1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * sd.c Copyright (C) 1992 Drew Eckhardt 4 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale 5 * 6 * Linux scsi disk driver 7 * Initial versions: Drew Eckhardt 8 * Subsequent revisions: Eric Youngdale 9 * Modification history: 10 * - Drew Eckhardt <drew@colorado.edu> original 11 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 12 * outstanding request, and other enhancements. 13 * Support loadable low-level scsi drivers. 14 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 15 * eight major numbers. 16 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs. 17 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 18 * sd_init and cleanups. 19 * - Alex Davis <letmein@erols.com> Fix problem where partition info 20 * not being read in sd_open. Fix problem where removable media 21 * could be ejected after sd_open. 22 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x 23 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 24 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 25 * Support 32k/1M disks. 26 * 27 * Logging policy (needs CONFIG_SCSI_LOGGING defined): 28 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2 29 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1 30 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1 31 * - entering other commands: SCSI_LOG_HLQUEUE level 3 32 * Note: when the logging level is set by the user, it must be greater 33 * than the level indicated above to trigger output. 34 */ 35 36 #include <linux/module.h> 37 #include <linux/fs.h> 38 #include <linux/kernel.h> 39 #include <linux/mm.h> 40 #include <linux/bio.h> 41 #include <linux/genhd.h> 42 #include <linux/hdreg.h> 43 #include <linux/errno.h> 44 #include <linux/idr.h> 45 #include <linux/interrupt.h> 46 #include <linux/init.h> 47 #include <linux/blkdev.h> 48 #include <linux/blkpg.h> 49 #include <linux/blk-pm.h> 50 #include <linux/delay.h> 51 #include <linux/mutex.h> 52 #include <linux/string_helpers.h> 53 #include <linux/async.h> 54 #include <linux/slab.h> 55 #include <linux/sed-opal.h> 56 #include <linux/pm_runtime.h> 57 #include <linux/pr.h> 58 #include <linux/t10-pi.h> 59 #include <linux/uaccess.h> 60 #include <asm/unaligned.h> 61 62 #include <scsi/scsi.h> 63 #include <scsi/scsi_cmnd.h> 64 #include <scsi/scsi_dbg.h> 65 #include <scsi/scsi_device.h> 66 #include <scsi/scsi_driver.h> 67 #include <scsi/scsi_eh.h> 68 #include <scsi/scsi_host.h> 69 #include <scsi/scsi_ioctl.h> 70 #include <scsi/scsicam.h> 71 72 #include "sd.h" 73 #include "scsi_priv.h" 74 #include "scsi_logging.h" 75 76 MODULE_AUTHOR("Eric Youngdale"); 77 MODULE_DESCRIPTION("SCSI disk (sd) driver"); 78 MODULE_LICENSE("GPL"); 79 80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR); 81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR); 82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR); 83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR); 84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR); 85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR); 86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR); 87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR); 88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR); 89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR); 90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR); 91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR); 92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR); 93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR); 94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR); 95 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR); 96 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK); 97 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD); 98 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC); 99 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC); 100 101 #if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT) 102 #define SD_MINORS 16 103 #else 104 #define SD_MINORS 0 105 #endif 106 107 static void sd_config_discard(struct scsi_disk *, unsigned int); 108 static void sd_config_write_same(struct scsi_disk *); 109 static int sd_revalidate_disk(struct gendisk *); 110 static void sd_unlock_native_capacity(struct gendisk *disk); 111 static int sd_probe(struct device *); 112 static int sd_remove(struct device *); 113 static void sd_shutdown(struct device *); 114 static int sd_suspend_system(struct device *); 115 static int sd_suspend_runtime(struct device *); 116 static int sd_resume(struct device *); 117 static void sd_rescan(struct device *); 118 static blk_status_t sd_init_command(struct scsi_cmnd *SCpnt); 119 static void sd_uninit_command(struct scsi_cmnd *SCpnt); 120 static int sd_done(struct scsi_cmnd *); 121 static void sd_eh_reset(struct scsi_cmnd *); 122 static int sd_eh_action(struct scsi_cmnd *, int); 123 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer); 124 static void scsi_disk_release(struct device *cdev); 125 126 static DEFINE_IDA(sd_index_ida); 127 128 /* This semaphore is used to mediate the 0->1 reference get in the 129 * face of object destruction (i.e. we can't allow a get on an 130 * object after last put) */ 131 static DEFINE_MUTEX(sd_ref_mutex); 132 133 static struct kmem_cache *sd_cdb_cache; 134 static mempool_t *sd_cdb_pool; 135 static mempool_t *sd_page_pool; 136 137 static const char *sd_cache_types[] = { 138 "write through", "none", "write back", 139 "write back, no read (daft)" 140 }; 141 142 static void sd_set_flush_flag(struct scsi_disk *sdkp) 143 { 144 bool wc = false, fua = false; 145 146 if (sdkp->WCE) { 147 wc = true; 148 if (sdkp->DPOFUA) 149 fua = true; 150 } 151 152 blk_queue_write_cache(sdkp->disk->queue, wc, fua); 153 } 154 155 static ssize_t 156 cache_type_store(struct device *dev, struct device_attribute *attr, 157 const char *buf, size_t count) 158 { 159 int ct, rcd, wce, sp; 160 struct scsi_disk *sdkp = to_scsi_disk(dev); 161 struct scsi_device *sdp = sdkp->device; 162 char buffer[64]; 163 char *buffer_data; 164 struct scsi_mode_data data; 165 struct scsi_sense_hdr sshdr; 166 static const char temp[] = "temporary "; 167 int len; 168 169 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 170 /* no cache control on RBC devices; theoretically they 171 * can do it, but there's probably so many exceptions 172 * it's not worth the risk */ 173 return -EINVAL; 174 175 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) { 176 buf += sizeof(temp) - 1; 177 sdkp->cache_override = 1; 178 } else { 179 sdkp->cache_override = 0; 180 } 181 182 ct = sysfs_match_string(sd_cache_types, buf); 183 if (ct < 0) 184 return -EINVAL; 185 186 rcd = ct & 0x01 ? 1 : 0; 187 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0; 188 189 if (sdkp->cache_override) { 190 sdkp->WCE = wce; 191 sdkp->RCD = rcd; 192 sd_set_flush_flag(sdkp); 193 return count; 194 } 195 196 if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT, 197 sdkp->max_retries, &data, NULL)) 198 return -EINVAL; 199 len = min_t(size_t, sizeof(buffer), data.length - data.header_length - 200 data.block_descriptor_length); 201 buffer_data = buffer + data.header_length + 202 data.block_descriptor_length; 203 buffer_data[2] &= ~0x05; 204 buffer_data[2] |= wce << 2 | rcd; 205 sp = buffer_data[0] & 0x80 ? 1 : 0; 206 buffer_data[0] &= ~0x80; 207 208 /* 209 * Ensure WP, DPOFUA, and RESERVED fields are cleared in 210 * received mode parameter buffer before doing MODE SELECT. 211 */ 212 data.device_specific = 0; 213 214 if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT, 215 sdkp->max_retries, &data, &sshdr)) { 216 if (scsi_sense_valid(&sshdr)) 217 sd_print_sense_hdr(sdkp, &sshdr); 218 return -EINVAL; 219 } 220 sd_revalidate_disk(sdkp->disk); 221 return count; 222 } 223 224 static ssize_t 225 manage_start_stop_show(struct device *dev, struct device_attribute *attr, 226 char *buf) 227 { 228 struct scsi_disk *sdkp = to_scsi_disk(dev); 229 struct scsi_device *sdp = sdkp->device; 230 231 return sprintf(buf, "%u\n", sdp->manage_start_stop); 232 } 233 234 static ssize_t 235 manage_start_stop_store(struct device *dev, struct device_attribute *attr, 236 const char *buf, size_t count) 237 { 238 struct scsi_disk *sdkp = to_scsi_disk(dev); 239 struct scsi_device *sdp = sdkp->device; 240 bool v; 241 242 if (!capable(CAP_SYS_ADMIN)) 243 return -EACCES; 244 245 if (kstrtobool(buf, &v)) 246 return -EINVAL; 247 248 sdp->manage_start_stop = v; 249 250 return count; 251 } 252 static DEVICE_ATTR_RW(manage_start_stop); 253 254 static ssize_t 255 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf) 256 { 257 struct scsi_disk *sdkp = to_scsi_disk(dev); 258 259 return sprintf(buf, "%u\n", sdkp->device->allow_restart); 260 } 261 262 static ssize_t 263 allow_restart_store(struct device *dev, struct device_attribute *attr, 264 const char *buf, size_t count) 265 { 266 bool v; 267 struct scsi_disk *sdkp = to_scsi_disk(dev); 268 struct scsi_device *sdp = sdkp->device; 269 270 if (!capable(CAP_SYS_ADMIN)) 271 return -EACCES; 272 273 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 274 return -EINVAL; 275 276 if (kstrtobool(buf, &v)) 277 return -EINVAL; 278 279 sdp->allow_restart = v; 280 281 return count; 282 } 283 static DEVICE_ATTR_RW(allow_restart); 284 285 static ssize_t 286 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf) 287 { 288 struct scsi_disk *sdkp = to_scsi_disk(dev); 289 int ct = sdkp->RCD + 2*sdkp->WCE; 290 291 return sprintf(buf, "%s\n", sd_cache_types[ct]); 292 } 293 static DEVICE_ATTR_RW(cache_type); 294 295 static ssize_t 296 FUA_show(struct device *dev, struct device_attribute *attr, char *buf) 297 { 298 struct scsi_disk *sdkp = to_scsi_disk(dev); 299 300 return sprintf(buf, "%u\n", sdkp->DPOFUA); 301 } 302 static DEVICE_ATTR_RO(FUA); 303 304 static ssize_t 305 protection_type_show(struct device *dev, struct device_attribute *attr, 306 char *buf) 307 { 308 struct scsi_disk *sdkp = to_scsi_disk(dev); 309 310 return sprintf(buf, "%u\n", sdkp->protection_type); 311 } 312 313 static ssize_t 314 protection_type_store(struct device *dev, struct device_attribute *attr, 315 const char *buf, size_t count) 316 { 317 struct scsi_disk *sdkp = to_scsi_disk(dev); 318 unsigned int val; 319 int err; 320 321 if (!capable(CAP_SYS_ADMIN)) 322 return -EACCES; 323 324 err = kstrtouint(buf, 10, &val); 325 326 if (err) 327 return err; 328 329 if (val <= T10_PI_TYPE3_PROTECTION) 330 sdkp->protection_type = val; 331 332 return count; 333 } 334 static DEVICE_ATTR_RW(protection_type); 335 336 static ssize_t 337 protection_mode_show(struct device *dev, struct device_attribute *attr, 338 char *buf) 339 { 340 struct scsi_disk *sdkp = to_scsi_disk(dev); 341 struct scsi_device *sdp = sdkp->device; 342 unsigned int dif, dix; 343 344 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type); 345 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type); 346 347 if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) { 348 dif = 0; 349 dix = 1; 350 } 351 352 if (!dif && !dix) 353 return sprintf(buf, "none\n"); 354 355 return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif); 356 } 357 static DEVICE_ATTR_RO(protection_mode); 358 359 static ssize_t 360 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf) 361 { 362 struct scsi_disk *sdkp = to_scsi_disk(dev); 363 364 return sprintf(buf, "%u\n", sdkp->ATO); 365 } 366 static DEVICE_ATTR_RO(app_tag_own); 367 368 static ssize_t 369 thin_provisioning_show(struct device *dev, struct device_attribute *attr, 370 char *buf) 371 { 372 struct scsi_disk *sdkp = to_scsi_disk(dev); 373 374 return sprintf(buf, "%u\n", sdkp->lbpme); 375 } 376 static DEVICE_ATTR_RO(thin_provisioning); 377 378 /* sysfs_match_string() requires dense arrays */ 379 static const char *lbp_mode[] = { 380 [SD_LBP_FULL] = "full", 381 [SD_LBP_UNMAP] = "unmap", 382 [SD_LBP_WS16] = "writesame_16", 383 [SD_LBP_WS10] = "writesame_10", 384 [SD_LBP_ZERO] = "writesame_zero", 385 [SD_LBP_DISABLE] = "disabled", 386 }; 387 388 static ssize_t 389 provisioning_mode_show(struct device *dev, struct device_attribute *attr, 390 char *buf) 391 { 392 struct scsi_disk *sdkp = to_scsi_disk(dev); 393 394 return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]); 395 } 396 397 static ssize_t 398 provisioning_mode_store(struct device *dev, struct device_attribute *attr, 399 const char *buf, size_t count) 400 { 401 struct scsi_disk *sdkp = to_scsi_disk(dev); 402 struct scsi_device *sdp = sdkp->device; 403 int mode; 404 405 if (!capable(CAP_SYS_ADMIN)) 406 return -EACCES; 407 408 if (sd_is_zoned(sdkp)) { 409 sd_config_discard(sdkp, SD_LBP_DISABLE); 410 return count; 411 } 412 413 if (sdp->type != TYPE_DISK) 414 return -EINVAL; 415 416 mode = sysfs_match_string(lbp_mode, buf); 417 if (mode < 0) 418 return -EINVAL; 419 420 sd_config_discard(sdkp, mode); 421 422 return count; 423 } 424 static DEVICE_ATTR_RW(provisioning_mode); 425 426 /* sysfs_match_string() requires dense arrays */ 427 static const char *zeroing_mode[] = { 428 [SD_ZERO_WRITE] = "write", 429 [SD_ZERO_WS] = "writesame", 430 [SD_ZERO_WS16_UNMAP] = "writesame_16_unmap", 431 [SD_ZERO_WS10_UNMAP] = "writesame_10_unmap", 432 }; 433 434 static ssize_t 435 zeroing_mode_show(struct device *dev, struct device_attribute *attr, 436 char *buf) 437 { 438 struct scsi_disk *sdkp = to_scsi_disk(dev); 439 440 return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]); 441 } 442 443 static ssize_t 444 zeroing_mode_store(struct device *dev, struct device_attribute *attr, 445 const char *buf, size_t count) 446 { 447 struct scsi_disk *sdkp = to_scsi_disk(dev); 448 int mode; 449 450 if (!capable(CAP_SYS_ADMIN)) 451 return -EACCES; 452 453 mode = sysfs_match_string(zeroing_mode, buf); 454 if (mode < 0) 455 return -EINVAL; 456 457 sdkp->zeroing_mode = mode; 458 459 return count; 460 } 461 static DEVICE_ATTR_RW(zeroing_mode); 462 463 static ssize_t 464 max_medium_access_timeouts_show(struct device *dev, 465 struct device_attribute *attr, char *buf) 466 { 467 struct scsi_disk *sdkp = to_scsi_disk(dev); 468 469 return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts); 470 } 471 472 static ssize_t 473 max_medium_access_timeouts_store(struct