if (!sdev->security_supported) 3519 return; 3520 3521 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3522 SECURITY_PROTOCOL_IN, 0) == 1 && 3523 scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3524 SECURITY_PROTOCOL_OUT, 0) == 1) 3525 sdkp->security = 1; 3526 } 3527 3528 static inline sector_t sd64_to_sectors(struct scsi_disk *sdkp, u8 *buf) 3529 { 3530 return logical_to_sectors(sdkp->device, get_unaligned_be64(buf)); 3531 } 3532 3533 /** 3534 * sd_read_cpr - Query concurrent positioning ranges 3535 * @sdkp: disk to query 3536 */ 3537 static void sd_read_cpr(struct scsi_disk *sdkp) 3538 { 3539 struct blk_independent_access_ranges *iars = NULL; 3540 unsigned char *buffer = NULL; 3541 unsigned int nr_cpr = 0; 3542 int i, vpd_len, buf_len = SD_BUF_SIZE; 3543 u8 *desc; 3544 3545 /* 3546 * We need to have the capacity set first for the block layer to be 3547 * able to check the ranges. 3548 */ 3549 if (sdkp->first_scan) 3550 return; 3551 3552 if (!sdkp->capacity) 3553 goto out; 3554 3555 /* 3556 * Concurrent Positioning Ranges VPD: there can be at most 256 ranges, 3557 * leading to a maximum page size of 64 + 256*32 bytes. 3558 */ 3559 buf_len = 64 + 256*32; 3560 buffer = kmalloc(buf_len, GFP_KERNEL); 3561 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb9, buffer, buf_len)) 3562 goto out; 3563 3564 /* We must have at least a 64B header and one 32B range descriptor */ 3565 vpd_len = get_unaligned_be16(&buffer[2]) + 4; 3566 if (vpd_len > buf_len || vpd_len < 64 + 32 || (vpd_len & 31)) { 3567 sd_printk(KERN_ERR, sdkp, 3568 "Invalid Concurrent Positioning Ranges VPD page\n"); 3569 goto out; 3570 } 3571 3572 nr_cpr = (vpd_len - 64) / 32; 3573 if (nr_cpr == 1) { 3574 nr_cpr = 0; 3575 goto out; 3576 } 3577 3578 iars = disk_alloc_independent_access_ranges(sdkp->disk, nr_cpr); 3579 if (!iars) { 3580 nr_cpr = 0; 3581 goto out; 3582 } 3583 3584 desc = &buffer[64]; 3585 for (i = 0; i < nr_cpr; i++, desc += 32) { 3586 if (desc[0] != i) { 3587 sd_printk(KERN_ERR, sdkp, 3588 "Invalid Concurrent Positioning Range number\n"); 3589 nr_cpr = 0; 3590 break; 3591 } 3592 3593 iars->ia_range[i].sector = sd64_to_sectors(sdkp, desc + 8); 3594 iars->ia_range[i].nr_sectors = sd64_to_sectors(sdkp, desc + 16); 3595 } 3596 3597 out: 3598 disk_set_independent_access_ranges(sdkp->disk, iars); 3599 if (nr_cpr && sdkp->nr_actuators != nr_cpr) { 3600 sd_printk(KERN_NOTICE, sdkp, 3601 "%u concurrent positioning ranges\n", nr_cpr); 3602 sdkp->nr_actuators = nr_cpr; 3603 } 3604 3605 kfree(buffer); 3606 } 3607 3608 static bool sd_validate_min_xfer_size(struct scsi_disk *sdkp) 3609 { 3610 struct scsi_device *sdp = sdkp->device; 3611 unsigned int min_xfer_bytes = 3612 logical_to_bytes(sdp, sdkp->min_xfer_blocks); 3613 3614 if (sdkp->min_xfer_blocks == 0) 3615 return false; 3616 3617 if (min_xfer_bytes & (sdkp->physical_block_size - 1)) { 3618 sd_first_printk(KERN_WARNING, sdkp, 3619 "Preferred minimum I/O size %u bytes not a " \ 3620 "multiple of physical block size (%u bytes)\n", 3621 min_xfer_bytes, sdkp->physical_block_size); 3622 sdkp->min_xfer_blocks = 0; 3623 return false; 3624 } 3625 3626 sd_first_printk(KERN_INFO, sdkp, "Preferred minimum I/O size %u bytes\n", 3627 min_xfer_bytes); 3628 return true; 3629 } 3630 3631 /* 3632 * Determine the device's preferred I/O size for reads and writes 3633 * unless the reported value is unreasonably small, large, not a 3634 * multiple of the physical block size, or simply garbage. 