xref: /linux/drivers/scsi/sd.c (revision 3027ce13e04eee76539ca65c2cb1028a01c8c508)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *      sd.c Copyright (C) 1992 Drew Eckhardt
4  *           Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
5  *
6  *      Linux scsi disk driver
7  *              Initial versions: Drew Eckhardt
8  *              Subsequent revisions: Eric Youngdale
9  *	Modification history:
10  *       - Drew Eckhardt <drew@colorado.edu> original
11  *       - Eric Youngdale <eric@andante.org> add scatter-gather, multiple
12  *         outstanding request, and other enhancements.
13  *         Support loadable low-level scsi drivers.
14  *       - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using
15  *         eight major numbers.
16  *       - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
17  *	 - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in
18  *	   sd_init and cleanups.
19  *	 - Alex Davis <letmein@erols.com> Fix problem where partition info
20  *	   not being read in sd_open. Fix problem where removable media
21  *	   could be ejected after sd_open.
22  *	 - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
23  *	 - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox
24  *	   <willy@debian.org>, Kurt Garloff <garloff@suse.de>:
25  *	   Support 32k/1M disks.
26  *
27  *	Logging policy (needs CONFIG_SCSI_LOGGING defined):
28  *	 - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
29  *	 - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
30  *	 - entering sd_ioctl: SCSI_LOG_IOCTL level 1
31  *	 - entering other commands: SCSI_LOG_HLQUEUE level 3
32  *	Note: when the logging level is set by the user, it must be greater
33  *	than the level indicated above to trigger output.
34  */
35 
36 #include <linux/module.h>
37 #include <linux/fs.h>
38 #include <linux/kernel.h>
39 #include <linux/mm.h>
40 #include <linux/bio.h>
41 #include <linux/hdreg.h>
42 #include <linux/errno.h>
43 #include <linux/idr.h>
44 #include <linux/interrupt.h>
45 #include <linux/init.h>
46 #include <linux/blkdev.h>
47 #include <linux/blkpg.h>
48 #include <linux/blk-pm.h>
49 #include <linux/delay.h>
50 #include <linux/rw_hint.h>
51 #include <linux/major.h>
52 #include <linux/mutex.h>
53 #include <linux/string_helpers.h>
54 #include <linux/slab.h>
55 #include <linux/sed-opal.h>
56 #include <linux/pm_runtime.h>
57 #include <linux/pr.h>
58 #include <linux/t10-pi.h>
59 #include <linux/uaccess.h>
60 #include <asm/unaligned.h>
61 
62 #include <scsi/scsi.h>
63 #include <scsi/scsi_cmnd.h>
64 #include <scsi/scsi_dbg.h>
65 #include <scsi/scsi_device.h>
66 #include <scsi/scsi_driver.h>
67 #include <scsi/scsi_eh.h>
68 #include <scsi/scsi_host.h>
69 #include <scsi/scsi_ioctl.h>
70 #include <scsi/scsicam.h>
71 #include <scsi/scsi_common.h>
72 
73 #include "sd.h"
74 #include "scsi_priv.h"
75 #include "scsi_logging.h"
76 
77 MODULE_AUTHOR("Eric Youngdale");
78 MODULE_DESCRIPTION("SCSI disk (sd) driver");
79 MODULE_LICENSE("GPL");
80 
81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
95 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
96 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
97 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
98 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
99 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
100 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
101 
102 #define SD_MINORS	16
103 
104 static void sd_config_discard(struct scsi_disk *, unsigned int);
105 static void sd_config_write_same(struct scsi_disk *);
106 static int  sd_revalidate_disk(struct gendisk *);
107 static void sd_unlock_native_capacity(struct gendisk *disk);
108 static void sd_shutdown(struct device *);
109 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
110 static void scsi_disk_release(struct device *cdev);
111 
112 static DEFINE_IDA(sd_index_ida);
113 
114 static mempool_t *sd_page_pool;
115 static struct lock_class_key sd_bio_compl_lkclass;
116 
117 static const char *sd_cache_types[] = {
118 	"write through", "none", "write back",
119 	"write back, no read (daft)"
120 };
121 
122 static void sd_set_flush_flag(struct scsi_disk *sdkp)
123 {
124 	bool wc = false, fua = false;
125 
126 	if (sdkp->WCE) {
127 		wc = true;
128 		if (sdkp->DPOFUA)
129 			fua = true;
130 	}
131 
132 	blk_queue_write_cache(sdkp->disk->queue, wc, fua);
133 }
134 
135 static ssize_t
136 cache_type_store(struct device *dev, struct device_attribute *attr,
137 		 const char *buf, size_t count)
138 {
139 	int ct, rcd, wce, sp;
140 	struct scsi_disk *sdkp = to_scsi_disk(dev);
141 	struct scsi_device *sdp = sdkp->device;
142 	char buffer[64];
143 	char *buffer_data;
144 	struct scsi_mode_data data;
145 	struct scsi_sense_hdr sshdr;
146 	static const char temp[] = "temporary ";
147 	int len, ret;
148 
149 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
150 		/* no cache control on RBC devices; theoretically they
151 		 * can do it, but there's probably so many exceptions
152 		 * it's not worth the risk */
153 		return -EINVAL;
154 
155 	if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
156 		buf += sizeof(temp) - 1;
157 		sdkp->cache_override = 1;
158 	} else {
159 		sdkp->cache_override = 0;
160 	}
161 
162 	ct = sysfs_match_string(sd_cache_types, buf);
163 	if (ct < 0)
164 		return -EINVAL;
165 
166 	rcd = ct & 0x01 ? 1 : 0;
167 	wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
168 
169 	if (sdkp->cache_override) {
170 		sdkp->WCE = wce;
171 		sdkp->RCD = rcd;
172 		sd_set_flush_flag(sdkp);
173 		return count;
174 	}
175 
176 	if (scsi_mode_sense(sdp, 0x08, 8, 0, buffer, sizeof(buffer), SD_TIMEOUT,
177 			    sdkp->max_retries, &data, NULL))
178 		return -EINVAL;
179 	len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
180 		  data.block_descriptor_length);
181 	buffer_data = buffer + data.header_length +
182 		data.block_descriptor_length;
183 	buffer_data[2] &= ~0x05;
184 	buffer_data[2] |= wce << 2 | rcd;
185 	sp = buffer_data[0] & 0x80 ? 1 : 0;
186 	buffer_data[0] &= ~0x80;
187 
188 	/*
189 	 * Ensure WP, DPOFUA, and RESERVED fields are cleared in
190 	 * received mode parameter buffer before doing MODE SELECT.
191 	 */
192 	data.device_specific = 0;
193 
194 	ret = scsi_mode_select(sdp, 1, sp, buffer_data, len, SD_TIMEOUT,
195 			       sdkp->max_retries, &data, &sshdr);
196 	if (ret) {
197 		if (ret > 0 && scsi_sense_valid(&sshdr))
198 			sd_print_sense_hdr(sdkp, &sshdr);
199 		return -EINVAL;
200 	}
201 	sd_revalidate_disk(sdkp->disk);
202 	return count;
203 }
204 
205 static ssize_t
206 manage_start_stop_show(struct device *dev,
207 		       struct device_attribute *attr, char *buf)
208 {
209 	struct scsi_disk *sdkp = to_scsi_disk(dev);
210 	struct scsi_device *sdp = sdkp->device;
211 
212 	return sysfs_emit(buf, "%u\n",
213 			  sdp->manage_system_start_stop &&
214 			  sdp->manage_runtime_start_stop &&
215 			  sdp->manage_shutdown);
216 }
217 static DEVICE_ATTR_RO(manage_start_stop);
218 
219 static ssize_t
220 manage_system_start_stop_show(struct device *dev,
221 			      struct device_attribute *attr, char *buf)
222 {
223 	struct scsi_disk *sdkp = to_scsi_disk(dev);
224 	struct scsi_device *sdp = sdkp->device;
225 
226 	return sysfs_emit(buf, "%u\n", sdp->manage_system_start_stop);
227 }
228 
229 static ssize_t
230 manage_system_start_stop_store(struct device *dev,
231 			       struct device_attribute *attr,
232 			       const char *buf, size_t count)
233 {
234 	struct scsi_disk *sdkp = to_scsi_disk(dev);
235 	struct scsi_device *sdp = sdkp->device;
236 	bool v;
237 
238 	if (!capable(CAP_SYS_ADMIN))
239 		return -EACCES;
240 
241 	if (kstrtobool(buf, &v))
242 		return -EINVAL;
243 
244 	sdp->manage_system_start_stop = v;
245 
246 	return count;
247 }
248 static DEVICE_ATTR_RW(manage_system_start_stop);
249 
250 static ssize_t
251 manage_runtime_start_stop_show(struct device *dev,
252 			       struct device_attribute *attr, char *buf)
253 {
254 	struct scsi_disk *sdkp = to_scsi_disk(dev);
255 	struct scsi_device *sdp = sdkp->device;
256 
257 	return sysfs_emit(buf, "%u\n", sdp->manage_runtime_start_stop);
258 }
259 
260 static ssize_t
261 manage_runtime_start_stop_store(struct device *dev,
262 				struct device_attribute *attr,
263 				const char *buf, size_t count)
264 {
265 	struct scsi_disk *sdkp = to_scsi_disk(dev);
266 	struct scsi_device *sdp = sdkp->device;
267 	bool v;
268 
269 	if (!capable(CAP_SYS_ADMIN))
270 		return -EACCES;
271 
272 	if (kstrtobool(buf, &v))
273 		return -EINVAL;
274 
275 	sdp->manage_runtime_start_stop = v;
276 
277 	return count;
278 }
279 static DEVICE_ATTR_RW(manage_runtime_start_stop);
280 
281 static ssize_t manage_shutdown_show(struct device *dev,
282 				    struct device_attribute *attr, char *buf)
283 {
284 	struct scsi_disk *sdkp = to_scsi_disk(dev);
285 	struct scsi_device *sdp = sdkp->device;
286 
287 	return sysfs_emit(buf, "%u\n", sdp->manage_shutdown);
288 }
289 
290 static ssize_t manage_shutdown_store(struct device *dev,
291 				     struct device_attribute *attr,
292 				     const char *buf, size_t count)
293 {
294 	struct scsi_disk *sdkp = to_scsi_disk(dev);
295 	struct scsi_device *sdp = sdkp->device;
296 	bool v;
297 
298 	if (!capable(CAP_SYS_ADMIN))
299 		return -EACCES;
300 
301 	if (kstrtobool(buf, &v))
302 		return -EINVAL;
303 
304 	sdp->manage_shutdown = v;
305 
306 	return count;
307 }
308 static DEVICE_ATTR_RW(manage_shutdown);
309 
310 static ssize_t
311 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
312 {
313 	struct scsi_disk *sdkp = to_scsi_disk(dev);
314 
315 	return sprintf(buf, "%u\n", sdkp->device->allow_restart);
316 }
317 
318 static ssize_t
319 allow_restart_store(struct device *dev, struct device_attribute *attr,
320 		    const char *buf, size_t count)
321 {
322 	bool v;
323 	struct scsi_disk *sdkp = to_scsi_disk(dev);
324 	struct scsi_device *sdp = sdkp->device;
325 
326 	if (!capable(CAP_SYS_ADMIN))
327 		return -EACCES;
328 
329 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
330 		return -EINVAL;
331 
332 	if (kstrtobool(buf, &v))
333 		return -EINVAL;
334 
335 	sdp->allow_restart = v;
336 
337 	return count;
338 }
339 static DEVICE_ATTR_RW(allow_restart);
340 
341 static ssize_t
342 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
343 {
344 	struct scsi_disk *sdkp = to_scsi_disk(dev);
345 	int ct = sdkp->RCD + 2*sdkp->WCE;
346 
347 	return sprintf(buf, "%s\n", sd_cache_types[ct]);
348 }
349 static DEVICE_ATTR_RW(cache_type);
350 
351 static ssize_t
352 FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
353 {
354 	struct scsi_disk *sdkp = to_scsi_disk(dev);
355 
356 	return sprintf(buf, "%u\n", sdkp->DPOFUA);
357 }
358 static DEVICE_ATTR_RO(FUA);
359 
360 static ssize_t
361 protection_type_show(struct device *dev, struct device_attribute *attr,
362 		     char *buf)
363 {
364 	struct scsi_disk *sdkp = to_scsi_disk(dev);
365 
366 	return sprintf(buf, "%u\n", sdkp->protection_type);
367 }
368 
369 static ssize_t
370 protection_type_store(struct device *dev, struct device_attribute *attr,
371 		      const char *buf, size_t count)
372 {
373 	struct scsi_disk *sdkp = to_scsi_disk(dev);
374 	unsigned int val;
375 	int err;
376 
377 	if (!capable(CAP_SYS_ADMIN))
378 		return -EACCES;
379 
380 	err = kstrtouint(buf, 10, &val);
381 
382 	if (err)
383 		return err;
384 
385 	if (val <= T10_PI_TYPE3_PROTECTION)
386 		sdkp->protection_type = val;
387 
388 	return count;
389 }
390 static DEVICE_ATTR_RW(protection_type);
391 
392 static ssize_t
393 protection_mode_show(struct device *dev, struct device_attribute *attr,
394 		     char *buf)
395 {
396 	struct scsi_disk *sdkp = to_scsi_disk(dev);
397 	struct scsi_device *sdp = sdkp->device;
398 	unsigned int dif, dix;
399 
400 	dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
401 	dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
402 
403 	if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
404 		dif = 0;
405 		dix = 1;
406 	}
407 
408 	if (!dif && !dix)
409 		return sprintf(buf, "none\n");
410 
411 	return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
412 }
413 static DEVICE_ATTR_RO(protection_mode);
414 
415 static ssize_t
416 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
417 {
418 	struct scsi_disk *sdkp = to_scsi_disk(dev);
419 
420 	return sprintf(buf, "%u\n", sdkp->ATO);
421 }
422 static DEVICE_ATTR_RO(app_tag_own);
423 
424 static ssize_t
425 thin_provisioning_show(struct device *dev, struct device_attribute *attr,
426 		       char *buf)
427 {
428 	struct scsi_disk *sdkp = to_scsi_disk(dev);
429 
430 	return sprintf(buf, "%u\n", sdkp->lbpme);
431 }
432 static DEVICE_ATTR_RO(thin_provisioning);
433 
434 /* sysfs_match_string() requires dense arrays */
435 static const char *lbp_mode[] = {
436 	[SD_LBP_FULL]		= "full",
437 	[SD_LBP_UNMAP]		= "unmap",
438 	[SD_LBP_WS16]		= "writesame_16",
439 	[SD_LBP_WS10]		= "writesame_10",
440 	[SD_LBP_ZERO]		= "writesame_zero",
441 	[SD_LBP_DISABLE]	= "disabled",
442 };
443 
444 static ssize_t
445 provisioning_mode_show(struct device *dev, struct device_attribute *attr,
446 		       char *buf)
447 {
448 	struct scsi_disk *sdkp = to_scsi_disk(dev);
449 
450 	return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
451 }
452 
453 static ssize_t
454 provisioning_mode_store(struct device *dev, struct device_attribute *attr,
455 			const char *buf, size_t count)
456 {
457 	struct scsi_disk *sdkp = to_scsi_disk(dev);
458 	struct scsi_device *sdp = sdkp->device;
459 	int mode;
460 
461 	if (!capable(CAP_SYS_ADMIN))
462 		return -EACCES;
463 
464 	if (sd_is_zoned(sdkp)) {
465 		sd_config_discard(sdkp, SD_LBP_DISABLE);
466 		return count;
467 	}
468 
469 	if (sdp->type != TYPE_DISK)
470 		return -EINVAL;
471 
472 	mode = sysfs_match_string(lbp_mode, buf);
473 	if (mode < 0)
474 		return -EINVAL;
475 
476 	sd_config_discard(sdkp, mode);
477 
478 	return count;
479 }
480 static DEVICE_ATTR_RW(provisioning_mode);
481 
482 /* sysfs_match_string() requires dense arrays */
483 static const char *zeroing_mode[] = {
484 	[SD_ZERO_WRITE]		= "write",
485 	[SD_ZERO_WS]		= "writesame",
486 	[SD_ZERO_WS16_UNMAP]	= "writesame_16_unmap",
487 	[SD_ZERO_WS10_UNMAP]	= "writesame_10_unmap",
488 };
489 
490 static ssize_t
491 zeroing_mode_show(struct device *dev, struct device_attribute *attr,
492 		  char *buf)
493 {
494 	struct scsi_disk *sdkp = to_scsi_disk(dev);
495 
496 	return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
497 }
498 
499 static ssize_t
500 zeroing_mode_store(struct device *dev, struct device_attribute *attr,
501 		   const char *buf, size_t count)
502 {
503 	struct scsi_disk *sdkp = to_scsi_disk(dev);
504 	int mode;
505 
506 	if (!capable(CAP_SYS_ADMIN))
507 		return -EACCES;
508 
509 	mode = sysfs_match_string(zeroing_mode, buf);
510 	if (mode < 0)
511 		return -EINVAL;
512 
513 	sdkp->zeroing_mode = mode;
514 
515 	return count;
516 }
517 static DEVICE_ATTR_RW(zeroing_mode);
518 
519 static ssize_t
520 max_medium_access_timeouts_show(struct device *dev,
521 				struct device_attribute *attr, char *buf)
522 {
523 	struct scsi_disk *sdkp = to_scsi_disk(dev);
524 
525 	return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
526 }
527 
528 static ssize_t
529 max_medium_access_timeouts_store(struct device *dev,
530 				 struct device_attribute *attr, const char *buf,
531 				 size_t count)
532 {
533 	struct scsi_disk *sdkp = to_scsi_disk(dev);
534 	int err;
535 
536 	if (!capable(CAP_SYS_ADMIN))
537 		return -EACCES;
538 
539 	err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
540 
541 	return err ? err : count;
542 }
543 static DEVICE_ATTR_RW(max_medium_access_timeouts);
544 
545 static ssize_t
546 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
547 			   char *buf)
548 {
549 	struct scsi_disk *sdkp = to_scsi_disk(dev);
550 
551 	return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
552 }
553 
554 static ssize_t
555 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
556 			    const char *buf, size_t count)
557 {
558 	struct scsi_disk *sdkp = to_scsi_disk(dev);
559 	struct scsi_device *sdp = sdkp->device;
560 	unsigned long max;
561 	int err;
562 
563 	if (!capable(CAP_SYS_ADMIN))
564 		return -EACCES;
565 
566 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
567 		return -EINVAL;
568 
569 	err = kstrtoul(buf, 10, &max);
570 
571 	if (err)
572 		return err;
573 
574 	if (max == 0)
575 		sdp->no_write_same = 1;
576 	else if (max <= SD_MAX_WS16_BLOCKS) {
577 		sdp->no_write_same = 0;
578 		sdkp->max_ws_blocks = max;
579 	}
580 
581 	sd_config_write_same(sdkp);
582 
583 	return count;
584 }
585 static DEVICE_ATTR_RW(max_write_same_blocks);
586 
587 static ssize_t
588 zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf)
589 {
590 	struct scsi_disk *sdkp = to_scsi_disk(dev);
591 
592 	if (sdkp->device->type == TYPE_ZBC)
593 		return sprintf(buf, "host-managed\n");
594 	if (sdkp->zoned == 1)
595 		return sprintf(buf, "host-aware\n");
596 	if (sdkp->zoned == 2)
597 		return sprintf(buf, "drive-managed\n");
598 	return sprintf(buf, "none\n");
599 }
600 static DEVICE_ATTR_RO(zoned_cap);
601 
602 static ssize_t
603 max_retries_store(struct device *dev, struct device_attribute *attr,
604 		  const char *buf, size_t count)
605 {
606 	struct scsi_disk *sdkp = to_scsi_disk(dev);
607 	struct scsi_device *sdev = sdkp->device;
608 	int retries, err;
609 
610 	err = kstrtoint(buf, 10, &retries);
611 	if (err)
612 		return err;
613 
614 	if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) {
615 		sdkp->max_retries = retries;
616 		return count;
617 	}
618 
619 	sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n",
620 		    SD_MAX_RETRIES);
621 	return -EINVAL;
622 }
623 
624 static ssize_t
625 max_retries_show(struct device *dev, struct device_attribute *attr,
626 		 char *buf)
627 {
628 	struct scsi_disk *sdkp = to_scsi_disk(dev);
629 
630 	return sprintf(buf, "%d\n", sdkp->max_retries);
631 }
632 
633 static DEVICE_ATTR_RW(max_retries);
634 
635 static struct attribute *sd_disk_attrs[] = {
636 	&dev_attr_cache_type.attr,
637 	&dev_attr_FUA.attr,
638 	&dev_attr_allow_restart.attr,
639 	&dev_attr_manage_start_stop.attr,
640 	&dev_attr_manage_system_start_stop.attr,
641 	&dev_attr_manage_runtime_start_stop.attr,
642 	&dev_attr_manage_shutdown.attr,
643 	&dev_attr_protection_type.attr,
644 	&dev_attr_protection_mode.attr,
645 	&dev_attr_app_tag_own.attr,
646 	&dev_attr_thin_provisioning.attr,
647 	&dev_attr_provisioning_mode.attr,
648 	&dev_attr_zeroing_mode.attr,
649 	&dev_attr_max_write_same_blocks.attr,
650 	&dev_attr_max_medium_access_timeouts.attr,
651 	&dev_attr_zoned_cap.attr,
652 	&dev_attr_max_retries.attr,
653 	NULL,
654 };
655 ATTRIBUTE_GROUPS(sd_disk);
656 
657 static struct class sd_disk_class = {
658 	.name		= "scsi_disk",
659 	.dev_release	= scsi_disk_release,
660 	.dev_groups	= sd_disk_groups,
661 };
662 
663 /*
664  * Don't request a new module, as that could deadlock in multipath
665  * environment.