device *dev, 474 struct device_attribute *attr, const char *buf, 475 size_t count) 476 { 477 struct scsi_disk *sdkp = to_scsi_disk(dev); 478 int err; 479 480 if (!capable(CAP_SYS_ADMIN)) 481 return -EACCES; 482 483 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts); 484 485 return err ? err : count; 486 } 487 static DEVICE_ATTR_RW(max_medium_access_timeouts); 488 489 static ssize_t 490 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr, 491 char *buf) 492 { 493 struct scsi_disk *sdkp = to_scsi_disk(dev); 494 495 return sprintf(buf, "%u\n", sdkp->max_ws_blocks); 496 } 497 498 static ssize_t 499 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr, 500 const char *buf, size_t count) 501 { 502 struct scsi_disk *sdkp = to_scsi_disk(dev); 503 struct scsi_device *sdp = sdkp->device; 504 unsigned long max; 505 int err; 506 507 if (!capable(CAP_SYS_ADMIN)) 508 return -EACCES; 509 510 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 511 return -EINVAL; 512 513 err = kstrtoul(buf, 10, &max); 514 515 if (err) 516 return err; 517 518 if (max == 0) 519 sdp->no_write_same = 1; 520 else if (max <= SD_MAX_WS16_BLOCKS) { 521 sdp->no_write_same = 0; 522 sdkp->max_ws_blocks = max; 523 } 524 525 sd_config_write_same(sdkp); 526 527 return count; 528 } 529 static DEVICE_ATTR_RW(max_write_same_blocks); 530 531 static ssize_t 532 zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf) 533 { 534 struct scsi_disk *sdkp = to_scsi_disk(dev); 535 536 if (sdkp->device->type == TYPE_ZBC) 537 return sprintf(buf, "host-managed\n"); 538 if (sdkp->zoned == 1) 539 return sprintf(buf, "host-aware\n"); 540 if (sdkp->zoned == 2) 541 return sprintf(buf, "drive-managed\n"); 542 return sprintf(buf, "none\n"); 543 } 544 static DEVICE_ATTR_RO(zoned_cap); 545 546 static ssize_t 547 max_retries_store(struct device *dev, struct device_attribute *attr, 548 const char *buf, size_t count) 549 { 550 struct scsi_disk *sdkp = to_scsi_disk(dev); 551 struct scsi_device *sdev = sdkp->device; 552 int retries, err; 553 554 err = kstrtoint(buf, 10, &retries); 555 if (err) 556 return err; 557 558 if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) { 559 sdkp->max_retries = retries; 560 return count; 561 } 562 563 sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n", 564 SD_MAX_RETRIES); 565 return -EINVAL; 566 } 567 568 static ssize_t 569 max_retries_show(struct device *dev, struct device_attribute *attr, 570 char *buf) 571 { 572 struct scsi_disk *sdkp = to_scsi_disk(dev); 573 574 return sprintf(buf, "%d\n", sdkp->max_retries); 575 } 576 577 static DEVICE_ATTR_RW(max_retries); 578 579 static struct attribute *sd_disk_attrs[] = { 580 &dev_attr_cache_type.attr, 581 &dev_attr_FUA.attr, 582 &dev_attr_allow_restart.attr, 583 &dev_attr_manage_start_stop.attr, 584 &dev_attr_protection_type.attr, 585 &dev_attr_protection_mode.attr, 586 &dev_attr_app_tag_own.attr, 587 &dev_attr_thin_provisioning.attr, 588 &dev_attr_provisioning_mode.attr, 589 &dev_attr_zeroing_mode.attr, 590 &dev_attr_max_write_same_blocks.attr, 591 &dev_attr_max_medium_access_timeouts.attr, 592 &dev_attr_zoned_cap.attr, 593 &dev_attr_max_retries.attr, 594 NULL, 595 }; 596 ATTRIBUTE_GROUPS(sd_disk); 597 598 static struct class sd_disk_class = { 599 .name = "scsi_disk", 600 .owner = THIS_MODULE, 601 .dev_release = scsi_disk_release, 602 .dev_groups = sd_disk_groups, 603 }; 604 605 static const struct dev_pm_ops sd_pm_ops = { 606 .suspend = sd_suspend_system, 607 .resume = sd_resume, 608 .poweroff = sd_suspend_system, 609 .restore = sd_resume, 610 .runtime_suspend = sd_suspend_runtime, 611 .runtime_resume = sd_resume, 612 }; 613 614 static struct scsi_driver sd_template = { 615 .gendrv = { 616 .name = "sd", 617 .owner = THIS_MODULE, 618 .probe = sd_probe, 619 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 620 .remove = sd_remove, 621 .shutdown = sd_shutdown, 622 .pm = &sd_pm_ops, 623 }, 624 .rescan = sd_rescan, 625 .init_command = sd_init_command, 626 .uninit_command = sd_uninit_command, 627 .done = sd_done, 628 .eh_action = sd_eh_action, 629 .eh_reset = sd_eh_reset, 630 }; 631 632 /* 633 * Don't request a new module, as that could deadlock in multipath 634 * environment. 635 */ 636 static void sd_default_probe(dev_t devt) 637 { 638 } 639 640 /* 641 * Device no to disk mapping: 642 * 643 * major disc2 disc p1 644 * |............|.............|....|....| <- dev_t 645 * 31 20 19 8 7 4 3 0 646 * 647 * Inside a major, we have 16k disks, however mapped non- 648 * contiguously. The first 16 disks are for major0, the next 649 * ones with major1, ... Disk 256 is for major0 again, disk 272 650 * for major1, ... 651 * As we stay compatible with our numbering scheme, we can reuse 652 * the well-know SCSI majors 8, 65--71, 136--143. 653 */ 654 static int sd_major(int major_idx) 655 { 656 switch (major_idx) { 657 case 0: 658 return SCSI_DISK0_MAJOR; 659 case 1 ... 7: 660 return SCSI_DISK1_MAJOR + major_idx - 1; 661 case 8 ... 15: 662 return SCSI_DISK8_MAJOR + major_idx - 8; 663 default: 664 BUG(); 665 return 0; /* shut up gcc */ 666 } 667 } 668 669 static struct scsi_disk *scsi_disk_get(struct gendisk *disk) 670 { 671 struct scsi_disk *sdkp = NULL; 672 673 mutex_lock(&sd_ref_mutex); 674 675 if (disk->private_data) { 676 sdkp = scsi_disk(disk); 677 if (scsi_device_get(sdkp->device) == 0) 678 get_device(&sdkp->dev); 679 else 680 sdkp = NULL; 681 } 682 mutex_unlock(&sd_ref_mutex); 683 return sdkp; 684 } 685 686 static void scsi_disk_put(struct scsi_disk *sdkp) 687 { 688 struct scsi_device *sdev = sdkp->device; 689 690 mutex_lock(&sd_ref_mutex); 691 put_device(&sdkp->dev); 692 scsi_device_put(sdev); 693 mutex_unlock(&sd_ref_mutex); 694 } 695 696 #ifdef CONFIG_BLK_SED_OPAL 697 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, 698 size_t len, bool send) 699 { 700 struct scsi_disk *sdkp = data; 701 struct scsi_device *sdev = sdkp->device; 702 u8 cdb[12] = { 0, }; 703 int ret; 704 705 cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN; 706 cdb[1] = secp; 707 put_unaligned_be16(spsp, &cdb[2]); 708 put_unaligned_be32(len, &cdb[6]); 709 710 ret = scsi_execute(sdev, cdb, send ? DMA_TO_DEVICE : DMA_FROM_DEVICE, 711 buffer, len, NULL, NULL, SD_TIMEOUT, sdkp->max_retries, 0, 712 RQF_PM, NULL); 713 return ret <= 0 ? ret : -EIO; 714 } 715 #endif /* CONFIG_BLK_SED_OPAL */ 716 717 /* 718 * Look up the DIX operation based on whether the command is read or 719 * write and whether dix and dif are enabled. 720 */ 721 static unsigned int sd_prot_op(bool write, bool dix, bool dif) 722 { 723 /* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */ 724 static const unsigned int ops[] = { /* wrt dix dif */ 725 SCSI_PROT_NORMAL, /* 0 0 0 */ 726 SCSI_PROT_READ_STRIP, /* 0 0 1 */ 727 SCSI_PROT_READ_INSERT, /* 0 1 0 */ 728 SCSI_PROT_READ_PASS, /* 0 1 1 */ 729 SCSI_PROT_NORMAL, /* 1 0 0 */ 730 SCSI_PROT_WRITE_INSERT, /* 1 0 1 */ 731 SCSI_PROT_WRITE_STRIP, /* 1 1 0 */ 732 SCSI_PROT_WRITE_PASS, /* 1 1 1 */ 733 }; 734 735 return ops[write << 2 | dix << 1 | dif]; 736 } 737 738 /* 739 * Returns a mask of the protection flags that are valid for a given DIX 740 * operation. 741 */ 742 static unsigned int sd_prot_flag_mask(unsigned int prot_op) 743 { 744 static const unsigned int flag_mask[] = { 745 [SCSI_PROT_NORMAL] = 0, 746 747 [SCSI_PROT_READ_STRIP] = SCSI_PROT_TRANSFER_PI | 748 SCSI_PROT_GUARD_CHECK | 749 SCSI_PROT_REF_CHECK | 750 SCSI_PROT_REF_INCREMENT, 751 752 [SCSI_PROT_READ_INSERT] = SCSI_PROT_REF_INCREMENT | 753 SCSI_PROT_IP_CHECKSUM, 754 755 [SCSI_PROT_READ_PASS] = SCSI_PROT_TRANSFER_PI | 756 SCSI_PROT_GUARD_CHECK | 757 SCSI_PROT_REF_CHECK | 758 SCSI_PROT_REF_INCREMENT | 759 SCSI_PROT_IP_CHECKSUM, 760 761 [SCSI_PROT_WRITE_INSERT] = SCSI_PROT_TRANSFER_PI | 762 SCSI_PROT_REF_INCREMENT, 763 764 [SCSI_PROT_WRITE_STRIP] = SCSI_PROT_GUARD_CHECK | 765 SCSI_PROT_REF_CHECK | 766 SCSI_PROT_REF_INCREMENT | 767 SCSI_PROT_IP_CHECKSUM, 768 769 [SCSI_PROT_WRITE_PASS] = SCSI_PROT_TRANSFER_PI | 770 SCSI_PROT_GUARD_CHECK | 771 SCSI_PROT_REF_CHECK | 772 SCSI_PROT_REF_INCREMENT | 773 SCSI_PROT_IP_CHECKSUM, 774 }; 775 776 return flag_mask[prot_op]; 777 } 778 779 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd, 780 unsigned int dix, unsigned int dif) 781 { 782 struct bio *bio = scmd->request->bio; 783 unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif); 784 unsigned int protect = 0; 785 786 if (dix) { /* DIX Type 0, 1, 2, 3 */ 787 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM)) 788 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM; 789 790 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 791 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK; 792 } 793 794 if (dif != T10_PI_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */ 795 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT; 796 797 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 798 scmd->prot_flags |= SCSI_PROT_REF_CHECK; 799 } 800 801 if (dif) { /* DIX/DIF Type 1, 2, 3 */ 802 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI; 803 804 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK)) 805 protect = 3 << 5; /* Disable target PI checking */ 806 else 807 protect = 1 << 5; /* Enable target PI checking */ 808 } 809 810 scsi_set_prot_op(scmd, prot_op); 811 scsi_set_prot_type(scmd, dif); 812 scmd->prot_flags &= sd_prot_flag_mask(prot_op); 813 814 return protect; 815 } 816 817 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode) 818 { 819 struct request_queue *q = sdkp->disk->queue; 820 unsigned int logical_block_size = sdkp->device->sector_size; 821 unsigned int max_blocks = 0; 822 823 q->limits.discard_alignment = 824 sdkp->unmap_alignment * logical_block_size; 825 q->limits.discard_granularity = 826 max(sdkp->physical_block_size, 827 sdkp->unmap_granularity * logical_block_size); 828 sdkp->provisioning_mode = mode; 829 830 switch (mode) { 831 832 case SD_LBP_FULL: 833 case SD_LBP_DISABLE: 834 blk_queue_max_discard_sectors(q, 0); 835 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q); 836 return; 837 838 case SD_LBP_UNMAP: 839 max_blocks = min_not_zero(sdkp->max_unmap_blocks, 840 (u32)SD_MAX_WS16_BLOCKS); 841 break; 842 843 case SD_LBP_WS16: 844 if (sdkp->device->unmap_limit_for_ws) 845 max_blocks = sdkp->max_unmap_blocks; 846 else 847 max_blocks = sdkp->max_ws_blocks; 848 849 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS); 850 break; 851 852 case SD_LBP_WS10: 853 if (sdkp->device->unmap_limit_for_ws) 854 max_blocks = sdkp->max_unmap_blocks; 855 else 856 max_blocks = sdkp->max_ws_blocks; 857 858 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS); 859 break; 860 861 case SD_LBP_ZERO: 862 max_blocks = min_not_zero(sdkp->max_ws_blocks, 863 (u32)SD_MAX_WS10_BLOCKS); 864 break; 865 } 866 867 blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9)); 868 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q); 869 } 870 871 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd) 872 { 873 struct scsi_device *sdp = cmd->device; 874 struct request *rq = cmd->request; 875 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 876 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 877 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 878 unsigned int data_len = 24; 879 char *buf; 880 881 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 882 if (!rq->special_vec.bv_page) 883 return BLK_STS_RESOURCE; 884 clear_highpage(rq->special_vec.bv_page); 885 rq->special_vec.bv_offset = 0; 886 rq->special_vec.bv_len = data_len; 887 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 888 889 cmd->cmd_len = 10; 890 cmd->cmnd[0] = UNMAP; 891 cmd->cmnd[8] = 24; 892 893 buf = page_address(rq->special_vec.bv_page); 894 put_unaligned_be16(6 + 16, &buf[0]); 895 put_unaligned_be16(16, &buf[2]); 896 put_unaligned_be64(lba, &buf[8]); 897 put_unaligned_be32(nr_blocks, &buf[16]); 898 899 cmd->allowed = sdkp->max_retries; 900 cmd->transfersize = data_len; 901 rq->timeout = SD_TIMEOUT; 902 903 return scsi_alloc_sgtables(cmd); 904 } 905 906 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd, 907 bool unmap) 908 { 909 struct scsi_device *sdp = cmd->device; 910 struct request *rq = cmd->request; 911 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 912 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 913 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 914 u32 data_len = sdp->sector_size; 915 916 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 917 if (!rq->special_vec.bv_page) 918 return BLK_STS_RESOURCE; 919 clear_highpage(rq->special_vec.bv_page); 920 rq->special_vec.bv_offset = 0; 921 rq->special_vec.bv_len = data_len; 922 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 923 924 cmd->cmd_len = 16; 925 cmd->cmnd[0] = WRITE_SAME_16; 926 if (unmap) 927 cmd->cmnd[1] = 0x8; /* UNMAP */ 928 put_unaligned_be64(lba, &cmd->cmnd[2]); 929 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 930 931 cmd->allowed = sdkp->max_retries; 932 cmd->transfersize = data_len; 933 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 934 935 return scsi_alloc_sgtables(cmd); 936 } 937 938 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd, 939 bool unmap) 940 { 941 struct scsi_device *sdp = cmd->device; 942 struct request *rq = cmd->request; 943 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 944 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 945 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 946 u32 data_len = sdp->sector_size; 947 948 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 949 if (!rq->special_vec.bv_page) 950 return BLK_STS_RESOURCE; 951 clear_highpage(rq->special_vec.bv_page); 952 rq->special_vec.bv_offset = 0; 953 rq->special_vec.bv_len = data_len; 954 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 955 956 cmd->cmd_len = 10; 957 cmd->cmnd[0] = WRITE_SAME; 958 if (unmap) 959 cmd->cmnd[1] = 0x8; /* UNMAP */ 960 put_unaligned_be32(lba, &cmd->cmnd[2]); 961 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 962 963 cmd->allowed = sdkp->max_retries; 964 cmd->transfersize = data_len; 965 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 966 967 return scsi_alloc_sgtables(cmd); 968 } 969 970 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd) 971 { 972 struct request *rq = cmd->request; 973 struct scsi_device *sdp = cmd->device; 974 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 975 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 976 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 977 978 if (!