xref: /linux/drivers/scsi/sd.c (revision 31af04cd60d3162a58213363fd740a2b0cf0a08e)
1 /*
2  *      sd.c Copyright (C) 1992 Drew Eckhardt
3  *           Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
4  *
5  *      Linux scsi disk driver
6  *              Initial versions: Drew Eckhardt
7  *              Subsequent revisions: Eric Youngdale
8  *	Modification history:
9  *       - Drew Eckhardt <drew@colorado.edu> original
10  *       - Eric Youngdale <eric@andante.org> add scatter-gather, multiple
11  *         outstanding request, and other enhancements.
12  *         Support loadable low-level scsi drivers.
13  *       - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using
14  *         eight major numbers.
15  *       - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
16  *	 - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in
17  *	   sd_init and cleanups.
18  *	 - Alex Davis <letmein@erols.com> Fix problem where partition info
19  *	   not being read in sd_open. Fix problem where removable media
20  *	   could be ejected after sd_open.
21  *	 - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
22  *	 - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox
23  *	   <willy@debian.org>, Kurt Garloff <garloff@suse.de>:
24  *	   Support 32k/1M disks.
25  *
26  *	Logging policy (needs CONFIG_SCSI_LOGGING defined):
27  *	 - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
28  *	 - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
29  *	 - entering sd_ioctl: SCSI_LOG_IOCTL level 1
30  *	 - entering other commands: SCSI_LOG_HLQUEUE level 3
31  *	Note: when the logging level is set by the user, it must be greater
32  *	than the level indicated above to trigger output.
33  */
34 
35 #include <linux/module.h>
36 #include <linux/fs.h>
37 #include <linux/kernel.h>
38 #include <linux/mm.h>
39 #include <linux/bio.h>
40 #include <linux/genhd.h>
41 #include <linux/hdreg.h>
42 #include <linux/errno.h>
43 #include <linux/idr.h>
44 #include <linux/interrupt.h>
45 #include <linux/init.h>
46 #include <linux/blkdev.h>
47 #include <linux/blkpg.h>
48 #include <linux/blk-pm.h>
49 #include <linux/delay.h>
50 #include <linux/mutex.h>
51 #include <linux/string_helpers.h>
52 #include <linux/async.h>
53 #include <linux/slab.h>
54 #include <linux/sed-opal.h>
55 #include <linux/pm_runtime.h>
56 #include <linux/pr.h>
57 #include <linux/t10-pi.h>
58 #include <linux/uaccess.h>
59 #include <asm/unaligned.h>
60 
61 #include <scsi/scsi.h>
62 #include <scsi/scsi_cmnd.h>
63 #include <scsi/scsi_dbg.h>
64 #include <scsi/scsi_device.h>
65 #include <scsi/scsi_driver.h>
66 #include <scsi/scsi_eh.h>
67 #include <scsi/scsi_host.h>
68 #include <scsi/scsi_ioctl.h>
69 #include <scsi/scsicam.h>
70 
71 #include "sd.h"
72 #include "scsi_priv.h"
73 #include "scsi_logging.h"
74 
75 MODULE_AUTHOR("Eric Youngdale");
76 MODULE_DESCRIPTION("SCSI disk (sd) driver");
77 MODULE_LICENSE("GPL");
78 
79 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
95 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
96 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
97 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
98 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
99 
100 #if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT)
101 #define SD_MINORS	16
102 #else
103 #define SD_MINORS	0
104 #endif
105 
106 static void sd_config_discard(struct scsi_disk *, unsigned int);
107 static void sd_config_write_same(struct scsi_disk *);
108 static int  sd_revalidate_disk(struct gendisk *);
109 static void sd_unlock_native_capacity(struct gendisk *disk);
110 static int  sd_probe(struct device *);
111 static int  sd_remove(struct device *);
112 static void sd_shutdown(struct device *);
113 static int sd_suspend_system(struct device *);
114 static int sd_suspend_runtime(struct device *);
115 static int sd_resume(struct device *);
116 static void sd_rescan(struct device *);
117 static blk_status_t sd_init_command(struct scsi_cmnd *SCpnt);
118 static void sd_uninit_command(struct scsi_cmnd *SCpnt);
119 static int sd_done(struct scsi_cmnd *);
120 static void sd_eh_reset(struct scsi_cmnd *);
121 static int sd_eh_action(struct scsi_cmnd *, int);
122 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
123 static void scsi_disk_release(struct device *cdev);
124 static void sd_print_sense_hdr(struct scsi_disk *, struct scsi_sense_hdr *);
125 static void sd_print_result(const struct scsi_disk *, const char *, int);
126 
127 static DEFINE_IDA(sd_index_ida);
128 
129 /* This semaphore is used to mediate the 0->1 reference get in the
130  * face of object destruction (i.e. we can't allow a get on an
131  * object after last put) */
132 static DEFINE_MUTEX(sd_ref_mutex);
133 
134 static struct kmem_cache *sd_cdb_cache;
135 static mempool_t *sd_cdb_pool;
136 static mempool_t *sd_page_pool;
137 
138 static const char *sd_cache_types[] = {
139 	"write through", "none", "write back",
140 	"write back, no read (daft)"
141 };
142 
143 static void sd_set_flush_flag(struct scsi_disk *sdkp)
144 {
145 	bool wc = false, fua = false;
146 
147 	if (sdkp->WCE) {
148 		wc = true;
149 		if (sdkp->DPOFUA)
150 			fua = true;
151 	}
152 
153 	blk_queue_write_cache(sdkp->disk->queue, wc, fua);
154 }
155 
156 static ssize_t
157 cache_type_store(struct device *dev, struct device_attribute *attr,
158 		 const char *buf, size_t count)
159 {
160 	int ct, rcd, wce, sp;
161 	struct scsi_disk *sdkp = to_scsi_disk(dev);
162 	struct scsi_device *sdp = sdkp->device;
163 	char buffer[64];
164 	char *buffer_data;
165 	struct scsi_mode_data data;
166 	struct scsi_sense_hdr sshdr;
167 	static const char temp[] = "temporary ";
168 	int len;
169 
170 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
171 		/* no cache control on RBC devices; theoretically they
172 		 * can do it, but there's probably so many exceptions
173 		 * it's not worth the risk */
174 		return -EINVAL;
175 
176 	if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
177 		buf += sizeof(temp) - 1;
178 		sdkp->cache_override = 1;
179 	} else {
180 		sdkp->cache_override = 0;
181 	}
182 
183 	ct = sysfs_match_string(sd_cache_types, buf);
184 	if (ct < 0)
185 		return -EINVAL;
186 
187 	rcd = ct & 0x01 ? 1 : 0;
188 	wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
189 
190 	if (sdkp->cache_override) {
191 		sdkp->WCE = wce;
192 		sdkp->RCD = rcd;
193 		sd_set_flush_flag(sdkp);
194 		return count;
195 	}
196 
197 	if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT,
198 			    SD_MAX_RETRIES, &data, NULL))
199 		return -EINVAL;
200 	len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
201 		  data.block_descriptor_length);
202 	buffer_data = buffer + data.header_length +
203 		data.block_descriptor_length;
204 	buffer_data[2] &= ~0x05;
205 	buffer_data[2] |= wce << 2 | rcd;
206 	sp = buffer_data[0] & 0x80 ? 1 : 0;
207 	buffer_data[0] &= ~0x80;
208 
209 	/*
210 	 * Ensure WP, DPOFUA, and RESERVED fields are cleared in
211 	 * received mode parameter buffer before doing MODE SELECT.
212 	 */
213 	data.device_specific = 0;
214 
215 	if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT,
216 			     SD_MAX_RETRIES, &data, &sshdr)) {
217 		if (scsi_sense_valid(&sshdr))
218 			sd_print_sense_hdr(sdkp, &sshdr);
219 		return -EINVAL;
220 	}
221 	revalidate_disk(sdkp->disk);
222 	return count;
223 }
224 
225 static ssize_t
226 manage_start_stop_show(struct device *dev, struct device_attribute *attr,
227 		       char *buf)
228 {
229 	struct scsi_disk *sdkp = to_scsi_disk(dev);
230 	struct scsi_device *sdp = sdkp->device;
231 
232 	return sprintf(buf, "%u\n", sdp->manage_start_stop);
233 }
234 
235 static ssize_t
236 manage_start_stop_store(struct device *dev, struct device_attribute *attr,
237 			const char *buf, size_t count)
238 {
239 	struct scsi_disk *sdkp = to_scsi_disk(dev);
240 	struct scsi_device *sdp = sdkp->device;
241 	bool v;
242 
243 	if (!capable(CAP_SYS_ADMIN))
244 		return -EACCES;
245 
246 	if (kstrtobool(buf, &v))
247 		return -EINVAL;
248 
249 	sdp->manage_start_stop = v;
250 
251 	return count;
252 }
253 static DEVICE_ATTR_RW(manage_start_stop);
254 
255 static ssize_t
256 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
257 {
258 	struct scsi_disk *sdkp = to_scsi_disk(dev);
259 
260 	return sprintf(buf, "%u\n", sdkp->device->allow_restart);
261 }
262 
263 static ssize_t
264 allow_restart_store(struct device *dev, struct device_attribute *attr,
265 		    const char *buf, size_t count)
266 {
267 	bool v;
268 	struct scsi_disk *sdkp = to_scsi_disk(dev);
269 	struct scsi_device *sdp = sdkp->device;
270 
271 	if (!capable(CAP_SYS_ADMIN))
272 		return -EACCES;
273 
274 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
275 		return -EINVAL;
276 
277 	if (kstrtobool(buf, &v))
278 		return -EINVAL;
279 
280 	sdp->allow_restart = v;
281 
282 	return count;
283 }
284 static DEVICE_ATTR_RW(allow_restart);
285 
286 static ssize_t
287 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
288 {
289 	struct scsi_disk *sdkp = to_scsi_disk(dev);
290 	int ct = sdkp->RCD + 2*sdkp->WCE;
291 
292 	return sprintf(buf, "%s\n", sd_cache_types[ct]);
293 }
294 static DEVICE_ATTR_RW(cache_type);
295 
296 static ssize_t
297 FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
298 {
299 	struct scsi_disk *sdkp = to_scsi_disk(dev);
300 
301 	return sprintf(buf, "%u\n", sdkp->DPOFUA);
302 }
303 static DEVICE_ATTR_RO(FUA);
304 
305 static ssize_t
306 protection_type_show(struct device *dev, struct device_attribute *attr,
307 		     char *buf)
308 {
309 	struct scsi_disk *sdkp = to_scsi_disk(dev);
310 
311 	return sprintf(buf, "%u\n", sdkp->protection_type);
312 }
313 
314 static ssize_t
315 protection_type_store(struct device *dev, struct device_attribute *attr,
316 		      const char *buf, size_t count)
317 {
318 	struct scsi_disk *sdkp = to_scsi_disk(dev);
319 	unsigned int val;
320 	int err;
321 
322 	if (!capable(CAP_SYS_ADMIN))
323 		return -EACCES;
324 
325 	err = kstrtouint(buf, 10, &val);
326 
327 	if (err)
328 		return err;
329 
330 	if (val <= T10_PI_TYPE3_PROTECTION)
331 		sdkp->protection_type = val;
332 
333 	return count;
334 }
335 static DEVICE_ATTR_RW(protection_type);
336 
337 static ssize_t
338 protection_mode_show(struct device *dev, struct device_attribute *attr,
339 		     char *buf)
340 {
341 	struct scsi_disk *sdkp = to_scsi_disk(dev);
342 	struct scsi_device *sdp = sdkp->device;
343 	unsigned int dif, dix;
344 
345 	dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
346 	dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
347 
348 	if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
349 		dif = 0;
350 		dix = 1;
351 	}
352 
353 	if (!dif && !dix)
354 		return sprintf(buf, "none\n");
355 
356 	return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
357 }
358 static DEVICE_ATTR_RO(protection_mode);
359 
360 static ssize_t
361 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
362 {
363 	struct scsi_disk *sdkp = to_scsi_disk(dev);
364 
365 	return sprintf(buf, "%u\n", sdkp->ATO);
366 }
367 static DEVICE_ATTR_RO(app_tag_own);
368 
369 static ssize_t
370 thin_provisioning_show(struct device *dev, struct device_attribute *attr,
371 		       char *buf)
372 {
373 	struct scsi_disk *sdkp = to_scsi_disk(dev);
374 
375 	return sprintf(buf, "%u\n", sdkp->lbpme);
376 }
377 static DEVICE_ATTR_RO(thin_provisioning);
378 
379 /* sysfs_match_string() requires dense arrays */
380 static const char *lbp_mode[] = {
381 	[SD_LBP_FULL]		= "full",
382 	[SD_LBP_UNMAP]		= "unmap",
383 	[SD_LBP_WS16]		= "writesame_16",
384 	[SD_LBP_WS10]		= "writesame_10",
385 	[SD_LBP_ZERO]		= "writesame_zero",
386 	[SD_LBP_DISABLE]	= "disabled",
387 };
388 
389 static ssize_t
390 provisioning_mode_show(struct device *dev, struct device_attribute *attr,
391 		       char *buf)
392 {
393 	struct scsi_disk *sdkp = to_scsi_disk(dev);
394 
395 	return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
396 }
397 
398 static ssize_t
399 provisioning_mode_store(struct device *dev, struct device_attribute *attr,
400 			const char *buf, size_t count)
401 {
402 	struct scsi_disk *sdkp = to_scsi_disk(dev);
403 	struct scsi_device *sdp = sdkp->device;
404 	int mode;
405 
406 	if (!capable(CAP_SYS_ADMIN))
407 		return -EACCES;
408 
409 	if (sd_is_zoned(sdkp)) {
410 		sd_config_discard(sdkp, SD_LBP_DISABLE);
411 		return count;
412 	}
413 
414 	if (sdp->type != TYPE_DISK)
415 		return -EINVAL;
416 
417 	mode = sysfs_match_string(lbp_mode, buf);
418 	if (mode < 0)
419 		return -EINVAL;
420 
421 	sd_config_discard(sdkp, mode);
422 
423 	return count;
424 }
425 static DEVICE_ATTR_RW(provisioning_mode);
426 
427 /* sysfs_match_string() requires dense arrays */
428 static const char *zeroing_mode[] = {
429 	[SD_ZERO_WRITE]		= "write",
430 	[SD_ZERO_WS]		= "writesame",
431 	[SD_ZERO_WS16_UNMAP]	= "writesame_16_unmap",
432 	[SD_ZERO_WS10_UNMAP]	= "writesame_10_unmap",
433 };
434 
435 static ssize_t
436 zeroing_mode_show(struct device *dev, struct device_attribute *attr,
437 		  char *buf)
438 {
439 	struct scsi_disk *sdkp = to_scsi_disk(dev);
440 
441 	return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
442 }
443 
444 static ssize_t
445 zeroing_mode_store(struct device *dev, struct device_attribute *attr,
446 		   const char *buf, size_t count)
447 {
448 	struct scsi_disk *sdkp = to_scsi_disk(dev);
449 	int mode;
450 
451 	if (!capable(CAP_SYS_ADMIN))
452 		return -EACCES;
453 
454 	mode = sysfs_match_string(zeroing_mode, buf);
455 	if (mode < 0)
456 		return -EINVAL;
457 
458 	sdkp->zeroing_mode = mode;
459 
460 	return count;
461 }
462 static DEVICE_ATTR_RW(zeroing_mode);
463 
464 static ssize_t
465 max_medium_access_timeouts_show(struct device *dev,
466 				struct device_attribute *attr, char *buf)
467 {
468 	struct scsi_disk *sdkp = to_scsi_disk(dev);
469 
470 	return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
471 }
472 
473 static ssize_t
474 max_medium_access_timeouts_store(struct device *dev,
475 				 struct device_attribute *attr, const char *buf,
476 				 size_t count)
477 {
478 	struct scsi_disk *sdkp = to_scsi_disk(dev);
479 	int err;
480 
481 	if (!capable(CAP_SYS_ADMIN))
482 		return -EACCES;
483 
484 	err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
485 
486 	return err ? err : count;
487 }
488 static DEVICE_ATTR_RW(max_medium_access_timeouts);
489 
490 static ssize_t
491 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
492 			   char *buf)
493 {
494 	struct scsi_disk *sdkp = to_scsi_disk(dev);
495 
496 	return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
497 }
498 
499 static ssize_t
500 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
501 			    const char *buf, size_t count)
502 {
503 	struct scsi_disk *sdkp = to_scsi_disk(dev);
504 	struct scsi_device *sdp = sdkp->device;
505 	unsigned long max;
506 	int err;
507 
508 	if (!capable(CAP_SYS_ADMIN))
509 		return -EACCES;
510 
511 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
512 		return -EINVAL;
513 
514 	err = kstrtoul(buf, 10, &max);
515 
516 	if (err)
517 		return err;
518 
519 	if (max == 0)
520 		sdp->no_write_same = 1;
521 	else if (max <= SD_MAX_WS16_BLOCKS) {
522 		sdp->no_write_same = 0;
523 		sdkp->max_ws_blocks = max;
524 	}
525 
526 	sd_config_write_same(sdkp);
527 
528 	return count;
529 }
530 static DEVICE_ATTR_RW(max_write_same_blocks);
531 
532 static struct attribute *sd_disk_attrs[] = {
533 	&dev_attr_cache_type.attr,
534 	&dev_attr_FUA.attr,
535 	&dev_attr_allow_restart.attr,
536 	&dev_attr_manage_start_stop.attr,
537 	&dev_attr_protection_type.attr,
538 	&dev_attr_protection_mode.attr,
539 	&dev_attr_app_tag_own.attr,
540 	&dev_attr_thin_provisioning.attr,
541 	&dev_attr_provisioning_mode.attr,
542 	&dev_attr_zeroing_mode.attr,
543 	&dev_attr_max_write_same_blocks.attr,
544 	&dev_attr_max_medium_access_timeouts.attr,
545 	NULL,
546 };
547 ATTRIBUTE_GROUPS(sd_disk);
548 
549 static struct class sd_disk_class = {
550 	.name		= "scsi_disk",
551 	.owner		= THIS_MODULE,
552 	.dev_release	= scsi_disk_release,
553 	.dev_groups	= sd_disk_groups,
554 };
555 
556 static const struct dev_pm_ops sd_pm_ops = {
557 	.suspend		= sd_suspend_system,
558 	.resume			= sd_resume,
559 	.poweroff		= sd_suspend_system,
560 	.restore		= sd_resume,
561 	.runtime_suspend	= sd_suspend_runtime,
562 	.runtime_resume		= sd_resume,
563 };
564 
565 static struct scsi_driver sd_template = {
566 	.gendrv = {
567 		.name		= "sd",
568 		.owner		= THIS_MODULE,
569 		.probe		= sd_probe,
570 		.remove		= sd_remove,
571 		.shutdown	= sd_shutdown,
572 		.pm		= &sd_pm_ops,
573 	},
574 	.rescan			= sd_rescan,
575 	.init_command		= sd_init_command,
576 	.uninit_command		= sd_uninit_command,
577 	.done			= sd_done,
578 	.eh_action		= sd_eh_action,
579 	.eh_reset		= sd_eh_reset,
580 };
581 
582 /*
583  * Dummy kobj_map->probe function.
