xref: /linux/drivers/scsi/sd.c (revision 1c75adb22d49ca9389333ca5e6939052a7203111)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *      sd.c Copyright (C) 1992 Drew Eckhardt
4  *           Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
5  *
6  *      Linux scsi disk driver
7  *              Initial versions: Drew Eckhardt
8  *              Subsequent revisions: Eric Youngdale
9  *	Modification history:
10  *       - Drew Eckhardt <drew@colorado.edu> original
11  *       - Eric Youngdale <eric@andante.org> add scatter-gather, multiple
12  *         outstanding request, and other enhancements.
13  *         Support loadable low-level scsi drivers.
14  *       - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using
15  *         eight major numbers.
16  *       - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
17  *	 - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in
18  *	   sd_init and cleanups.
19  *	 - Alex Davis <letmein@erols.com> Fix problem where partition info
20  *	   not being read in sd_open. Fix problem where removable media
21  *	   could be ejected after sd_open.
22  *	 - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
23  *	 - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox
24  *	   <willy@debian.org>, Kurt Garloff <garloff@suse.de>:
25  *	   Support 32k/1M disks.
26  *
27  *	Logging policy (needs CONFIG_SCSI_LOGGING defined):
28  *	 - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
29  *	 - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
30  *	 - entering sd_ioctl: SCSI_LOG_IOCTL level 1
31  *	 - entering other commands: SCSI_LOG_HLQUEUE level 3
32  *	Note: when the logging level is set by the user, it must be greater
33  *	than the level indicated above to trigger output.
34  */
35 
36 #include <linux/module.h>
37 #include <linux/fs.h>
38 #include <linux/kernel.h>
39 #include <linux/mm.h>
40 #include <linux/bio.h>
41 #include <linux/hdreg.h>
42 #include <linux/errno.h>
43 #include <linux/idr.h>
44 #include <linux/interrupt.h>
45 #include <linux/init.h>
46 #include <linux/blkdev.h>
47 #include <linux/blkpg.h>
48 #include <linux/blk-pm.h>
49 #include <linux/delay.h>
50 #include <linux/rw_hint.h>
51 #include <linux/major.h>
52 #include <linux/mutex.h>
53 #include <linux/string_helpers.h>
54 #include <linux/slab.h>
55 #include <linux/sed-opal.h>
56 #include <linux/pm_runtime.h>
57 #include <linux/pr.h>
58 #include <linux/t10-pi.h>
59 #include <linux/uaccess.h>
60 #include <asm/unaligned.h>
61 
62 #include <scsi/scsi.h>
63 #include <scsi/scsi_cmnd.h>
64 #include <scsi/scsi_dbg.h>
65 #include <scsi/scsi_device.h>
66 #include <scsi/scsi_driver.h>
67 #include <scsi/scsi_eh.h>
68 #include <scsi/scsi_host.h>
69 #include <scsi/scsi_ioctl.h>
70 #include <scsi/scsicam.h>
71 #include <scsi/scsi_common.h>
72 
73 #include "sd.h"
74 #include "scsi_priv.h"
75 #include "scsi_logging.h"
76 
77 MODULE_AUTHOR("Eric Youngdale");
78 MODULE_DESCRIPTION("SCSI disk (sd) driver");
79 MODULE_LICENSE("GPL");
80 
81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
95 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
96 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
97 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
98 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
99 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
100 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
101 
102 #define SD_MINORS	16
103 
104 static void sd_config_discard(struct scsi_disk *, unsigned int);
105 static void sd_config_write_same(struct scsi_disk *);
106 static int  sd_revalidate_disk(struct gendisk *);
107 static void sd_unlock_native_capacity(struct gendisk *disk);
108 static void sd_shutdown(struct device *);
109 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
110 static void scsi_disk_release(struct device *cdev);
111 
112 static DEFINE_IDA(sd_index_ida);
113 
114 static mempool_t *sd_page_pool;
115 static struct lock_class_key sd_bio_compl_lkclass;
116 
117 static const char *sd_cache_types[] = {
118 	"write through", "none", "write back",
119 	"write back, no read (daft)"
120 };
121 
122 static void sd_set_flush_flag(struct scsi_disk *sdkp)
123 {
124 	bool wc = false, fua = false;
125 
126 	if (sdkp->WCE) {
127 		wc = true;
128 		if (sdkp->DPOFUA)
129 			fua = true;
130 	}
131 
132 	blk_queue_write_cache(sdkp->disk->queue, wc, fua);
133 }
134 
135 static ssize_t
136 cache_type_store(struct device *dev, struct device_attribute *attr,
137 		 const char *buf, size_t count)
138 {
139 	int ct, rcd, wce, sp;
140 	struct scsi_disk *sdkp = to_scsi_disk(dev);
141 	struct scsi_device *sdp = sdkp->device;
142 	char buffer[64];
143 	char *buffer_data;
144 	struct scsi_mode_data data;
145 	struct scsi_sense_hdr sshdr;
146 	static const char temp[] = "temporary ";
147 	int len, ret;
148 
149 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
150 		/* no cache control on RBC devices; theoretically they
151 		 * can do it, but there's probably so many exceptions
152 		 * it's not worth the risk */
153 		return -EINVAL;
154 
155 	if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
156 		buf += sizeof(temp) - 1;
157 		sdkp->cache_override = 1;
158 	} else {
159 		sdkp->cache_override = 0;
160 	}
161 
162 	ct = sysfs_match_string(sd_cache_types, buf);
163 	if (ct < 0)
164 		return -EINVAL;
165 
166 	rcd = ct & 0x01 ? 1 : 0;
167 	wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
168 
169 	if (sdkp->cache_override) {
170 		sdkp->WCE = wce;
171 		sdkp->RCD = rcd;
172 		sd_set_flush_flag(sdkp);
173 		return count;
174 	}
175 
176 	if (scsi_mode_sense(sdp, 0x08, 8, 0, buffer, sizeof(buffer), SD_TIMEOUT,
177 			    sdkp->max_retries, &data, NULL))
178 		return -EINVAL;
179 	len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
180 		  data.block_descriptor_length);
181 	buffer_data = buffer + data.header_length +
182 		data.block_descriptor_length;
183 	buffer_data[2] &= ~0x05;
184 	buffer_data[2] |= wce << 2 | rcd;
185 	sp = buffer_data[0] & 0x80 ? 1 : 0;
186 	buffer_data[0] &= ~0x80;
187 
188 	/*
189 	 * Ensure WP, DPOFUA, and RESERVED fields are cleared in
190 	 * received mode parameter buffer before doing MODE SELECT.
191 	 */
192 	data.device_specific = 0;
193 
194 	ret = scsi_mode_select(sdp, 1, sp, buffer_data, len, SD_TIMEOUT,
195 			       sdkp->max_retries, &data, &sshdr);
196 	if (ret) {
197 		if (ret > 0 && scsi_sense_valid(&sshdr))
198 			sd_print_sense_hdr(sdkp, &sshdr);
199 		return -EINVAL;
200 	}
201 	sd_revalidate_disk(sdkp->disk);
202 	return count;
203 }
204 
205 static ssize_t
206 manage_start_stop_show(struct device *dev,
207 		       struct device_attribute *attr, char *buf)
208 {
209 	struct scsi_disk *sdkp = to_scsi_disk(dev);
210 	struct scsi_device *sdp = sdkp->device;
211 
212 	return sysfs_emit(buf, "%u\n",
213 			  sdp->manage_system_start_stop &&
214 			  sdp->manage_runtime_start_stop &&
215 			  sdp->manage_shutdown);
216 }
217 static DEVICE_ATTR_RO(manage_start_stop);
218 
219 static ssize_t
220 manage_system_start_stop_show(struct device *dev,
221 			      struct device_attribute *attr, char *buf)
222 {
223 	struct scsi_disk *sdkp = to_scsi_disk(dev);
224 	struct scsi_device *sdp = sdkp->device;
225 
226 	return sysfs_emit(buf, "%u\n", sdp->manage_system_start_stop);
227 }
228 
229 static ssize_t
230 manage_system_start_stop_store(struct device *dev,
231 			       struct device_attribute *attr,
232 			       const char *buf, size_t count)
233 {
234 	struct scsi_disk *sdkp = to_scsi_disk(dev);
235 	struct scsi_device *sdp = sdkp->device;
236 	bool v;
237 
238 	if (!capable(CAP_SYS_ADMIN))
239 		return -EACCES;
240 
241 	if (kstrtobool(buf, &v))
242 		return -EINVAL;
243 
244 	sdp->manage_system_start_stop = v;
245 
246 	return count;
247 }
248 static DEVICE_ATTR_RW(manage_system_start_stop);
249 
250 static ssize_t
251 manage_runtime_start_stop_show(struct device *dev,
252 			       struct device_attribute *attr, char *buf)
253 {
254 	struct scsi_disk *sdkp = to_scsi_disk(dev);
255 	struct scsi_device *sdp = sdkp->device;
256 
257 	return sysfs_emit(buf, "%u\n", sdp->manage_runtime_start_stop);
258 }
259 
260 static ssize_t
261 manage_runtime_start_stop_store(struct device *dev,
262 				struct device_attribute *attr,
263 				const char *buf, size_t count)
264 {
265 	struct scsi_disk *sdkp = to_scsi_disk(dev);
266 	struct scsi_device *sdp = sdkp->device;
267 	bool v;
268 
269 	if (!capable(CAP_SYS_ADMIN))
270 		return -EACCES;
271 
272 	if (kstrtobool(buf, &v))
273 		return -EINVAL;
274 
275 	sdp->manage_runtime_start_stop = v;
276 
277 	return count;
278 }
279 static DEVICE_ATTR_RW(manage_runtime_start_stop);
280 
281 static ssize_t manage_shutdown_show(struct device *dev,
282 				    struct device_attribute *attr, char *buf)
283 {
284 	struct scsi_disk *sdkp = to_scsi_disk(dev);
285 	struct scsi_device *sdp = sdkp->device;
286 
287 	return sysfs_emit(buf, "%u\n", sdp->manage_shutdown);
288 }
289 
290 static ssize_t manage_shutdown_store(struct device *dev,
291 				     struct device_attribute *attr,
292 				     const char *buf, size_t count)
293 {
294 	struct scsi_disk *sdkp = to_scsi_disk(dev);
295 	struct scsi_device *sdp = sdkp->device;
296 	bool v;
297 
298 	if (!capable(CAP_SYS_ADMIN))
299 		return -EACCES;
300 
301 	if (kstrtobool(buf, &v))
302 		return -EINVAL;
303 
304 	sdp->manage_shutdown = v;
305 
306 	return count;
307 }
308 static DEVICE_ATTR_RW(manage_shutdown);
309 
310 static ssize_t
311 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
312 {
313 	struct scsi_disk *sdkp = to_scsi_disk(dev);
314 
315 	return sprintf(buf, "%u\n", sdkp->device->allow_restart);
316 }
317 
318 static ssize_t
319 allow_restart_store(struct device *dev, struct device_attribute *attr,
320 		    const char *buf, size_t count)
321 {
322 	bool v;
323 	struct scsi_disk *sdkp = to_scsi_disk(dev);
324 	struct scsi_device *sdp = sdkp->device;
325 
326 	if (!capable(CAP_SYS_ADMIN))
327 		return -EACCES;
328 
329 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
330 		return -EINVAL;
331 
332 	if (kstrtobool(buf, &v))
333 		return -EINVAL;
334 
335 	sdp->allow_restart = v;
336 
337 	return count;
338 }
339 static DEVICE_ATTR_RW(allow_restart);
340 
341 static ssize_t
342 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
343 {
344 	struct scsi_disk *sdkp = to_scsi_disk(dev);
345 	int ct = sdkp->RCD + 2*sdkp->WCE;
346 
347 	return sprintf(buf, "%s\n", sd_cache_types[ct]);
348 }
349 static DEVICE_ATTR_RW(cache_type);
350 
351 static ssize_t
352 FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
353 {
354 	struct scsi_disk *sdkp = to_scsi_disk(dev);
355 
356 	return sprintf(buf, "%u\n", sdkp->DPOFUA);
357 }
358 static DEVICE_ATTR_RO(FUA);
359 
360 static ssize_t