666  */
667 static void sd_default_probe(dev_t devt)
668 {
669 }
670 
671 /*
672  * Device no to disk mapping:
673  *
674  *       major         disc2     disc  p1
675  *   |............|.............|....|....| <- dev_t
676  *    31        20 19          8 7  4 3  0
677  *
678  * Inside a major, we have 16k disks, however mapped non-
679  * contiguously. The first 16 disks are for major0, the next
680  * ones with major1, ... Disk 256 is for major0 again, disk 272
681  * for major1, ...
682  * As we stay compatible with our numbering scheme, we can reuse
683  * the well-know SCSI majors 8, 65--71, 136--143.
684  */
685 static int sd_major(int major_idx)
686 {
687 	switch (major_idx) {
688 	case 0:
689 		return SCSI_DISK0_MAJOR;
690 	case 1 ... 7:
691 		return SCSI_DISK1_MAJOR + major_idx - 1;
692 	case 8 ... 15:
693 		return SCSI_DISK8_MAJOR + major_idx - 8;
694 	default:
695 		BUG();
696 		return 0;	/* shut up gcc */
697 	}
698 }
699 
700 #ifdef CONFIG_BLK_SED_OPAL
701 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
702 		size_t len, bool send)
703 {
704 	struct scsi_disk *sdkp = data;
705 	struct scsi_device *sdev = sdkp->device;
706 	u8 cdb[12] = { 0, };
707 	const struct scsi_exec_args exec_args = {
708 		.req_flags = BLK_MQ_REQ_PM,
709 	};
710 	int ret;
711 
712 	cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
713 	cdb[1] = secp;
714 	put_unaligned_be16(spsp, &cdb[2]);
715 	put_unaligned_be32(len, &cdb[6]);
716 
717 	ret = scsi_execute_cmd(sdev, cdb, send ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN,
718 			       buffer, len, SD_TIMEOUT, sdkp->max_retries,
719 			       &exec_args);
720 	return ret <= 0 ? ret : -EIO;
721 }
722 #endif /* CONFIG_BLK_SED_OPAL */
723 
724 /*
725  * Look up the DIX operation based on whether the command is read or
726  * write and whether dix and dif are enabled.
727  */
728 static unsigned int sd_prot_op(bool write, bool dix, bool dif)
729 {
730 	/* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */
731 	static const unsigned int ops[] = {	/* wrt dix dif */
732 		SCSI_PROT_NORMAL,		/*  0	0   0  */
733 		SCSI_PROT_READ_STRIP,		/*  0	0   1  */
734 		SCSI_PROT_READ_INSERT,		/*  0	1   0  */
735 		SCSI_PROT_READ_PASS,		/*  0	1   1  */
736 		SCSI_PROT_NORMAL,		/*  1	0   0  */
737 		SCSI_PROT_WRITE_INSERT,		/*  1	0   1  */
738 		SCSI_PROT_WRITE_STRIP,		/*  1	1   0  */
739 		SCSI_PROT_WRITE_PASS,		/*  1	1   1  */
740 	};
741 
742 	return ops[write << 2 | dix << 1 | dif];
743 }
744 
745 /*
746  * Returns a mask of the protection flags that are valid for a given DIX
747  * operation.
748  */
749 static unsigned int sd_prot_flag_mask(unsigned int prot_op)
750 {
751 	static const unsigned int flag_mask[] = {
752 		[SCSI_PROT_NORMAL]		= 0,
753 
754 		[SCSI_PROT_READ_STRIP]		= SCSI_PROT_TRANSFER_PI |
755 						  SCSI_PROT_GUARD_CHECK |
756 						  SCSI_PROT_REF_CHECK |
757 						  SCSI_PROT_REF_INCREMENT,
758 
759 		[SCSI_PROT_READ_INSERT]		= SCSI_PROT_REF_INCREMENT |
760 						  SCSI_PROT_IP_CHECKSUM,
761 
762 		[SCSI_PROT_READ_PASS]		= SCSI_PROT_TRANSFER_PI |
763 						  SCSI_PROT_GUARD_CHECK |
764 						  SCSI_PROT_REF_CHECK |
765 						  SCSI_PROT_REF_INCREMENT |
766 						  SCSI_PROT_IP_CHECKSUM,
767 
768 		[SCSI_PROT_WRITE_INSERT]	= SCSI_PROT_TRANSFER_PI |
769 						  SCSI_PROT_REF_INCREMENT,
770 
771 		[SCSI_PROT_WRITE_STRIP]		= SCSI_PROT_GUARD_CHECK |
772 						  SCSI_PROT_REF_CHECK |
773 						  SCSI_PROT_REF_INCREMENT |
774 						  SCSI_PROT_IP_CHECKSUM,
775 
776 		[SCSI_PROT_WRITE_PASS]		= SCSI_PROT_TRANSFER_PI |
777 						  SCSI_PROT_GUARD_CHECK |
778 						  SCSI_PROT_REF_CHECK |
779 						  SCSI_PROT_REF_INCREMENT |
780 						  SCSI_PROT_IP_CHECKSUM,
781 	};
782 
783 	return flag_mask[prot_op];
784 }
785 
786 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
787 					   unsigned int dix, unsigned int dif)
788 {
789 	struct request *rq = scsi_cmd_to_rq(scmd);
790 	struct bio *bio = rq->bio;
791 	unsigned int prot_op = sd_prot_op(rq_data_dir(rq), dix, dif);
792 	unsigned int protect = 0;
793 
794 	if (dix) {				/* DIX Type 0, 1, 2, 3 */
795 		if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
796 			scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
797 
798 		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
799 			scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
800 	}
801 
802 	if (dif != T10_PI_TYPE3_PROTECTION) {	/* DIX/DIF Type 0, 1, 2 */
803 		scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
804 
805 		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
806 			scmd->prot_flags |= SCSI_PROT_REF_CHECK;
807 	}
808 
809 	if (dif) {				/* DIX/DIF Type 1, 2, 3 */
810 		scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
811 
812 		if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
813 			protect = 3 << 5;	/* Disable target PI checking */
814 		else
815 			protect = 1 << 5;	/* Enable target PI checking */
816 	}
817 
818 	scsi_set_prot_op(scmd, prot_op);
819 	scsi_set_prot_type(scmd, dif);
820 	scmd->prot_flags &= sd_prot_flag_mask(prot_op);
821 
822 	return protect;
823 }
824 
825 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
826 {
827 	struct request_queue *q = sdkp->disk->queue;
828 	unsigned int logical_block_size = sdkp->device->sector_size;
829 	unsigned int max_blocks = 0;
830 
831 	q->limits.discard_alignment =
832 		sdkp->unmap_alignment * logical_block_size;
833 	q->limits.discard_granularity =
834 		max(sdkp->physical_block_size,
835 		    sdkp->unmap_granularity * logical_block_size);
836 	sdkp->provisioning_mode = mode;
837 
838 	switch (mode) {
839 
840 	case SD_LBP_FULL:
841 	case SD_LBP_DISABLE:
842 		blk_queue_max_discard_sectors(q, 0);
843 		return;
844 
845 	case SD_LBP_UNMAP:
846 		max_blocks = min_not_zero(sdkp->max_unmap_blocks,
847 					  (u32)SD_MAX_WS16_BLOCKS);
848 		break;
849 
850 	case SD_LBP_WS16:
851 		if (sdkp->device->unmap_limit_for_ws)
852 			max_blocks = sdkp->max_unmap_blocks;
853 		else
854 			max_blocks = sdkp->max_ws_blocks;
855 
856 		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
857 		break;
858 
859 	case SD_LBP_WS10:
860 		if (sdkp->device->unmap_limit_for_ws)
861 			max_blocks = sdkp->max_unmap_blocks;
862 		else
863 			max_blocks = sdkp->max_ws_blocks;
864 
865 		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
866 		break;
867 
868 	case SD_LBP_ZERO:
869 		max_blocks = min_not_zero(sdkp->max_ws_blocks,
870 					  (u32)SD_MAX_WS10_BLOCKS);
871 		break;
872 	}
873 
874 	blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
875 }
876 
877 static void *sd_set_special_bvec(struct request *rq, unsigned int data_len)
878 {
879 	struct page *page;
880 
881 	page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
882 	if (!page)
883 		return NULL;
884 	clear_highpage(page);
885 	bvec_set_page(&rq->special_vec, page, data_len, 0);
886 	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
887 	return bvec_virt(&rq->special_vec);
888 }
889 
890 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
891 {
892 	struct scsi_device *sdp = cmd->device;
893 	struct request *rq = scsi_cmd_to_rq(cmd);
894 	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
895 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
896 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
897 	unsigned int data_len = 24;
898 	char *buf;
899 
900 	buf = sd_set_special_bvec(rq, data_len);
901 	if (!buf)
902 		return BLK_STS_RESOURCE;
903 
904 	cmd->cmd_len = 10;
905 	cmd->cmnd[0] = UNMAP;
906 	cmd->cmnd[8] = 24;
907 
908 	put_unaligned_be16(6 + 16, &buf[0]);
909 	put_unaligned_be16(16, &buf[2]);
910 	put_unaligned_be64(lba, &buf[8]);
911 	put_unaligned_be32(nr_blocks, &buf[16]);
912 
913 	cmd->allowed = sdkp->max_retries;
914 	cmd->transfersize = data_len;
915 	rq->timeout = SD_TIMEOUT;
916 
917 	return scsi_alloc_sgtables(cmd);
918 }
919 
920 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd,
921 		bool unmap)
922 {
923 	struct scsi_device *sdp = cmd->device;
924 	struct request *rq = scsi_cmd_to_rq(cmd);
925 	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
926 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
927 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
928 	u32 data_len = sdp->sector_size;
929 
930 	if (!sd_set_special_bvec(rq, data_len))
931 		return BLK_STS_RESOURCE;
932 
933 	cmd->cmd_len = 16;
934 	cmd->cmnd[0] = WRITE_SAME_16;
935 	if (unmap)
936 		cmd->cmnd[1] = 0x8; /* UNMAP */
937 	put_unaligned_be64(lba, &cmd->cmnd[2]);
938 	put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
939 
940 	cmd->allowed = sdkp->max_retries;
941 	cmd->transfersize = data_len;
942 	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
943 
944 	return scsi_alloc_sgtables(cmd);
945 }
946 
947 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd,
948 		bool unmap)
949 {
950 	struct scsi_device *sdp = cmd->device;
951 	struct request *rq = scsi_cmd_to_rq(cmd);
952 	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
953 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
954 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
955 	u32 data_len = sdp->sector_size;
956 
957 	if (!sd_set_special_bvec(rq, data_len))
958 		return BLK_STS_RESOURCE;
959 
960 	cmd->cmd_len = 10;
961 	cmd->cmnd[0] = WRITE_SAME;
962 	if (unmap)
963 		cmd->cmnd[1] = 0x8; /* UNMAP */
964 	put_unaligned_be32(lba, &cmd->cmnd[2]);
965 	put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
966 
967 	cmd->allowed = sdkp->max_retries;
968 	cmd->transfersize = data_len;
969 	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
970 
971 	return scsi_alloc_sgtables(cmd);
972 }
973 
974 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
975 {
976 	struct request *rq = scsi_cmd_to_rq(cmd);
977 	struct scsi_device *sdp = cmd->device;
978 	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
979 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
980 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
981 
982 	if (!(rq->cmd_flags & REQ_NOUNMAP)) {
983 		switch (sdkp->zeroing_mode) {
984 		case SD_ZERO_WS16_UNMAP:
985 			return sd_setup_write_same16_cmnd(cmd, true);
986 		case SD_ZERO_WS10_UNMAP:
987 			return sd_setup_write_same10_cmnd(cmd, true);
988 		}
989 	}
990 
991 	if (sdp->no_write_same) {
992 		rq->rq_flags |= RQF_QUIET;
993 		return BLK_STS_TARGET;
994 	}
995 
996 	if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff)
997 		return sd_setup_write_same16_cmnd(cmd, false);
998 
999 	return sd_setup_write_same10_cmnd(cmd, false);
1000 }
1001 
1002 static void sd_config_write_same(struct scsi_disk *sdkp)
1003 {
1004 	struct request_queue *q = sdkp->disk->queue;
1005 	unsigned int logical_block_size = sdkp->device->sector_size;
1006 
1007 	if (sdkp->device->no_write_same) {
1008 		sdkp->max_ws_blocks = 0;
1009 		goto out;
1010 	}
1011 
1012 	/* Some devices can not handle block counts above 0xffff despite
1013 	 * supporting WRITE SAME(16). Consequently we default to 64k
1014 	 * blocks per I/O unless the device explicitly advertises a
1015 	 * bigger limit.
1016 	 */
1017 	if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
1018 		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
1019 						   (u32)SD_MAX_WS16_BLOCKS);
1020 	else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
1021 		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
1022 						   (u32)SD_MAX_WS10_BLOCKS);
1023 	else {
1024 		sdkp->device->no_write_same = 1;
1025 		sdkp->max_ws_blocks = 0;
1026 	}
1027 
1028 	if (sdkp->lbprz && sdkp->lbpws)
1029 		sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
1030 	else if (sdkp->lbprz && sdkp->lbpws10)
1031 		sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
1032 	else if (sdkp->max_ws_blocks)
1033 		sdkp->zeroing_mode = SD_ZERO_WS;
1034 	else
1035 		sdkp->zeroing_mode = SD_ZERO_WRITE;
1036 
1037 	if (sdkp->max_ws_blocks &&
1038 	    sdkp->physical_block_size > logical_block_size) {
1039 		/*
1040 		 * Reporting a maximum number of blocks that is not aligned
1041 		 * on the device physical size would cause a large write same
1042 		 * request to be split into physically unaligned chunks by
1043 		 * __blkdev_issue_write_zeroes() even if the caller of this
1044 		 * functions took care to align the large request. So make sure
1045 		 * the maximum reported is aligned to the device physical block
1046 		 * size. This is only an optional optimization for regular
1047 		 * disks, but this is mandatory to avoid failure of large write
1048 		 * same requests directed at sequential write required zones of
1049 		 * host-managed ZBC disks.
1050 		 */
1051 		sdkp->max_ws_blocks =
1052 			round_down(sdkp->max_ws_blocks,
1053 				   bytes_to_logical(sdkp->device,
1054 						    sdkp->physical_block_size));
1055 	}
1056 
1057 out:
1058 	blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks *
1059 					 (logical_block_size >> 9));
1060 }
1061 
1062 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
1063 {
1064 	struct request *rq = scsi_cmd_to_rq(cmd);
1065 	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1066 
1067 	/* flush requests don't perform I/O, zero the S/G table */
1068 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1069 
1070 	if (cmd->device->use_16_for_sync) {
1071 		cmd->cmnd[0] = SYNCHRONIZE_CACHE_16;
1072 		cmd->cmd_len = 16;
1073 	} else {
1074 		cmd->cmnd[0] = SYNCHRONIZE_CACHE;
1075 		cmd->cmd_len = 10;
1076 	}
1077 	cmd->transfersize = 0;
1078 	cmd->allowed = sdkp->max_retries;
1079 
1080 	rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
1081 	return BLK_STS_OK;
1082 }
1083 
1084 /**
1085  * sd_group_number() - Compute the GROUP NUMBER field
1086  * @cmd: SCSI command for which to compute the value of the six-bit GROUP NUMBER
1087  *	field.
1088  *
1089  * From SBC-5 r05 (https://www.t10.org/cgi-bin/ac.pl?t=f&f=sbc5r05.pdf):
1090  * 0: no relative lifetime.
1091  * 1: shortest relative lifetime.
1092  * 2: second shortest relative lifetime.
1093  * 3 - 0x3d: intermediate relative lifetimes.
1094  * 0x3e: second longest relative lifetime.
1095  * 0x3f: longest relative lifetime.
