1 /* 2 * sd.c Copyright (C) 1992 Drew Eckhardt 3 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale 4 * 5 * Linux scsi disk driver 6 * Initial versions: Drew Eckhardt 7 * Subsequent revisions: Eric Youngdale 8 * Modification history: 9 * - Drew Eckhardt <drew@colorado.edu> original 10 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 11 * outstanding request, and other enhancements. 12 * Support loadable low-level scsi drivers. 13 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 14 * eight major numbers. 15 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs. 16 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 17 * sd_init and cleanups. 18 * - Alex Davis <letmein@erols.com> Fix problem where partition info 19 * not being read in sd_open. Fix problem where removable media 20 * could be ejected after sd_open. 21 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x 22 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 23 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 24 * Support 32k/1M disks. 25 * 26 * Logging policy (needs CONFIG_SCSI_LOGGING defined): 27 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2 28 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1 29 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1 30 * - entering other commands: SCSI_LOG_HLQUEUE level 3 31 * Note: when the logging level is set by the user, it must be greater 32 * than the level indicated above to trigger output. 33 */ 34 35 #include <linux/module.h> 36 #include <linux/fs.h> 37 #include <linux/kernel.h> 38 #include <linux/mm.h> 39 #include <linux/bio.h> 40 #include <linux/genhd.h> 41 #include <linux/hdreg.h> 42 #include <linux/errno.h> 43 #include <linux/idr.h> 44 #include <linux/interrupt.h> 45 #include <linux/init.h> 46 #include <linux/blkdev.h> 47 #include <linux/blkpg.h> 48 #include <linux/blk-pm.h> 49 #include <linux/delay.h> 50 #include <linux/mutex.h> 51 #include <linux/string_helpers.h> 52 #include <linux/async.h> 53 #include <linux/slab.h> 54 #include <linux/sed-opal.h> 55 #include <linux/pm_runtime.h> 56 #include <linux/pr.h> 57 #include <linux/t10-pi.h> 58 #include <linux/uaccess.h> 59 #include <asm/unaligned.h> 60 61 #include <scsi/scsi.h> 62 #include <scsi/scsi_cmnd.h> 63 #include <scsi/scsi_dbg.h> 64 #include <scsi/scsi_device.h> 65 #include <scsi/scsi_driver.h> 66 #include <scsi/scsi_eh.h> 67 #include <scsi/scsi_host.h> 68 #include <scsi/scsi_ioctl.h> 69 #include <scsi/scsicam.h> 70 71 #include "sd.h" 72 #include "scsi_priv.h" 73 #include "scsi_logging.h" 74 75 MODULE_AUTHOR("Eric Youngdale"); 76 MODULE_DESCRIPTION("SCSI disk (sd) driver"); 77 MODULE_LICENSE("GPL"); 78 79 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR); 80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR); 81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR); 82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR); 83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR); 84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR); 85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR); 86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR); 87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR); 88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR); 89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR); 90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR); 91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR); 92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR); 93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR); 94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR); 95 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK); 96 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD); 97 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC); 98 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC); 99 100 #if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT) 101 #define SD_MINORS 16 102 #else 103 #define SD_MINORS 0 104 #endif 105 106 static void sd_config_discard(struct scsi_disk *, unsigned int); 107 static void sd_config_write_same(struct scsi_disk *); 108 static int sd_revalidate_disk(struct gendisk *); 109 static void sd_unlock_native_capacity(struct gendisk *disk); 110 static int sd_probe(struct device *); 111 static int sd_remove(struct device *); 112 static void sd_shutdown(struct device *); 113 static int sd_suspend_system(struct device *); 114 static int sd_suspend_runtime(struct device *); 115 static int sd_resume(struct device *); 116 static void sd_rescan(struct device *); 117 static blk_status_t sd_init_command(struct scsi_cmnd *SCpnt); 118 static void sd_uninit_command(struct scsi_cmnd *SCpnt); 119 static int sd_done(struct scsi_cmnd *); 120 static void sd_eh_reset(struct scsi_cmnd *); 121 static int sd_eh_action(struct scsi_cmnd *, int); 122 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer); 123 static void scsi_disk_release(struct device *cdev); 124 static void sd_print_sense_hdr(struct scsi_disk *, struct scsi_sense_hdr *); 125 static void sd_print_result(const struct scsi_disk *, const char *, int); 126 127 static DEFINE_IDA(sd_index_ida); 128 129 /* This semaphore is used to mediate the 0->1 reference get in the 130 * face of object destruction (i.e. we can't allow a get on an 131 * object after last put) */ 132 static DEFINE_MUTEX(sd_ref_mutex); 133 134 static struct kmem_cache *sd_cdb_cache; 135 static mempool_t *sd_cdb_pool; 136 static mempool_t *sd_page_pool; 137 138 static const char *sd_cache_types[] = { 139 "write through", "none", "write back", 140 "write back, no read (daft)" 141 }; 142 143 static void sd_set_flush_flag(struct scsi_disk *sdkp) 144 { 145 bool wc = false, fua = false; 146 147 if (sdkp->WCE) { 148 wc = true; 149 if (sdkp->DPOFUA) 150 fua = true; 151 } 152 153 blk_queue_write_cache(sdkp->disk->queue, wc, fua); 154 } 155 156 static ssize_t 157 cache_type_store(struct device *dev, struct device_attribute *attr, 158 const char *buf, size_t count) 159 { 160 int ct, rcd, wce, sp; 161 struct scsi_disk *sdkp = to_scsi_disk(dev); 162 struct scsi_device *sdp = sdkp->device; 163 char buffer[64]; 164 char *buffer_data; 165 struct scsi_mode_data data; 166 struct scsi_sense_hdr sshdr; 167 static const char temp[] = "temporary "; 168 int len; 169 170 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 171 /* no cache control on RBC devices; theoretically they 172 * can do it, but there's probably so many exceptions 173 * it's not worth the risk */ 174 return -EINVAL; 175 176 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) { 177 buf += sizeof(temp) - 1; 178 sdkp->cache_override = 1; 179 } else { 180 sdkp->cache_override = 0; 181 } 182 183 ct = sysfs_match_string(sd_cache_types, buf); 184 if (ct < 0) 185 return -EINVAL; 186 187 rcd = ct & 0x01 ? 1 : 0; 188 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0; 189 190 if (sdkp->cache_override) { 191 sdkp->WCE = wce; 192 sdkp->RCD = rcd; 193 sd_set_flush_flag(sdkp); 194 return count; 195 } 196 197 if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT, 198 SD_MAX_RETRIES, &data, NULL)) 199 return -EINVAL; 200 len = min_t(size_t, sizeof(buffer), data.length - data.header_length - 201 data.block_descriptor_length); 202 buffer_data = buffer + data.header_length + 203 data.block_descriptor_length; 204 buffer_data[2] &= ~0x05; 205 buffer_data[2] |= wce << 2 | rcd; 206 sp = buffer_data[0] & 0x80 ? 1 : 0; 207 buffer_data[0] &= ~0x80; 208 209 /* 210 * Ensure WP, DPOFUA, and RESERVED fields are cleared in 211 * received mode parameter buffer before doing MODE SELECT. 212 */ 213 data.device_specific = 0; 214 215 if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT, 216 SD_MAX_RETRIES, &data, &sshdr)) { 217 if (scsi_sense_valid(&sshdr)) 218 sd_print_sense_hdr(sdkp, &sshdr); 219 return -EINVAL; 220 } 221 revalidate_disk(sdkp->disk); 222 return count; 223 } 224 225 static ssize_t 226 manage_start_stop_show(struct device *dev, struct device_attribute *attr, 227 char *buf) 228 { 229 struct scsi_disk *sdkp = to_scsi_disk(dev); 230 struct scsi_device *sdp = sdkp->device; 231 232 return sprintf(buf, "%u\n", sdp->manage_start_stop); 233 } 234 235 static ssize_t 236 manage_start_stop_store(struct device *dev, struct device_attribute *attr, 237 const char *buf, size_t count) 238 { 239 struct scsi_disk *sdkp = to_scsi_disk(dev); 240 struct scsi_device *sdp = sdkp->device; 241 bool v; 242 243 if (!capable(CAP_SYS_ADMIN)) 244 return -EACCES; 245 246 if (kstrtobool(buf, &v)) 247 return -EINVAL; 248 249 sdp->manage_start_stop = v; 250 251 return count; 252 } 253 static DEVICE_ATTR_RW(manage_start_stop); 254 255 static ssize_t 256 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf) 257 { 258 struct scsi_disk *sdkp = to_scsi_disk(dev); 259 260 return sprintf(buf, "%u\n", sdkp->device->allow_restart); 261 } 262 263 static ssize_t 264 allow_restart_store(struct device *dev, struct device_attribute *attr, 265 const char *buf, size_t count) 266 { 267 bool v; 268 struct scsi_disk *sdkp = to_scsi_disk(dev); 269 struct scsi_device *sdp = sdkp->device; 270 271 if (!capable(CAP_SYS_ADMIN)) 272 return -EACCES; 273 274 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 275 return -EINVAL; 276 277 if (kstrtobool(buf, &v)) 278 return -EINVAL; 279 280 sdp->allow_restart = v; 281 282 return count; 283 } 284 static DEVICE_ATTR_RW(allow_restart); 285 286 static ssize_t 287 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf) 288 { 289 struct scsi_disk *sdkp = to_scsi_disk(dev); 290 int ct = sdkp->RCD + 2*sdkp->WCE; 291 292 return sprintf(buf, "%s\n", sd_cache_types[ct]); 293 } 294 static DEVICE_ATTR_RW(cache_type); 295 296 static ssize_t 297 FUA_show(struct device *dev, struct device_attribute *attr, char *buf) 298 { 299 struct scsi_disk *sdkp = to_scsi_disk(dev); 300 301 return sprintf(buf, "%u\n", sdkp->DPOFUA); 302 } 303 static DEVICE_ATTR_RO(FUA); 304 305 static ssize_t 306 protection_type_show(struct device *dev, struct device_attribute *attr, 307 char *buf) 308 { 309 struct scsi_disk *sdkp = to_scsi_disk(dev); 310 311 return sprintf(buf, "%u\n", sdkp->protection_type); 312 } 313 314 static ssize_t 315 protection_type_store(struct device *dev, struct device_attribute *attr, 316 const char *buf, size_t count) 317 { 318 struct scsi_disk *sdkp = to_scsi_disk(dev); 319 unsigned int val; 320 int err; 321 322 if (!capable(CAP_SYS_ADMIN)) 323 return -EACCES; 324 325 err = kstrtouint(buf, 10, &val); 326 327 if (err) 328 return err; 329 330 if (val <= T10_PI_TYPE3_PROTECTION) 331 sdkp->protection_type = val; 332 333 return count; 334 } 335 static DEVICE_ATTR_RW(protection_type); 336 337 static ssize_t 338 protection_mode_show(struct device *dev, struct device_attribute *attr, 339 char *buf) 340 { 341 struct scsi_disk *sdkp = to_scsi_disk(dev); 342 struct scsi_device *sdp = sdkp->device; 343 unsigned int dif, dix; 344 345 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type); 346 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type); 347 348 if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) { 349 dif = 0; 350 dix = 1; 351 } 352 353 if (!dif && !dix) 354 return sprintf(buf, "none\n"); 355 356 return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif); 357 } 358 static DEVICE_ATTR_RO(protection_mode); 359 360 static ssize_t 361 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf) 362 { 363 struct scsi_disk *sdkp = to_scsi_disk(dev); 364 365 return sprintf(buf, "%u\n", sdkp->ATO); 366 } 367 static DEVICE_ATTR_RO(app_tag_own); 368 369 static ssize_t 370 thin_provisioning_show(struct device *dev, struct device_attribute *attr, 371 char *buf) 372 { 373 struct scsi_disk *sdkp = to_scsi_disk(dev); 374 375 return sprintf(buf, "%u\n", sdkp->lbpme); 376 } 377 static DEVICE_ATTR_RO(thin_provisioning); 378 379 /* sysfs_match_string() requires dense arrays */ 380 static const char *lbp_mode[] = { 381 [SD_LBP_FULL] = "full", 382 [SD_LBP_UNMAP] = "unmap", 383 [SD_LBP_WS16] = "writesame_16", 384 [SD_LBP_WS10] = "writesame_10", 385 [SD_LBP_ZERO] = "writesame_zero", 386 [SD_LBP_DISABLE] = "disabled", 387 }; 388 389 static ssize_t 390 provisioning_mode_show(struct device *dev, struct device_attribute *attr, 391 char *buf) 392 { 393 struct scsi_disk *sdkp = to_scsi_disk(dev); 394 395 return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]); 396 } 397 398 static ssize_t 399 provisioning_mode_store(struct device *dev, struct device_attribute *attr, 400 const char *buf, size_t count) 401 { 402 struct scsi_disk *sdkp = to_scsi_disk(dev); 403 struct scsi_device *sdp = sdkp->device; 404 int mode; 405 406 if (!capable(CAP_SYS_ADMIN)) 407 return -EACCES; 408 409 if (sd_is_zoned(sdkp)) { 410 sd_config_discard(sdkp, SD_LBP_DISABLE); 411 return count; 412 } 413 414 if (sdp->type != TYPE_DISK) 415 return -EINVAL; 416 417 mode = sysfs_match_string(lbp_mode, buf); 418 if (mode < 0) 419 return -EINVAL; 420 421 sd_config_discard(sdkp, mode); 422 423 return count; 424 } 425 static DEVICE_ATTR_RW(provisioning_mode); 426 427 /* sysfs_match_string() requires dense arrays */ 428 static const char *zeroing_mode[] = { 429 [SD_ZERO_WRITE] = "write", 430 [SD_ZERO_WS] = "writesame", 431 [SD_ZERO_WS16_UNMAP] = "writesame_16_unmap", 432 [SD_ZERO_WS10_UNMAP] = "writesame_10_unmap", 433 }; 434 435 static ssize_t 436 zeroing_mode_show(struct device *dev, struct device_attribute *attr, 437 char *buf) 438 { 439 struct scsi_disk *sdkp = to_scsi_disk(dev); 440 441 return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]); 442 } 443 444 static ssize_t 445 zeroing_mode_store(struct device *dev, struct device_attribute *attr, 446 const char *buf, size_t count) 447 { 448 struct scsi_disk *sdkp = to_scsi_disk(dev); 449 int mode; 450 451 if (!capable(CAP_SYS_ADMIN)) 452 return -EACCES; 453 454 mode = sysfs_match_string(zeroing_mode, buf); 455 if (mode < 0) 456 return -EINVAL; 457 458 sdkp->zeroing_mode = mode; 459 460 return count; 461 } 462 