361 protection_type_show(struct device *dev, struct device_attribute *attr,
362 		     char *buf)
363 {
364 	struct scsi_disk *sdkp = to_scsi_disk(dev);
365 
366 	return sprintf(buf, "%u\n", sdkp->protection_type);
367 }
368 
369 static ssize_t
370 protection_type_store(struct device *dev, struct device_attribute *attr,
371 		      const char *buf, size_t count)
372 {
373 	struct scsi_disk *sdkp = to_scsi_disk(dev);
374 	unsigned int val;
375 	int err;
376 
377 	if (!capable(CAP_SYS_ADMIN))
378 		return -EACCES;
379 
380 	err = kstrtouint(buf, 10, &val);
381 
382 	if (err)
383 		return err;
384 
385 	if (val <= T10_PI_TYPE3_PROTECTION)
386 		sdkp->protection_type = val;
387 
388 	return count;
389 }
390 static DEVICE_ATTR_RW(protection_type);
391 
392 static ssize_t
393 protection_mode_show(struct device *dev, struct device_attribute *attr,
394 		     char *buf)
395 {
396 	struct scsi_disk *sdkp = to_scsi_disk(dev);
397 	struct scsi_device *sdp = sdkp->device;
398 	unsigned int dif, dix;
399 
400 	dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
401 	dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
402 
403 	if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
404 		dif = 0;
405 		dix = 1;
406 	}
407 
408 	if (!dif && !dix)
409 		return sprintf(buf, "none\n");
410 
411 	return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
412 }
413 static DEVICE_ATTR_RO(protection_mode);
414 
415 static ssize_t
416 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
417 {
418 	struct scsi_disk *sdkp = to_scsi_disk(dev);
419 
420 	return sprintf(buf, "%u\n", sdkp->ATO);
421 }
422 static DEVICE_ATTR_RO(app_tag_own);
423 
424 static ssize_t
425 thin_provisioning_show(struct device *dev, struct device_attribute *attr,
426 		       char *buf)
427 {
428 	struct scsi_disk *sdkp = to_scsi_disk(dev);
429 
430 	return sprintf(buf, "%u\n", sdkp->lbpme);
431 }
432 static DEVICE_ATTR_RO(thin_provisioning);
433 
434 /* sysfs_match_string() requires dense arrays */
435 static const char *lbp_mode[] = {
436 	[SD_LBP_FULL]		= "full",
437 	[SD_LBP_UNMAP]		= "unmap",
438 	[SD_LBP_WS16]		= "writesame_16",
439 	[SD_LBP_WS10]		= "writesame_10",
440 	[SD_LBP_ZERO]		= "writesame_zero",
441 	[SD_LBP_DISABLE]	= "disabled",
442 };
443 
444 static ssize_t
445 provisioning_mode_show(struct device *dev, struct device_attribute *attr,
446 		       char *buf)
447 {
448 	struct scsi_disk *sdkp = to_scsi_disk(dev);
449 
450 	return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
451 }
452 
453 static ssize_t
454 provisioning_mode_store(struct device *dev, struct device_attribute *attr,
455 			const char *buf, size_t count)
456 {
457 	struct scsi_disk *sdkp = to_scsi_disk(dev);
458 	struct scsi_device *sdp = sdkp->device;
459 	int mode;
460 
461 	if (!capable(CAP_SYS_ADMIN))
462 		return -EACCES;
463 
464 	if (sd_is_zoned(sdkp)) {
465 		sd_config_discard(sdkp, SD_LBP_DISABLE);
466 		return count;
467 	}
468 
469 	if (sdp->type != TYPE_DISK)
470 		return -EINVAL;
471 
472 	mode = sysfs_match_string(lbp_mode, buf);
473 	if (mode < 0)
474 		return -EINVAL;
475 
476 	sd_config_discard(sdkp, mode);
477 
478 	return count;
479 }
480 static DEVICE_ATTR_RW(provisioning_mode);
481 
482 /* sysfs_match_string() requires dense arrays */
483 static const char *zeroing_mode[] = {
484 	[SD_ZERO_WRITE]		= "write",
485 	[SD_ZERO_WS]		= "writesame",
486 	[SD_ZERO_WS16_UNMAP]	= "writesame_16_unmap",
487 	[SD_ZERO_WS10_UNMAP]	= "writesame_10_unmap",
488 };
489 
490 static ssize_t
491 zeroing_mode_show(struct device *dev, struct device_attribute *attr,
492 		  char *buf)
493 {
494 	struct scsi_disk *sdkp = to_scsi_disk(dev);
495 
496 	return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
497 }
498 
499 static ssize_t
500 zeroing_mode_store(struct device *dev, struct device_attribute *attr,
501 		   const char *buf, size_t count)
502 {
503 	struct scsi_disk *sdkp = to_scsi_disk(dev);
504 	int mode;
505 
506 	if (!capable(CAP_SYS_ADMIN))
507 		return -EACCES;
508 
509 	mode = sysfs_match_string(zeroing_mode, buf);
510 	if (mode < 0)
511 		return -EINVAL;
512 
513 	sdkp->zeroing_mode = mode;
514 
515 	return count;
516 }
517 static DEVICE_ATTR_RW(zeroing_mode);
518 
519 static ssize_t
520 max_medium_access_timeouts_show(struct device *dev,
521 				struct device_attribute *attr, char *buf)
522 {
523 	struct scsi_disk *sdkp = to_scsi_disk(dev);
524 
525 	return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
526 }
527 
528 static ssize_t
529 max_medium_access_timeouts_store(struct device *dev,
530 				 struct device_attribute *attr, const char *buf,
531 				 size_t count)
532 {
533 	struct scsi_disk *sdkp = to_scsi_disk(dev);
534 	int err;
535 
536 	if (!capable(CAP_SYS_ADMIN))
537 		return -EACCES;
538 
539 	err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
540 
541 	return err ? err : count;
542 }
543 static DEVICE_ATTR_RW(max_medium_access_timeouts);
544 
545 static ssize_t
546 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
547 			   char *buf)
548 {
549 	struct scsi_disk *sdkp = to_scsi_disk(dev);
550 
551 	return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
552 }
553 
554 static ssize_t
555 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
556 			    const char *buf, size_t count)
557 {
558 	struct scsi_disk *sdkp = to_scsi_disk(dev);
559 	struct scsi_device *sdp = sdkp->device;
560 	unsigned long max;
561 	int err;
562 
563 	if (!capable(CAP_SYS_ADMIN))
564 		return -EACCES;
565 
566 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
567 		return -EINVAL;
568 
569 	err = kstrtoul(buf, 10, &max);
570 
571 	if (err)
572 		return err;
573 
574 	if (max == 0)
575 		sdp->no_write_same = 1;
576 	else if (max <= SD_MAX_WS16_BLOCKS) {
577 		sdp->no_write_same = 0;
578 		sdkp->max_ws_blocks = max;
579 	}
580 
581 	sd_config_write_same(sdkp);
582 
583 	return count;
584 }
585 static DEVICE_ATTR_RW(max_write_same_blocks);
586 
587 static ssize_t
588 zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf)
589 {
590 	struct scsi_disk *sdkp = to_scsi_disk(dev);
591 
592 	if (sdkp->device->type == TYPE_ZBC)
593 		return sprintf(buf, "host-managed\n");
594 	if (sdkp->zoned == 1)
595 		return sprintf(buf, "host-aware\n");
596 	if (sdkp->zoned == 2)
597 		return sprintf(buf, "drive-managed\n");
598 	return sprintf(buf, "none\n");
599 }
600 static DEVICE_ATTR_RO(zoned_cap);
601 
602 static ssize_t
603 max_retries_store(struct device *dev, struct device_attribute *attr,
604 		  const char *buf, size_t count)
605 {
606 	struct scsi_disk *sdkp = to_scsi_disk(dev);
607 	struct scsi_device *sdev = sdkp->device;
608 	int retries, err;
609 
610 	err = kstrtoint(buf, 10, &retries);
611 	if (err)
612 		return err;
613 
614 	if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) {
615 		sdkp->max_retries = retries;
616 		return count;
617 	}
618 
619 	sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n",
620 		    SD_MAX_RETRIES);
621 	return -EINVAL;
622 }
623 
624 static ssize_t
625 max_retries_show(struct device *dev, struct device_attribute *attr,
626 		 char *buf)
627 {
628 	struct scsi_disk *sdkp = to_scsi_disk(dev);
629 
630 	return sprintf(buf, "%d\n", sdkp->max_retries);
631 }
632 
633 static DEVICE_ATTR_RW(max_retries);
634 
635 static struct attribute *sd_disk_attrs[] = {
636 	&dev_attr_cache_type.attr,
637 	&dev_attr_FUA.attr,
638 	&dev_attr_allow_restart.attr,
639 	&dev_attr_manage_start_stop.attr,
640 	&dev_attr_manage_system_start_stop.attr,
641 	&dev_attr_manage_runtime_start_stop.attr,
642 	&dev_attr_manage_shutdown.attr,
643 	&dev_attr_protection_type.attr,
644 	&dev_attr_protection_mode.attr,
645 	&dev_attr_app_tag_own.attr,
646 	&dev_attr_thin_provisioning.attr,
647 	&dev_attr_provisioning_mode.attr,
648 	&dev_attr_zeroing_mode.attr,
649 	&dev_attr_max_write_same_blocks.attr,
650 	&dev_attr_max_medium_access_timeouts.attr,
651 	&dev_attr_zoned_cap.attr,
652 	&dev_attr_max_retries.attr,
653 	NULL,
654 };
655 ATTRIBUTE_GROUPS(sd_disk);
656 
657 static struct class sd_disk_class = {
658 	.name		= "scsi_disk",
659 	.dev_release	= scsi_disk_release,
660 	.dev_groups	= sd_disk_groups,
661 };
662 
663 /*
664  * Don't request a new module, as that could deadlock in multipath
665  * environment.
666  */
667 static void sd_default_probe(dev_t devt)
668 {
669 }
670 
671 /*
672  * Device no to disk mapping:
673  *
674  *       major         disc2     disc  p1
675  *   |............|.............|....|....| <- dev_t
676  *    31        20 19          8 7  4 3  0
677  *
678  * Inside a major, we have 16k disks, however mapped non-
679  * contiguously. The first 16 disks are for major0, the next
680  * ones with major1, ... Disk 256 is for major0 again, disk 272
681  * for major1, ...
682  * As we stay compatible with our numbering scheme, we can reuse
683  * the well-know SCSI majors 8, 65--71, 136--143.
684  */
685 static int sd_major(int major_idx)
686 {
687 	switch (major_idx) {
688 	case 0:
689 		return SCSI_DISK0_MAJOR;
690 	case 1 ... 7:
691 		return SCSI_DISK1_MAJOR + major_idx - 1;
692 	case 8 ... 15:
693 		return SCSI_DISK8_MAJOR + major_idx - 8;
694 	default:
695 		BUG();
696 		return 0;	/* shut up gcc */
697 	}
698 }
699 
700 #ifdef CONFIG_BLK_SED_OPAL
701 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
702 		size_t len, bool send)
703 {
704 	struct scsi_disk *sdkp = data;
705 	struct scsi_device *sdev = sdkp->device;
706 	u8 cdb[12] = { 0, };
707 	const struct scsi_exec_args exec_args = {
708 		.req_flags = BLK_MQ_REQ_PM,
709 	};
710 	int ret;
711 
712 	cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
713 	cdb[1] = secp;
714 	put_unaligned_be16(spsp, &cdb[2]);
715 	put_unaligned_be32(len, &cdb[6]);
716 
717 	ret = scsi_execute_cmd(sdev, cdb, send ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN,
718 			       buffer, len, SD_TIMEOUT, sdkp->max_retries,
719 			       &exec_args);
720 	return ret <= 0 ? ret : -EIO;
721 }
722 #endif /* CONFIG_BLK_SED_OPAL */
723 
724 /*
725  * Look up the DIX operation based on whether the command is read or
726  * write and whether dix and dif are enabled.
727  */
728 static unsigned int sd_prot_op(bool write, bool dix, bool dif)
729 {
730 	/* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */
731 	static const unsigned int ops[] = {	/* wrt dix dif */
732 		SCSI_PROT_NORMAL,		/*  0	0   0  */
733 		SCSI_PROT_READ_STRIP,		/*  0	0   1  */
734 		SCSI_PROT_READ_INSERT,		/*  0	1   0  */
735 		SCSI_PROT_READ_PASS,		/*  0	1   1  */
736 		SCSI_PROT_NORMAL,		/*  1	0   0  */
737 		SCSI_PROT_WRITE_INSERT,		/*  1	0   1  */
738 		SCSI_PROT_WRITE_STRIP,		/*  1	1   0  */
739 		SCSI_PROT_WRITE_PASS,		/*  1	1   1  */
740 	};
741 
742 	return ops[write << 2 | dix << 1 | dif];
743 }
744 
745 /*
746  * Returns a mask of the protection flags that are valid for a given DIX
747  * operation.