1096  */
1097 static u8 sd_group_number(struct scsi_cmnd *cmd)
1098 {
1099 	const struct request *rq = scsi_cmd_to_rq(cmd);
1100 	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1101 
1102 	if (!sdkp->rscs)
1103 		return 0;
1104 
1105 	return min3((u32)rq->write_hint, (u32)sdkp->permanent_stream_count,
1106 		    0x3fu);
1107 }
1108 
1109 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write,
1110 				       sector_t lba, unsigned int nr_blocks,
1111 				       unsigned char flags, unsigned int dld)
1112 {
1113 	cmd->cmd_len = SD_EXT_CDB_SIZE;
1114 	cmd->cmnd[0]  = VARIABLE_LENGTH_CMD;
1115 	cmd->cmnd[6]  = sd_group_number(cmd);
1116 	cmd->cmnd[7]  = 0x18; /* Additional CDB len */
1117 	cmd->cmnd[9]  = write ? WRITE_32 : READ_32;
1118 	cmd->cmnd[10] = flags;
1119 	cmd->cmnd[11] = dld & 0x07;
1120 	put_unaligned_be64(lba, &cmd->cmnd[12]);
1121 	put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */
1122 	put_unaligned_be32(nr_blocks, &cmd->cmnd[28]);
1123 
1124 	return BLK_STS_OK;
1125 }
1126 
1127 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write,
1128 				       sector_t lba, unsigned int nr_blocks,
1129 				       unsigned char flags, unsigned int dld)
1130 {
1131 	cmd->cmd_len  = 16;
1132 	cmd->cmnd[0]  = write ? WRITE_16 : READ_16;
1133 	cmd->cmnd[1]  = flags | ((dld >> 2) & 0x01);
1134 	cmd->cmnd[14] = ((dld & 0x03) << 6) | sd_group_number(cmd);
1135 	cmd->cmnd[15] = 0;
1136 	put_unaligned_be64(lba, &cmd->cmnd[2]);
1137 	put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1138 
1139 	return BLK_STS_OK;
1140 }
1141 
1142 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write,
1143 				       sector_t lba, unsigned int nr_blocks,
1144 				       unsigned char flags)
1145 {
1146 	cmd->cmd_len = 10;
1147 	cmd->cmnd[0] = write ? WRITE_10 : READ_10;
1148 	cmd->cmnd[1] = flags;
1149 	cmd->cmnd[6] = sd_group_number(cmd);
1150 	cmd->cmnd[9] = 0;
1151 	put_unaligned_be32(lba, &cmd->cmnd[2]);
1152 	put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1153 
1154 	return BLK_STS_OK;
1155 }
1156 
1157 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write,
1158 				      sector_t lba, unsigned int nr_blocks,
1159 				      unsigned char flags)
1160 {
1161 	/* Avoid that 0 blocks gets translated into 256 blocks. */
1162 	if (WARN_ON_ONCE(nr_blocks == 0))
1163 		return BLK_STS_IOERR;
1164 
1165 	if (unlikely(flags & 0x8)) {
1166 		/*
1167 		 * This happens only if this drive failed 10byte rw
1168 		 * command with ILLEGAL_REQUEST during operation and
1169 		 * thus turned off use_10_for_rw.
1170 		 */
1171 		scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n");
1172 		return BLK_STS_IOERR;
1173 	}
1174 
1175 	cmd->cmd_len = 6;
1176 	cmd->cmnd[0] = write ? WRITE_6 : READ_6;
1177 	cmd->cmnd[1] = (lba >> 16) & 0x1f;
1178 	cmd->cmnd[2] = (lba >> 8) & 0xff;
1179 	cmd->cmnd[3] = lba & 0xff;
1180 	cmd->cmnd[4] = nr_blocks;
1181 	cmd->cmnd[5] = 0;
1182 
1183 	return BLK_STS_OK;
1184 }
1185 
1186 /*
1187  * Check if a command has a duration limit set. If it does, and the target
1188  * device supports CDL and the feature is enabled, return the limit
1189  * descriptor index to use. Return 0 (no limit) otherwise.
1190  */
1191 static int sd_cdl_dld(struct scsi_disk *sdkp, struct scsi_cmnd *scmd)
1192 {
1193 	struct scsi_device *sdp = sdkp->device;
1194 	int hint;
1195 
1196 	if (!sdp->cdl_supported || !sdp->cdl_enable)
1197 		return 0;
1198 
1199 	/*
1200 	 * Use "no limit" if the request ioprio does not specify a duration
1201 	 * limit hint.
1202 	 */
1203 	hint = IOPRIO_PRIO_HINT(req_get_ioprio(scsi_cmd_to_rq(scmd)));
1204 	if (hint < IOPRIO_HINT_DEV_DURATION_LIMIT_1 ||
1205 	    hint > IOPRIO_HINT_DEV_DURATION_LIMIT_7)
1206 		return 0;
1207 
1208 	return (hint - IOPRIO_HINT_DEV_DURATION_LIMIT_1) + 1;
1209 }
1210 
1211 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd)
1212 {
1213 	struct request *rq = scsi_cmd_to_rq(cmd);
1214 	struct scsi_device *sdp = cmd->device;
1215 	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1216 	sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1217 	sector_t threshold;
1218 	unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1219 	unsigned int mask = logical_to_sectors(sdp, 1) - 1;
1220 	bool write = rq_data_dir(rq) == WRITE;
1221 	unsigned char protect, fua;
1222 	unsigned int dld;
1223 	blk_status_t ret;
1224 	unsigned int dif;
1225 	bool dix;
1226 
1227 	ret = scsi_alloc_sgtables(cmd);
1228 	if (ret != BLK_STS_OK)
1229 		return ret;
1230 
1231 	ret = BLK_STS_IOERR;
1232 	if (!scsi_device_online(sdp) || sdp->changed) {
1233 		scmd_printk(KERN_ERR, cmd, "device offline or changed\n");
1234 		goto fail;
1235 	}
1236 
1237 	if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->q->disk)) {
1238 		scmd_printk(KERN_ERR, cmd, "access beyond end of device\n");
1239 		goto fail;
1240 	}
1241 
1242 	if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) {
1243 		scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n");
1244 		goto fail;
1245 	}
1246 
1247 	/*
1248 	 * Some SD card readers can't handle accesses which touch the
1249 	 * last one or two logical blocks. Split accesses as needed.
1250 	 */
1251 	threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS;
1252 
1253 	if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) {
1254 		if (lba < threshold) {
1255 			/* Access up to the threshold but not beyond */
1256 			nr_blocks = threshold - lba;
1257 		} else {
1258 			/* Access only a single logical block */
1259 			nr_blocks = 1;
1260 		}
1261 	}
1262 
1263 	if (req_op(rq) == REQ_OP_ZONE_APPEND) {
1264 		ret = sd_zbc_prepare_zone_append(cmd, &lba, nr_blocks);
1265 		if (ret)
1266 			goto fail;
1267 	}
1268 
1269 	fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0;
1270 	dix = scsi_prot_sg_count(cmd);
1271 	dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type);
1272 	dld = sd_cdl_dld(sdkp, cmd);
1273 
1274 	if (dif || dix)
1275 		protect = sd_setup_protect_cmnd(cmd, dix, dif);
1276 	else
1277 		protect = 0;
1278 
1279 	if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1280 		ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks,
1281 					 protect | fua, dld);
1282 	} else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) {
1283 		ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks,
1284 					 protect | fua, dld);
1285 	} else if ((nr_blocks > 0xff) || (lba > 0x1fffff) ||
1286 		   sdp->use_10_for_rw || protect || rq->write_hint) {
1287 		ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks,
1288 					 protect | fua);
1289 	} else {
1290 		ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks,
1291 					protect | fua);
1292 	}
1293 
1294 	if (unlikely(ret != BLK_STS_OK))
1295 		goto fail;
1296 
1297 	/*
1298 	 * We shouldn't disconnect in the middle of a sector, so with a dumb
1299 	 * host adapter, it's safe to assume that we can at least transfer
1300 	 * this many bytes between each connect / disconnect.
1301 	 */
1302 	cmd->transfersize = sdp->sector_size;
1303 	cmd->underflow = nr_blocks << 9;
1304 	cmd->allowed = sdkp->max_retries;
1305 	cmd->sdb.length = nr_blocks * sdp->sector_size;
1306 
1307 	SCSI_LOG_HLQUEUE(1,
1308 			 scmd_printk(KERN_INFO, cmd,
1309 				     "%s: block=%llu, count=%d\n", __func__,
1310 				     (unsigned long long)blk_rq_pos(rq),
1311 				     blk_rq_sectors(rq)));
1312 	SCSI_LOG_HLQUEUE(2,
1313 			 scmd_printk(KERN_INFO, cmd,
1314 				     "%s %d/%u 512 byte blocks.\n",
1315 				     write ? "writing" : "reading", nr_blocks,
1316 				     blk_rq_sectors(rq)));
1317 
1318 	/*
1319 	 * This indicates that the command is ready from our end to be queued.
1320 	 */
1321 	return BLK_STS_OK;
1322 fail:
1323 	scsi_free_sgtables(cmd);
1324 	return ret;
1325 }
1326 
1327 static blk_status_t sd_init_command(struct scsi_cmnd *cmd)
1328 {
1329 	struct request *rq = scsi_cmd_to_rq(cmd);
1330 
1331 	switch (req_op(rq)) {
1332 	case REQ_OP_DISCARD:
1333 		switch (scsi_disk(rq->q->disk)->provisioning_mode) {
1334 		case SD_LBP_UNMAP:
1335 			return sd_setup_unmap_cmnd(cmd);
1336 		case SD_LBP_WS16:
1337 			return sd_setup_write_same16_cmnd(cmd, true);
1338 		case SD_LBP_WS10:
1339 			return sd_setup_write_same10_cmnd(cmd, true);
1340 		case SD_LBP_ZERO:
1341 			return sd_setup_write_same10_cmnd(cmd, false);
1342 		default:
1343 			return BLK_STS_TARGET;
1344 		}
1345 	case REQ_OP_WRITE_ZEROES:
1346 		return sd_setup_write_zeroes_cmnd(cmd);
1347 	case REQ_OP_FLUSH:
1348 		return sd_setup_flush_cmnd(cmd);
1349 	case REQ_OP_READ:
1350 	case REQ_OP_WRITE:
1351 	case REQ_OP_ZONE_APPEND:
1352 		return sd_setup_read_write_cmnd(cmd);
1353 	case REQ_OP_ZONE_RESET:
1354 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1355 						   false);
1356 	case REQ_OP_ZONE_RESET_ALL:
1357 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1358 						   true);
1359 	case REQ_OP_ZONE_OPEN:
1360 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false);
1361 	case REQ_OP_ZONE_CLOSE:
1362 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false);
1363 	case REQ_OP_ZONE_FINISH:
1364 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false);
1365 	default:
1366 		WARN_ON_ONCE(1);
1367 		return BLK_STS_NOTSUPP;
1368 	}
1369 }
1370 
1371 static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1372 {
1373 	struct request *rq = scsi_cmd_to_rq(SCpnt);
1374 
1375 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1376 		mempool_free(rq->special_vec.bv_page, sd_page_pool);
1377 }
1378 
1379 static bool sd_need_revalidate(struct gendisk *disk, struct scsi_disk *sdkp)
1380 {
1381 	if (sdkp->device->removable || sdkp->write_prot) {
1382 		if (disk_check_media_change(disk))
1383 			return true;
1384 	}
1385 
1386 	/*
1387 	 * Force a full rescan after ioctl(BLKRRPART).  While the disk state has
1388 	 * nothing to do with partitions, BLKRRPART is used to force a full
1389 	 * revalidate after things like a format for historical reasons.
1390 	 */
1391 	return test_bit(GD_NEED_PART_SCAN, &disk->state);
1392 }
1393 
1394 /**
1395  *	sd_open - open a scsi disk device
1396  *	@disk: disk to open
1397  *	@mode: open mode
1398  *
1399  *	Returns 0 if successful. Returns a negated errno value in case
1400  *	of error.
1401  *
1402  *	Note: This can be called from a user context (e.g. fsck(1) )
1403  *	or from within the kernel (e.g. as a result of a mount(1) ).
1404  *	In the latter case @inode and @filp carry an abridged amount
1405  *	of information as noted above.
1406  *
1407  *	Locking: called with disk->open_mutex held.
1408  **/
1409 static int sd_open(struct gendisk *disk, blk_mode_t mode)
1410 {
1411 	struct scsi_disk *sdkp = scsi_disk(disk);
1412 	struct scsi_device *sdev = sdkp->device;
1413 	int retval;
1414 
1415 	if (scsi_device_get(sdev))
1416 		return -ENXIO;
1417 
1418 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1419 
1420 	/*
1421 	 * If the device is in error recovery, wait until it is done.
1422 	 * If the device is offline, then disallow any access to it.
1423 	 */
1424 	retval = -ENXIO;
1425 	if (!scsi_block_when_processing_errors(sdev))
1426 		goto error_out;
1427 
1428 	if (sd_need_revalidate(disk, sdkp))
1429 		sd_revalidate_disk(disk);
1430 
1431 	/*
1432 	 * If the drive is empty, just let the open fail.
1433 	 */
1434 	retval = -ENOMEDIUM;
1435 	if (sdev->removable && !sdkp->media_present &&
1436 	    !(mode & BLK_OPEN_NDELAY))
1437 		goto error_out;
1438 
1439 	/*
1440 	 * If the device has the write protect tab set, have the open fail
1441 	 * if the user expects to be able to write to the thing.
1442 	 */
1443 	retval = -EROFS;
1444 	if (sdkp->write_prot && (mode & BLK_OPEN_WRITE))
1445 		goto error_out;
1446 
1447 	/*
1448 	 * It is possible that the disk changing stuff resulted in
1449 	 * the device being taken offline.  If this is the case,
1450 	 * report this to the user, and don't pretend that the
1451 	 * open actually succeeded.
1452 	 */
1453 	retval = -ENXIO;
1454 	if (!scsi_device_online(sdev))
1455 		goto error_out;
1456 
1457 	if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1458 		if (scsi_block_when_processing_errors(sdev))
1459 			scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1460 	}
1461 
1462 	return 0;
1463 
1464 error_out:
1465 	scsi_device_put(sdev);
1466 	return retval;
1467 }
1468 
1469 /**
1470  *	sd_release - invoked when the (last) close(2) is called on this
1471  *	scsi disk.
1472  *	@disk: disk to release
1473  *
1474  *	Returns 0.
1475  *
1476  *	Note: may block (uninterruptible) if error recovery is underway
1477  *	on this disk.
1478  *
1479  *	Locking: called with disk->open_mutex held.
1480  **/
1481 static void sd_release(struct gendisk *disk)
1482 {
1483 	struct scsi_disk *sdkp = scsi_disk(disk);
1484 	struct scsi_device *sdev = sdkp->device;
1485 
1486 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1487 
1488 	if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1489 		if (scsi_block_when_processing_errors(sdev))
1490 			scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1491 	}
1492 
1493 	scsi_device_put(sdev);
1494 }
1495 
1496 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1497 {
1498 	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1499 	struct scsi_device *sdp = sdkp->device;
1500 	struct Scsi_Host *host = sdp->host;
1501 	sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1502 	int diskinfo[4];
1503 
1504 	/* default to most commonly used values */
1505 	diskinfo[0] = 0x40;	/* 1 << 6 */
1506 	diskinfo[1] = 0x20;	/* 1 << 5 */
1507 	diskinfo[2] = capacity >> 11;
1508 
1509 	/* override with calculated, extended default, or driver values */
1510 	if (host->hostt->bios_param)
1511 		host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1512 	else
1513 		scsicam_bios_param(bdev, capacity, diskinfo);
1514 
1515 	geo->heads = diskinfo[0];
1516 	geo->sectors = diskinfo[1];
1517 	geo->cylinders = diskinfo[2];
1518 	return 0;
1519 }
1520 
1521 /**
1522  *	sd_ioctl - process an ioctl
1523  *	@bdev: target block device
1524  *	@mode: open mode
1525  *	@cmd: ioctl command number
1526  *	@arg: this is third argument given to ioctl(2) system call.
1527  *	Often contains a pointer.
1528  *
1529  *	Returns 0 if successful (some ioctls return positive numbers on
1530  *	success as well). Returns a negated errno value in case of error.
1531  *
1532  *	Note: most ioctls are forward onto the block subsystem or further
1533  *	down in the scsi subsystem.
1534  **/
1535 static int sd_ioctl(struct block_device *bdev, blk_mode_t mode,
1536 		    unsigned int cmd, unsigned long arg)
1537 {
1538 	struct gendisk *disk = bdev->bd_disk;
1539 	struct scsi_disk *sdkp = scsi_disk(disk);
1540 	struct scsi_device *sdp = sdkp->device;
1541 	void __user *p = (void __user *)arg;
1542 	int error;
1543 
1544 	SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1545 				    "cmd=0x%x\n", disk->disk_name, cmd));
1546 
1547 	if (bdev_is_partition(bdev) && !capable(CAP_SYS_RAWIO))
1548 		return -ENOIOCTLCMD;
1549 
1550 	/*
1551 	 * If we are in the middle of error recovery, don't let anyone
1552 	 * else try and use this device.  Also, if error recovery fails, it
1553 	 * may try and take the device offline, in which case all further
1554 	 * access to the device is prohibited.
1555 	 */
1556 	error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1557 			(mode & BLK_OPEN_NDELAY));
1558 	if (error)
1559 		return error;
1560 
1561 	if (is_sed_ioctl(cmd))
1562 		return sed_ioctl(sdkp->opal_dev, cmd, p);
1563 	return scsi_ioctl(sdp, mode & BLK_OPEN_WRITE, cmd, p);
1564 }
1565 
1566 static void set_media_not_present(struct scsi_disk *sdkp)
1567 {
1568 	if (sdkp->media_present)
1569 		sdkp->device->changed = 1;
1570 
1571 	if (sdkp->device->removable) {
1572 		sdkp->media_present = 0;
1573 		sdkp->capacity = 0;
1574 	}
1575 }
1576 
1577 static int media_not_present(struct scsi_disk *sdkp,
1578 			     struct scsi_sense_hdr *sshdr)
1579 {
1580 	if (!scsi_sense_valid(sshdr))
1581 		return 0;
1582 
1583 	/* not invoked for commands that could return deferred errors */
1584 	switch (sshdr->sense_key) {
1585 	case UNIT_ATTENTION:
1586 	case NOT_READY:
1587 		/* medium not present */
1588 		if (sshdr->asc == 0x3A) {
1589 			set_media_not_present(sdkp);
1590 			return 1;
1591 		}
1592 	}
1593 	return 0;
1594 }
1595 
1596 /**
1597  *	sd_check_events - check media events
1598  *	@disk: kernel device descriptor
1599  *	@clearing: disk events currently being cleared
1600  *
1601  *	Returns mask of DISK_EVENT_*.
1602  *
1603  *	Note: this function is invoked from the block subsystem.
1604  **/
1605 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1606 {
1607 	struct scsi_disk *sdkp = disk->private_data;
1608 	struct scsi_device *sdp;
1609 	int retval;
1610 	bool disk_changed;
1611 
1612 	if (!sdkp)
1613 		return 0;
1614 
1615 	sdp = sdkp->device;
1616 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1617 
1618 	/*
1619 	 * If the device is offline, don't send any commands - just pretend as
1620 	 * if the command failed.  If the device ever comes back online, we
1621 	 * can deal with it then.  It is only because of unrecoverable errors
1622 	 * that we would ever take a device offline in the first place.
1623 	 */
1624 	if (!scsi_device_online(sdp)) {
1625 		set_media_not_present(sdkp);
1626 		goto out;
1627 	}
1628 
1629 	/*
1630 	 * Using TEST_UNIT_READY enables differentiation between drive with
1631 	 * no cartridge loaded - NOT READY, drive with changed cartridge -
1632 	 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1633 	 *
1634 	 * Drives that auto spin down. eg iomega jaz 1G, will be started
1635 	 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1636 	 * sd_revalidate() is called.
1637 	 */
1638 	if (scsi_block_when_processing_errors(sdp)) {
1639 		struct scsi_sense_hdr sshdr = { 0, };
1640 
1641 		retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries,
1642 					      &sshdr);
1643 
1644 		/* failed to execute TUR, assume media not present */
1645 		if (retval < 0 || host_byte(retval)) {
1646 			set_media_not_present(sdkp);
1647 			goto out;
1648 		}
1649 
1650 		if (media_not_present(sdkp, &sshdr))
1651 			goto out;
1652 	}
1653 
1654 	/*
1655 	 * For removable scsi disk we have to recognise the presence
1656 	 * of a disk in the drive.