584  * The default ->probe function will call modprobe, which is
585  * pointless as this module is already loaded.
586  */
587 static struct kobject *sd_default_probe(dev_t devt, int *partno, void *data)
588 {
589 	return NULL;
590 }
591 
592 /*
593  * Device no to disk mapping:
594  *
595  *       major         disc2     disc  p1
596  *   |............|.............|....|....| <- dev_t
597  *    31        20 19          8 7  4 3  0
598  *
599  * Inside a major, we have 16k disks, however mapped non-
600  * contiguously. The first 16 disks are for major0, the next
601  * ones with major1, ... Disk 256 is for major0 again, disk 272
602  * for major1, ...
603  * As we stay compatible with our numbering scheme, we can reuse
604  * the well-know SCSI majors 8, 65--71, 136--143.
605  */
606 static int sd_major(int major_idx)
607 {
608 	switch (major_idx) {
609 	case 0:
610 		return SCSI_DISK0_MAJOR;
611 	case 1 ... 7:
612 		return SCSI_DISK1_MAJOR + major_idx - 1;
613 	case 8 ... 15:
614 		return SCSI_DISK8_MAJOR + major_idx - 8;
615 	default:
616 		BUG();
617 		return 0;	/* shut up gcc */
618 	}
619 }
620 
621 static struct scsi_disk *scsi_disk_get(struct gendisk *disk)
622 {
623 	struct scsi_disk *sdkp = NULL;
624 
625 	mutex_lock(&sd_ref_mutex);
626 
627 	if (disk->private_data) {
628 		sdkp = scsi_disk(disk);
629 		if (scsi_device_get(sdkp->device) == 0)
630 			get_device(&sdkp->dev);
631 		else
632 			sdkp = NULL;
633 	}
634 	mutex_unlock(&sd_ref_mutex);
635 	return sdkp;
636 }
637 
638 static void scsi_disk_put(struct scsi_disk *sdkp)
639 {
640 	struct scsi_device *sdev = sdkp->device;
641 
642 	mutex_lock(&sd_ref_mutex);
643 	put_device(&sdkp->dev);
644 	scsi_device_put(sdev);
645 	mutex_unlock(&sd_ref_mutex);
646 }
647 
648 #ifdef CONFIG_BLK_SED_OPAL
649 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
650 		size_t len, bool send)
651 {
652 	struct scsi_device *sdev = data;
653 	u8 cdb[12] = { 0, };
654 	int ret;
655 
656 	cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
657 	cdb[1] = secp;
658 	put_unaligned_be16(spsp, &cdb[2]);
659 	put_unaligned_be32(len, &cdb[6]);
660 
661 	ret = scsi_execute_req(sdev, cdb,
662 			send ? DMA_TO_DEVICE : DMA_FROM_DEVICE,
663 			buffer, len, NULL, SD_TIMEOUT, SD_MAX_RETRIES, NULL);
664 	return ret <= 0 ? ret : -EIO;
665 }
666 #endif /* CONFIG_BLK_SED_OPAL */
667 
668 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
669 					   unsigned int dix, unsigned int dif)
670 {
671 	struct bio *bio = scmd->request->bio;
672 	unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif);
673 	unsigned int protect = 0;
674 
675 	if (dix) {				/* DIX Type 0, 1, 2, 3 */
676 		if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
677 			scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
678 
679 		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
680 			scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
681 	}
682 
683 	if (dif != T10_PI_TYPE3_PROTECTION) {	/* DIX/DIF Type 0, 1, 2 */
684 		scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
685 
686 		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
687 			scmd->prot_flags |= SCSI_PROT_REF_CHECK;
688 	}
689 
690 	if (dif) {				/* DIX/DIF Type 1, 2, 3 */
691 		scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
692 
693 		if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
694 			protect = 3 << 5;	/* Disable target PI checking */
695 		else
696 			protect = 1 << 5;	/* Enable target PI checking */
697 	}
698 
699 	scsi_set_prot_op(scmd, prot_op);
700 	scsi_set_prot_type(scmd, dif);
701 	scmd->prot_flags &= sd_prot_flag_mask(prot_op);
702 
703 	return protect;
704 }
705 
706 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
707 {
708 	struct request_queue *q = sdkp->disk->queue;
709 	unsigned int logical_block_size = sdkp->device->sector_size;
710 	unsigned int max_blocks = 0;
711 
712 	q->limits.discard_alignment =
713 		sdkp->unmap_alignment * logical_block_size;
714 	q->limits.discard_granularity =
715 		max(sdkp->physical_block_size,
716 		    sdkp->unmap_granularity * logical_block_size);
717 	sdkp->provisioning_mode = mode;
718 
719 	switch (mode) {
720 
721 	case SD_LBP_FULL:
722 	case SD_LBP_DISABLE:
723 		blk_queue_max_discard_sectors(q, 0);
724 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
725 		return;
726 
727 	case SD_LBP_UNMAP:
728 		max_blocks = min_not_zero(sdkp->max_unmap_blocks,
729 					  (u32)SD_MAX_WS16_BLOCKS);
730 		break;
731 
732 	case SD_LBP_WS16:
733 		if (sdkp->device->unmap_limit_for_ws)
734 			max_blocks = sdkp->max_unmap_blocks;
735 		else
736 			max_blocks = sdkp->max_ws_blocks;
737 
738 		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
739 		break;
740 
741 	case SD_LBP_WS10:
742 		if (sdkp->device->unmap_limit_for_ws)
743 			max_blocks = sdkp->max_unmap_blocks;
744 		else
745 			max_blocks = sdkp->max_ws_blocks;
746 
747 		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
748 		break;
749 
750 	case SD_LBP_ZERO:
751 		max_blocks = min_not_zero(sdkp->max_ws_blocks,
752 					  (u32)SD_MAX_WS10_BLOCKS);
753 		break;
754 	}
755 
756 	blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
757 	blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
758 }
759 
760 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
761 {
762 	struct scsi_device *sdp = cmd->device;
763 	struct request *rq = cmd->request;
764 	u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
765 	u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
766 	unsigned int data_len = 24;
767 	char *buf;
768 
769 	rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
770 	if (!rq->special_vec.bv_page)
771 		return BLK_STS_RESOURCE;
772 	clear_highpage(rq->special_vec.bv_page);
773 	rq->special_vec.bv_offset = 0;
774 	rq->special_vec.bv_len = data_len;
775 	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
776 
777 	cmd->cmd_len = 10;
778 	cmd->cmnd[0] = UNMAP;
779 	cmd->cmnd[8] = 24;
780 
781 	buf = page_address(rq->special_vec.bv_page);
782 	put_unaligned_be16(6 + 16, &buf[0]);
783 	put_unaligned_be16(16, &buf[2]);
784 	put_unaligned_be64(sector, &buf[8]);
785 	put_unaligned_be32(nr_sectors, &buf[16]);
786 
787 	cmd->allowed = SD_MAX_RETRIES;
788 	cmd->transfersize = data_len;
789 	rq->timeout = SD_TIMEOUT;
790 	scsi_req(rq)->resid_len = data_len;
791 
792 	return scsi_init_io(cmd);
793 }
794 
795 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd,
796 		bool unmap)
797 {
798 	struct scsi_device *sdp = cmd->device;
799 	struct request *rq = cmd->request;
800 	u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
801 	u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
802 	u32 data_len = sdp->sector_size;
803 
804 	rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
805 	if (!rq->special_vec.bv_page)
806 		return BLK_STS_RESOURCE;
807 	clear_highpage(rq->special_vec.bv_page);
808 	rq->special_vec.bv_offset = 0;
809 	rq->special_vec.bv_len = data_len;
810 	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
811 
812 	cmd->cmd_len = 16;
813 	cmd->cmnd[0] = WRITE_SAME_16;
814 	if (unmap)
815 		cmd->cmnd[1] = 0x8; /* UNMAP */
816 	put_unaligned_be64(sector, &cmd->cmnd[2]);
817 	put_unaligned_be32(nr_sectors, &cmd->cmnd[10]);
818 
819 	cmd->allowed = SD_MAX_RETRIES;
820 	cmd->transfersize = data_len;
821 	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
822 	scsi_req(rq)->resid_len = data_len;
823 
824 	return scsi_init_io(cmd);
825 }
826 
827 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd,
828 		bool unmap)
829 {
830 	struct scsi_device *sdp = cmd->device;
831 	struct request *rq = cmd->request;
832 	u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
833 	u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
834 	u32 data_len = sdp->sector_size;
835 
836 	rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
837 	if (!rq->special_vec.bv_page)
838 		return BLK_STS_RESOURCE;
839 	clear_highpage(rq->special_vec.bv_page);
840 	rq->special_vec.bv_offset = 0;
841 	rq->special_vec.bv_len = data_len;
842 	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
843 
844 	cmd->cmd_len = 10;
845 	cmd->cmnd[0] = WRITE_SAME;
846 	if (unmap)
847 		cmd->cmnd[1] = 0x8; /* UNMAP */
848 	put_unaligned_be32(sector, &cmd->cmnd[2]);
849 	put_unaligned_be16(nr_sectors, &cmd->cmnd[7]);
850 
851 	cmd->allowed = SD_MAX_RETRIES;
852 	cmd->transfersize = data_len;
853 	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
854 	scsi_req(rq)->resid_len = data_len;
855 
856 	return scsi_init_io(cmd);
857 }
858 
859 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
860 {
861 	struct request *rq = cmd->request;
862 	struct scsi_device *sdp = cmd->device;
863 	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
864 	u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
865 	u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
866 
867 	if (!(rq->cmd_flags & REQ_NOUNMAP)) {
868 		switch (sdkp->zeroing_mode) {
869 		case SD_ZERO_WS16_UNMAP:
870 			return sd_setup_write_same16_cmnd(cmd, true);
871 		case SD_ZERO_WS10_UNMAP:
872 			return sd_setup_write_same10_cmnd(cmd, true);
873 		}
874 	}
875 
876 	if (sdp->no_write_same)
877 		return BLK_STS_TARGET;
878 
879 	if (sdkp->ws16 || sector > 0xffffffff || nr_sectors > 0xffff)
880 		return sd_setup_write_same16_cmnd(cmd, false);
881 
882 	return sd_setup_write_same10_cmnd(cmd, false);
883 }
884 
885 static void sd_config_write_same(struct scsi_disk *sdkp)
886 {
887 	struct request_queue *q = sdkp->disk->queue;
888 	unsigned int logical_block_size = sdkp->device->sector_size;
889 
890 	if (sdkp->device->no_write_same) {
891 		sdkp->max_ws_blocks = 0;
892 		goto out;
893 	}
894 
895 	/* Some devices can not handle block counts above 0xffff despite
896 	 * supporting WRITE SAME(16). Consequently we default to 64k
897 	 * blocks per I/O unless the device explicitly advertises a
898 	 * bigger limit.
899 	 */
900 	if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
901 		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
902 						   (u32)SD_MAX_WS16_BLOCKS);
903 	else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
904 		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
905 						   (u32)SD_MAX_WS10_BLOCKS);
906 	else {
907 		sdkp->device->no_write_same = 1;
908 		sdkp->max_ws_blocks = 0;
909 	}
910 
911 	if (sdkp->lbprz && sdkp->lbpws)
912 		sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
913 	else if (sdkp->lbprz && sdkp->lbpws10)
914 		sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
915 	else if (sdkp->max_ws_blocks)
916 		sdkp->zeroing_mode = SD_ZERO_WS;
917 	else
918 		sdkp->zeroing_mode = SD_ZERO_WRITE;
919 
920 	if (sdkp->max_ws_blocks &&
921 	    sdkp->physical_block_size > logical_block_size) {
922 		/*
923 		 * Reporting a maximum number of blocks that is not aligned
924 		 * on the device physical size would cause a large write same
925 		 * request to be split into physically unaligned chunks by
926 		 * __blkdev_issue_write_zeroes() and __blkdev_issue_write_same()
927 		 * even if the caller of these functions took care to align the
928 		 * large request. So make sure the maximum reported is aligned
929 		 * to the device physical block size. This is only an optional
930 		 * optimization for regular disks, but this is mandatory to
931 		 * avoid failure of large write same requests directed at
932 		 * sequential write required zones of host-managed ZBC disks.
933 		 */
934 		sdkp->max_ws_blocks =
935 			round_down(sdkp->max_ws_blocks,
936 				   bytes_to_logical(sdkp->device,
937 						    sdkp->physical_block_size));
938 	}
939 
940 out:
941 	blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks *
942 					 (logical_block_size >> 9));
943 	blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks *
944 					 (logical_block_size >> 9));
945 }
946 
947 /**
948  * sd_setup_write_same_cmnd - write the same data to multiple blocks
949  * @cmd: command to prepare
950  *
951  * Will set up either WRITE SAME(10) or WRITE SAME(16) depending on
952  * the preference indicated by the target device.
953  **/
954 static blk_status_t sd_setup_write_same_cmnd(struct scsi_cmnd *cmd)
955 {
956 	struct request *rq = cmd->request;
957 	struct scsi_device *sdp = cmd->device;
958 	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
959 	struct bio *bio = rq->bio;
960 	sector_t sector = blk_rq_pos(rq);
961 	unsigned int nr_sectors = blk_rq_sectors(rq);
962 	unsigned int nr_bytes = blk_rq_bytes(rq);
963 	blk_status_t ret;
964 
965 	if (sdkp->device->no_write_same)
966 		return BLK_STS_TARGET;
967 
968 	BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size);
969 
970 	sector >>= ilog2(sdp->sector_size) - 9;
971 	nr_sectors >>= ilog2(sdp->sector_size) - 9;
972 
973 	rq->timeout = SD_WRITE_SAME_TIMEOUT;
974 
975 	if (sdkp->ws16 || sector > 0xffffffff || nr_sectors > 0xffff) {
976 		cmd->cmd_len = 16;
977 		cmd->cmnd[0] = WRITE_SAME_16;
978 		put_unaligned_be64(sector, &cmd->cmnd[2]);
979 		put_unaligned_be32(nr_sectors, &cmd->cmnd[10]);
980 	} else {
981 		cmd->cmd_len = 10;
982 		cmd->cmnd[0] = WRITE_SAME;
983 		put_unaligned_be32(sector, &cmd->cmnd[2]);
984 		put_unaligned_be16(nr_sectors, &cmd->cmnd[7]);
985 	}
986 
987 	cmd->transfersize = sdp->sector_size;
988 	cmd->allowed = SD_MAX_RETRIES;
989 
990 	/*
991 	 * For WRITE SAME the data transferred via the DATA OUT buffer is
992 	 * different from the amount of data actually written to the target.