748  */
749 static unsigned int sd_prot_flag_mask(unsigned int prot_op)
750 {
751 	static const unsigned int flag_mask[] = {
752 		[SCSI_PROT_NORMAL]		= 0,
753 
754 		[SCSI_PROT_READ_STRIP]		= SCSI_PROT_TRANSFER_PI |
755 						  SCSI_PROT_GUARD_CHECK |
756 						  SCSI_PROT_REF_CHECK |
757 						  SCSI_PROT_REF_INCREMENT,
758 
759 		[SCSI_PROT_READ_INSERT]		= SCSI_PROT_REF_INCREMENT |
760 						  SCSI_PROT_IP_CHECKSUM,
761 
762 		[SCSI_PROT_READ_PASS]		= SCSI_PROT_TRANSFER_PI |
763 						  SCSI_PROT_GUARD_CHECK |
764 						  SCSI_PROT_REF_CHECK |
765 						  SCSI_PROT_REF_INCREMENT |
766 						  SCSI_PROT_IP_CHECKSUM,
767 
768 		[SCSI_PROT_WRITE_INSERT]	= SCSI_PROT_TRANSFER_PI |
769 						  SCSI_PROT_REF_INCREMENT,
770 
771 		[SCSI_PROT_WRITE_STRIP]		= SCSI_PROT_GUARD_CHECK |
772 						  SCSI_PROT_REF_CHECK |
773 						  SCSI_PROT_REF_INCREMENT |
774 						  SCSI_PROT_IP_CHECKSUM,
775 
776 		[SCSI_PROT_WRITE_PASS]		= SCSI_PROT_TRANSFER_PI |
777 						  SCSI_PROT_GUARD_CHECK |
778 						  SCSI_PROT_REF_CHECK |
779 						  SCSI_PROT_REF_INCREMENT |
780 						  SCSI_PROT_IP_CHECKSUM,
781 	};
782 
783 	return flag_mask[prot_op];
784 }
785 
786 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
787 					   unsigned int dix, unsigned int dif)
788 {
789 	struct request *rq = scsi_cmd_to_rq(scmd);
790 	struct bio *bio = rq->bio;
791 	unsigned int prot_op = sd_prot_op(rq_data_dir(rq), dix, dif);
792 	unsigned int protect = 0;
793 
794 	if (dix) {				/* DIX Type 0, 1, 2, 3 */
795 		if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
796 			scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
797 
798 		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
799 			scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
800 	}
801 
802 	if (dif != T10_PI_TYPE3_PROTECTION) {	/* DIX/DIF Type 0, 1, 2 */
803 		scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
804 
805 		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
806 			scmd->prot_flags |= SCSI_PROT_REF_CHECK;
807 	}
808 
809 	if (dif) {				/* DIX/DIF Type 1, 2, 3 */
810 		scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
811 
812 		if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
813 			protect = 3 << 5;	/* Disable target PI checking */
814 		else
815 			protect = 1 << 5;	/* Enable target PI checking */
816 	}
817 
818 	scsi_set_prot_op(scmd, prot_op);
819 	scsi_set_prot_type(scmd, dif);
820 	scmd->prot_flags &= sd_prot_flag_mask(prot_op);
821 
822 	return protect;
823 }
824 
825 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
826 {
827 	struct request_queue *q = sdkp->disk->queue;
828 	unsigned int logical_block_size = sdkp->device->sector_size;
829 	unsigned int max_blocks = 0;
830 
831 	q->limits.discard_alignment =
832 		sdkp->unmap_alignment * logical_block_size;
833 	q->limits.discard_granularity =
834 		max(sdkp->physical_block_size,
835 		    sdkp->unmap_granularity * logical_block_size);
836 	sdkp->provisioning_mode = mode;
837 
838 	switch (mode) {
839 
840 	case SD_LBP_FULL:
841 	case SD_LBP_DISABLE:
842 		blk_queue_max_discard_sectors(q, 0);
843 		return;
844 
845 	case SD_LBP_UNMAP:
846 		max_blocks = min_not_zero(sdkp->max_unmap_blocks,
847 					  (u32)SD_MAX_WS16_BLOCKS);
848 		break;
849 
850 	case SD_LBP_WS16:
851 		if (sdkp->device->unmap_limit_for_ws)
852 			max_blocks = sdkp->max_unmap_blocks;
853 		else
854 			max_blocks = sdkp->max_ws_blocks;
855 
856 		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
857 		break;
858 
859 	case SD_LBP_WS10:
860 		if (sdkp->device->unmap_limit_for_ws)
861 			max_blocks = sdkp->max_unmap_blocks;
862 		else
863 			max_blocks = sdkp->max_ws_blocks;
864 
865 		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
866 		break;
867 
868 	case SD_LBP_ZERO:
869 		max_blocks = min_not_zero(sdkp->max_ws_blocks,
870 					  (u32)SD_MAX_WS10_BLOCKS);
871 		break;
872 	}
873 
874 	blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
875 }
876 
877 static void *sd_set_special_bvec(struct request *rq, unsigned int data_len)
878 {
879 	struct page *page;
880 
881 	page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
882 	if (!page)
883 		return NULL;
884 	clear_highpage(page);
885 	bvec_set_page(&rq->special_vec, page, data_len, 0);
886 	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
887 	return bvec_virt(&rq->special_vec);
888 }
889 
890 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
891 {
892 	struct scsi_device *sdp = cmd->device;
893 	struct request *rq = scsi_cmd_to_rq(cmd);
894 	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
895 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
896 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
897 	unsigned int data_len = 24;
898 	char *buf;
899 
900 	buf = sd_set_special_bvec(rq, data_len);
901 	if (!buf)
902 		return BLK_STS_RESOURCE;
903 
904 	cmd->cmd_len = 10;
905 	cmd->cmnd[0] = UNMAP;
906 	cmd->cmnd[8] = 24;
907 
908 	put_unaligned_be16(6 + 16, &buf[0]);
909 	put_unaligned_be16(16, &buf[2]);
910 	put_unaligned_be64(lba, &buf[8]);
911 	put_unaligned_be32(nr_blocks, &buf[16]);
912 
913 	cmd->allowed = sdkp->max_retries;
914 	cmd->transfersize = data_len;
915 	rq->timeout = SD_TIMEOUT;
916 
917 	return scsi_alloc_sgtables(cmd);
918 }
919 
920 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd,
921 		bool unmap)
922 {
923 	struct scsi_device *sdp = cmd->device;
924 	struct request *rq = scsi_cmd_to_rq(cmd);
925 	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
926 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
927 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
928 	u32 data_len = sdp->sector_size;
929 
930 	if (!sd_set_special_bvec(rq, data_len))
931 		return BLK_STS_RESOURCE;
932 
933 	cmd->cmd_len = 16;
934 	cmd->cmnd[0] = WRITE_SAME_16;
935 	if (unmap)
936 		cmd->cmnd[1] = 0x8; /* UNMAP */
937 	put_unaligned_be64(lba, &cmd->cmnd[2]);
938 	put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
939 
940 	cmd->allowed = sdkp->max_retries;
941 	cmd->transfersize = data_len;
942 	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
943 
944 	return scsi_alloc_sgtables(cmd);
945 }
946 
947 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd,
948 		bool unmap)
949 {
950 	struct scsi_device *sdp = cmd->device;
951 	struct request *rq = scsi_cmd_to_rq(cmd);
952 	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
953 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
954 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
955 	u32 data_len = sdp->sector_size;
956 
957 	if (!sd_set_special_bvec(rq, data_len))
958 		return BLK_STS_RESOURCE;
959 
960 	cmd->cmd_len = 10;
961 	cmd->cmnd[0] = WRITE_SAME;
962 	if (unmap)
963 		cmd->cmnd[1] = 0x8; /* UNMAP */
964 	put_unaligned_be32(lba, &cmd->cmnd[2]);
965 	put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
966 
967 	cmd->allowed = sdkp->max_retries;
968 	cmd->transfersize = data_len;
969 	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
970 
971 	return scsi_alloc_sgtables(cmd);
972 }
973 
974 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
975 {
976 	struct request *rq = scsi_cmd_to_rq(cmd);
977 	struct scsi_device *sdp = cmd->device;
978 	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
979 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
980 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
981 
982 	if (!(rq->cmd_flags & REQ_NOUNMAP)) {
983 		switch (sdkp->zeroing_mode) {
984 		case SD_ZERO_WS16_UNMAP:
985 			return sd_setup_write_same16_cmnd(cmd, true);
986 		case SD_ZERO_WS10_UNMAP:
987 			return sd_setup_write_same10_cmnd(cmd, true);
988 		}
989 	}
990 
991 	if (sdp->no_write_same) {
992 		rq->rq_flags |= RQF_QUIET;
993 		return BLK_STS_TARGET;
994 	}
995 
996 	if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff)
997 		return sd_setup_write_same16_cmnd(cmd, false);
998 
999 	return sd_setup_write_same10_cmnd(cmd, false);
1000 }
1001 
1002 static void sd_config_write_same(struct scsi_disk *sdkp)
1003 {
1004 	struct request_queue *q = sdkp->disk->queue;
1005 	unsigned int logical_block_size = sdkp->device->sector_size;
1006 
1007 	if (sdkp->device->no_write_same) {
1008 		sdkp->max_ws_blocks = 0;
1009 		goto out;
1010 	}
1011 
1012 	/* Some devices can not handle block counts above 0xffff despite
1013 	 * supporting WRITE SAME(16). Consequently we default to 64k
1014 	 * blocks per I/O unless the device explicitly advertises a
1015 	 * bigger limit.
1016 	 */
1017 	if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
1018 		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
1019 						   (u32)SD_MAX_WS16_BLOCKS);
1020 	else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
1021 		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
1022 						   (u32)SD_MAX_WS10_BLOCKS);
1023 	else {
1024 		sdkp->device->no_write_same = 1;
1025 		sdkp->max_ws_blocks = 0;
1026 	}
1027 
1028 	if (sdkp->lbprz && sdkp->lbpws)
1029 		sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
1030 	else if (sdkp->lbprz && sdkp->lbpws10)
1031 		sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
1032 	else if (sdkp->max_ws_blocks)
1033 		sdkp->zeroing_mode = SD_ZERO_WS;
1034 	else
1035 		sdkp->zeroing_mode = SD_ZERO_WRITE;
1036 
1037 	if (sdkp->max_ws_blocks &&
1038 	    sdkp->physical_block_size > logical_block_size) {
1039 		/*
1040 		 * Reporting a maximum number of blocks that is not aligned
1041 		 * on the device physical size would cause a large write same
1042 		 * request to be split into physically unaligned chunks by
1043 		 * __blkdev_issue_write_zeroes() even if the caller of this
1044 		 * functions took care to align the large request. So make sure
1045 		 * the maximum reported is aligned to the device physical block
1046 		 * size. This is only an optional optimization for regular
1047 		 * disks, but this is mandatory to avoid failure of large write
1048 		 * same requests directed at sequential write required zones of
1049 		 * host-managed ZBC disks.
1050 		 */
1051 		sdkp->max_ws_blocks =
1052 			round_down(sdkp->max_ws_blocks,
1053 				   bytes_to_logical(sdkp->device,
1054 						    sdkp->physical_block_size));
1055 	}
1056 
1057 out:
1058 	blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks *
1059 					 (logical_block_size >> 9));
1060 }
1061 
1062 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
1063 {
1064 	struct request *rq = scsi_cmd_to_rq(cmd);
1065 	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1066 
1067 	/* flush requests don't perform I/O, zero the S/G table */
1068 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1069 
1070 	if (cmd->device->use_16_for_sync) {
1071 		cmd->cmnd[0] = SYNCHRONIZE_CACHE_16;
1072 		cmd->cmd_len = 16;
1073 	} else {
1074 		cmd->cmnd[0] = SYNCHRONIZE_CACHE;
1075 		cmd->cmd_len = 10;
1076 	}
1077 	cmd->transfersize = 0;
1078 	cmd->allowed = sdkp->max_retries;
1079 
1080 	rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
1081 	return BLK_STS_OK;
1082 }
1083 
1084 /**
1085  * sd_group_number() - Compute the GROUP NUMBER field
1086  * @cmd: SCSI command for which to compute the value of the six-bit GROUP NUMBER
1087  *	field.
1088  *
1089  * From SBC-5 r05 (https://www.t10.org/cgi-bin/ac.pl?t=f&f=sbc5r05.pdf):
1090  * 0: no relative lifetime.
1091  * 1: shortest relative lifetime.
1092  * 2: second shortest relative lifetime.
1093  * 3 - 0x3d: intermediate relative lifetimes.
1094  * 0x3e: second longest relative lifetime.
1095  * 0x3f: longest relative lifetime.
1096  */
1097 static u8 sd_group_number(struct scsi_cmnd *cmd)
1098 {
1099 	const struct request *rq = scsi_cmd_to_rq(cmd);
1100 	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1101 
1102 	if (!sdkp->rscs)
1103 		return 0;
1104 
1105 	return min3((u32)rq->write_hint, (u32)sdkp->permanent_stream_count,
1106 		    0x3fu);
1107 }
1108 
1109 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write,
1110 				       sector_t lba, unsigned int nr_blocks,
1111 				       unsigned char flags, unsigned int dld)
1112 {
1113 	cmd->cmd_len = SD_EXT_CDB_SIZE;
1114 	cmd->cmnd[0]  = VARIABLE_LENGTH_CMD;
1115 	cmd->cmnd[6]  = sd_group_number(cmd);
1116 	cmd->cmnd[7]  = 0x18; /* Additional CDB len */
1117 	cmd->cmnd[9]  = write ? WRITE_32 : READ_32;
1118 	cmd->cmnd[10] = flags;
1119 	cmd->cmnd[11] = dld & 0x07;
1120 	put_unaligned_be64(lba, &cmd->cmnd[12]);
1121 	put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */
1122 	put_unaligned_be32(nr_blocks, &cmd->cmnd[28]);
1123 
1124 	return BLK_STS_OK;
1125 }
1126 
1127 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write,
1128 				       sector_t lba, unsigned int nr_blocks,
1129 				       unsigned char flags, unsigned int dld)
1130 {
1131 	cmd->cmd_len  = 16;
1132 	cmd->cmnd[0]  = write ? WRITE_16 : READ_16;
1133 	cmd->cmnd[1]  = flags | ((dld >> 2) & 0x01);
1134 	cmd->cmnd[14] = ((dld & 0x03) << 6) | sd_group_number(cmd);
1135 	cmd->cmnd[15] = 0;
1136 	put_unaligned_be64(lba, &cmd->cmnd[2]);
1137 	put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1138 
1139 	return BLK_STS_OK;
1140 }
1141 
1142 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write,
1143 				       sector_t lba, unsigned int nr_blocks,
1144 				       unsigned char flags)
1145 {
1146 	cmd->cmd_len = 10;
1147 	cmd->cmnd[0] = write ? WRITE_10 : READ_10;
1148 	cmd->cmnd[1] = flags;
1149 	cmd->cmnd[6] = sd_group_number(cmd);
1150 	cmd->cmnd[9] = 0;
1151 	put_unaligned_be32(lba, &cmd->cmnd[2]);
1152 	put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1153 
1154 	return BLK_STS_OK;
1155 }
1156 
1157 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write,
1158 				      sector_t lba, unsigned int nr_blocks,
1159 				      unsigned char flags)
1160 {
1161 	/* Avoid that 0 blocks gets translated into 256 blocks. */
1162 	if (WARN_ON_ONCE(nr_blocks == 0))
1163 		return BLK_STS_IOERR;
1164 
1165 	if (unlikely(flags & 0x8)) {
1166 		/*
1167 		 * This happens only if this drive failed 10byte rw
1168 		 * command with ILLEGAL_REQUEST during operation and
1169 		 * thus turned off use_10_for_rw.