(rq->cmd_flags & REQ_NOUNMAP)) { 979 switch (sdkp->zeroing_mode) { 980 case SD_ZERO_WS16_UNMAP: 981 return sd_setup_write_same16_cmnd(cmd, true); 982 case SD_ZERO_WS10_UNMAP: 983 return sd_setup_write_same10_cmnd(cmd, true); 984 } 985 } 986 987 if (sdp->no_write_same) { 988 rq->rq_flags |= RQF_QUIET; 989 return BLK_STS_TARGET; 990 } 991 992 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) 993 return sd_setup_write_same16_cmnd(cmd, false); 994 995 return sd_setup_write_same10_cmnd(cmd, false); 996 } 997 998 static void sd_config_write_same(struct scsi_disk *sdkp) 999 { 1000 struct request_queue *q = sdkp->disk->queue; 1001 unsigned int logical_block_size = sdkp->device->sector_size; 1002 1003 if (sdkp->device->no_write_same) { 1004 sdkp->max_ws_blocks = 0; 1005 goto out; 1006 } 1007 1008 /* Some devices can not handle block counts above 0xffff despite 1009 * supporting WRITE SAME(16). Consequently we default to 64k 1010 * blocks per I/O unless the device explicitly advertises a 1011 * bigger limit. 1012 */ 1013 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS) 1014 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 1015 (u32)SD_MAX_WS16_BLOCKS); 1016 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes) 1017 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 1018 (u32)SD_MAX_WS10_BLOCKS); 1019 else { 1020 sdkp->device->no_write_same = 1; 1021 sdkp->max_ws_blocks = 0; 1022 } 1023 1024 if (sdkp->lbprz && sdkp->lbpws) 1025 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP; 1026 else if (sdkp->lbprz && sdkp->lbpws10) 1027 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP; 1028 else if (sdkp->max_ws_blocks) 1029 sdkp->zeroing_mode = SD_ZERO_WS; 1030 else 1031 sdkp->zeroing_mode = SD_ZERO_WRITE; 1032 1033 if (sdkp->max_ws_blocks && 1034 sdkp->physical_block_size > logical_block_size) { 1035 /* 1036 * Reporting a maximum number of blocks that is not aligned 1037 * on the device physical size would cause a large write same 1038 * request to be split into physically unaligned chunks by 1039 * __blkdev_issue_write_zeroes() and __blkdev_issue_write_same() 1040 * even if the caller of these functions took care to align the 1041 * large request. So make sure the maximum reported is aligned 1042 * to the device physical block size. This is only an optional 1043 * optimization for regular disks, but this is mandatory to 1044 * avoid failure of large write same requests directed at 1045 * sequential write required zones of host-managed ZBC disks. 1046 */ 1047 sdkp->max_ws_blocks = 1048 round_down(sdkp->max_ws_blocks, 1049 bytes_to_logical(sdkp->device, 1050 sdkp->physical_block_size)); 1051 } 1052 1053 out: 1054 blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks * 1055 (logical_block_size >> 9)); 1056 blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks * 1057 (logical_block_size >> 9)); 1058 } 1059 1060 /** 1061 * sd_setup_write_same_cmnd - write the same data to multiple blocks 1062 * @cmd: command to prepare 1063 * 1064 * Will set up either WRITE SAME(10) or WRITE SAME(16) depending on 1065 * the preference indicated by the target device. 1066 **/ 1067 static blk_status_t sd_setup_write_same_cmnd(struct scsi_cmnd *cmd) 1068 { 1069 struct request *rq = cmd->request; 1070 struct scsi_device *sdp = cmd->device; 1071 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 1072 struct bio *bio = rq->bio; 1073 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 1074 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 1075 blk_status_t ret; 1076 1077 if (sdkp->device->no_write_same) 1078 return BLK_STS_TARGET; 1079 1080 BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size); 1081 1082 rq->timeout = SD_WRITE_SAME_TIMEOUT; 1083 1084 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) { 1085 cmd->cmd_len = 16; 1086 cmd->cmnd[0] = WRITE_SAME_16; 1087 put_unaligned_be64(lba, &cmd->cmnd[2]); 1088 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 1089 } else { 1090 cmd->cmd_len = 10; 1091 cmd->cmnd[0] = WRITE_SAME; 1092 put_unaligned_be32(lba, &cmd->cmnd[2]); 1093 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 1094 } 1095 1096 cmd->transfersize = sdp->sector_size; 1097 cmd->allowed = sdkp->max_retries; 1098 1099 /* 1100 * For WRITE SAME the data transferred via the DATA OUT buffer is 1101 * different from the amount of data actually written to the target. 1102 * 1103 * We set up __data_len to the amount of data transferred via the 1104 * DATA OUT buffer so that blk_rq_map_sg sets up the proper S/G list 1105 * to transfer a single sector of data first, but then reset it to 1106 * the amount of data to be written right after so that the I/O path 1107 * knows how much to actually write. 1108 */ 1109 rq->__data_len = sdp->sector_size; 1110 ret = scsi_alloc_sgtables(cmd); 1111 rq->__data_len = blk_rq_bytes(rq); 1112 1113 return ret; 1114 } 1115 1116 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd) 1117 { 1118 struct request *rq = cmd->request; 1119 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 1120 1121 /* flush requests don't perform I/O, zero the S/G table */ 1122 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1123 1124 cmd->cmnd[0] = SYNCHRONIZE_CACHE; 1125 cmd->cmd_len = 10; 1126 cmd->transfersize = 0; 1127 cmd->allowed = sdkp->max_retries; 1128 1129 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER; 1130 return BLK_STS_OK; 1131 } 1132 1133 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write, 1134 sector_t lba, unsigned int nr_blocks, 1135 unsigned char flags) 1136 { 1137 cmd->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC); 1138 if (unlikely(cmd->cmnd == NULL)) 1139 return BLK_STS_RESOURCE; 1140 1141 cmd->cmd_len = SD_EXT_CDB_SIZE; 1142 memset(cmd->cmnd, 0, cmd->cmd_len); 1143 1144 cmd->cmnd[0] = VARIABLE_LENGTH_CMD; 1145 cmd->cmnd[7] = 0x18; /* Additional CDB len */ 1146 cmd->cmnd[9] = write ? WRITE_32 : READ_32; 1147 cmd->cmnd[10] = flags; 1148 put_unaligned_be64(lba, &cmd->cmnd[12]); 1149 put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */ 1150 put_unaligned_be32(nr_blocks, &cmd->cmnd[28]); 1151 1152 return BLK_STS_OK; 1153 } 1154 1155 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write, 1156 sector_t lba, unsigned int nr_blocks, 1157 unsigned char flags) 1158 { 1159 cmd->cmd_len = 16; 1160 cmd->cmnd[0] = write ? WRITE_16 : READ_16; 1161 cmd->cmnd[1] = flags; 1162 cmd->cmnd[14] = 0; 1163 cmd->cmnd[15] = 0; 1164 put_unaligned_be64(lba, &cmd->cmnd[2]); 1165 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 1166 1167 return BLK_STS_OK; 1168 } 1169 1170 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write, 1171 sector_t lba, unsigned int nr_blocks, 1172 unsigned char flags) 1173 { 1174 cmd->cmd_len = 10; 1175 cmd->cmnd[0] = write ? WRITE_10 : READ_10; 1176 cmd->cmnd[1] = flags; 1177 cmd->cmnd[6] = 0; 1178 cmd->cmnd[9] = 0; 1179 put_unaligned_be32(lba, &cmd->cmnd[2]); 1180 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 1181 1182 return BLK_STS_OK; 1183 } 1184 1185 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write, 1186 sector_t lba, unsigned int nr_blocks, 1187 unsigned char flags) 1188 { 1189 /* Avoid that 0 blocks gets translated into 256 blocks. */ 1190 if (WARN_ON_ONCE(nr_blocks == 0)) 1191 return BLK_STS_IOERR; 1192 1193 if (unlikely(flags & 0x8)) { 1194 /* 1195 * This happens only if this drive failed 10byte rw 1196 * command with ILLEGAL_REQUEST during operation and 1197 * thus turned off use_10_for_rw. 1198 */ 1199 scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n"); 1200 return BLK_STS_IOERR; 1201 } 1202 1203 cmd->cmd_len = 6; 1204 cmd->cmnd[0] = write ? WRITE_6 : READ_6; 1205 cmd->cmnd[1] = (lba >> 16) & 0x1f; 1206 cmd->cmnd[2] = (lba >> 8) & 0xff; 1207 cmd->cmnd[3] = lba & 0xff; 1208 cmd->cmnd[4] = nr_blocks; 1209 cmd->cmnd[5] = 0; 1210 1211 return BLK_STS_OK; 1212 } 1213 1214 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd) 1215 { 1216 struct request *rq = cmd->request; 1217 struct scsi_device *sdp = cmd->device; 1218 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 1219 sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 1220 sector_t threshold; 1221 unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 1222 unsigned int mask = logical_to_sectors(sdp, 1) - 1; 1223 bool write = rq_data_dir(rq) == WRITE; 1224 unsigned char protect, fua; 1225 blk_status_t ret; 1226 unsigned int dif; 1227 bool dix; 1228 1229 ret = scsi_alloc_sgtables(cmd); 1230 if (ret != BLK_STS_OK) 1231 return ret; 1232 1233 ret = BLK_STS_IOERR; 1234 if (!scsi_device_online(sdp) || sdp->changed) { 1235 scmd_printk(KERN_ERR, cmd, "device offline or changed\n"); 1236 goto fail; 1237 } 1238 1239 if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->rq_disk)) { 1240 scmd_printk(KERN_ERR, cmd, "access beyond end of device\n"); 1241 goto fail; 1242 } 1243 1244 if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) { 1245 scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n"); 1246 goto fail; 1247 } 1248 1249 /* 1250 * Some SD card readers can't handle accesses which touch the 1251 * last one or two logical blocks. Split accesses as needed. 1252 */ 1253 threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS; 1254 1255 if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) { 1256 if (lba < threshold) { 1257 /* Access up to the threshold but not beyond */ 1258 nr_blocks = threshold - lba; 1259 } else { 1260 /* Access only a single logical block */ 1261 nr_blocks = 1; 1262 } 1263 } 1264 1265 if (req_op(rq) == REQ_OP_ZONE_APPEND) { 1266 ret = sd_zbc_prepare_zone_append(cmd, &lba, nr_blocks); 1267 if (ret) 1268 goto fail; 1269 } 1270 1271 fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0; 1272 dix = scsi_prot_sg_count(cmd); 1273 dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type); 1274 1275 if (dif || dix) 1276 protect = sd_setup_protect_cmnd(cmd, dix, dif); 1277 else 1278 protect = 0; 1279 1280 if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) { 1281 ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks, 1282 protect | fua); 1283 } else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) { 1284 ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks, 1285 protect | fua); 1286 } else if ((nr_blocks > 0xff) || (lba > 0x1fffff) || 1287 sdp->use_10_for_rw || protect) { 1288 ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks, 1289 protect | fua); 1290 } else { 1291 ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks, 1292 protect | fua); 1293 } 1294 1295 if (unlikely(ret != BLK_STS_OK)) 1296 goto fail; 1297 1298 /* 1299 * We shouldn't disconnect in the middle of a sector, so with a dumb 1300 * host adapter, it's safe to assume that we can at least transfer 1301 * this many bytes between each connect / disconnect. 1302 */ 1303 cmd->transfersize = sdp->sector_size; 1304 cmd->underflow = nr_blocks << 9; 1305 cmd->allowed = sdkp->max_retries; 1306 cmd->sdb.length = nr_blocks * sdp->sector_size; 1307 1308 SCSI_LOG_HLQUEUE(1, 1309 scmd_printk(KERN_INFO, cmd, 1310 "%s: block=%llu, count=%d\n", __func__, 1311 (unsigned long long)blk_rq_pos(rq), 1312 blk_rq_sectors(rq))); 1313 SCSI_LOG_HLQUEUE(2, 1314 scmd_printk(KERN_INFO, cmd, 1315 "%s %d/%u 512 byte blocks.\n", 1316 write ? "writing" : "reading", nr_blocks, 1317 blk_rq_sectors(rq))); 1318 1319 /* 1320 * This indicates that the command is ready from our end to be queued. 1321 */ 1322 return BLK_STS_OK; 1323 fail: 1324 scsi_free_sgtables(cmd); 1325 return ret; 1326 } 1327 1328 static blk_status_t sd_init_command(struct scsi_cmnd *cmd) 1329 { 1330 struct request *rq = cmd->request; 1331 1332 switch (req_op(rq)) { 1333 case REQ_OP_DISCARD: 1334 switch (scsi_disk(rq->rq_disk)->provisioning_mode) { 1335 case SD_LBP_UNMAP: 1336 return sd_setup_unmap_cmnd(cmd); 1337 case SD_LBP_WS16: 1338 return sd_setup_write_same16_cmnd(cmd, true); 1339 case SD_LBP_WS10: 1340 return sd_setup_write_same10_cmnd(cmd, true); 1341 case SD_LBP_ZERO: 1342 return sd_setup_write_same10_cmnd(cmd, false); 1343 default: 1344 return BLK_STS_TARGET; 1345 } 1346 case REQ_OP_WRITE_ZEROES: 1347 return sd_setup_write_zeroes_cmnd(cmd); 1348 case REQ_OP_WRITE_SAME: 1349 return sd_setup_write_same_cmnd(cmd); 1350 case REQ_OP_FLUSH: 1351 return sd_setup_flush_cmnd(cmd); 1352 case REQ_OP_READ: 1353 case REQ_OP_WRITE: 1354 case REQ_OP_ZONE_APPEND: 1355 return sd_setup_read_write_cmnd(cmd); 1356 case REQ_OP_ZONE_RESET: 1357 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER, 1358 false); 1359 case REQ_OP_ZONE_RESET_ALL: 1360 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER, 1361 true); 1362 case REQ_OP_ZONE_OPEN: 1363 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false); 1364 case REQ_OP_ZONE_CLOSE: 1365 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false); 1366 case REQ_OP_ZONE_FINISH: 1367 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false); 1368 default: 1369 WARN_ON_ONCE(1); 1370 return BLK_STS_NOTSUPP; 1371 } 1372 } 1373 1374 static void sd_uninit_command(struct scsi_cmnd *SCpnt) 1375 { 1376 struct request *rq = SCpnt->request; 1377 u8 *cmnd; 1378 1379 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1380 mempool_free(rq->special_vec.bv_page, sd_page_pool); 1381 1382 if (SCpnt->cmnd != scsi_req(rq)->cmd) { 1383 cmnd = SCpnt->cmnd; 1384 SCpnt->cmnd = NULL; 1385 SCpnt->cmd_len = 0; 1386 mempool_free(cmnd, sd_cdb_pool); 1387 } 1388 } 1389 1390 /** 1391 * sd_open - open a scsi disk device 1392 * @bdev: Block device of the scsi disk to open 1393 * @mode: FMODE_* mask 1394 * 1395 * Returns 0 if successful. Returns a negated errno value in case 1396 * of error. 1397 * 1398 * Note: This can be called from a user context (e.g. fsck(1) ) 1399 * or from within the kernel (e.g. as a result of a mount(1) ). 1400 * In the latter case @inode and @filp carry an abridged amount 1401 * of information as noted above. 