static DEVICE_ATTR_RW(zeroing_mode); 463 464 static ssize_t 465 max_medium_access_timeouts_show(struct device *dev, 466 struct device_attribute *attr, char *buf) 467 { 468 struct scsi_disk *sdkp = to_scsi_disk(dev); 469 470 return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts); 471 } 472 473 static ssize_t 474 max_medium_access_timeouts_store(struct device *dev, 475 struct device_attribute *attr, const char *buf, 476 size_t count) 477 { 478 struct scsi_disk *sdkp = to_scsi_disk(dev); 479 int err; 480 481 if (!capable(CAP_SYS_ADMIN)) 482 return -EACCES; 483 484 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts); 485 486 return err ? err : count; 487 } 488 static DEVICE_ATTR_RW(max_medium_access_timeouts); 489 490 static ssize_t 491 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr, 492 char *buf) 493 { 494 struct scsi_disk *sdkp = to_scsi_disk(dev); 495 496 return sprintf(buf, "%u\n", sdkp->max_ws_blocks); 497 } 498 499 static ssize_t 500 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr, 501 const char *buf, size_t count) 502 { 503 struct scsi_disk *sdkp = to_scsi_disk(dev); 504 struct scsi_device *sdp = sdkp->device; 505 unsigned long max; 506 int err; 507 508 if (!capable(CAP_SYS_ADMIN)) 509 return -EACCES; 510 511 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 512 return -EINVAL; 513 514 err = kstrtoul(buf, 10, &max); 515 516 if (err) 517 return err; 518 519 if (max == 0) 520 sdp->no_write_same = 1; 521 else if (max <= SD_MAX_WS16_BLOCKS) { 522 sdp->no_write_same = 0; 523 sdkp->max_ws_blocks = max; 524 } 525 526 sd_config_write_same(sdkp); 527 528 return count; 529 } 530 static DEVICE_ATTR_RW(max_write_same_blocks); 531 532 static struct attribute *sd_disk_attrs[] = { 533 &dev_attr_cache_type.attr, 534 &dev_attr_FUA.attr, 535 &dev_attr_allow_restart.attr, 536 &dev_attr_manage_start_stop.attr, 537 &dev_attr_protection_type.attr, 538 &dev_attr_protection_mode.attr, 539 &dev_attr_app_tag_own.attr, 540 &dev_attr_thin_provisioning.attr, 541 &dev_attr_provisioning_mode.attr, 542 &dev_attr_zeroing_mode.attr, 543 &dev_attr_max_write_same_blocks.attr, 544 &dev_attr_max_medium_access_timeouts.attr, 545 NULL, 546 }; 547 ATTRIBUTE_GROUPS(sd_disk); 548 549 static struct class sd_disk_class = { 550 .name = "scsi_disk", 551 .owner = THIS_MODULE, 552 .dev_release = scsi_disk_release, 553 .dev_groups = sd_disk_groups, 554 }; 555 556 static const struct dev_pm_ops sd_pm_ops = { 557 .suspend = sd_suspend_system, 558 .resume = sd_resume, 559 .poweroff = sd_suspend_system, 560 .restore = sd_resume, 561 .runtime_suspend = sd_suspend_runtime, 562 .runtime_resume = sd_resume, 563 }; 564 565 static struct scsi_driver sd_template = { 566 .gendrv = { 567 .name = "sd", 568 .owner = THIS_MODULE, 569 .probe = sd_probe, 570 .remove = sd_remove, 571 .shutdown = sd_shutdown, 572 .pm = &sd_pm_ops, 573 }, 574 .rescan = sd_rescan, 575 .init_command = sd_init_command, 576 .uninit_command = sd_uninit_command, 577 .done = sd_done, 578 .eh_action = sd_eh_action, 579 .eh_reset = sd_eh_reset, 580 }; 581 582 /* 583 * Dummy kobj_map->probe function. 584 * The default ->probe function will call modprobe, which is 585 * pointless as this module is already loaded. 586 */ 587 static struct kobject *sd_default_probe(dev_t devt, int *partno, void *data) 588 { 589 return NULL; 590 } 591 592 /* 593 * Device no to disk mapping: 594 * 595 * major disc2 disc p1 596 * |............|.............|....|....| <- dev_t 597 * 31 20 19 8 7 4 3 0 598 * 599 * Inside a major, we have 16k disks, however mapped non- 600 * contiguously. The first 16 disks are for major0, the next 601 * ones with major1, ... Disk 256 is for major0 again, disk 272 602 * for major1, ... 603 * As we stay compatible with our numbering scheme, we can reuse 604 * the well-know SCSI majors 8, 65--71, 136--143. 605 */ 606 static int sd_major(int major_idx) 607 { 608 switch (major_idx) { 609 case 0: 610 return SCSI_DISK0_MAJOR; 611 case 1 ... 7: 612 return SCSI_DISK1_MAJOR + major_idx - 1; 613 case 8 ... 15: 614 return SCSI_DISK8_MAJOR + major_idx - 8; 615 default: 616 BUG(); 617 return 0; /* shut up gcc */ 618 } 619 } 620 621 static struct scsi_disk *scsi_disk_get(struct gendisk *disk) 622 { 623 struct scsi_disk *sdkp = NULL; 624 625 mutex_lock(&sd_ref_mutex); 626 627 if (disk->private_data) { 628 sdkp = scsi_disk(disk); 629 if (scsi_device_get(sdkp->device) == 0) 630 get_device(&sdkp->dev); 631 else 632 sdkp = NULL; 633 } 634 mutex_unlock(&sd_ref_mutex); 635 return sdkp; 636 } 637 638 static void scsi_disk_put(struct scsi_disk *sdkp) 639 { 640 struct scsi_device *sdev = sdkp->device; 641 642 mutex_lock(&sd_ref_mutex); 643 put_device(&sdkp->dev); 644 scsi_device_put(sdev); 645 mutex_unlock(&sd_ref_mutex); 646 } 647 648 #ifdef CONFIG_BLK_SED_OPAL 649 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, 650 size_t len, bool send) 651 { 652 struct scsi_device *sdev = data; 653 u8 cdb[12] = { 0, }; 654 int ret; 655 656 cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN; 657 cdb[1] = secp; 658 put_unaligned_be16(spsp, &cdb[2]); 659 put_unaligned_be32(len, &cdb[6]); 660 661 ret = scsi_execute_req(sdev, cdb, 662 send ? DMA_TO_DEVICE : DMA_FROM_DEVICE, 663 buffer, len, NULL, SD_TIMEOUT, SD_MAX_RETRIES, NULL); 664 return ret <= 0 ? ret : -EIO; 665 } 666 #endif /* CONFIG_BLK_SED_OPAL */ 667 668 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd, 669 unsigned int dix, unsigned int dif) 670 { 671 struct bio *bio = scmd->request->bio; 672 unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif); 673 unsigned int protect = 0; 674 675 if (dix) { /* DIX Type 0, 1, 2, 3 */ 676 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM)) 677 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM; 678 679 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 680 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK; 681 } 682 683 if (dif != T10_PI_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */ 684 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT; 685 686 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 687 scmd->prot_flags |= SCSI_PROT_REF_CHECK; 688 } 689 690 if (dif) { /* DIX/DIF Type 1, 2, 3 */ 691 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI; 692 693 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK)) 694 protect = 3 << 5; /* Disable target PI checking */ 695 else 696 protect = 1 << 5; /* Enable target PI checking */ 697 } 698 699 scsi_set_prot_op(scmd, prot_op); 700 scsi_set_prot_type(scmd, dif); 701 scmd->prot_flags &= sd_prot_flag_mask(prot_op); 702 703 return protect; 704 } 705 706 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode) 707 { 708 struct request_queue *q = sdkp->disk->queue; 709 unsigned int logical_block_size = sdkp->device->sector_size; 710 unsigned int max_blocks = 0; 711 712 q->limits.discard_alignment = 713 sdkp->unmap_alignment * logical_block_size; 714 q->limits.discard_granularity = 715 max(sdkp->physical_block_size, 716 sdkp->unmap_granularity * logical_block_size); 717 sdkp->provisioning_mode = mode; 718 719 switch (mode) { 720 721 case SD_LBP_FULL: 722 case SD_LBP_DISABLE: 723 blk_queue_max_discard_sectors(q, 0); 724 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q); 725 return; 726 727 case SD_LBP_UNMAP: 728 max_blocks = min_not_zero(sdkp->max_unmap_blocks, 729 (u32)SD_MAX_WS16_BLOCKS); 730 break; 731 732 case SD_LBP_WS16: 733 if (sdkp->device->unmap_limit_for_ws) 734 max_blocks = sdkp->max_unmap_blocks; 735 else 736 max_blocks = sdkp->max_ws_blocks; 737 738 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS); 739 break; 740 741 case SD_LBP_WS10: 742 if (sdkp->device->unmap_limit_for_ws) 743 max_blocks = sdkp->max_unmap_blocks; 744 else 745 max_blocks = sdkp->max_ws_blocks; 746 747 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS); 748 break; 749 750 case SD_LBP_ZERO: 751 max_blocks = min_not_zero(sdkp->max_ws_blocks, 752 (u32)SD_MAX_WS10_BLOCKS); 753 break; 754 } 755 756 blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9)); 757 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q); 758 } 759 760 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd) 761 { 762 struct scsi_device *sdp = cmd->device; 763 struct request *rq = cmd->request; 764 u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9); 765 u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9); 766 unsigned int data_len = 24; 767 char *buf; 768 769 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 770 if (!rq->special_vec.bv_page) 771 return BLK_STS_RESOURCE; 772 clear_highpage(rq->special_vec.bv_page); 773 rq->special_vec.bv_offset = 0; 774 rq->special_vec.bv_len = data_len; 775 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 776 777 cmd->cmd_len = 10; 778 cmd->cmnd[0] = UNMAP; 779 cmd->cmnd[8] = 24; 780 781 buf = page_address(rq->special_vec.bv_page); 782 put_unaligned_be16(6 + 16, &buf[0]); 783 put_unaligned_be16(16, &buf[2]); 784 put_unaligned_be64(sector, &buf[8]); 785 put_unaligned_be32(nr_sectors, &buf[16]); 786 787 cmd->allowed = SD_MAX_RETRIES; 788 cmd->transfersize = data_len; 789 rq->timeout = SD_TIMEOUT; 790 scsi_req(rq)->resid_len = data_len; 791 792 return scsi_init_io(cmd); 793 } 794 795 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd, 796 bool unmap) 797 { 798 struct scsi_device *sdp = cmd->device; 799 struct request *rq = cmd->request; 800 u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9); 801 u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9); 802 u32 data_len = sdp->sector_size; 803 804 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 805 if (!rq->special_vec.bv_page) 806 return BLK_STS_RESOURCE; 807 clear_highpage(rq->special_vec.bv_page); 808 rq->special_vec.bv_offset = 0; 809 rq->special_vec.bv_len = data_len; 810 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 811 812 cmd->cmd_len = 16; 813 cmd->cmnd[0] = WRITE_SAME_16; 814 if (unmap) 815 cmd->cmnd[1] = 0x8; /* UNMAP */ 816 put_unaligned_be64(sector, &cmd->cmnd[2]); 817 put_unaligned_be32(nr_sectors, &cmd->cmnd[10]); 818 819 cmd->allowed = SD_MAX_RETRIES; 820 cmd->transfersize = data_len; 821 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 822 scsi_req(rq)->resid_len = data_len; 823 824 return scsi_init_io(cmd); 825 } 826 827 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd, 828 bool unmap) 829 { 830 struct scsi_device *sdp = cmd->device; 831 struct request *rq = cmd->request; 832 u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9); 833 u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9); 834 u32 data_len = sdp->sector_size; 835 836 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 837 if (!rq->special_vec.bv_page) 838 return BLK_STS_RESOURCE; 839 clear_highpage(rq->special_vec.bv_page); 840 rq->special_vec.bv_offset = 0; 841 rq->special_vec.bv_len = data_len; 842 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 843 844 cmd->cmd_len = 10; 845 cmd->cmnd[0] = WRITE_SAME; 846 if (unmap) 847 cmd->cmnd[1] = 0x8; /* UNMAP */ 848 put_unaligned_be32(sector, &cmd->cmnd[2]); 849 put_unaligned_be16(nr_sectors, &cmd->cmnd[7]); 850 851 cmd->allowed = SD_MAX_RETRIES; 852 cmd->transfersize = data_len; 853 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 854 scsi_req(rq)->resid_len = data_len; 855 856 return scsi_init_io(cmd); 857 } 858 859 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd) 860 { 861 struct request *rq = cmd->request; 862 struct scsi_device *sdp = cmd->device; 863 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 864 u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9); 865 u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9); 866 867 if (!(rq->cmd_flags & REQ_NOUNMAP)) { 868 switch (sdkp->zeroing_mode) { 869 case SD_ZERO_WS16_UNMAP: 870 return sd_setup_write_same16_cmnd(cmd, true); 871 case SD_ZERO_WS10_UNMAP: 872 return sd_setup_write_same10_cmnd(cmd, true); 873 } 874 } 875 876 if (sdp->no_write_same) 877 return BLK_STS_TARGET; 878 879 if (sdkp->ws16 || sector > 0xffffffff || nr_sectors > 0xffff) 880 return sd_setup_write_same16_cmnd(cmd, false); 881 882 return sd_setup_write_same10_cmnd(cmd, false); 883 } 884 885 static void sd_config_write_same(struct scsi_disk *sdkp) 886 { 887 struct request_queue *q = sdkp->disk->queue; 888 unsigned int logical_block_size = sdkp->device->sector_size; 889 890 if (sdkp->device->no_write_same) { 891 sdkp->max_ws_blocks = 0; 892 goto out; 893 } 894 895 /* Some devices can not handle block counts above 0xffff despite 896 * supporting WRITE SAME(16). Consequently we default to 64k 897 * blocks per I/O unless the device explicitly advertises a 898 * bigger limit. 899 */ 900 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS) 901 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 902 (u32)SD_MAX_WS16_BLOCKS); 903 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes) 904 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 905 (u32)SD_MAX_WS10_BLOCKS); 906 else { 907 sdkp->device->no_write_same = 1; 908 sdkp->max_ws_blocks = 0; 909 } 910 911 if (sdkp->lbprz && sdkp->lbpws) 912 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP; 913 else if (sdkp->lbprz && sdkp->lbpws10) 914 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP; 915 else if (sdkp->max_ws_blocks) 916 sdkp->zeroing_mode = SD_ZERO_WS; 917 else 918 sdkp->zeroing_mode = SD_ZERO_WRITE; 919 920 if (sdkp->max_ws_blocks && 921 sdkp->physical_block_size > logical_block_size) { 922 /* 923 * Reporting a maximum number of blocks that is not aligned 924 * on the device physical size would cause a large write same 925 * request to be split into physically unaligned chunks by 926 * __blkdev_issue_write_zeroes() and __blkdev_issue_write_same() 927 * even if the caller of these functions took care to align the 928 * large request. So make sure the maximum reported is aligned 929 * to the device physical block size. This is only an optional 930 * optimization for regular disks, but this is mandatory to 931 * avoid failure of large write same requests directed at 932 * sequential write required zones of host-managed ZBC disks. 