993 	 *
994 	 * We set up __data_len to the amount of data transferred via the
995 	 * DATA OUT buffer so that blk_rq_map_sg sets up the proper S/G list
996 	 * to transfer a single sector of data first, but then reset it to
997 	 * the amount of data to be written right after so that the I/O path
998 	 * knows how much to actually write.
999 	 */
1000 	rq->__data_len = sdp->sector_size;
1001 	ret = scsi_init_io(cmd);
1002 	rq->__data_len = nr_bytes;
1003 
1004 	return ret;
1005 }
1006 
1007 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
1008 {
1009 	struct request *rq = cmd->request;
1010 
1011 	/* flush requests don't perform I/O, zero the S/G table */
1012 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1013 
1014 	cmd->cmnd[0] = SYNCHRONIZE_CACHE;
1015 	cmd->cmd_len = 10;
1016 	cmd->transfersize = 0;
1017 	cmd->allowed = SD_MAX_RETRIES;
1018 
1019 	rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
1020 	return BLK_STS_OK;
1021 }
1022 
1023 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *SCpnt)
1024 {
1025 	struct request *rq = SCpnt->request;
1026 	struct scsi_device *sdp = SCpnt->device;
1027 	struct gendisk *disk = rq->rq_disk;
1028 	struct scsi_disk *sdkp = scsi_disk(disk);
1029 	sector_t block = blk_rq_pos(rq);
1030 	sector_t threshold;
1031 	unsigned int this_count = blk_rq_sectors(rq);
1032 	unsigned int dif, dix;
1033 	unsigned char protect;
1034 	blk_status_t ret;
1035 
1036 	ret = scsi_init_io(SCpnt);
1037 	if (ret != BLK_STS_OK)
1038 		return ret;
1039 	WARN_ON_ONCE(SCpnt != rq->special);
1040 
1041 	SCSI_LOG_HLQUEUE(1,
1042 		scmd_printk(KERN_INFO, SCpnt,
1043 			"%s: block=%llu, count=%d\n",
1044 			__func__, (unsigned long long)block, this_count));
1045 
1046 	if (!sdp || !scsi_device_online(sdp) ||
1047 	    block + blk_rq_sectors(rq) > get_capacity(disk)) {
1048 		SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
1049 						"Finishing %u sectors\n",
1050 						blk_rq_sectors(rq)));
1051 		SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
1052 						"Retry with 0x%p\n", SCpnt));
1053 		return BLK_STS_IOERR;
1054 	}
1055 
1056 	if (sdp->changed) {
1057 		/*
1058 		 * quietly refuse to do anything to a changed disc until
1059 		 * the changed bit has been reset
1060 		 */
1061 		/* printk("SCSI disk has been changed or is not present. Prohibiting further I/O.\n"); */
1062 		return BLK_STS_IOERR;
1063 	}
1064 
1065 	/*
1066 	 * Some SD card readers can't handle multi-sector accesses which touch
1067 	 * the last one or two hardware sectors.  Split accesses as needed.
1068 	 */
1069 	threshold = get_capacity(disk) - SD_LAST_BUGGY_SECTORS *
1070 		(sdp->sector_size / 512);
1071 
1072 	if (unlikely(sdp->last_sector_bug && block + this_count > threshold)) {
1073 		if (block < threshold) {
1074 			/* Access up to the threshold but not beyond */
1075 			this_count = threshold - block;
1076 		} else {
1077 			/* Access only a single hardware sector */
1078 			this_count = sdp->sector_size / 512;
1079 		}
1080 	}
1081 
1082 	SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, "block=%llu\n",
1083 					(unsigned long long)block));
1084 
1085 	/*
1086 	 * If we have a 1K hardware sectorsize, prevent access to single
1087 	 * 512 byte sectors.  In theory we could handle this - in fact
1088 	 * the scsi cdrom driver must be able to handle this because
1089 	 * we typically use 1K blocksizes, and cdroms typically have
1090 	 * 2K hardware sectorsizes.  Of course, things are simpler
1091 	 * with the cdrom, since it is read-only.  For performance
1092 	 * reasons, the filesystems should be able to handle this
1093 	 * and not force the scsi disk driver to use bounce buffers
1094 	 * for this.
1095 	 */
1096 	if (sdp->sector_size == 1024) {
1097 		if ((block & 1) || (blk_rq_sectors(rq) & 1)) {
1098 			scmd_printk(KERN_ERR, SCpnt,
1099 				    "Bad block number requested\n");
1100 			return BLK_STS_IOERR;
1101 		}
1102 		block = block >> 1;
1103 		this_count = this_count >> 1;
1104 	}
1105 	if (sdp->sector_size == 2048) {
1106 		if ((block & 3) || (blk_rq_sectors(rq) & 3)) {
1107 			scmd_printk(KERN_ERR, SCpnt,
1108 				    "Bad block number requested\n");
1109 			return BLK_STS_IOERR;
1110 		}
1111 		block = block >> 2;
1112 		this_count = this_count >> 2;
1113 	}
1114 	if (sdp->sector_size == 4096) {
1115 		if ((block & 7) || (blk_rq_sectors(rq) & 7)) {
1116 			scmd_printk(KERN_ERR, SCpnt,
1117 				    "Bad block number requested\n");
1118 			return BLK_STS_IOERR;
1119 		}
1120 		block = block >> 3;
1121 		this_count = this_count >> 3;
1122 	}
1123 	if (rq_data_dir(rq) == WRITE) {
1124 		SCpnt->cmnd[0] = WRITE_6;
1125 
1126 		if (blk_integrity_rq(rq))
1127 			t10_pi_prepare(SCpnt->request, sdkp->protection_type);
1128 
1129 	} else if (rq_data_dir(rq) == READ) {
1130 		SCpnt->cmnd[0] = READ_6;
1131 	} else {
1132 		scmd_printk(KERN_ERR, SCpnt, "Unknown command %d\n", req_op(rq));
1133 		return BLK_STS_IOERR;
1134 	}
1135 
1136 	SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
1137 					"%s %d/%u 512 byte blocks.\n",
1138 					(rq_data_dir(rq) == WRITE) ?
1139 					"writing" : "reading", this_count,
1140 					blk_rq_sectors(rq)));
1141 
1142 	dix = scsi_prot_sg_count(SCpnt);
1143 	dif = scsi_host_dif_capable(SCpnt->device->host, sdkp->protection_type);
1144 
1145 	if (dif || dix)
1146 		protect = sd_setup_protect_cmnd(SCpnt, dix, dif);
1147 	else
1148 		protect = 0;
1149 
1150 	if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1151 		SCpnt->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC);
1152 
1153 		if (unlikely(!SCpnt->cmnd))
1154 			return BLK_STS_RESOURCE;
1155 
1156 		SCpnt->cmd_len = SD_EXT_CDB_SIZE;
1157 		memset(SCpnt->cmnd, 0, SCpnt->cmd_len);
1158 		SCpnt->cmnd[0] = VARIABLE_LENGTH_CMD;
1159 		SCpnt->cmnd[7] = 0x18;
1160 		SCpnt->cmnd[9] = (rq_data_dir(rq) == READ) ? READ_32 : WRITE_32;
1161 		SCpnt->cmnd[10] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1162 
1163 		/* LBA */
1164 		SCpnt->cmnd[12] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0;
1165 		SCpnt->cmnd[13] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0;
1166 		SCpnt->cmnd[14] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0;
1167 		SCpnt->cmnd[15] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0;
1168 		SCpnt->cmnd[16] = (unsigned char) (block >> 24) & 0xff;
1169 		SCpnt->cmnd[17] = (unsigned char) (block >> 16) & 0xff;
1170 		SCpnt->cmnd[18] = (unsigned char) (block >> 8) & 0xff;
1171 		SCpnt->cmnd[19] = (unsigned char) block & 0xff;
1172 
1173 		/* Expected Indirect LBA */
1174 		SCpnt->cmnd[20] = (unsigned char) (block >> 24) & 0xff;
1175 		SCpnt->cmnd[21] = (unsigned char) (block >> 16) & 0xff;
1176 		SCpnt->cmnd[22] = (unsigned char) (block >> 8) & 0xff;
1177 		SCpnt->cmnd[23] = (unsigned char) block & 0xff;
1178 
1179 		/* Transfer length */
1180 		SCpnt->cmnd[28] = (unsigned char) (this_count >> 24) & 0xff;
1181 		SCpnt->cmnd[29] = (unsigned char) (this_count >> 16) & 0xff;
1182 		SCpnt->cmnd[30] = (unsigned char) (this_count >> 8) & 0xff;
1183 		SCpnt->cmnd[31] = (unsigned char) this_count & 0xff;
1184 	} else if (sdp->use_16_for_rw || (this_count > 0xffff)) {
1185 		SCpnt->cmnd[0] += READ_16 - READ_6;
1186 		SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1187 		SCpnt->cmnd[2] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0;
1188 		SCpnt->cmnd[3] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0;
1189 		SCpnt->cmnd[4] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0;
1190 		SCpnt->cmnd[5] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0;
1191 		SCpnt->cmnd[6] = (unsigned char) (block >> 24) & 0xff;
1192 		SCpnt->cmnd[7] = (unsigned char) (block >> 16) & 0xff;
1193 		SCpnt->cmnd[8] = (unsigned char) (block >> 8) & 0xff;
1194 		SCpnt->cmnd[9] = (unsigned char) block & 0xff;
1195 		SCpnt->cmnd[10] = (unsigned char) (this_count >> 24) & 0xff;
1196 		SCpnt->cmnd[11] = (unsigned char) (this_count >> 16) & 0xff;
1197 		SCpnt->cmnd[12] = (unsigned char) (this_count >> 8) & 0xff;
1198 		SCpnt->cmnd[13] = (unsigned char) this_count & 0xff;
1199 		SCpnt->cmnd[14] = SCpnt->cmnd[15] = 0;
1200 	} else if ((this_count > 0xff) || (block > 0x1fffff) ||
1201 		   scsi_device_protection(SCpnt->device) ||
1202 		   SCpnt->device->use_10_for_rw) {
1203 		SCpnt->cmnd[0] += READ_10 - READ_6;
1204 		SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1205 		SCpnt->cmnd[2] = (unsigned char) (block >> 24) & 0xff;
1206 		SCpnt->cmnd[3] = (unsigned char) (block >> 16) & 0xff;
1207 		SCpnt->cmnd[4] = (unsigned char) (block >> 8) & 0xff;
1208 		SCpnt->cmnd[5] = (unsigned char) block & 0xff;
1209 		SCpnt->cmnd[6] = SCpnt->cmnd[9] = 0;
1210 		SCpnt->cmnd[7] = (unsigned char) (this_count >> 8) & 0xff;
1211 		SCpnt->cmnd[8] = (unsigned char) this_count & 0xff;
1212 	} else {
1213 		if (unlikely(rq->cmd_flags & REQ_FUA)) {
1214 			/*
1215 			 * This happens only if this drive failed
1216 			 * 10byte rw command with ILLEGAL_REQUEST
1217 			 * during operation and thus turned off
1218 			 * use_10_for_rw.
1219 			 */
1220 			scmd_printk(KERN_ERR, SCpnt,
1221 				    "FUA write on READ/WRITE(6) drive\n");
1222 			return BLK_STS_IOERR;
1223 		}
1224 
1225 		SCpnt->cmnd[1] |= (unsigned char) ((block >> 16) & 0x1f);
1226 		SCpnt->cmnd[2] = (unsigned char) ((block >> 8) & 0xff);
1227 		SCpnt->cmnd[3] = (unsigned char) block & 0xff;
1228 		SCpnt->cmnd[4] = (unsigned char) this_count;
1229 		SCpnt->cmnd[5] = 0;
1230 	}
1231 	SCpnt->sdb.length = this_count * sdp->sector_size;
1232 
1233 	/*
1234 	 * We shouldn't disconnect in the middle of a sector, so with a dumb
1235 	 * host adapter, it's safe to assume that we can at least transfer
1236 	 * this many bytes between each connect / disconnect.
1237 	 */
1238 	SCpnt->transfersize = sdp->sector_size;
1239 	SCpnt->underflow = this_count << 9;
1240 	SCpnt->allowed = SD_MAX_RETRIES;
1241 
1242 	/*
1243 	 * This indicates that the command is ready from our end to be
1244 	 * queued.
1245 	 */
1246 	return BLK_STS_OK;
1247 }
1248 
1249 static blk_status_t sd_init_command(struct scsi_cmnd *cmd)
1250 {
1251 	struct request *rq = cmd->request;
1252 
1253 	switch (req_op(rq)) {
1254 	case REQ_OP_DISCARD:
1255 		switch (scsi_disk(rq->rq_disk)->provisioning_mode) {
1256 		case SD_LBP_UNMAP:
1257 			return sd_setup_unmap_cmnd(cmd);
1258 		case SD_LBP_WS16:
1259 			return sd_setup_write_same16_cmnd(cmd, true);
1260 		case SD_LBP_WS10:
1261 			return sd_setup_write_same10_cmnd(cmd, true);
1262 		case SD_LBP_ZERO:
1263 			return sd_setup_write_same10_cmnd(cmd, false);
1264 		default:
1265 			return BLK_STS_TARGET;
1266 		}
1267 	case REQ_OP_WRITE_ZEROES:
1268 		return sd_setup_write_zeroes_cmnd(cmd);
1269 	case REQ_OP_WRITE_SAME:
1270 		return sd_setup_write_same_cmnd(cmd);
1271 	case REQ_OP_FLUSH:
1272 		return sd_setup_flush_cmnd(cmd);
1273 	case REQ_OP_READ:
1274 	case REQ_OP_WRITE:
1275 		return sd_setup_read_write_cmnd(cmd);
1276 	case REQ_OP_ZONE_RESET:
1277 		return sd_zbc_setup_reset_cmnd(cmd);
1278 	default:
1279 		WARN_ON_ONCE(1);
1280 		return BLK_STS_NOTSUPP;
1281 	}
1282 }
1283 
1284 static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1285 {
1286 	struct request *rq = SCpnt->request;
1287 	u8 *cmnd;
1288 
1289 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1290 		mempool_free(rq->special_vec.bv_page, sd_page_pool);
1291 
1292 	if (SCpnt->cmnd != scsi_req(rq)->cmd) {
1293 		cmnd = SCpnt->cmnd;
1294 		SCpnt->cmnd = NULL;
1295 		SCpnt->cmd_len = 0;
1296 		mempool_free(cmnd, sd_cdb_pool);
1297 	}
1298 }
1299 
1300 /**
1301  *	sd_open - open a scsi disk device
1302  *	@bdev: Block device of the scsi disk to open
1303  *	@mode: FMODE_* mask
1304  *
1305  *	Returns 0 if successful. Returns a negated errno value in case
1306  *	of error.
1307  *
1308  *	Note: This can be called from a user context (e.g. fsck(1) )
1309  *	or from within the kernel (e.g. as a result of a mount(1) ).
1310  *	In the latter case @inode and @filp carry an abridged amount
1311  *	of information as noted above.
1312  *
1313  *	Locking: called with bdev->bd_mutex held.
1314  **/
1315 static int sd_open(struct block_device *bdev, fmode_t mode)
1316 {
1317 	struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk);
1318 	struct scsi_device *sdev;
1319 	int retval;
1320 
1321 	if (!sdkp)
1322 		return -ENXIO;
1323 
1324 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1325 
1326 	sdev = sdkp->device;
1327 
1328 	/*
1329 	 * If the device is in error recovery, wait until it is done.
1330 	 * If the device is offline, then disallow any access to it.
1331 	 */
1332 	retval = -ENXIO;
1333 	if (!scsi_block_when_processing_errors(sdev))
1334 		goto error_out;
1335 
1336 	if (sdev->removable || sdkp->write_prot)
1337 		check_disk_change(bdev);
1338 
1339 	/*
1340 	 * If the drive is empty, just let the open fail.