1402 * 1403 * Locking: called with bdev->bd_mutex held. 1404 **/ 1405 static int sd_open(struct block_device *bdev, fmode_t mode) 1406 { 1407 struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk); 1408 struct scsi_device *sdev; 1409 int retval; 1410 1411 if (!sdkp) 1412 return -ENXIO; 1413 1414 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n")); 1415 1416 sdev = sdkp->device; 1417 1418 /* 1419 * If the device is in error recovery, wait until it is done. 1420 * If the device is offline, then disallow any access to it. 1421 */ 1422 retval = -ENXIO; 1423 if (!scsi_block_when_processing_errors(sdev)) 1424 goto error_out; 1425 1426 if (sdev->removable || sdkp->write_prot) { 1427 if (bdev_check_media_change(bdev)) 1428 sd_revalidate_disk(bdev->bd_disk); 1429 } 1430 1431 /* 1432 * If the drive is empty, just let the open fail. 1433 */ 1434 retval = -ENOMEDIUM; 1435 if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY)) 1436 goto error_out; 1437 1438 /* 1439 * If the device has the write protect tab set, have the open fail 1440 * if the user expects to be able to write to the thing. 1441 */ 1442 retval = -EROFS; 1443 if (sdkp->write_prot && (mode & FMODE_WRITE)) 1444 goto error_out; 1445 1446 /* 1447 * It is possible that the disk changing stuff resulted in 1448 * the device being taken offline. If this is the case, 1449 * report this to the user, and don't pretend that the 1450 * open actually succeeded. 1451 */ 1452 retval = -ENXIO; 1453 if (!scsi_device_online(sdev)) 1454 goto error_out; 1455 1456 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) { 1457 if (scsi_block_when_processing_errors(sdev)) 1458 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT); 1459 } 1460 1461 return 0; 1462 1463 error_out: 1464 scsi_disk_put(sdkp); 1465 return retval; 1466 } 1467 1468 /** 1469 * sd_release - invoked when the (last) close(2) is called on this 1470 * scsi disk. 1471 * @disk: disk to release 1472 * @mode: FMODE_* mask 1473 * 1474 * Returns 0. 1475 * 1476 * Note: may block (uninterruptible) if error recovery is underway 1477 * on this disk. 1478 * 1479 * Locking: called with bdev->bd_mutex held. 1480 **/ 1481 static void sd_release(struct gendisk *disk, fmode_t mode) 1482 { 1483 struct scsi_disk *sdkp = scsi_disk(disk); 1484 struct scsi_device *sdev = sdkp->device; 1485 1486 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n")); 1487 1488 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) { 1489 if (scsi_block_when_processing_errors(sdev)) 1490 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW); 1491 } 1492 1493 scsi_disk_put(sdkp); 1494 } 1495 1496 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1497 { 1498 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1499 struct scsi_device *sdp = sdkp->device; 1500 struct Scsi_Host *host = sdp->host; 1501 sector_t capacity = logical_to_sectors(sdp, sdkp->capacity); 1502 int diskinfo[4]; 1503 1504 /* default to most commonly used values */ 1505 diskinfo[0] = 0x40; /* 1 << 6 */ 1506 diskinfo[1] = 0x20; /* 1 << 5 */ 1507 diskinfo[2] = capacity >> 11; 1508 1509 /* override with calculated, extended default, or driver values */ 1510 if (host->hostt->bios_param) 1511 host->hostt->bios_param(sdp, bdev, capacity, diskinfo); 1512 else 1513 scsicam_bios_param(bdev, capacity, diskinfo); 1514 1515 geo->heads = diskinfo[0]; 1516 geo->sectors = diskinfo[1]; 1517 geo->cylinders = diskinfo[2]; 1518 return 0; 1519 } 1520 1521 /** 1522 * sd_ioctl_common - process an ioctl 1523 * @bdev: target block device 1524 * @mode: FMODE_* mask 1525 * @cmd: ioctl command number 1526 * @p: this is third argument given to ioctl(2) system call. 1527 * Often contains a pointer. 1528 * 1529 * Returns 0 if successful (some ioctls return positive numbers on 1530 * success as well). Returns a negated errno value in case of error. 1531 * 1532 * Note: most ioctls are forward onto the block subsystem or further 1533 * down in the scsi subsystem. 1534 **/ 1535 static int sd_ioctl_common(struct block_device *bdev, fmode_t mode, 1536 unsigned int cmd, void __user *p) 1537 { 1538 struct gendisk *disk = bdev->bd_disk; 1539 struct scsi_disk *sdkp = scsi_disk(disk); 1540 struct scsi_device *sdp = sdkp->device; 1541 int error; 1542 1543 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, " 1544 "cmd=0x%x\n", disk->disk_name, cmd)); 1545 1546 error = scsi_verify_blk_ioctl(bdev, cmd); 1547 if (error < 0) 1548 return error; 1549 1550 /* 1551 * If we are in the middle of error recovery, don't let anyone 1552 * else try and use this device. Also, if error recovery fails, it 1553 * may try and take the device offline, in which case all further 1554 * access to the device is prohibited. 1555 */ 1556 error = scsi_ioctl_block_when_processing_errors(sdp, cmd, 1557 (mode & FMODE_NDELAY) != 0); 1558 if (error) 1559 goto out; 1560 1561 if (is_sed_ioctl(cmd)) 1562 return sed_ioctl(sdkp->opal_dev, cmd, p); 1563 1564 /* 1565 * Send SCSI addressing ioctls directly to mid level, send other 1566 * ioctls to block level and then onto mid level if they can't be 1567 * resolved. 1568 */ 1569 switch (cmd) { 1570 case SCSI_IOCTL_GET_IDLUN: 1571 case SCSI_IOCTL_GET_BUS_NUMBER: 1572 error = scsi_ioctl(sdp, cmd, p); 1573 break; 1574 default: 1575 error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p); 1576 break; 1577 } 1578 out: 1579 return error; 1580 } 1581 1582 static void set_media_not_present(struct scsi_disk *sdkp) 1583 { 1584 if (sdkp->media_present) 1585 sdkp->device->changed = 1; 1586 1587 if (sdkp->device->removable) { 1588 sdkp->media_present = 0; 1589 sdkp->capacity = 0; 1590 } 1591 } 1592 1593 static int media_not_present(struct scsi_disk *sdkp, 1594 struct scsi_sense_hdr *sshdr) 1595 { 1596 if (!scsi_sense_valid(sshdr)) 1597 return 0; 1598 1599 /* not invoked for commands that could return deferred errors */ 1600 switch (sshdr->sense_key) { 1601 case UNIT_ATTENTION: 1602 case NOT_READY: 1603 /* medium not present */ 1604 if (sshdr->asc == 0x3A) { 1605 set_media_not_present(sdkp); 1606 return 1; 1607 } 1608 } 1609 return 0; 1610 } 1611 1612 /** 1613 * sd_check_events - check media events 1614 * @disk: kernel device descriptor 1615 * @clearing: disk events currently being cleared 1616 * 1617 * Returns mask of DISK_EVENT_*. 1618 * 1619 * Note: this function is invoked from the block subsystem. 1620 **/ 1621 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing) 1622 { 1623 struct scsi_disk *sdkp = scsi_disk_get(disk); 1624 struct scsi_device *sdp; 1625 int retval; 1626 bool disk_changed; 1627 1628 if (!sdkp) 1629 return 0; 1630 1631 sdp = sdkp->device; 1632 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n")); 1633 1634 /* 1635 * If the device is offline, don't send any commands - just pretend as 1636 * if the command failed. If the device ever comes back online, we 1637 * can deal with it then. It is only because of unrecoverable errors 1638 * that we would ever take a device offline in the first place. 1639 */ 1640 if (!scsi_device_online(sdp)) { 1641 set_media_not_present(sdkp); 1642 goto out; 1643 } 1644 1645 /* 1646 * Using TEST_UNIT_READY enables differentiation between drive with 1647 * no cartridge loaded - NOT READY, drive with changed cartridge - 1648 * UNIT ATTENTION, or with same cartridge - GOOD STATUS. 1649 * 1650 * Drives that auto spin down. eg iomega jaz 1G, will be started 1651 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever 1652 * sd_revalidate() is called. 1653 */ 1654 if (scsi_block_when_processing_errors(sdp)) { 1655 struct scsi_sense_hdr sshdr = { 0, }; 1656 1657 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries, 1658 &sshdr); 1659 1660 /* failed to execute TUR, assume media not present */ 1661 if (retval < 0 || host_byte(retval)) { 1662 set_media_not_present(sdkp); 1663 goto out; 1664 } 1665 1666 if (media_not_present(sdkp, &sshdr)) 1667 goto out; 1668 } 1669 1670 /* 1671 * For removable scsi disk we have to recognise the presence 1672 * of a disk in the drive. 1673 */ 1674 if (!sdkp->media_present) 1675 sdp->changed = 1; 1676 sdkp->media_present = 1; 1677 out: 1678 /* 1679 * sdp->changed is set under the following conditions: 1680 * 1681 * Medium present state has changed in either direction. 1682 * Device has indicated UNIT_ATTENTION. 1683 */ 1684 disk_changed = sdp->changed; 1685 sdp->changed = 0; 1686 scsi_disk_put(sdkp); 1687 return disk_changed ? DISK_EVENT_MEDIA_CHANGE : 0; 1688 } 1689 1690 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr) 1691 { 1692 int retries, res; 1693 struct scsi_device *sdp = sdkp->device; 1694 const int timeout = sdp->request_queue->rq_timeout 1695 * SD_FLUSH_TIMEOUT_MULTIPLIER; 1696 struct scsi_sense_hdr my_sshdr; 1697 1698 if (!scsi_device_online(sdp)) 1699 return -ENODEV; 1700 1701 /* caller might not be interested in sense, but we need it */ 1702 if (!sshdr) 1703 sshdr = &my_sshdr; 1704 1705 for (retries = 3; retries > 0; --retries) { 1706 unsigned char cmd[10] = { 0 }; 1707 1708 cmd[0] = SYNCHRONIZE_CACHE; 1709 /* 1710 * Leave the rest of the command zero to indicate 1711 * flush everything. 1712 */ 1713 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr, 1714 timeout, sdkp->max_retries, 0, RQF_PM, NULL); 1715 if (res == 0) 1716 break; 1717 } 1718 1719 if (res) { 1720 sd_print_result(sdkp, "Synchronize Cache(10) failed", res); 1721 1722 if (res < 0) 1723 return res; 1724 1725 if (scsi_status_is_check_condition(res) && 1726 scsi_sense_valid(sshdr)) { 1727 sd_print_sense_hdr(sdkp, sshdr); 1728 1729 /* we need to evaluate the error return */ 1730 if (sshdr->asc == 0x3a || /* medium not present */ 1731 sshdr->asc == 0x20 || /* invalid command */ 1732 (sshdr->asc == 0x74 && sshdr->ascq == 0x71)) /* drive is password locked */ 1733 /* this is no error here */ 1734 return 0; 1735 } 1736 1737 switch (host_byte(res)) { 1738 /* ignore errors due to racing a disconnection */ 1739 case DID_BAD_TARGET: 1740 case DID_NO_CONNECT: 1741 return 0; 1742 /* signal the upper layer it might try again */ 1743 case DID_BUS_BUSY: 1744 case DID_IMM_RETRY: 1745 case DID_REQUEUE: 1746 case DID_SOFT_ERROR: 1747 return -EBUSY; 1748 default: 1749 return -EIO; 1750 } 1751 } 1752 return 0; 1753 } 1754 1755 static void sd_rescan(struct device *dev) 1756 { 1757 struct scsi_disk *sdkp = dev_get_drvdata(dev); 1758 1759 sd_revalidate_disk(sdkp->disk); 1760 } 1761 1762 static int sd_ioctl(struct block_device *bdev, fmode_t mode, 1763 unsigned int cmd, unsigned long arg) 1764 { 1765 void __user *p = (void __user *)arg; 1766 int ret; 1767 1768 ret = sd_ioctl_common(bdev, mode, cmd, p); 1769 if (ret != -ENOTTY) 1770 return ret; 1771 1772 return scsi_ioctl(scsi_disk(bdev->bd_disk)->device, cmd, p); 1773 } 1774 1775 #ifdef CONFIG_COMPAT 1776 static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode, 1777 unsigned int cmd, unsigned long arg) 1778 { 1779 void __user *p = compat_ptr(arg); 1780 int ret; 1781 1782 ret = sd_ioctl_common(bdev, mode, cmd, p); 1783 if (ret != -ENOTTY) 1784 return ret; 1785 1786 return scsi_compat_ioctl(scsi_disk(bdev->bd_disk)->device, cmd, p); 1787 } 1788 #endif 1789 1790 static char sd_pr_type(enum pr_type type) 1791 { 1792 switch (type) { 1793 case PR_WRITE_EXCLUSIVE: 1794 return 0x01; 1795 case PR_EXCLUSIVE_ACCESS: 1796 return 0x03; 1797 case PR_WRITE_EXCLUSIVE_REG_ONLY: 1798 return 0x05; 1799 case PR_EXCLUSIVE_ACCESS_REG_ONLY: 1800 return 0x06; 1801 case PR_WRITE_EXCLUSIVE_ALL_REGS: 1802 return 0x07; 1803 case PR_EXCLUSIVE_ACCESS_ALL_REGS: 1804 return 0x08; 1805 default: 1806 return 0; 1807 } 1808 }; 1809 1810 static int sd_pr_command(struct block_device *bdev, u8 sa, 1811 u64 key, u64 sa_key, u8 type, u8 flags) 1812 { 1813 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1814 struct scsi_device *sdev = sdkp->device; 1815 struct scsi_sense_hdr sshdr; 1816 int result; 1817 u8 cmd[16] = { 0, }; 1818 u8 data[24] = { 0, }; 1819 1820 cmd[0] = PERSISTENT_RESERVE_OUT; 1821 cmd[1] = sa; 1822 cmd[2] = type; 1823 put_unaligned_be32(sizeof(data), &cmd[5]); 1824 1825 put_unaligned_be64(key, &data[0]); 1826 put_unaligned_be64(sa_key, &data[8]); 1827 data[20] = flags; 1828 1829 result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data), 1830 &sshdr, SD_TIMEOUT, sdkp->max_retries, NULL); 1831 1832 if (scsi_status_is_check_condition(result) && 1833 scsi_sense_valid(&sshdr)) { 1834 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result); 1835 scsi_print_sense_hdr(sdev, NULL, &sshdr); 1836 } 1837 1838 return result; 1839 } 1840 1841 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 1842 u32 flags) 1843 { 1844 if (flags & ~PR_FL_IGNORE_KEY) 1845 return -EOPNOTSUPP; 1846 return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00, 1847 old_key, new_key, 0, 1848 (1 << 0) /* APTPL */); 1849 } 1850 1851 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 1852 u32 flags) 1853 { 1854 if (flags) 1855 return -EOPNOTSUPP; 1856 return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0); 1857 } 1858 1859 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 1860 { 1861 return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0); 1862 } 1863 1864 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 1865 enum pr_type type, bool abort) 1866 { 1867 return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key, 1868 sd_pr_type(type), 0); 1869 } 1870 1871 static int sd_pr_clear(struct block_device *bdev, u64 key) 1872 { 1873 return sd_pr_command(bdev, 0x03, key, 0, 0, 0); 1874 } 1875 1876 static const struct pr_ops sd_pr_ops = { 1877 .pr_register = sd_pr_register, 1878 .pr_reserve = sd_pr_reserve, 1879 .pr_release = sd_pr_release, 1880 .pr_preempt = sd_pr_preempt, 1881 .pr_clear = sd_pr_clear, 1882 }; 1883 1884 static const struct block_device_operations sd_fops = { 1885 .owner = THIS_MODULE, 1886 .open = sd_open, 1887 .release = sd_release, 1888 .ioctl = sd_ioctl, 1889 .getgeo = sd_getgeo, 1890 #ifdef CONFIG_COMPAT 1891 .compat_ioctl = sd_compat_ioctl, 1892 #endif 1893 .check_events = sd_check_events, 1894 .unlock_native_capacity = sd_unlock_native_capacity, 1895 .report_zones = sd_zbc_report_zones, 1896 .pr_ops = &sd_pr_ops, 1897 }; 1898 1899 /** 1900 * sd_eh_reset - reset error handling callback 1901 * @scmd: sd-issued command that has failed 1902 * 1903 * This function is called by the SCSI midlayer before starting 1904 * SCSI EH. When counting medium access failures we have to be 1905 * careful to register it only only once per device and SCSI EH run; 1906 * there might be several timed out commands which will cause the 1907 * 'max_medium_access_timeouts' counter to trigger after the first 1908 * SCSI EH run already and set the device to offline. 