933 */ 934 sdkp->max_ws_blocks = 935 round_down(sdkp->max_ws_blocks, 936 bytes_to_logical(sdkp->device, 937 sdkp->physical_block_size)); 938 } 939 940 out: 941 blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks * 942 (logical_block_size >> 9)); 943 blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks * 944 (logical_block_size >> 9)); 945 } 946 947 /** 948 * sd_setup_write_same_cmnd - write the same data to multiple blocks 949 * @cmd: command to prepare 950 * 951 * Will set up either WRITE SAME(10) or WRITE SAME(16) depending on 952 * the preference indicated by the target device. 953 **/ 954 static blk_status_t sd_setup_write_same_cmnd(struct scsi_cmnd *cmd) 955 { 956 struct request *rq = cmd->request; 957 struct scsi_device *sdp = cmd->device; 958 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 959 struct bio *bio = rq->bio; 960 sector_t sector = blk_rq_pos(rq); 961 unsigned int nr_sectors = blk_rq_sectors(rq); 962 unsigned int nr_bytes = blk_rq_bytes(rq); 963 blk_status_t ret; 964 965 if (sdkp->device->no_write_same) 966 return BLK_STS_TARGET; 967 968 BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size); 969 970 sector >>= ilog2(sdp->sector_size) - 9; 971 nr_sectors >>= ilog2(sdp->sector_size) - 9; 972 973 rq->timeout = SD_WRITE_SAME_TIMEOUT; 974 975 if (sdkp->ws16 || sector > 0xffffffff || nr_sectors > 0xffff) { 976 cmd->cmd_len = 16; 977 cmd->cmnd[0] = WRITE_SAME_16; 978 put_unaligned_be64(sector, &cmd->cmnd[2]); 979 put_unaligned_be32(nr_sectors, &cmd->cmnd[10]); 980 } else { 981 cmd->cmd_len = 10; 982 cmd->cmnd[0] = WRITE_SAME; 983 put_unaligned_be32(sector, &cmd->cmnd[2]); 984 put_unaligned_be16(nr_sectors, &cmd->cmnd[7]); 985 } 986 987 cmd->transfersize = sdp->sector_size; 988 cmd->allowed = SD_MAX_RETRIES; 989 990 /* 991 * For WRITE SAME the data transferred via the DATA OUT buffer is 992 * different from the amount of data actually written to the target. 993 * 994 * We set up __data_len to the amount of data transferred via the 995 * DATA OUT buffer so that blk_rq_map_sg sets up the proper S/G list 996 * to transfer a single sector of data first, but then reset it to 997 * the amount of data to be written right after so that the I/O path 998 * knows how much to actually write. 999 */ 1000 rq->__data_len = sdp->sector_size; 1001 ret = scsi_init_io(cmd); 1002 rq->__data_len = nr_bytes; 1003 1004 return ret; 1005 } 1006 1007 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd) 1008 { 1009 struct request *rq = cmd->request; 1010 1011 /* flush requests don't perform I/O, zero the S/G table */ 1012 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1013 1014 cmd->cmnd[0] = SYNCHRONIZE_CACHE; 1015 cmd->cmd_len = 10; 1016 cmd->transfersize = 0; 1017 cmd->allowed = SD_MAX_RETRIES; 1018 1019 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER; 1020 return BLK_STS_OK; 1021 } 1022 1023 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *SCpnt) 1024 { 1025 struct request *rq = SCpnt->request; 1026 struct scsi_device *sdp = SCpnt->device; 1027 struct gendisk *disk = rq->rq_disk; 1028 struct scsi_disk *sdkp = scsi_disk(disk); 1029 sector_t block = blk_rq_pos(rq); 1030 sector_t threshold; 1031 unsigned int this_count = blk_rq_sectors(rq); 1032 unsigned int dif, dix; 1033 unsigned char protect; 1034 blk_status_t ret; 1035 1036 ret = scsi_init_io(SCpnt); 1037 if (ret != BLK_STS_OK) 1038 return ret; 1039 WARN_ON_ONCE(SCpnt != rq->special); 1040 1041 SCSI_LOG_HLQUEUE(1, 1042 scmd_printk(KERN_INFO, SCpnt, 1043 "%s: block=%llu, count=%d\n", 1044 __func__, (unsigned long long)block, this_count)); 1045 1046 if (!sdp || !scsi_device_online(sdp) || 1047 block + blk_rq_sectors(rq) > get_capacity(disk)) { 1048 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, 1049 "Finishing %u sectors\n", 1050 blk_rq_sectors(rq))); 1051 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, 1052 "Retry with 0x%p\n", SCpnt)); 1053 return BLK_STS_IOERR; 1054 } 1055 1056 if (sdp->changed) { 1057 /* 1058 * quietly refuse to do anything to a changed disc until 1059 * the changed bit has been reset 1060 */ 1061 /* printk("SCSI disk has been changed or is not present. Prohibiting further I/O.\n"); */ 1062 return BLK_STS_IOERR; 1063 } 1064 1065 /* 1066 * Some SD card readers can't handle multi-sector accesses which touch 1067 * the last one or two hardware sectors. Split accesses as needed. 1068 */ 1069 threshold = get_capacity(disk) - SD_LAST_BUGGY_SECTORS * 1070 (sdp->sector_size / 512); 1071 1072 if (unlikely(sdp->last_sector_bug && block + this_count > threshold)) { 1073 if (block < threshold) { 1074 /* Access up to the threshold but not beyond */ 1075 this_count = threshold - block; 1076 } else { 1077 /* Access only a single hardware sector */ 1078 this_count = sdp->sector_size / 512; 1079 } 1080 } 1081 1082 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, "block=%llu\n", 1083 (unsigned long long)block)); 1084 1085 /* 1086 * If we have a 1K hardware sectorsize, prevent access to single 1087 * 512 byte sectors. In theory we could handle this - in fact 1088 * the scsi cdrom driver must be able to handle this because 1089 * we typically use 1K blocksizes, and cdroms typically have 1090 * 2K hardware sectorsizes. Of course, things are simpler 1091 * with the cdrom, since it is read-only. For performance 1092 * reasons, the filesystems should be able to handle this 1093 * and not force the scsi disk driver to use bounce buffers 1094 * for this. 1095 */ 1096 if (sdp->sector_size == 1024) { 1097 if ((block & 1) || (blk_rq_sectors(rq) & 1)) { 1098 scmd_printk(KERN_ERR, SCpnt, 1099 "Bad block number requested\n"); 1100 return BLK_STS_IOERR; 1101 } 1102 block = block >> 1; 1103 this_count = this_count >> 1; 1104 } 1105 if (sdp->sector_size == 2048) { 1106 if ((block & 3) || (blk_rq_sectors(rq) & 3)) { 1107 scmd_printk(KERN_ERR, SCpnt, 1108 "Bad block number requested\n"); 1109 return BLK_STS_IOERR; 1110 } 1111 block = block >> 2; 1112 this_count = this_count >> 2; 1113 } 1114 if (sdp->sector_size == 4096) { 1115 if ((block & 7) || (blk_rq_sectors(rq) & 7)) { 1116 scmd_printk(KERN_ERR, SCpnt, 1117 "Bad block number requested\n"); 1118 return BLK_STS_IOERR; 1119 } 1120 block = block >> 3; 1121 this_count = this_count >> 3; 1122 } 1123 if (rq_data_dir(rq) == WRITE) { 1124 SCpnt->cmnd[0] = WRITE_6; 1125 1126 if (blk_integrity_rq(rq)) 1127 t10_pi_prepare(SCpnt->request, sdkp->protection_type); 1128 1129 } else if (rq_data_dir(rq) == READ) { 1130 SCpnt->cmnd[0] = READ_6; 1131 } else { 1132 scmd_printk(KERN_ERR, SCpnt, "Unknown command %d\n", req_op(rq)); 1133 return BLK_STS_IOERR; 1134 } 1135 1136 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, 1137 "%s %d/%u 512 byte blocks.\n", 1138 (rq_data_dir(rq) == WRITE) ? 1139 "writing" : "reading", this_count, 1140 blk_rq_sectors(rq))); 1141 1142 dix = scsi_prot_sg_count(SCpnt); 1143 dif = scsi_host_dif_capable(SCpnt->device->host, sdkp->protection_type); 1144 1145 if (dif || dix) 1146 protect = sd_setup_protect_cmnd(SCpnt, dix, dif); 1147 else 1148 protect = 0; 1149 1150 if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) { 1151 SCpnt->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC); 1152 1153 if (unlikely(!SCpnt->cmnd)) 1154 return BLK_STS_RESOURCE; 1155 1156 SCpnt->cmd_len = SD_EXT_CDB_SIZE; 1157 memset(SCpnt->cmnd, 0, SCpnt->cmd_len); 1158 SCpnt->cmnd[0] = VARIABLE_LENGTH_CMD; 1159 SCpnt->cmnd[7] = 0x18; 1160 SCpnt->cmnd[9] = (rq_data_dir(rq) == READ) ? READ_32 : WRITE_32; 1161 SCpnt->cmnd[10] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0); 1162 1163 /* LBA */ 1164 SCpnt->cmnd[12] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0; 1165 SCpnt->cmnd[13] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0; 1166 SCpnt->cmnd[14] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0; 1167 SCpnt->cmnd[15] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0; 1168 SCpnt->cmnd[16] = (unsigned char) (block >> 24) & 0xff; 1169 SCpnt->cmnd[17] = (unsigned char) (block >> 16) & 0xff; 1170 SCpnt->cmnd[18] = (unsigned char) (block >> 8) & 0xff; 1171 SCpnt->cmnd[19] = (unsigned char) block & 0xff; 1172 1173 /* Expected Indirect LBA */ 1174 SCpnt->cmnd[20] = (unsigned char) (block >> 24) & 0xff; 1175 SCpnt->cmnd[21] = (unsigned char) (block >> 16) & 0xff; 1176 SCpnt->cmnd[22] = (unsigned char) (block >> 8) & 0xff; 1177 SCpnt->cmnd[23] = (unsigned char) block & 0xff; 1178 1179 /* Transfer length */ 1180 SCpnt->cmnd[28] = (unsigned char) (this_count >> 24) & 0xff; 1181 SCpnt->cmnd[29] = (unsigned char) (this_count >> 16) & 0xff; 1182 SCpnt->cmnd[30] = (unsigned char) (this_count >> 8) & 0xff; 1183 SCpnt->cmnd[31] = (unsigned char) this_count & 0xff; 1184 } else if (sdp->use_16_for_rw || (this_count > 0xffff)) { 1185 SCpnt->cmnd[0] += READ_16 - READ_6; 1186 SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0); 1187 SCpnt->cmnd[2] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0; 1188 SCpnt->cmnd[3] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0; 1189 SCpnt->cmnd[4] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0; 1190 SCpnt->cmnd[5] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0; 1191 SCpnt->cmnd[6] = (unsigned char) (block >> 24) & 0xff; 1192 SCpnt->cmnd[7] = (unsigned char) (block >> 16) & 0xff; 1193 SCpnt->cmnd[8] = (unsigned char) (block >> 8) & 0xff; 1194 SCpnt->cmnd[9] = (unsigned char) block & 0xff; 1195 SCpnt->cmnd[10] = (unsigned char) (this_count >> 24) & 0xff; 1196 SCpnt->cmnd[11] = (unsigned char) (this_count >> 16) & 0xff; 1197 SCpnt->cmnd[12] = (unsigned char) (this_count >> 8) & 0xff; 1198 SCpnt->cmnd[13] = (unsigned char) this_count & 0xff; 1199 SCpnt->cmnd[14] = SCpnt->cmnd[15] = 0; 1200 } else if ((this_count > 0xff) || (block > 0x1fffff) || 1201 scsi_device_protection(SCpnt->device) || 1202 SCpnt->device->use_10_for_rw) { 1203 SCpnt->cmnd[0] += READ_10 - READ_6; 1204 SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0); 1205 SCpnt->cmnd[2] = (unsigned char) (block >> 24) & 0xff; 1206 SCpnt->cmnd[3] = (unsigned char) (block >> 16) & 0xff; 1207 SCpnt->cmnd[4] = (unsigned char) (block >> 8) & 0xff; 1208 SCpnt->cmnd[5] = (unsigned char) block & 0xff; 1209 SCpnt->cmnd[6] = SCpnt->cmnd[9] = 0; 1210 SCpnt->cmnd[7] = (unsigned char) (this_count >> 8) & 0xff; 1211 SCpnt->cmnd[8] = (unsigned char) this_count & 0xff; 1212 } else { 1213 if (unlikely(rq->cmd_flags & REQ_FUA)) { 1214 /* 1215 * This happens only if this drive failed 1216 * 10byte rw command with ILLEGAL_REQUEST 1217 * during operation and thus turned off 1218 * use_10_for_rw. 1219 */ 1220 scmd_printk(KERN_ERR, SCpnt, 1221 "FUA write on READ/WRITE(6) drive\n"); 1222 return BLK_STS_IOERR; 1223 } 1224 1225 SCpnt->cmnd[1] |= (unsigned char) ((block >> 16) & 0x1f); 1226 SCpnt->cmnd[2] = (unsigned char) ((block >> 8) & 0xff); 1227 SCpnt->cmnd[3] = (unsigned char) block & 0xff; 1228 SCpnt->cmnd[4] = (unsigned char) this_count; 1229 SCpnt->cmnd[5] = 0; 1230 } 1231 SCpnt->sdb.length = this_count * sdp->sector_size; 1232 1233 /* 1234 * We shouldn't disconnect in the middle of a sector, so with a dumb 1235 * host adapter, it's safe to assume that we can at least transfer 1236 * this many bytes between each connect / disconnect. 1237 */ 1238 SCpnt->transfersize = sdp->sector_size; 1239 SCpnt->underflow = this_count << 9; 1240 SCpnt->allowed = SD_MAX_RETRIES; 1241 1242 /* 1243 * This indicates that the command is ready from our end to be 1244 * queued. 1245 */ 1246 return BLK_STS_OK; 1247 } 1248 1249 static blk_status_t sd_init_command(struct scsi_cmnd *cmd) 1250 { 1251 struct request *rq = cmd->request; 1252 1253 switch (req_op(rq)) { 1254 case REQ_OP_DISCARD: 1255 switch (scsi_disk(rq->rq_disk)->provisioning_mode) { 1256 case SD_LBP_UNMAP: 1257 return sd_setup_unmap_cmnd(cmd); 1258 case SD_LBP_WS16: 1259 return sd_setup_write_same16_cmnd(cmd, true); 1260 case SD_LBP_WS10: 1261 return sd_setup_write_same10_cmnd(cmd, true); 1262 case SD_LBP_ZERO: 1263 return sd_setup_write_same10_cmnd(cmd, false); 1264 default: 1265 return BLK_STS_TARGET; 1266 } 1267 case REQ_OP_WRITE_ZEROES: 1268 return sd_setup_write_zeroes_cmnd(cmd); 1269 case REQ_OP_WRITE_SAME: 1270 return sd_setup_write_same_cmnd(cmd); 1271 case REQ_OP_FLUSH: 1272 return sd_setup_flush_cmnd(cmd); 1273 case REQ_OP_READ: 1274 case REQ_OP_WRITE: 1275 return sd_setup_read_write_cmnd(cmd); 1276 case REQ_OP_ZONE_RESET: 1277 return sd_zbc_setup_reset_cmnd(cmd); 1278 default: 1279 WARN_ON_ONCE(1); 1280 return BLK_STS_NOTSUPP; 1281 } 1282 } 1283 1284 static void sd_uninit_command(struct scsi_cmnd *SCpnt) 1285 { 1286 struct request *rq = SCpnt->request; 1287 u8 *cmnd; 1288 1289 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1290 mempool_free(rq->special_vec.bv_page, sd_page_pool); 1291 1292 if (SCpnt->cmnd != scsi_req(rq)->cmd) { 1293 cmnd = SCpnt->cmnd; 1294 SCpnt->cmnd = NULL; 1295 SCpnt->cmd_len = 0; 1296 mempool_free(cmnd, sd_cdb_pool); 1297 } 1298 } 1299 1300 /** 1301 * sd_open - open a scsi disk device 1302 * @bdev: Block device of the scsi disk to open 1303 * @mode: FMODE_* mask 1304 * 1305 * Returns 0 if successful. Returns a negated errno value in case 1306 * of error. 1307 * 1308 * Note: This can be called from a user context (e.g. fsck(1) ) 1309 * or from within the kernel (e.g. as a result of a mount(1) ). 1310 * In the latter case @inode and @filp carry an abridged amount 1311 * of information as noted above. 