1341 	 */
1342 	retval = -ENOMEDIUM;
1343 	if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY))
1344 		goto error_out;
1345 
1346 	/*
1347 	 * If the device has the write protect tab set, have the open fail
1348 	 * if the user expects to be able to write to the thing.
1349 	 */
1350 	retval = -EROFS;
1351 	if (sdkp->write_prot && (mode & FMODE_WRITE))
1352 		goto error_out;
1353 
1354 	/*
1355 	 * It is possible that the disk changing stuff resulted in
1356 	 * the device being taken offline.  If this is the case,
1357 	 * report this to the user, and don't pretend that the
1358 	 * open actually succeeded.
1359 	 */
1360 	retval = -ENXIO;
1361 	if (!scsi_device_online(sdev))
1362 		goto error_out;
1363 
1364 	if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1365 		if (scsi_block_when_processing_errors(sdev))
1366 			scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1367 	}
1368 
1369 	return 0;
1370 
1371 error_out:
1372 	scsi_disk_put(sdkp);
1373 	return retval;
1374 }
1375 
1376 /**
1377  *	sd_release - invoked when the (last) close(2) is called on this
1378  *	scsi disk.
1379  *	@disk: disk to release
1380  *	@mode: FMODE_* mask
1381  *
1382  *	Returns 0.
1383  *
1384  *	Note: may block (uninterruptible) if error recovery is underway
1385  *	on this disk.
1386  *
1387  *	Locking: called with bdev->bd_mutex held.
1388  **/
1389 static void sd_release(struct gendisk *disk, fmode_t mode)
1390 {
1391 	struct scsi_disk *sdkp = scsi_disk(disk);
1392 	struct scsi_device *sdev = sdkp->device;
1393 
1394 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1395 
1396 	if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1397 		if (scsi_block_when_processing_errors(sdev))
1398 			scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1399 	}
1400 
1401 	/*
1402 	 * XXX and what if there are packets in flight and this close()
1403 	 * XXX is followed by a "rmmod sd_mod"?
1404 	 */
1405 
1406 	scsi_disk_put(sdkp);
1407 }
1408 
1409 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1410 {
1411 	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1412 	struct scsi_device *sdp = sdkp->device;
1413 	struct Scsi_Host *host = sdp->host;
1414 	sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1415 	int diskinfo[4];
1416 
1417 	/* default to most commonly used values */
1418 	diskinfo[0] = 0x40;	/* 1 << 6 */
1419 	diskinfo[1] = 0x20;	/* 1 << 5 */
1420 	diskinfo[2] = capacity >> 11;
1421 
1422 	/* override with calculated, extended default, or driver values */
1423 	if (host->hostt->bios_param)
1424 		host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1425 	else
1426 		scsicam_bios_param(bdev, capacity, diskinfo);
1427 
1428 	geo->heads = diskinfo[0];
1429 	geo->sectors = diskinfo[1];
1430 	geo->cylinders = diskinfo[2];
1431 	return 0;
1432 }
1433 
1434 /**
1435  *	sd_ioctl - process an ioctl
1436  *	@bdev: target block device
1437  *	@mode: FMODE_* mask
1438  *	@cmd: ioctl command number
1439  *	@arg: this is third argument given to ioctl(2) system call.
1440  *	Often contains a pointer.
1441  *
1442  *	Returns 0 if successful (some ioctls return positive numbers on
1443  *	success as well). Returns a negated errno value in case of error.
1444  *
1445  *	Note: most ioctls are forward onto the block subsystem or further
1446  *	down in the scsi subsystem.
1447  **/
1448 static int sd_ioctl(struct block_device *bdev, fmode_t mode,
1449 		    unsigned int cmd, unsigned long arg)
1450 {
1451 	struct gendisk *disk = bdev->bd_disk;
1452 	struct scsi_disk *sdkp = scsi_disk(disk);
1453 	struct scsi_device *sdp = sdkp->device;
1454 	void __user *p = (void __user *)arg;
1455 	int error;
1456 
1457 	SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1458 				    "cmd=0x%x\n", disk->disk_name, cmd));
1459 
1460 	error = scsi_verify_blk_ioctl(bdev, cmd);
1461 	if (error < 0)
1462 		return error;
1463 
1464 	/*
1465 	 * If we are in the middle of error recovery, don't let anyone
1466 	 * else try and use this device.  Also, if error recovery fails, it
1467 	 * may try and take the device offline, in which case all further
1468 	 * access to the device is prohibited.
1469 	 */
1470 	error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1471 			(mode & FMODE_NDELAY) != 0);
1472 	if (error)
1473 		goto out;
1474 
1475 	if (is_sed_ioctl(cmd))
1476 		return sed_ioctl(sdkp->opal_dev, cmd, p);
1477 
1478 	/*
1479 	 * Send SCSI addressing ioctls directly to mid level, send other
1480 	 * ioctls to block level and then onto mid level if they can't be
1481 	 * resolved.
1482 	 */
1483 	switch (cmd) {
1484 		case SCSI_IOCTL_GET_IDLUN:
1485 		case SCSI_IOCTL_GET_BUS_NUMBER:
1486 			error = scsi_ioctl(sdp, cmd, p);
1487 			break;
1488 		default:
1489 			error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p);
1490 			if (error != -ENOTTY)
1491 				break;
1492 			error = scsi_ioctl(sdp, cmd, p);
1493 			break;
1494 	}
1495 out:
1496 	return error;
1497 }
1498 
1499 static void set_media_not_present(struct scsi_disk *sdkp)
1500 {
1501 	if (sdkp->media_present)
1502 		sdkp->device->changed = 1;
1503 
1504 	if (sdkp->device->removable) {
1505 		sdkp->media_present = 0;
1506 		sdkp->capacity = 0;
1507 	}
1508 }
1509 
1510 static int media_not_present(struct scsi_disk *sdkp,
1511 			     struct scsi_sense_hdr *sshdr)
1512 {
1513 	if (!scsi_sense_valid(sshdr))
1514 		return 0;
1515 
1516 	/* not invoked for commands that could return deferred errors */
1517 	switch (sshdr->sense_key) {
1518 	case UNIT_ATTENTION:
1519 	case NOT_READY:
1520 		/* medium not present */
1521 		if (sshdr->asc == 0x3A) {
1522 			set_media_not_present(sdkp);
1523 			return 1;
1524 		}
1525 	}
1526 	return 0;
1527 }
1528 
1529 /**
1530  *	sd_check_events - check media events
1531  *	@disk: kernel device descriptor
1532  *	@clearing: disk events currently being cleared
1533  *
1534  *	Returns mask of DISK_EVENT_*.
1535  *
1536  *	Note: this function is invoked from the block subsystem.
1537  **/
1538 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1539 {
1540 	struct scsi_disk *sdkp = scsi_disk_get(disk);
1541 	struct scsi_device *sdp;
1542 	int retval;
1543 
1544 	if (!sdkp)
1545 		return 0;
1546 
1547 	sdp = sdkp->device;
1548 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1549 
1550 	/*
1551 	 * If the device is offline, don't send any commands - just pretend as
1552 	 * if the command failed.  If the device ever comes back online, we
1553 	 * can deal with it then.  It is only because of unrecoverable errors
1554 	 * that we would ever take a device offline in the first place.
1555 	 */
1556 	if (!scsi_device_online(sdp)) {
1557 		set_media_not_present(sdkp);
1558 		goto out;
1559 	}
1560 
1561 	/*
1562 	 * Using TEST_UNIT_READY enables differentiation between drive with
1563 	 * no cartridge loaded - NOT READY, drive with changed cartridge -
1564 	 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1565 	 *
1566 	 * Drives that auto spin down. eg iomega jaz 1G, will be started
1567 	 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1568 	 * sd_revalidate() is called.
1569 	 */
1570 	if (scsi_block_when_processing_errors(sdp)) {
1571 		struct scsi_sense_hdr sshdr = { 0, };
1572 
1573 		retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, SD_MAX_RETRIES,
1574 					      &sshdr);
1575 
1576 		/* failed to execute TUR, assume media not present */
1577 		if (host_byte(retval)) {
1578 			set_media_not_present(sdkp);
1579 			goto out;
1580 		}
1581 
1582 		if (media_not_present(sdkp, &sshdr))
1583 			goto out;
1584 	}
1585 
1586 	/*
1587 	 * For removable scsi disk we have to recognise the presence
1588 	 * of a disk in the drive.
1589 	 */
1590 	if (!sdkp->media_present)
1591 		sdp->changed = 1;
1592 	sdkp->media_present = 1;
1593 out:
1594 	/*
1595 	 * sdp->changed is set under the following conditions:
1596 	 *
1597 	 *	Medium present state has changed in either direction.
1598 	 *	Device has indicated UNIT_ATTENTION.
1599 	 */
1600 	retval = sdp->changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1601 	sdp->changed = 0;
1602 	scsi_disk_put(sdkp);
1603 	return retval;
1604 }
1605 
1606 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
1607 {
1608 	int retries, res;
1609 	struct scsi_device *sdp = sdkp->device;
1610 	const int timeout = sdp->request_queue->rq_timeout
1611 		* SD_FLUSH_TIMEOUT_MULTIPLIER;
1612 	struct scsi_sense_hdr my_sshdr;
1613 
1614 	if (!scsi_device_online(sdp))
1615 		return -ENODEV;
1616 
1617 	/* caller might not be interested in sense, but we need it */
1618 	if (!sshdr)
1619 		sshdr = &my_sshdr;
1620 
1621 	for (retries = 3; retries > 0; --retries) {
1622 		unsigned char cmd[10] = { 0 };
1623 
1624 		cmd[0] = SYNCHRONIZE_CACHE;
1625 		/*
1626 		 * Leave the rest of the command zero to indicate
1627 		 * flush everything.
1628 		 */
1629 		res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr,
1630 				timeout, SD_MAX_RETRIES, 0, RQF_PM, NULL);
1631 		if (res == 0)
1632 			break;
1633 	}
1634 
1635 	if (res) {
1636 		sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1637 
1638 		if (driver_byte(res) == DRIVER_SENSE)
1639 			sd_print_sense_hdr(sdkp, sshdr);
1640 
1641 		/* we need to evaluate the error return  */
1642 		if (scsi_sense_valid(sshdr) &&
1643 			(sshdr->asc == 0x3a ||	/* medium not present */
1644 			 sshdr->asc == 0x20))	/* invalid command */
1645 				/* this is no error here */
1646 				return 0;
1647 
1648 		switch (host_byte(res)) {
1649 		/* ignore errors due to racing a disconnection */
1650 		case DID_BAD_TARGET:
1651 		case DID_NO_CONNECT:
1652 			return 0;
1653 		/* signal the upper layer it might try again */
1654 		case DID_BUS_BUSY:
1655 		case DID_IMM_RETRY:
1656 		case DID_REQUEUE:
1657 		case DID_SOFT_ERROR:
1658 			return -EBUSY;
1659 		default:
1660 			return -EIO;
1661 		}
1662 	}
1663 	return 0;
1664 }
1665 
1666 static void sd_rescan(struct device *dev)
1667 {
1668 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
1669 
1670 	revalidate_disk(sdkp->disk);
1671 }
1672 
1673 
1674 #ifdef CONFIG_COMPAT
1675 /*
1676  * This gets directly called from VFS. When the ioctl
1677  * is not recognized we go back to the other translation paths.
1678  */
1679 static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode,
1680 			   unsigned int cmd, unsigned long arg)
1681 {
1682 	struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
1683 	int error;
1684 
1685 	error = scsi_ioctl_block_when_processing_errors(sdev, cmd,
1686 			(mode & FMODE_NDELAY) != 0);
1687 	if (error)
1688 		return error;
1689 
1690 	/*
1691 	 * Let the static ioctl translation table take care of it.
1692 	 */
1693 	if (!sdev->host->hostt->compat_ioctl)
1694 		return -ENOIOCTLCMD;
1695 	return sdev->host->hostt->compat_ioctl(sdev, cmd, (void __user *)arg);
1696 }
1697 #endif
1698 
1699 static char sd_pr_type(enum pr_type type)
1700 {
1701 	switch (type) {
1702 	case PR_WRITE_EXCLUSIVE:
1703 		return 0x01;
1704 	case PR_EXCLUSIVE_ACCESS:
1705 		return 0x03;
1706 	case PR_WRITE_EXCLUSIVE_REG_ONLY:
1707 		return 0x05;
1708 	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1709 		return 0x06;
1710 	case PR_WRITE_EXCLUSIVE_ALL_REGS:
1711 		return 0x07;
1712 	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1713 		return 0x08;
1714 	default:
1715 		return 0;
1716 	}
1717 };
1718 
1719 static int sd_pr_command(struct block_device *bdev, u8 sa,
1720 		u64 key, u64 sa_key, u8 type, u8 flags)
1721 {
1722 	struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
1723 	struct scsi_sense_hdr sshdr;
1724 	int result;
1725 	u8 cmd[16] = { 0, };
1726 	u8 data[24] = { 0, };
1727 
1728 	cmd[0] = PERSISTENT_RESERVE_OUT;
1729 	cmd[1] = sa;
1730 	cmd[2] = type;
1731 	put_unaligned_be32(sizeof(data), &cmd[5]);
1732 
1733 	put_unaligned_be64(key, &data[0]);
1734 	put_unaligned_be64(sa_key, &data[8]);
1735 	data[20] = flags;
1736 
1737 	result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data),
1738 			&sshdr, SD_TIMEOUT, SD_MAX_RETRIES, NULL);
1739 
1740 	if (driver_byte(result) == DRIVER_SENSE &&
1741 	    scsi_sense_valid(&sshdr)) {
1742 		sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1743 		scsi_print_sense_hdr(sdev, NULL, &sshdr);
1744 	}
1745 
1746 	return result;
1747 }
1748 
1749 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1750 		u32 flags)
1751 {
1752 	if (flags & ~PR_FL_IGNORE_KEY)
1753 		return -EOPNOTSUPP;
1754 	return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1755 			old_key, new_key, 0,
1756 			(1 << 0) /* APTPL */);
1757 }
1758 
1759 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1760 		u32 flags)
1761 {
1762 	if (flags)
1763 		return -EOPNOTSUPP;
1764 	return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0);
1765 }
1766 
1767 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1768 {
1769 	return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0);
1770 }
1771 
1772 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1773 		enum pr_type type, bool abort)
1774 {
1775 	return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
1776 			     sd_pr_type(type), 0);
1777 }
1778 
1779 static int sd_pr_clear(struct block_device *bdev, u64 key)
1780 {
1781 	return sd_pr_command(bdev, 0x03, key, 0, 0, 0);
1782 }
1783 
1784 static const struct pr_ops sd_pr_ops = {
1785 	.pr_register	= sd_pr_register,
1786 	.pr_reserve	= sd_pr_reserve,
1787 	.pr_release	= sd_pr_release,
1788 	.pr_preempt	= sd_pr_preempt,
1789 	.pr_clear	= sd_pr_clear,
1790 };
1791 
1792 static const struct block_device_operations sd_fops = {
1793 	.owner			= THIS_MODULE,
1794 	.open			= sd_open,
1795 	.release		= sd_release,
1796 	.ioctl			= sd_ioctl,
1797 	.getgeo			= sd_getgeo,
1798 #ifdef CONFIG_COMPAT
1799 	.compat_ioctl		= sd_compat_ioctl,
1800 #endif
1801 	.check_events		= sd_check_events,
1802 	.revalidate_disk	= sd_revalidate_disk,
1803 	.unlock_native_capacity	= sd_unlock_native_capacity,
1804 	.report_zones		= sd_zbc_report_zones,
1805 	.pr_ops			= &sd_pr_ops,
1806 };
1807 
1808 /**
1809  *	sd_eh_reset - reset error handling callback
1810  *	@scmd:		sd-issued command that has failed
1811  *
1812  *	This function is called by the SCSI midlayer before starting
1813  *	SCSI EH. When counting medium access failures we have to be
1814  *	careful to register it only only once per device and SCSI EH run;
1815  *	there might be several timed out commands which will cause the
1816  *	'max_medium_access_timeouts' counter to trigger after the first
1817  *	SCSI EH run already and set the device to offline.
1818  *	So this function resets the internal counter before starting SCSI EH.