1909 * So this function resets the internal counter before starting SCSI EH. 1910 **/ 1911 static void sd_eh_reset(struct scsi_cmnd *scmd) 1912 { 1913 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk); 1914 1915 /* New SCSI EH run, reset gate variable */ 1916 sdkp->ignore_medium_access_errors = false; 1917 } 1918 1919 /** 1920 * sd_eh_action - error handling callback 1921 * @scmd: sd-issued command that has failed 1922 * @eh_disp: The recovery disposition suggested by the midlayer 1923 * 1924 * This function is called by the SCSI midlayer upon completion of an 1925 * error test command (currently TEST UNIT READY). The result of sending 1926 * the eh command is passed in eh_disp. We're looking for devices that 1927 * fail medium access commands but are OK with non access commands like 1928 * test unit ready (so wrongly see the device as having a successful 1929 * recovery) 1930 **/ 1931 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp) 1932 { 1933 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk); 1934 struct scsi_device *sdev = scmd->device; 1935 1936 if (!scsi_device_online(sdev) || 1937 !scsi_medium_access_command(scmd) || 1938 host_byte(scmd->result) != DID_TIME_OUT || 1939 eh_disp != SUCCESS) 1940 return eh_disp; 1941 1942 /* 1943 * The device has timed out executing a medium access command. 1944 * However, the TEST UNIT READY command sent during error 1945 * handling completed successfully. Either the device is in the 1946 * process of recovering or has it suffered an internal failure 1947 * that prevents access to the storage medium. 1948 */ 1949 if (!sdkp->ignore_medium_access_errors) { 1950 sdkp->medium_access_timed_out++; 1951 sdkp->ignore_medium_access_errors = true; 1952 } 1953 1954 /* 1955 * If the device keeps failing read/write commands but TEST UNIT 1956 * READY always completes successfully we assume that medium 1957 * access is no longer possible and take the device offline. 1958 */ 1959 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) { 1960 scmd_printk(KERN_ERR, scmd, 1961 "Medium access timeout failure. Offlining disk!\n"); 1962 mutex_lock(&sdev->state_mutex); 1963 scsi_device_set_state(sdev, SDEV_OFFLINE); 1964 mutex_unlock(&sdev->state_mutex); 1965 1966 return SUCCESS; 1967 } 1968 1969 return eh_disp; 1970 } 1971 1972 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd) 1973 { 1974 struct request *req = scmd->request; 1975 struct scsi_device *sdev = scmd->device; 1976 unsigned int transferred, good_bytes; 1977 u64 start_lba, end_lba, bad_lba; 1978 1979 /* 1980 * Some commands have a payload smaller than the device logical 1981 * block size (e.g. INQUIRY on a 4K disk). 1982 */ 1983 if (scsi_bufflen(scmd) <= sdev->sector_size) 1984 return 0; 1985 1986 /* Check if we have a 'bad_lba' information */ 1987 if (!scsi_get_sense_info_fld(scmd->sense_buffer, 1988 SCSI_SENSE_BUFFERSIZE, 1989 &bad_lba)) 1990 return 0; 1991 1992 /* 1993 * If the bad lba was reported incorrectly, we have no idea where 1994 * the error is. 1995 */ 1996 start_lba = sectors_to_logical(sdev, blk_rq_pos(req)); 1997 end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd)); 1998 if (bad_lba < start_lba || bad_lba >= end_lba) 1999 return 0; 2000 2001 /* 2002 * resid is optional but mostly filled in. When it's unused, 2003 * its value is zero, so we assume the whole buffer transferred 2004 */ 2005 transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd); 2006 2007 /* This computation should always be done in terms of the 2008 * resolution of the device's medium. 2009 */ 2010 good_bytes = logical_to_bytes(sdev, bad_lba - start_lba); 2011 2012 return min(good_bytes, transferred); 2013 } 2014 2015 /** 2016 * sd_done - bottom half handler: called when the lower level 2017 * driver has completed (successfully or otherwise) a scsi command. 2018 * @SCpnt: mid-level's per command structure. 2019 * 2020 * Note: potentially run from within an ISR. Must not block. 2021 **/ 2022 static int sd_done(struct scsi_cmnd *SCpnt) 2023 { 2024 int result = SCpnt->result; 2025 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt); 2026 unsigned int sector_size = SCpnt->device->sector_size; 2027 unsigned int resid; 2028 struct scsi_sense_hdr sshdr; 2029 struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk); 2030 struct request *req = SCpnt->request; 2031 int sense_valid = 0; 2032 int sense_deferred = 0; 2033 2034 switch (req_op(req)) { 2035 case REQ_OP_DISCARD: 2036 case REQ_OP_WRITE_ZEROES: 2037 case REQ_OP_WRITE_SAME: 2038 case REQ_OP_ZONE_RESET: 2039 case REQ_OP_ZONE_RESET_ALL: 2040 case REQ_OP_ZONE_OPEN: 2041 case REQ_OP_ZONE_CLOSE: 2042 case REQ_OP_ZONE_FINISH: 2043 if (!result) { 2044 good_bytes = blk_rq_bytes(req); 2045 scsi_set_resid(SCpnt, 0); 2046 } else { 2047 good_bytes = 0; 2048 scsi_set_resid(SCpnt, blk_rq_bytes(req)); 2049 } 2050 break; 2051 default: 2052 /* 2053 * In case of bogus fw or device, we could end up having 2054 * an unaligned partial completion. Check this here and force 2055 * alignment. 2056 */ 2057 resid = scsi_get_resid(SCpnt); 2058 if (resid & (sector_size - 1)) { 2059 sd_printk(KERN_INFO, sdkp, 2060 "Unaligned partial completion (resid=%u, sector_sz=%u)\n", 2061 resid, sector_size); 2062 scsi_print_command(SCpnt); 2063 resid = min(scsi_bufflen(SCpnt), 2064 round_up(resid, sector_size)); 2065 scsi_set_resid(SCpnt, resid); 2066 } 2067 } 2068 2069 if (result) { 2070 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr); 2071 if (sense_valid) 2072 sense_deferred = scsi_sense_is_deferred(&sshdr); 2073 } 2074 sdkp->medium_access_timed_out = 0; 2075 2076 if (!scsi_status_is_check_condition(result) && 2077 (!sense_valid || sense_deferred)) 2078 goto out; 2079 2080 switch (sshdr.sense_key) { 2081 case HARDWARE_ERROR: 2082 case MEDIUM_ERROR: 2083 good_bytes = sd_completed_bytes(SCpnt); 2084 break; 2085 case RECOVERED_ERROR: 2086 good_bytes = scsi_bufflen(SCpnt); 2087 break; 2088 case NO_SENSE: 2089 /* This indicates a false check condition, so ignore it. An 2090 * unknown amount of data was transferred so treat it as an 2091 * error. 2092 */ 2093 SCpnt->result = 0; 2094 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 2095 break; 2096 case ABORTED_COMMAND: 2097 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */ 2098 good_bytes = sd_completed_bytes(SCpnt); 2099 break; 2100 case ILLEGAL_REQUEST: 2101 switch (sshdr.asc) { 2102 case 0x10: /* DIX: Host detected corruption */ 2103 good_bytes = sd_completed_bytes(SCpnt); 2104 break; 2105 case 0x20: /* INVALID COMMAND OPCODE */ 2106 case 0x24: /* INVALID FIELD IN CDB */ 2107 switch (SCpnt->cmnd[0]) { 2108 case UNMAP: 2109 sd_config_discard(sdkp, SD_LBP_DISABLE); 2110 break; 2111 case WRITE_SAME_16: 2112 case WRITE_SAME: 2113 if (SCpnt->cmnd[1] & 8) { /* UNMAP */ 2114 sd_config_discard(sdkp, SD_LBP_DISABLE); 2115 } else { 2116 sdkp->device->no_write_same = 1; 2117 sd_config_write_same(sdkp); 2118 req->rq_flags |= RQF_QUIET; 2119 } 2120 break; 2121 } 2122 } 2123 break; 2124 default: 2125 break; 2126 } 2127 2128 out: 2129 if (sd_is_zoned(sdkp)) 2130 good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr); 2131 2132 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt, 2133 "sd_done: completed %d of %d bytes\n", 2134 good_bytes, scsi_bufflen(SCpnt))); 2135 2136 return good_bytes; 2137 } 2138 2139 /* 2140 * spinup disk - called only in sd_revalidate_disk() 2141 */ 2142 static void 2143 sd_spinup_disk(struct scsi_disk *sdkp) 2144 { 2145 unsigned char cmd[10]; 2146 unsigned long spintime_expire = 0; 2147 int retries, spintime; 2148 unsigned int the_result; 2149 struct scsi_sense_hdr sshdr; 2150 int sense_valid = 0; 2151 2152 spintime = 0; 2153 2154 /* Spin up drives, as required. Only do this at boot time */ 2155 /* Spinup needs to be done for module loads too. */ 2156 do { 2157 retries = 0; 2158 2159 do { 2160 cmd[0] = TEST_UNIT_READY; 2161 memset((void *) &cmd[1], 0, 9); 2162 2163 the_result = scsi_execute_req(sdkp->device, cmd, 2164 DMA_NONE, NULL, 0, 2165 &sshdr, SD_TIMEOUT, 2166 sdkp->max_retries, NULL); 2167 2168 /* 2169 * If the drive has indicated to us that it 2170 * doesn't have any media in it, don't bother 2171 * with any more polling. 2172 */ 2173 if (media_not_present(sdkp, &sshdr)) 2174 return; 2175 2176 if (the_result) 2177 sense_valid = scsi_sense_valid(&sshdr); 2178 retries++; 2179 } while (retries < 3 && 2180 (!scsi_status_is_good(the_result) || 2181 (scsi_status_is_check_condition(the_result) && 2182 sense_valid && sshdr.sense_key == UNIT_ATTENTION))); 2183 2184 if (!scsi_status_is_check_condition(the_result)) { 2185 /* no sense, TUR either succeeded or failed 2186 * with a status error */ 2187 if(!spintime && !scsi_status_is_good(the_result)) { 2188 sd_print_result(sdkp, "Test Unit Ready failed", 2189 the_result); 2190 } 2191 break; 2192 } 2193 2194 /* 2195 * The device does not want the automatic start to be issued. 2196 */ 2197 if (sdkp->device->no_start_on_add) 2198 break; 2199 2200 if (sense_valid && sshdr.sense_key == NOT_READY) { 2201 if (sshdr.asc == 4 && sshdr.ascq == 3) 2202 break; /* manual intervention required */ 2203 if (sshdr.asc == 4 && sshdr.ascq == 0xb) 2204 break; /* standby */ 2205 if (sshdr.asc == 4 && sshdr.ascq == 0xc) 2206 break; /* unavailable */ 2207 if (sshdr.asc == 4 && sshdr.ascq == 0x1b) 2208 break; /* sanitize in progress */ 2209 /* 2210 * Issue command to spin up drive when not ready 2211 */ 2212 if (!spintime) { 2213 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk..."); 2214 cmd[0] = START_STOP; 2215 cmd[1] = 1; /* Return immediately */ 2216 memset((void *) &cmd[2], 0, 8); 2217 cmd[4] = 1; /* Start spin cycle */ 2218 if (sdkp->device->start_stop_pwr_cond) 2219 cmd[4] |= 1 << 4; 2220 scsi_execute_req(sdkp->device, cmd, DMA_NONE, 2221 NULL, 0, &sshdr, 2222 SD_TIMEOUT, sdkp->max_retries, 2223 NULL); 2224 spintime_expire = jiffies + 100 * HZ; 2225 spintime = 1; 2226 } 2227 /* Wait 1 second for next try */ 2228 msleep(1000); 2229 printk(KERN_CONT "."); 2230 2231 /* 2232 * Wait for USB flash devices with slow firmware. 2233 * Yes, this sense key/ASC combination shouldn't 2234 * occur here. It's characteristic of these devices. 2235 */ 2236 } else if (sense_valid && 2237 sshdr.sense_key == UNIT_ATTENTION && 2238 sshdr.asc == 0x28) { 2239 if (!spintime) { 2240 spintime_expire = jiffies + 5 * HZ; 2241 spintime = 1; 2242 } 2243 /* Wait 1 second for next try */ 2244 msleep(1000); 2245 } else { 2246 /* we don't understand the sense code, so it's 2247 * probably pointless to loop */ 2248 if(!spintime) { 2249 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n"); 2250 sd_print_sense_hdr(sdkp, &sshdr); 2251 } 2252 break; 2253 } 2254 2255 } while (spintime && time_before_eq(jiffies, spintime_expire)); 2256 2257 if (spintime) { 2258 if (scsi_status_is_good(the_result)) 2259 printk(KERN_CONT "ready\n"); 2260 else 2261 printk(KERN_CONT "not responding...\n"); 2262 } 2263 } 2264 2265 /* 2266 * Determine whether disk supports Data Integrity Field. 2267 */ 2268 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer) 2269 { 2270 struct scsi_device *sdp = sdkp->device; 2271 u8 type; 2272 int ret = 0; 2273 2274 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) { 2275 sdkp->protection_type = 0; 2276 return ret; 2277 } 2278 2279 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */ 2280 2281 if (type > T10_PI_TYPE3_PROTECTION) 2282 ret = -ENODEV; 2283 else if (scsi_host_dif_capable(sdp->host, type)) 2284 ret = 1; 2285 2286 if (sdkp->first_scan || type != sdkp->protection_type) 2287 switch (ret) { 2288 case -ENODEV: 2289 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \ 2290 " protection type %u. Disabling disk!\n", 2291 type); 2292 break; 2293 case 1: 2294 sd_printk(KERN_NOTICE, sdkp, 2295 "Enabling DIF Type %u protection\n", type); 2296 break; 2297 case 0: 2298 sd_printk(KERN_NOTICE, sdkp, 2299 "Disabling DIF Type %u protection\n", type); 2300 break; 2301 } 2302 2303 sdkp->protection_type = type; 2304 2305 return ret; 2306 } 2307 2308 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp, 2309 struct scsi_sense_hdr *sshdr, int sense_valid, 2310 int the_result) 2311 { 2312 if (sense_valid) 2313 sd_print_sense_hdr(sdkp, sshdr); 2314 else 2315 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n"); 2316 2317 /* 2318 * Set dirty bit for removable devices if not ready - 2319 * sometimes drives will not report this properly. 