1657 	 */
1658 	if (!sdkp->media_present)
1659 		sdp->changed = 1;
1660 	sdkp->media_present = 1;
1661 out:
1662 	/*
1663 	 * sdp->changed is set under the following conditions:
1664 	 *
1665 	 *	Medium present state has changed in either direction.
1666 	 *	Device has indicated UNIT_ATTENTION.
1667 	 */
1668 	disk_changed = sdp->changed;
1669 	sdp->changed = 0;
1670 	return disk_changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1671 }
1672 
1673 static int sd_sync_cache(struct scsi_disk *sdkp)
1674 {
1675 	int res;
1676 	struct scsi_device *sdp = sdkp->device;
1677 	const int timeout = sdp->request_queue->rq_timeout
1678 		* SD_FLUSH_TIMEOUT_MULTIPLIER;
1679 	/* Leave the rest of the command zero to indicate flush everything. */
1680 	const unsigned char cmd[16] = { sdp->use_16_for_sync ?
1681 				SYNCHRONIZE_CACHE_16 : SYNCHRONIZE_CACHE };
1682 	struct scsi_sense_hdr sshdr;
1683 	struct scsi_failure failure_defs[] = {
1684 		{
1685 			.allowed = 3,
1686 			.result = SCMD_FAILURE_RESULT_ANY,
1687 		},
1688 		{}
1689 	};
1690 	struct scsi_failures failures = {
1691 		.failure_definitions = failure_defs,
1692 	};
1693 	const struct scsi_exec_args exec_args = {
1694 		.req_flags = BLK_MQ_REQ_PM,
1695 		.sshdr = &sshdr,
1696 		.failures = &failures,
1697 	};
1698 
1699 	if (!scsi_device_online(sdp))
1700 		return -ENODEV;
1701 
1702 	res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, timeout,
1703 			       sdkp->max_retries, &exec_args);
1704 	if (res) {
1705 		sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1706 
1707 		if (res < 0)
1708 			return res;
1709 
1710 		if (scsi_status_is_check_condition(res) &&
1711 		    scsi_sense_valid(&sshdr)) {
1712 			sd_print_sense_hdr(sdkp, &sshdr);
1713 
1714 			/* we need to evaluate the error return  */
1715 			if (sshdr.asc == 0x3a ||	/* medium not present */
1716 			    sshdr.asc == 0x20 ||	/* invalid command */
1717 			    (sshdr.asc == 0x74 && sshdr.ascq == 0x71))	/* drive is password locked */
1718 				/* this is no error here */
1719 				return 0;
1720 			/*
1721 			 * This drive doesn't support sync and there's not much
1722 			 * we can do because this is called during shutdown
1723 			 * or suspend so just return success so those operations
1724 			 * can proceed.
1725 			 */
1726 			if (sshdr.sense_key == ILLEGAL_REQUEST)
1727 				return 0;
1728 		}
1729 
1730 		switch (host_byte(res)) {
1731 		/* ignore errors due to racing a disconnection */
1732 		case DID_BAD_TARGET:
1733 		case DID_NO_CONNECT:
1734 			return 0;
1735 		/* signal the upper layer it might try again */
1736 		case DID_BUS_BUSY:
1737 		case DID_IMM_RETRY:
1738 		case DID_REQUEUE:
1739 		case DID_SOFT_ERROR:
1740 			return -EBUSY;
1741 		default:
1742 			return -EIO;
1743 		}
1744 	}
1745 	return 0;
1746 }
1747 
1748 static void sd_rescan(struct device *dev)
1749 {
1750 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
1751 
1752 	sd_revalidate_disk(sdkp->disk);
1753 }
1754 
1755 static int sd_get_unique_id(struct gendisk *disk, u8 id[16],
1756 		enum blk_unique_id type)
1757 {
1758 	struct scsi_device *sdev = scsi_disk(disk)->device;
1759 	const struct scsi_vpd *vpd;
1760 	const unsigned char *d;
1761 	int ret = -ENXIO, len;
1762 
1763 	rcu_read_lock();
1764 	vpd = rcu_dereference(sdev->vpd_pg83);
1765 	if (!vpd)
1766 		goto out_unlock;
1767 
1768 	ret = -EINVAL;
1769 	for (d = vpd->data + 4; d < vpd->data + vpd->len; d += d[3] + 4) {
1770 		/* we only care about designators with LU association */
1771 		if (((d[1] >> 4) & 0x3) != 0x00)
1772 			continue;
1773 		if ((d[1] & 0xf) != type)
1774 			continue;
1775 
1776 		/*
1777 		 * Only exit early if a 16-byte descriptor was found.  Otherwise
1778 		 * keep looking as one with more entropy might still show up.
1779 		 */
1780 		len = d[3];
1781 		if (len != 8 && len != 12 && len != 16)
1782 			continue;
1783 		ret = len;
1784 		memcpy(id, d + 4, len);
1785 		if (len == 16)
1786 			break;
1787 	}
1788 out_unlock:
1789 	rcu_read_unlock();
1790 	return ret;
1791 }
1792 
1793 static int sd_scsi_to_pr_err(struct scsi_sense_hdr *sshdr, int result)
1794 {
1795 	switch (host_byte(result)) {
1796 	case DID_TRANSPORT_MARGINAL:
1797 	case DID_TRANSPORT_DISRUPTED:
1798 	case DID_BUS_BUSY:
1799 		return PR_STS_RETRY_PATH_FAILURE;
1800 	case DID_NO_CONNECT:
1801 		return PR_STS_PATH_FAILED;
1802 	case DID_TRANSPORT_FAILFAST:
1803 		return PR_STS_PATH_FAST_FAILED;
1804 	}
1805 
1806 	switch (status_byte(result)) {
1807 	case SAM_STAT_RESERVATION_CONFLICT:
1808 		return PR_STS_RESERVATION_CONFLICT;
1809 	case SAM_STAT_CHECK_CONDITION:
1810 		if (!scsi_sense_valid(sshdr))
1811 			return PR_STS_IOERR;
1812 
1813 		if (sshdr->sense_key == ILLEGAL_REQUEST &&
1814 		    (sshdr->asc == 0x26 || sshdr->asc == 0x24))
1815 			return -EINVAL;
1816 
1817 		fallthrough;
1818 	default:
1819 		return PR_STS_IOERR;
1820 	}
1821 }
1822 
1823 static int sd_pr_in_command(struct block_device *bdev, u8 sa,
1824 			    unsigned char *data, int data_len)
1825 {
1826 	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1827 	struct scsi_device *sdev = sdkp->device;
1828 	struct scsi_sense_hdr sshdr;
1829 	u8 cmd[10] = { PERSISTENT_RESERVE_IN, sa };
1830 	struct scsi_failure failure_defs[] = {
1831 		{
1832 			.sense = UNIT_ATTENTION,
1833 			.asc = SCMD_FAILURE_ASC_ANY,
1834 			.ascq = SCMD_FAILURE_ASCQ_ANY,
1835 			.allowed = 5,
1836 			.result = SAM_STAT_CHECK_CONDITION,
1837 		},
1838 		{}
1839 	};
1840 	struct scsi_failures failures = {
1841 		.failure_definitions = failure_defs,
1842 	};
1843 	const struct scsi_exec_args exec_args = {
1844 		.sshdr = &sshdr,
1845 		.failures = &failures,
1846 	};
1847 	int result;
1848 
1849 	put_unaligned_be16(data_len, &cmd[7]);
1850 
1851 	result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, data, data_len,
1852 				  SD_TIMEOUT, sdkp->max_retries, &exec_args);
1853 	if (scsi_status_is_check_condition(result) &&
1854 	    scsi_sense_valid(&sshdr)) {
1855 		sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1856 		scsi_print_sense_hdr(sdev, NULL, &sshdr);
1857 	}
1858 
1859 	if (result <= 0)
1860 		return result;
1861 
1862 	return sd_scsi_to_pr_err(&sshdr, result);
1863 }
1864 
1865 static int sd_pr_read_keys(struct block_device *bdev, struct pr_keys *keys_info)
1866 {
1867 	int result, i, data_offset, num_copy_keys;
1868 	u32 num_keys = keys_info->num_keys;
1869 	int data_len = num_keys * 8 + 8;
1870 	u8 *data;
1871 
1872 	data = kzalloc(data_len, GFP_KERNEL);
1873 	if (!data)
1874 		return -ENOMEM;
1875 
1876 	result = sd_pr_in_command(bdev, READ_KEYS, data, data_len);
1877 	if (result)
1878 		goto free_data;
1879 
1880 	keys_info->generation = get_unaligned_be32(&data[0]);
1881 	keys_info->num_keys = get_unaligned_be32(&data[4]) / 8;
1882 
1883 	data_offset = 8;
1884 	num_copy_keys = min(num_keys, keys_info->num_keys);
1885 
1886 	for (i = 0; i < num_copy_keys; i++) {
1887 		keys_info->keys[i] = get_unaligned_be64(&data[data_offset]);
1888 		data_offset += 8;
1889 	}
1890 
1891 free_data:
1892 	kfree(data);
1893 	return result;
1894 }
1895 
1896 static int sd_pr_read_reservation(struct block_device *bdev,
1897 				  struct pr_held_reservation *rsv)
1898 {
1899 	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1900 	struct scsi_device *sdev = sdkp->device;
1901 	u8 data[24] = { };
1902 	int result, len;
1903 
1904 	result = sd_pr_in_command(bdev, READ_RESERVATION, data, sizeof(data));
1905 	if (result)
1906 		return result;
1907 
1908 	len = get_unaligned_be32(&data[4]);
1909 	if (!len)
1910 		return 0;
1911 
1912 	/* Make sure we have at least the key and type */
1913 	if (len < 14) {
1914 		sdev_printk(KERN_INFO, sdev,
1915 			    "READ RESERVATION failed due to short return buffer of %d bytes\n",
1916 			    len);
1917 		return -EINVAL;
1918 	}
1919 
1920 	rsv->generation = get_unaligned_be32(&data[0]);
1921 	rsv->key = get_unaligned_be64(&data[8]);
1922 	rsv->type = scsi_pr_type_to_block(data[21] & 0x0f);
1923 	return 0;
1924 }
1925 
1926 static int sd_pr_out_command(struct block_device *bdev, u8 sa, u64 key,
1927 			     u64 sa_key, enum scsi_pr_type type, u8 flags)
1928 {
1929 	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1930 	struct scsi_device *sdev = sdkp->device;
1931 	struct scsi_sense_hdr sshdr;
1932 	struct scsi_failure failure_defs[] = {
1933 		{
1934 			.sense = UNIT_ATTENTION,
1935 			.asc = SCMD_FAILURE_ASC_ANY,
1936 			.ascq = SCMD_FAILURE_ASCQ_ANY,
1937 			.allowed = 5,
1938 			.result = SAM_STAT_CHECK_CONDITION,
1939 		},
1940 		{}
1941 	};
1942 	struct scsi_failures failures = {
1943 		.failure_definitions = failure_defs,
1944 	};
1945 	const struct scsi_exec_args exec_args = {
1946 		.sshdr = &sshdr,
1947 		.failures = &failures,
1948 	};
1949 	int result;
1950 	u8 cmd[16] = { 0, };
1951 	u8 data[24] = { 0, };
1952 
1953 	cmd[0] = PERSISTENT_RESERVE_OUT;
1954 	cmd[1] = sa;
1955 	cmd[2] = type;
1956 	put_unaligned_be32(sizeof(data), &cmd[5]);
1957 
1958 	put_unaligned_be64(key, &data[0]);
1959 	put_unaligned_be64(sa_key, &data[8]);
1960 	data[20] = flags;
1961 
1962 	result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, &data,
1963 				  sizeof(data), SD_TIMEOUT, sdkp->max_retries,
1964 				  &exec_args);
1965 
1966 	if (scsi_status_is_check_condition(result) &&
1967 	    scsi_sense_valid(&sshdr)) {
1968 		sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1969 		scsi_print_sense_hdr(sdev, NULL, &sshdr);
1970 	}
1971 
1972 	if (result <= 0)
1973 		return result;
1974 
1975 	return sd_scsi_to_pr_err(&sshdr, result);
1976 }
1977 
1978 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1979 		u32 flags)
1980 {
1981 	if (flags & ~PR_FL_IGNORE_KEY)
1982 		return -EOPNOTSUPP;
1983 	return sd_pr_out_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1984 			old_key, new_key, 0,
1985 			(1 << 0) /* APTPL */);
1986 }
1987 
1988 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1989 		u32 flags)
1990 {
1991 	if (flags)
1992 		return -EOPNOTSUPP;
1993 	return sd_pr_out_command(bdev, 0x01, key, 0,
1994 				 block_pr_type_to_scsi(type), 0);
1995 }
1996 
1997 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1998 {
1999 	return sd_pr_out_command(bdev, 0x02, key, 0,
2000 				 block_pr_type_to_scsi(type), 0);
2001 }
2002 
2003 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
2004 		enum pr_type type, bool abort)
2005 {
2006 	return sd_pr_out_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
2007 				 block_pr_type_to_scsi(type), 0);
2008 }
2009 
2010 static int sd_pr_clear(struct block_device *bdev, u64 key)
2011 {
2012 	return sd_pr_out_command(bdev, 0x03, key, 0, 0, 0);
2013 }
2014 
2015 static const struct pr_ops sd_pr_ops = {
2016 	.pr_register	= sd_pr_register,
2017 	.pr_reserve	= sd_pr_reserve,
2018 	.pr_release	= sd_pr_release,
2019 	.pr_preempt	= sd_pr_preempt,
2020 	.pr_clear	= sd_pr_clear,
2021 	.pr_read_keys	= sd_pr_read_keys,
2022 	.pr_read_reservation = sd_pr_read_reservation,
2023 };
2024 
2025 static void scsi_disk_free_disk(struct gendisk *disk)
2026 {
2027 	struct scsi_disk *sdkp = scsi_disk(disk);
2028 
2029 	put_device(&sdkp->disk_dev);
2030 }
2031 
2032 static const struct block_device_operations sd_fops = {
2033 	.owner			= THIS_MODULE,
2034 	.open			= sd_open,
2035 	.release		= sd_release,
2036 	.ioctl			= sd_ioctl,
2037 	.getgeo			= sd_getgeo,
2038 	.compat_ioctl		= blkdev_compat_ptr_ioctl,
2039 	.check_events		= sd_check_events,
2040 	.unlock_native_capacity	= sd_unlock_native_capacity,
2041 	.report_zones		= sd_zbc_report_zones,
2042 	.get_unique_id		= sd_get_unique_id,
2043 	.free_disk		= scsi_disk_free_disk,
2044 	.pr_ops			= &sd_pr_ops,
2045 };
2046 
2047 /**
2048  *	sd_eh_reset - reset error handling callback
2049  *	@scmd:		sd-issued command that has failed
2050  *
2051  *	This function is called by the SCSI midlayer before starting
2052  *	SCSI EH. When counting medium access failures we have to be
2053  *	careful to register it only only once per device and SCSI EH run;
2054  *	there might be several timed out commands which will cause the
2055  *	'max_medium_access_timeouts' counter to trigger after the first
2056  *	SCSI EH run already and set the device to offline.
2057  *	So this function resets the internal counter before starting SCSI EH.
2058  **/
2059 static void sd_eh_reset(struct scsi_cmnd *scmd)
2060 {
2061 	struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk);
2062 
2063 	/* New SCSI EH run, reset gate variable */
2064 	sdkp->ignore_medium_access_errors = false;
2065 }
2066 
2067 /**
2068  *	sd_eh_action - error handling callback
2069  *	@scmd:		sd-issued command that has failed
2070  *	@eh_disp:	The recovery disposition suggested by the midlayer
2071  *
2072  *	This function is called by the SCSI midlayer upon completion of an
2073  *	error test command (currently TEST UNIT READY). The result of sending
2074  *	the eh command is passed in eh_disp.  We're looking for devices that
2075  *	fail medium access commands but are OK with non access commands like
2076  *	test unit ready (so wrongly see the device as having a successful
2077  *	recovery)
2078  **/
2079 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
2080 {
2081 	struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk);
2082 	struct scsi_device *sdev = scmd->device;
2083 
2084 	if (!scsi_device_online(sdev) ||
2085 	    !scsi_medium_access_command(scmd) ||
2086 	    host_byte(scmd->result) != DID_TIME_OUT ||
2087 	    eh_disp != SUCCESS)
2088 		return eh_disp;
2089 
2090 	/*
2091 	 * The device has timed out executing a medium access command.
2092 	 * However, the TEST UNIT READY command sent during error
2093 	 * handling completed successfully. Either the device is in the
2094 	 * process of recovering or has it suffered an internal failure
2095 	 * that prevents access to the storage medium.
2096 	 */
2097 	if (!sdkp->ignore_medium_access_errors) {
2098 		sdkp->medium_access_timed_out++;
2099 		sdkp->ignore_medium_access_errors = true;
2100 	}
2101 
2102 	/*
2103 	 * If the device keeps failing read/write commands but TEST UNIT
2104 	 * READY always completes successfully we assume that medium
2105 	 * access is no longer possible and take the device offline.
2106 	 */
2107 	if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
2108 		scmd_printk(KERN_ERR, scmd,
2109 			    "Medium access timeout failure. Offlining disk!\n");
2110 		mutex_lock(&sdev->state_mutex);
2111 		scsi_device_set_state(sdev, SDEV_OFFLINE);
2112 		mutex_unlock(&sdev->state_mutex);
2113 
2114 		return SUCCESS;
2115 	}
2116 
2117 	return eh_disp;
2118 }
2119 
2120 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
2121 {
2122 	struct request *req = scsi_cmd_to_rq(scmd);
2123 	struct scsi_device *sdev = scmd->device;
2124 	unsigned int transferred, good_bytes;
2125 	u64 start_lba, end_lba, bad_lba;
2126 
2127 	/*
2128 	 * Some commands have a payload smaller than the device logical
2129 	 * block size (e.g. INQUIRY on a 4K disk).
2130 	 */
2131 	if (scsi_bufflen(scmd) <= sdev->sector_size)
2132 		return 0;
2133 
2134 	/* Check if we have a 'bad_lba' information */
2135 	if (!scsi_get_sense_info_fld(scmd->sense_buffer,
2136 				     SCSI_SENSE_BUFFERSIZE,
2137 				     &bad_lba))
2138 		return 0;
2139 
2140 	/*
2141 	 * If the bad lba was reported incorrectly, we have no idea where
2142 	 * the error is.
2143 	 */
2144 	start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
2145 	end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
2146 	if (bad_lba < start_lba || bad_lba >= end_lba)
2147 		return 0;
2148 
2149 	/*
2150 	 * resid is optional but mostly filled in.  When it's unused,
2151 	 * its value is zero, so we assume the whole buffer transferred
2152 	 */
2153 	transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
2154 
2155 	/* This computation should always be done in terms of the
2156 	 * resolution of the device's medium.
2157 	 */
2158 	good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
2159 
2160 	return min(good_bytes, transferred);
2161 }
2162 
2163 /**
2164  *	sd_done - bottom half handler: called when the lower level
2165  *	driver has completed (successfully or otherwise) a scsi command.
2166  *	@SCpnt: mid-level's per command structure.
2167  *
2168  *	Note: potentially run from within an ISR. Must not block.