3635 */ 3636 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp, 3637 unsigned int dev_max) 3638 { 3639 struct scsi_device *sdp = sdkp->device; 3640 unsigned int opt_xfer_bytes = 3641 logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 3642 unsigned int min_xfer_bytes = 3643 logical_to_bytes(sdp, sdkp->min_xfer_blocks); 3644 3645 if (sdkp->opt_xfer_blocks == 0) 3646 return false; 3647 3648 if (sdkp->opt_xfer_blocks > dev_max) { 3649 sd_first_printk(KERN_WARNING, sdkp, 3650 "Optimal transfer size %u logical blocks " \ 3651 "> dev_max (%u logical blocks)\n", 3652 sdkp->opt_xfer_blocks, dev_max); 3653 return false; 3654 } 3655 3656 if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) { 3657 sd_first_printk(KERN_WARNING, sdkp, 3658 "Optimal transfer size %u logical blocks " \ 3659 "> sd driver limit (%u logical blocks)\n", 3660 sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS); 3661 return false; 3662 } 3663 3664 if (opt_xfer_bytes < PAGE_SIZE) { 3665 sd_first_printk(KERN_WARNING, sdkp, 3666 "Optimal transfer size %u bytes < " \ 3667 "PAGE_SIZE (%u bytes)\n", 3668 opt_xfer_bytes, (unsigned int)PAGE_SIZE); 3669 return false; 3670 } 3671 3672 if (min_xfer_bytes && opt_xfer_bytes % min_xfer_bytes) { 3673 sd_first_printk(KERN_WARNING, sdkp, 3674 "Optimal transfer size %u bytes not a " \ 3675 "multiple of preferred minimum block " \ 3676 "size (%u bytes)\n", 3677 opt_xfer_bytes, min_xfer_bytes); 3678 return false; 3679 } 3680 3681 if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) { 3682 sd_first_printk(KERN_WARNING, sdkp, 3683 "Optimal transfer size %u bytes not a " \ 3684 "multiple of physical block size (%u bytes)\n", 3685 opt_xfer_bytes, sdkp->physical_block_size); 3686 return false; 3687 } 3688 3689 sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n", 3690 opt_xfer_bytes); 3691 return true; 3692 } 3693 3694 static void sd_read_block_zero(struct scsi_disk *sdkp) 3695 { 3696 struct scsi_device *sdev = sdkp->device; 3697 unsigned int buf_len = sdev->sector_size; 3698 u8 *buffer, cmd[16] = { }; 3699 3700 buffer = kmalloc(buf_len, GFP_KERNEL); 3701 if (!buffer) 3702 return; 3703 3704 if (sdev->use_16_for_rw) { 3705 cmd[0] = READ_16; 3706 put_unaligned_be64(0, &cmd[2]); /* Logical block address 0 */ 3707 put_unaligned_be32(1, &cmd[10]);/* Transfer 1 logical block */ 3708 } else { 3709 cmd[0] = READ_10; 3710 put_unaligned_be32(0, &cmd[2]); /* Logical block address 0 */ 3711 put_unaligned_be16(1, &cmd[7]); /* Transfer 1 logical block */ 3712 } 3713 3714 scsi_execute_cmd(sdkp->device, cmd, REQ_OP_DRV_IN, buffer, buf_len, 3715 SD_TIMEOUT, sdkp->max_retries, NULL); 3716 kfree(buffer); 3717 } 3718 3719 /** 3720 * sd_revalidate_disk - called the first time a new disk is seen, 3721 * performs disk spin up, read_capacity, etc. 3722 * @disk: struct gendisk we care about 3723 **/ 3724 static void sd_revalidate_disk(struct gendisk *disk) 3725 { 3726 struct scsi_disk *sdkp = scsi_disk(disk); 3727 struct scsi_device *sdp = sdkp->device; 3728 sector_t old_capacity = sdkp->capacity; 3729 struct queue_limits *lim = NULL; 3730 unsigned char *buffer = NULL; 3731 unsigned int dev_max; 3732 int err; 3733 3734 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, 3735 "sd_revalidate_disk\n")); 3736 3737 /* 3738 * If the device is offline, don't try and read capacity or any 3739 * of the other niceties. 