2320 */ 2321 if (sdp->removable && 2322 sense_valid && sshdr->sense_key == NOT_READY) 2323 set_media_not_present(sdkp); 2324 2325 /* 2326 * We used to set media_present to 0 here to indicate no media 2327 * in the drive, but some drives fail read capacity even with 2328 * media present, so we can't do that. 2329 */ 2330 sdkp->capacity = 0; /* unknown mapped to zero - as usual */ 2331 } 2332 2333 #define RC16_LEN 32 2334 #if RC16_LEN > SD_BUF_SIZE 2335 #error RC16_LEN must not be more than SD_BUF_SIZE 2336 #endif 2337 2338 #define READ_CAPACITY_RETRIES_ON_RESET 10 2339 2340 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp, 2341 unsigned char *buffer) 2342 { 2343 unsigned char cmd[16]; 2344 struct scsi_sense_hdr sshdr; 2345 int sense_valid = 0; 2346 int the_result; 2347 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2348 unsigned int alignment; 2349 unsigned long long lba; 2350 unsigned sector_size; 2351 2352 if (sdp->no_read_capacity_16) 2353 return -EINVAL; 2354 2355 do { 2356 memset(cmd, 0, 16); 2357 cmd[0] = SERVICE_ACTION_IN_16; 2358 cmd[1] = SAI_READ_CAPACITY_16; 2359 cmd[13] = RC16_LEN; 2360 memset(buffer, 0, RC16_LEN); 2361 2362 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, 2363 buffer, RC16_LEN, &sshdr, 2364 SD_TIMEOUT, sdkp->max_retries, NULL); 2365 2366 if (media_not_present(sdkp, &sshdr)) 2367 return -ENODEV; 2368 2369 if (the_result > 0) { 2370 sense_valid = scsi_sense_valid(&sshdr); 2371 if (sense_valid && 2372 sshdr.sense_key == ILLEGAL_REQUEST && 2373 (sshdr.asc == 0x20 || sshdr.asc == 0x24) && 2374 sshdr.ascq == 0x00) 2375 /* Invalid Command Operation Code or 2376 * Invalid Field in CDB, just retry 2377 * silently with RC10 */ 2378 return -EINVAL; 2379 if (sense_valid && 2380 sshdr.sense_key == UNIT_ATTENTION && 2381 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2382 /* Device reset might occur several times, 2383 * give it one more chance */ 2384 if (--reset_retries > 0) 2385 continue; 2386 } 2387 retries--; 2388 2389 } while (the_result && retries); 2390 2391 if (the_result) { 2392 sd_print_result(sdkp, "Read Capacity(16) failed", the_result); 2393 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2394 return -EINVAL; 2395 } 2396 2397 sector_size = get_unaligned_be32(&buffer[8]); 2398 lba = get_unaligned_be64(&buffer[0]); 2399 2400 if (sd_read_protection_type(sdkp, buffer) < 0) { 2401 sdkp->capacity = 0; 2402 return -ENODEV; 2403 } 2404 2405 /* Logical blocks per physical block exponent */ 2406 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size; 2407 2408 /* RC basis */ 2409 sdkp->rc_basis = (buffer[12] >> 4) & 0x3; 2410 2411 /* Lowest aligned logical block */ 2412 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size; 2413 blk_queue_alignment_offset(sdp->request_queue, alignment); 2414 if (alignment && sdkp->first_scan) 2415 sd_printk(KERN_NOTICE, sdkp, 2416 "physical block alignment offset: %u\n", alignment); 2417 2418 if (buffer[14] & 0x80) { /* LBPME */ 2419 sdkp->lbpme = 1; 2420 2421 if (buffer[14] & 0x40) /* LBPRZ */ 2422 sdkp->lbprz = 1; 2423 2424 sd_config_discard(sdkp, SD_LBP_WS16); 2425 } 2426 2427 sdkp->capacity = lba + 1; 2428 return sector_size; 2429 } 2430 2431 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp, 2432 unsigned char *buffer) 2433 { 2434 unsigned char cmd[16]; 2435 struct scsi_sense_hdr sshdr; 2436 int sense_valid = 0; 2437 int the_result; 2438 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2439 sector_t lba; 2440 unsigned sector_size; 2441 2442 do { 2443 cmd[0] = READ_CAPACITY; 2444 memset(&cmd[1], 0, 9); 2445 memset(buffer, 0, 8); 2446 2447 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, 2448 buffer, 8, &sshdr, 2449 SD_TIMEOUT, sdkp->max_retries, NULL); 2450 2451 if (media_not_present(sdkp, &sshdr)) 2452 return -ENODEV; 2453 2454 if (the_result > 0) { 2455 sense_valid = scsi_sense_valid(&sshdr); 2456 if (sense_valid && 2457 sshdr.sense_key == UNIT_ATTENTION && 2458 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2459 /* Device reset might occur several times, 2460 * give it one more chance */ 2461 if (--reset_retries > 0) 2462 continue; 2463 } 2464 retries--; 2465 2466 } while (the_result && retries); 2467 2468 if (the_result) { 2469 sd_print_result(sdkp, "Read Capacity(10) failed", the_result); 2470 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2471 return -EINVAL; 2472 } 2473 2474 sector_size = get_unaligned_be32(&buffer[4]); 2475 lba = get_unaligned_be32(&buffer[0]); 2476 2477 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) { 2478 /* Some buggy (usb cardreader) devices return an lba of 2479 0xffffffff when the want to report a size of 0 (with 2480 which they really mean no media is present) */ 2481 sdkp->capacity = 0; 2482 sdkp->physical_block_size = sector_size; 2483 return sector_size; 2484 } 2485 2486 sdkp->capacity = lba + 1; 2487 sdkp->physical_block_size = sector_size; 2488 return sector_size; 2489 } 2490 2491 static int sd_try_rc16_first(struct scsi_device *sdp) 2492 { 2493 if (sdp->host->max_cmd_len < 16) 2494 return 0; 2495 if (sdp->try_rc_10_first) 2496 return 0; 2497 if (sdp->scsi_level > SCSI_SPC_2) 2498 return 1; 2499 if (scsi_device_protection(sdp)) 2500 return 1; 2501 return 0; 2502 } 2503 2504 /* 2505 * read disk capacity 2506 */ 2507 static void 2508 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer) 2509 { 2510 int sector_size; 2511 struct scsi_device *sdp = sdkp->device; 2512 2513 if (sd_try_rc16_first(sdp)) { 2514 sector_size = read_capacity_16(sdkp, sdp, buffer); 2515 if (sector_size == -EOVERFLOW) 2516 goto got_data; 2517 if (sector_size == -ENODEV) 2518 return; 2519 if (sector_size < 0) 2520 sector_size = read_capacity_10(sdkp, sdp, buffer); 2521 if (sector_size < 0) 2522 return; 2523 } else { 2524 sector_size = read_capacity_10(sdkp, sdp, buffer); 2525 if (sector_size == -EOVERFLOW) 2526 goto got_data; 2527 if (sector_size < 0) 2528 return; 2529 if ((sizeof(sdkp->capacity) > 4) && 2530 (sdkp->capacity > 0xffffffffULL)) { 2531 int old_sector_size = sector_size; 2532 sd_printk(KERN_NOTICE, sdkp, "Very big device. " 2533 "Trying to use READ CAPACITY(16).\n"); 2534 sector_size = read_capacity_16(sdkp, sdp, buffer); 2535 if (sector_size < 0) { 2536 sd_printk(KERN_NOTICE, sdkp, 2537 "Using 0xffffffff as device size\n"); 2538 sdkp->capacity = 1 + (sector_t) 0xffffffff; 2539 sector_size = old_sector_size; 2540 goto got_data; 2541 } 2542 /* Remember that READ CAPACITY(16) succeeded */ 2543 sdp->try_rc_10_first = 0; 2544 } 2545 } 2546 2547 /* Some devices are known to return the total number of blocks, 2548 * not the highest block number. Some devices have versions 2549 * which do this and others which do not. Some devices we might 2550 * suspect of doing this but we don't know for certain. 2551 * 2552 * If we know the reported capacity is wrong, decrement it. If 2553 * we can only guess, then assume the number of blocks is even 2554 * (usually true but not always) and err on the side of lowering 2555 * the capacity. 2556 */ 2557 if (sdp->fix_capacity || 2558 (sdp->guess_capacity && (sdkp->capacity & 0x01))) { 2559 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count " 2560 "from its reported value: %llu\n", 2561 (unsigned long long) sdkp->capacity); 2562 --sdkp->capacity; 2563 } 2564 2565 got_data: 2566 if (sector_size == 0) { 2567 sector_size = 512; 2568 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, " 2569 "assuming 512.\n"); 2570 } 2571 2572 if (sector_size != 512 && 2573 sector_size != 1024 && 2574 sector_size != 2048 && 2575 sector_size != 4096) { 2576 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n", 2577 sector_size); 2578 /* 2579 * The user might want to re-format the drive with 2580 * a supported sectorsize. Once this happens, it 2581 * would be relatively trivial to set the thing up. 2582 * For this reason, we leave the thing in the table. 2583 */ 2584 sdkp->capacity = 0; 2585 /* 2586 * set a bogus sector size so the normal read/write 2587 * logic in the block layer will eventually refuse any 2588 * request on this device without tripping over power 2589 * of two sector size assumptions 2590 */ 2591 sector_size = 512; 2592 } 2593 blk_queue_logical_block_size(sdp->request_queue, sector_size); 2594 blk_queue_physical_block_size(sdp->request_queue, 2595 sdkp->physical_block_size); 2596 sdkp->device->sector_size = sector_size; 2597 2598 if (sdkp->capacity > 0xffffffff) 2599 sdp->use_16_for_rw = 1; 2600 2601 } 2602 2603 /* 2604 * Print disk capacity 2605 */ 2606 static void 2607 sd_print_capacity(struct scsi_disk *sdkp, 2608 sector_t old_capacity) 2609 { 2610 int sector_size = sdkp->device->sector_size; 2611 char cap_str_2[10], cap_str_10[10]; 2612 2613 if (!sdkp->first_scan && old_capacity == sdkp->capacity) 2614 return; 2615 2616 string_get_size(sdkp->capacity, sector_size, 2617 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2)); 2618 string_get_size(sdkp->capacity, sector_size, 2619 STRING_UNITS_10, cap_str_10, sizeof(cap_str_10)); 2620 2621 sd_printk(KERN_NOTICE, sdkp, 2622 "%llu %d-byte logical blocks: (%s/%s)\n", 2623 (unsigned long long)sdkp->capacity, 2624 sector_size, cap_str_10, cap_str_2); 2625 2626 if (sdkp->physical_block_size != sector_size) 2627 sd_printk(KERN_NOTICE, sdkp, 2628 "%u-byte physical blocks\n", 2629 sdkp->physical_block_size); 2630 } 2631 2632 /* called with buffer of length 512 */ 2633 static inline int 2634 sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage, 2635 unsigned char *buffer, int len, struct scsi_mode_data *data, 2636 struct scsi_sense_hdr *sshdr) 2637 { 2638 return scsi_mode_sense(sdkp->device, dbd, modepage, buffer, len, 2639 SD_TIMEOUT, sdkp->max_retries, data, 2640 sshdr); 2641 } 2642 2643 /* 2644 * read write protect setting, if possible - called only in sd_revalidate_disk() 2645 * called with buffer of length SD_BUF_SIZE 2646 */ 2647 static void 2648 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer) 2649 { 2650 int res; 2651 struct scsi_device *sdp = sdkp->device; 2652 struct scsi_mode_data data; 2653 int old_wp = sdkp->write_prot; 2654 2655 set_disk_ro(sdkp->disk, 0); 2656 if (sdp->skip_ms_page_3f) { 2657 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n"); 2658 return; 2659 } 2660 2661 if (sdp->use_192_bytes_for_3f) { 2662 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL); 2663 } else { 2664 /* 2665 * First attempt: ask for all pages (0x3F), but only 4 bytes. 2666 * We have to start carefully: some devices hang if we ask 2667 * for more than is available. 2668 */ 2669 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL); 2670 2671 /* 2672 * Second attempt: ask for page 0 When only page 0 is 2673 * implemented, a request for page 3F may return Sense Key 2674 * 5: Illegal Request, Sense Code 24: Invalid field in 2675 * CDB. 2676 */ 2677 if (res < 0) 2678 res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL); 2679 2680 /* 2681 * Third attempt: ask 255 bytes, as we did earlier. 2682 */ 2683 if (res < 0) 2684 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255, 2685 &data, NULL); 2686 } 2687 2688 if (res < 0) { 2689 sd_first_printk(KERN_WARNING, sdkp, 2690 "Test WP failed, assume Write Enabled\n"); 2691 } else { 2692 sdkp->write_prot = ((data.device_specific & 0x80) != 0); 2693 set_disk_ro(sdkp->disk, sdkp->write_prot); 2694 if (sdkp->first_scan || old_wp != sdkp->write_prot) { 2695 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n", 2696 sdkp->write_prot ? "on" : "off"); 2697 sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer); 2698 } 2699 } 2700 } 2701 2702 /* 2703 * sd_read_cache_type - called only from sd_revalidate_disk() 2704 * called with buffer of length SD_BUF_SIZE 2705 */ 2706 static void 2707 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer) 2708 { 2709 int len = 0, res; 2710 struct scsi_device *sdp = sdkp->device; 2711 2712 int dbd; 2713 int modepage; 2714 int first_len; 2715 struct scsi_mode_data data; 2716 struct scsi_sense_hdr sshdr; 2717 int old_wce = sdkp->WCE; 2718 int old_rcd = sdkp->RCD; 2719 int old_dpofua = sdkp->DPOFUA; 2720 2721 2722 if (sdkp->cache_override) 2723 return; 2724 2725 first_len = 4; 2726 if (sdp->skip_ms_page_8) { 2727 if (sdp->type == TYPE_RBC) 2728 goto defaults; 2729 else { 2730 if (sdp->skip_ms_page_3f) 2731 goto defaults; 2732 modepage = 0x3F; 2733 if (sdp->use_192_bytes_for_3f) 2734 first_len = 192; 2735 dbd = 0; 2736 } 2737 } else if (sdp->type == TYPE_RBC) { 2738 modepage = 6; 2739 dbd = 8; 2740 } else { 2741 modepage = 8; 2742 dbd = 0; 2743 } 2744 2745 /* cautiously ask */ 2746 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len, 2747 &data, &sshdr); 2748 2749 if (res < 0) 2750 goto bad_sense; 2751 2752 if (!data.header_length) { 2753 modepage = 6; 2754 first_len = 0; 2755 sd_first_printk(KERN_ERR, sdkp, 2756 "Missing header in MODE_SENSE response\n"); 2757 } 2758 2759 /* that went OK, now ask for the proper length */ 2760 len = data.length; 2761 2762 /* 2763 * We're only interested in the first three bytes, actually. 2764 * But the data cache page is defined for the first 20. 2765 */ 2766 if (len < 3) 2767 goto bad_sense; 2768 else if (len > SD_BUF_SIZE) { 2769 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter " 2770 "data from %d to %d bytes\n", len, SD_BUF_SIZE); 2771 len = SD_BUF_SIZE; 2772 } 2773 if (modepage == 0x3F && sdp->use_192_bytes_for_3f) 2774 len = 192; 2775 2776 /* Get the data */ 2777 if (len > first_len) 2778 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len, 2779 &data, &sshdr); 2780 2781 if (!res) { 2782 int offset = data.header_length + data.block_descriptor_length; 2783 2784 while (offset < len) { 2785 u8 page_code = buffer[offset] & 0x3F; 2786 u8 spf = buffer[offset] & 0x40; 2787 2788 if (page_code == 8 || page_code == 6) { 2789 /* We're interested only in the first 3 bytes. 2790 */ 2791 if (len - offset <= 2) { 2792 sd_first_printk(KERN_ERR, sdkp, 2793 "Incomplete mode parameter " 2794 "data\n"); 2795 goto defaults; 2796 } else { 2797 modepage = page_code; 2798 goto Page_found; 2799 } 2800 } else { 2801 /* Go to the next page */ 2802 if (spf && len - offset > 3) 2803 offset += 4 + (buffer[offset+2] << 8) + 2804 buffer[offset+3]; 2805 else if (!spf && len - offset > 1) 2806 offset += 2 + buffer[offset+1]; 2807 else { 2808 sd_first_printk(KERN_ERR, sdkp, 2809 "Incomplete mode " 2810 "parameter data\n"); 2811 goto defaults; 2812 } 2813 } 2814 } 2815 2816 sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n"); 2817 goto defaults; 2818 2819 Page_found: 2820 if (modepage == 8) { 2821 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0); 2822 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0); 2823 } else { 2824 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0); 2825 sdkp->RCD = 0; 2826 } 2827 2828 sdkp->DPOFUA = (data.device_specific & 0x10) != 0; 2829 if (sdp->broken_fua) { 2830 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n"); 2831 sdkp->DPOFUA = 0; 2832 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw && 2833 !sdkp->device->use_16_for_rw) { 2834 sd_first_printk(KERN_NOTICE, sdkp, 2835 "Uses READ/WRITE(6), disabling FUA\n"); 2836 sdkp->DPOFUA = 0; 2837 } 2838 2839 /* No cache flush allowed for write protected devices */ 2840 if (sdkp->WCE && sdkp->write_prot) 2841 sdkp->WCE = 0; 2842 2843 if (sdkp->first_scan || old_wce != sdkp->WCE || 2844 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA) 2845 sd_printk(KERN_NOTICE, sdkp, 2846 "Write cache: %s, read cache: %s, %s\n", 2847 sdkp->WCE ? "enabled" : "disabled", 2848 sdkp->RCD ? "disabled" : "enabled", 2849 sdkp->DPOFUA ? "supports DPO and FUA" 2850 : "doesn't support DPO or FUA"); 2851 2852 return; 2853 } 2854 2855 bad_sense: 2856 if (scsi_sense_valid(&sshdr) && 2857 sshdr.sense_key == ILLEGAL_REQUEST && 2858 sshdr.asc == 0x24 && sshdr.ascq == 0x0) 2859 /* Invalid field in CDB */ 2860 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n"); 2861 else 2862 sd_first_printk(KERN_ERR, sdkp, 2863 "Asking for cache data failed\n"); 2864 2865 defaults: 2866 if (sdp->wce_default_on) { 2867 sd_first_printk(KERN_NOTICE, sdkp, 2868 "Assuming drive cache: write back\n"); 2869 sdkp->WCE = 1; 2870 } else { 2871 sd_first_printk(KERN_ERR, sdkp, 2872 "Assuming drive cache: write through\n"); 2873 sdkp->WCE = 0; 2874 } 2875 sdkp->RCD = 0; 2876 sdkp->DPOFUA = 0; 2877 } 2878 2879 /* 2880 * The ATO bit indicates whether the DIF application tag is available 2881 * for use by the operating system. 