1819  **/
1820 static void sd_eh_reset(struct scsi_cmnd *scmd)
1821 {
1822 	struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1823 
1824 	/* New SCSI EH run, reset gate variable */
1825 	sdkp->ignore_medium_access_errors = false;
1826 }
1827 
1828 /**
1829  *	sd_eh_action - error handling callback
1830  *	@scmd:		sd-issued command that has failed
1831  *	@eh_disp:	The recovery disposition suggested by the midlayer
1832  *
1833  *	This function is called by the SCSI midlayer upon completion of an
1834  *	error test command (currently TEST UNIT READY). The result of sending
1835  *	the eh command is passed in eh_disp.  We're looking for devices that
1836  *	fail medium access commands but are OK with non access commands like
1837  *	test unit ready (so wrongly see the device as having a successful
1838  *	recovery)
1839  **/
1840 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
1841 {
1842 	struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1843 	struct scsi_device *sdev = scmd->device;
1844 
1845 	if (!scsi_device_online(sdev) ||
1846 	    !scsi_medium_access_command(scmd) ||
1847 	    host_byte(scmd->result) != DID_TIME_OUT ||
1848 	    eh_disp != SUCCESS)
1849 		return eh_disp;
1850 
1851 	/*
1852 	 * The device has timed out executing a medium access command.
1853 	 * However, the TEST UNIT READY command sent during error
1854 	 * handling completed successfully. Either the device is in the
1855 	 * process of recovering or has it suffered an internal failure
1856 	 * that prevents access to the storage medium.
1857 	 */
1858 	if (!sdkp->ignore_medium_access_errors) {
1859 		sdkp->medium_access_timed_out++;
1860 		sdkp->ignore_medium_access_errors = true;
1861 	}
1862 
1863 	/*
1864 	 * If the device keeps failing read/write commands but TEST UNIT
1865 	 * READY always completes successfully we assume that medium
1866 	 * access is no longer possible and take the device offline.
1867 	 */
1868 	if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
1869 		scmd_printk(KERN_ERR, scmd,
1870 			    "Medium access timeout failure. Offlining disk!\n");
1871 		mutex_lock(&sdev->state_mutex);
1872 		scsi_device_set_state(sdev, SDEV_OFFLINE);
1873 		mutex_unlock(&sdev->state_mutex);
1874 
1875 		return SUCCESS;
1876 	}
1877 
1878 	return eh_disp;
1879 }
1880 
1881 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
1882 {
1883 	struct request *req = scmd->request;
1884 	struct scsi_device *sdev = scmd->device;
1885 	unsigned int transferred, good_bytes;
1886 	u64 start_lba, end_lba, bad_lba;
1887 
1888 	/*
1889 	 * Some commands have a payload smaller than the device logical
1890 	 * block size (e.g. INQUIRY on a 4K disk).
1891 	 */
1892 	if (scsi_bufflen(scmd) <= sdev->sector_size)
1893 		return 0;
1894 
1895 	/* Check if we have a 'bad_lba' information */
1896 	if (!scsi_get_sense_info_fld(scmd->sense_buffer,
1897 				     SCSI_SENSE_BUFFERSIZE,
1898 				     &bad_lba))
1899 		return 0;
1900 
1901 	/*
1902 	 * If the bad lba was reported incorrectly, we have no idea where
1903 	 * the error is.
1904 	 */
1905 	start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
1906 	end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
1907 	if (bad_lba < start_lba || bad_lba >= end_lba)
1908 		return 0;
1909 
1910 	/*
1911 	 * resid is optional but mostly filled in.  When it's unused,
1912 	 * its value is zero, so we assume the whole buffer transferred
1913 	 */
1914 	transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
1915 
1916 	/* This computation should always be done in terms of the
1917 	 * resolution of the device's medium.
1918 	 */
1919 	good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
1920 
1921 	return min(good_bytes, transferred);
1922 }
1923 
1924 /**
1925  *	sd_done - bottom half handler: called when the lower level
1926  *	driver has completed (successfully or otherwise) a scsi command.
1927  *	@SCpnt: mid-level's per command structure.
1928  *
1929  *	Note: potentially run from within an ISR. Must not block.
1930  **/
1931 static int sd_done(struct scsi_cmnd *SCpnt)
1932 {
1933 	int result = SCpnt->result;
1934 	unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
1935 	unsigned int sector_size = SCpnt->device->sector_size;
1936 	unsigned int resid;
1937 	struct scsi_sense_hdr sshdr;
1938 	struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk);
1939 	struct request *req = SCpnt->request;
1940 	int sense_valid = 0;
1941 	int sense_deferred = 0;
1942 
1943 	switch (req_op(req)) {
1944 	case REQ_OP_DISCARD:
1945 	case REQ_OP_WRITE_ZEROES:
1946 	case REQ_OP_WRITE_SAME:
1947 	case REQ_OP_ZONE_RESET:
1948 		if (!result) {
1949 			good_bytes = blk_rq_bytes(req);
1950 			scsi_set_resid(SCpnt, 0);
1951 		} else {
1952 			good_bytes = 0;
1953 			scsi_set_resid(SCpnt, blk_rq_bytes(req));
1954 		}
1955 		break;
1956 	default:
1957 		/*
1958 		 * In case of bogus fw or device, we could end up having
1959 		 * an unaligned partial completion. Check this here and force
1960 		 * alignment.
1961 		 */
1962 		resid = scsi_get_resid(SCpnt);
1963 		if (resid & (sector_size - 1)) {
1964 			sd_printk(KERN_INFO, sdkp,
1965 				"Unaligned partial completion (resid=%u, sector_sz=%u)\n",
1966 				resid, sector_size);
1967 			resid = min(scsi_bufflen(SCpnt),
1968 				    round_up(resid, sector_size));
1969 			scsi_set_resid(SCpnt, resid);
1970 		}
1971 	}
1972 
1973 	if (result) {
1974 		sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
1975 		if (sense_valid)
1976 			sense_deferred = scsi_sense_is_deferred(&sshdr);
1977 	}
1978 	sdkp->medium_access_timed_out = 0;
1979 
1980 	if (driver_byte(result) != DRIVER_SENSE &&
1981 	    (!sense_valid || sense_deferred))
1982 		goto out;
1983 
1984 	switch (sshdr.sense_key) {
1985 	case HARDWARE_ERROR:
1986 	case MEDIUM_ERROR:
1987 		good_bytes = sd_completed_bytes(SCpnt);
1988 		break;
1989 	case RECOVERED_ERROR:
1990 		good_bytes = scsi_bufflen(SCpnt);
1991 		break;
1992 	case NO_SENSE:
1993 		/* This indicates a false check condition, so ignore it.  An
1994 		 * unknown amount of data was transferred so treat it as an
1995 		 * error.
1996 		 */
1997 		SCpnt->result = 0;
1998 		memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1999 		break;
2000 	case ABORTED_COMMAND:
2001 		if (sshdr.asc == 0x10)  /* DIF: Target detected corruption */
2002 			good_bytes = sd_completed_bytes(SCpnt);
2003 		break;
2004 	case ILLEGAL_REQUEST:
2005 		switch (sshdr.asc) {
2006 		case 0x10:	/* DIX: Host detected corruption */
2007 			good_bytes = sd_completed_bytes(SCpnt);
2008 			break;
2009 		case 0x20:	/* INVALID COMMAND OPCODE */
2010 		case 0x24:	/* INVALID FIELD IN CDB */
2011 			switch (SCpnt->cmnd[0]) {
2012 			case UNMAP:
2013 				sd_config_discard(sdkp, SD_LBP_DISABLE);
2014 				break;
2015 			case WRITE_SAME_16:
2016 			case WRITE_SAME:
2017 				if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2018 					sd_config_discard(sdkp, SD_LBP_DISABLE);
2019 				} else {
2020 					sdkp->device->no_write_same = 1;
2021 					sd_config_write_same(sdkp);
2022 					req->rq_flags |= RQF_QUIET;
2023 				}
2024 				break;
2025 			}
2026 		}
2027 		break;
2028 	default:
2029 		break;
2030 	}
2031 
2032  out:
2033 	if (sd_is_zoned(sdkp))
2034 		sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2035 
2036 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2037 					   "sd_done: completed %d of %d bytes\n",
2038 					   good_bytes, scsi_bufflen(SCpnt)));
2039 
2040 	if (rq_data_dir(SCpnt->request) == READ && scsi_prot_sg_count(SCpnt) &&
2041 	    good_bytes)
2042 		t10_pi_complete(SCpnt->request, sdkp->protection_type,
2043 				good_bytes / scsi_prot_interval(SCpnt));
2044 
2045 	return good_bytes;
2046 }
2047 
2048 /*
2049  * spinup disk - called only in sd_revalidate_disk()
2050  */
2051 static void
2052 sd_spinup_disk(struct scsi_disk *sdkp)
2053 {
2054 	unsigned char cmd[10];
2055 	unsigned long spintime_expire = 0;
2056 	int retries, spintime;
2057 	unsigned int the_result;
2058 	struct scsi_sense_hdr sshdr;
2059 	int sense_valid = 0;
2060 
2061 	spintime = 0;
2062 
2063 	/* Spin up drives, as required.  Only do this at boot time */
2064 	/* Spinup needs to be done for module loads too. */
2065 	do {
2066 		retries = 0;
2067 
2068 		do {
2069 			cmd[0] = TEST_UNIT_READY;
2070 			memset((void *) &cmd[1], 0, 9);
2071 
2072 			the_result = scsi_execute_req(sdkp->device, cmd,
2073 						      DMA_NONE, NULL, 0,
2074 						      &sshdr, SD_TIMEOUT,
2075 						      SD_MAX_RETRIES, NULL);
2076 
2077 			/*
2078 			 * If the drive has indicated to us that it
2079 			 * doesn't have any media in it, don't bother
2080 			 * with any more polling.
2081 			 */
2082 			if (media_not_present(sdkp, &sshdr))
2083 				return;
2084 
2085 			if (the_result)
2086 				sense_valid = scsi_sense_valid(&sshdr);
2087 			retries++;
2088 		} while (retries < 3 &&
2089 			 (!scsi_status_is_good(the_result) ||
2090 			  ((driver_byte(the_result) == DRIVER_SENSE) &&
2091 			  sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
2092 
2093 		if (driver_byte(the_result) != DRIVER_SENSE) {
2094 			/* no sense, TUR either succeeded or failed
2095 			 * with a status error */
2096 			if(!spintime && !scsi_status_is_good(the_result)) {
2097 				sd_print_result(sdkp, "Test Unit Ready failed",
2098 						the_result);
2099 			}
2100 			break;
2101 		}
2102 
2103 		/*
2104 		 * The device does not want the automatic start to be issued.
2105 		 */
2106 		if (sdkp->device->no_start_on_add)
2107 			break;
2108 
2109 		if (sense_valid && sshdr.sense_key == NOT_READY) {
2110 			if (sshdr.asc == 4 && sshdr.ascq == 3)
2111 				break;	/* manual intervention required */
2112 			if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2113 				break;	/* standby */
2114 			if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2115 				break;	/* unavailable */
2116 			if (sshdr.asc == 4 && sshdr.ascq == 0x1b)
2117 				break;	/* sanitize in progress */
2118 			/*
2119 			 * Issue command to spin up drive when not ready
2120 			 */
2121 			if (!spintime) {
2122 				sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2123 				cmd[0] = START_STOP;
2124 				cmd[1] = 1;	/* Return immediately */
2125 				memset((void *) &cmd[2], 0, 8);
2126 				cmd[4] = 1;	/* Start spin cycle */
2127 				if (sdkp->device->start_stop_pwr_cond)
2128 					cmd[4] |= 1 << 4;
2129 				scsi_execute_req(sdkp->device, cmd, DMA_NONE,
2130 						 NULL, 0, &sshdr,
2131 						 SD_TIMEOUT, SD_MAX_RETRIES,
2132 						 NULL);
2133 				spintime_expire = jiffies + 100 * HZ;
2134 				spintime = 1;
2135 			}
2136 			/* Wait 1 second for next try */
2137 			msleep(1000);
2138 			printk(KERN_CONT ".");
2139 
2140 		/*
2141 		 * Wait for USB flash devices with slow firmware.
2142 		 * Yes, this sense key/ASC combination shouldn't
2143 		 * occur here.  It's characteristic of these devices.
2144 		 */
2145 		} else if (sense_valid &&
2146 				sshdr.sense_key == UNIT_ATTENTION &&
2147 				sshdr.asc == 0x28) {
2148 			if (!spintime) {
2149 				spintime_expire = jiffies + 5 * HZ;
2150 				spintime = 1;
2151 			}
2152 			/* Wait 1 second for next try */
2153 			msleep(1000);
2154 		} else {
2155 			/* we don't understand the sense code, so it's
2156 			 * probably pointless to loop */
2157 			if(!spintime) {
2158 				sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2159 				sd_print_sense_hdr(sdkp, &sshdr);
2160 			}
2161 			break;
2162 		}
2163 
2164 	} while (spintime && time_before_eq(jiffies, spintime_expire));
2165 
2166 	if (spintime) {
2167 		if (scsi_status_is_good(the_result))
2168 			printk(KERN_CONT "ready\n");
2169 		else
2170 			printk(KERN_CONT "not responding...\n");
2171 	}
2172 }
2173 
2174 /*
2175  * Determine whether disk supports Data Integrity Field.
2176  */
2177 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2178 {
2179 	struct scsi_device *sdp = sdkp->device;
2180 	u8 type;
2181 	int ret = 0;
2182 
2183 	if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0)
2184 		return ret;
2185 
2186 	type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2187 
2188 	if (type > T10_PI_TYPE3_PROTECTION)
2189 		ret = -ENODEV;
2190 	else if (scsi_host_dif_capable(sdp->host, type))
2191 		ret = 1;
2192 
2193 	if (sdkp->first_scan || type != sdkp->protection_type)
2194 		switch (ret) {
2195 		case -ENODEV:
2196 			sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \
2197 				  " protection type %u. Disabling disk!\n",
2198 				  type);
2199 			break;
2200 		case 1:
2201 			sd_printk(KERN_NOTICE, sdkp,
2202 				  "Enabling DIF Type %u protection\n", type);
2203 			break;
2204 		case 0:
2205 			sd_printk(KERN_NOTICE, sdkp,
2206 				  "Disabling DIF Type %u protection\n", type);
2207 			break;
2208 		}
2209 
2210 	sdkp->protection_type = type;
2211 
2212 	return ret;
2213 }
2214 
2215 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2216 			struct scsi_sense_hdr *sshdr, int sense_valid,
2217 			int the_result)
2218 {
2219 	if (driver_byte(the_result) == DRIVER_SENSE)
2220 		sd_print_sense_hdr(sdkp, sshdr);
2221 	else
2222 		sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2223 
2224 	/*
2225 	 * Set dirty bit for removable devices if not ready -
2226 	 * sometimes drives will not report this properly.
2227 	 */
2228 	if (sdp->removable &&
2229 	    sense_valid && sshdr->sense_key == NOT_READY)
2230 		set_media_not_present(sdkp);
2231 
2232 	/*
2233 	 * We used to set media_present to 0 here to indicate no media
2234 	 * in the drive, but some drives fail read capacity even with
2235 	 * media present, so we can't do that.
2236 	 */
2237 	sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2238 }
2239 
2240 #define RC16_LEN 32
2241 #if RC16_LEN > SD_BUF_SIZE
2242 #error RC16_LEN must not be more than SD_BUF_SIZE
2243 #endif
2244 
2245 #define READ_CAPACITY_RETRIES_ON_RESET	10
2246 
2247 /*
2248  * Ensure that we don't overflow sector_t when CONFIG_LBDAF is not set
2249  * and the reported logical block size is bigger than 512 bytes. Note
2250  * that last_sector is a u64 and therefore logical_to_sectors() is not
2251  * applicable.