3740 */ 3741 if (!scsi_device_online(sdp)) 3742 return; 3743 3744 lim = kmalloc(sizeof(*lim), GFP_KERNEL); 3745 if (!lim) 3746 return; 3747 3748 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL); 3749 if (!buffer) 3750 goto out; 3751 3752 sd_spinup_disk(sdkp); 3753 3754 *lim = queue_limits_start_update(sdkp->disk->queue); 3755 3756 /* 3757 * Without media there is no reason to ask; moreover, some devices 3758 * react badly if we do. 3759 */ 3760 if (sdkp->media_present) { 3761 sd_read_capacity(sdkp, lim, buffer); 3762 /* 3763 * Some USB/UAS devices return generic values for mode pages 3764 * until the media has been accessed. Trigger a READ operation 3765 * to force the device to populate mode pages. 3766 */ 3767 if (sdp->read_before_ms) 3768 sd_read_block_zero(sdkp); 3769 /* 3770 * set the default to rotational. All non-rotational devices 3771 * support the block characteristics VPD page, which will 3772 * cause this to be updated correctly and any device which 3773 * doesn't support it should be treated as rotational. 3774 */ 3775 lim->features |= (BLK_FEAT_ROTATIONAL | BLK_FEAT_ADD_RANDOM); 3776 3777 if (scsi_device_supports_vpd(sdp)) { 3778 sd_read_block_provisioning(sdkp); 3779 sd_read_block_limits(sdkp, lim); 3780 sd_read_block_limits_ext(sdkp); 3781 sd_read_block_characteristics(sdkp, lim); 3782 sd_zbc_read_zones(sdkp, lim, buffer); 3783 } 3784 3785 sd_config_discard(sdkp, lim, sd_discard_mode(sdkp)); 3786 3787 sd_print_capacity(sdkp, old_capacity); 3788 3789 sd_read_write_protect_flag(sdkp, buffer); 3790 sd_read_cache_type(sdkp, buffer); 3791 sd_read_io_hints(sdkp, buffer); 3792 sd_read_app_tag_own(sdkp, buffer); 3793 sd_read_write_same(sdkp, buffer); 3794 sd_read_security(sdkp, buffer); 3795 sd_config_protection(sdkp, lim); 3796 } 3797 3798 /* 3799 * We now have all cache related info, determine how we deal 3800 * with flush requests. 3801 */ 3802 sd_set_flush_flag(sdkp, lim); 3803 3804 /* Initial block count limit based on CDB TRANSFER LENGTH field size. */ 3805 dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS; 3806 3807 /* Some devices report a maximum block count for READ/WRITE requests. */ 3808 dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks); 3809 lim->max_dev_sectors = logical_to_sectors(sdp, dev_max); 3810 3811 if (sd_validate_min_xfer_size(sdkp)) 3812 lim->io_min = logical_to_bytes(sdp, sdkp->min_xfer_blocks); 3813 else 3814 lim->io_min = 0; 3815 3816 /* 3817 * Limit default to SCSI host optimal sector limit if set. There may be 3818 * an impact on performance for when the size of a request exceeds this 3819 * host limit. 3820 */ 3821 lim->io_opt = sdp->host->opt_sectors << SECTOR_SHIFT; 3822 if (sd_validate_opt_xfer_size(sdkp, dev_max)) { 3823 lim->io_opt = min_not_zero(lim->io_opt, 3824 logical_to_bytes(sdp, sdkp->opt_xfer_blocks)); 3825 } 3826 3827 sdkp->first_scan = 0; 3828 3829 set_capacity_and_notify(disk, logical_to_sectors(sdp, sdkp->capacity)); 3830 sd_config_write_same(sdkp, lim); 3831 3832 err = queue_limits_commit_update_frozen(sdkp->disk->queue, lim); 3833 if (err) 3834 goto out; 3835 3836 /* 3837 * Query concurrent positioning ranges after 3838 * queue_limits_commit_update() unlocked q->limits_lock to avoid 3839 * deadlock with q->sysfs_dir_lock and q->sysfs_lock. 3840 */ 3841 if (sdkp->media_present && scsi_device_supports_vpd(sdp)) 3842 sd_read_cpr(sdkp); 3843 3844 /* 3845 * For a zoned drive, revalidating the zones can be done only once 3846 * the gendisk capacity is set. So if this fails, set back the gendisk 3847 * capacity to 0. 