2882 */ 2883 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer) 2884 { 2885 int res, offset; 2886 struct scsi_device *sdp = sdkp->device; 2887 struct scsi_mode_data data; 2888 struct scsi_sense_hdr sshdr; 2889 2890 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 2891 return; 2892 2893 if (sdkp->protection_type == 0) 2894 return; 2895 2896 res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT, 2897 sdkp->max_retries, &data, &sshdr); 2898 2899 if (res < 0 || !data.header_length || 2900 data.length < 6) { 2901 sd_first_printk(KERN_WARNING, sdkp, 2902 "getting Control mode page failed, assume no ATO\n"); 2903 2904 if (scsi_sense_valid(&sshdr)) 2905 sd_print_sense_hdr(sdkp, &sshdr); 2906 2907 return; 2908 } 2909 2910 offset = data.header_length + data.block_descriptor_length; 2911 2912 if ((buffer[offset] & 0x3f) != 0x0a) { 2913 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n"); 2914 return; 2915 } 2916 2917 if ((buffer[offset + 5] & 0x80) == 0) 2918 return; 2919 2920 sdkp->ATO = 1; 2921 2922 return; 2923 } 2924 2925 /** 2926 * sd_read_block_limits - Query disk device for preferred I/O sizes. 2927 * @sdkp: disk to query 2928 */ 2929 static void sd_read_block_limits(struct scsi_disk *sdkp) 2930 { 2931 unsigned int sector_sz = sdkp->device->sector_size; 2932 const int vpd_len = 64; 2933 unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL); 2934 2935 if (!buffer || 2936 /* Block Limits VPD */ 2937 scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len)) 2938 goto out; 2939 2940 blk_queue_io_min(sdkp->disk->queue, 2941 get_unaligned_be16(&buffer[6]) * sector_sz); 2942 2943 sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]); 2944 sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]); 2945 2946 if (buffer[3] == 0x3c) { 2947 unsigned int lba_count, desc_count; 2948 2949 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]); 2950 2951 if (!sdkp->lbpme) 2952 goto out; 2953 2954 lba_count = get_unaligned_be32(&buffer[20]); 2955 desc_count = get_unaligned_be32(&buffer[24]); 2956 2957 if (lba_count && desc_count) 2958 sdkp->max_unmap_blocks = lba_count; 2959 2960 sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]); 2961 2962 if (buffer[32] & 0x80) 2963 sdkp->unmap_alignment = 2964 get_unaligned_be32(&buffer[32]) & ~(1 << 31); 2965 2966 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */ 2967 2968 if (sdkp->max_unmap_blocks) 2969 sd_config_discard(sdkp, SD_LBP_UNMAP); 2970 else 2971 sd_config_discard(sdkp, SD_LBP_WS16); 2972 2973 } else { /* LBP VPD page tells us what to use */ 2974 if (sdkp->lbpu && sdkp->max_unmap_blocks) 2975 sd_config_discard(sdkp, SD_LBP_UNMAP); 2976 else if (sdkp->lbpws) 2977 sd_config_discard(sdkp, SD_LBP_WS16); 2978 else if (sdkp->lbpws10) 2979 sd_config_discard(sdkp, SD_LBP_WS10); 2980 else 2981 sd_config_discard(sdkp, SD_LBP_DISABLE); 2982 } 2983 } 2984 2985 out: 2986 kfree(buffer); 2987 } 2988 2989 /** 2990 * sd_read_block_characteristics - Query block dev. characteristics 2991 * @sdkp: disk to query 2992 */ 2993 static void sd_read_block_characteristics(struct scsi_disk *sdkp) 2994 { 2995 struct request_queue *q = sdkp->disk->queue; 2996 unsigned char *buffer; 2997 u16 rot; 2998 const int vpd_len = 64; 2999 3000 buffer = kmalloc(vpd_len, GFP_KERNEL); 3001 3002 if (!buffer || 3003 /* Block Device Characteristics VPD */ 3004 scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len)) 3005 goto out; 3006 3007 rot = get_unaligned_be16(&buffer[4]); 3008 3009 if (rot == 1) { 3010 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 3011 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q); 3012 } 3013 3014 if (sdkp->device->type == TYPE_ZBC) { 3015 /* Host-managed */ 3016 blk_queue_set_zoned(sdkp->disk, BLK_ZONED_HM); 3017 } else { 3018 sdkp->zoned = (buffer[8] >> 4) & 3; 3019 if (sdkp->zoned == 1) { 3020 /* Host-aware */ 3021 blk_queue_set_zoned(sdkp->disk, BLK_ZONED_HA); 3022 } else { 3023 /* Regular disk or drive managed disk */ 3024 blk_queue_set_zoned(sdkp->disk, BLK_ZONED_NONE); 3025 } 3026 } 3027 3028 if (!sdkp->first_scan) 3029 goto out; 3030 3031 if (blk_queue_is_zoned(q)) { 3032 sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n", 3033 q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware"); 3034 } else { 3035 if (sdkp->zoned == 1) 3036 sd_printk(KERN_NOTICE, sdkp, 3037 "Host-aware SMR disk used as regular disk\n"); 3038 else if (sdkp->zoned == 2) 3039 sd_printk(KERN_NOTICE, sdkp, 3040 "Drive-managed SMR disk\n"); 3041 } 3042 3043 out: 3044 kfree(buffer); 3045 } 3046 3047 /** 3048 * sd_read_block_provisioning - Query provisioning VPD page 3049 * @sdkp: disk to query 3050 */ 3051 static void sd_read_block_provisioning(struct scsi_disk *sdkp) 3052 { 3053 unsigned char *buffer; 3054 const int vpd_len = 8; 3055 3056 if (sdkp->lbpme == 0) 3057 return; 3058 3059 buffer = kmalloc(vpd_len, GFP_KERNEL); 3060 3061 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len)) 3062 goto out; 3063 3064 sdkp->lbpvpd = 1; 3065 sdkp->lbpu = (buffer[5] >> 7) & 1; /* UNMAP */ 3066 sdkp->lbpws = (buffer[5] >> 6) & 1; /* WRITE SAME(16) with UNMAP */ 3067 sdkp->lbpws10 = (buffer[5] >> 5) & 1; /* WRITE SAME(10) with UNMAP */ 3068 3069 out: 3070 kfree(buffer); 3071 } 3072 3073 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer) 3074 { 3075 struct scsi_device *sdev = sdkp->device; 3076 3077 if (sdev->host->no_write_same) { 3078 sdev->no_write_same = 1; 3079 3080 return; 3081 } 3082 3083 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) { 3084 /* too large values might cause issues with arcmsr */ 3085 int vpd_buf_len = 64; 3086 3087 sdev->no_report_opcodes = 1; 3088 3089 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION 3090 * CODES is unsupported and the device has an ATA 3091 * Information VPD page (SAT). 3092 */ 3093 if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len)) 3094 sdev->no_write_same = 1; 3095 } 3096 3097 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1) 3098 sdkp->ws16 = 1; 3099 3100 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1) 3101 sdkp->ws10 = 1; 3102 } 3103 3104 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer) 3105 { 3106 struct scsi_device *sdev = sdkp->device; 3107 3108 if (!sdev->security_supported) 3109 return; 3110 3111 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3112 SECURITY_PROTOCOL_IN) == 1 && 3113 scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3114 SECURITY_PROTOCOL_OUT) == 1) 3115 sdkp->security = 1; 3116 } 3117 3118 /* 3119 * Determine the device's preferred I/O size for reads and writes 3120 * unless the reported value is unreasonably small, large, not a 3121 * multiple of the physical block size, or simply garbage. 3122 */ 3123 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp, 3124 unsigned int dev_max) 3125 { 3126 struct scsi_device *sdp = sdkp->device; 3127 unsigned int opt_xfer_bytes = 3128 logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 3129 3130 if (sdkp->opt_xfer_blocks == 0) 3131 return false; 3132 3133 if (sdkp->opt_xfer_blocks > dev_max) { 3134 sd_first_printk(KERN_WARNING, sdkp, 3135 "Optimal transfer size %u logical blocks " \ 3136 "> dev_max (%u logical blocks)\n", 3137 sdkp->opt_xfer_blocks, dev_max); 3138 return false; 3139 } 3140 3141 if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) { 3142 sd_first_printk(KERN_WARNING, sdkp, 3143 "Optimal transfer size %u logical blocks " \ 3144 "> sd driver limit (%u logical blocks)\n", 3145 sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS); 3146 return false; 3147 } 3148 3149 if (opt_xfer_bytes < PAGE_SIZE) { 3150 sd_first_printk(KERN_WARNING, sdkp, 3151 "Optimal transfer size %u bytes < " \ 3152 "PAGE_SIZE (%u bytes)\n", 3153 opt_xfer_bytes, (unsigned int)PAGE_SIZE); 3154 return false; 3155 } 3156 3157 if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) { 3158 sd_first_printk(KERN_WARNING, sdkp, 3159 "Optimal transfer size %u bytes not a " \ 3160 "multiple of physical block size (%u bytes)\n", 3161 opt_xfer_bytes, sdkp->physical_block_size); 3162 return false; 3163 } 3164 3165 sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n", 3166 opt_xfer_bytes); 3167 return true; 3168 } 3169 3170 /** 3171 * sd_revalidate_disk - called the first time a new disk is seen, 3172 * performs disk spin up, read_capacity, etc. 3173 * @disk: struct gendisk we care about 3174 **/ 3175 static int sd_revalidate_disk(struct gendisk *disk) 3176 { 3177 struct scsi_disk *sdkp = scsi_disk(disk); 3178 struct scsi_device *sdp = sdkp->device; 3179 struct request_queue *q = sdkp->disk->queue; 3180 sector_t old_capacity = sdkp->capacity; 3181 unsigned char *buffer; 3182 unsigned int dev_max, rw_max; 3183 3184 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, 3185 "sd_revalidate_disk\n")); 3186 3187 /* 3188 * If the device is offline, don't try and read capacity or any 3189 * of the other niceties. 3190 */ 3191 if (!scsi_device_online(sdp)) 3192 goto out; 3193 3194 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL); 3195 if (!buffer) { 3196 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory " 3197 "allocation failure.\n"); 3198 goto out; 3199 } 3200 3201 sd_spinup_disk(sdkp); 3202 3203 /* 3204 * Without media there is no reason to ask; moreover, some devices 3205 * react badly if we do. 3206 */ 3207 if (sdkp->media_present) { 3208 sd_read_capacity(sdkp, buffer); 3209 3210 /* 3211 * set the default to rotational. All non-rotational devices 3212 * support the block characteristics VPD page, which will 3213 * cause this to be updated correctly and any device which 3214 * doesn't support it should be treated as rotational. 3215 */ 3216 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q); 3217 blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q); 3218 3219 if (scsi_device_supports_vpd(sdp)) { 3220 sd_read_block_provisioning(sdkp); 3221 sd_read_block_limits(sdkp); 3222 sd_read_block_characteristics(sdkp); 3223 sd_zbc_read_zones(sdkp, buffer); 3224 } 3225 3226 sd_print_capacity(sdkp, old_capacity); 3227 3228 sd_read_write_protect_flag(sdkp, buffer); 3229 sd_read_cache_type(sdkp, buffer); 3230 sd_read_app_tag_own(sdkp, buffer); 3231 sd_read_write_same(sdkp, buffer); 3232 sd_read_security(sdkp, buffer); 3233 } 3234 3235 /* 3236 * We now have all cache related info, determine how we deal 3237 * with flush requests. 3238 */ 3239 sd_set_flush_flag(sdkp); 3240 3241 /* Initial block count limit based on CDB TRANSFER LENGTH field size. */ 3242 dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS; 3243 3244 /* Some devices report a maximum block count for READ/WRITE requests. */ 3245 dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks); 3246 q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max); 3247 3248 if (sd_validate_opt_xfer_size(sdkp, dev_max)) { 3249 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 3250 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks); 3251 } else { 3252 q->limits.io_opt = 0; 3253 rw_max = min_not_zero(logical_to_sectors(sdp, dev_max), 3254 (sector_t)BLK_DEF_MAX_SECTORS); 3255 } 3256 3257 /* Do not exceed controller limit */ 3258 rw_max = min(rw_max, queue_max_hw_sectors(q)); 3259 3260 /* 3261 * Only update max_sectors if previously unset or if the current value 3262 * exceeds the capabilities of the hardware. 3263 */ 3264 if (sdkp->first_scan || 3265 q->limits.max_sectors > q->limits.max_dev_sectors || 3266 q->limits.max_sectors > q->limits.max_hw_sectors) 3267 q->limits.max_sectors = rw_max; 3268 3269 sdkp->first_scan = 0; 3270 3271 set_capacity_and_notify(disk, logical_to_sectors(sdp, sdkp->capacity)); 3272 sd_config_write_same(sdkp); 3273 kfree(buffer); 3274 3275 /* 3276 * For a zoned drive, revalidating the zones can be done only once 3277 * the gendisk capacity is set. So if this fails, set back the gendisk 3278 * capacity to 0. 3279 */ 3280 if (sd_zbc_revalidate_zones(sdkp)) 3281 set_capacity_and_notify(disk, 0); 3282 3283 out: 3284 return 0; 3285 } 3286 3287 /** 3288 * sd_unlock_native_capacity - unlock native capacity 3289 * @disk: struct gendisk to set capacity for 3290 * 3291 * Block layer calls this function if it detects that partitions 3292 * on @disk reach beyond the end of the device. If the SCSI host 3293 * implements ->unlock_native_capacity() method, it's invoked to 3294 * give it a chance to adjust the device capacity. 3295 * 3296 * CONTEXT: 3297 * Defined by block layer. Might sleep. 3298 */ 3299 static void sd_unlock_native_capacity(struct gendisk *disk) 3300 { 3301 struct scsi_device *sdev = scsi_disk(disk)->device; 3302 3303 if (sdev->host->hostt->unlock_native_capacity) 3304 sdev->host->hostt->unlock_native_capacity(sdev); 3305 } 3306 3307 /** 3308 * sd_format_disk_name - format disk name 3309 * @prefix: name prefix - ie. "sd" for SCSI disks 3310 * @index: index of the disk to format name for 3311 * @buf: output buffer 3312 * @buflen: length of the output buffer 3313 * 3314 * SCSI disk names starts at sda. The 26th device is sdz and the 3315 * 27th is sdaa. The last one for two lettered suffix is sdzz 3316 * which is followed by sdaaa. 3317 * 3318 * This is basically 26 base counting with one extra 'nil' entry 3319 * at the beginning from the second digit on and can be 3320 * determined using similar method as 26 base conversion with the 3321 * index shifted -1 after each digit is computed. 