2169  **/
2170 static int sd_done(struct scsi_cmnd *SCpnt)
2171 {
2172 	int result = SCpnt->result;
2173 	unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
2174 	unsigned int sector_size = SCpnt->device->sector_size;
2175 	unsigned int resid;
2176 	struct scsi_sense_hdr sshdr;
2177 	struct request *req = scsi_cmd_to_rq(SCpnt);
2178 	struct scsi_disk *sdkp = scsi_disk(req->q->disk);
2179 	int sense_valid = 0;
2180 	int sense_deferred = 0;
2181 
2182 	switch (req_op(req)) {
2183 	case REQ_OP_DISCARD:
2184 	case REQ_OP_WRITE_ZEROES:
2185 	case REQ_OP_ZONE_RESET:
2186 	case REQ_OP_ZONE_RESET_ALL:
2187 	case REQ_OP_ZONE_OPEN:
2188 	case REQ_OP_ZONE_CLOSE:
2189 	case REQ_OP_ZONE_FINISH:
2190 		if (!result) {
2191 			good_bytes = blk_rq_bytes(req);
2192 			scsi_set_resid(SCpnt, 0);
2193 		} else {
2194 			good_bytes = 0;
2195 			scsi_set_resid(SCpnt, blk_rq_bytes(req));
2196 		}
2197 		break;
2198 	default:
2199 		/*
2200 		 * In case of bogus fw or device, we could end up having
2201 		 * an unaligned partial completion. Check this here and force
2202 		 * alignment.
2203 		 */
2204 		resid = scsi_get_resid(SCpnt);
2205 		if (resid & (sector_size - 1)) {
2206 			sd_printk(KERN_INFO, sdkp,
2207 				"Unaligned partial completion (resid=%u, sector_sz=%u)\n",
2208 				resid, sector_size);
2209 			scsi_print_command(SCpnt);
2210 			resid = min(scsi_bufflen(SCpnt),
2211 				    round_up(resid, sector_size));
2212 			scsi_set_resid(SCpnt, resid);
2213 		}
2214 	}
2215 
2216 	if (result) {
2217 		sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
2218 		if (sense_valid)
2219 			sense_deferred = scsi_sense_is_deferred(&sshdr);
2220 	}
2221 	sdkp->medium_access_timed_out = 0;
2222 
2223 	if (!scsi_status_is_check_condition(result) &&
2224 	    (!sense_valid || sense_deferred))
2225 		goto out;
2226 
2227 	switch (sshdr.sense_key) {
2228 	case HARDWARE_ERROR:
2229 	case MEDIUM_ERROR:
2230 		good_bytes = sd_completed_bytes(SCpnt);
2231 		break;
2232 	case RECOVERED_ERROR:
2233 		good_bytes = scsi_bufflen(SCpnt);
2234 		break;
2235 	case NO_SENSE:
2236 		/* This indicates a false check condition, so ignore it.  An
2237 		 * unknown amount of data was transferred so treat it as an
2238 		 * error.
2239 		 */
2240 		SCpnt->result = 0;
2241 		memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
2242 		break;
2243 	case ABORTED_COMMAND:
2244 		if (sshdr.asc == 0x10)  /* DIF: Target detected corruption */
2245 			good_bytes = sd_completed_bytes(SCpnt);
2246 		break;
2247 	case ILLEGAL_REQUEST:
2248 		switch (sshdr.asc) {
2249 		case 0x10:	/* DIX: Host detected corruption */
2250 			good_bytes = sd_completed_bytes(SCpnt);
2251 			break;
2252 		case 0x20:	/* INVALID COMMAND OPCODE */
2253 		case 0x24:	/* INVALID FIELD IN CDB */
2254 			switch (SCpnt->cmnd[0]) {
2255 			case UNMAP:
2256 				sd_config_discard(sdkp, SD_LBP_DISABLE);
2257 				break;
2258 			case WRITE_SAME_16:
2259 			case WRITE_SAME:
2260 				if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2261 					sd_config_discard(sdkp, SD_LBP_DISABLE);
2262 				} else {
2263 					sdkp->device->no_write_same = 1;
2264 					sd_config_write_same(sdkp);
2265 					req->rq_flags |= RQF_QUIET;
2266 				}
2267 				break;
2268 			}
2269 		}
2270 		break;
2271 	default:
2272 		break;
2273 	}
2274 
2275  out:
2276 	if (sd_is_zoned(sdkp))
2277 		good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2278 
2279 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2280 					   "sd_done: completed %d of %d bytes\n",
2281 					   good_bytes, scsi_bufflen(SCpnt)));
2282 
2283 	return good_bytes;
2284 }
2285 
2286 /*
2287  * spinup disk - called only in sd_revalidate_disk()
2288  */
2289 static void
2290 sd_spinup_disk(struct scsi_disk *sdkp)
2291 {
2292 	static const u8 cmd[10] = { TEST_UNIT_READY };
2293 	unsigned long spintime_expire = 0;
2294 	int spintime, sense_valid = 0;
2295 	unsigned int the_result;
2296 	struct scsi_sense_hdr sshdr;
2297 	struct scsi_failure failure_defs[] = {
2298 		/* Do not retry Medium Not Present */
2299 		{
2300 			.sense = UNIT_ATTENTION,
2301 			.asc = 0x3A,
2302 			.ascq = SCMD_FAILURE_ASCQ_ANY,
2303 			.result = SAM_STAT_CHECK_CONDITION,
2304 		},
2305 		{
2306 			.sense = NOT_READY,
2307 			.asc = 0x3A,
2308 			.ascq = SCMD_FAILURE_ASCQ_ANY,
2309 			.result = SAM_STAT_CHECK_CONDITION,
2310 		},
2311 		/* Retry when scsi_status_is_good would return false 3 times */
2312 		{
2313 			.result = SCMD_FAILURE_STAT_ANY,
2314 			.allowed = 3,
2315 		},
2316 		{}
2317 	};
2318 	struct scsi_failures failures = {
2319 		.failure_definitions = failure_defs,
2320 	};
2321 	const struct scsi_exec_args exec_args = {
2322 		.sshdr = &sshdr,
2323 		.failures = &failures,
2324 	};
2325 
2326 	spintime = 0;
2327 
2328 	/* Spin up drives, as required.  Only do this at boot time */
2329 	/* Spinup needs to be done for module loads too. */
2330 	do {
2331 		bool media_was_present = sdkp->media_present;
2332 
2333 		scsi_failures_reset_retries(&failures);
2334 
2335 		the_result = scsi_execute_cmd(sdkp->device, cmd, REQ_OP_DRV_IN,
2336 					      NULL, 0, SD_TIMEOUT,
2337 					      sdkp->max_retries, &exec_args);
2338 
2339 
2340 		if (the_result > 0) {
2341 			/*
2342 			 * If the drive has indicated to us that it doesn't
2343 			 * have any media in it, don't bother with any more
2344 			 * polling.
2345 			 */
2346 			if (media_not_present(sdkp, &sshdr)) {
2347 				if (media_was_present)
2348 					sd_printk(KERN_NOTICE, sdkp,
2349 						  "Media removed, stopped polling\n");
2350 				return;
2351 			}
2352 			sense_valid = scsi_sense_valid(&sshdr);
2353 		}
2354 
2355 		if (!scsi_status_is_check_condition(the_result)) {
2356 			/* no sense, TUR either succeeded or failed
2357 			 * with a status error */
2358 			if(!spintime && !scsi_status_is_good(the_result)) {
2359 				sd_print_result(sdkp, "Test Unit Ready failed",
2360 						the_result);
2361 			}
2362 			break;
2363 		}
2364 
2365 		/*
2366 		 * The device does not want the automatic start to be issued.
2367 		 */
2368 		if (sdkp->device->no_start_on_add)
2369 			break;
2370 
2371 		if (sense_valid && sshdr.sense_key == NOT_READY) {
2372 			if (sshdr.asc == 4 && sshdr.ascq == 3)
2373 				break;	/* manual intervention required */
2374 			if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2375 				break;	/* standby */
2376 			if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2377 				break;	/* unavailable */
2378 			if (sshdr.asc == 4 && sshdr.ascq == 0x1b)
2379 				break;	/* sanitize in progress */
2380 			if (sshdr.asc == 4 && sshdr.ascq == 0x24)
2381 				break;	/* depopulation in progress */
2382 			if (sshdr.asc == 4 && sshdr.ascq == 0x25)
2383 				break;	/* depopulation restoration in progress */
2384 			/*
2385 			 * Issue command to spin up drive when not ready
2386 			 */
2387 			if (!spintime) {
2388 				/* Return immediately and start spin cycle */
2389 				const u8 start_cmd[10] = {
2390 					[0] = START_STOP,
2391 					[1] = 1,
2392 					[4] = sdkp->device->start_stop_pwr_cond ?
2393 						0x11 : 1,
2394 				};
2395 
2396 				sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2397 				scsi_execute_cmd(sdkp->device, start_cmd,
2398 						 REQ_OP_DRV_IN, NULL, 0,
2399 						 SD_TIMEOUT, sdkp->max_retries,
2400 						 &exec_args);
2401 				spintime_expire = jiffies + 100 * HZ;
2402 				spintime = 1;
2403 			}
2404 			/* Wait 1 second for next try */
2405 			msleep(1000);
2406 			printk(KERN_CONT ".");
2407 
2408 		/*
2409 		 * Wait for USB flash devices with slow firmware.
2410 		 * Yes, this sense key/ASC combination shouldn't
2411 		 * occur here.  It's characteristic of these devices.
2412 		 */
2413 		} else if (sense_valid &&
2414 				sshdr.sense_key == UNIT_ATTENTION &&
2415 				sshdr.asc == 0x28) {
2416 			if (!spintime) {
2417 				spintime_expire = jiffies + 5 * HZ;
2418 				spintime = 1;
2419 			}
2420 			/* Wait 1 second for next try */
2421 			msleep(1000);
2422 		} else {
2423 			/* we don't understand the sense code, so it's
2424 			 * probably pointless to loop */
2425 			if(!spintime) {
2426 				sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2427 				sd_print_sense_hdr(sdkp, &sshdr);
2428 			}
2429 			break;
2430 		}
2431 
2432 	} while (spintime && time_before_eq(jiffies, spintime_expire));
2433 
2434 	if (spintime) {
2435 		if (scsi_status_is_good(the_result))
2436 			printk(KERN_CONT "ready\n");
2437 		else
2438 			printk(KERN_CONT "not responding...\n");
2439 	}
2440 }
2441 
2442 /*
2443  * Determine whether disk supports Data Integrity Field.
2444  */
2445 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2446 {
2447 	struct scsi_device *sdp = sdkp->device;
2448 	u8 type;
2449 
2450 	if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) {
2451 		sdkp->protection_type = 0;
2452 		return 0;
2453 	}
2454 
2455 	type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2456 
2457 	if (type > T10_PI_TYPE3_PROTECTION) {
2458 		sd_printk(KERN_ERR, sdkp, "formatted with unsupported"	\
2459 			  " protection type %u. Disabling disk!\n",
2460 			  type);
2461 		sdkp->protection_type = 0;
2462 		return -ENODEV;
2463 	}
2464 
2465 	sdkp->protection_type = type;
2466 
2467 	return 0;
2468 }
2469 
2470 static void sd_config_protection(struct scsi_disk *sdkp)
2471 {
2472 	struct scsi_device *sdp = sdkp->device;
2473 
2474 	sd_dif_config_host(sdkp);
2475 
2476 	if (!sdkp->protection_type)
2477 		return;
2478 
2479 	if (!scsi_host_dif_capable(sdp->host, sdkp->protection_type)) {
2480 		sd_first_printk(KERN_NOTICE, sdkp,
2481 				"Disabling DIF Type %u protection\n",
2482 				sdkp->protection_type);
2483 		sdkp->protection_type = 0;
2484 	}
2485 
2486 	sd_first_printk(KERN_NOTICE, sdkp, "Enabling DIF Type %u protection\n",
2487 			sdkp->protection_type);
2488 }
2489 
2490 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2491 			struct scsi_sense_hdr *sshdr, int sense_valid,
2492 			int the_result)
2493 {
2494 	if (sense_valid)
2495 		sd_print_sense_hdr(sdkp, sshdr);
2496 	else
2497 		sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2498 
2499 	/*
2500 	 * Set dirty bit for removable devices if not ready -
2501 	 * sometimes drives will not report this properly.
2502 	 */
2503 	if (sdp->removable &&
2504 	    sense_valid && sshdr->sense_key == NOT_READY)
2505 		set_media_not_present(sdkp);
2506 
2507 	/*
2508 	 * We used to set media_present to 0 here to indicate no media
2509 	 * in the drive, but some drives fail read capacity even with
2510 	 * media present, so we can't do that.
2511 	 */
2512 	sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2513 }
2514 
2515 #define RC16_LEN 32
2516 #if RC16_LEN > SD_BUF_SIZE
2517 #error RC16_LEN must not be more than SD_BUF_SIZE
2518 #endif
2519 
2520 #define READ_CAPACITY_RETRIES_ON_RESET	10
2521 
2522 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2523 						unsigned char *buffer)
2524 {
2525 	unsigned char cmd[16];
2526 	struct scsi_sense_hdr sshdr;
2527 	const struct scsi_exec_args exec_args = {
2528 		.sshdr = &sshdr,
2529 	};
2530 	int sense_valid = 0;
2531 	int the_result;
2532 	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2533 	unsigned int alignment;
2534 	unsigned long long lba;
2535 	unsigned sector_size;
2536 
2537 	if (sdp->no_read_capacity_16)
2538 		return -EINVAL;
2539 
2540 	do {
2541 		memset(cmd, 0, 16);
2542 		cmd[0] = SERVICE_ACTION_IN_16;
2543 		cmd[1] = SAI_READ_CAPACITY_16;
2544 		cmd[13] = RC16_LEN;
2545 		memset(buffer, 0, RC16_LEN);
2546 
2547 		the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN,
2548 					      buffer, RC16_LEN, SD_TIMEOUT,
2549 					      sdkp->max_retries, &exec_args);
2550 		if (the_result > 0) {
2551 			if (media_not_present(sdkp, &sshdr))
2552 				return -ENODEV;
2553 
2554 			sense_valid = scsi_sense_valid(&sshdr);
2555 			if (sense_valid &&
2556 			    sshdr.sense_key == ILLEGAL_REQUEST &&
2557 			    (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2558 			    sshdr.ascq == 0x00)
2559 				/* Invalid Command Operation Code or
2560 				 * Invalid Field in CDB, just retry
2561 				 * silently with RC10 */
2562 				return -EINVAL;
2563 			if (sense_valid &&
2564 			    sshdr.sense_key == UNIT_ATTENTION &&
2565 			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2566 				/* Device reset might occur several times,
2567 				 * give it one more chance */
2568 				if (--reset_retries > 0)
2569 					continue;
2570 		}
2571 		retries--;
2572 
2573 	} while (the_result && retries);
2574 
2575 	if (the_result) {
2576 		sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2577 		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2578 		return -EINVAL;
2579 	}
2580 
2581 	sector_size = get_unaligned_be32(&buffer[8]);
2582 	lba = get_unaligned_be64(&buffer[0]);
2583 
2584 	if (sd_read_protection_type(sdkp, buffer) < 0) {
2585 		sdkp->capacity = 0;
2586 		return -ENODEV;
2587 	}
2588 
2589 	/* Logical blocks per physical block exponent */
2590 	sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2591 
2592 	/* RC basis */
2593 	sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2594 
2595 	/* Lowest aligned logical block */
2596 	alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2597 	blk_queue_alignment_offset(sdp->request_queue, alignment);
2598 	if (alignment && sdkp->first_scan)
2599 		sd_printk(KERN_NOTICE, sdkp,
2600 			  "physical block alignment offset: %u\n", alignment);
2601 
2602 	if (buffer[14] & 0x80) { /* LBPME */
2603 		sdkp->lbpme = 1;
2604 
2605 		if (buffer[14] & 0x40) /* LBPRZ */
2606 			sdkp->lbprz = 1;
2607 
2608 		sd_config_discard(sdkp, SD_LBP_WS16);
2609 	}
2610 
2611 	sdkp->capacity = lba + 1;
2612 	return sector_size;
2613 }
2614 
2615 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2616 						unsigned char *buffer)
2617 {
2618 	static const u8 cmd[10] = { READ_CAPACITY };
2619 	struct scsi_sense_hdr sshdr;
2620 	struct scsi_failure failure_defs[] = {
2621 		/* Do not retry Medium Not Present */
2622 		{
2623 			.sense = UNIT_ATTENTION,
2624 			.asc = 0x3A,
2625 			.result = SAM_STAT_CHECK_CONDITION,
2626 		},
2627 		{
2628 			.sense = NOT_READY,
2629 			.asc = 0x3A,
2630 			.result = SAM_STAT_CHECK_CONDITION,
2631 		},
2632 		 /* Device reset might occur several times so retry a lot */
2633 		{
2634 			.sense = UNIT_ATTENTION,
2635 			.asc = 0x29,
2636 			.allowed = READ_CAPACITY_RETRIES_ON_RESET,
2637 			.result = SAM_STAT_CHECK_CONDITION,
2638 		},
2639 		/* Any other error not listed above retry 3 times */
2640 		{
2641 			.result = SCMD_FAILURE_RESULT_ANY,
2642 			.allowed = 3,
2643 		},
2644 		{}
2645 	};
2646 	struct scsi_failures failures = {
2647 		.failure_definitions = failure_defs,
2648 	};
2649 	const struct scsi_exec_args exec_args = {
2650 		.sshdr = &sshdr,
2651 		.failures = &failures,
2652 	};
2653 	int sense_valid = 0;
2654 	int the_result;
2655 	sector_t lba;
2656 	unsigned sector_size;
2657 
2658 	memset(buffer, 0, 8);
2659 
2660 	the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, buffer,
2661 				      8, SD_TIMEOUT, sdkp->max_retries,
2662 				      &exec_args);
2663 
2664 	if (the_result > 0) {
2665 		sense_valid = scsi_sense_valid(&sshdr);
2666 
2667 		if (media_not_present(sdkp, &sshdr))
2668 			return -ENODEV;
2669 	}
2670 
2671 	if (the_result) {
2672 		sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2673 		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2674 		return -EINVAL;
2675 	}
2676 
2677 	sector_size = get_unaligned_be32(&buffer[4]);
2678 	lba = get_unaligned_be32(&buffer[0]);
2679 
2680 	if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2681 		/* Some buggy (usb cardreader) devices return an lba of
2682 		   0xffffffff when the want to report a size of 0 (with
2683 		   which they really mean no media is present) */
2684 		sdkp->capacity = 0;
2685 		sdkp->physical_block_size = sector_size;
2686 		return sector_size;
2687 	}
2688 
2689 	sdkp->capacity = lba + 1;
2690 	sdkp->physical_block_size = sector_size;
2691 	return sector_size;
2692 }
2693 
2694 static int sd_try_rc16_first(struct scsi_device *sdp)
2695 {
2696 	if (sdp->host->max_cmd_len < 16)
2697 		return 0;
2698 	if (sdp->try_rc_10_first)
2699 		return 0;
2700 	if (sdp->scsi_level > SCSI_SPC_2)
2701 		return 1;
2702 	if (scsi_device_protection(sdp))
2703 		return 1;
2704 	return 0;
2705 }
2706 
2707 /*
2708  * read disk capacity
2709  */
2710 static void
2711 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2712 {
2713 	int sector_size;
2714 	struct scsi_device *sdp = sdkp->device;
2715 
2716 	if (sd_try_rc16_first(sdp)) {
2717 		sector_size = read_capacity_16(sdkp, sdp, buffer);
2718 		if (sector_size == -EOVERFLOW)
2719 			goto got_data;
2720 		if (sector_size == -ENODEV)
2721 			return;
2722 		if (sector_size < 0)
2723 			sector_size = read_capacity_10(sdkp, sdp, buffer);
2724 		if (sector_size < 0)
2725 			return;
2726 	} else {
2727 		sector_size = read_capacity_10(sdkp, sdp, buffer);
2728 		if (sector_size == -EOVERFLOW)
2729 			goto got_data;
2730 		if (sector_size < 0)
2731 			return;
2732 		if ((sizeof(sdkp->capacity) > 4) &&
2733 		    (sdkp->capacity > 0xffffffffULL)) {
2734 			int old_sector_size = sector_size;
2735 			sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2736 					"Trying to use READ CAPACITY(16).\n");
2737 			sector_size = read_capacity_16(sdkp, sdp, buffer);
2738 			if (sector_size < 0) {
2739 				sd_printk(KERN_NOTICE, sdkp,
2740 					"Using 0xffffffff as device size\n");
2741 				sdkp->capacity = 1 + (sector_t) 0xffffffff;
2742 				sector_size = old_sector_size;
2743 				goto got_data;
2744 			}
2745 			/* Remember that READ CAPACITY(16) succeeded */
2746 			sdp->try_rc_10_first = 0;
2747 		}
2748 	}
2749 
2750 	/* Some devices are known to return the total number of blocks,
2751 	 * not the highest block number.  Some devices have versions
2752 	 * which do this and others which do not.  Some devices we might
2753 	 * suspect of doing this but we don't know for certain.