1170 		 */
1171 		scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n");
1172 		return BLK_STS_IOERR;
1173 	}
1174 
1175 	cmd->cmd_len = 6;
1176 	cmd->cmnd[0] = write ? WRITE_6 : READ_6;
1177 	cmd->cmnd[1] = (lba >> 16) & 0x1f;
1178 	cmd->cmnd[2] = (lba >> 8) & 0xff;
1179 	cmd->cmnd[3] = lba & 0xff;
1180 	cmd->cmnd[4] = nr_blocks;
1181 	cmd->cmnd[5] = 0;
1182 
1183 	return BLK_STS_OK;
1184 }
1185 
1186 /*
1187  * Check if a command has a duration limit set. If it does, and the target
1188  * device supports CDL and the feature is enabled, return the limit
1189  * descriptor index to use. Return 0 (no limit) otherwise.
1190  */
1191 static int sd_cdl_dld(struct scsi_disk *sdkp, struct scsi_cmnd *scmd)
1192 {
1193 	struct scsi_device *sdp = sdkp->device;
1194 	int hint;
1195 
1196 	if (!sdp->cdl_supported || !sdp->cdl_enable)
1197 		return 0;
1198 
1199 	/*
1200 	 * Use "no limit" if the request ioprio does not specify a duration
1201 	 * limit hint.
1202 	 */
1203 	hint = IOPRIO_PRIO_HINT(req_get_ioprio(scsi_cmd_to_rq(scmd)));
1204 	if (hint < IOPRIO_HINT_DEV_DURATION_LIMIT_1 ||
1205 	    hint > IOPRIO_HINT_DEV_DURATION_LIMIT_7)
1206 		return 0;
1207 
1208 	return (hint - IOPRIO_HINT_DEV_DURATION_LIMIT_1) + 1;
1209 }
1210 
1211 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd)
1212 {
1213 	struct request *rq = scsi_cmd_to_rq(cmd);
1214 	struct scsi_device *sdp = cmd->device;
1215 	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1216 	sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1217 	sector_t threshold;
1218 	unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1219 	unsigned int mask = logical_to_sectors(sdp, 1) - 1;
1220 	bool write = rq_data_dir(rq) == WRITE;
1221 	unsigned char protect, fua;
1222 	unsigned int dld;
1223 	blk_status_t ret;
1224 	unsigned int dif;
1225 	bool dix;
1226 
1227 	ret = scsi_alloc_sgtables(cmd);
1228 	if (ret != BLK_STS_OK)
1229 		return ret;
1230 
1231 	ret = BLK_STS_IOERR;
1232 	if (!scsi_device_online(sdp) || sdp->changed) {
1233 		scmd_printk(KERN_ERR, cmd, "device offline or changed\n");
1234 		goto fail;
1235 	}
1236 
1237 	if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->q->disk)) {
1238 		scmd_printk(KERN_ERR, cmd, "access beyond end of device\n");
1239 		goto fail;
1240 	}
1241 
1242 	if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) {
1243 		scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n");
1244 		goto fail;
1245 	}
1246 
1247 	/*
1248 	 * Some SD card readers can't handle accesses which touch the
1249 	 * last one or two logical blocks. Split accesses as needed.
1250 	 */
1251 	threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS;
1252 
1253 	if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) {
1254 		if (lba < threshold) {
1255 			/* Access up to the threshold but not beyond */
1256 			nr_blocks = threshold - lba;
1257 		} else {
1258 			/* Access only a single logical block */
1259 			nr_blocks = 1;
1260 		}
1261 	}
1262 
1263 	fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0;
1264 	dix = scsi_prot_sg_count(cmd);
1265 	dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type);
1266 	dld = sd_cdl_dld(sdkp, cmd);
1267 
1268 	if (dif || dix)
1269 		protect = sd_setup_protect_cmnd(cmd, dix, dif);
1270 	else
1271 		protect = 0;
1272 
1273 	if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1274 		ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks,
1275 					 protect | fua, dld);
1276 	} else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) {
1277 		ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks,
1278 					 protect | fua, dld);
1279 	} else if ((nr_blocks > 0xff) || (lba > 0x1fffff) ||
1280 		   sdp->use_10_for_rw || protect || rq->write_hint) {
1281 		ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks,
1282 					 protect | fua);
1283 	} else {
1284 		ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks,
1285 					protect | fua);
1286 	}
1287 
1288 	if (unlikely(ret != BLK_STS_OK))
1289 		goto fail;
1290 
1291 	/*
1292 	 * We shouldn't disconnect in the middle of a sector, so with a dumb
1293 	 * host adapter, it's safe to assume that we can at least transfer
1294 	 * this many bytes between each connect / disconnect.
1295 	 */
1296 	cmd->transfersize = sdp->sector_size;
1297 	cmd->underflow = nr_blocks << 9;
1298 	cmd->allowed = sdkp->max_retries;
1299 	cmd->sdb.length = nr_blocks * sdp->sector_size;
1300 
1301 	SCSI_LOG_HLQUEUE(1,
1302 			 scmd_printk(KERN_INFO, cmd,
1303 				     "%s: block=%llu, count=%d\n", __func__,
1304 				     (unsigned long long)blk_rq_pos(rq),
1305 				     blk_rq_sectors(rq)));
1306 	SCSI_LOG_HLQUEUE(2,
1307 			 scmd_printk(KERN_INFO, cmd,
1308 				     "%s %d/%u 512 byte blocks.\n",
1309 				     write ? "writing" : "reading", nr_blocks,
1310 				     blk_rq_sectors(rq)));
1311 
1312 	/*
1313 	 * This indicates that the command is ready from our end to be queued.
1314 	 */
1315 	return BLK_STS_OK;
1316 fail:
1317 	scsi_free_sgtables(cmd);
1318 	return ret;
1319 }
1320 
1321 static blk_status_t sd_init_command(struct scsi_cmnd *cmd)
1322 {
1323 	struct request *rq = scsi_cmd_to_rq(cmd);
1324 
1325 	switch (req_op(rq)) {
1326 	case REQ_OP_DISCARD:
1327 		switch (scsi_disk(rq->q->disk)->provisioning_mode) {
1328 		case SD_LBP_UNMAP:
1329 			return sd_setup_unmap_cmnd(cmd);
1330 		case SD_LBP_WS16:
1331 			return sd_setup_write_same16_cmnd(cmd, true);
1332 		case SD_LBP_WS10:
1333 			return sd_setup_write_same10_cmnd(cmd, true);
1334 		case SD_LBP_ZERO:
1335 			return sd_setup_write_same10_cmnd(cmd, false);
1336 		default:
1337 			return BLK_STS_TARGET;
1338 		}
1339 	case REQ_OP_WRITE_ZEROES:
1340 		return sd_setup_write_zeroes_cmnd(cmd);
1341 	case REQ_OP_FLUSH:
1342 		return sd_setup_flush_cmnd(cmd);
1343 	case REQ_OP_READ:
1344 	case REQ_OP_WRITE:
1345 		return sd_setup_read_write_cmnd(cmd);
1346 	case REQ_OP_ZONE_RESET:
1347 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1348 						   false);
1349 	case REQ_OP_ZONE_RESET_ALL:
1350 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1351 						   true);
1352 	case REQ_OP_ZONE_OPEN:
1353 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false);
1354 	case REQ_OP_ZONE_CLOSE:
1355 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false);
1356 	case REQ_OP_ZONE_FINISH:
1357 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false);
1358 	default:
1359 		WARN_ON_ONCE(1);
1360 		return BLK_STS_NOTSUPP;
1361 	}
1362 }
1363 
1364 static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1365 {
1366 	struct request *rq = scsi_cmd_to_rq(SCpnt);
1367 
1368 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1369 		mempool_free(rq->special_vec.bv_page, sd_page_pool);
1370 }
1371 
1372 static bool sd_need_revalidate(struct gendisk *disk, struct scsi_disk *sdkp)
1373 {
1374 	if (sdkp->device->removable || sdkp->write_prot) {
1375 		if (disk_check_media_change(disk))
1376 			return true;
1377 	}
1378 
1379 	/*
1380 	 * Force a full rescan after ioctl(BLKRRPART).  While the disk state has
1381 	 * nothing to do with partitions, BLKRRPART is used to force a full
1382 	 * revalidate after things like a format for historical reasons.
1383 	 */
1384 	return test_bit(GD_NEED_PART_SCAN, &disk->state);
1385 }
1386 
1387 /**
1388  *	sd_open - open a scsi disk device
1389  *	@disk: disk to open
1390  *	@mode: open mode
1391  *
1392  *	Returns 0 if successful. Returns a negated errno value in case
1393  *	of error.
1394  *
1395  *	Note: This can be called from a user context (e.g. fsck(1) )
1396  *	or from within the kernel (e.g. as a result of a mount(1) ).
1397  *	In the latter case @inode and @filp carry an abridged amount
1398  *	of information as noted above.
1399  *
1400  *	Locking: called with disk->open_mutex held.
1401  **/
1402 static int sd_open(struct gendisk *disk, blk_mode_t mode)
1403 {
1404 	struct scsi_disk *sdkp = scsi_disk(disk);
1405 	struct scsi_device *sdev = sdkp->device;
1406 	int retval;
1407 
1408 	if (scsi_device_get(sdev))
1409 		return -ENXIO;
1410 
1411 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1412 
1413 	/*
1414 	 * If the device is in error recovery, wait until it is done.
1415 	 * If the device is offline, then disallow any access to it.
1416 	 */
1417 	retval = -ENXIO;
1418 	if (!scsi_block_when_processing_errors(sdev))
1419 		goto error_out;
1420 
1421 	if (sd_need_revalidate(disk, sdkp))
1422 		sd_revalidate_disk(disk);
1423 
1424 	/*
1425 	 * If the drive is empty, just let the open fail.
1426 	 */
1427 	retval = -ENOMEDIUM;
1428 	if (sdev->removable && !sdkp->media_present &&
1429 	    !(mode & BLK_OPEN_NDELAY))
1430 		goto error_out;
1431 
1432 	/*
1433 	 * If the device has the write protect tab set, have the open fail
1434 	 * if the user expects to be able to write to the thing.
1435 	 */
1436 	retval = -EROFS;
1437 	if (sdkp->write_prot && (mode & BLK_OPEN_WRITE))
1438 		goto error_out;
1439 
1440 	/*
1441 	 * It is possible that the disk changing stuff resulted in
1442 	 * the device being taken offline.  If this is the case,
1443 	 * report this to the user, and don't pretend that the
1444 	 * open actually succeeded.
1445 	 */
1446 	retval = -ENXIO;
1447 	if (!scsi_device_online(sdev))
1448 		goto error_out;
1449 
1450 	if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1451 		if (scsi_block_when_processing_errors(sdev))
1452 			scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1453 	}
1454 
1455 	return 0;
1456 
1457 error_out:
1458 	scsi_device_put(sdev);
1459 	return retval;
1460 }
1461 
1462 /**
1463  *	sd_release - invoked when the (last) close(2) is called on this
1464  *	scsi disk.
1465  *	@disk: disk to release
1466  *
1467  *	Returns 0.
1468  *
1469  *	Note: may block (uninterruptible) if error recovery is underway
1470  *	on this disk.
1471  *
1472  *	Locking: called with disk->open_mutex held.