3322 * 3323 * CONTEXT: 3324 * Don't care. 3325 * 3326 * RETURNS: 3327 * 0 on success, -errno on failure. 3328 */ 3329 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen) 3330 { 3331 const int base = 'z' - 'a' + 1; 3332 char *begin = buf + strlen(prefix); 3333 char *end = buf + buflen; 3334 char *p; 3335 int unit; 3336 3337 p = end - 1; 3338 *p = '\0'; 3339 unit = base; 3340 do { 3341 if (p == begin) 3342 return -EINVAL; 3343 *--p = 'a' + (index % unit); 3344 index = (index / unit) - 1; 3345 } while (index >= 0); 3346 3347 memmove(begin, p, end - p); 3348 memcpy(buf, prefix, strlen(prefix)); 3349 3350 return 0; 3351 } 3352 3353 /** 3354 * sd_probe - called during driver initialization and whenever a 3355 * new scsi device is attached to the system. It is called once 3356 * for each scsi device (not just disks) present. 3357 * @dev: pointer to device object 3358 * 3359 * Returns 0 if successful (or not interested in this scsi device 3360 * (e.g. scanner)); 1 when there is an error. 3361 * 3362 * Note: this function is invoked from the scsi mid-level. 3363 * This function sets up the mapping between a given 3364 * <host,channel,id,lun> (found in sdp) and new device name 3365 * (e.g. /dev/sda). More precisely it is the block device major 3366 * and minor number that is chosen here. 3367 * 3368 * Assume sd_probe is not re-entrant (for time being) 3369 * Also think about sd_probe() and sd_remove() running coincidentally. 3370 **/ 3371 static int sd_probe(struct device *dev) 3372 { 3373 struct scsi_device *sdp = to_scsi_device(dev); 3374 struct scsi_disk *sdkp; 3375 struct gendisk *gd; 3376 int index; 3377 int error; 3378 3379 scsi_autopm_get_device(sdp); 3380 error = -ENODEV; 3381 if (sdp->type != TYPE_DISK && 3382 sdp->type != TYPE_ZBC && 3383 sdp->type != TYPE_MOD && 3384 sdp->type != TYPE_RBC) 3385 goto out; 3386 3387 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) && sdp->type == TYPE_ZBC) { 3388 sdev_printk(KERN_WARNING, sdp, 3389 "Unsupported ZBC host-managed device.\n"); 3390 goto out; 3391 } 3392 3393 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp, 3394 "sd_probe\n")); 3395 3396 error = -ENOMEM; 3397 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL); 3398 if (!sdkp) 3399 goto out; 3400 3401 gd = alloc_disk(SD_MINORS); 3402 if (!gd) 3403 goto out_free; 3404 3405 index = ida_alloc(&sd_index_ida, GFP_KERNEL); 3406 if (index < 0) { 3407 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n"); 3408 goto out_put; 3409 } 3410 3411 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN); 3412 if (error) { 3413 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n"); 3414 goto out_free_index; 3415 } 3416 3417 sdkp->device = sdp; 3418 sdkp->driver = &sd_template; 3419 sdkp->disk = gd; 3420 sdkp->index = index; 3421 sdkp->max_retries = SD_MAX_RETRIES; 3422 atomic_set(&sdkp->openers, 0); 3423 atomic_set(&sdkp->device->ioerr_cnt, 0); 3424 3425 if (!sdp->request_queue->rq_timeout) { 3426 if (sdp->type != TYPE_MOD) 3427 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT); 3428 else 3429 blk_queue_rq_timeout(sdp->request_queue, 3430 SD_MOD_TIMEOUT); 3431 } 3432 3433 device_initialize(&sdkp->dev); 3434 sdkp->dev.parent = dev; 3435 sdkp->dev.class = &sd_disk_class; 3436 dev_set_name(&sdkp->dev, "%s", dev_name(dev)); 3437 3438 error = device_add(&sdkp->dev); 3439 if (error) 3440 goto out_free_index; 3441 3442 get_device(dev); 3443 dev_set_drvdata(dev, sdkp); 3444 3445 gd->major = sd_major((index & 0xf0) >> 4); 3446 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00); 3447 3448 gd->fops = &sd_fops; 3449 gd->private_data = &sdkp->driver; 3450 gd->queue = sdkp->device->request_queue; 3451 3452 /* defaults, until the device tells us otherwise */ 3453 sdp->sector_size = 512; 3454 sdkp->capacity = 0; 3455 sdkp->media_present = 1; 3456 sdkp->write_prot = 0; 3457 sdkp->cache_override = 0; 3458 sdkp->WCE = 0; 3459 sdkp->RCD = 0; 3460 sdkp->ATO = 0; 3461 sdkp->first_scan = 1; 3462 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS; 3463 3464 sd_revalidate_disk(gd); 3465 3466 gd->flags = GENHD_FL_EXT_DEVT; 3467 if (sdp->removable) { 3468 gd->flags |= GENHD_FL_REMOVABLE; 3469 gd->events |= DISK_EVENT_MEDIA_CHANGE; 3470 gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT; 3471 } 3472 3473 blk_pm_runtime_init(sdp->request_queue, dev); 3474 if (sdp->rpm_autosuspend) { 3475 pm_runtime_set_autosuspend_delay(dev, 3476 sdp->host->hostt->rpm_autosuspend_delay); 3477 } 3478 device_add_disk(dev, gd, NULL); 3479 if (sdkp->capacity) 3480 sd_dif_config_host(sdkp); 3481 3482 sd_revalidate_disk(gd); 3483 3484 if (sdkp->security) { 3485 sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit); 3486 if (sdkp->opal_dev) 3487 sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n"); 3488 } 3489 3490 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n", 3491 sdp->removable ? "removable " : ""); 3492 scsi_autopm_put_device(sdp); 3493 3494 return 0; 3495 3496 out_free_index: 3497 ida_free(&sd_index_ida, index); 3498 out_put: 3499 put_disk(gd); 3500 out_free: 3501 sd_zbc_release_disk(sdkp); 3502 kfree(sdkp); 3503 out: 3504 scsi_autopm_put_device(sdp); 3505 return error; 3506 } 3507 3508 /** 3509 * sd_remove - called whenever a scsi disk (previously recognized by 3510 * sd_probe) is detached from the system. It is called (potentially 3511 * multiple times) during sd module unload. 3512 * @dev: pointer to device object 3513 * 3514 * Note: this function is invoked from the scsi mid-level. 3515 * This function potentially frees up a device name (e.g. /dev/sdc) 3516 * that could be re-used by a subsequent sd_probe(). 3517 * This function is not called when the built-in sd driver is "exit-ed". 3518 **/ 3519 static int sd_remove(struct device *dev) 3520 { 3521 struct scsi_disk *sdkp; 3522 3523 sdkp = dev_get_drvdata(dev); 3524 scsi_autopm_get_device(sdkp->device); 3525 3526 async_synchronize_full_domain(&scsi_sd_pm_domain); 3527 device_del(&sdkp->dev); 3528 del_gendisk(sdkp->disk); 3529 sd_shutdown(dev); 3530 3531 free_opal_dev(sdkp->opal_dev); 3532 3533 mutex_lock(&sd_ref_mutex); 3534 dev_set_drvdata(dev, NULL); 3535 put_device(&sdkp->dev); 3536 mutex_unlock(&sd_ref_mutex); 3537 3538 return 0; 3539 } 3540 3541 /** 3542 * scsi_disk_release - Called to free the scsi_disk structure 3543 * @dev: pointer to embedded class device 3544 * 3545 * sd_ref_mutex must be held entering this routine. Because it is 3546 * called on last put, you should always use the scsi_disk_get() 3547 * scsi_disk_put() helpers which manipulate the semaphore directly 3548 * and never do a direct put_device. 3549 **/ 3550 static void scsi_disk_release(struct device *dev) 3551 { 3552 struct scsi_disk *sdkp = to_scsi_disk(dev); 3553 struct gendisk *disk = sdkp->disk; 3554 struct request_queue *q = disk->queue; 3555 3556 ida_free(&sd_index_ida, sdkp->index); 3557 3558 /* 3559 * Wait until all requests that are in progress have completed. 3560 * This is necessary to avoid that e.g. scsi_end_request() crashes 3561 * due to clearing the disk->private_data pointer. Wait from inside 3562 * scsi_disk_release() instead of from sd_release() to avoid that 3563 * freezing and unfreezing the request queue affects user space I/O 3564 * in case multiple processes open a /dev/sd... node concurrently. 3565 */ 3566 blk_mq_freeze_queue(q); 3567 blk_mq_unfreeze_queue(q); 3568 3569 disk->private_data = NULL; 3570 put_disk(disk); 3571 put_device(&sdkp->device->sdev_gendev); 3572 3573 sd_zbc_release_disk(sdkp); 3574 3575 kfree(sdkp); 3576 } 3577 3578 static int sd_start_stop_device(struct scsi_disk *sdkp, int start) 3579 { 3580 unsigned char cmd[6] = { START_STOP }; /* START_VALID */ 3581 struct scsi_sense_hdr sshdr; 3582 struct scsi_device *sdp = sdkp->device; 3583 int res; 3584 3585 if (start) 3586 cmd[4] |= 1; /* START */ 3587 3588 if (sdp->start_stop_pwr_cond) 3589 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */ 3590 3591 if (!scsi_device_online(sdp)) 3592 return -ENODEV; 3593 3594 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr, 3595 SD_TIMEOUT, sdkp->max_retries, 0, RQF_PM, NULL); 3596 if (res) { 3597 sd_print_result(sdkp, "Start/Stop Unit failed", res); 3598 if (res > 0 && scsi_sense_valid(&sshdr)) { 3599 sd_print_sense_hdr(sdkp, &sshdr); 3600 /* 0x3a is medium not present */ 3601 if (sshdr.asc == 0x3a) 3602 res = 0; 3603 } 3604 } 3605 3606 /* SCSI error codes must not go to the generic layer */ 3607 if (res) 3608 return -EIO; 3609 3610 return 0; 3611 } 3612 3613 /* 3614 * Send a SYNCHRONIZE CACHE instruction down to the device through 3615 * the normal SCSI command structure. Wait for the command to 3616 * complete. 3617 */ 3618 static void sd_shutdown(struct device *dev) 3619 { 3620 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3621 3622 if (!sdkp) 3623 return; /* this can happen */ 3624 3625 if (pm_runtime_suspended(dev)) 3626 return; 3627 3628 if (sdkp->WCE && sdkp->media_present) { 3629 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3630 sd_sync_cache(sdkp, NULL); 3631 } 3632 3633 if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) { 3634 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3635 sd_start_stop_device(sdkp, 0); 3636 } 3637 } 3638 3639 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors) 3640 { 3641 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3642 struct scsi_sense_hdr sshdr; 3643 int ret = 0; 3644 3645 if (!sdkp) /* E.g.: runtime suspend following sd_remove() */ 3646 return 0; 3647 3648 if (sdkp->WCE && sdkp->media_present) { 3649 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3650 ret = sd_sync_cache(sdkp, &sshdr); 3651 3652 if (ret) { 3653 /* ignore OFFLINE device */ 3654 if (ret == -ENODEV) 3655 return 0; 3656 3657 if (!scsi_sense_valid(&sshdr) || 3658 sshdr.sense_key != ILLEGAL_REQUEST) 3659 return ret; 3660 3661 /* 3662 * sshdr.sense_key == ILLEGAL_REQUEST means this drive 3663 * doesn't support sync. There's not much to do and 3664 * suspend shouldn't fail. 3665 */ 3666 ret = 0; 3667 } 3668 } 3669 3670 if (sdkp->device->manage_start_stop) { 3671 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3672 /* an error is not worth aborting a system sleep */ 3673 ret = sd_start_stop_device(sdkp, 0); 3674 if (ignore_stop_errors) 3675 ret = 0; 3676 } 3677 3678 return ret; 3679 } 3680 3681 static int sd_suspend_system(struct device *dev) 3682 { 3683 return sd_suspend_common(dev, true); 3684 } 3685 3686 static int sd_suspend_runtime(struct device *dev) 3687 { 3688 return sd_suspend_common(dev, false); 3689 } 3690 3691 static int sd_resume(struct device *dev) 3692 { 3693 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3694 int ret; 3695 3696 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */ 3697 return 0; 3698 3699 if (!sdkp->device->manage_start_stop) 3700 return 0; 3701 3702 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n"); 3703 ret = sd_start_stop_device(sdkp, 1); 3704 if (!ret) 3705 opal_unlock_from_suspend(sdkp->opal_dev); 3706 return ret; 3707 } 3708 3709 /** 3710 * init_sd - entry point for this driver (both when built in or when 3711 * a module). 3712 * 3713 * Note: this function registers this driver with the scsi mid-level. 3714 **/ 3715 static int __init init_sd(void) 3716 { 3717 int majors = 0, i, err; 3718 3719 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n")); 3720 3721 for (i = 0; i < SD_MAJORS; i++) { 3722 if (__register_blkdev(sd_major(i), "sd", sd_default_probe)) 3723 continue; 3724 majors++; 3725 } 3726 3727 if (!majors) 3728 return -ENODEV; 3729 3730 err = class_register(&sd_disk_class); 3731 if (err) 3732 goto err_out; 3733 3734 sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE, 3735 0, 0, NULL); 3736 if (!sd_cdb_cache) { 3737 printk(KERN_ERR "sd: can't init extended cdb cache\n"); 3738 err = -ENOMEM; 3739 goto err_out_class; 3740 } 3741 3742 sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache); 3743 if (!sd_cdb_pool) { 3744 printk(KERN_ERR "sd: can't init extended cdb pool\n"); 3745 err = -ENOMEM; 3746 goto err_out_cache; 3747 } 3748 3749 sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0); 3750 if (!sd_page_pool) { 3751 printk(KERN_ERR "sd: can't init discard page pool\n"); 3752 err = -ENOMEM; 3753 goto err_out_ppool; 3754 } 3755 3756 err = scsi_register_driver(&sd_template.gendrv); 3757 if (err) 3758 goto err_out_driver; 3759 3760 return 0; 3761 3762 err_out_driver: 3763 mempool_destroy(sd_page_pool); 3764 3765 err_out_ppool: 3766 mempool_destroy(sd_cdb_pool); 3767 3768 err_out_cache: 3769 kmem_cache_destroy(sd_cdb_cache); 3770 3771 err_out_class: 3772 class_unregister(&sd_disk_class); 3773 err_out: 3774 for (i = 0; i < SD_MAJORS; i++) 3775 unregister_blkdev(sd_major(i), "sd"); 3776 return err; 3777 } 3778 3779 /** 3780 * exit_sd - exit point for this driver (when it is a module). 3781 * 3782 * Note: this function unregisters this driver from the scsi mid-level. 3783 **/ 3784 static void __exit exit_sd(void) 3785 { 3786 int i; 3787 3788 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n")); 3789 3790 scsi_unregister_driver(&sd_template.gendrv); 3791 mempool_destroy(sd_cdb_pool); 3792 mempool_destroy(sd_page_pool); 3793 kmem_cache_destroy(sd_cdb_cache); 3794 3795 class_unregister(&sd_disk_class); 3796 3797 for (i = 0; i < SD_MAJORS; i++) 3798 unregister_blkdev(sd_major(i), "sd"); 3799 } 3800 3801 module_init(init_sd); 3802 module_exit(exit_sd); 3803 3804 void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr) 3805 { 3806 scsi_print_sense_hdr(sdkp->device, 3807 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr); 3808 } 3809 3810 void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result) 3811 { 3812 const char *hb_string = scsi_hostbyte_string(result); 3813 const char *db_string = scsi_driverbyte_string(result); 3814 3815 if (hb_string || db_string) 3816 sd_printk(KERN_INFO, sdkp, 3817 "%s: Result: hostbyte=%s driverbyte=%s\n", msg, 3818 hb_string ? hb_string : "invalid", 3819 db_string ? db_string : "invalid"); 3820 else 3821 sd_printk(KERN_INFO, sdkp, 3822 "%s: Result: hostbyte=0x%02x driverbyte=0x%02x\n", 3823 msg, host_byte(result), driver_byte(result)); 3824 } 3825