2252  */
2253 static bool sd_addressable_capacity(u64 lba, unsigned int sector_size)
2254 {
2255 	u64 last_sector = (lba + 1ULL) << (ilog2(sector_size) - 9);
2256 
2257 	if (sizeof(sector_t) == 4 && last_sector > U32_MAX)
2258 		return false;
2259 
2260 	return true;
2261 }
2262 
2263 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2264 						unsigned char *buffer)
2265 {
2266 	unsigned char cmd[16];
2267 	struct scsi_sense_hdr sshdr;
2268 	int sense_valid = 0;
2269 	int the_result;
2270 	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2271 	unsigned int alignment;
2272 	unsigned long long lba;
2273 	unsigned sector_size;
2274 
2275 	if (sdp->no_read_capacity_16)
2276 		return -EINVAL;
2277 
2278 	do {
2279 		memset(cmd, 0, 16);
2280 		cmd[0] = SERVICE_ACTION_IN_16;
2281 		cmd[1] = SAI_READ_CAPACITY_16;
2282 		cmd[13] = RC16_LEN;
2283 		memset(buffer, 0, RC16_LEN);
2284 
2285 		the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2286 					buffer, RC16_LEN, &sshdr,
2287 					SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2288 
2289 		if (media_not_present(sdkp, &sshdr))
2290 			return -ENODEV;
2291 
2292 		if (the_result) {
2293 			sense_valid = scsi_sense_valid(&sshdr);
2294 			if (sense_valid &&
2295 			    sshdr.sense_key == ILLEGAL_REQUEST &&
2296 			    (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2297 			    sshdr.ascq == 0x00)
2298 				/* Invalid Command Operation Code or
2299 				 * Invalid Field in CDB, just retry
2300 				 * silently with RC10 */
2301 				return -EINVAL;
2302 			if (sense_valid &&
2303 			    sshdr.sense_key == UNIT_ATTENTION &&
2304 			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2305 				/* Device reset might occur several times,
2306 				 * give it one more chance */
2307 				if (--reset_retries > 0)
2308 					continue;
2309 		}
2310 		retries--;
2311 
2312 	} while (the_result && retries);
2313 
2314 	if (the_result) {
2315 		sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2316 		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2317 		return -EINVAL;
2318 	}
2319 
2320 	sector_size = get_unaligned_be32(&buffer[8]);
2321 	lba = get_unaligned_be64(&buffer[0]);
2322 
2323 	if (sd_read_protection_type(sdkp, buffer) < 0) {
2324 		sdkp->capacity = 0;
2325 		return -ENODEV;
2326 	}
2327 
2328 	if (!sd_addressable_capacity(lba, sector_size)) {
2329 		sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a "
2330 			"kernel compiled with support for large block "
2331 			"devices.\n");
2332 		sdkp->capacity = 0;
2333 		return -EOVERFLOW;
2334 	}
2335 
2336 	/* Logical blocks per physical block exponent */
2337 	sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2338 
2339 	/* RC basis */
2340 	sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2341 
2342 	/* Lowest aligned logical block */
2343 	alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2344 	blk_queue_alignment_offset(sdp->request_queue, alignment);
2345 	if (alignment && sdkp->first_scan)
2346 		sd_printk(KERN_NOTICE, sdkp,
2347 			  "physical block alignment offset: %u\n", alignment);
2348 
2349 	if (buffer[14] & 0x80) { /* LBPME */
2350 		sdkp->lbpme = 1;
2351 
2352 		if (buffer[14] & 0x40) /* LBPRZ */
2353 			sdkp->lbprz = 1;
2354 
2355 		sd_config_discard(sdkp, SD_LBP_WS16);
2356 	}
2357 
2358 	sdkp->capacity = lba + 1;
2359 	return sector_size;
2360 }
2361 
2362 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2363 						unsigned char *buffer)
2364 {
2365 	unsigned char cmd[16];
2366 	struct scsi_sense_hdr sshdr;
2367 	int sense_valid = 0;
2368 	int the_result;
2369 	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2370 	sector_t lba;
2371 	unsigned sector_size;
2372 
2373 	do {
2374 		cmd[0] = READ_CAPACITY;
2375 		memset(&cmd[1], 0, 9);
2376 		memset(buffer, 0, 8);
2377 
2378 		the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2379 					buffer, 8, &sshdr,
2380 					SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2381 
2382 		if (media_not_present(sdkp, &sshdr))
2383 			return -ENODEV;
2384 
2385 		if (the_result) {
2386 			sense_valid = scsi_sense_valid(&sshdr);
2387 			if (sense_valid &&
2388 			    sshdr.sense_key == UNIT_ATTENTION &&
2389 			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2390 				/* Device reset might occur several times,
2391 				 * give it one more chance */
2392 				if (--reset_retries > 0)
2393 					continue;
2394 		}
2395 		retries--;
2396 
2397 	} while (the_result && retries);
2398 
2399 	if (the_result) {
2400 		sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2401 		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2402 		return -EINVAL;
2403 	}
2404 
2405 	sector_size = get_unaligned_be32(&buffer[4]);
2406 	lba = get_unaligned_be32(&buffer[0]);
2407 
2408 	if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2409 		/* Some buggy (usb cardreader) devices return an lba of
2410 		   0xffffffff when the want to report a size of 0 (with
2411 		   which they really mean no media is present) */
2412 		sdkp->capacity = 0;
2413 		sdkp->physical_block_size = sector_size;
2414 		return sector_size;
2415 	}
2416 
2417 	if (!sd_addressable_capacity(lba, sector_size)) {
2418 		sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a "
2419 			"kernel compiled with support for large block "
2420 			"devices.\n");
2421 		sdkp->capacity = 0;
2422 		return -EOVERFLOW;
2423 	}
2424 
2425 	sdkp->capacity = lba + 1;
2426 	sdkp->physical_block_size = sector_size;
2427 	return sector_size;
2428 }
2429 
2430 static int sd_try_rc16_first(struct scsi_device *sdp)
2431 {
2432 	if (sdp->host->max_cmd_len < 16)
2433 		return 0;
2434 	if (sdp->try_rc_10_first)
2435 		return 0;
2436 	if (sdp->scsi_level > SCSI_SPC_2)
2437 		return 1;
2438 	if (scsi_device_protection(sdp))
2439 		return 1;
2440 	return 0;
2441 }
2442 
2443 /*
2444  * read disk capacity
2445  */
2446 static void
2447 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2448 {
2449 	int sector_size;
2450 	struct scsi_device *sdp = sdkp->device;
2451 
2452 	if (sd_try_rc16_first(sdp)) {
2453 		sector_size = read_capacity_16(sdkp, sdp, buffer);
2454 		if (sector_size == -EOVERFLOW)
2455 			goto got_data;
2456 		if (sector_size == -ENODEV)
2457 			return;
2458 		if (sector_size < 0)
2459 			sector_size = read_capacity_10(sdkp, sdp, buffer);
2460 		if (sector_size < 0)
2461 			return;
2462 	} else {
2463 		sector_size = read_capacity_10(sdkp, sdp, buffer);
2464 		if (sector_size == -EOVERFLOW)
2465 			goto got_data;
2466 		if (sector_size < 0)
2467 			return;
2468 		if ((sizeof(sdkp->capacity) > 4) &&
2469 		    (sdkp->capacity > 0xffffffffULL)) {
2470 			int old_sector_size = sector_size;
2471 			sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2472 					"Trying to use READ CAPACITY(16).\n");
2473 			sector_size = read_capacity_16(sdkp, sdp, buffer);
2474 			if (sector_size < 0) {
2475 				sd_printk(KERN_NOTICE, sdkp,
2476 					"Using 0xffffffff as device size\n");
2477 				sdkp->capacity = 1 + (sector_t) 0xffffffff;
2478 				sector_size = old_sector_size;
2479 				goto got_data;
2480 			}
2481 			/* Remember that READ CAPACITY(16) succeeded */
2482 			sdp->try_rc_10_first = 0;
2483 		}
2484 	}
2485 
2486 	/* Some devices are known to return the total number of blocks,
2487 	 * not the highest block number.  Some devices have versions
2488 	 * which do this and others which do not.  Some devices we might
2489 	 * suspect of doing this but we don't know for certain.
2490 	 *
2491 	 * If we know the reported capacity is wrong, decrement it.  If
2492 	 * we can only guess, then assume the number of blocks is even
2493 	 * (usually true but not always) and err on the side of lowering
2494 	 * the capacity.
2495 	 */
2496 	if (sdp->fix_capacity ||
2497 	    (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2498 		sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2499 				"from its reported value: %llu\n",
2500 				(unsigned long long) sdkp->capacity);
2501 		--sdkp->capacity;
2502 	}
2503 
2504 got_data:
2505 	if (sector_size == 0) {
2506 		sector_size = 512;
2507 		sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2508 			  "assuming 512.\n");
2509 	}
2510 
2511 	if (sector_size != 512 &&
2512 	    sector_size != 1024 &&
2513 	    sector_size != 2048 &&
2514 	    sector_size != 4096) {
2515 		sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2516 			  sector_size);
2517 		/*
2518 		 * The user might want to re-format the drive with
2519 		 * a supported sectorsize.  Once this happens, it
2520 		 * would be relatively trivial to set the thing up.
2521 		 * For this reason, we leave the thing in the table.
2522 		 */
2523 		sdkp->capacity = 0;
2524 		/*
2525 		 * set a bogus sector size so the normal read/write
2526 		 * logic in the block layer will eventually refuse any
2527 		 * request on this device without tripping over power
2528 		 * of two sector size assumptions
2529 		 */
2530 		sector_size = 512;
2531 	}
2532 	blk_queue_logical_block_size(sdp->request_queue, sector_size);
2533 	blk_queue_physical_block_size(sdp->request_queue,
2534 				      sdkp->physical_block_size);
2535 	sdkp->device->sector_size = sector_size;
2536 
2537 	if (sdkp->capacity > 0xffffffff)
2538 		sdp->use_16_for_rw = 1;
2539 
2540 }
2541 
2542 /*
2543  * Print disk capacity
2544  */
2545 static void
2546 sd_print_capacity(struct scsi_disk *sdkp,
2547 		  sector_t old_capacity)
2548 {
2549 	int sector_size = sdkp->device->sector_size;
2550 	char cap_str_2[10], cap_str_10[10];
2551 
2552 	string_get_size(sdkp->capacity, sector_size,
2553 			STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2554 	string_get_size(sdkp->capacity, sector_size,
2555 			STRING_UNITS_10, cap_str_10,
2556 			sizeof(cap_str_10));
2557 
2558 	if (sdkp->first_scan || old_capacity != sdkp->capacity) {
2559 		sd_printk(KERN_NOTICE, sdkp,
2560 			  "%llu %d-byte logical blocks: (%s/%s)\n",
2561 			  (unsigned long long)sdkp->capacity,
2562 			  sector_size, cap_str_10, cap_str_2);
2563 
2564 		if (sdkp->physical_block_size != sector_size)
2565 			sd_printk(KERN_NOTICE, sdkp,
2566 				  "%u-byte physical blocks\n",
2567 				  sdkp->physical_block_size);
2568 
2569 		sd_zbc_print_zones(sdkp);
2570 	}
2571 }
2572 
2573 /* called with buffer of length 512 */
2574 static inline int
2575 sd_do_mode_sense(struct scsi_device *sdp, int dbd, int modepage,
2576 		 unsigned char *buffer, int len, struct scsi_mode_data *data,
2577 		 struct scsi_sense_hdr *sshdr)
2578 {
2579 	return scsi_mode_sense(sdp, dbd, modepage, buffer, len,
2580 			       SD_TIMEOUT, SD_MAX_RETRIES, data,
2581 			       sshdr);
2582 }
2583 
2584 /*
2585  * read write protect setting, if possible - called only in sd_revalidate_disk()
2586  * called with buffer of length SD_BUF_SIZE
2587  */
2588 static void
2589 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2590 {
2591 	int res;
2592 	struct scsi_device *sdp = sdkp->device;
2593 	struct scsi_mode_data data;
2594 	int disk_ro = get_disk_ro(sdkp->disk);
2595 	int old_wp = sdkp->write_prot;
2596 
2597 	set_disk_ro(sdkp->disk, 0);
2598 	if (sdp->skip_ms_page_3f) {
2599 		sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2600 		return;
2601 	}
2602 
2603 	if (sdp->use_192_bytes_for_3f) {
2604 		res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 192, &data, NULL);
2605 	} else {
2606 		/*
2607 		 * First attempt: ask for all pages (0x3F), but only 4 bytes.
2608 		 * We have to start carefully: some devices hang if we ask
2609 		 * for more than is available.
2610 		 */
2611 		res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 4, &data, NULL);
2612 
2613 		/*
2614 		 * Second attempt: ask for page 0 When only page 0 is
2615 		 * implemented, a request for page 3F may return Sense Key
2616 		 * 5: Illegal Request, Sense Code 24: Invalid field in
2617 		 * CDB.
2618 		 */
2619 		if (!scsi_status_is_good(res))
2620 			res = sd_do_mode_sense(sdp, 0, 0, buffer, 4, &data, NULL);
2621 
2622 		/*
2623 		 * Third attempt: ask 255 bytes, as we did earlier.
2624 		 */
2625 		if (!scsi_status_is_good(res))
2626 			res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 255,
2627 					       &data, NULL);
2628 	}
2629 
2630 	if (!scsi_status_is_good(res)) {
2631 		sd_first_printk(KERN_WARNING, sdkp,
2632 			  "Test WP failed, assume Write Enabled\n");
2633 	} else {
2634 		sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2635 		set_disk_ro(sdkp->disk, sdkp->write_prot || disk_ro);
2636 		if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2637 			sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2638 				  sdkp->write_prot ? "on" : "off");
2639 			sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
2640 		}
2641 	}
2642 }
2643 
2644 /*
2645  * sd_read_cache_type - called only from sd_revalidate_disk()
2646  * called with buffer of length SD_BUF_SIZE
2647  */
2648 static void
2649 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2650 {
2651 	int len = 0, res;
2652 	struct scsi_device *sdp = sdkp->device;
2653 
2654 	int dbd;
2655 	int modepage;
2656 	int first_len;
2657 	struct scsi_mode_data data;
2658 	struct scsi_sense_hdr sshdr;
2659 	int old_wce = sdkp->WCE;
2660 	int old_rcd = sdkp->RCD;
2661 	int old_dpofua = sdkp->DPOFUA;
2662 
2663 
2664 	if (sdkp->cache_override)
2665 		return;
2666 
2667 	first_len = 4;
2668 	if (sdp->skip_ms_page_8) {
2669 		if (sdp->type == TYPE_RBC)
2670 			goto defaults;
2671 		else {
2672 			if (sdp->skip_ms_page_3f)
2673 				goto defaults;
2674 			modepage = 0x3F;
2675 			if (sdp->use_192_bytes_for_3f)
2676 				first_len = 192;
2677 			dbd = 0;
2678 		}
2679 	} else if (sdp->type == TYPE_RBC) {
2680 		modepage = 6;
2681 		dbd = 8;
2682 	} else {
2683 		modepage = 8;
2684 		dbd = 0;
2685 	}
2686 
2687 	/* cautiously ask */
2688 	res = sd_do_mode_sense(sdp, dbd, modepage, buffer, first_len,
2689 			&data, &sshdr);
2690 
2691 	if (!scsi_status_is_good(res))
2692 		goto bad_sense;
2693 
2694 	if (!data.header_length) {
2695 		modepage = 6;
2696 		first_len = 0;
2697 		sd_first_printk(KERN_ERR, sdkp,
2698 				"Missing header in MODE_SENSE response\n");
2699 	}
2700 
2701 	/* that went OK, now ask for the proper length */
2702 	len = data.length;
2703 
2704 	/*
2705 	 * We're only interested in the first three bytes, actually.
2706 	 * But the data cache page is defined for the first 20.
2707 	 */
2708 	if (len < 3)
2709 		goto bad_sense;
2710 	else if (len > SD_BUF_SIZE) {
2711 		sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2712 			  "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2713 		len = SD_BUF_SIZE;
2714 	}
2715 	if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2716 		len = 192;
2717 
2718 	/* Get the data */
2719 	if (len > first_len)
2720 		res = sd_do_mode_sense(sdp, dbd, modepage, buffer, len,
2721 				&data, &sshdr);
2722 
2723 	if (scsi_status_is_good(res)) {
2724 		int offset = data.header_length + data.block_descriptor_length;
2725 
2726 		while (offset < len) {
2727 			u8 page_code = buffer[offset] & 0x3F;
2728 			u8 spf       = buffer[offset] & 0x40;
2729 
2730 			if (page_code == 8 || page_code == 6) {
2731 				/* We're interested only in the first 3 bytes.