3848 */ 3849 if (sd_zbc_revalidate_zones(sdkp)) 3850 set_capacity_and_notify(disk, 0); 3851 3852 out: 3853 kfree(buffer); 3854 kfree(lim); 3855 3856 } 3857 3858 /** 3859 * sd_unlock_native_capacity - unlock native capacity 3860 * @disk: struct gendisk to set capacity for 3861 * 3862 * Block layer calls this function if it detects that partitions 3863 * on @disk reach beyond the end of the device. If the SCSI host 3864 * implements ->unlock_native_capacity() method, it's invoked to 3865 * give it a chance to adjust the device capacity. 3866 * 3867 * CONTEXT: 3868 * Defined by block layer. Might sleep. 3869 */ 3870 static void sd_unlock_native_capacity(struct gendisk *disk) 3871 { 3872 struct scsi_device *sdev = scsi_disk(disk)->device; 3873 3874 if (sdev->host->hostt->unlock_native_capacity) 3875 sdev->host->hostt->unlock_native_capacity(sdev); 3876 } 3877 3878 /** 3879 * sd_format_disk_name - format disk name 3880 * @prefix: name prefix - ie. "sd" for SCSI disks 3881 * @index: index of the disk to format name for 3882 * @buf: output buffer 3883 * @buflen: length of the output buffer 3884 * 3885 * SCSI disk names starts at sda. The 26th device is sdz and the 3886 * 27th is sdaa. The last one for two lettered suffix is sdzz 3887 * which is followed by sdaaa. 3888 * 3889 * This is basically 26 base counting with one extra 'nil' entry 3890 * at the beginning from the second digit on and can be 3891 * determined using similar method as 26 base conversion with the 3892 * index shifted -1 after each digit is computed. 3893 * 3894 * CONTEXT: 3895 * Don't care. 3896 * 3897 * RETURNS: 3898 * 0 on success, -errno on failure. 3899 */ 3900 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen) 3901 { 3902 const int base = 'z' - 'a' + 1; 3903 char *begin = buf + strlen(prefix); 3904 char *end = buf + buflen; 3905 char *p; 3906 int unit; 3907 3908 p = end - 1; 3909 *p = '\0'; 3910 unit = base; 3911 do { 3912 if (p == begin) 3913 return -EINVAL; 3914 *--p = 'a' + (index % unit); 3915 index = (index / unit) - 1; 3916 } while (index >= 0); 3917 3918 memmove(begin, p, end - p); 3919 memcpy(buf, prefix, strlen(prefix)); 3920 3921 return 0; 3922 } 3923 3924 /** 3925 * sd_probe - called during driver initialization and whenever a 3926 * new scsi device is attached to the system. It is called once 3927 * for each scsi device (not just disks) present. 3928 * @dev: pointer to device object 3929 * 3930 * Returns 0 if successful (or not interested in this scsi device 3931 * (e.g. scanner)); 1 when there is an error. 3932 * 3933 * Note: this function is invoked from the scsi mid-level. 3934 * This function sets up the mapping between a given 3935 * <host,channel,id,lun> (found in sdp) and new device name 3936 * (e.g. /dev/sda). More precisely it is the block device major 3937 * and minor number that is chosen here. 3938 * 3939 * Assume sd_probe is not re-entrant (for time being) 3940 * Also think about sd_probe() and sd_remove() running coincidentally. 3941 **/ 3942 static int sd_probe(struct device *dev) 3943 { 3944 struct scsi_device *sdp = to_scsi_device(dev); 3945 struct scsi_disk *sdkp; 3946 struct gendisk *gd; 3947 int index; 3948 int error; 3949 3950 scsi_autopm_get_device(sdp); 3951 error = -ENODEV; 3952 if (sdp->type != TYPE_DISK && 3953 sdp->type != TYPE_ZBC && 3954 sdp->type != TYPE_MOD && 3955 sdp->type != TYPE_RBC) 3956 goto out; 3957 3958 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) && sdp->type == TYPE_ZBC) { 3959 sdev_printk(KERN_WARNING, sdp, 3960 "Unsupported ZBC host-managed device.