2754 	 *
2755 	 * If we know the reported capacity is wrong, decrement it.  If
2756 	 * we can only guess, then assume the number of blocks is even
2757 	 * (usually true but not always) and err on the side of lowering
2758 	 * the capacity.
2759 	 */
2760 	if (sdp->fix_capacity ||
2761 	    (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2762 		sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2763 				"from its reported value: %llu\n",
2764 				(unsigned long long) sdkp->capacity);
2765 		--sdkp->capacity;
2766 	}
2767 
2768 got_data:
2769 	if (sector_size == 0) {
2770 		sector_size = 512;
2771 		sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2772 			  "assuming 512.\n");
2773 	}
2774 
2775 	if (sector_size != 512 &&
2776 	    sector_size != 1024 &&
2777 	    sector_size != 2048 &&
2778 	    sector_size != 4096) {
2779 		sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2780 			  sector_size);
2781 		/*
2782 		 * The user might want to re-format the drive with
2783 		 * a supported sectorsize.  Once this happens, it
2784 		 * would be relatively trivial to set the thing up.
2785 		 * For this reason, we leave the thing in the table.
2786 		 */
2787 		sdkp->capacity = 0;
2788 		/*
2789 		 * set a bogus sector size so the normal read/write
2790 		 * logic in the block layer will eventually refuse any
2791 		 * request on this device without tripping over power
2792 		 * of two sector size assumptions
2793 		 */
2794 		sector_size = 512;
2795 	}
2796 	blk_queue_logical_block_size(sdp->request_queue, sector_size);
2797 	blk_queue_physical_block_size(sdp->request_queue,
2798 				      sdkp->physical_block_size);
2799 	sdkp->device->sector_size = sector_size;
2800 
2801 	if (sdkp->capacity > 0xffffffff)
2802 		sdp->use_16_for_rw = 1;
2803 
2804 }
2805 
2806 /*
2807  * Print disk capacity
2808  */
2809 static void
2810 sd_print_capacity(struct scsi_disk *sdkp,
2811 		  sector_t old_capacity)
2812 {
2813 	int sector_size = sdkp->device->sector_size;
2814 	char cap_str_2[10], cap_str_10[10];
2815 
2816 	if (!sdkp->first_scan && old_capacity == sdkp->capacity)
2817 		return;
2818 
2819 	string_get_size(sdkp->capacity, sector_size,
2820 			STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2821 	string_get_size(sdkp->capacity, sector_size,
2822 			STRING_UNITS_10, cap_str_10, sizeof(cap_str_10));
2823 
2824 	sd_printk(KERN_NOTICE, sdkp,
2825 		  "%llu %d-byte logical blocks: (%s/%s)\n",
2826 		  (unsigned long long)sdkp->capacity,
2827 		  sector_size, cap_str_10, cap_str_2);
2828 
2829 	if (sdkp->physical_block_size != sector_size)
2830 		sd_printk(KERN_NOTICE, sdkp,
2831 			  "%u-byte physical blocks\n",
2832 			  sdkp->physical_block_size);
2833 }
2834 
2835 /* called with buffer of length 512 */
2836 static inline int
2837 sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage,
2838 		 unsigned char *buffer, int len, struct scsi_mode_data *data,
2839 		 struct scsi_sense_hdr *sshdr)
2840 {
2841 	/*
2842 	 * If we must use MODE SENSE(10), make sure that the buffer length
2843 	 * is at least 8 bytes so that the mode sense header fits.
2844 	 */
2845 	if (sdkp->device->use_10_for_ms && len < 8)
2846 		len = 8;
2847 
2848 	return scsi_mode_sense(sdkp->device, dbd, modepage, 0, buffer, len,
2849 			       SD_TIMEOUT, sdkp->max_retries, data, sshdr);
2850 }
2851 
2852 /*
2853  * read write protect setting, if possible - called only in sd_revalidate_disk()
2854  * called with buffer of length SD_BUF_SIZE
2855  */
2856 static void
2857 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2858 {
2859 	int res;
2860 	struct scsi_device *sdp = sdkp->device;
2861 	struct scsi_mode_data data;
2862 	int old_wp = sdkp->write_prot;
2863 
2864 	set_disk_ro(sdkp->disk, 0);
2865 	if (sdp->skip_ms_page_3f) {
2866 		sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2867 		return;
2868 	}
2869 
2870 	if (sdp->use_192_bytes_for_3f) {
2871 		res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL);
2872 	} else {
2873 		/*
2874 		 * First attempt: ask for all pages (0x3F), but only 4 bytes.
2875 		 * We have to start carefully: some devices hang if we ask
2876 		 * for more than is available.
2877 		 */
2878 		res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL);
2879 
2880 		/*
2881 		 * Second attempt: ask for page 0 When only page 0 is
2882 		 * implemented, a request for page 3F may return Sense Key
2883 		 * 5: Illegal Request, Sense Code 24: Invalid field in
2884 		 * CDB.
2885 		 */
2886 		if (res < 0)
2887 			res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL);
2888 
2889 		/*
2890 		 * Third attempt: ask 255 bytes, as we did earlier.
2891 		 */
2892 		if (res < 0)
2893 			res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255,
2894 					       &data, NULL);
2895 	}
2896 
2897 	if (res < 0) {
2898 		sd_first_printk(KERN_WARNING, sdkp,
2899 			  "Test WP failed, assume Write Enabled\n");
2900 	} else {
2901 		sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2902 		set_disk_ro(sdkp->disk, sdkp->write_prot);
2903 		if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2904 			sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2905 				  sdkp->write_prot ? "on" : "off");
2906 			sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
2907 		}
2908 	}
2909 }
2910 
2911 /*
2912  * sd_read_cache_type - called only from sd_revalidate_disk()
2913  * called with buffer of length SD_BUF_SIZE
2914  */
2915 static void
2916 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2917 {
2918 	int len = 0, res;
2919 	struct scsi_device *sdp = sdkp->device;
2920 
2921 	int dbd;
2922 	int modepage;
2923 	int first_len;
2924 	struct scsi_mode_data data;
2925 	struct scsi_sense_hdr sshdr;
2926 	int old_wce = sdkp->WCE;
2927 	int old_rcd = sdkp->RCD;
2928 	int old_dpofua = sdkp->DPOFUA;
2929 
2930 
2931 	if (sdkp->cache_override)
2932 		return;
2933 
2934 	first_len = 4;
2935 	if (sdp->skip_ms_page_8) {
2936 		if (sdp->type == TYPE_RBC)
2937 			goto defaults;
2938 		else {
2939 			if (sdp->skip_ms_page_3f)
2940 				goto defaults;
2941 			modepage = 0x3F;
2942 			if (sdp->use_192_bytes_for_3f)
2943 				first_len = 192;
2944 			dbd = 0;
2945 		}
2946 	} else if (sdp->type == TYPE_RBC) {
2947 		modepage = 6;
2948 		dbd = 8;
2949 	} else {
2950 		modepage = 8;
2951 		dbd = 0;
2952 	}
2953 
2954 	/* cautiously ask */
2955 	res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len,
2956 			&data, &sshdr);
2957 
2958 	if (res < 0)
2959 		goto bad_sense;
2960 
2961 	if (!data.header_length) {
2962 		modepage = 6;
2963 		first_len = 0;
2964 		sd_first_printk(KERN_ERR, sdkp,
2965 				"Missing header in MODE_SENSE response\n");
2966 	}
2967 
2968 	/* that went OK, now ask for the proper length */
2969 	len = data.length;
2970 
2971 	/*
2972 	 * We're only interested in the first three bytes, actually.
2973 	 * But the data cache page is defined for the first 20.
2974 	 */
2975 	if (len < 3)
2976 		goto bad_sense;
2977 	else if (len > SD_BUF_SIZE) {
2978 		sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2979 			  "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2980 		len = SD_BUF_SIZE;
2981 	}
2982 	if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2983 		len = 192;
2984 
2985 	/* Get the data */
2986 	if (len > first_len)
2987 		res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len,
2988 				&data, &sshdr);
2989 
2990 	if (!res) {
2991 		int offset = data.header_length + data.block_descriptor_length;
2992 
2993 		while (offset < len) {
2994 			u8 page_code = buffer[offset] & 0x3F;
2995 			u8 spf       = buffer[offset] & 0x40;
2996 
2997 			if (page_code == 8 || page_code == 6) {
2998 				/* We're interested only in the first 3 bytes.
2999 				 */
3000 				if (len - offset <= 2) {
3001 					sd_first_printk(KERN_ERR, sdkp,
3002 						"Incomplete mode parameter "
3003 							"data\n");
3004 					goto defaults;
3005 				} else {
3006 					modepage = page_code;
3007 					goto Page_found;
3008 				}
3009 			} else {
3010 				/* Go to the next page */
3011 				if (spf && len - offset > 3)
3012 					offset += 4 + (buffer[offset+2] << 8) +
3013 						buffer[offset+3];
3014 				else if (!spf && len - offset > 1)
3015 					offset += 2 + buffer[offset+1];
3016 				else {
3017 					sd_first_printk(KERN_ERR, sdkp,
3018 							"Incomplete mode "
3019 							"parameter data\n");
3020 					goto defaults;
3021 				}
3022 			}
3023 		}
3024 
3025 		sd_first_printk(KERN_WARNING, sdkp,
3026 				"No Caching mode page found\n");
3027 		goto defaults;
3028 
3029 	Page_found:
3030 		if (modepage == 8) {
3031 			sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
3032 			sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
3033 		} else {
3034 			sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
3035 			sdkp->RCD = 0;
3036 		}
3037 
3038 		sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
3039 		if (sdp->broken_fua) {
3040 			sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
3041 			sdkp->DPOFUA = 0;
3042 		} else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
3043 			   !sdkp->device->use_16_for_rw) {
3044 			sd_first_printk(KERN_NOTICE, sdkp,
3045 				  "Uses READ/WRITE(6), disabling FUA\n");
3046 			sdkp->DPOFUA = 0;
3047 		}
3048 
3049 		/* No cache flush allowed for write protected devices */
3050 		if (sdkp->WCE && sdkp->write_prot)
3051 			sdkp->WCE = 0;
3052 
3053 		if (sdkp->first_scan || old_wce != sdkp->WCE ||
3054 		    old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
3055 			sd_printk(KERN_NOTICE, sdkp,
3056 				  "Write cache: %s, read cache: %s, %s\n",
3057 				  sdkp->WCE ? "enabled" : "disabled",
3058 				  sdkp->RCD ? "disabled" : "enabled",
3059 				  sdkp->DPOFUA ? "supports DPO and FUA"
3060 				  : "doesn't support DPO or FUA");
3061 
3062 		return;
3063 	}
3064 
3065 bad_sense:
3066 	if (res == -EIO && scsi_sense_valid(&sshdr) &&
3067 	    sshdr.sense_key == ILLEGAL_REQUEST &&
3068 	    sshdr.asc == 0x24 && sshdr.ascq == 0x0)
3069 		/* Invalid field in CDB */
3070 		sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
3071 	else
3072 		sd_first_printk(KERN_ERR, sdkp,
3073 				"Asking for cache data failed\n");
3074 
3075 defaults:
3076 	if (sdp->wce_default_on) {
3077 		sd_first_printk(KERN_NOTICE, sdkp,
3078 				"Assuming drive cache: write back\n");
3079 		sdkp->WCE = 1;
3080 	} else {
3081 		sd_first_printk(KERN_WARNING, sdkp,
3082 				"Assuming drive cache: write through\n");
3083 		sdkp->WCE = 0;
3084 	}
3085 	sdkp->RCD = 0;
3086 	sdkp->DPOFUA = 0;
3087 }
3088 
3089 static bool sd_is_perm_stream(struct scsi_disk *sdkp, unsigned int stream_id)
3090 {
3091 	u8 cdb[16] = { SERVICE_ACTION_IN_16, SAI_GET_STREAM_STATUS };
3092 	struct {
3093 		struct scsi_stream_status_header h;
3094 		struct scsi_stream_status s;
3095 	} buf;
3096 	struct scsi_device *sdev = sdkp->device;
3097 	struct scsi_sense_hdr sshdr;
3098 	const struct scsi_exec_args exec_args = {
3099 		.sshdr = &sshdr,
3100 	};
3101 	int res;
3102 
3103 	put_unaligned_be16(stream_id, &cdb[4]);
3104 	put_unaligned_be32(sizeof(buf), &cdb[10]);
3105 
3106 	res = scsi_execute_cmd(sdev, cdb, REQ_OP_DRV_IN, &buf, sizeof(buf),
3107 			       SD_TIMEOUT, sdkp->max_retries, &exec_args);
3108 	if (res < 0)
3109 		return false;
3110 	if (scsi_status_is_check_condition(res) && scsi_sense_valid(&sshdr))
3111 		sd_print_sense_hdr(sdkp, &sshdr);
3112 	if (res)
3113 		return false;
3114 	if (get_unaligned_be32(&buf.h.len) < sizeof(struct scsi_stream_status))
3115 		return false;
3116 	return buf.h.stream_status[0].perm;
3117 }
3118 
3119 static void sd_read_io_hints(struct scsi_disk *sdkp, unsigned char *buffer)
3120 {
3121 	struct scsi_device *sdp = sdkp->device;
3122 	const struct scsi_io_group_descriptor *desc, *start, *end;
3123 	struct scsi_sense_hdr sshdr;
3124 	struct scsi_mode_data data;
3125 	int res;
3126 
3127 	res = scsi_mode_sense(sdp, /*dbd=*/0x8, /*modepage=*/0x0a,
3128 			      /*subpage=*/0x05, buffer, SD_BUF_SIZE, SD_TIMEOUT,
3129 			      sdkp->max_retries, &data, &sshdr);
3130 	if (res < 0)
3131 		return;
3132 	start = (void *)buffer + data.header_length + 16;
3133 	end = (void *)buffer + ALIGN_DOWN(data.header_length + data.length,
3134 					  sizeof(*end));
3135 	/*
3136 	 * From "SBC-5 Constrained Streams with Data Lifetimes": Device severs
3137 	 * should assign the lowest numbered stream identifiers to permanent
3138 	 * streams.
3139 	 */
3140 	for (desc = start; desc < end; desc++)
3141 		if (!desc->st_enble || !sd_is_perm_stream(sdkp, desc - start))
3142 			break;
3143 	sdkp->permanent_stream_count = desc - start;
3144 	if (sdkp->rscs && sdkp->permanent_stream_count < 2)
3145 		sd_printk(KERN_INFO, sdkp,
3146 			  "Unexpected: RSCS has been set and the permanent stream count is %u\n",
3147 			  sdkp->permanent_stream_count);
3148 	else if (sdkp->permanent_stream_count)
3149 		sd_printk(KERN_INFO, sdkp, "permanent stream count = %d\n",
3150 			  sdkp->permanent_stream_count);
3151 }
3152 
3153 /*
3154  * The ATO bit indicates whether the DIF application tag is available
3155  * for use by the operating system.
3156  */
3157 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
3158 {
3159 	int res, offset;
3160 	struct scsi_device *sdp = sdkp->device;
3161 	struct scsi_mode_data data;
3162 	struct scsi_sense_hdr sshdr;
3163 
3164 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
3165 		return;
3166 
3167 	if (sdkp->protection_type == 0)
3168 		return;
3169 
3170 	res = scsi_mode_sense(sdp, 1, 0x0a, 0, buffer, 36, SD_TIMEOUT,
3171 			      sdkp->max_retries, &data, &sshdr);
3172 
3173 	if (res < 0 || !data.header_length ||
3174 	    data.length < 6) {
3175 		sd_first_printk(KERN_WARNING, sdkp,
3176 			  "getting Control mode page failed, assume no ATO\n");
3177 
3178 		if (res == -EIO && scsi_sense_valid(&sshdr))
3179 			sd_print_sense_hdr(sdkp, &sshdr);
3180 
3181 		return;
3182 	}
3183 
3184 	offset = data.header_length + data.block_descriptor_length;
3185 
3186 	if ((buffer[offset] & 0x3f) != 0x0a) {
3187 		sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
3188 		return;
3189 	}
3190 
3191 	if ((buffer[offset + 5] & 0x80) == 0)
3192 		return;
3193 
3194 	sdkp->ATO = 1;
3195 
3196 	return;
3197 }
3198 
3199 /**
3200  * sd_read_block_limits - Query disk device for preferred I/O sizes.