1312 * 1313 * Locking: called with bdev->bd_mutex held. 1314 **/ 1315 static int sd_open(struct block_device *bdev, fmode_t mode) 1316 { 1317 struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk); 1318 struct scsi_device *sdev; 1319 int retval; 1320 1321 if (!sdkp) 1322 return -ENXIO; 1323 1324 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n")); 1325 1326 sdev = sdkp->device; 1327 1328 /* 1329 * If the device is in error recovery, wait until it is done. 1330 * If the device is offline, then disallow any access to it. 1331 */ 1332 retval = -ENXIO; 1333 if (!scsi_block_when_processing_errors(sdev)) 1334 goto error_out; 1335 1336 if (sdev->removable || sdkp->write_prot) 1337 check_disk_change(bdev); 1338 1339 /* 1340 * If the drive is empty, just let the open fail. 1341 */ 1342 retval = -ENOMEDIUM; 1343 if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY)) 1344 goto error_out; 1345 1346 /* 1347 * If the device has the write protect tab set, have the open fail 1348 * if the user expects to be able to write to the thing. 1349 */ 1350 retval = -EROFS; 1351 if (sdkp->write_prot && (mode & FMODE_WRITE)) 1352 goto error_out; 1353 1354 /* 1355 * It is possible that the disk changing stuff resulted in 1356 * the device being taken offline. If this is the case, 1357 * report this to the user, and don't pretend that the 1358 * open actually succeeded. 1359 */ 1360 retval = -ENXIO; 1361 if (!scsi_device_online(sdev)) 1362 goto error_out; 1363 1364 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) { 1365 if (scsi_block_when_processing_errors(sdev)) 1366 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT); 1367 } 1368 1369 return 0; 1370 1371 error_out: 1372 scsi_disk_put(sdkp); 1373 return retval; 1374 } 1375 1376 /** 1377 * sd_release - invoked when the (last) close(2) is called on this 1378 * scsi disk. 1379 * @disk: disk to release 1380 * @mode: FMODE_* mask 1381 * 1382 * Returns 0. 1383 * 1384 * Note: may block (uninterruptible) if error recovery is underway 1385 * on this disk. 1386 * 1387 * Locking: called with bdev->bd_mutex held. 1388 **/ 1389 static void sd_release(struct gendisk *disk, fmode_t mode) 1390 { 1391 struct scsi_disk *sdkp = scsi_disk(disk); 1392 struct scsi_device *sdev = sdkp->device; 1393 1394 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n")); 1395 1396 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) { 1397 if (scsi_block_when_processing_errors(sdev)) 1398 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW); 1399 } 1400 1401 /* 1402 * XXX and what if there are packets in flight and this close() 1403 * XXX is followed by a "rmmod sd_mod"? 1404 */ 1405 1406 scsi_disk_put(sdkp); 1407 } 1408 1409 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1410 { 1411 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1412 struct scsi_device *sdp = sdkp->device; 1413 struct Scsi_Host *host = sdp->host; 1414 sector_t capacity = logical_to_sectors(sdp, sdkp->capacity); 1415 int diskinfo[4]; 1416 1417 /* default to most commonly used values */ 1418 diskinfo[0] = 0x40; /* 1 << 6 */ 1419 diskinfo[1] = 0x20; /* 1 << 5 */ 1420 diskinfo[2] = capacity >> 11; 1421 1422 /* override with calculated, extended default, or driver values */ 1423 if (host->hostt->bios_param) 1424 host->hostt->bios_param(sdp, bdev, capacity, diskinfo); 1425 else 1426 scsicam_bios_param(bdev, capacity, diskinfo); 1427 1428 geo->heads = diskinfo[0]; 1429 geo->sectors = diskinfo[1]; 1430 geo->cylinders = diskinfo[2]; 1431 return 0; 1432 } 1433 1434 /** 1435 * sd_ioctl - process an ioctl 1436 * @bdev: target block device 1437 * @mode: FMODE_* mask 1438 * @cmd: ioctl command number 1439 * @arg: this is third argument given to ioctl(2) system call. 1440 * Often contains a pointer. 1441 * 1442 * Returns 0 if successful (some ioctls return positive numbers on 1443 * success as well). Returns a negated errno value in case of error. 1444 * 1445 * Note: most ioctls are forward onto the block subsystem or further 1446 * down in the scsi subsystem. 1447 **/ 1448 static int sd_ioctl(struct block_device *bdev, fmode_t mode, 1449 unsigned int cmd, unsigned long arg) 1450 { 1451 struct gendisk *disk = bdev->bd_disk; 1452 struct scsi_disk *sdkp = scsi_disk(disk); 1453 struct scsi_device *sdp = sdkp->device; 1454 void __user *p = (void __user *)arg; 1455 int error; 1456 1457 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, " 1458 "cmd=0x%x\n", disk->disk_name, cmd)); 1459 1460 error = scsi_verify_blk_ioctl(bdev, cmd); 1461 if (error < 0) 1462 return error; 1463 1464 /* 1465 * If we are in the middle of error recovery, don't let anyone 1466 * else try and use this device. Also, if error recovery fails, it 1467 * may try and take the device offline, in which case all further 1468 * access to the device is prohibited. 1469 */ 1470 error = scsi_ioctl_block_when_processing_errors(sdp, cmd, 1471 (mode & FMODE_NDELAY) != 0); 1472 if (error) 1473 goto out; 1474 1475 if (is_sed_ioctl(cmd)) 1476 return sed_ioctl(sdkp->opal_dev, cmd, p); 1477 1478 /* 1479 * Send SCSI addressing ioctls directly to mid level, send other 1480 * ioctls to block level and then onto mid level if they can't be 1481 * resolved. 1482 */ 1483 switch (cmd) { 1484 case SCSI_IOCTL_GET_IDLUN: 1485 case SCSI_IOCTL_GET_BUS_NUMBER: 1486 error = scsi_ioctl(sdp, cmd, p); 1487 break; 1488 default: 1489 error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p); 1490 if (error != -ENOTTY) 1491 break; 1492 error = scsi_ioctl(sdp, cmd, p); 1493 break; 1494 } 1495 out: 1496 return error; 1497 } 1498 1499 static void set_media_not_present(struct scsi_disk *sdkp) 1500 { 1501 if (sdkp->media_present) 1502 sdkp->device->changed = 1; 1503 1504 if (sdkp->device->removable) { 1505 sdkp->media_present = 0; 1506 sdkp->capacity = 0; 1507 } 1508 } 1509 1510 static int media_not_present(struct scsi_disk *sdkp, 1511 struct scsi_sense_hdr *sshdr) 1512 { 1513 if (!scsi_sense_valid(sshdr)) 1514 return 0; 1515 1516 /* not invoked for commands that could return deferred errors */ 1517 switch (sshdr->sense_key) { 1518 case UNIT_ATTENTION: 1519 case NOT_READY: 1520 /* medium not present */ 1521 if (sshdr->asc == 0x3A) { 1522 set_media_not_present(sdkp); 1523 return 1; 1524 } 1525 } 1526 return 0; 1527 } 1528 1529 /** 1530 * sd_check_events - check media events 1531 * @disk: kernel device descriptor 1532 * @clearing: disk events currently being cleared 1533 * 1534 * Returns mask of DISK_EVENT_*. 1535 * 1536 * Note: this function is invoked from the block subsystem. 1537 **/ 1538 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing) 1539 { 1540 struct scsi_disk *sdkp = scsi_disk_get(disk); 1541 struct scsi_device *sdp; 1542 int retval; 1543 1544 if (!sdkp) 1545 return 0; 1546 1547 sdp = sdkp->device; 1548 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n")); 1549 1550 /* 1551 * If the device is offline, don't send any commands - just pretend as 1552 * if the command failed. If the device ever comes back online, we 1553 * can deal with it then. It is only because of unrecoverable errors 1554 * that we would ever take a device offline in the first place. 1555 */ 1556 if (!scsi_device_online(sdp)) { 1557 set_media_not_present(sdkp); 1558 goto out; 1559 } 1560 1561 /* 1562 * Using TEST_UNIT_READY enables differentiation between drive with 1563 * no cartridge loaded - NOT READY, drive with changed cartridge - 1564 * UNIT ATTENTION, or with same cartridge - GOOD STATUS. 1565 * 1566 * Drives that auto spin down. eg iomega jaz 1G, will be started 1567 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever 1568 * sd_revalidate() is called. 1569 */ 1570 if (scsi_block_when_processing_errors(sdp)) { 1571 struct scsi_sense_hdr sshdr = { 0, }; 1572 1573 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, SD_MAX_RETRIES, 1574 &sshdr); 1575 1576 /* failed to execute TUR, assume media not present */ 1577 if (host_byte(retval)) { 1578 set_media_not_present(sdkp); 1579 goto out; 1580 } 1581 1582 if (media_not_present(sdkp, &sshdr)) 1583 goto out; 1584 } 1585 1586 /* 1587 * For removable scsi disk we have to recognise the presence 1588 * of a disk in the drive. 1589 */ 1590 if (!sdkp->media_present) 1591 sdp->changed = 1; 1592 sdkp->media_present = 1; 1593 out: 1594 /* 1595 * sdp->changed is set under the following conditions: 1596 * 1597 * Medium present state has changed in either direction. 1598 * Device has indicated UNIT_ATTENTION. 1599 */ 1600 retval = sdp->changed ? DISK_EVENT_MEDIA_CHANGE : 0; 1601 sdp->changed = 0; 1602 scsi_disk_put(sdkp); 1603 return retval; 1604 } 1605 1606 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr) 1607 { 1608 int retries, res; 1609 struct scsi_device *sdp = sdkp->device; 1610 const int timeout = sdp->request_queue->rq_timeout 1611 * SD_FLUSH_TIMEOUT_MULTIPLIER; 1612 struct scsi_sense_hdr my_sshdr; 1613 1614 if (!scsi_device_online(sdp)) 1615 return -ENODEV; 1616 1617 /* caller might not be interested in sense, but we need it */ 1618 if (!sshdr) 1619 sshdr = &my_sshdr; 1620 1621 for (retries = 3; retries > 0; --retries) { 1622 unsigned char cmd[10] = { 0 }; 1623 1624 cmd[0] = SYNCHRONIZE_CACHE; 1625 /* 1626 * Leave the rest of the command zero to indicate 1627 * flush everything. 1628 */ 1629 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr, 1630 timeout, SD_MAX_RETRIES, 0, RQF_PM, NULL); 1631 if (res == 0) 1632 break; 1633 } 1634 1635 if (res) { 1636 sd_print_result(sdkp, "Synchronize Cache(10) failed", res); 1637 1638 if (driver_byte(res) == DRIVER_SENSE) 1639 sd_print_sense_hdr(sdkp, sshdr); 1640 1641 /* we need to evaluate the error return */ 1642 if (scsi_sense_valid(sshdr) && 1643 (sshdr->asc == 0x3a || /* medium not present */ 1644 sshdr->asc == 0x20)) /* invalid command */ 1645 /* this is no error here */ 1646 return 0; 1647 1648 switch (host_byte(res)) { 1649 /* ignore errors due to racing a disconnection */ 1650 case DID_BAD_TARGET: 1651 case DID_NO_CONNECT: 1652 return 0; 1653 /* signal the upper layer it might try again */ 1654 case DID_BUS_BUSY: 1655 case DID_IMM_RETRY: 1656 case DID_REQUEUE: 1657 case DID_SOFT_ERROR: 1658 return -EBUSY; 1659 default: 1660 return -EIO; 1661 } 1662 } 1663 return 0; 1664 } 1665 1666 static void sd_rescan(struct device *dev) 1667 { 1668 struct scsi_disk *sdkp = dev_get_drvdata(dev); 1669 1670 revalidate_disk(sdkp->disk); 1671 } 1672 1673 1674 #ifdef CONFIG_COMPAT 1675 /* 1676 * This gets directly called from VFS. When the ioctl 1677 * is not recognized we go back to the other translation paths. 1678 */ 1679 static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode, 1680 unsigned int cmd, unsigned long arg) 1681 { 1682 struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device; 1683 int error; 1684 1685 error = scsi_ioctl_block_when_processing_errors(sdev, cmd, 1686 (mode & FMODE_NDELAY) != 0); 1687 if (error) 1688 return error; 1689 1690 /* 1691 * Let the static ioctl translation table take care of it. 1692 */ 1693 if (!sdev->host->hostt->compat_ioctl) 1694 return -ENOIOCTLCMD; 1695 return sdev->host->hostt->compat_ioctl(sdev, cmd, (void __user *)arg); 1696 } 1697 #endif 1698 1699 static char sd_pr_type(enum pr_type type) 1700 { 1701 switch (type) { 1702 case PR_WRITE_EXCLUSIVE: 1703 return 0x01; 1704 case PR_EXCLUSIVE_ACCESS: 1705 return 0x03; 1706 case PR_WRITE_EXCLUSIVE_REG_ONLY: 1707 return 0x05; 1708 case PR_EXCLUSIVE_ACCESS_REG_ONLY: 1709 return 0x06; 1710 case PR_WRITE_EXCLUSIVE_ALL_REGS: 1711 return 0x07; 1712 case PR_EXCLUSIVE_ACCESS_ALL_REGS: 1713 return 0x08; 1714 default: 1715 return 0; 1716 } 1717 }; 1718 1719 static int sd_pr_command(struct block_device *bdev, u8 sa, 1720 u64 key, u64 sa_key, u8 type, u8 flags) 1721 { 1722 struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device; 1723 struct scsi_sense_hdr sshdr; 1724 int result; 1725 u8 cmd[16] = { 0, }; 1726 u8 data[24] = { 0, }; 1727 1728 cmd[0] = PERSISTENT_RESERVE_OUT; 1729 cmd[1] = sa; 1730 cmd[2] = type; 1731 put_unaligned_be32(sizeof(data), &cmd[5]); 1732 1733 put_unaligned_be64(key, &data[0]); 1734 put_unaligned_be64(sa_key, &data[8]); 1735 data[20] = flags; 1736 1737 result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data), 1738 &sshdr, SD_TIMEOUT, SD_MAX_RETRIES, NULL); 1739 1740 if (driver_byte(result) == DRIVER_SENSE && 1741 scsi_sense_valid(&sshdr)) { 1742 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result); 1743 scsi_print_sense_hdr(sdev, NULL, &sshdr); 1744 } 1745 1746 return result; 1747 } 1748 1749 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 1750 u32 flags) 1751 { 1752 if (flags & ~PR_FL_IGNORE_KEY) 1753 return -EOPNOTSUPP; 1754 return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00, 1755 old_key, new_key, 0, 1756 (1 << 0) /* APTPL */); 1757 } 1758 1759 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 1760 u32 flags) 1761 { 1762 if (flags) 1763 return -EOPNOTSUPP; 1764 return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0); 1765 } 1766 1767 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 1768 { 1769 return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0); 1770 } 1771 1772 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 1773 enum pr_type type, bool abort) 1774 { 1775 return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key, 1776 sd_pr_type(type), 0); 1777 } 1778 1779 static int sd_pr_clear(struct block_device *bdev, u64 key) 1780 { 1781 return sd_pr_command(bdev, 0x03, key, 0, 0, 0); 1782 } 1783 1784 static const struct pr_ops sd_pr_ops = { 1785 .pr_register = sd_pr_register, 1786 .pr_reserve = sd_pr_reserve, 1787 .pr_release = sd_pr_release, 1788 .pr_preempt = sd_pr_preempt, 1789 .pr_clear = sd_pr_clear, 1790 }; 1791 1792 static const struct block_device_operations sd_fops = { 1793 .owner = THIS_MODULE, 1794 .open = sd_open, 1795 .release = sd_release, 1796 .ioctl = sd_ioctl, 1797 .getgeo = sd_getgeo, 1798 #ifdef CONFIG_COMPAT 1799 .compat_ioctl = sd_compat_ioctl, 1800 #endif 1801 .check_events = sd_check_events, 1802 .revalidate_disk = sd_revalidate_disk, 1803 .unlock_native_capacity = sd_unlock_native_capacity, 1804 .report_zones = sd_zbc_report_zones, 1805 .pr_ops = &sd_pr_ops, 1806 }; 1807 1808 /** 1809 * sd_eh_reset - reset error handling callback 1810 * @scmd: sd-issued command that has failed 1811 * 1812 * This function is called by the SCSI midlayer before starting 1813 * SCSI EH. When counting medium access failures we have to be 1814 * careful to register it only only once per device and SCSI EH run; 1815 * there might be several timed out commands which will cause the 1816 * 'max_medium_access_timeouts' counter to trigger after the first 1817 * SCSI EH run already and set the device to offline. 