\n"); 3961 goto out; 3962 } 3963 3964 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp, 3965 "sd_probe\n")); 3966 3967 error = -ENOMEM; 3968 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL); 3969 if (!sdkp) 3970 goto out; 3971 3972 gd = blk_mq_alloc_disk_for_queue(sdp->request_queue, 3973 &sd_bio_compl_lkclass); 3974 if (!gd) 3975 goto out_free; 3976 3977 index = ida_alloc(&sd_index_ida, GFP_KERNEL); 3978 if (index < 0) { 3979 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n"); 3980 goto out_put; 3981 } 3982 3983 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN); 3984 if (error) { 3985 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n"); 3986 goto out_free_index; 3987 } 3988 3989 sdkp->device = sdp; 3990 sdkp->disk = gd; 3991 sdkp->index = index; 3992 sdkp->max_retries = SD_MAX_RETRIES; 3993 atomic_set(&sdkp->openers, 0); 3994 atomic_set(&sdkp->device->ioerr_cnt, 0); 3995 3996 if (!sdp->request_queue->rq_timeout) { 3997 if (sdp->type != TYPE_MOD) 3998 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT); 3999 else 4000 blk_queue_rq_timeout(sdp->request_queue, 4001 SD_MOD_TIMEOUT); 4002 } 4003 4004 device_initialize(&sdkp->disk_dev); 4005 sdkp->disk_dev.parent = get_device(dev); 4006 sdkp->disk_dev.class = &sd_disk_class; 4007 dev_set_name(&sdkp->disk_dev, "%s", dev_name(dev)); 4008 4009 error = device_add(&sdkp->disk_dev); 4010 if (error) { 4011 put_device(&sdkp->disk_dev); 4012 goto out; 4013 } 4014 4015 dev_set_drvdata(dev, sdkp); 4016 4017 gd->major = sd_major((index & 0xf0) >> 4); 4018 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00); 4019 gd->minors = SD_MINORS; 4020 4021 gd->fops = &sd_fops; 4022 gd->private_data = sdkp; 4023 4024 /* defaults, until the device tells us otherwise */ 4025 sdp->sector_size = 512; 4026 sdkp->capacity = 0; 4027 sdkp->media_present = 1; 4028 sdkp->write_prot = 0; 4029 sdkp->cache_override = 0; 4030 sdkp->WCE = 0; 4031 sdkp->RCD = 0; 4032 sdkp->ATO = 0; 4033 sdkp->first_scan = 1; 4034 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS; 4035 4036 sd_revalidate_disk(gd); 4037 4038 if (sdp->removable) { 4039 gd->flags |= GENHD_FL_REMOVABLE; 4040 gd->events |= DISK_EVENT_MEDIA_CHANGE; 4041 gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT; 4042 } 4043 4044 blk_pm_runtime_init(sdp->request_queue, dev); 4045 if (sdp->rpm_autosuspend) { 4046 pm_runtime_set_autosuspend_delay(dev, 4047 sdp->host->rpm_autosuspend_delay); 4048 } 4049 4050 error = device_add_disk(dev, gd, NULL); 4051 if (error) { 4052 device_unregister(&sdkp->disk_dev); 4053 put_disk(gd); 4054 goto out; 4055 } 4056 4057 if (sdkp->security) { 4058 sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit); 4059 if (sdkp->opal_dev) 4060 sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n"); 4061 } 4062 4063 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n", 4064 sdp->removable ? "removable " : ""); 4065 scsi_autopm_put_device(sdp); 4066 4067 return 0; 4068 4069 out_free_index: 4070 ida_free(&sd_index_ida, index); 4071 out_put: 4072 put_disk(gd); 4073 out_free: 4074 kfree(sdkp); 4075 out: 4076 scsi_autopm_put_device(sdp); 4077 return error; 4078 } 4079 4080 /** 4081 * sd_remove - called whenever a scsi disk (previously recognized by 4082 * sd_probe) is detached from the system. It is called (potentially 4083 * multiple times) during sd module unload. 