3201  * @sdkp: disk to query
3202  */
3203 static void sd_read_block_limits(struct scsi_disk *sdkp)
3204 {
3205 	struct scsi_vpd *vpd;
3206 
3207 	rcu_read_lock();
3208 
3209 	vpd = rcu_dereference(sdkp->device->vpd_pgb0);
3210 	if (!vpd || vpd->len < 16)
3211 		goto out;
3212 
3213 	sdkp->min_xfer_blocks = get_unaligned_be16(&vpd->data[6]);
3214 	sdkp->max_xfer_blocks = get_unaligned_be32(&vpd->data[8]);
3215 	sdkp->opt_xfer_blocks = get_unaligned_be32(&vpd->data[12]);
3216 
3217 	if (vpd->len >= 64) {
3218 		unsigned int lba_count, desc_count;
3219 
3220 		sdkp->max_ws_blocks = (u32)get_unaligned_be64(&vpd->data[36]);
3221 
3222 		if (!sdkp->lbpme)
3223 			goto out;
3224 
3225 		lba_count = get_unaligned_be32(&vpd->data[20]);
3226 		desc_count = get_unaligned_be32(&vpd->data[24]);
3227 
3228 		if (lba_count && desc_count)
3229 			sdkp->max_unmap_blocks = lba_count;
3230 
3231 		sdkp->unmap_granularity = get_unaligned_be32(&vpd->data[28]);
3232 
3233 		if (vpd->data[32] & 0x80)
3234 			sdkp->unmap_alignment =
3235 				get_unaligned_be32(&vpd->data[32]) & ~(1 << 31);
3236 
3237 		if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
3238 
3239 			if (sdkp->max_unmap_blocks)
3240 				sd_config_discard(sdkp, SD_LBP_UNMAP);
3241 			else
3242 				sd_config_discard(sdkp, SD_LBP_WS16);
3243 
3244 		} else {	/* LBP VPD page tells us what to use */
3245 			if (sdkp->lbpu && sdkp->max_unmap_blocks)
3246 				sd_config_discard(sdkp, SD_LBP_UNMAP);
3247 			else if (sdkp->lbpws)
3248 				sd_config_discard(sdkp, SD_LBP_WS16);
3249 			else if (sdkp->lbpws10)
3250 				sd_config_discard(sdkp, SD_LBP_WS10);
3251 			else
3252 				sd_config_discard(sdkp, SD_LBP_DISABLE);
3253 		}
3254 	}
3255 
3256  out:
3257 	rcu_read_unlock();
3258 }
3259 
3260 /* Parse the Block Limits Extension VPD page (0xb7) */
3261 static void sd_read_block_limits_ext(struct scsi_disk *sdkp)
3262 {
3263 	struct scsi_vpd *vpd;
3264 
3265 	rcu_read_lock();
3266 	vpd = rcu_dereference(sdkp->device->vpd_pgb7);
3267 	if (vpd && vpd->len >= 2)
3268 		sdkp->rscs = vpd->data[5] & 1;
3269 	rcu_read_unlock();
3270 }
3271 
3272 /**
3273  * sd_read_block_characteristics - Query block dev. characteristics
3274  * @sdkp: disk to query
3275  */
3276 static void sd_read_block_characteristics(struct scsi_disk *sdkp)
3277 {
3278 	struct request_queue *q = sdkp->disk->queue;
3279 	struct scsi_vpd *vpd;
3280 	u16 rot;
3281 
3282 	rcu_read_lock();
3283 	vpd = rcu_dereference(sdkp->device->vpd_pgb1);
3284 
3285 	if (!vpd || vpd->len < 8) {
3286 		rcu_read_unlock();
3287 	        return;
3288 	}
3289 
3290 	rot = get_unaligned_be16(&vpd->data[4]);
3291 	sdkp->zoned = (vpd->data[8] >> 4) & 3;
3292 	rcu_read_unlock();
3293 
3294 	if (rot == 1) {
3295 		blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
3296 		blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
3297 	}
3298 
3299 
3300 #ifdef CONFIG_BLK_DEV_ZONED /* sd_probe rejects ZBD devices early otherwise */
3301 	if (sdkp->device->type == TYPE_ZBC) {
3302 		/*
3303 		 * Host-managed.
3304 		 */
3305 		disk_set_zoned(sdkp->disk);
3306 
3307 		/*
3308 		 * Per ZBC and ZAC specifications, writes in sequential write
3309 		 * required zones of host-managed devices must be aligned to
3310 		 * the device physical block size.
3311 		 */
3312 		blk_queue_zone_write_granularity(q, sdkp->physical_block_size);
3313 	} else {
3314 		/*
3315 		 * Host-aware devices are treated as conventional.
3316 		 */
3317 		WARN_ON_ONCE(blk_queue_is_zoned(q));
3318 	}
3319 #endif /* CONFIG_BLK_DEV_ZONED */
3320 
3321 	if (!sdkp->first_scan)
3322 		return;
3323 
3324 	if (blk_queue_is_zoned(q))
3325 		sd_printk(KERN_NOTICE, sdkp, "Host-managed zoned block device\n");
3326 	else if (sdkp->zoned == 1)
3327 		sd_printk(KERN_NOTICE, sdkp, "Host-aware SMR disk used as regular disk\n");
3328 	else if (sdkp->zoned == 2)
3329 		sd_printk(KERN_NOTICE, sdkp, "Drive-managed SMR disk\n");
3330 }
3331 
3332 /**
3333  * sd_read_block_provisioning - Query provisioning VPD page
3334  * @sdkp: disk to query
3335  */
3336 static void sd_read_block_provisioning(struct scsi_disk *sdkp)
3337 {
3338 	struct scsi_vpd *vpd;
3339 
3340 	if (sdkp->lbpme == 0)
3341 		return;
3342 
3343 	rcu_read_lock();
3344 	vpd = rcu_dereference(sdkp->device->vpd_pgb2);
3345 
3346 	if (!vpd || vpd->len < 8) {
3347 		rcu_read_unlock();
3348 		return;
3349 	}
3350 
3351 	sdkp->lbpvpd	= 1;
3352 	sdkp->lbpu	= (vpd->data[5] >> 7) & 1; /* UNMAP */
3353 	sdkp->lbpws	= (vpd->data[5] >> 6) & 1; /* WRITE SAME(16) w/ UNMAP */
3354 	sdkp->lbpws10	= (vpd->data[5] >> 5) & 1; /* WRITE SAME(10) w/ UNMAP */
3355 	rcu_read_unlock();
3356 }
3357 
3358 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
3359 {
3360 	struct scsi_device *sdev = sdkp->device;
3361 
3362 	if (sdev->host->no_write_same) {
3363 		sdev->no_write_same = 1;
3364 
3365 		return;
3366 	}
3367 
3368 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY, 0) < 0) {
3369 		struct scsi_vpd *vpd;
3370 
3371 		sdev->no_report_opcodes = 1;
3372 
3373 		/* Disable WRITE SAME if REPORT SUPPORTED OPERATION
3374 		 * CODES is unsupported and the device has an ATA
3375 		 * Information VPD page (SAT).
3376 		 */
3377 		rcu_read_lock();
3378 		vpd = rcu_dereference(sdev->vpd_pg89);
3379 		if (vpd)
3380 			sdev->no_write_same = 1;
3381 		rcu_read_unlock();
3382 	}
3383 
3384 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16, 0) == 1)
3385 		sdkp->ws16 = 1;
3386 
3387 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME, 0) == 1)
3388 		sdkp->ws10 = 1;
3389 }
3390 
3391 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3392 {
3393 	struct scsi_device *sdev = sdkp->device;
3394 
3395 	if (!sdev->security_supported)
3396 		return;
3397 
3398 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3399 			SECURITY_PROTOCOL_IN, 0) == 1 &&
3400 	    scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3401 			SECURITY_PROTOCOL_OUT, 0) == 1)
3402 		sdkp->security = 1;
3403 }
3404 
3405 static inline sector_t sd64_to_sectors(struct scsi_disk *sdkp, u8 *buf)
3406 {
3407 	return logical_to_sectors(sdkp->device, get_unaligned_be64(buf));
3408 }
3409 
3410 /**
3411  * sd_read_cpr - Query concurrent positioning ranges
3412  * @sdkp:	disk to query
3413  */
3414 static void sd_read_cpr(struct scsi_disk *sdkp)
3415 {
3416 	struct blk_independent_access_ranges *iars = NULL;
3417 	unsigned char *buffer = NULL;
3418 	unsigned int nr_cpr = 0;
3419 	int i, vpd_len, buf_len = SD_BUF_SIZE;
3420 	u8 *desc;
3421 
3422 	/*
3423 	 * We need to have the capacity set first for the block layer to be
3424 	 * able to check the ranges.
3425 	 */
3426 	if (sdkp->first_scan)
3427 		return;
3428 
3429 	if (!sdkp->capacity)
3430 		goto out;
3431 
3432 	/*
3433 	 * Concurrent Positioning Ranges VPD: there can be at most 256 ranges,
3434 	 * leading to a maximum page size of 64 + 256*32 bytes.
3435 	 */
3436 	buf_len = 64 + 256*32;
3437 	buffer = kmalloc(buf_len, GFP_KERNEL);
3438 	if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb9, buffer, buf_len))
3439 		goto out;
3440 
3441 	/* We must have at least a 64B header and one 32B range descriptor */
3442 	vpd_len = get_unaligned_be16(&buffer[2]) + 4;
3443 	if (vpd_len > buf_len || vpd_len < 64 + 32 || (vpd_len & 31)) {
3444 		sd_printk(KERN_ERR, sdkp,
3445 			  "Invalid Concurrent Positioning Ranges VPD page\n");
3446 		goto out;
3447 	}
3448 
3449 	nr_cpr = (vpd_len - 64) / 32;
3450 	if (nr_cpr == 1) {
3451 		nr_cpr = 0;
3452 		goto out;
3453 	}
3454 
3455 	iars = disk_alloc_independent_access_ranges(sdkp->disk, nr_cpr);
3456 	if (!iars) {
3457 		nr_cpr = 0;
3458 		goto out;
3459 	}
3460 
3461 	desc = &buffer[64];
3462 	for (i = 0; i < nr_cpr; i++, desc += 32) {
3463 		if (desc[0] != i) {
3464 			sd_printk(KERN_ERR, sdkp,
3465 				"Invalid Concurrent Positioning Range number\n");
3466 			nr_cpr = 0;
3467 			break;
3468 		}
3469 
3470 		iars->ia_range[i].sector = sd64_to_sectors(sdkp, desc + 8);
3471 		iars->ia_range[i].nr_sectors = sd64_to_sectors(sdkp, desc + 16);
3472 	}
3473 
3474 out:
3475 	disk_set_independent_access_ranges(sdkp->disk, iars);
3476 	if (nr_cpr && sdkp->nr_actuators != nr_cpr) {
3477 		sd_printk(KERN_NOTICE, sdkp,
3478 			  "%u concurrent positioning ranges\n", nr_cpr);
3479 		sdkp->nr_actuators = nr_cpr;
3480 	}
3481 
3482 	kfree(buffer);
3483 }
3484 
3485 static bool sd_validate_min_xfer_size(struct scsi_disk *sdkp)
3486 {
3487 	struct scsi_device *sdp = sdkp->device;
3488 	unsigned int min_xfer_bytes =
3489 		logical_to_bytes(sdp, sdkp->min_xfer_blocks);
3490 
3491 	if (sdkp->min_xfer_blocks == 0)
3492 		return false;
3493 
3494 	if (min_xfer_bytes & (sdkp->physical_block_size - 1)) {
3495 		sd_first_printk(KERN_WARNING, sdkp,
3496 				"Preferred minimum I/O size %u bytes not a " \
3497 				"multiple of physical block size (%u bytes)\n",
3498 				min_xfer_bytes, sdkp->physical_block_size);
3499 		sdkp->min_xfer_blocks = 0;
3500 		return false;
3501 	}
3502 
3503 	sd_first_printk(KERN_INFO, sdkp, "Preferred minimum I/O size %u bytes\n",
3504 			min_xfer_bytes);
3505 	return true;
3506 }
3507 
3508 /*
3509  * Determine the device's preferred I/O size for reads and writes
3510  * unless the reported value is unreasonably small, large, not a
3511  * multiple of the physical block size, or simply garbage.
3512  */
3513 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp,
3514 				      unsigned int dev_max)
3515 {
3516 	struct scsi_device *sdp = sdkp->device;
3517 	unsigned int opt_xfer_bytes =
3518 		logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3519 	unsigned int min_xfer_bytes =
3520 		logical_to_bytes(sdp, sdkp->min_xfer_blocks);
3521 
3522 	if (sdkp->opt_xfer_blocks == 0)
3523 		return false;
3524 
3525 	if (sdkp->opt_xfer_blocks > dev_max) {
3526 		sd_first_printk(KERN_WARNING, sdkp,
3527 				"Optimal transfer size %u logical blocks " \
3528 				"> dev_max (%u logical blocks)\n",
3529 				sdkp->opt_xfer_blocks, dev_max);
3530 		return false;
3531 	}
3532 
3533 	if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) {
3534 		sd_first_printk(KERN_WARNING, sdkp,
3535 				"Optimal transfer size %u logical blocks " \
3536 				"> sd driver limit (%u logical blocks)\n",
3537 				sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS);
3538 		return false;
3539 	}
3540 
3541 	if (opt_xfer_bytes < PAGE_SIZE) {
3542 		sd_first_printk(KERN_WARNING, sdkp,
3543 				"Optimal transfer size %u bytes < " \
3544 				"PAGE_SIZE (%u bytes)\n",
3545 				opt_xfer_bytes, (unsigned int)PAGE_SIZE);
3546 		return false;
3547 	}
3548 
3549 	if (min_xfer_bytes && opt_xfer_bytes % min_xfer_bytes) {
3550 		sd_first_printk(KERN_WARNING, sdkp,
3551 				"Optimal transfer size %u bytes not a " \
3552 				"multiple of preferred minimum block " \
3553 				"size (%u bytes)\n",
3554 				opt_xfer_bytes, min_xfer_bytes);
3555 		return false;
3556 	}
3557 
3558 	if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) {
3559 		sd_first_printk(KERN_WARNING, sdkp,
3560 				"Optimal transfer size %u bytes not a " \
3561 				"multiple of physical block size (%u bytes)\n",
3562 				opt_xfer_bytes, sdkp->physical_block_size);
3563 		return false;
3564 	}
3565 
3566 	sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n",
3567 			opt_xfer_bytes);
3568 	return true;
3569 }
3570 
3571 static void sd_read_block_zero(struct scsi_disk *sdkp)
3572 {
3573 	unsigned int buf_len = sdkp->device->sector_size;
3574 	char *buffer, cmd[10] = { };
3575 
3576 	buffer = kmalloc(buf_len, GFP_KERNEL);
3577 	if (!buffer)
3578 		return;
3579 
3580 	cmd[0] = READ_10;
3581 	put_unaligned_be32(0, &cmd[2]); /* Logical block address 0 */
3582 	put_unaligned_be16(1, &cmd[7]);	/* Transfer 1 logical block */
3583 
3584 	scsi_execute_cmd(sdkp->device, cmd, REQ_OP_DRV_IN, buffer, buf_len,
3585 			 SD_TIMEOUT, sdkp->max_retries, NULL);
3586 	kfree(buffer);
3587 }
3588 
3589 /**
3590  *	sd_revalidate_disk - called the first time a new disk is seen,
3591  *	performs disk spin up, read_capacity, etc.
3592  *	@disk: struct gendisk we care about
3593  **/
3594 static int sd_revalidate_disk(struct gendisk *disk)
3595 {
3596 	struct scsi_disk *sdkp = scsi_disk(disk);
3597 	struct scsi_device *sdp = sdkp->device;
3598 	struct request_queue *q = sdkp->disk->queue;
3599 	sector_t old_capacity = sdkp->capacity;
3600 	unsigned char *buffer;
3601 	unsigned int dev_max, rw_max;
3602 
3603 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3604 				      "sd_revalidate_disk\n"));
3605 
3606 	/*
3607 	 * If the device is offline, don't try and read capacity or any
3608 	 * of the other niceties.
3609 	 */
3610 	if (!scsi_device_online(sdp))
3611 		goto out;
3612 
3613 	buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3614 	if (!buffer) {
3615 		sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3616 			  "allocation failure.\n");
3617 		goto out;
3618 	}
3619 
3620 	sd_spinup_disk(sdkp);
3621 
3622 	/*
3623 	 * Without media there is no reason to ask; moreover, some devices
3624 	 * react badly if we do.
3625 	 */
3626 	if (sdkp->media_present) {
3627 		sd_read_capacity(sdkp, buffer);
3628 		/*
3629 		 * Some USB/UAS devices return generic values for mode pages
3630 		 * until the media has been accessed. Trigger a READ operation
3631 		 * to force the device to populate mode pages.
3632 		 */
3633 		if (sdp->read_before_ms)
3634 			sd_read_block_zero(sdkp);
3635 		/*
3636 		 * set the default to rotational.  All non-rotational devices
3637 		 * support the block characteristics VPD page, which will
3638 		 * cause this to be updated correctly and any device which
3639 		 * doesn't support it should be treated as rotational.
3640 		 */
3641 		blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
3642 		blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q);
3643 
3644 		if (scsi_device_supports_vpd(sdp)) {
3645 			sd_read_block_provisioning(sdkp);
3646 			sd_read_block_limits(sdkp);
3647 			sd_read_block_limits_ext(sdkp);
3648 			sd_read_block_characteristics(sdkp);
3649 			sd_zbc_read_zones(sdkp, buffer);
3650 			sd_read_cpr(sdkp);
3651 		}
3652 
3653 		sd_print_capacity(sdkp, old_capacity);
3654 
3655 		sd_read_write_protect_flag(sdkp, buffer);
3656 		sd_read_cache_type(sdkp, buffer);
3657 		sd_read_io_hints(sdkp, buffer);
3658 		sd_read_app_tag_own(sdkp, buffer);
3659 		sd_read_write_same(sdkp, buffer);
3660 		sd_read_security(sdkp, buffer);
3661 		sd_config_protection(sdkp);
3662 	}
3663 
3664 	/*
3665 	 * We now have all cache related info, determine how we deal
3666 	 * with flush requests.
3667 	 */
3668 	sd_set_flush_flag(sdkp);
3669 
3670 	/* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3671 	dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3672 
3673 	/* Some devices report a maximum block count for READ/WRITE requests. */
3674 	dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3675 	q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3676 
3677 	if (sd_validate_min_xfer_size(sdkp))
3678 		blk_queue_io_min(sdkp->disk->queue,
3679 				 logical_to_bytes(sdp, sdkp->min_xfer_blocks));
3680 	else
3681 		blk_queue_io_min(sdkp->disk->queue, 0);
3682 
3683 	if (sd_validate_opt_xfer_size(sdkp, dev_max)) {
3684 		q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3685 		rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
3686 	} else {
3687 		q->limits.io_opt = 0;
3688 		rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
3689 				      (sector_t)BLK_DEF_MAX_SECTORS_CAP);
3690 	}
3691 
3692 	/*
3693 	 * Limit default to SCSI host optimal sector limit if set. There may be
3694 	 * an impact on performance for when the size of a request exceeds this
3695 	 * host limit.
3696 	 */
3697 	rw_max = min_not_zero(rw_max, sdp->host->opt_sectors);
3698 
3699 	/* Do not exceed controller limit */
3700 	rw_max = min(rw_max, queue_max_hw_sectors(q));
3701 
3702 	/*
3703 	 * Only update max_sectors if previously unset or if the current value
3704 	 * exceeds the capabilities of the hardware.
3705 	 */
3706 	if (sdkp->first_scan ||
3707 	    q->limits.max_sectors > q->limits.max_dev_sectors ||
3708 	    q->limits.max_sectors > q->limits.max_hw_sectors)
3709 		q->limits.max_sectors = rw_max;
3710 
3711 	sdkp->first_scan = 0;
3712 
3713 	set_capacity_and_notify(disk, logical_to_sectors(sdp, sdkp->capacity));
3714 	sd_config_write_same(sdkp);
3715 	kfree(buffer);
3716 
3717 	/*
3718 	 * For a zoned drive, revalidating the zones can be done only once
3719 	 * the gendisk capacity is set. So if this fails, set back the gendisk
3720 	 * capacity to 0.
3721 	 */
3722 	if (sd_zbc_revalidate_zones(sdkp))
3723 		set_capacity_and_notify(disk, 0);
3724 
3725  out:
3726 	return 0;
3727 }
3728 
3729 /**
3730  *	sd_unlock_native_capacity - unlock native capacity
3731  *	@disk: struct gendisk to set capacity for
3732  *
3733  *	Block layer calls this function if it detects that partitions
3734  *	on @disk reach beyond the end of the device.  If the SCSI host
3735  *	implements ->unlock_native_capacity() method, it's invoked to
3736  *	give it a chance to adjust the device capacity.