1818 * So this function resets the internal counter before starting SCSI EH. 1819 **/ 1820 static void sd_eh_reset(struct scsi_cmnd *scmd) 1821 { 1822 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk); 1823 1824 /* New SCSI EH run, reset gate variable */ 1825 sdkp->ignore_medium_access_errors = false; 1826 } 1827 1828 /** 1829 * sd_eh_action - error handling callback 1830 * @scmd: sd-issued command that has failed 1831 * @eh_disp: The recovery disposition suggested by the midlayer 1832 * 1833 * This function is called by the SCSI midlayer upon completion of an 1834 * error test command (currently TEST UNIT READY). The result of sending 1835 * the eh command is passed in eh_disp. We're looking for devices that 1836 * fail medium access commands but are OK with non access commands like 1837 * test unit ready (so wrongly see the device as having a successful 1838 * recovery) 1839 **/ 1840 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp) 1841 { 1842 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk); 1843 struct scsi_device *sdev = scmd->device; 1844 1845 if (!scsi_device_online(sdev) || 1846 !scsi_medium_access_command(scmd) || 1847 host_byte(scmd->result) != DID_TIME_OUT || 1848 eh_disp != SUCCESS) 1849 return eh_disp; 1850 1851 /* 1852 * The device has timed out executing a medium access command. 1853 * However, the TEST UNIT READY command sent during error 1854 * handling completed successfully. Either the device is in the 1855 * process of recovering or has it suffered an internal failure 1856 * that prevents access to the storage medium. 1857 */ 1858 if (!sdkp->ignore_medium_access_errors) { 1859 sdkp->medium_access_timed_out++; 1860 sdkp->ignore_medium_access_errors = true; 1861 } 1862 1863 /* 1864 * If the device keeps failing read/write commands but TEST UNIT 1865 * READY always completes successfully we assume that medium 1866 * access is no longer possible and take the device offline. 1867 */ 1868 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) { 1869 scmd_printk(KERN_ERR, scmd, 1870 "Medium access timeout failure. Offlining disk!\n"); 1871 mutex_lock(&sdev->state_mutex); 1872 scsi_device_set_state(sdev, SDEV_OFFLINE); 1873 mutex_unlock(&sdev->state_mutex); 1874 1875 return SUCCESS; 1876 } 1877 1878 return eh_disp; 1879 } 1880 1881 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd) 1882 { 1883 struct request *req = scmd->request; 1884 struct scsi_device *sdev = scmd->device; 1885 unsigned int transferred, good_bytes; 1886 u64 start_lba, end_lba, bad_lba; 1887 1888 /* 1889 * Some commands have a payload smaller than the device logical 1890 * block size (e.g. INQUIRY on a 4K disk). 1891 */ 1892 if (scsi_bufflen(scmd) <= sdev->sector_size) 1893 return 0; 1894 1895 /* Check if we have a 'bad_lba' information */ 1896 if (!scsi_get_sense_info_fld(scmd->sense_buffer, 1897 SCSI_SENSE_BUFFERSIZE, 1898 &bad_lba)) 1899 return 0; 1900 1901 /* 1902 * If the bad lba was reported incorrectly, we have no idea where 1903 * the error is. 1904 */ 1905 start_lba = sectors_to_logical(sdev, blk_rq_pos(req)); 1906 end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd)); 1907 if (bad_lba < start_lba || bad_lba >= end_lba) 1908 return 0; 1909 1910 /* 1911 * resid is optional but mostly filled in. When it's unused, 1912 * its value is zero, so we assume the whole buffer transferred 1913 */ 1914 transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd); 1915 1916 /* This computation should always be done in terms of the 1917 * resolution of the device's medium. 1918 */ 1919 good_bytes = logical_to_bytes(sdev, bad_lba - start_lba); 1920 1921 return min(good_bytes, transferred); 1922 } 1923 1924 /** 1925 * sd_done - bottom half handler: called when the lower level 1926 * driver has completed (successfully or otherwise) a scsi command. 1927 * @SCpnt: mid-level's per command structure. 1928 * 1929 * Note: potentially run from within an ISR. Must not block. 1930 **/ 1931 static int sd_done(struct scsi_cmnd *SCpnt) 1932 { 1933 int result = SCpnt->result; 1934 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt); 1935 unsigned int sector_size = SCpnt->device->sector_size; 1936 unsigned int resid; 1937 struct scsi_sense_hdr sshdr; 1938 struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk); 1939 struct request *req = SCpnt->request; 1940 int sense_valid = 0; 1941 int sense_deferred = 0; 1942 1943 switch (req_op(req)) { 1944 case REQ_OP_DISCARD: 1945 case REQ_OP_WRITE_ZEROES: 1946 case REQ_OP_WRITE_SAME: 1947 case REQ_OP_ZONE_RESET: 1948 if (!result) { 1949 good_bytes = blk_rq_bytes(req); 1950 scsi_set_resid(SCpnt, 0); 1951 } else { 1952 good_bytes = 0; 1953 scsi_set_resid(SCpnt, blk_rq_bytes(req)); 1954 } 1955 break; 1956 default: 1957 /* 1958 * In case of bogus fw or device, we could end up having 1959 * an unaligned partial completion. Check this here and force 1960 * alignment. 1961 */ 1962 resid = scsi_get_resid(SCpnt); 1963 if (resid & (sector_size - 1)) { 1964 sd_printk(KERN_INFO, sdkp, 1965 "Unaligned partial completion (resid=%u, sector_sz=%u)\n", 1966 resid, sector_size); 1967 resid = min(scsi_bufflen(SCpnt), 1968 round_up(resid, sector_size)); 1969 scsi_set_resid(SCpnt, resid); 1970 } 1971 } 1972 1973 if (result) { 1974 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr); 1975 if (sense_valid) 1976 sense_deferred = scsi_sense_is_deferred(&sshdr); 1977 } 1978 sdkp->medium_access_timed_out = 0; 1979 1980 if (driver_byte(result) != DRIVER_SENSE && 1981 (!sense_valid || sense_deferred)) 1982 goto out; 1983 1984 switch (sshdr.sense_key) { 1985 case HARDWARE_ERROR: 1986 case MEDIUM_ERROR: 1987 good_bytes = sd_completed_bytes(SCpnt); 1988 break; 1989 case RECOVERED_ERROR: 1990 good_bytes = scsi_bufflen(SCpnt); 1991 break; 1992 case NO_SENSE: 1993 /* This indicates a false check condition, so ignore it. An 1994 * unknown amount of data was transferred so treat it as an 1995 * error. 1996 */ 1997 SCpnt->result = 0; 1998 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 1999 break; 2000 case ABORTED_COMMAND: 2001 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */ 2002 good_bytes = sd_completed_bytes(SCpnt); 2003 break; 2004 case ILLEGAL_REQUEST: 2005 switch (sshdr.asc) { 2006 case 0x10: /* DIX: Host detected corruption */ 2007 good_bytes = sd_completed_bytes(SCpnt); 2008 break; 2009 case 0x20: /* INVALID COMMAND OPCODE */ 2010 case 0x24: /* INVALID FIELD IN CDB */ 2011 switch (SCpnt->cmnd[0]) { 2012 case UNMAP: 2013 sd_config_discard(sdkp, SD_LBP_DISABLE); 2014 break; 2015 case WRITE_SAME_16: 2016 case WRITE_SAME: 2017 if (SCpnt->cmnd[1] & 8) { /* UNMAP */ 2018 sd_config_discard(sdkp, SD_LBP_DISABLE); 2019 } else { 2020 sdkp->device->no_write_same = 1; 2021 sd_config_write_same(sdkp); 2022 req->rq_flags |= RQF_QUIET; 2023 } 2024 break; 2025 } 2026 } 2027 break; 2028 default: 2029 break; 2030 } 2031 2032 out: 2033 if (sd_is_zoned(sdkp)) 2034 sd_zbc_complete(SCpnt, good_bytes, &sshdr); 2035 2036 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt, 2037 "sd_done: completed %d of %d bytes\n", 2038 good_bytes, scsi_bufflen(SCpnt))); 2039 2040 if (rq_data_dir(SCpnt->request) == READ && scsi_prot_sg_count(SCpnt) && 2041 good_bytes) 2042 t10_pi_complete(SCpnt->request, sdkp->protection_type, 2043 good_bytes / scsi_prot_interval(SCpnt)); 2044 2045 return good_bytes; 2046 } 2047 2048 /* 2049 * spinup disk - called only in sd_revalidate_disk() 2050 */ 2051 static void 2052 sd_spinup_disk(struct scsi_disk *sdkp) 2053 { 2054 unsigned char cmd[10]; 2055 unsigned long spintime_expire = 0; 2056 int retries, spintime; 2057 unsigned int the_result; 2058 struct scsi_sense_hdr sshdr; 2059 int sense_valid = 0; 2060 2061 spintime = 0; 2062 2063 /* Spin up drives, as required. Only do this at boot time */ 2064 /* Spinup needs to be done for module loads too. */ 2065 do { 2066 retries = 0; 2067 2068 do { 2069 cmd[0] = TEST_UNIT_READY; 2070 memset((void *) &cmd[1], 0, 9); 2071 2072 the_result = scsi_execute_req(sdkp->device, cmd, 2073 DMA_NONE, NULL, 0, 2074 &sshdr, SD_TIMEOUT, 2075 SD_MAX_RETRIES, NULL); 2076 2077 /* 2078 * If the drive has indicated to us that it 2079 * doesn't have any media in it, don't bother 2080 * with any more polling. 2081 */ 2082 if (media_not_present(sdkp, &sshdr)) 2083 return; 2084 2085 if (the_result) 2086 sense_valid = scsi_sense_valid(&sshdr); 2087 retries++; 2088 } while (retries < 3 && 2089 (!scsi_status_is_good(the_result) || 2090 ((driver_byte(the_result) == DRIVER_SENSE) && 2091 sense_valid && sshdr.sense_key == UNIT_ATTENTION))); 2092 2093 if (driver_byte(the_result) != DRIVER_SENSE) { 2094 /* no sense, TUR either succeeded or failed 2095 * with a status error */ 2096 if(!spintime && !scsi_status_is_good(the_result)) { 2097 sd_print_result(sdkp, "Test Unit Ready failed", 2098 the_result); 2099 } 2100 break; 2101 } 2102 2103 /* 2104 * The device does not want the automatic start to be issued. 2105 */ 2106 if (sdkp->device->no_start_on_add) 2107 break; 2108 2109 if (sense_valid && sshdr.sense_key == NOT_READY) { 2110 if (sshdr.asc == 4 && sshdr.ascq == 3) 2111 break; /* manual intervention required */ 2112 if (sshdr.asc == 4 && sshdr.ascq == 0xb) 2113 break; /* standby */ 2114 if (sshdr.asc == 4 && sshdr.ascq == 0xc) 2115 break; /* unavailable */ 2116 if (sshdr.asc == 4 && sshdr.ascq == 0x1b) 2117 break; /* sanitize in progress */ 2118 /* 2119 * Issue command to spin up drive when not ready 2120 */ 2121 if (!spintime) { 2122 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk..."); 2123 cmd[0] = START_STOP; 2124 cmd[1] = 1; /* Return immediately */ 2125 memset((void *) &cmd[2], 0, 8); 2126 cmd[4] = 1; /* Start spin cycle */ 2127 if (sdkp->device->start_stop_pwr_cond) 2128 cmd[4] |= 1 << 4; 2129 scsi_execute_req(sdkp->device, cmd, DMA_NONE, 2130 NULL, 0, &sshdr, 2131 SD_TIMEOUT, SD_MAX_RETRIES, 2132 NULL); 2133 spintime_expire = jiffies + 100 * HZ; 2134 spintime = 1; 2135 } 2136 /* Wait 1 second for next try */ 2137 msleep(1000); 2138 printk(KERN_CONT "."); 2139 2140 /* 2141 * Wait for USB flash devices with slow firmware. 2142 * Yes, this sense key/ASC combination shouldn't 2143 * occur here. It's characteristic of these devices. 2144 */ 2145 } else if (sense_valid && 2146 sshdr.sense_key == UNIT_ATTENTION && 2147 sshdr.asc == 0x28) { 2148 if (!spintime) { 2149 spintime_expire = jiffies + 5 * HZ; 2150 spintime = 1; 2151 } 2152 /* Wait 1 second for next try */ 2153 msleep(1000); 2154 } else { 2155 /* we don't understand the sense code, so it's 2156 * probably pointless to loop */ 2157 if(!spintime) { 2158 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n"); 2159 sd_print_sense_hdr(sdkp, &sshdr); 2160 } 2161 break; 2162 } 2163 2164 } while (spintime && time_before_eq(jiffies, spintime_expire)); 2165 2166 if (spintime) { 2167 if (scsi_status_is_good(the_result)) 2168 printk(KERN_CONT "ready\n"); 2169 else 2170 printk(KERN_CONT "not responding...\n"); 2171 } 2172 } 2173 2174 /* 2175 * Determine whether disk supports Data Integrity Field. 2176 */ 2177 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer) 2178 { 2179 struct scsi_device *sdp = sdkp->device; 2180 u8 type; 2181 int ret = 0; 2182 2183 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) 2184 return ret; 2185 2186 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */ 2187 2188 if (type > T10_PI_TYPE3_PROTECTION) 2189 ret = -ENODEV; 2190 else if (scsi_host_dif_capable(sdp->host, type)) 2191 ret = 1; 2192 2193 if (sdkp->first_scan || type != sdkp->protection_type) 2194 switch (ret) { 2195 case -ENODEV: 2196 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \ 2197 " protection type %u. Disabling disk!\n", 2198 type); 2199 break; 2200 case 1: 2201 sd_printk(KERN_NOTICE, sdkp, 2202 "Enabling DIF Type %u protection\n", type); 2203 break; 2204 case 0: 2205 sd_printk(KERN_NOTICE, sdkp, 2206 "Disabling DIF Type %u protection\n", type); 2207 break; 2208 } 2209 2210 sdkp->protection_type = type; 2211 2212 return ret; 2213 } 2214 2215 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp, 2216 struct scsi_sense_hdr *sshdr, int sense_valid, 2217 int the_result) 2218 { 2219 if (driver_byte(the_result) == DRIVER_SENSE) 2220 sd_print_sense_hdr(sdkp, sshdr); 2221 else 2222 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n"); 2223 2224 /* 2225 * Set dirty bit for removable devices if not ready - 2226 * sometimes drives will not report this properly. 2227 */ 2228 if (sdp->removable && 2229 sense_valid && sshdr->sense_key == NOT_READY) 2230 set_media_not_present(sdkp); 2231 2232 /* 2233 * We used to set media_present to 0 here to indicate no media 2234 * in the drive, but some drives fail read capacity even with 2235 * media present, so we can't do that. 2236 */ 2237 sdkp->capacity = 0; /* unknown mapped to zero - as usual */ 2238 } 2239 2240 #define RC16_LEN 32 2241 #if RC16_LEN > SD_BUF_SIZE 2242 #error RC16_LEN must not be more than SD_BUF_SIZE 2243 #endif 2244 2245 #define READ_CAPACITY_RETRIES_ON_RESET 10 2246 2247 /* 2248 * Ensure that we don't overflow sector_t when CONFIG_LBDAF is not set 2249 * and the reported logical block size is bigger than 512 bytes. Note 2250 * that last_sector is a u64 and therefore logical_to_sectors() is not 2251 * applicable. 