2732 				 */
2733 				if (len - offset <= 2) {
2734 					sd_first_printk(KERN_ERR, sdkp,
2735 						"Incomplete mode parameter "
2736 							"data\n");
2737 					goto defaults;
2738 				} else {
2739 					modepage = page_code;
2740 					goto Page_found;
2741 				}
2742 			} else {
2743 				/* Go to the next page */
2744 				if (spf && len - offset > 3)
2745 					offset += 4 + (buffer[offset+2] << 8) +
2746 						buffer[offset+3];
2747 				else if (!spf && len - offset > 1)
2748 					offset += 2 + buffer[offset+1];
2749 				else {
2750 					sd_first_printk(KERN_ERR, sdkp,
2751 							"Incomplete mode "
2752 							"parameter data\n");
2753 					goto defaults;
2754 				}
2755 			}
2756 		}
2757 
2758 		sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n");
2759 		goto defaults;
2760 
2761 	Page_found:
2762 		if (modepage == 8) {
2763 			sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2764 			sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2765 		} else {
2766 			sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2767 			sdkp->RCD = 0;
2768 		}
2769 
2770 		sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2771 		if (sdp->broken_fua) {
2772 			sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2773 			sdkp->DPOFUA = 0;
2774 		} else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
2775 			   !sdkp->device->use_16_for_rw) {
2776 			sd_first_printk(KERN_NOTICE, sdkp,
2777 				  "Uses READ/WRITE(6), disabling FUA\n");
2778 			sdkp->DPOFUA = 0;
2779 		}
2780 
2781 		/* No cache flush allowed for write protected devices */
2782 		if (sdkp->WCE && sdkp->write_prot)
2783 			sdkp->WCE = 0;
2784 
2785 		if (sdkp->first_scan || old_wce != sdkp->WCE ||
2786 		    old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2787 			sd_printk(KERN_NOTICE, sdkp,
2788 				  "Write cache: %s, read cache: %s, %s\n",
2789 				  sdkp->WCE ? "enabled" : "disabled",
2790 				  sdkp->RCD ? "disabled" : "enabled",
2791 				  sdkp->DPOFUA ? "supports DPO and FUA"
2792 				  : "doesn't support DPO or FUA");
2793 
2794 		return;
2795 	}
2796 
2797 bad_sense:
2798 	if (scsi_sense_valid(&sshdr) &&
2799 	    sshdr.sense_key == ILLEGAL_REQUEST &&
2800 	    sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2801 		/* Invalid field in CDB */
2802 		sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2803 	else
2804 		sd_first_printk(KERN_ERR, sdkp,
2805 				"Asking for cache data failed\n");
2806 
2807 defaults:
2808 	if (sdp->wce_default_on) {
2809 		sd_first_printk(KERN_NOTICE, sdkp,
2810 				"Assuming drive cache: write back\n");
2811 		sdkp->WCE = 1;
2812 	} else {
2813 		sd_first_printk(KERN_ERR, sdkp,
2814 				"Assuming drive cache: write through\n");
2815 		sdkp->WCE = 0;
2816 	}
2817 	sdkp->RCD = 0;
2818 	sdkp->DPOFUA = 0;
2819 }
2820 
2821 /*
2822  * The ATO bit indicates whether the DIF application tag is available
2823  * for use by the operating system.
2824  */
2825 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
2826 {
2827 	int res, offset;
2828 	struct scsi_device *sdp = sdkp->device;
2829 	struct scsi_mode_data data;
2830 	struct scsi_sense_hdr sshdr;
2831 
2832 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
2833 		return;
2834 
2835 	if (sdkp->protection_type == 0)
2836 		return;
2837 
2838 	res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT,
2839 			      SD_MAX_RETRIES, &data, &sshdr);
2840 
2841 	if (!scsi_status_is_good(res) || !data.header_length ||
2842 	    data.length < 6) {
2843 		sd_first_printk(KERN_WARNING, sdkp,
2844 			  "getting Control mode page failed, assume no ATO\n");
2845 
2846 		if (scsi_sense_valid(&sshdr))
2847 			sd_print_sense_hdr(sdkp, &sshdr);
2848 
2849 		return;
2850 	}
2851 
2852 	offset = data.header_length + data.block_descriptor_length;
2853 
2854 	if ((buffer[offset] & 0x3f) != 0x0a) {
2855 		sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
2856 		return;
2857 	}
2858 
2859 	if ((buffer[offset + 5] & 0x80) == 0)
2860 		return;
2861 
2862 	sdkp->ATO = 1;
2863 
2864 	return;
2865 }
2866 
2867 /**
2868  * sd_read_block_limits - Query disk device for preferred I/O sizes.
2869  * @sdkp: disk to query
2870  */
2871 static void sd_read_block_limits(struct scsi_disk *sdkp)
2872 {
2873 	unsigned int sector_sz = sdkp->device->sector_size;
2874 	const int vpd_len = 64;
2875 	unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL);
2876 
2877 	if (!buffer ||
2878 	    /* Block Limits VPD */
2879 	    scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len))
2880 		goto out;
2881 
2882 	blk_queue_io_min(sdkp->disk->queue,
2883 			 get_unaligned_be16(&buffer[6]) * sector_sz);
2884 
2885 	sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]);
2886 	sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]);
2887 
2888 	if (buffer[3] == 0x3c) {
2889 		unsigned int lba_count, desc_count;
2890 
2891 		sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]);
2892 
2893 		if (!sdkp->lbpme)
2894 			goto out;
2895 
2896 		lba_count = get_unaligned_be32(&buffer[20]);
2897 		desc_count = get_unaligned_be32(&buffer[24]);
2898 
2899 		if (lba_count && desc_count)
2900 			sdkp->max_unmap_blocks = lba_count;
2901 
2902 		sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]);
2903 
2904 		if (buffer[32] & 0x80)
2905 			sdkp->unmap_alignment =
2906 				get_unaligned_be32(&buffer[32]) & ~(1 << 31);
2907 
2908 		if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
2909 
2910 			if (sdkp->max_unmap_blocks)
2911 				sd_config_discard(sdkp, SD_LBP_UNMAP);
2912 			else
2913 				sd_config_discard(sdkp, SD_LBP_WS16);
2914 
2915 		} else {	/* LBP VPD page tells us what to use */
2916 			if (sdkp->lbpu && sdkp->max_unmap_blocks)
2917 				sd_config_discard(sdkp, SD_LBP_UNMAP);
2918 			else if (sdkp->lbpws)
2919 				sd_config_discard(sdkp, SD_LBP_WS16);
2920 			else if (sdkp->lbpws10)
2921 				sd_config_discard(sdkp, SD_LBP_WS10);
2922 			else
2923 				sd_config_discard(sdkp, SD_LBP_DISABLE);
2924 		}
2925 	}
2926 
2927  out:
2928 	kfree(buffer);
2929 }
2930 
2931 /**
2932  * sd_read_block_characteristics - Query block dev. characteristics
2933  * @sdkp: disk to query
2934  */
2935 static void sd_read_block_characteristics(struct scsi_disk *sdkp)
2936 {
2937 	struct request_queue *q = sdkp->disk->queue;
2938 	unsigned char *buffer;
2939 	u16 rot;
2940 	const int vpd_len = 64;
2941 
2942 	buffer = kmalloc(vpd_len, GFP_KERNEL);
2943 
2944 	if (!buffer ||
2945 	    /* Block Device Characteristics VPD */
2946 	    scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len))
2947 		goto out;
2948 
2949 	rot = get_unaligned_be16(&buffer[4]);
2950 
2951 	if (rot == 1) {
2952 		blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
2953 		blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
2954 	} else {
2955 		blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
2956 		blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q);
2957 	}
2958 
2959 	if (sdkp->device->type == TYPE_ZBC) {
2960 		/* Host-managed */
2961 		q->limits.zoned = BLK_ZONED_HM;
2962 	} else {
2963 		sdkp->zoned = (buffer[8] >> 4) & 3;
2964 		if (sdkp->zoned == 1)
2965 			/* Host-aware */
2966 			q->limits.zoned = BLK_ZONED_HA;
2967 		else
2968 			/*
2969 			 * Treat drive-managed devices as
2970 			 * regular block devices.
2971 			 */
2972 			q->limits.zoned = BLK_ZONED_NONE;
2973 	}
2974 	if (blk_queue_is_zoned(q) && sdkp->first_scan)
2975 		sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n",
2976 		      q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware");
2977 
2978  out:
2979 	kfree(buffer);
2980 }
2981 
2982 /**
2983  * sd_read_block_provisioning - Query provisioning VPD page
2984  * @sdkp: disk to query
2985  */
2986 static void sd_read_block_provisioning(struct scsi_disk *sdkp)
2987 {
2988 	unsigned char *buffer;
2989 	const int vpd_len = 8;
2990 
2991 	if (sdkp->lbpme == 0)
2992 		return;
2993 
2994 	buffer = kmalloc(vpd_len, GFP_KERNEL);
2995 
2996 	if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len))
2997 		goto out;
2998 
2999 	sdkp->lbpvpd	= 1;
3000 	sdkp->lbpu	= (buffer[5] >> 7) & 1;	/* UNMAP */
3001 	sdkp->lbpws	= (buffer[5] >> 6) & 1;	/* WRITE SAME(16) with UNMAP */
3002 	sdkp->lbpws10	= (buffer[5] >> 5) & 1;	/* WRITE SAME(10) with UNMAP */
3003 
3004  out:
3005 	kfree(buffer);
3006 }
3007 
3008 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
3009 {
3010 	struct scsi_device *sdev = sdkp->device;
3011 
3012 	if (sdev->host->no_write_same) {
3013 		sdev->no_write_same = 1;
3014 
3015 		return;
3016 	}
3017 
3018 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) {
3019 		/* too large values might cause issues with arcmsr */
3020 		int vpd_buf_len = 64;
3021 
3022 		sdev->no_report_opcodes = 1;
3023 
3024 		/* Disable WRITE SAME if REPORT SUPPORTED OPERATION
3025 		 * CODES is unsupported and the device has an ATA
3026 		 * Information VPD page (SAT).
3027 		 */
3028 		if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len))
3029 			sdev->no_write_same = 1;
3030 	}
3031 
3032 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1)
3033 		sdkp->ws16 = 1;
3034 
3035 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1)
3036 		sdkp->ws10 = 1;
3037 }
3038 
3039 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3040 {
3041 	struct scsi_device *sdev = sdkp->device;
3042 
3043 	if (!sdev->security_supported)
3044 		return;
3045 
3046 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3047 			SECURITY_PROTOCOL_IN) == 1 &&
3048 	    scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3049 			SECURITY_PROTOCOL_OUT) == 1)
3050 		sdkp->security = 1;
3051 }
3052 
3053 /**
3054  *	sd_revalidate_disk - called the first time a new disk is seen,
3055  *	performs disk spin up, read_capacity, etc.
3056  *	@disk: struct gendisk we care about
3057  **/
3058 static int sd_revalidate_disk(struct gendisk *disk)
3059 {
3060 	struct scsi_disk *sdkp = scsi_disk(disk);
3061 	struct scsi_device *sdp = sdkp->device;
3062 	struct request_queue *q = sdkp->disk->queue;
3063 	sector_t old_capacity = sdkp->capacity;
3064 	unsigned char *buffer;
3065 	unsigned int dev_max, rw_max;
3066 
3067 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3068 				      "sd_revalidate_disk\n"));
3069 
3070 	/*
3071 	 * If the device is offline, don't try and read capacity or any
3072 	 * of the other niceties.
3073 	 */
3074 	if (!scsi_device_online(sdp))
3075 		goto out;
3076 
3077 	buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3078 	if (!buffer) {
3079 		sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3080 			  "allocation failure.\n");
3081 		goto out;
3082 	}
3083 
3084 	sd_spinup_disk(sdkp);
3085 
3086 	/*
3087 	 * Without media there is no reason to ask; moreover, some devices
3088 	 * react badly if we do.
3089 	 */
3090 	if (sdkp->media_present) {
3091 		sd_read_capacity(sdkp, buffer);
3092 
3093 		if (scsi_device_supports_vpd(sdp)) {
3094 			sd_read_block_provisioning(sdkp);
3095 			sd_read_block_limits(sdkp);
3096 			sd_read_block_characteristics(sdkp);
3097 			sd_zbc_read_zones(sdkp, buffer);
3098 		}
3099 
3100 		sd_print_capacity(sdkp, old_capacity);
3101 
3102 		sd_read_write_protect_flag(sdkp, buffer);
3103 		sd_read_cache_type(sdkp, buffer);
3104 		sd_read_app_tag_own(sdkp, buffer);
3105 		sd_read_write_same(sdkp, buffer);
3106 		sd_read_security(sdkp, buffer);
3107 	}
3108 
3109 	/*
3110 	 * We now have all cache related info, determine how we deal
3111 	 * with flush requests.
3112 	 */
3113 	sd_set_flush_flag(sdkp);
3114 
3115 	/* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3116 	dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3117 
3118 	/* Some devices report a maximum block count for READ/WRITE requests. */
3119 	dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3120 	q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3121 
3122 	/*
3123 	 * Determine the device's preferred I/O size for reads and writes
3124 	 * unless the reported value is unreasonably small, large, or
3125 	 * garbage.
3126 	 */
3127 	if (sdkp->opt_xfer_blocks &&
3128 	    sdkp->opt_xfer_blocks <= dev_max &&
3129 	    sdkp->opt_xfer_blocks <= SD_DEF_XFER_BLOCKS &&
3130 	    logical_to_bytes(sdp, sdkp->opt_xfer_blocks) >= PAGE_SIZE) {
3131 		q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3132 		rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
3133 	} else
3134 		rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
3135 				      (sector_t)BLK_DEF_MAX_SECTORS);
3136 
3137 	/* Do not exceed controller limit */
3138 	rw_max = min(rw_max, queue_max_hw_sectors(q));
3139 
3140 	/*
3141 	 * Only update max_sectors if previously unset or if the current value
3142 	 * exceeds the capabilities of the hardware.
3143 	 */
3144 	if (sdkp->first_scan ||
3145 	    q->limits.max_sectors > q->limits.max_dev_sectors ||
3146 	    q->limits.max_sectors > q->limits.max_hw_sectors)
3147 		q->limits.max_sectors = rw_max;
3148 
3149 	sdkp->first_scan = 0;
3150 
3151 	set_capacity(disk, logical_to_sectors(sdp, sdkp->capacity));
3152 	sd_config_write_same(sdkp);
3153 	kfree(buffer);
3154 
3155  out:
3156 	return 0;
3157 }
3158 
3159 /**
3160  *	sd_unlock_native_capacity - unlock native capacity
3161  *	@disk: struct gendisk to set capacity for
3162  *
3163  *	Block layer calls this function if it detects that partitions
3164  *	on @disk reach beyond the end of the device.  If the SCSI host
3165  *	implements ->unlock_native_capacity() method, it's invoked to
3166  *	give it a chance to adjust the device capacity.
3167  *
3168  *	CONTEXT:
3169  *	Defined by block layer.  Might sleep.
3170  */
3171 static void sd_unlock_native_capacity(struct gendisk *disk)
3172 {
3173 	struct scsi_device *sdev = scsi_disk(disk)->device;
3174 
3175 	if (sdev->host->hostt->unlock_native_capacity)
3176 		sdev->host->hostt->unlock_native_capacity(sdev);
3177 }
3178 
3179 /**
3180  *	sd_format_disk_name - format disk name
3181  *	@prefix: name prefix - ie. "sd" for SCSI disks
3182  *	@index: index of the disk to format name for
3183  *	@buf: output buffer
3184  *	@buflen: length of the output buffer
3185  *
3186  *	SCSI disk names starts at sda.  The 26th device is sdz and the
3187  *	27th is sdaa.  The last one for two lettered suffix is sdzz
3188  *	which is followed by sdaaa.
3189  *
3190  *	This is basically 26 base counting with one extra 'nil' entry
3191  *	at the beginning from the second digit on and can be
3192  *	determined using similar method as 26 base conversion with the
3193  *	index shifted -1 after each digit is computed.
3194  *
3195  *	CONTEXT:
3196  *	Don't care.
3197  *
3198  *	RETURNS:
3199  *	0 on success, -errno on failure.