4084 * @dev: pointer to device object 4085 * 4086 * Note: this function is invoked from the scsi mid-level. 4087 * This function potentially frees up a device name (e.g. /dev/sdc) 4088 * that could be re-used by a subsequent sd_probe(). 4089 * This function is not called when the built-in sd driver is "exit-ed". 4090 **/ 4091 static int sd_remove(struct device *dev) 4092 { 4093 struct scsi_disk *sdkp = dev_get_drvdata(dev); 4094 4095 scsi_autopm_get_device(sdkp->device); 4096 4097 device_del(&sdkp->disk_dev); 4098 del_gendisk(sdkp->disk); 4099 if (!sdkp->suspended) 4100 sd_shutdown(dev); 4101 4102 put_disk(sdkp->disk); 4103 return 0; 4104 } 4105 4106 static void scsi_disk_release(struct device *dev) 4107 { 4108 struct scsi_disk *sdkp = to_scsi_disk(dev); 4109 4110 ida_free(&sd_index_ida, sdkp->index); 4111 put_device(&sdkp->device->sdev_gendev); 4112 free_opal_dev(sdkp->opal_dev); 4113 4114 kfree(sdkp); 4115 } 4116 4117 static int sd_start_stop_device(struct scsi_disk *sdkp, int start) 4118 { 4119 unsigned char cmd[6] = { START_STOP }; /* START_VALID */ 4120 struct scsi_sense_hdr sshdr; 4121 struct scsi_failure failure_defs[] = { 4122 { 4123 /* Power on, reset, or bus device reset occurred */ 4124 .sense = UNIT_ATTENTION, 4125 .asc = 0x29, 4126 .ascq = 0, 4127 .result = SAM_STAT_CHECK_CONDITION, 4128 }, 4129 { 4130 /* Power on occurred */ 4131 .sense = UNIT_ATTENTION, 4132 .asc = 0x29, 4133 .ascq = 1, 4134 .result = SAM_STAT_CHECK_CONDITION, 4135 }, 4136 { 4137 /* SCSI bus reset */ 4138 .sense = UNIT_ATTENTION, 4139 .asc = 0x29, 4140 .ascq = 2, 4141 .result = SAM_STAT_CHECK_CONDITION, 4142 }, 4143 {} 4144 }; 4145 struct scsi_failures failures = { 4146 .total_allowed = 3, 4147 .failure_definitions = failure_defs, 4148 }; 4149 const struct scsi_exec_args exec_args = { 4150 .sshdr = &sshdr, 4151 .req_flags = BLK_MQ_REQ_PM, 4152 .failures = &failures, 4153 }; 4154 struct scsi_device *sdp = sdkp->device; 4155 int res; 4156 4157 if (start) 4158 cmd[4] |= 1; /* START */ 4159 4160 if (sdp->start_stop_pwr_cond) 4161 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */ 4162 4163 if (!scsi_device_online(sdp)) 4164 return -ENODEV; 4165 4166 res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, SD_TIMEOUT, 4167 sdkp->max_retries, &exec_args); 4168 if (res) { 4169 sd_print_result(sdkp, "Start/Stop Unit failed", res); 4170 if (res > 0 && scsi_sense_valid(&sshdr)) { 4171 sd_print_sense_hdr(sdkp, &sshdr); 4172 /* 0x3a is medium not present */ 4173 if (sshdr.asc == 0x3a) 4174 res = 0; 4175 } 4176 } 4177 4178 /* SCSI error codes must not go to the generic layer */ 4179 if (res) 4180 return -EIO; 4181 4182 return 0; 4183 } 4184 4185 /* 4186 * Send a SYNCHRONIZE CACHE instruction down to the device through 4187 * the normal SCSI command structure. Wait for the command to 4188 * complete. 4189 */ 4190 static void sd_shutdown(struct device *dev) 4191 { 4192 struct scsi_disk *sdkp = dev_get_drvdata(dev); 4193 4194 if (!sdkp) 4195 return; /* this can happen */ 4196 4197 if (pm_runtime_suspended(dev)) 4198 return; 4199 4200 if (sdkp->WCE && sdkp->media_present) { 4201 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 4202 sd_sync_cache(sdkp); 4203 } 4204 4205 if ((system_state != SYSTEM_RESTART && 4206 sdkp->device->manage_system_start_stop) || 4207 (system_state == SYSTEM_POWER_OFF && 4208 sdkp->device->manage_shutdown) || 