1473  **/
1474 static void sd_release(struct gendisk *disk)
1475 {
1476 	struct scsi_disk *sdkp = scsi_disk(disk);
1477 	struct scsi_device *sdev = sdkp->device;
1478 
1479 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1480 
1481 	if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1482 		if (scsi_block_when_processing_errors(sdev))
1483 			scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1484 	}
1485 
1486 	scsi_device_put(sdev);
1487 }
1488 
1489 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1490 {
1491 	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1492 	struct scsi_device *sdp = sdkp->device;
1493 	struct Scsi_Host *host = sdp->host;
1494 	sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1495 	int diskinfo[4];
1496 
1497 	/* default to most commonly used values */
1498 	diskinfo[0] = 0x40;	/* 1 << 6 */
1499 	diskinfo[1] = 0x20;	/* 1 << 5 */
1500 	diskinfo[2] = capacity >> 11;
1501 
1502 	/* override with calculated, extended default, or driver values */
1503 	if (host->hostt->bios_param)
1504 		host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1505 	else
1506 		scsicam_bios_param(bdev, capacity, diskinfo);
1507 
1508 	geo->heads = diskinfo[0];
1509 	geo->sectors = diskinfo[1];
1510 	geo->cylinders = diskinfo[2];
1511 	return 0;
1512 }
1513 
1514 /**
1515  *	sd_ioctl - process an ioctl
1516  *	@bdev: target block device
1517  *	@mode: open mode
1518  *	@cmd: ioctl command number
1519  *	@arg: this is third argument given to ioctl(2) system call.
1520  *	Often contains a pointer.
1521  *
1522  *	Returns 0 if successful (some ioctls return positive numbers on
1523  *	success as well). Returns a negated errno value in case of error.
1524  *
1525  *	Note: most ioctls are forward onto the block subsystem or further
1526  *	down in the scsi subsystem.
1527  **/
1528 static int sd_ioctl(struct block_device *bdev, blk_mode_t mode,
1529 		    unsigned int cmd, unsigned long arg)
1530 {
1531 	struct gendisk *disk = bdev->bd_disk;
1532 	struct scsi_disk *sdkp = scsi_disk(disk);
1533 	struct scsi_device *sdp = sdkp->device;
1534 	void __user *p = (void __user *)arg;
1535 	int error;
1536 
1537 	SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1538 				    "cmd=0x%x\n", disk->disk_name, cmd));
1539 
1540 	if (bdev_is_partition(bdev) && !capable(CAP_SYS_RAWIO))
1541 		return -ENOIOCTLCMD;
1542 
1543 	/*
1544 	 * If we are in the middle of error recovery, don't let anyone
1545 	 * else try and use this device.  Also, if error recovery fails, it
1546 	 * may try and take the device offline, in which case all further
1547 	 * access to the device is prohibited.
1548 	 */
1549 	error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1550 			(mode & BLK_OPEN_NDELAY));
1551 	if (error)
1552 		return error;
1553 
1554 	if (is_sed_ioctl(cmd))
1555 		return sed_ioctl(sdkp->opal_dev, cmd, p);
1556 	return scsi_ioctl(sdp, mode & BLK_OPEN_WRITE, cmd, p);
1557 }
1558 
1559 static void set_media_not_present(struct scsi_disk *sdkp)
1560 {
1561 	if (sdkp->media_present)
1562 		sdkp->device->changed = 1;
1563 
1564 	if (sdkp->device->removable) {
1565 		sdkp->media_present = 0;
1566 		sdkp->capacity = 0;
1567 	}
1568 }
1569 
1570 static int media_not_present(struct scsi_disk *sdkp,
1571 			     struct scsi_sense_hdr *sshdr)
1572 {
1573 	if (!scsi_sense_valid(sshdr))
1574 		return 0;
1575 
1576 	/* not invoked for commands that could return deferred errors */
1577 	switch (sshdr->sense_key) {
1578 	case UNIT_ATTENTION:
1579 	case NOT_READY:
1580 		/* medium not present */
1581 		if (sshdr->asc == 0x3A) {
1582 			set_media_not_present(sdkp);
1583 			return 1;
1584 		}
1585 	}
1586 	return 0;
1587 }
1588 
1589 /**
1590  *	sd_check_events - check media events
1591  *	@disk: kernel device descriptor
1592  *	@clearing: disk events currently being cleared
1593  *
1594  *	Returns mask of DISK_EVENT_*.
1595  *
1596  *	Note: this function is invoked from the block subsystem.
1597  **/
1598 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1599 {
1600 	struct scsi_disk *sdkp = disk->private_data;
1601 	struct scsi_device *sdp;
1602 	int retval;
1603 	bool disk_changed;
1604 
1605 	if (!sdkp)
1606 		return 0;
1607 
1608 	sdp = sdkp->device;
1609 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1610 
1611 	/*
1612 	 * If the device is offline, don't send any commands - just pretend as
1613 	 * if the command failed.  If the device ever comes back online, we
1614 	 * can deal with it then.  It is only because of unrecoverable errors
1615 	 * that we would ever take a device offline in the first place.
1616 	 */
1617 	if (!scsi_device_online(sdp)) {
1618 		set_media_not_present(sdkp);
1619 		goto out;
1620 	}
1621 
1622 	/*
1623 	 * Using TEST_UNIT_READY enables differentiation between drive with
1624 	 * no cartridge loaded - NOT READY, drive with changed cartridge -
1625 	 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1626 	 *
1627 	 * Drives that auto spin down. eg iomega jaz 1G, will be started
1628 	 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1629 	 * sd_revalidate() is called.
1630 	 */
1631 	if (scsi_block_when_processing_errors(sdp)) {
1632 		struct scsi_sense_hdr sshdr = { 0, };
1633 
1634 		retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries,
1635 					      &sshdr);
1636 
1637 		/* failed to execute TUR, assume media not present */
1638 		if (retval < 0 || host_byte(retval)) {
1639 			set_media_not_present(sdkp);
1640 			goto out;
1641 		}
1642 
1643 		if (media_not_present(sdkp, &sshdr))
1644 			goto out;
1645 	}
1646 
1647 	/*
1648 	 * For removable scsi disk we have to recognise the presence
1649 	 * of a disk in the drive.
1650 	 */
1651 	if (!sdkp->media_present)
1652 		sdp->changed = 1;
1653 	sdkp->media_present = 1;
1654 out:
1655 	/*
1656 	 * sdp->changed is set under the following conditions:
1657 	 *
1658 	 *	Medium present state has changed in either direction.
1659 	 *	Device has indicated UNIT_ATTENTION.
1660 	 */
1661 	disk_changed = sdp->changed;
1662 	sdp->changed = 0;
1663 	return disk_changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1664 }
1665 
1666 static int sd_sync_cache(struct scsi_disk *sdkp)
1667 {
1668 	int res;
1669 	struct scsi_device *sdp = sdkp->device;
1670 	const int timeout = sdp->request_queue->rq_timeout
1671 		* SD_FLUSH_TIMEOUT_MULTIPLIER;
1672 	/* Leave the rest of the command zero to indicate flush everything. */
1673 	const unsigned char cmd[16] = { sdp->use_16_for_sync ?
1674 				SYNCHRONIZE_CACHE_16 : SYNCHRONIZE_CACHE };
1675 	struct scsi_sense_hdr sshdr;
1676 	struct scsi_failure failure_defs[] = {
1677 		{
1678 			.allowed = 3,
1679 			.result = SCMD_FAILURE_RESULT_ANY,
1680 		},
1681 		{}
1682 	};
1683 	struct scsi_failures failures = {
1684 		.failure_definitions = failure_defs,
1685 	};
1686 	const struct scsi_exec_args exec_args = {
1687 		.req_flags = BLK_MQ_REQ_PM,
1688 		.sshdr = &sshdr,
1689 		.failures = &failures,
1690 	};
1691 
1692 	if (!scsi_device_online(sdp))
1693 		return -ENODEV;
1694 
1695 	res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, timeout,
1696 			       sdkp->max_retries, &exec_args);
1697 	if (res) {
1698 		sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1699 
1700 		if (res < 0)
1701 			return res;
1702 
1703 		if (scsi_status_is_check_condition(res) &&
1704 		    scsi_sense_valid(&sshdr)) {
1705 			sd_print_sense_hdr(sdkp, &sshdr);
1706 
1707 			/* we need to evaluate the error return  */
1708 			if (sshdr.asc == 0x3a ||	/* medium not present */
1709 			    sshdr.asc == 0x20 ||	/* invalid command */
1710 			    (sshdr.asc == 0x74 && sshdr.ascq == 0x71))	/* drive is password locked */
1711 				/* this is no error here */
1712 				return 0;
1713 			/*
1714 			 * This drive doesn't support sync and there's not much
1715 			 * we can do because this is called during shutdown
1716 			 * or suspend so just return success so those operations
1717 			 * can proceed.
1718 			 */
1719 			if (sshdr.sense_key == ILLEGAL_REQUEST)
1720 				return 0;
1721 		}
1722 
1723 		switch (host_byte(res)) {
1724 		/* ignore errors due to racing a disconnection */
1725 		case DID_BAD_TARGET:
1726 		case DID_NO_CONNECT:
1727 			return 0;
1728 		/* signal the upper layer it might try again */
1729 		case DID_BUS_BUSY:
1730 		case DID_IMM_RETRY:
1731 		case DID_REQUEUE:
1732 		case DID_SOFT_ERROR:
1733 			return -EBUSY;
1734 		default:
1735 			return -EIO;
1736 		}
1737 	}
1738 	return 0;
1739 }
1740 
1741 static void sd_rescan(struct device *dev)
1742 {
1743 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
1744 
1745 	sd_revalidate_disk(sdkp->disk);
1746 }
1747 
1748 static int sd_get_unique_id(struct gendisk *disk, u8 id[16],
1749 		enum blk_unique_id type)
1750 {
1751 	struct scsi_device *sdev = scsi_disk(disk)->device;
1752 	const struct scsi_vpd *vpd;
1753 	const unsigned char *d;
1754 	int ret = -ENXIO, len;
1755 
1756 	rcu_read_lock();
1757 	vpd = rcu_dereference(sdev->vpd_pg83);
1758 	if (!vpd)
1759 		goto out_unlock;
1760 
1761 	ret = -EINVAL;
1762 	for (d = vpd->data + 4; d < vpd->data + vpd->len; d += d[3] + 4) {
1763 		/* we only care about designators with LU association */
1764 		if (((d[1] >> 4) & 0x3) != 0x00)
1765 			continue;
1766 		if ((d[1] & 0xf) != type)
1767 			continue;
1768 
1769 		/*
1770 		 * Only exit early if a 16-byte descriptor was found.  Otherwise
1771 		 * keep looking as one with more entropy might still show up.