2252 */ 2253 static bool sd_addressable_capacity(u64 lba, unsigned int sector_size) 2254 { 2255 u64 last_sector = (lba + 1ULL) << (ilog2(sector_size) - 9); 2256 2257 if (sizeof(sector_t) == 4 && last_sector > U32_MAX) 2258 return false; 2259 2260 return true; 2261 } 2262 2263 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp, 2264 unsigned char *buffer) 2265 { 2266 unsigned char cmd[16]; 2267 struct scsi_sense_hdr sshdr; 2268 int sense_valid = 0; 2269 int the_result; 2270 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2271 unsigned int alignment; 2272 unsigned long long lba; 2273 unsigned sector_size; 2274 2275 if (sdp->no_read_capacity_16) 2276 return -EINVAL; 2277 2278 do { 2279 memset(cmd, 0, 16); 2280 cmd[0] = SERVICE_ACTION_IN_16; 2281 cmd[1] = SAI_READ_CAPACITY_16; 2282 cmd[13] = RC16_LEN; 2283 memset(buffer, 0, RC16_LEN); 2284 2285 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, 2286 buffer, RC16_LEN, &sshdr, 2287 SD_TIMEOUT, SD_MAX_RETRIES, NULL); 2288 2289 if (media_not_present(sdkp, &sshdr)) 2290 return -ENODEV; 2291 2292 if (the_result) { 2293 sense_valid = scsi_sense_valid(&sshdr); 2294 if (sense_valid && 2295 sshdr.sense_key == ILLEGAL_REQUEST && 2296 (sshdr.asc == 0x20 || sshdr.asc == 0x24) && 2297 sshdr.ascq == 0x00) 2298 /* Invalid Command Operation Code or 2299 * Invalid Field in CDB, just retry 2300 * silently with RC10 */ 2301 return -EINVAL; 2302 if (sense_valid && 2303 sshdr.sense_key == UNIT_ATTENTION && 2304 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2305 /* Device reset might occur several times, 2306 * give it one more chance */ 2307 if (--reset_retries > 0) 2308 continue; 2309 } 2310 retries--; 2311 2312 } while (the_result && retries); 2313 2314 if (the_result) { 2315 sd_print_result(sdkp, "Read Capacity(16) failed", the_result); 2316 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2317 return -EINVAL; 2318 } 2319 2320 sector_size = get_unaligned_be32(&buffer[8]); 2321 lba = get_unaligned_be64(&buffer[0]); 2322 2323 if (sd_read_protection_type(sdkp, buffer) < 0) { 2324 sdkp->capacity = 0; 2325 return -ENODEV; 2326 } 2327 2328 if (!sd_addressable_capacity(lba, sector_size)) { 2329 sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a " 2330 "kernel compiled with support for large block " 2331 "devices.\n"); 2332 sdkp->capacity = 0; 2333 return -EOVERFLOW; 2334 } 2335 2336 /* Logical blocks per physical block exponent */ 2337 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size; 2338 2339 /* RC basis */ 2340 sdkp->rc_basis = (buffer[12] >> 4) & 0x3; 2341 2342 /* Lowest aligned logical block */ 2343 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size; 2344 blk_queue_alignment_offset(sdp->request_queue, alignment); 2345 if (alignment && sdkp->first_scan) 2346 sd_printk(KERN_NOTICE, sdkp, 2347 "physical block alignment offset: %u\n", alignment); 2348 2349 if (buffer[14] & 0x80) { /* LBPME */ 2350 sdkp->lbpme = 1; 2351 2352 if (buffer[14] & 0x40) /* LBPRZ */ 2353 sdkp->lbprz = 1; 2354 2355 sd_config_discard(sdkp, SD_LBP_WS16); 2356 } 2357 2358 sdkp->capacity = lba + 1; 2359 return sector_size; 2360 } 2361 2362 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp, 2363 unsigned char *buffer) 2364 { 2365 unsigned char cmd[16]; 2366 struct scsi_sense_hdr sshdr; 2367 int sense_valid = 0; 2368 int the_result; 2369 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2370 sector_t lba; 2371 unsigned sector_size; 2372 2373 do { 2374 cmd[0] = READ_CAPACITY; 2375 memset(&cmd[1], 0, 9); 2376 memset(buffer, 0, 8); 2377 2378 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, 2379 buffer, 8, &sshdr, 2380 SD_TIMEOUT, SD_MAX_RETRIES, NULL); 2381 2382 if (media_not_present(sdkp, &sshdr)) 2383 return -ENODEV; 2384 2385 if (the_result) { 2386 sense_valid = scsi_sense_valid(&sshdr); 2387 if (sense_valid && 2388 sshdr.sense_key == UNIT_ATTENTION && 2389 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2390 /* Device reset might occur several times, 2391 * give it one more chance */ 2392 if (--reset_retries > 0) 2393 continue; 2394 } 2395 retries--; 2396 2397 } while (the_result && retries); 2398 2399 if (the_result) { 2400 sd_print_result(sdkp, "Read Capacity(10) failed", the_result); 2401 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2402 return -EINVAL; 2403 } 2404 2405 sector_size = get_unaligned_be32(&buffer[4]); 2406 lba = get_unaligned_be32(&buffer[0]); 2407 2408 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) { 2409 /* Some buggy (usb cardreader) devices return an lba of 2410 0xffffffff when the want to report a size of 0 (with 2411 which they really mean no media is present) */ 2412 sdkp->capacity = 0; 2413 sdkp->physical_block_size = sector_size; 2414 return sector_size; 2415 } 2416 2417 if (!sd_addressable_capacity(lba, sector_size)) { 2418 sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a " 2419 "kernel compiled with support for large block " 2420 "devices.\n"); 2421 sdkp->capacity = 0; 2422 return -EOVERFLOW; 2423 } 2424 2425 sdkp->capacity = lba + 1; 2426 sdkp->physical_block_size = sector_size; 2427 return sector_size; 2428 } 2429 2430 static int sd_try_rc16_first(struct scsi_device *sdp) 2431 { 2432 if (sdp->host->max_cmd_len < 16) 2433 return 0; 2434 if (sdp->try_rc_10_first) 2435 return 0; 2436 if (sdp->scsi_level > SCSI_SPC_2) 2437 return 1; 2438 if (scsi_device_protection(sdp)) 2439 return 1; 2440 return 0; 2441 } 2442 2443 /* 2444 * read disk capacity 2445 */ 2446 static void 2447 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer) 2448 { 2449 int sector_size; 2450 struct scsi_device *sdp = sdkp->device; 2451 2452 if (sd_try_rc16_first(sdp)) { 2453 sector_size = read_capacity_16(sdkp, sdp, buffer); 2454 if (sector_size == -EOVERFLOW) 2455 goto got_data; 2456 if (sector_size == -ENODEV) 2457 return; 2458 if (sector_size < 0) 2459 sector_size = read_capacity_10(sdkp, sdp, buffer); 2460 if (sector_size < 0) 2461 return; 2462 } else { 2463 sector_size = read_capacity_10(sdkp, sdp, buffer); 2464 if (sector_size == -EOVERFLOW) 2465 goto got_data; 2466 if (sector_size < 0) 2467 return; 2468 if ((sizeof(sdkp->capacity) > 4) && 2469 (sdkp->capacity > 0xffffffffULL)) { 2470 int old_sector_size = sector_size; 2471 sd_printk(KERN_NOTICE, sdkp, "Very big device. " 2472 "Trying to use READ CAPACITY(16).\n"); 2473 sector_size = read_capacity_16(sdkp, sdp, buffer); 2474 if (sector_size < 0) { 2475 sd_printk(KERN_NOTICE, sdkp, 2476 "Using 0xffffffff as device size\n"); 2477 sdkp->capacity = 1 + (sector_t) 0xffffffff; 2478 sector_size = old_sector_size; 2479 goto got_data; 2480 } 2481 /* Remember that READ CAPACITY(16) succeeded */ 2482 sdp->try_rc_10_first = 0; 2483 } 2484 } 2485 2486 /* Some devices are known to return the total number of blocks, 2487 * not the highest block number. Some devices have versions 2488 * which do this and others which do not. Some devices we might 2489 * suspect of doing this but we don't know for certain. 2490 * 2491 * If we know the reported capacity is wrong, decrement it. If 2492 * we can only guess, then assume the number of blocks is even 2493 * (usually true but not always) and err on the side of lowering 2494 * the capacity. 2495 */ 2496 if (sdp->fix_capacity || 2497 (sdp->guess_capacity && (sdkp->capacity & 0x01))) { 2498 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count " 2499 "from its reported value: %llu\n", 2500 (unsigned long long) sdkp->capacity); 2501 --sdkp->capacity; 2502 } 2503 2504 got_data: 2505 if (sector_size == 0) { 2506 sector_size = 512; 2507 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, " 2508 "assuming 512.\n"); 2509 } 2510 2511 if (sector_size != 512 && 2512 sector_size != 1024 && 2513 sector_size != 2048 && 2514 sector_size != 4096) { 2515 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n", 2516 sector_size); 2517 /* 2518 * The user might want to re-format the drive with 2519 * a supported sectorsize. Once this happens, it 2520 * would be relatively trivial to set the thing up. 2521 * For this reason, we leave the thing in the table. 2522 */ 2523 sdkp->capacity = 0; 2524 /* 2525 * set a bogus sector size so the normal read/write 2526 * logic in the block layer will eventually refuse any 2527 * request on this device without tripping over power 2528 * of two sector size assumptions 2529 */ 2530 sector_size = 512; 2531 } 2532 blk_queue_logical_block_size(sdp->request_queue, sector_size); 2533 blk_queue_physical_block_size(sdp->request_queue, 2534 sdkp->physical_block_size); 2535 sdkp->device->sector_size = sector_size; 2536 2537 if (sdkp->capacity > 0xffffffff) 2538 sdp->use_16_for_rw = 1; 2539 2540 } 2541 2542 /* 2543 * Print disk capacity 2544 */ 2545 static void 2546 sd_print_capacity(struct scsi_disk *sdkp, 2547 sector_t old_capacity) 2548 { 2549 int sector_size = sdkp->device->sector_size; 2550 char cap_str_2[10], cap_str_10[10]; 2551 2552 string_get_size(sdkp->capacity, sector_size, 2553 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2)); 2554 string_get_size(sdkp->capacity, sector_size, 2555 STRING_UNITS_10, cap_str_10, 2556 sizeof(cap_str_10)); 2557 2558 if (sdkp->first_scan || old_capacity != sdkp->capacity) { 2559 sd_printk(KERN_NOTICE, sdkp, 2560 "%llu %d-byte logical blocks: (%s/%s)\n", 2561 (unsigned long long)sdkp->capacity, 2562 sector_size, cap_str_10, cap_str_2); 2563 2564 if (sdkp->physical_block_size != sector_size) 2565 sd_printk(KERN_NOTICE, sdkp, 2566 "%u-byte physical blocks\n", 2567 sdkp->physical_block_size); 2568 2569 sd_zbc_print_zones(sdkp); 2570 } 2571 } 2572 2573 /* called with buffer of length 512 */ 2574 static inline int 2575 sd_do_mode_sense(struct scsi_device *sdp, int dbd, int modepage, 2576 unsigned char *buffer, int len, struct scsi_mode_data *data, 2577 struct scsi_sense_hdr *sshdr) 2578 { 2579 return scsi_mode_sense(sdp, dbd, modepage, buffer, len, 2580 SD_TIMEOUT, SD_MAX_RETRIES, data, 2581 sshdr); 2582 } 2583 2584 /* 2585 * read write protect setting, if possible - called only in sd_revalidate_disk() 2586 * called with buffer of length SD_BUF_SIZE 2587 */ 2588 static void 2589 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer) 2590 { 2591 int res; 2592 struct scsi_device *sdp = sdkp->device; 2593 struct scsi_mode_data data; 2594 int disk_ro = get_disk_ro(sdkp->disk); 2595 int old_wp = sdkp->write_prot; 2596 2597 set_disk_ro(sdkp->disk, 0); 2598 if (sdp->skip_ms_page_3f) { 2599 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n"); 2600 return; 2601 } 2602 2603 if (sdp->use_192_bytes_for_3f) { 2604 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 192, &data, NULL); 2605 } else { 2606 /* 2607 * First attempt: ask for all pages (0x3F), but only 4 bytes. 2608 * We have to start carefully: some devices hang if we ask 2609 * for more than is available. 2610 */ 2611 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 4, &data, NULL); 2612 2613 /* 2614 * Second attempt: ask for page 0 When only page 0 is 2615 * implemented, a request for page 3F may return Sense Key 2616 * 5: Illegal Request, Sense Code 24: Invalid field in 2617 * CDB. 2618 */ 2619 if (!scsi_status_is_good(res)) 2620 res = sd_do_mode_sense(sdp, 0, 0, buffer, 4, &data, NULL); 2621 2622 /* 2623 * Third attempt: ask 255 bytes, as we did earlier. 2624 */ 2625 if (!scsi_status_is_good(res)) 2626 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 255, 2627 &data, NULL); 2628 } 2629 2630 if (!scsi_status_is_good(res)) { 2631 sd_first_printk(KERN_WARNING, sdkp, 2632 "Test WP failed, assume Write Enabled\n"); 2633 } else { 2634 sdkp->write_prot = ((data.device_specific & 0x80) != 0); 2635 set_disk_ro(sdkp->disk, sdkp->write_prot || disk_ro); 2636 if (sdkp->first_scan || old_wp != sdkp->write_prot) { 2637 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n", 2638 sdkp->write_prot ? "on" : "off"); 2639 sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer); 2640 } 2641 } 2642 } 2643 2644 /* 2645 * sd_read_cache_type - called only from sd_revalidate_disk() 2646 * called with buffer of length SD_BUF_SIZE 2647 */ 2648 static void 2649 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer) 2650 { 2651 int len = 0, res; 2652 struct scsi_device *sdp = sdkp->device; 2653 2654 int dbd; 2655 int modepage; 2656 int first_len; 2657 struct scsi_mode_data data; 2658 struct scsi_sense_hdr sshdr; 2659 int old_wce = sdkp->WCE; 2660 int old_rcd = sdkp->RCD; 2661 int old_dpofua = sdkp->DPOFUA; 2662 2663 2664 if (sdkp->cache_override) 2665 return; 2666 2667 first_len = 4; 2668 if (sdp->skip_ms_page_8) { 2669 if (sdp->type == TYPE_RBC) 2670 goto defaults; 2671 else { 2672 if (sdp->skip_ms_page_3f) 2673 goto defaults; 2674 modepage = 0x3F; 2675 if (sdp->use_192_bytes_for_3f) 2676 first_len = 192; 2677 dbd = 0; 2678 } 2679 } else if (sdp->type == TYPE_RBC) { 2680 modepage = 6; 2681 dbd = 8; 2682 } else { 2683 modepage = 8; 2684 dbd = 0; 2685 } 2686 2687 /* cautiously ask */ 2688 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, first_len, 2689 &data, &sshdr); 2690 2691 if (!scsi_status_is_good(res)) 2692 goto bad_sense; 2693 2694 if (!data.header_length) { 2695 modepage = 6; 2696 first_len = 0; 2697 sd_first_printk(KERN_ERR, sdkp, 2698 "Missing header in MODE_SENSE response\n"); 2699 } 2700 2701 /* that went OK, now ask for the proper length */ 2702 len = data.length; 2703 2704 /* 2705 * We're only interested in the first three bytes, actually. 2706 * But the data cache page is defined for the first 20. 2707 */ 2708 if (len < 3) 2709 goto bad_sense; 2710 else if (len > SD_BUF_SIZE) { 2711 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter " 2712 "data from %d to %d bytes\n", len, SD_BUF_SIZE); 2713 len = SD_BUF_SIZE; 2714 } 2715 if (modepage == 0x3F && sdp->use_192_bytes_for_3f) 2716 len = 192; 2717 2718 /* Get the data */ 2719 if (len > first_len) 2720 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, len, 2721 &data, &sshdr); 2722 2723 if (scsi_status_is_good(res)) { 2724 int offset = data.header_length + data.block_descriptor_length; 2725 2726 while (offset < len) { 2727 u8 page_code = buffer[offset] & 0x3F; 2728 u8 spf = buffer[offset] & 0x40; 2729 2730 if (page_code == 8 || page_code == 6) { 2731 /* We're interested only in the first 3 bytes. 