4209 (system_state == SYSTEM_RUNNING && 4210 sdkp->device->manage_runtime_start_stop) || 4211 (system_state == SYSTEM_RESTART && 4212 sdkp->device->manage_restart)) { 4213 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 4214 sd_start_stop_device(sdkp, 0); 4215 } 4216 } 4217 4218 static inline bool sd_do_start_stop(struct scsi_device *sdev, bool runtime) 4219 { 4220 return (sdev->manage_system_start_stop && !runtime) || 4221 (sdev->manage_runtime_start_stop && runtime); 4222 } 4223 4224 static int sd_suspend_common(struct device *dev, bool runtime) 4225 { 4226 struct scsi_disk *sdkp = dev_get_drvdata(dev); 4227 int ret = 0; 4228 4229 if (!sdkp) /* E.g.: runtime suspend following sd_remove() */ 4230 return 0; 4231 4232 if (sdkp->WCE && sdkp->media_present) { 4233 if (!sdkp->device->silence_suspend) 4234 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 4235 ret = sd_sync_cache(sdkp); 4236 /* ignore OFFLINE device */ 4237 if (ret == -ENODEV) 4238 return 0; 4239 4240 if (ret) 4241 return ret; 4242 } 4243 4244 if (sd_do_start_stop(sdkp->device, runtime)) { 4245 if (!sdkp->device->silence_suspend) 4246 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 4247 /* an error is not worth aborting a system sleep */ 4248 ret = sd_start_stop_device(sdkp, 0); 4249 if (!runtime) 4250 ret = 0; 4251 } 4252 4253 if (!ret) 4254 sdkp->suspended = true; 4255 4256 return ret; 4257 } 4258 4259 static int sd_suspend_system(struct device *dev) 4260 { 4261 if (pm_runtime_suspended(dev)) 4262 return 0; 4263 4264 return sd_suspend_common(dev, false); 4265 } 4266 4267 static int sd_suspend_runtime(struct device *dev) 4268 { 4269 return sd_suspend_common(dev, true); 4270 } 4271 4272 static int sd_resume(struct device *dev) 4273 { 4274 struct scsi_disk *sdkp = dev_get_drvdata(dev); 4275 4276 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n"); 4277 4278 if (opal_unlock_from_suspend(sdkp->opal_dev)) { 4279 sd_printk(KERN_NOTICE, sdkp, "OPAL unlock failed\n"); 4280 return -EIO; 4281 } 4282 4283 return 0; 4284 } 4285 4286 static int sd_resume_common(struct device *dev, bool runtime) 4287 { 4288 struct scsi_disk *sdkp = dev_get_drvdata(dev); 4289 int ret; 4290 4291 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */ 4292 return 0; 4293 4294 if (!sd_do_start_stop(sdkp->device, runtime)) { 4295 sdkp->suspended = false; 4296 return 0; 4297 } 4298 4299 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n"); 4300 ret = sd_start_stop_device(sdkp, 1); 4301 if (!ret) { 4302 sd_resume(dev); 4303 sdkp->suspended = false; 4304 } 4305 4306 return ret; 4307 } 4308 4309 static int sd_resume_system(struct device *dev) 4310 { 4311 if (pm_runtime_suspended(dev)) { 4312 struct scsi_disk *sdkp = dev_get_drvdata(dev); 4313 struct scsi_device *sdp = sdkp ? sdkp->device : NULL; 4314 4315 if (sdp && sdp->force_runtime_start_on_system_start) 4316 pm_request_resume(dev); 4317 4318 return 0; 4319 } 4320 4321 return sd_resume_common(dev, false); 4322 } 4323 4324 static int sd_resume_runtime(struct device *dev) 4325 { 4326 struct scsi_disk *sdkp = dev_get_drvdata(dev); 4327 struct scsi_device *sdp; 4328 4329 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */ 4330 return 0; 4331 4332 sdp = sdkp->device; 4333 4334 if (sdp->ignore_media_change) { 4335 /* clear the device's sense data */ 4336 static const u8 cmd[10] = { REQUEST_SENSE }; 4337 const struct scsi_exec_args exec_args = { 4338 .req_flags = BLK_MQ_REQ_PM, 