1772 		 */
1773 		len = d[3];
1774 		if (len != 8 && len != 12 && len != 16)
1775 			continue;
1776 		ret = len;
1777 		memcpy(id, d + 4, len);
1778 		if (len == 16)
1779 			break;
1780 	}
1781 out_unlock:
1782 	rcu_read_unlock();
1783 	return ret;
1784 }
1785 
1786 static int sd_scsi_to_pr_err(struct scsi_sense_hdr *sshdr, int result)
1787 {
1788 	switch (host_byte(result)) {
1789 	case DID_TRANSPORT_MARGINAL:
1790 	case DID_TRANSPORT_DISRUPTED:
1791 	case DID_BUS_BUSY:
1792 		return PR_STS_RETRY_PATH_FAILURE;
1793 	case DID_NO_CONNECT:
1794 		return PR_STS_PATH_FAILED;
1795 	case DID_TRANSPORT_FAILFAST:
1796 		return PR_STS_PATH_FAST_FAILED;
1797 	}
1798 
1799 	switch (status_byte(result)) {
1800 	case SAM_STAT_RESERVATION_CONFLICT:
1801 		return PR_STS_RESERVATION_CONFLICT;
1802 	case SAM_STAT_CHECK_CONDITION:
1803 		if (!scsi_sense_valid(sshdr))
1804 			return PR_STS_IOERR;
1805 
1806 		if (sshdr->sense_key == ILLEGAL_REQUEST &&
1807 		    (sshdr->asc == 0x26 || sshdr->asc == 0x24))
1808 			return -EINVAL;
1809 
1810 		fallthrough;
1811 	default:
1812 		return PR_STS_IOERR;
1813 	}
1814 }
1815 
1816 static int sd_pr_in_command(struct block_device *bdev, u8 sa,
1817 			    unsigned char *data, int data_len)
1818 {
1819 	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1820 	struct scsi_device *sdev = sdkp->device;
1821 	struct scsi_sense_hdr sshdr;
1822 	u8 cmd[10] = { PERSISTENT_RESERVE_IN, sa };
1823 	struct scsi_failure failure_defs[] = {
1824 		{
1825 			.sense = UNIT_ATTENTION,
1826 			.asc = SCMD_FAILURE_ASC_ANY,
1827 			.ascq = SCMD_FAILURE_ASCQ_ANY,
1828 			.allowed = 5,
1829 			.result = SAM_STAT_CHECK_CONDITION,
1830 		},
1831 		{}
1832 	};
1833 	struct scsi_failures failures = {
1834 		.failure_definitions = failure_defs,
1835 	};
1836 	const struct scsi_exec_args exec_args = {
1837 		.sshdr = &sshdr,
1838 		.failures = &failures,
1839 	};
1840 	int result;
1841 
1842 	put_unaligned_be16(data_len, &cmd[7]);
1843 
1844 	result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, data, data_len,
1845 				  SD_TIMEOUT, sdkp->max_retries, &exec_args);
1846 	if (scsi_status_is_check_condition(result) &&
1847 	    scsi_sense_valid(&sshdr)) {
1848 		sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1849 		scsi_print_sense_hdr(sdev, NULL, &sshdr);
1850 	}
1851 
1852 	if (result <= 0)
1853 		return result;
1854 
1855 	return sd_scsi_to_pr_err(&sshdr, result);
1856 }
1857 
1858 static int sd_pr_read_keys(struct block_device *bdev, struct pr_keys *keys_info)
1859 {
1860 	int result, i, data_offset, num_copy_keys;
1861 	u32 num_keys = keys_info->num_keys;
1862 	int data_len = num_keys * 8 + 8;
1863 	u8 *data;
1864 
1865 	data = kzalloc(data_len, GFP_KERNEL);
1866 	if (!data)
1867 		return -ENOMEM;
1868 
1869 	result = sd_pr_in_command(bdev, READ_KEYS, data, data_len);
1870 	if (result)
1871 		goto free_data;
1872 
1873 	keys_info->generation = get_unaligned_be32(&data[0]);
1874 	keys_info->num_keys = get_unaligned_be32(&data[4]) / 8;
1875 
1876 	data_offset = 8;
1877 	num_copy_keys = min(num_keys, keys_info->num_keys);
1878 
1879 	for (i = 0; i < num_copy_keys; i++) {
1880 		keys_info->keys[i] = get_unaligned_be64(&data[data_offset]);
1881 		data_offset += 8;
1882 	}
1883 
1884 free_data:
1885 	kfree(data);
1886 	return result;
1887 }
1888 
1889 static int sd_pr_read_reservation(struct block_device *bdev,
1890 				  struct pr_held_reservation *rsv)
1891 {
1892 	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1893 	struct scsi_device *sdev = sdkp->device;
1894 	u8 data[24] = { };
1895 	int result, len;
1896 
1897 	result = sd_pr_in_command(bdev, READ_RESERVATION, data, sizeof(data));
1898 	if (result)
1899 		return result;
1900 
1901 	len = get_unaligned_be32(&data[4]);
1902 	if (!len)
1903 		return 0;
1904 
1905 	/* Make sure we have at least the key and type */
1906 	if (len < 14) {
1907 		sdev_printk(KERN_INFO, sdev,
1908 			    "READ RESERVATION failed due to short return buffer of %d bytes\n",
1909 			    len);
1910 		return -EINVAL;
1911 	}
1912 
1913 	rsv->generation = get_unaligned_be32(&data[0]);
1914 	rsv->key = get_unaligned_be64(&data[8]);
1915 	rsv->type = scsi_pr_type_to_block(data[21] & 0x0f);
1916 	return 0;
1917 }
1918 
1919 static int sd_pr_out_command(struct block_device *bdev, u8 sa, u64 key,
1920 			     u64 sa_key, enum scsi_pr_type type, u8 flags)
1921 {
1922 	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1923 	struct scsi_device *sdev = sdkp->device;
1924 	struct scsi_sense_hdr sshdr;
1925 	struct scsi_failure failure_defs[] = {
1926 		{
1927 			.sense = UNIT_ATTENTION,
1928 			.asc = SCMD_FAILURE_ASC_ANY,
1929 			.ascq = SCMD_FAILURE_ASCQ_ANY,
1930 			.allowed = 5,
1931 			.result = SAM_STAT_CHECK_CONDITION,
1932 		},
1933 		{}
1934 	};
1935 	struct scsi_failures failures = {
1936 		.failure_definitions = failure_defs,
1937 	};
1938 	const struct scsi_exec_args exec_args = {
1939 		.sshdr = &sshdr,
1940 		.failures = &failures,
1941 	};
1942 	int result;
1943 	u8 cmd[16] = { 0, };
1944 	u8 data[24] = { 0, };
1945 
1946 	cmd[0] = PERSISTENT_RESERVE_OUT;
1947 	cmd[1] = sa;
1948 	cmd[2] = type;
1949 	put_unaligned_be32(sizeof(data), &cmd[5]);
1950 
1951 	put_unaligned_be64(key, &data[0]);
1952 	put_unaligned_be64(sa_key, &data[8]);
1953 	data[20] = flags;
1954 
1955 	result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, &data,
1956 				  sizeof(data), SD_TIMEOUT, sdkp->max_retries,
1957 				  &exec_args);
1958 
1959 	if (scsi_status_is_check_condition(result) &&
1960 	    scsi_sense_valid(&sshdr)) {
1961 		sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1962 		scsi_print_sense_hdr(sdev, NULL, &sshdr);
1963 	}
1964 
1965 	if (result <= 0)
1966 		return result;
1967 
1968 	return sd_scsi_to_pr_err(&sshdr, result);
1969 }
1970 
1971 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1972 		u32 flags)
1973 {
1974 	if (flags & ~PR_FL_IGNORE_KEY)
1975 		return -EOPNOTSUPP;
1976 	return sd_pr_out_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1977 			old_key, new_key, 0,
1978 			(1 << 0) /* APTPL */);
1979 }
1980 
1981 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1982 		u32 flags)
1983 {
1984 	if (flags)
1985 		return -EOPNOTSUPP;
1986 	return sd_pr_out_command(bdev, 0x01, key, 0,
1987 				 block_pr_type_to_scsi(type), 0);
1988 }
1989 
1990 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1991 {
1992 	return sd_pr_out_command(bdev, 0x02, key, 0,
1993 				 block_pr_type_to_scsi(type), 0);
1994 }
1995 
1996 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1997 		enum pr_type type, bool abort)
1998 {
1999 	return sd_pr_out_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
2000 				 block_pr_type_to_scsi(type), 0);
2001 }
2002 
2003 static int sd_pr_clear(struct block_device *bdev, u64 key)
2004 {
2005 	return sd_pr_out_command(bdev, 0x03, key, 0, 0, 0);
2006 }
2007 
2008 static const struct pr_ops sd_pr_ops = {
2009 	.pr_register	= sd_pr_register,
2010 	.pr_reserve	= sd_pr_reserve,
2011 	.pr_release	= sd_pr_release,
2012 	.pr_preempt	= sd_pr_preempt,
2013 	.pr_clear	= sd_pr_clear,
2014 	.pr_read_keys	= sd_pr_read_keys,
2015 	.pr_read_reservation = sd_pr_read_reservation,
2016 };
2017 
2018 static void scsi_disk_free_disk(struct gendisk *disk)
2019 {
2020 	struct scsi_disk *sdkp = scsi_disk(disk);
2021 
2022 	put_device(&sdkp->disk_dev);
2023 }
2024 
2025 static const struct block_device_operations sd_fops = {
2026 	.owner			= THIS_MODULE,
2027 	.open			= sd_open,
2028 	.release		= sd_release,
2029 	.ioctl			= sd_ioctl,
2030 	.getgeo			= sd_getgeo,
2031 	.compat_ioctl		= blkdev_compat_ptr_ioctl,
2032 	.check_events		= sd_check_events,
2033 	.unlock_native_capacity	= sd_unlock_native_capacity,
2034 	.report_zones		= sd_zbc_report_zones,
2035 	.get_unique_id		= sd_get_unique_id,
2036 	.free_disk		= scsi_disk_free_disk,
2037 	.pr_ops			= &sd_pr_ops,
2038 };
2039 
2040 /**
2041  *	sd_eh_reset - reset error handling callback
2042  *	@scmd:		sd-issued command that has failed
2043  *
2044  *	This function is called by the SCSI midlayer before starting
2045  *	SCSI EH. When counting medium access failures we have to be
2046  *	careful to register it only only once per device and SCSI EH run;
2047  *	there might be several timed out commands which will cause the
2048  *	'max_medium_access_timeouts' counter to trigger after the first
2049  *	SCSI EH run already and set the device to offline.
2050  *	So this function resets the internal counter before starting SCSI EH.
2051  **/
2052 static void sd_eh_reset(struct scsi_cmnd *scmd)
2053 {
2054 	struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk);
2055 
2056 	/* New SCSI EH run, reset gate variable */
2057 	sdkp->ignore_medium_access_errors = false;
2058 }
2059 
2060 /**
2061  *	sd_eh_action - error handling callback
2062  *	@scmd:		sd-issued command that has failed
2063  *	@eh_disp:	The recovery disposition suggested by the midlayer
2064  *
2065  *	This function is called by the SCSI midlayer upon completion of an
2066  *	error test command (currently TEST UNIT READY). The result of sending
2067  *	the eh command is passed in eh_disp.  We're looking for devices that
2068  *	fail medium access commands but are OK with non access commands like
2069  *	test unit ready (so wrongly see the device as having a successful
2070  *	recovery)
2071  **/
2072 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
2073 {
2074 	struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk);
2075 	struct scsi_device *sdev = scmd->device;
2076 
2077 	if (!scsi_device_online(sdev) ||
2078 	    !scsi_medium_access_command(scmd) ||
2079 	    host_byte(scmd->result) != DID_TIME_OUT ||
2080 	    eh_disp != SUCCESS)
2081 		return eh_disp;
2082 
2083 	/*
2084 	 * The device has timed out executing a medium access command.
2085 	 * However, the TEST UNIT READY command sent during error
2086 	 * handling completed successfully. Either the device is in the
2087 	 * process of recovering or has it suffered an internal failure
2088 	 * that prevents access to the storage medium.
2089 	 */
2090 	if (!sdkp->ignore_medium_access_errors) {
2091 		sdkp->medium_access_timed_out++;
2092 		sdkp->ignore_medium_access_errors = true;
2093 	}
2094 
2095 	/*
2096 	 * If the device keeps failing read/write commands but TEST UNIT
2097 	 * READY always completes successfully we assume that medium
2098 	 * access is no longer possible and take the device offline.
2099 	 */
2100 	if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
2101 		scmd_printk(KERN_ERR, scmd,
2102 			    "Medium access timeout failure. Offlining disk!\n");
2103 		mutex_lock(&sdev->state_mutex);
2104 		scsi_device_set_state(sdev, SDEV_OFFLINE);
2105 		mutex_unlock(&sdev->state_mutex);
2106 
2107 		return SUCCESS;
2108 	}
2109 
2110 	return eh_disp;
2111 }
2112 
2113 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
2114 {
2115 	struct request *req = scsi_cmd_to_rq(scmd);
2116 	struct scsi_device *sdev = scmd->device;
2117 	unsigned int transferred, good_bytes;
2118 	u64 start_lba, end_lba, bad_lba;
2119 
2120 	/*
2121 	 * Some commands have a payload smaller than the device logical
2122 	 * block size (e.g. INQUIRY on a 4K disk).
2123 	 */
2124 	if (scsi_bufflen(scmd) <= sdev->sector_size)
2125 		return 0;
2126 
2127 	/* Check if we have a 'bad_lba' information */
2128 	if (!scsi_get_sense_info_fld(scmd->sense_buffer,
2129 				     SCSI_SENSE_BUFFERSIZE,
2130 				     &bad_lba))
2131 		return 0;
2132 
2133 	/*
2134 	 * If the bad lba was reported incorrectly, we have no idea where
2135 	 * the error is.
2136 	 */
2137 	start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
2138 	end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
2139 	if (bad_lba < start_lba || bad_lba >= end_lba)
2140 		return 0;
2141 
2142 	/*
2143 	 * resid is optional but mostly filled in.  When it's unused,
2144 	 * its value is zero, so we assume the whole buffer transferred
2145 	 */
2146 	transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
2147 
2148 	/* This computation should always be done in terms of the
2149 	 * resolution of the device's medium.
2150 	 */
2151 	good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
2152 
2153 	return min(good_bytes, transferred);
2154 }
2155 
2156 /**
2157  *	sd_done - bottom half handler: called when the lower level
2158  *	driver has completed (successfully or otherwise) a scsi command.
2159  *	@SCpnt: mid-level's per command structure.
2160  *
2161  *	Note: potentially run from within an ISR. Must not block.
2162  **/
2163 static int sd_done(struct scsi_cmnd *SCpnt)
2164 {
2165 	int result = SCpnt->result;
2166 	unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
2167 	unsigned int sector_size = SCpnt->device->sector_size;
2168 	unsigned int resid;
2169 	struct scsi_sense_hdr sshdr;
2170 	struct request *req = scsi_cmd_to_rq(SCpnt);
2171 	struct scsi_disk *sdkp = scsi_disk(req->q->disk);
2172 	int sense_valid = 0;
2173 	int sense_deferred = 0;
2174 
2175 	switch (req_op(req)) {
2176 	case REQ_OP_DISCARD:
2177 	case REQ_OP_WRITE_ZEROES:
2178 	case REQ_OP_ZONE_RESET:
2179 	case REQ_OP_ZONE_RESET_ALL:
2180 	case REQ_OP_ZONE_OPEN:
2181 	case REQ_OP_ZONE_CLOSE:
2182 	case REQ_OP_ZONE_FINISH:
2183 		if (!result) {
2184 			good_bytes = blk_rq_bytes(req);
2185 			scsi_set_resid(SCpnt, 0);
2186 		} else {
2187 			good_bytes = 0;
2188 			scsi_set_resid(SCpnt, blk_rq_bytes(req));
2189 		}
2190 		break;
2191 	default:
2192 		/*
2193 		 * In case of bogus fw or device, we could end up having
2194 		 * an unaligned partial completion. Check this here and force
2195 		 * alignment.