2732 */ 2733 if (len - offset <= 2) { 2734 sd_first_printk(KERN_ERR, sdkp, 2735 "Incomplete mode parameter " 2736 "data\n"); 2737 goto defaults; 2738 } else { 2739 modepage = page_code; 2740 goto Page_found; 2741 } 2742 } else { 2743 /* Go to the next page */ 2744 if (spf && len - offset > 3) 2745 offset += 4 + (buffer[offset+2] << 8) + 2746 buffer[offset+3]; 2747 else if (!spf && len - offset > 1) 2748 offset += 2 + buffer[offset+1]; 2749 else { 2750 sd_first_printk(KERN_ERR, sdkp, 2751 "Incomplete mode " 2752 "parameter data\n"); 2753 goto defaults; 2754 } 2755 } 2756 } 2757 2758 sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n"); 2759 goto defaults; 2760 2761 Page_found: 2762 if (modepage == 8) { 2763 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0); 2764 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0); 2765 } else { 2766 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0); 2767 sdkp->RCD = 0; 2768 } 2769 2770 sdkp->DPOFUA = (data.device_specific & 0x10) != 0; 2771 if (sdp->broken_fua) { 2772 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n"); 2773 sdkp->DPOFUA = 0; 2774 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw && 2775 !sdkp->device->use_16_for_rw) { 2776 sd_first_printk(KERN_NOTICE, sdkp, 2777 "Uses READ/WRITE(6), disabling FUA\n"); 2778 sdkp->DPOFUA = 0; 2779 } 2780 2781 /* No cache flush allowed for write protected devices */ 2782 if (sdkp->WCE && sdkp->write_prot) 2783 sdkp->WCE = 0; 2784 2785 if (sdkp->first_scan || old_wce != sdkp->WCE || 2786 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA) 2787 sd_printk(KERN_NOTICE, sdkp, 2788 "Write cache: %s, read cache: %s, %s\n", 2789 sdkp->WCE ? "enabled" : "disabled", 2790 sdkp->RCD ? "disabled" : "enabled", 2791 sdkp->DPOFUA ? "supports DPO and FUA" 2792 : "doesn't support DPO or FUA"); 2793 2794 return; 2795 } 2796 2797 bad_sense: 2798 if (scsi_sense_valid(&sshdr) && 2799 sshdr.sense_key == ILLEGAL_REQUEST && 2800 sshdr.asc == 0x24 && sshdr.ascq == 0x0) 2801 /* Invalid field in CDB */ 2802 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n"); 2803 else 2804 sd_first_printk(KERN_ERR, sdkp, 2805 "Asking for cache data failed\n"); 2806 2807 defaults: 2808 if (sdp->wce_default_on) { 2809 sd_first_printk(KERN_NOTICE, sdkp, 2810 "Assuming drive cache: write back\n"); 2811 sdkp->WCE = 1; 2812 } else { 2813 sd_first_printk(KERN_ERR, sdkp, 2814 "Assuming drive cache: write through\n"); 2815 sdkp->WCE = 0; 2816 } 2817 sdkp->RCD = 0; 2818 sdkp->DPOFUA = 0; 2819 } 2820 2821 /* 2822 * The ATO bit indicates whether the DIF application tag is available 2823 * for use by the operating system. 2824 */ 2825 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer) 2826 { 2827 int res, offset; 2828 struct scsi_device *sdp = sdkp->device; 2829 struct scsi_mode_data data; 2830 struct scsi_sense_hdr sshdr; 2831 2832 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 2833 return; 2834 2835 if (sdkp->protection_type == 0) 2836 return; 2837 2838 res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT, 2839 SD_MAX_RETRIES, &data, &sshdr); 2840 2841 if (!scsi_status_is_good(res) || !data.header_length || 2842 data.length < 6) { 2843 sd_first_printk(KERN_WARNING, sdkp, 2844 "getting Control mode page failed, assume no ATO\n"); 2845 2846 if (scsi_sense_valid(&sshdr)) 2847 sd_print_sense_hdr(sdkp, &sshdr); 2848 2849 return; 2850 } 2851 2852 offset = data.header_length + data.block_descriptor_length; 2853 2854 if ((buffer[offset] & 0x3f) != 0x0a) { 2855 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n"); 2856 return; 2857 } 2858 2859 if ((buffer[offset + 5] & 0x80) == 0) 2860 return; 2861 2862 sdkp->ATO = 1; 2863 2864 return; 2865 } 2866 2867 /** 2868 * sd_read_block_limits - Query disk device for preferred I/O sizes. 2869 * @sdkp: disk to query 2870 */ 2871 static void sd_read_block_limits(struct scsi_disk *sdkp) 2872 { 2873 unsigned int sector_sz = sdkp->device->sector_size; 2874 const int vpd_len = 64; 2875 unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL); 2876 2877 if (!buffer || 2878 /* Block Limits VPD */ 2879 scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len)) 2880 goto out; 2881 2882 blk_queue_io_min(sdkp->disk->queue, 2883 get_unaligned_be16(&buffer[6]) * sector_sz); 2884 2885 sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]); 2886 sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]); 2887 2888 if (buffer[3] == 0x3c) { 2889 unsigned int lba_count, desc_count; 2890 2891 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]); 2892 2893 if (!sdkp->lbpme) 2894 goto out; 2895 2896 lba_count = get_unaligned_be32(&buffer[20]); 2897 desc_count = get_unaligned_be32(&buffer[24]); 2898 2899 if (lba_count && desc_count) 2900 sdkp->max_unmap_blocks = lba_count; 2901 2902 sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]); 2903 2904 if (buffer[32] & 0x80) 2905 sdkp->unmap_alignment = 2906 get_unaligned_be32(&buffer[32]) & ~(1 << 31); 2907 2908 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */ 2909 2910 if (sdkp->max_unmap_blocks) 2911 sd_config_discard(sdkp, SD_LBP_UNMAP); 2912 else 2913 sd_config_discard(sdkp, SD_LBP_WS16); 2914 2915 } else { /* LBP VPD page tells us what to use */ 2916 if (sdkp->lbpu && sdkp->max_unmap_blocks) 2917 sd_config_discard(sdkp, SD_LBP_UNMAP); 2918 else if (sdkp->lbpws) 2919 sd_config_discard(sdkp, SD_LBP_WS16); 2920 else if (sdkp->lbpws10) 2921 sd_config_discard(sdkp, SD_LBP_WS10); 2922 else 2923 sd_config_discard(sdkp, SD_LBP_DISABLE); 2924 } 2925 } 2926 2927 out: 2928 kfree(buffer); 2929 } 2930 2931 /** 2932 * sd_read_block_characteristics - Query block dev. characteristics 2933 * @sdkp: disk to query 2934 */ 2935 static void sd_read_block_characteristics(struct scsi_disk *sdkp) 2936 { 2937 struct request_queue *q = sdkp->disk->queue; 2938 unsigned char *buffer; 2939 u16 rot; 2940 const int vpd_len = 64; 2941 2942 buffer = kmalloc(vpd_len, GFP_KERNEL); 2943 2944 if (!buffer || 2945 /* Block Device Characteristics VPD */ 2946 scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len)) 2947 goto out; 2948 2949 rot = get_unaligned_be16(&buffer[4]); 2950 2951 if (rot == 1) { 2952 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 2953 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q); 2954 } else { 2955 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q); 2956 blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q); 2957 } 2958 2959 if (sdkp->device->type == TYPE_ZBC) { 2960 /* Host-managed */ 2961 q->limits.zoned = BLK_ZONED_HM; 2962 } else { 2963 sdkp->zoned = (buffer[8] >> 4) & 3; 2964 if (sdkp->zoned == 1) 2965 /* Host-aware */ 2966 q->limits.zoned = BLK_ZONED_HA; 2967 else 2968 /* 2969 * Treat drive-managed devices as 2970 * regular block devices. 2971 */ 2972 q->limits.zoned = BLK_ZONED_NONE; 2973 } 2974 if (blk_queue_is_zoned(q) && sdkp->first_scan) 2975 sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n", 2976 q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware"); 2977 2978 out: 2979 kfree(buffer); 2980 } 2981 2982 /** 2983 * sd_read_block_provisioning - Query provisioning VPD page 2984 * @sdkp: disk to query 2985 */ 2986 static void sd_read_block_provisioning(struct scsi_disk *sdkp) 2987 { 2988 unsigned char *buffer; 2989 const int vpd_len = 8; 2990 2991 if (sdkp->lbpme == 0) 2992 return; 2993 2994 buffer = kmalloc(vpd_len, GFP_KERNEL); 2995 2996 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len)) 2997 goto out; 2998 2999 sdkp->lbpvpd = 1; 3000 sdkp->lbpu = (buffer[5] >> 7) & 1; /* UNMAP */ 3001 sdkp->lbpws = (buffer[5] >> 6) & 1; /* WRITE SAME(16) with UNMAP */ 3002 sdkp->lbpws10 = (buffer[5] >> 5) & 1; /* WRITE SAME(10) with UNMAP */ 3003 3004 out: 3005 kfree(buffer); 3006 } 3007 3008 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer) 3009 { 3010 struct scsi_device *sdev = sdkp->device; 3011 3012 if (sdev->host->no_write_same) { 3013 sdev->no_write_same = 1; 3014 3015 return; 3016 } 3017 3018 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) { 3019 /* too large values might cause issues with arcmsr */ 3020 int vpd_buf_len = 64; 3021 3022 sdev->no_report_opcodes = 1; 3023 3024 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION 3025 * CODES is unsupported and the device has an ATA 3026 * Information VPD page (SAT). 3027 */ 3028 if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len)) 3029 sdev->no_write_same = 1; 3030 } 3031 3032 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1) 3033 sdkp->ws16 = 1; 3034 3035 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1) 3036 sdkp->ws10 = 1; 3037 } 3038 3039 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer) 3040 { 3041 struct scsi_device *sdev = sdkp->device; 3042 3043 if (!sdev->security_supported) 3044 return; 3045 3046 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3047 SECURITY_PROTOCOL_IN) == 1 && 3048 scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3049 SECURITY_PROTOCOL_OUT) == 1) 3050 sdkp->security = 1; 3051 } 3052 3053 /** 3054 * sd_revalidate_disk - called the first time a new disk is seen, 3055 * performs disk spin up, read_capacity, etc. 3056 * @disk: struct gendisk we care about 3057 **/ 3058 static int sd_revalidate_disk(struct gendisk *disk) 3059 { 3060 struct scsi_disk *sdkp = scsi_disk(disk); 3061 struct scsi_device *sdp = sdkp->device; 3062 struct request_queue *q = sdkp->disk->queue; 3063 sector_t old_capacity = sdkp->capacity; 3064 unsigned char *buffer; 3065 unsigned int dev_max, rw_max; 3066 3067 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, 3068 "sd_revalidate_disk\n")); 3069 3070 /* 3071 * If the device is offline, don't try and read capacity or any 3072 * of the other niceties. 3073 */ 3074 if (!scsi_device_online(sdp)) 3075 goto out; 3076 3077 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL); 3078 if (!buffer) { 3079 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory " 3080 "allocation failure.\n"); 3081 goto out; 3082 } 3083 3084 sd_spinup_disk(sdkp); 3085 3086 /* 3087 * Without media there is no reason to ask; moreover, some devices 3088 * react badly if we do. 3089 */ 3090 if (sdkp->media_present) { 3091 sd_read_capacity(sdkp, buffer); 3092 3093 if (scsi_device_supports_vpd(sdp)) { 3094 sd_read_block_provisioning(sdkp); 3095 sd_read_block_limits(sdkp); 3096 sd_read_block_characteristics(sdkp); 3097 sd_zbc_read_zones(sdkp, buffer); 3098 } 3099 3100 sd_print_capacity(sdkp, old_capacity); 3101 3102 sd_read_write_protect_flag(sdkp, buffer); 3103 sd_read_cache_type(sdkp, buffer); 3104 sd_read_app_tag_own(sdkp, buffer); 3105 sd_read_write_same(sdkp, buffer); 3106 sd_read_security(sdkp, buffer); 3107 } 3108 3109 /* 3110 * We now have all cache related info, determine how we deal 3111 * with flush requests. 3112 */ 3113 sd_set_flush_flag(sdkp); 3114 3115 /* Initial block count limit based on CDB TRANSFER LENGTH field size. */ 3116 dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS; 3117 3118 /* Some devices report a maximum block count for READ/WRITE requests. */ 3119 dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks); 3120 q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max); 3121 3122 /* 3123 * Determine the device's preferred I/O size for reads and writes 3124 * unless the reported value is unreasonably small, large, or 3125 * garbage. 3126 */ 3127 if (sdkp->opt_xfer_blocks && 3128 sdkp->opt_xfer_blocks <= dev_max && 3129 sdkp->opt_xfer_blocks <= SD_DEF_XFER_BLOCKS && 3130 logical_to_bytes(sdp, sdkp->opt_xfer_blocks) >= PAGE_SIZE) { 3131 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 3132 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks); 3133 } else 3134 rw_max = min_not_zero(logical_to_sectors(sdp, dev_max), 3135 (sector_t)BLK_DEF_MAX_SECTORS); 3136 3137 /* Do not exceed controller limit */ 3138 rw_max = min(rw_max, queue_max_hw_sectors(q)); 3139 3140 /* 3141 * Only update max_sectors if previously unset or if the current value 3142 * exceeds the capabilities of the hardware. 3143 */ 3144 if (sdkp->first_scan || 3145 q->limits.max_sectors > q->limits.max_dev_sectors || 3146 q->limits.max_sectors > q->limits.max_hw_sectors) 3147 q->limits.max_sectors = rw_max; 3148 3149 sdkp->first_scan = 0; 3150 3151 set_capacity(disk, logical_to_sectors(sdp, sdkp->capacity)); 3152 sd_config_write_same(sdkp); 3153 kfree(buffer); 3154 3155 out: 3156 return 0; 3157 } 3158 3159 /** 3160 * sd_unlock_native_capacity - unlock native capacity 3161 * @disk: struct gendisk to set capacity for 3162 * 3163 * Block layer calls this function if it detects that partitions 3164 * on @disk reach beyond the end of the device. If the SCSI host 3165 * implements ->unlock_native_capacity() method, it's invoked to 3166 * give it a chance to adjust the device capacity. 3167 * 3168 * CONTEXT: 3169 * Defined by block layer. Might sleep. 3170 */ 3171 static void sd_unlock_native_capacity(struct gendisk *disk) 3172 { 3173 struct scsi_device *sdev = scsi_disk(disk)->device; 3174 3175 if (sdev->host->hostt->unlock_native_capacity) 3176 sdev->host->hostt->unlock_native_capacity(sdev); 3177 } 3178 3179 /** 3180 * sd_format_disk_name - format disk name 3181 * @prefix: name prefix - ie. "sd" for SCSI disks 3182 * @index: index of the disk to format name for 3183 * @buf: output buffer 3184 * @buflen: length of the output buffer 3185 * 3186 * SCSI disk names starts at sda. The 26th device is sdz and the 3187 * 27th is sdaa. The last one for two lettered suffix is sdzz 3188 * which is followed by sdaaa. 3189 * 3190 * This is basically 26 base counting with one extra 'nil' entry 3191 * at the beginning from the second digit on and can be 3192 * determined using similar method as 26 base conversion with the 3193 * index shifted -1 after each digit is computed. 3194 * 3195 * CONTEXT: 3196 * Don't care. 3197 * 3198 * RETURNS: 3199 * 0 on success, -errno on failure. 