4339 }; 4340 4341 if (scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, 4342 sdp->request_queue->rq_timeout, 1, 4343 &exec_args)) 4344 sd_printk(KERN_NOTICE, sdkp, 4345 "Failed to clear sense data\n"); 4346 } 4347 4348 return sd_resume_common(dev, true); 4349 } 4350 4351 static const struct dev_pm_ops sd_pm_ops = { 4352 .suspend = sd_suspend_system, 4353 .resume = sd_resume_system, 4354 .poweroff = sd_suspend_system, 4355 .restore = sd_resume_system, 4356 .runtime_suspend = sd_suspend_runtime, 4357 .runtime_resume = sd_resume_runtime, 4358 }; 4359 4360 static struct scsi_driver sd_template = { 4361 .gendrv = { 4362 .name = "sd", 4363 .probe = sd_probe, 4364 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 4365 .remove = sd_remove, 4366 .shutdown = sd_shutdown, 4367 .pm = &sd_pm_ops, 4368 }, 4369 .rescan = sd_rescan, 4370 .resume = sd_resume, 4371 .init_command = sd_init_command, 4372 .uninit_command = sd_uninit_command, 4373 .done = sd_done, 4374 .eh_action = sd_eh_action, 4375 .eh_reset = sd_eh_reset, 4376 }; 4377 4378 /** 4379 * init_sd - entry point for this driver (both when built in or when 4380 * a module). 4381 * 4382 * Note: this function registers this driver with the scsi mid-level. 4383 **/ 4384 static int __init init_sd(void) 4385 { 4386 int majors = 0, i, err; 4387 4388 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n")); 4389 4390 for (i = 0; i < SD_MAJORS; i++) { 4391 if (__register_blkdev(sd_major(i), "sd", sd_default_probe)) 4392 continue; 4393 majors++; 4394 } 4395 4396 if (!majors) 4397 return -ENODEV; 4398 4399 err = class_register(&sd_disk_class); 4400 if (err) 4401 goto err_out; 4402 4403 sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0); 4404 if (!sd_page_pool) { 4405 printk(KERN_ERR "sd: can't init discard page pool\n"); 4406 err = -ENOMEM; 4407 goto err_out_class; 4408 } 4409 4410 err = scsi_register_driver(&sd_template.gendrv); 4411 if (err) 4412 goto err_out_driver; 4413 4414 return 0; 4415 4416 err_out_driver: 4417 mempool_destroy(sd_page_pool); 4418 err_out_class: 4419 class_unregister(&sd_disk_class); 4420 err_out: 4421 for (i = 0; i < SD_MAJORS; i++) 4422 unregister_blkdev(sd_major(i), "sd"); 4423 return err; 4424 } 4425 4426 /** 4427 * exit_sd - exit point for this driver (when it is a module). 4428 * 4429 * Note: this function unregisters this driver from the scsi mid-level. 4430 **/ 4431 static void __exit exit_sd(void) 4432 { 4433 int i; 4434 4435 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n")); 4436 4437 scsi_unregister_driver(&sd_template.gendrv); 4438 mempool_destroy(sd_page_pool); 4439 4440 class_unregister(&sd_disk_class); 4441 4442 for (i = 0; i < SD_MAJORS; i++) 4443 unregister_blkdev(sd_major(i), "sd"); 4444 } 4445 4446 module_init(init_sd); 4447 module_exit(exit_sd); 4448 4449 void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr) 4450 { 4451 scsi_print_sense_hdr(sdkp->device, 4452 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr); 4453 } 4454 4455 void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result) 4456 { 4457 const char *hb_string = scsi_hostbyte_string(result); 4458 4459 if (hb_string) 4460 sd_printk(KERN_INFO, sdkp, 4461 "%s: Result: hostbyte=%s driverbyte=%s\n", msg, 4462 hb_string ? hb_string : "invalid", 4463 "DRIVER_OK"); 4464 else 4465 sd_printk(KERN_INFO, sdkp, 4466 "%s: Result: hostbyte=0x%02x driverbyte=%s\n", 4467 msg, host_byte(result), "DRIVER_OK"); 4468 } 4469