2196 		 */
2197 		resid = scsi_get_resid(SCpnt);
2198 		if (resid & (sector_size - 1)) {
2199 			sd_printk(KERN_INFO, sdkp,
2200 				"Unaligned partial completion (resid=%u, sector_sz=%u)\n",
2201 				resid, sector_size);
2202 			scsi_print_command(SCpnt);
2203 			resid = min(scsi_bufflen(SCpnt),
2204 				    round_up(resid, sector_size));
2205 			scsi_set_resid(SCpnt, resid);
2206 		}
2207 	}
2208 
2209 	if (result) {
2210 		sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
2211 		if (sense_valid)
2212 			sense_deferred = scsi_sense_is_deferred(&sshdr);
2213 	}
2214 	sdkp->medium_access_timed_out = 0;
2215 
2216 	if (!scsi_status_is_check_condition(result) &&
2217 	    (!sense_valid || sense_deferred))
2218 		goto out;
2219 
2220 	switch (sshdr.sense_key) {
2221 	case HARDWARE_ERROR:
2222 	case MEDIUM_ERROR:
2223 		good_bytes = sd_completed_bytes(SCpnt);
2224 		break;
2225 	case RECOVERED_ERROR:
2226 		good_bytes = scsi_bufflen(SCpnt);
2227 		break;
2228 	case NO_SENSE:
2229 		/* This indicates a false check condition, so ignore it.  An
2230 		 * unknown amount of data was transferred so treat it as an
2231 		 * error.
2232 		 */
2233 		SCpnt->result = 0;
2234 		memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
2235 		break;
2236 	case ABORTED_COMMAND:
2237 		if (sshdr.asc == 0x10)  /* DIF: Target detected corruption */
2238 			good_bytes = sd_completed_bytes(SCpnt);
2239 		break;
2240 	case ILLEGAL_REQUEST:
2241 		switch (sshdr.asc) {
2242 		case 0x10:	/* DIX: Host detected corruption */
2243 			good_bytes = sd_completed_bytes(SCpnt);
2244 			break;
2245 		case 0x20:	/* INVALID COMMAND OPCODE */
2246 		case 0x24:	/* INVALID FIELD IN CDB */
2247 			switch (SCpnt->cmnd[0]) {
2248 			case UNMAP:
2249 				sd_config_discard(sdkp, SD_LBP_DISABLE);
2250 				break;
2251 			case WRITE_SAME_16:
2252 			case WRITE_SAME:
2253 				if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2254 					sd_config_discard(sdkp, SD_LBP_DISABLE);
2255 				} else {
2256 					sdkp->device->no_write_same = 1;
2257 					sd_config_write_same(sdkp);
2258 					req->rq_flags |= RQF_QUIET;
2259 				}
2260 				break;
2261 			}
2262 		}
2263 		break;
2264 	default:
2265 		break;
2266 	}
2267 
2268  out:
2269 	if (sd_is_zoned(sdkp))
2270 		good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2271 
2272 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2273 					   "sd_done: completed %d of %d bytes\n",
2274 					   good_bytes, scsi_bufflen(SCpnt)));
2275 
2276 	return good_bytes;
2277 }
2278 
2279 /*
2280  * spinup disk - called only in sd_revalidate_disk()
2281  */
2282 static void
2283 sd_spinup_disk(struct scsi_disk *sdkp)
2284 {
2285 	static const u8 cmd[10] = { TEST_UNIT_READY };
2286 	unsigned long spintime_expire = 0;
2287 	int spintime, sense_valid = 0;
2288 	unsigned int the_result;
2289 	struct scsi_sense_hdr sshdr;
2290 	struct scsi_failure failure_defs[] = {
2291 		/* Do not retry Medium Not Present */
2292 		{
2293 			.sense = UNIT_ATTENTION,
2294 			.asc = 0x3A,
2295 			.ascq = SCMD_FAILURE_ASCQ_ANY,
2296 			.result = SAM_STAT_CHECK_CONDITION,
2297 		},
2298 		{
2299 			.sense = NOT_READY,
2300 			.asc = 0x3A,
2301 			.ascq = SCMD_FAILURE_ASCQ_ANY,
2302 			.result = SAM_STAT_CHECK_CONDITION,
2303 		},
2304 		/* Retry when scsi_status_is_good would return false 3 times */
2305 		{
2306 			.result = SCMD_FAILURE_STAT_ANY,
2307 			.allowed = 3,
2308 		},
2309 		{}
2310 	};
2311 	struct scsi_failures failures = {
2312 		.failure_definitions = failure_defs,
2313 	};
2314 	const struct scsi_exec_args exec_args = {
2315 		.sshdr = &sshdr,
2316 		.failures = &failures,
2317 	};
2318 
2319 	spintime = 0;
2320 
2321 	/* Spin up drives, as required.  Only do this at boot time */
2322 	/* Spinup needs to be done for module loads too. */
2323 	do {
2324 		bool media_was_present = sdkp->media_present;
2325 
2326 		scsi_failures_reset_retries(&failures);
2327 
2328 		the_result = scsi_execute_cmd(sdkp->device, cmd, REQ_OP_DRV_IN,
2329 					      NULL, 0, SD_TIMEOUT,
2330 					      sdkp->max_retries, &exec_args);
2331 
2332 
2333 		if (the_result > 0) {
2334 			/*
2335 			 * If the drive has indicated to us that it doesn't
2336 			 * have any media in it, don't bother with any more
2337 			 * polling.
2338 			 */
2339 			if (media_not_present(sdkp, &sshdr)) {
2340 				if (media_was_present)
2341 					sd_printk(KERN_NOTICE, sdkp,
2342 						  "Media removed, stopped polling\n");
2343 				return;
2344 			}
2345 			sense_valid = scsi_sense_valid(&sshdr);
2346 		}
2347 
2348 		if (!scsi_status_is_check_condition(the_result)) {
2349 			/* no sense, TUR either succeeded or failed
2350 			 * with a status error */
2351 			if(!spintime && !scsi_status_is_good(the_result)) {
2352 				sd_print_result(sdkp, "Test Unit Ready failed",
2353 						the_result);
2354 			}
2355 			break;
2356 		}
2357 
2358 		/*
2359 		 * The device does not want the automatic start to be issued.
2360 		 */
2361 		if (sdkp->device->no_start_on_add)
2362 			break;
2363 
2364 		if (sense_valid && sshdr.sense_key == NOT_READY) {
2365 			if (sshdr.asc == 4 && sshdr.ascq == 3)
2366 				break;	/* manual intervention required */
2367 			if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2368 				break;	/* standby */
2369 			if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2370 				break;	/* unavailable */
2371 			if (sshdr.asc == 4 && sshdr.ascq == 0x1b)
2372 				break;	/* sanitize in progress */
2373 			if (sshdr.asc == 4 && sshdr.ascq == 0x24)
2374 				break;	/* depopulation in progress */
2375 			if (sshdr.asc == 4 && sshdr.ascq == 0x25)
2376 				break;	/* depopulation restoration in progress */
2377 			/*
2378 			 * Issue command to spin up drive when not ready
2379 			 */
2380 			if (!spintime) {
2381 				/* Return immediately and start spin cycle */
2382 				const u8 start_cmd[10] = {
2383 					[0] = START_STOP,
2384 					[1] = 1,
2385 					[4] = sdkp->device->start_stop_pwr_cond ?
2386 						0x11 : 1,
2387 				};
2388 
2389 				sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2390 				scsi_execute_cmd(sdkp->device, start_cmd,
2391 						 REQ_OP_DRV_IN, NULL, 0,
2392 						 SD_TIMEOUT, sdkp->max_retries,
2393 						 &exec_args);
2394 				spintime_expire = jiffies + 100 * HZ;
2395 				spintime = 1;
2396 			}
2397 			/* Wait 1 second for next try */
2398 			msleep(1000);
2399 			printk(KERN_CONT ".");
2400 
2401 		/*
2402 		 * Wait for USB flash devices with slow firmware.
2403 		 * Yes, this sense key/ASC combination shouldn't
2404 		 * occur here.  It's characteristic of these devices.
2405 		 */
2406 		} else if (sense_valid &&
2407 				sshdr.sense_key == UNIT_ATTENTION &&
2408 				sshdr.asc == 0x28) {
2409 			if (!spintime) {
2410 				spintime_expire = jiffies + 5 * HZ;
2411 				spintime = 1;
2412 			}
2413 			/* Wait 1 second for next try */
2414 			msleep(1000);
2415 		} else {
2416 			/* we don't understand the sense code, so it's
2417 			 * probably pointless to loop */
2418 			if(!spintime) {
2419 				sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2420 				sd_print_sense_hdr(sdkp, &sshdr);
2421 			}
2422 			break;
2423 		}
2424 
2425 	} while (spintime && time_before_eq(jiffies, spintime_expire));
2426 
2427 	if (spintime) {
2428 		if (scsi_status_is_good(the_result))
2429 			printk(KERN_CONT "ready\n");
2430 		else
2431 			printk(KERN_CONT "not responding...\n");
2432 	}
2433 }
2434 
2435 /*
2436  * Determine whether disk supports Data Integrity Field.
2437  */
2438 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2439 {
2440 	struct scsi_device *sdp = sdkp->device;
2441 	u8 type;
2442 
2443 	if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) {
2444 		sdkp->protection_type = 0;
2445 		return 0;
2446 	}
2447 
2448 	type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2449 
2450 	if (type > T10_PI_TYPE3_PROTECTION) {
2451 		sd_printk(KERN_ERR, sdkp, "formatted with unsupported"	\
2452 			  " protection type %u. Disabling disk!\n",
2453 			  type);
2454 		sdkp->protection_type = 0;
2455 		return -ENODEV;
2456 	}
2457 
2458 	sdkp->protection_type = type;
2459 
2460 	return 0;
2461 }
2462 
2463 static void sd_config_protection(struct scsi_disk *sdkp)
2464 {
2465 	struct scsi_device *sdp = sdkp->device;
2466 
2467 	sd_dif_config_host(sdkp);
2468 
2469 	if (!sdkp->protection_type)
2470 		return;
2471 
2472 	if (!scsi_host_dif_capable(sdp->host, sdkp->protection_type)) {
2473 		sd_first_printk(KERN_NOTICE, sdkp,
2474 				"Disabling DIF Type %u protection\n",
2475 				sdkp->protection_type);
2476 		sdkp->protection_type = 0;
2477 	}
2478 
2479 	sd_first_printk(KERN_NOTICE, sdkp, "Enabling DIF Type %u protection\n",
2480 			sdkp->protection_type);
2481 }
2482 
2483 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2484 			struct scsi_sense_hdr *sshdr, int sense_valid,
2485 			int the_result)
2486 {
2487 	if (sense_valid)
2488 		sd_print_sense_hdr(sdkp, sshdr);
2489 	else
2490 		sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2491 
2492 	/*
2493 	 * Set dirty bit for removable devices if not ready -
2494 	 * sometimes drives will not report this properly.
2495 	 */
2496 	if (sdp->removable &&
2497 	    sense_valid && sshdr->sense_key == NOT_READY)
2498 		set_media_not_present(sdkp);
2499 
2500 	/*
2501 	 * We used to set media_present to 0 here to indicate no media
2502 	 * in the drive, but some drives fail read capacity even with
2503 	 * media present, so we can't do that.