3200  */
3201 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3202 {
3203 	const int base = 'z' - 'a' + 1;
3204 	char *begin = buf + strlen(prefix);
3205 	char *end = buf + buflen;
3206 	char *p;
3207 	int unit;
3208 
3209 	p = end - 1;
3210 	*p = '\0';
3211 	unit = base;
3212 	do {
3213 		if (p == begin)
3214 			return -EINVAL;
3215 		*--p = 'a' + (index % unit);
3216 		index = (index / unit) - 1;
3217 	} while (index >= 0);
3218 
3219 	memmove(begin, p, end - p);
3220 	memcpy(buf, prefix, strlen(prefix));
3221 
3222 	return 0;
3223 }
3224 
3225 /*
3226  * The asynchronous part of sd_probe
3227  */
3228 static void sd_probe_async(void *data, async_cookie_t cookie)
3229 {
3230 	struct scsi_disk *sdkp = data;
3231 	struct scsi_device *sdp;
3232 	struct gendisk *gd;
3233 	u32 index;
3234 	struct device *dev;
3235 
3236 	sdp = sdkp->device;
3237 	gd = sdkp->disk;
3238 	index = sdkp->index;
3239 	dev = &sdp->sdev_gendev;
3240 
3241 	gd->major = sd_major((index & 0xf0) >> 4);
3242 	gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3243 
3244 	gd->fops = &sd_fops;
3245 	gd->private_data = &sdkp->driver;
3246 	gd->queue = sdkp->device->request_queue;
3247 
3248 	/* defaults, until the device tells us otherwise */
3249 	sdp->sector_size = 512;
3250 	sdkp->capacity = 0;
3251 	sdkp->media_present = 1;
3252 	sdkp->write_prot = 0;
3253 	sdkp->cache_override = 0;
3254 	sdkp->WCE = 0;
3255 	sdkp->RCD = 0;
3256 	sdkp->ATO = 0;
3257 	sdkp->first_scan = 1;
3258 	sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3259 
3260 	sd_revalidate_disk(gd);
3261 
3262 	gd->flags = GENHD_FL_EXT_DEVT;
3263 	if (sdp->removable) {
3264 		gd->flags |= GENHD_FL_REMOVABLE;
3265 		gd->events |= DISK_EVENT_MEDIA_CHANGE;
3266 	}
3267 
3268 	blk_pm_runtime_init(sdp->request_queue, dev);
3269 	device_add_disk(dev, gd, NULL);
3270 	if (sdkp->capacity)
3271 		sd_dif_config_host(sdkp);
3272 
3273 	sd_revalidate_disk(gd);
3274 
3275 	if (sdkp->security) {
3276 		sdkp->opal_dev = init_opal_dev(sdp, &sd_sec_submit);
3277 		if (sdkp->opal_dev)
3278 			sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
3279 	}
3280 
3281 	sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3282 		  sdp->removable ? "removable " : "");
3283 	scsi_autopm_put_device(sdp);
3284 	put_device(&sdkp->dev);
3285 }
3286 
3287 /**
3288  *	sd_probe - called during driver initialization and whenever a
3289  *	new scsi device is attached to the system. It is called once
3290  *	for each scsi device (not just disks) present.
3291  *	@dev: pointer to device object
3292  *
3293  *	Returns 0 if successful (or not interested in this scsi device
3294  *	(e.g. scanner)); 1 when there is an error.
3295  *
3296  *	Note: this function is invoked from the scsi mid-level.
3297  *	This function sets up the mapping between a given
3298  *	<host,channel,id,lun> (found in sdp) and new device name
3299  *	(e.g. /dev/sda). More precisely it is the block device major
3300  *	and minor number that is chosen here.
3301  *
3302  *	Assume sd_probe is not re-entrant (for time being)
3303  *	Also think about sd_probe() and sd_remove() running coincidentally.
3304  **/
3305 static int sd_probe(struct device *dev)
3306 {
3307 	struct scsi_device *sdp = to_scsi_device(dev);
3308 	struct scsi_disk *sdkp;
3309 	struct gendisk *gd;
3310 	int index;
3311 	int error;
3312 
3313 	scsi_autopm_get_device(sdp);
3314 	error = -ENODEV;
3315 	if (sdp->type != TYPE_DISK &&
3316 	    sdp->type != TYPE_ZBC &&
3317 	    sdp->type != TYPE_MOD &&
3318 	    sdp->type != TYPE_RBC)
3319 		goto out;
3320 
3321 #ifndef CONFIG_BLK_DEV_ZONED
3322 	if (sdp->type == TYPE_ZBC)
3323 		goto out;
3324 #endif
3325 	SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3326 					"sd_probe\n"));
3327 
3328 	error = -ENOMEM;
3329 	sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3330 	if (!sdkp)
3331 		goto out;
3332 
3333 	gd = alloc_disk(SD_MINORS);
3334 	if (!gd)
3335 		goto out_free;
3336 
3337 	index = ida_alloc(&sd_index_ida, GFP_KERNEL);
3338 	if (index < 0) {
3339 		sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3340 		goto out_put;
3341 	}
3342 
3343 	error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3344 	if (error) {
3345 		sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3346 		goto out_free_index;
3347 	}
3348 
3349 	sdkp->device = sdp;
3350 	sdkp->driver = &sd_template;
3351 	sdkp->disk = gd;
3352 	sdkp->index = index;
3353 	atomic_set(&sdkp->openers, 0);
3354 	atomic_set(&sdkp->device->ioerr_cnt, 0);
3355 
3356 	if (!sdp->request_queue->rq_timeout) {
3357 		if (sdp->type != TYPE_MOD)
3358 			blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3359 		else
3360 			blk_queue_rq_timeout(sdp->request_queue,
3361 					     SD_MOD_TIMEOUT);
3362 	}
3363 
3364 	device_initialize(&sdkp->dev);
3365 	sdkp->dev.parent = dev;
3366 	sdkp->dev.class = &sd_disk_class;
3367 	dev_set_name(&sdkp->dev, "%s", dev_name(dev));
3368 
3369 	error = device_add(&sdkp->dev);
3370 	if (error)
3371 		goto out_free_index;
3372 
3373 	get_device(dev);
3374 	dev_set_drvdata(dev, sdkp);
3375 
3376 	get_device(&sdkp->dev);	/* prevent release before async_schedule */
3377 	async_schedule_domain(sd_probe_async, sdkp, &scsi_sd_probe_domain);
3378 
3379 	return 0;
3380 
3381  out_free_index:
3382 	ida_free(&sd_index_ida, index);
3383  out_put:
3384 	put_disk(gd);
3385  out_free:
3386 	kfree(sdkp);
3387  out:
3388 	scsi_autopm_put_device(sdp);
3389 	return error;
3390 }
3391 
3392 /**
3393  *	sd_remove - called whenever a scsi disk (previously recognized by
3394  *	sd_probe) is detached from the system. It is called (potentially
3395  *	multiple times) during sd module unload.
3396  *	@dev: pointer to device object
3397  *
3398  *	Note: this function is invoked from the scsi mid-level.
3399  *	This function potentially frees up a device name (e.g. /dev/sdc)
3400  *	that could be re-used by a subsequent sd_probe().
3401  *	This function is not called when the built-in sd driver is "exit-ed".
3402  **/
3403 static int sd_remove(struct device *dev)
3404 {
3405 	struct scsi_disk *sdkp;
3406 	dev_t devt;
3407 
3408 	sdkp = dev_get_drvdata(dev);
3409 	devt = disk_devt(sdkp->disk);
3410 	scsi_autopm_get_device(sdkp->device);
3411 
3412 	async_synchronize_full_domain(&scsi_sd_pm_domain);
3413 	async_synchronize_full_domain(&scsi_sd_probe_domain);
3414 	device_del(&sdkp->dev);
3415 	del_gendisk(sdkp->disk);
3416 	sd_shutdown(dev);
3417 
3418 	free_opal_dev(sdkp->opal_dev);
3419 
3420 	blk_register_region(devt, SD_MINORS, NULL,
3421 			    sd_default_probe, NULL, NULL);
3422 
3423 	mutex_lock(&sd_ref_mutex);
3424 	dev_set_drvdata(dev, NULL);
3425 	put_device(&sdkp->dev);
3426 	mutex_unlock(&sd_ref_mutex);
3427 
3428 	return 0;
3429 }
3430 
3431 /**
3432  *	scsi_disk_release - Called to free the scsi_disk structure
3433  *	@dev: pointer to embedded class device
3434  *
3435  *	sd_ref_mutex must be held entering this routine.  Because it is
3436  *	called on last put, you should always use the scsi_disk_get()
3437  *	scsi_disk_put() helpers which manipulate the semaphore directly
3438  *	and never do a direct put_device.
3439  **/
3440 static void scsi_disk_release(struct device *dev)
3441 {
3442 	struct scsi_disk *sdkp = to_scsi_disk(dev);
3443 	struct gendisk *disk = sdkp->disk;
3444 
3445 	ida_free(&sd_index_ida, sdkp->index);
3446 
3447 	disk->private_data = NULL;
3448 	put_disk(disk);
3449 	put_device(&sdkp->device->sdev_gendev);
3450 
3451 	kfree(sdkp);
3452 }
3453 
3454 static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3455 {
3456 	unsigned char cmd[6] = { START_STOP };	/* START_VALID */
3457 	struct scsi_sense_hdr sshdr;
3458 	struct scsi_device *sdp = sdkp->device;
3459 	int res;
3460 
3461 	if (start)
3462 		cmd[4] |= 1;	/* START */
3463 
3464 	if (sdp->start_stop_pwr_cond)
3465 		cmd[4] |= start ? 1 << 4 : 3 << 4;	/* Active or Standby */
3466 
3467 	if (!scsi_device_online(sdp))
3468 		return -ENODEV;
3469 
3470 	res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr,
3471 			SD_TIMEOUT, SD_MAX_RETRIES, 0, RQF_PM, NULL);
3472 	if (res) {
3473 		sd_print_result(sdkp, "Start/Stop Unit failed", res);
3474 		if (driver_byte(res) == DRIVER_SENSE)
3475 			sd_print_sense_hdr(sdkp, &sshdr);
3476 		if (scsi_sense_valid(&sshdr) &&
3477 			/* 0x3a is medium not present */
3478 			sshdr.asc == 0x3a)
3479 			res = 0;
3480 	}
3481 
3482 	/* SCSI error codes must not go to the generic layer */
3483 	if (res)
3484 		return -EIO;
3485 
3486 	return 0;
3487 }
3488 
3489 /*
3490  * Send a SYNCHRONIZE CACHE instruction down to the device through
3491  * the normal SCSI command structure.  Wait for the command to
3492  * complete.
3493  */
3494 static void sd_shutdown(struct device *dev)
3495 {
3496 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3497 
3498 	if (!sdkp)
3499 		return;         /* this can happen */
3500 
3501 	if (pm_runtime_suspended(dev))
3502 		return;
3503 
3504 	if (sdkp->WCE && sdkp->media_present) {
3505 		sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3506 		sd_sync_cache(sdkp, NULL);
3507 	}
3508 
3509 	if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) {
3510 		sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3511 		sd_start_stop_device(sdkp, 0);
3512 	}
3513 }
3514 
3515 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors)
3516 {
3517 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3518 	struct scsi_sense_hdr sshdr;
3519 	int ret = 0;
3520 
3521 	if (!sdkp)	/* E.g.: runtime suspend following sd_remove() */
3522 		return 0;
3523 
3524 	if (sdkp->WCE && sdkp->media_present) {
3525 		sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3526 		ret = sd_sync_cache(sdkp, &sshdr);
3527 
3528 		if (ret) {
3529 			/* ignore OFFLINE device */
3530 			if (ret == -ENODEV)
3531 				return 0;
3532 
3533 			if (!scsi_sense_valid(&sshdr) ||
3534 			    sshdr.sense_key != ILLEGAL_REQUEST)
3535 				return ret;
3536 
3537 			/*
3538 			 * sshdr.sense_key == ILLEGAL_REQUEST means this drive
3539 			 * doesn't support sync. There's not much to do and
3540 			 * suspend shouldn't fail.
3541 			 */
3542 			ret = 0;
3543 		}
3544 	}
3545 
3546 	if (sdkp->device->manage_start_stop) {
3547 		sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3548 		/* an error is not worth aborting a system sleep */
3549 		ret = sd_start_stop_device(sdkp, 0);
3550 		if (ignore_stop_errors)
3551 			ret = 0;
3552 	}
3553 
3554 	return ret;
3555 }
3556 
3557 static int sd_suspend_system(struct device *dev)
3558 {
3559 	return sd_suspend_common(dev, true);
3560 }
3561 
3562 static int sd_suspend_runtime(struct device *dev)
3563 {
3564 	return sd_suspend_common(dev, false);
3565 }
3566 
3567 static int sd_resume(struct device *dev)
3568 {
3569 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3570 	int ret;
3571 
3572 	if (!sdkp)	/* E.g.: runtime resume at the start of sd_probe() */
3573 		return 0;
3574 
3575 	if (!sdkp->device->manage_start_stop)
3576 		return 0;
3577 
3578 	sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3579 	ret = sd_start_stop_device(sdkp, 1);
3580 	if (!ret)
3581 		opal_unlock_from_suspend(sdkp->opal_dev);
3582 	return ret;
3583 }
3584 
3585 /**
3586  *	init_sd - entry point for this driver (both when built in or when
3587  *	a module).
3588  *
3589  *	Note: this function registers this driver with the scsi mid-level.
3590  **/
3591 static int __init init_sd(void)
3592 {
3593 	int majors = 0, i, err;
3594 
3595 	SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
3596 
3597 	for (i = 0; i < SD_MAJORS; i++) {
3598 		if (register_blkdev(sd_major(i), "sd") != 0)
3599 			continue;
3600 		majors++;
3601 		blk_register_region(sd_major(i), SD_MINORS, NULL,
3602 				    sd_default_probe, NULL, NULL);
3603 	}
3604 
3605 	if (!majors)
3606 		return -ENODEV;
3607 
3608 	err = class_register(&sd_disk_class);
3609 	if (err)
3610 		goto err_out;
3611 
3612 	sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE,
3613 					 0, 0, NULL);
3614 	if (!sd_cdb_cache) {
3615 		printk(KERN_ERR "sd: can't init extended cdb cache\n");
3616 		err = -ENOMEM;
3617 		goto err_out_class;
3618 	}
3619 
3620 	sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache);
3621 	if (!sd_cdb_pool) {
3622 		printk(KERN_ERR "sd: can't init extended cdb pool\n");
3623 		err = -ENOMEM;
3624 		goto err_out_cache;
3625 	}
3626 
3627 	sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0);
3628 	if (!sd_page_pool) {
3629 		printk(KERN_ERR "sd: can't init discard page pool\n");
3630 		err = -ENOMEM;
3631 		goto err_out_ppool;
3632 	}
3633 
3634 	err = scsi_register_driver(&sd_template.gendrv);
3635 	if (err)
3636 		goto err_out_driver;
3637 
3638 	return 0;
3639 
3640 err_out_driver:
3641 	mempool_destroy(sd_page_pool);
3642 
3643 err_out_ppool:
3644 	mempool_destroy(sd_cdb_pool);
3645 
3646 err_out_cache:
3647 	kmem_cache_destroy(sd_cdb_cache);
3648 
3649 err_out_class:
3650 	class_unregister(&sd_disk_class);
3651 err_out:
3652 	for (i = 0; i < SD_MAJORS; i++)
3653 		unregister_blkdev(sd_major(i), "sd");
3654 	return err;
3655 }
3656 
3657 /**
3658  *	exit_sd - exit point for this driver (when it is a module).
3659  *
3660  *	Note: this function unregisters this driver from the scsi mid-level.
3661  **/
3662 static void __exit exit_sd(void)
3663 {
3664 	int i;
3665 
3666 	SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
3667 
3668 	scsi_unregister_driver(&sd_template.gendrv);
3669 	mempool_destroy(sd_cdb_pool);
3670 	mempool_destroy(sd_page_pool);
3671 	kmem_cache_destroy(sd_cdb_cache);
3672 
3673 	class_unregister(&sd_disk_class);
3674 
3675 	for (i = 0; i < SD_MAJORS; i++) {
3676 		blk_unregister_region(sd_major(i), SD_MINORS);
3677 		unregister_blkdev(sd_major(i), "sd");
3678 	}
3679 }
3680 
3681 module_init(init_sd);
3682 module_exit(exit_sd);
3683 
3684 static void sd_print_sense_hdr(struct scsi_disk *sdkp,
3685 			       struct scsi_sense_hdr *sshdr)
3686 {
3687 	scsi_print_sense_hdr(sdkp->device,
3688 			     sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
3689 }
3690 
3691 static void sd_print_result(const struct scsi_disk *sdkp, const char *msg,
3692 			    int result)
3693 {
3694 	const char *hb_string = scsi_hostbyte_string(result);
3695 	const char *db_string = scsi_driverbyte_string(result);
3696 
3697 	if (hb_string || db_string)
3698 		sd_printk(KERN_INFO, sdkp,
3699 			  "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
3700 			  hb_string ? hb_string : "invalid",
3701 			  db_string ? db_string : "invalid");
3702 	else
3703 		sd_printk(KERN_INFO, sdkp,
3704 			  "%s: Result: hostbyte=0x%02x driverbyte=0x%02x\n",
3705 			  msg, host_byte(result), driver_byte(result));
3706 }
3707 
3708