3737  *
3738  *	CONTEXT:
3739  *	Defined by block layer.  Might sleep.
3740  */
3741 static void sd_unlock_native_capacity(struct gendisk *disk)
3742 {
3743 	struct scsi_device *sdev = scsi_disk(disk)->device;
3744 
3745 	if (sdev->host->hostt->unlock_native_capacity)
3746 		sdev->host->hostt->unlock_native_capacity(sdev);
3747 }
3748 
3749 /**
3750  *	sd_format_disk_name - format disk name
3751  *	@prefix: name prefix - ie. "sd" for SCSI disks
3752  *	@index: index of the disk to format name for
3753  *	@buf: output buffer
3754  *	@buflen: length of the output buffer
3755  *
3756  *	SCSI disk names starts at sda.  The 26th device is sdz and the
3757  *	27th is sdaa.  The last one for two lettered suffix is sdzz
3758  *	which is followed by sdaaa.
3759  *
3760  *	This is basically 26 base counting with one extra 'nil' entry
3761  *	at the beginning from the second digit on and can be
3762  *	determined using similar method as 26 base conversion with the
3763  *	index shifted -1 after each digit is computed.
3764  *
3765  *	CONTEXT:
3766  *	Don't care.
3767  *
3768  *	RETURNS:
3769  *	0 on success, -errno on failure.
3770  */
3771 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3772 {
3773 	const int base = 'z' - 'a' + 1;
3774 	char *begin = buf + strlen(prefix);
3775 	char *end = buf + buflen;
3776 	char *p;
3777 	int unit;
3778 
3779 	p = end - 1;
3780 	*p = '\0';
3781 	unit = base;
3782 	do {
3783 		if (p == begin)
3784 			return -EINVAL;
3785 		*--p = 'a' + (index % unit);
3786 		index = (index / unit) - 1;
3787 	} while (index >= 0);
3788 
3789 	memmove(begin, p, end - p);
3790 	memcpy(buf, prefix, strlen(prefix));
3791 
3792 	return 0;
3793 }
3794 
3795 /**
3796  *	sd_probe - called during driver initialization and whenever a
3797  *	new scsi device is attached to the system. It is called once
3798  *	for each scsi device (not just disks) present.
3799  *	@dev: pointer to device object
3800  *
3801  *	Returns 0 if successful (or not interested in this scsi device
3802  *	(e.g. scanner)); 1 when there is an error.
3803  *
3804  *	Note: this function is invoked from the scsi mid-level.
3805  *	This function sets up the mapping between a given
3806  *	<host,channel,id,lun> (found in sdp) and new device name
3807  *	(e.g. /dev/sda). More precisely it is the block device major
3808  *	and minor number that is chosen here.
3809  *
3810  *	Assume sd_probe is not re-entrant (for time being)
3811  *	Also think about sd_probe() and sd_remove() running coincidentally.
3812  **/
3813 static int sd_probe(struct device *dev)
3814 {
3815 	struct scsi_device *sdp = to_scsi_device(dev);
3816 	struct scsi_disk *sdkp;
3817 	struct gendisk *gd;
3818 	int index;
3819 	int error;
3820 
3821 	scsi_autopm_get_device(sdp);
3822 	error = -ENODEV;
3823 	if (sdp->type != TYPE_DISK &&
3824 	    sdp->type != TYPE_ZBC &&
3825 	    sdp->type != TYPE_MOD &&
3826 	    sdp->type != TYPE_RBC)
3827 		goto out;
3828 
3829 	if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) && sdp->type == TYPE_ZBC) {
3830 		sdev_printk(KERN_WARNING, sdp,
3831 			    "Unsupported ZBC host-managed device.\n");
3832 		goto out;
3833 	}
3834 
3835 	SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3836 					"sd_probe\n"));
3837 
3838 	error = -ENOMEM;
3839 	sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3840 	if (!sdkp)
3841 		goto out;
3842 
3843 	gd = blk_mq_alloc_disk_for_queue(sdp->request_queue,
3844 					 &sd_bio_compl_lkclass);
3845 	if (!gd)
3846 		goto out_free;
3847 
3848 	index = ida_alloc(&sd_index_ida, GFP_KERNEL);
3849 	if (index < 0) {
3850 		sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3851 		goto out_put;
3852 	}
3853 
3854 	error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3855 	if (error) {
3856 		sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3857 		goto out_free_index;
3858 	}
3859 
3860 	sdkp->device = sdp;
3861 	sdkp->disk = gd;
3862 	sdkp->index = index;
3863 	sdkp->max_retries = SD_MAX_RETRIES;
3864 	atomic_set(&sdkp->openers, 0);
3865 	atomic_set(&sdkp->device->ioerr_cnt, 0);
3866 
3867 	if (!sdp->request_queue->rq_timeout) {
3868 		if (sdp->type != TYPE_MOD)
3869 			blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3870 		else
3871 			blk_queue_rq_timeout(sdp->request_queue,
3872 					     SD_MOD_TIMEOUT);
3873 	}
3874 
3875 	device_initialize(&sdkp->disk_dev);
3876 	sdkp->disk_dev.parent = get_device(dev);
3877 	sdkp->disk_dev.class = &sd_disk_class;
3878 	dev_set_name(&sdkp->disk_dev, "%s", dev_name(dev));
3879 
3880 	error = device_add(&sdkp->disk_dev);
3881 	if (error) {
3882 		put_device(&sdkp->disk_dev);
3883 		goto out;
3884 	}
3885 
3886 	dev_set_drvdata(dev, sdkp);
3887 
3888 	gd->major = sd_major((index & 0xf0) >> 4);
3889 	gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3890 	gd->minors = SD_MINORS;
3891 
3892 	gd->fops = &sd_fops;
3893 	gd->private_data = sdkp;
3894 
3895 	/* defaults, until the device tells us otherwise */
3896 	sdp->sector_size = 512;
3897 	sdkp->capacity = 0;
3898 	sdkp->media_present = 1;
3899 	sdkp->write_prot = 0;
3900 	sdkp->cache_override = 0;
3901 	sdkp->WCE = 0;
3902 	sdkp->RCD = 0;
3903 	sdkp->ATO = 0;
3904 	sdkp->first_scan = 1;
3905 	sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3906 
3907 	sd_revalidate_disk(gd);
3908 
3909 	if (sdp->removable) {
3910 		gd->flags |= GENHD_FL_REMOVABLE;
3911 		gd->events |= DISK_EVENT_MEDIA_CHANGE;
3912 		gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT;
3913 	}
3914 
3915 	blk_pm_runtime_init(sdp->request_queue, dev);
3916 	if (sdp->rpm_autosuspend) {
3917 		pm_runtime_set_autosuspend_delay(dev,
3918 			sdp->host->rpm_autosuspend_delay);
3919 	}
3920 
3921 	error = device_add_disk(dev, gd, NULL);
3922 	if (error) {
3923 		device_unregister(&sdkp->disk_dev);
3924 		put_disk(gd);
3925 		goto out;
3926 	}
3927 
3928 	if (sdkp->security) {
3929 		sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit);
3930 		if (sdkp->opal_dev)
3931 			sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
3932 	}
3933 
3934 	sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3935 		  sdp->removable ? "removable " : "");
3936 	scsi_autopm_put_device(sdp);
3937 
3938 	return 0;
3939 
3940  out_free_index:
3941 	ida_free(&sd_index_ida, index);
3942  out_put:
3943 	put_disk(gd);
3944  out_free:
3945 	kfree(sdkp);
3946  out:
3947 	scsi_autopm_put_device(sdp);
3948 	return error;
3949 }
3950 
3951 /**
3952  *	sd_remove - called whenever a scsi disk (previously recognized by
3953  *	sd_probe) is detached from the system. It is called (potentially
3954  *	multiple times) during sd module unload.
3955  *	@dev: pointer to device object
3956  *
3957  *	Note: this function is invoked from the scsi mid-level.
3958  *	This function potentially frees up a device name (e.g. /dev/sdc)
3959  *	that could be re-used by a subsequent sd_probe().
3960  *	This function is not called when the built-in sd driver is "exit-ed".
3961  **/
3962 static int sd_remove(struct device *dev)
3963 {
3964 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3965 
3966 	scsi_autopm_get_device(sdkp->device);
3967 
3968 	device_del(&sdkp->disk_dev);
3969 	del_gendisk(sdkp->disk);
3970 	if (!sdkp->suspended)
3971 		sd_shutdown(dev);
3972 
3973 	put_disk(sdkp->disk);
3974 	return 0;
3975 }
3976 
3977 static void scsi_disk_release(struct device *dev)
3978 {
3979 	struct scsi_disk *sdkp = to_scsi_disk(dev);
3980 
3981 	ida_free(&sd_index_ida, sdkp->index);
3982 	sd_zbc_free_zone_info(sdkp);
3983 	put_device(&sdkp->device->sdev_gendev);
3984 	free_opal_dev(sdkp->opal_dev);
3985 
3986 	kfree(sdkp);
3987 }
3988 
3989 static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3990 {
3991 	unsigned char cmd[6] = { START_STOP };	/* START_VALID */
3992 	struct scsi_sense_hdr sshdr;
3993 	const struct scsi_exec_args exec_args = {
3994 		.sshdr = &sshdr,
3995 		.req_flags = BLK_MQ_REQ_PM,
3996 	};
3997 	struct scsi_device *sdp = sdkp->device;
3998 	int res;
3999 
4000 	if (start)
4001 		cmd[4] |= 1;	/* START */
4002 
4003 	if (sdp->start_stop_pwr_cond)
4004 		cmd[4] |= start ? 1 << 4 : 3 << 4;	/* Active or Standby */
4005 
4006 	if (!scsi_device_online(sdp))
4007 		return -ENODEV;
4008 
4009 	res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, SD_TIMEOUT,
4010 			       sdkp->max_retries, &exec_args);
4011 	if (res) {
4012 		sd_print_result(sdkp, "Start/Stop Unit failed", res);
4013 		if (res > 0 && scsi_sense_valid(&sshdr)) {
4014 			sd_print_sense_hdr(sdkp, &sshdr);
4015 			/* 0x3a is medium not present */
4016 			if (sshdr.asc == 0x3a)
4017 				res = 0;
4018 		}
4019 	}
4020 
4021 	/* SCSI error codes must not go to the generic layer */
4022 	if (res)
4023 		return -EIO;
4024 
4025 	return 0;
4026 }
4027 
4028 /*
4029  * Send a SYNCHRONIZE CACHE instruction down to the device through
4030  * the normal SCSI command structure.  Wait for the command to
4031  * complete.
4032  */
4033 static void sd_shutdown(struct device *dev)
4034 {
4035 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
4036 
4037 	if (!sdkp)
4038 		return;         /* this can happen */
4039 
4040 	if (pm_runtime_suspended(dev))
4041 		return;
4042 
4043 	if (sdkp->WCE && sdkp->media_present) {
4044 		sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
4045 		sd_sync_cache(sdkp);
4046 	}
4047 
4048 	if ((system_state != SYSTEM_RESTART &&
4049 	     sdkp->device->manage_system_start_stop) ||
4050 	    (system_state == SYSTEM_POWER_OFF &&
4051 	     sdkp->device->manage_shutdown)) {
4052 		sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
4053 		sd_start_stop_device(sdkp, 0);
4054 	}
4055 }
4056 
4057 static inline bool sd_do_start_stop(struct scsi_device *sdev, bool runtime)
4058 {
4059 	return (sdev->manage_system_start_stop && !runtime) ||
4060 		(sdev->manage_runtime_start_stop && runtime);
4061 }
4062 
4063 static int sd_suspend_common(struct device *dev, bool runtime)
4064 {
4065 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
4066 	int ret = 0;
4067 
4068 	if (!sdkp)	/* E.g.: runtime suspend following sd_remove() */
4069 		return 0;
4070 
4071 	if (sdkp->WCE && sdkp->media_present) {
4072 		if (!sdkp->device->silence_suspend)
4073 			sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
4074 		ret = sd_sync_cache(sdkp);
4075 		/* ignore OFFLINE device */
4076 		if (ret == -ENODEV)
4077 			return 0;
4078 
4079 		if (ret)
4080 			return ret;
4081 	}
4082 
4083 	if (sd_do_start_stop(sdkp->device, runtime)) {
4084 		if (!sdkp->device->silence_suspend)
4085 			sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
4086 		/* an error is not worth aborting a system sleep */
4087 		ret = sd_start_stop_device(sdkp, 0);
4088 		if (!runtime)
4089 			ret = 0;
4090 	}
4091 
4092 	if (!ret)
4093 		sdkp->suspended = true;
4094 
4095 	return ret;
4096 }
4097 
4098 static int sd_suspend_system(struct device *dev)
4099 {
4100 	if (pm_runtime_suspended(dev))
4101 		return 0;
4102 
4103 	return sd_suspend_common(dev, false);
4104 }
4105 
4106 static int sd_suspend_runtime(struct device *dev)
4107 {
4108 	return sd_suspend_common(dev, true);
4109 }
4110 
4111 static int sd_resume(struct device *dev)
4112 {
4113 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
4114 
4115 	sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
4116 
4117 	if (opal_unlock_from_suspend(sdkp->opal_dev)) {
4118 		sd_printk(KERN_NOTICE, sdkp, "OPAL unlock failed\n");
4119 		return -EIO;
4120 	}
4121 
4122 	return 0;
4123 }
4124 
4125 static int sd_resume_common(struct device *dev, bool runtime)
4126 {
4127 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
4128 	int ret;
4129 
4130 	if (!sdkp)	/* E.g.: runtime resume at the start of sd_probe() */
4131 		return 0;
4132 
4133 	if (!sd_do_start_stop(sdkp->device, runtime)) {
4134 		sdkp->suspended = false;
4135 		return 0;
4136 	}
4137 
4138 	sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
4139 	ret = sd_start_stop_device(sdkp, 1);
4140 	if (!ret) {
4141 		sd_resume(dev);
4142 		sdkp->suspended = false;
4143 	}
4144 
4145 	return ret;
4146 }
4147 
4148 static int sd_resume_system(struct device *dev)
4149 {
4150 	if (pm_runtime_suspended(dev)) {
4151 		struct scsi_disk *sdkp = dev_get_drvdata(dev);
4152 		struct scsi_device *sdp = sdkp ? sdkp->device : NULL;
4153 
4154 		if (sdp && sdp->force_runtime_start_on_system_start)
4155 			pm_request_resume(dev);
4156 
4157 		return 0;
4158 	}
4159 
4160 	return sd_resume_common(dev, false);
4161 }
4162 
4163 static int sd_resume_runtime(struct device *dev)
4164 {
4165 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
4166 	struct scsi_device *sdp;
4167 
4168 	if (!sdkp)	/* E.g.: runtime resume at the start of sd_probe() */
4169 		return 0;
4170 
4171 	sdp = sdkp->device;
4172 
4173 	if (sdp->ignore_media_change) {
4174 		/* clear the device's sense data */
4175 		static const u8 cmd[10] = { REQUEST_SENSE };
4176 		const struct scsi_exec_args exec_args = {
4177 			.req_flags = BLK_MQ_REQ_PM,
4178 		};
4179 
4180 		if (scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0,
4181 				     sdp->request_queue->rq_timeout, 1,
4182 				     &exec_args))
4183 			sd_printk(KERN_NOTICE, sdkp,
4184 				  "Failed to clear sense data\n");
4185 	}
4186 
4187 	return sd_resume_common(dev, true);
4188 }
4189 
4190 static const struct dev_pm_ops sd_pm_ops = {
4191 	.suspend		= sd_suspend_system,
4192 	.resume			= sd_resume_system,
4193 	.poweroff		= sd_suspend_system,
4194 	.restore		= sd_resume_system,
4195 	.runtime_suspend	= sd_suspend_runtime,
4196 	.runtime_resume		= sd_resume_runtime,
4197 };
4198 
4199 static struct scsi_driver sd_template = {
4200 	.gendrv = {
4201 		.name		= "sd",
4202 		.owner		= THIS_MODULE,
4203 		.probe		= sd_probe,
4204 		.probe_type	= PROBE_PREFER_ASYNCHRONOUS,
4205 		.remove		= sd_remove,
4206 		.shutdown	= sd_shutdown,
4207 		.pm		= &sd_pm_ops,
4208 	},
4209 	.rescan			= sd_rescan,
4210 	.resume			= sd_resume,
4211 	.init_command		= sd_init_command,
4212 	.uninit_command		= sd_uninit_command,
4213 	.done			= sd_done,
4214 	.eh_action		= sd_eh_action,
4215 	.eh_reset		= sd_eh_reset,
4216 };
4217 
4218 /**
4219  *	init_sd - entry point for this driver (both when built in or when
4220  *	a module).
4221  *
4222  *	Note: this function registers this driver with the scsi mid-level.
4223  **/
4224 static int __init init_sd(void)
4225 {
4226 	int majors = 0, i, err;
4227 
4228 	SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
4229 
4230 	for (i = 0; i < SD_MAJORS; i++) {
4231 		if (__register_blkdev(sd_major(i), "sd", sd_default_probe))
4232 			continue;
4233 		majors++;
4234 	}
4235 
4236 	if (!majors)
4237 		return -ENODEV;
4238 
4239 	err = class_register(&sd_disk_class);
4240 	if (err)
4241 		goto err_out;
4242 
4243 	sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0);
4244 	if (!sd_page_pool) {
4245 		printk(KERN_ERR "sd: can't init discard page pool\n");
4246 		err = -ENOMEM;
4247 		goto err_out_class;
4248 	}
4249 
4250 	err = scsi_register_driver(&sd_template.gendrv);
4251 	if (err)
4252 		goto err_out_driver;
4253 
4254 	return 0;
4255 
4256 err_out_driver:
4257 	mempool_destroy(sd_page_pool);
4258 err_out_class:
4259 	class_unregister(&sd_disk_class);
4260 err_out:
4261 	for (i = 0; i < SD_MAJORS; i++)
4262 		unregister_blkdev(sd_major(i), "sd");
4263 	return err;
4264 }
4265 
4266 /**
4267  *	exit_sd - exit point for this driver (when it is a module).
4268  *
4269  *	Note: this function unregisters this driver from the scsi mid-level.
4270  **/
4271 static void __exit exit_sd(void)
4272 {
4273 	int i;
4274 
4275 	SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
4276 
4277 	scsi_unregister_driver(&sd_template.gendrv);
4278 	mempool_destroy(sd_page_pool);
4279 
4280 	class_unregister(&sd_disk_class);
4281 
4282 	for (i = 0; i < SD_MAJORS; i++)
4283 		unregister_blkdev(sd_major(i), "sd");
4284 }
4285 
4286 module_init(init_sd);
4287 module_exit(exit_sd);
4288 
4289 void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
4290 {
4291 	scsi_print_sense_hdr(sdkp->device,
4292 			     sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
4293 }
4294 
4295 void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result)
4296 {
4297 	const char *hb_string = scsi_hostbyte_string(result);
4298 
4299 	if (hb_string)
4300 		sd_printk(KERN_INFO, sdkp,
4301 			  "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
4302 			  hb_string ? hb_string : "invalid",
4303 			  "DRIVER_OK");
4304 	else
4305 		sd_printk(KERN_INFO, sdkp,
4306 			  "%s: Result: hostbyte=0x%02x driverbyte=%s\n",
4307 			  msg, host_byte(result), "DRIVER_OK");
4308 }
4309