3200 */ 3201 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen) 3202 { 3203 const int base = 'z' - 'a' + 1; 3204 char *begin = buf + strlen(prefix); 3205 char *end = buf + buflen; 3206 char *p; 3207 int unit; 3208 3209 p = end - 1; 3210 *p = '\0'; 3211 unit = base; 3212 do { 3213 if (p == begin) 3214 return -EINVAL; 3215 *--p = 'a' + (index % unit); 3216 index = (index / unit) - 1; 3217 } while (index >= 0); 3218 3219 memmove(begin, p, end - p); 3220 memcpy(buf, prefix, strlen(prefix)); 3221 3222 return 0; 3223 } 3224 3225 /* 3226 * The asynchronous part of sd_probe 3227 */ 3228 static void sd_probe_async(void *data, async_cookie_t cookie) 3229 { 3230 struct scsi_disk *sdkp = data; 3231 struct scsi_device *sdp; 3232 struct gendisk *gd; 3233 u32 index; 3234 struct device *dev; 3235 3236 sdp = sdkp->device; 3237 gd = sdkp->disk; 3238 index = sdkp->index; 3239 dev = &sdp->sdev_gendev; 3240 3241 gd->major = sd_major((index & 0xf0) >> 4); 3242 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00); 3243 3244 gd->fops = &sd_fops; 3245 gd->private_data = &sdkp->driver; 3246 gd->queue = sdkp->device->request_queue; 3247 3248 /* defaults, until the device tells us otherwise */ 3249 sdp->sector_size = 512; 3250 sdkp->capacity = 0; 3251 sdkp->media_present = 1; 3252 sdkp->write_prot = 0; 3253 sdkp->cache_override = 0; 3254 sdkp->WCE = 0; 3255 sdkp->RCD = 0; 3256 sdkp->ATO = 0; 3257 sdkp->first_scan = 1; 3258 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS; 3259 3260 sd_revalidate_disk(gd); 3261 3262 gd->flags = GENHD_FL_EXT_DEVT; 3263 if (sdp->removable) { 3264 gd->flags |= GENHD_FL_REMOVABLE; 3265 gd->events |= DISK_EVENT_MEDIA_CHANGE; 3266 } 3267 3268 blk_pm_runtime_init(sdp->request_queue, dev); 3269 device_add_disk(dev, gd, NULL); 3270 if (sdkp->capacity) 3271 sd_dif_config_host(sdkp); 3272 3273 sd_revalidate_disk(gd); 3274 3275 if (sdkp->security) { 3276 sdkp->opal_dev = init_opal_dev(sdp, &sd_sec_submit); 3277 if (sdkp->opal_dev) 3278 sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n"); 3279 } 3280 3281 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n", 3282 sdp->removable ? "removable " : ""); 3283 scsi_autopm_put_device(sdp); 3284 put_device(&sdkp->dev); 3285 } 3286 3287 /** 3288 * sd_probe - called during driver initialization and whenever a 3289 * new scsi device is attached to the system. It is called once 3290 * for each scsi device (not just disks) present. 3291 * @dev: pointer to device object 3292 * 3293 * Returns 0 if successful (or not interested in this scsi device 3294 * (e.g. scanner)); 1 when there is an error. 3295 * 3296 * Note: this function is invoked from the scsi mid-level. 3297 * This function sets up the mapping between a given 3298 * <host,channel,id,lun> (found in sdp) and new device name 3299 * (e.g. /dev/sda). More precisely it is the block device major 3300 * and minor number that is chosen here. 3301 * 3302 * Assume sd_probe is not re-entrant (for time being) 3303 * Also think about sd_probe() and sd_remove() running coincidentally. 3304 **/ 3305 static int sd_probe(struct device *dev) 3306 { 3307 struct scsi_device *sdp = to_scsi_device(dev); 3308 struct scsi_disk *sdkp; 3309 struct gendisk *gd; 3310 int index; 3311 int error; 3312 3313 scsi_autopm_get_device(sdp); 3314 error = -ENODEV; 3315 if (sdp->type != TYPE_DISK && 3316 sdp->type != TYPE_ZBC && 3317 sdp->type != TYPE_MOD && 3318 sdp->type != TYPE_RBC) 3319 goto out; 3320 3321 #ifndef CONFIG_BLK_DEV_ZONED 3322 if (sdp->type == TYPE_ZBC) 3323 goto out; 3324 #endif 3325 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp, 3326 "sd_probe\n")); 3327 3328 error = -ENOMEM; 3329 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL); 3330 if (!sdkp) 3331 goto out; 3332 3333 gd = alloc_disk(SD_MINORS); 3334 if (!gd) 3335 goto out_free; 3336 3337 index = ida_alloc(&sd_index_ida, GFP_KERNEL); 3338 if (index < 0) { 3339 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n"); 3340 goto out_put; 3341 } 3342 3343 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN); 3344 if (error) { 3345 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n"); 3346 goto out_free_index; 3347 } 3348 3349 sdkp->device = sdp; 3350 sdkp->driver = &sd_template; 3351 sdkp->disk = gd; 3352 sdkp->index = index; 3353 atomic_set(&sdkp->openers, 0); 3354 atomic_set(&sdkp->device->ioerr_cnt, 0); 3355 3356 if (!sdp->request_queue->rq_timeout) { 3357 if (sdp->type != TYPE_MOD) 3358 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT); 3359 else 3360 blk_queue_rq_timeout(sdp->request_queue, 3361 SD_MOD_TIMEOUT); 3362 } 3363 3364 device_initialize(&sdkp->dev); 3365 sdkp->dev.parent = dev; 3366 sdkp->dev.class = &sd_disk_class; 3367 dev_set_name(&sdkp->dev, "%s", dev_name(dev)); 3368 3369 error = device_add(&sdkp->dev); 3370 if (error) 3371 goto out_free_index; 3372 3373 get_device(dev); 3374 dev_set_drvdata(dev, sdkp); 3375 3376 get_device(&sdkp->dev); /* prevent release before async_schedule */ 3377 async_schedule_domain(sd_probe_async, sdkp, &scsi_sd_probe_domain); 3378 3379 return 0; 3380 3381 out_free_index: 3382 ida_free(&sd_index_ida, index); 3383 out_put: 3384 put_disk(gd); 3385 out_free: 3386 kfree(sdkp); 3387 out: 3388 scsi_autopm_put_device(sdp); 3389 return error; 3390 } 3391 3392 /** 3393 * sd_remove - called whenever a scsi disk (previously recognized by 3394 * sd_probe) is detached from the system. It is called (potentially 3395 * multiple times) during sd module unload. 3396 * @dev: pointer to device object 3397 * 3398 * Note: this function is invoked from the scsi mid-level. 3399 * This function potentially frees up a device name (e.g. /dev/sdc) 3400 * that could be re-used by a subsequent sd_probe(). 3401 * This function is not called when the built-in sd driver is "exit-ed". 3402 **/ 3403 static int sd_remove(struct device *dev) 3404 { 3405 struct scsi_disk *sdkp; 3406 dev_t devt; 3407 3408 sdkp = dev_get_drvdata(dev); 3409 devt = disk_devt(sdkp->disk); 3410 scsi_autopm_get_device(sdkp->device); 3411 3412 async_synchronize_full_domain(&scsi_sd_pm_domain); 3413 async_synchronize_full_domain(&scsi_sd_probe_domain); 3414 device_del(&sdkp->dev); 3415 del_gendisk(sdkp->disk); 3416 sd_shutdown(dev); 3417 3418 free_opal_dev(sdkp->opal_dev); 3419 3420 blk_register_region(devt, SD_MINORS, NULL, 3421 sd_default_probe, NULL, NULL); 3422 3423 mutex_lock(&sd_ref_mutex); 3424 dev_set_drvdata(dev, NULL); 3425 put_device(&sdkp->dev); 3426 mutex_unlock(&sd_ref_mutex); 3427 3428 return 0; 3429 } 3430 3431 /** 3432 * scsi_disk_release - Called to free the scsi_disk structure 3433 * @dev: pointer to embedded class device 3434 * 3435 * sd_ref_mutex must be held entering this routine. Because it is 3436 * called on last put, you should always use the scsi_disk_get() 3437 * scsi_disk_put() helpers which manipulate the semaphore directly 3438 * and never do a direct put_device. 3439 **/ 3440 static void scsi_disk_release(struct device *dev) 3441 { 3442 struct scsi_disk *sdkp = to_scsi_disk(dev); 3443 struct gendisk *disk = sdkp->disk; 3444 3445 ida_free(&sd_index_ida, sdkp->index); 3446 3447 disk->private_data = NULL; 3448 put_disk(disk); 3449 put_device(&sdkp->device->sdev_gendev); 3450 3451 kfree(sdkp); 3452 } 3453 3454 static int sd_start_stop_device(struct scsi_disk *sdkp, int start) 3455 { 3456 unsigned char cmd[6] = { START_STOP }; /* START_VALID */ 3457 struct scsi_sense_hdr sshdr; 3458 struct scsi_device *sdp = sdkp->device; 3459 int res; 3460 3461 if (start) 3462 cmd[4] |= 1; /* START */ 3463 3464 if (sdp->start_stop_pwr_cond) 3465 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */ 3466 3467 if (!scsi_device_online(sdp)) 3468 return -ENODEV; 3469 3470 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr, 3471 SD_TIMEOUT, SD_MAX_RETRIES, 0, RQF_PM, NULL); 3472 if (res) { 3473 sd_print_result(sdkp, "Start/Stop Unit failed", res); 3474 if (driver_byte(res) == DRIVER_SENSE) 3475 sd_print_sense_hdr(sdkp, &sshdr); 3476 if (scsi_sense_valid(&sshdr) && 3477 /* 0x3a is medium not present */ 3478 sshdr.asc == 0x3a) 3479 res = 0; 3480 } 3481 3482 /* SCSI error codes must not go to the generic layer */ 3483 if (res) 3484 return -EIO; 3485 3486 return 0; 3487 } 3488 3489 /* 3490 * Send a SYNCHRONIZE CACHE instruction down to the device through 3491 * the normal SCSI command structure. Wait for the command to 3492 * complete. 3493 */ 3494 static void sd_shutdown(struct device *dev) 3495 { 3496 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3497 3498 if (!sdkp) 3499 return; /* this can happen */ 3500 3501 if (pm_runtime_suspended(dev)) 3502 return; 3503 3504 if (sdkp->WCE && sdkp->media_present) { 3505 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3506 sd_sync_cache(sdkp, NULL); 3507 } 3508 3509 if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) { 3510 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3511 sd_start_stop_device(sdkp, 0); 3512 } 3513 } 3514 3515 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors) 3516 { 3517 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3518 struct scsi_sense_hdr sshdr; 3519 int ret = 0; 3520 3521 if (!sdkp) /* E.g.: runtime suspend following sd_remove() */ 3522 return 0; 3523 3524 if (sdkp->WCE && sdkp->media_present) { 3525 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3526 ret = sd_sync_cache(sdkp, &sshdr); 3527 3528 if (ret) { 3529 /* ignore OFFLINE device */ 3530 if (ret == -ENODEV) 3531 return 0; 3532 3533 if (!scsi_sense_valid(&sshdr) || 3534 sshdr.sense_key != ILLEGAL_REQUEST) 3535 return ret; 3536 3537 /* 3538 * sshdr.sense_key == ILLEGAL_REQUEST means this drive 3539 * doesn't support sync. There's not much to do and 3540 * suspend shouldn't fail. 3541 */ 3542 ret = 0; 3543 } 3544 } 3545 3546 if (sdkp->device->manage_start_stop) { 3547 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3548 /* an error is not worth aborting a system sleep */ 3549 ret = sd_start_stop_device(sdkp, 0); 3550 if (ignore_stop_errors) 3551 ret = 0; 3552 } 3553 3554 return ret; 3555 } 3556 3557 static int sd_suspend_system(struct device *dev) 3558 { 3559 return sd_suspend_common(dev, true); 3560 } 3561 3562 static int sd_suspend_runtime(struct device *dev) 3563 { 3564 return sd_suspend_common(dev, false); 3565 } 3566 3567 static int sd_resume(struct device *dev) 3568 { 3569 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3570 int ret; 3571 3572 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */ 3573 return 0; 3574 3575 if (!sdkp->device->manage_start_stop) 3576 return 0; 3577 3578 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n"); 3579 ret = sd_start_stop_device(sdkp, 1); 3580 if (!ret) 3581 opal_unlock_from_suspend(sdkp->opal_dev); 3582 return ret; 3583 } 3584 3585 /** 3586 * init_sd - entry point for this driver (both when built in or when 3587 * a module). 3588 * 3589 * Note: this function registers this driver with the scsi mid-level. 3590 **/ 3591 static int __init init_sd(void) 3592 { 3593 int majors = 0, i, err; 3594 3595 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n")); 3596 3597 for (i = 0; i < SD_MAJORS; i++) { 3598 if (register_blkdev(sd_major(i), "sd") != 0) 3599 continue; 3600 majors++; 3601 blk_register_region(sd_major(i), SD_MINORS, NULL, 3602 sd_default_probe, NULL, NULL); 3603 } 3604 3605 if (!majors) 3606 return -ENODEV; 3607 3608 err = class_register(&sd_disk_class); 3609 if (err) 3610 goto err_out; 3611 3612 sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE, 3613 0, 0, NULL); 3614 if (!sd_cdb_cache) { 3615 printk(KERN_ERR "sd: can't init extended cdb cache\n"); 3616 err = -ENOMEM; 3617 goto err_out_class; 3618 } 3619 3620 sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache); 3621 if (!sd_cdb_pool) { 3622 printk(KERN_ERR "sd: can't init extended cdb pool\n"); 3623 err = -ENOMEM; 3624 goto err_out_cache; 3625 } 3626 3627 sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0); 3628 if (!sd_page_pool) { 3629 printk(KERN_ERR "sd: can't init discard page pool\n"); 3630 err = -ENOMEM; 3631 goto err_out_ppool; 3632 } 3633 3634 err = scsi_register_driver(&sd_template.gendrv); 3635 if (err) 3636 goto err_out_driver; 3637 3638 return 0; 3639 3640 err_out_driver: 3641 mempool_destroy(sd_page_pool); 3642 3643 err_out_ppool: 3644 mempool_destroy(sd_cdb_pool); 3645 3646 err_out_cache: 3647 kmem_cache_destroy(sd_cdb_cache); 3648 3649 err_out_class: 3650 class_unregister(&sd_disk_class); 3651 err_out: 3652 for (i = 0; i < SD_MAJORS; i++) 3653 unregister_blkdev(sd_major(i), "sd"); 3654 return err; 3655 } 3656 3657 /** 3658 * exit_sd - exit point for this driver (when it is a module). 3659 * 3660 * Note: this function unregisters this driver from the scsi mid-level. 3661 **/ 3662 static void __exit exit_sd(void) 3663 { 3664 int i; 3665 3666 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n")); 3667 3668 scsi_unregister_driver(&sd_template.gendrv); 3669 mempool_destroy(sd_cdb_pool); 3670 mempool_destroy(sd_page_pool); 3671 kmem_cache_destroy(sd_cdb_cache); 3672 3673 class_unregister(&sd_disk_class); 3674 3675 for (i = 0; i < SD_MAJORS; i++) { 3676 blk_unregister_region(sd_major(i), SD_MINORS); 3677 unregister_blkdev(sd_major(i), "sd"); 3678 } 3679 } 3680 3681 module_init(init_sd); 3682 module_exit(exit_sd); 3683 3684 static void sd_print_sense_hdr(struct scsi_disk *sdkp, 3685 struct scsi_sense_hdr *sshdr) 3686 { 3687 scsi_print_sense_hdr(sdkp->device, 3688 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr); 3689 } 3690 3691 static void sd_print_result(const struct scsi_disk *sdkp, const char *msg, 3692 int result) 3693 { 3694 const char *hb_string = scsi_hostbyte_string(result); 3695 const char *db_string = scsi_driverbyte_string(result); 3696 3697 if (hb_string || db_string) 3698 sd_printk(KERN_INFO, sdkp, 3699 "%s: Result: hostbyte=%s driverbyte=%s\n", msg, 3700 hb_string ? hb_string : "invalid", 3701 db_string ? db_string : "invalid"); 3702 else 3703 sd_printk(KERN_INFO, sdkp, 3704 "%s: Result: hostbyte=0x%02x driverbyte=0x%02x\n", 3705 msg, host_byte(result), driver_byte(result)); 3706 } 3707 3708