2504 	 */
2505 	sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2506 }
2507 
2508 #define RC16_LEN 32
2509 #if RC16_LEN > SD_BUF_SIZE
2510 #error RC16_LEN must not be more than SD_BUF_SIZE
2511 #endif
2512 
2513 #define READ_CAPACITY_RETRIES_ON_RESET	10
2514 
2515 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2516 						unsigned char *buffer)
2517 {
2518 	unsigned char cmd[16];
2519 	struct scsi_sense_hdr sshdr;
2520 	const struct scsi_exec_args exec_args = {
2521 		.sshdr = &sshdr,
2522 	};
2523 	int sense_valid = 0;
2524 	int the_result;
2525 	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2526 	unsigned int alignment;
2527 	unsigned long long lba;
2528 	unsigned sector_size;
2529 
2530 	if (sdp->no_read_capacity_16)
2531 		return -EINVAL;
2532 
2533 	do {
2534 		memset(cmd, 0, 16);
2535 		cmd[0] = SERVICE_ACTION_IN_16;
2536 		cmd[1] = SAI_READ_CAPACITY_16;
2537 		cmd[13] = RC16_LEN;
2538 		memset(buffer, 0, RC16_LEN);
2539 
2540 		the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN,
2541 					      buffer, RC16_LEN, SD_TIMEOUT,
2542 					      sdkp->max_retries, &exec_args);
2543 		if (the_result > 0) {
2544 			if (media_not_present(sdkp, &sshdr))
2545 				return -ENODEV;
2546 
2547 			sense_valid = scsi_sense_valid(&sshdr);
2548 			if (sense_valid &&
2549 			    sshdr.sense_key == ILLEGAL_REQUEST &&
2550 			    (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2551 			    sshdr.ascq == 0x00)
2552 				/* Invalid Command Operation Code or
2553 				 * Invalid Field in CDB, just retry
2554 				 * silently with RC10 */
2555 				return -EINVAL;
2556 			if (sense_valid &&
2557 			    sshdr.sense_key == UNIT_ATTENTION &&
2558 			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2559 				/* Device reset might occur several times,
2560 				 * give it one more chance */
2561 				if (--reset_retries > 0)
2562 					continue;
2563 		}
2564 		retries--;
2565 
2566 	} while (the_result && retries);
2567 
2568 	if (the_result) {
2569 		sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2570 		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2571 		return -EINVAL;
2572 	}
2573 
2574 	sector_size = get_unaligned_be32(&buffer[8]);
2575 	lba = get_unaligned_be64(&buffer[0]);
2576 
2577 	if (sd_read_protection_type(sdkp, buffer) < 0) {
2578 		sdkp->capacity = 0;
2579 		return -ENODEV;
2580 	}
2581 
2582 	/* Logical blocks per physical block exponent */
2583 	sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2584 
2585 	/* RC basis */
2586 	sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2587 
2588 	/* Lowest aligned logical block */
2589 	alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2590 	blk_queue_alignment_offset(sdp->request_queue, alignment);
2591 	if (alignment && sdkp->first_scan)
2592 		sd_printk(KERN_NOTICE, sdkp,
2593 			  "physical block alignment offset: %u\n", alignment);
2594 
2595 	if (buffer[14] & 0x80) { /* LBPME */
2596 		sdkp->lbpme = 1;
2597 
2598 		if (buffer[14] & 0x40) /* LBPRZ */
2599 			sdkp->lbprz = 1;
2600 
2601 		sd_config_discard(sdkp, SD_LBP_WS16);
2602 	}
2603 
2604 	sdkp->capacity = lba + 1;
2605 	return sector_size;
2606 }
2607 
2608 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2609 						unsigned char *buffer)
2610 {
2611 	static const u8 cmd[10] = { READ_CAPACITY };
2612 	struct scsi_sense_hdr sshdr;
2613 	struct scsi_failure failure_defs[] = {
2614 		/* Do not retry Medium Not Present */
2615 		{
2616 			.sense = UNIT_ATTENTION,
2617 			.asc = 0x3A,
2618 			.result = SAM_STAT_CHECK_CONDITION,
2619 		},
2620 		{
2621 			.sense = NOT_READY,
2622 			.asc = 0x3A,
2623 			.result = SAM_STAT_CHECK_CONDITION,
2624 		},
2625 		 /* Device reset might occur several times so retry a lot */
2626 		{
2627 			.sense = UNIT_ATTENTION,
2628 			.asc = 0x29,
2629 			.allowed = READ_CAPACITY_RETRIES_ON_RESET,
2630 			.result = SAM_STAT_CHECK_CONDITION,
2631 		},
2632 		/* Any other error not listed above retry 3 times */
2633 		{
2634 			.result = SCMD_FAILURE_RESULT_ANY,
2635 			.allowed = 3,
2636 		},
2637 		{}
2638 	};
2639 	struct scsi_failures failures = {
2640 		.failure_definitions = failure_defs,
2641 	};
2642 	const struct scsi_exec_args exec_args = {
2643 		.sshdr = &sshdr,
2644 		.failures = &failures,
2645 	};
2646 	int sense_valid = 0;
2647 	int the_result;
2648 	sector_t lba;
2649 	unsigned sector_size;
2650 
2651 	memset(buffer, 0, 8);
2652 
2653 	the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, buffer,
2654 				      8, SD_TIMEOUT, sdkp->max_retries,
2655 				      &exec_args);
2656 
2657 	if (the_result > 0) {
2658 		sense_valid = scsi_sense_valid(&sshdr);
2659 
2660 		if (media_not_present(sdkp, &sshdr))
2661 			return -ENODEV;
2662 	}
2663 
2664 	if (the_result) {
2665 		sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2666 		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2667 		return -EINVAL;
2668 	}
2669 
2670 	sector_size = get_unaligned_be32(&buffer[4]);
2671 	lba = get_unaligned_be32(&buffer[0]);
2672 
2673 	if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2674 		/* Some buggy (usb cardreader) devices return an lba of
2675 		   0xffffffff when the want to report a size of 0 (with
2676 		   which they really mean no media is present) */
2677 		sdkp->capacity = 0;
2678 		sdkp->physical_block_size = sector_size;
2679 		return sector_size;
2680 	}
2681 
2682 	sdkp->capacity = lba + 1;
2683 	sdkp->physical_block_size = sector_size;
2684 	return sector_size;
2685 }
2686 
2687 static int sd_try_rc16_first(struct scsi_device *sdp)
2688 {
2689 	if (sdp->host->max_cmd_len < 16)
2690 		return 0;
2691 	if (sdp->try_rc_10_first)
2692 		return 0;
2693 	if (sdp->scsi_level > SCSI_SPC_2)
2694 		return 1;
2695 	if (scsi_device_protection(sdp))
2696 		return 1;
2697 	return 0;
2698 }
2699 
2700 /*
2701  * read disk capacity
2702  */
2703 static void
2704 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2705 {
2706 	int sector_size;
2707 	struct scsi_device *sdp = sdkp->device;
2708 
2709 	if (sd_try_rc16_first(sdp)) {
2710 		sector_size = read_capacity_16(sdkp, sdp, buffer);
2711 		if (sector_size == -EOVERFLOW)
2712 			goto got_data;
2713 		if (sector_size == -ENODEV)
2714 			return;
2715 		if (sector_size < 0)
2716 			sector_size = read_capacity_10(sdkp, sdp, buffer);
2717 		if (sector_size < 0)
2718 			return;
2719 	} else {
2720 		sector_size = read_capacity_10(sdkp, sdp, buffer);
2721 		if (sector_size == -EOVERFLOW)
2722 			goto got_data;
2723 		if (sector_size < 0)
2724 			return;
2725 		if ((sizeof(sdkp->capacity) > 4) &&
2726 		    (sdkp->capacity > 0xffffffffULL)) {
2727 			int old_sector_size = sector_size;
2728 			sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2729 					"Trying to use READ CAPACITY(16).\n");
2730 			sector_size = read_capacity_16(sdkp, sdp, buffer);
2731 			if (sector_size < 0) {
2732 				sd_printk(KERN_NOTICE, sdkp,
2733 					"Using 0xffffffff as device size\n");
2734 				sdkp->capacity = 1 + (sector_t) 0xffffffff;
2735 				sector_size = old_sector_size;
2736 				goto got_data;
2737 			}
2738 			/* Remember that READ CAPACITY(16) succeeded */
2739 			sdp->try_rc_10_first = 0;
2740 		}
2741 	}
2742 
2743 	/* Some devices are known to return the total number of blocks,
2744 	 * not the highest block number.  Some devices have versions
2745 	 * which do this and others which do not.  Some devices we might
2746 	 * suspect of doing this but we don't know for certain.
2747 	 *
2748 	 * If we know the reported capacity is wrong, decrement it.  If
2749 	 * we can only guess, then assume the number of blocks is even
2750 	 * (usually true but not always) and err on the side of lowering
2751 	 * the capacity.
2752 	 */
2753 	if (sdp->fix_capacity ||
2754 	    (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2755 		sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2756 				"from its reported value: %llu\n",
2757 				(unsigned long long) sdkp->capacity);
2758 		--sdkp->capacity;
2759 	}
2760 
2761 got_data:
2762 	if (sector_size == 0) {
2763 		sector_size = 512;
2764 		sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2765 			  "assuming 512.\n");
2766 	}
2767 
2768 	if (sector_size != 512 &&
2769 	    sector_size != 1024 &&
2770 	    sector_size != 2048 &&
2771 	    sector_size != 4096) {
2772 		sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2773 			  sector_size);
2774 		/*
2775 		 * The user might want to re-format the drive with
2776 		 * a supported sectorsize.  Once this happens, it
2777 		 * would be relatively trivial to set the thing up.
2778 		 * For this reason, we leave the thing in the table.
2779 		 */
2780 		sdkp->capacity = 0;
2781 		/*
2782 		 * set a bogus sector size so the normal read/write
2783 		 * logic in the block layer will eventually refuse any
2784 		 * request on this device without tripping over power
2785 		 * of two sector size assumptions
2786 		 */
2787 		sector_size = 512;
2788 	}
2789 	blk_queue_logical_block_size(sdp->request_queue, sector_size);
2790 	blk_queue_physical_block_size(sdp->request_queue,
2791 				      sdkp->physical_block_size);
2792 	sdkp->device->sector_size = sector_size;
2793 
2794 	if (sdkp->capacity > 0xffffffff)
2795 		sdp->use_16_for_rw = 1;
2796 
2797 }
2798 
2799 /*
2800  * Print disk capacity
2801  */
2802 static void
2803 sd_print_capacity(struct scsi_disk *sdkp,
2804 		  sector_t old_capacity)
2805 {
2806 	int sector_size = sdkp->device->sector_size;
2807 	char cap_str_2[10], cap_str_10[10];
2808 
2809 	if (!sdkp->first_scan && old_capacity == sdkp->capacity)
2810 		return;
2811 
2812 	string_get_size(sdkp->capacity, sector_size,
2813 			STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2814 	string_get_size(sdkp->capacity, sector_size,
2815 			STRING_UNITS_10, cap_str_10, sizeof(cap_str_10));
2816 
2817 	sd_printk(KERN_NOTICE, sdkp,
2818 		  "%llu %d-byte logical blocks: (%s/%s)\n",
2819 		  (unsigned long long)sdkp->capacity,
2820 		  sector_size, cap_str_10, cap_str_2);
2821 
2822 	if (sdkp->physical_block_size != sector_size)
2823 		sd_printk(KERN_NOTICE, sdkp,
2824 			  "%u-byte physical blocks\n",
2825 			  sdkp->physical_block_size);
2826 }
2827 
2828 /* called with buffer of length 512 */
2829 static inline int
2830 sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage,
2831 		 unsigned char *buffer, int len, struct scsi_mode_data *data,
2832 		 struct scsi_sense_hdr *sshdr)
2833 {
2834 	/*
2835 	 * If we must use MODE SENSE(10), make sure that the buffer length
2836 	 * is at least 8 bytes so that the mode sense header fits.
2837 	 */
2838 	if (sdkp->device->use_10_for_ms && len < 8)
2839 		len = 8;
2840 
2841 	return scsi_mode_sense(sdkp->device, dbd, modepage, 0, buffer, len,
2842 			       SD_TIMEOUT, sdkp->max_retries, data, sshdr);
2843 }
2844 
2845 /*
2846  * read write protect setting, if possible - called only in sd_revalidate_disk()
2847  * called with buffer of length SD_BUF_SIZE
2848  */
2849 static void
2850 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2851 {
2852 	int res;
2853 	struct scsi_device *sdp = sdkp->device;
2854 	struct scsi_mode_data data;
2855 	int old_wp = sdkp->write_prot;
2856 
2857 	set_disk_ro(sdkp->disk, 0);
2858 	if (sdp->skip_ms_page_3f) {
2859 		sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2860 		return;
2861 	}
2862 
2863 	if (sdp->use_192_bytes_for_3f) {
2864 		res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL);
2865 	} else {
2866 		/*
2867 		 * First attempt: ask for all pages (0x3F), but only 4 bytes.
2868 		 * We have to start carefully: some devices hang if we ask
2869 		 * for more than is available.
2870 		 */
2871 		res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL);
2872 
2873 		/*
2874 		 * Second attempt: ask for page 0 When only page 0 is
2875 		 * implemented, a request for page 3F may return Sense Key
2876 		 * 5: Illegal Request, Sense Code 24: Invalid field in
2877 		 * CDB.
2878 		 */
2879 		if (res < 0)
2880 			res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL);
2881 
2882 		/*
2883 		 * Third attempt: ask 255 bytes, as we did earlier.
2884 		 */
2885 		if (res < 0)
2886 			res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255,
2887 					       &data, NULL);
2888 	}
2889 
2890 	if (res < 0) {
2891 		sd_first_printk(KERN_WARNING, sdkp,
2892 			  "Test WP failed, assume Write Enabled\n");
2893 	} else {
2894 		sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2895 		set_disk_ro(sdkp->disk, sdkp->write_prot);
2896 		if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2897 			sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2898 				  sdkp->write_prot ? "on" : "off");
2899 			sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
2900 		}
2901 	}
2902 }
2903 
2904 /*
2905  * sd_read_cache_type - called only from sd_revalidate_disk()
2906  * called with buffer of length SD_BUF_SIZE
2907  */
2908 static void
2909 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2910 {
2911 	int len = 0, res;
2912 	struct scsi_device *sdp = sdkp->device;
2913 
2914 	int dbd;
2915 	int modepage;
2916 	int first_len;
2917 	struct scsi_mode_data data;
2918 	struct scsi_sense_hdr sshdr;
2919 	int old_wce = sdkp->WCE;
2920 	int old_rcd = sdkp->RCD;
2921 	int old_dpofua = sdkp->DPOFUA;
2922 
2923 
2924 	if (sdkp->cache_override)
2925 		return;
2926 
2927 	first_len = 4;
2928 	if (sdp->skip_ms_page_8) {
2929 		if (sdp->type == TYPE_RBC)
2930 			goto defaults;
2931 		else {
2932 			if (sdp->skip_ms_page_3f)
2933 				goto defaults;
2934 			modepage = 0x3F;
2935 			if (sdp->use_192_bytes_for_3f)
2936 				first_len = 192;
2937 			dbd = 0;
2938 		}
2939 	} else if (sdp->type == TYPE_RBC) {
2940 		modepage = 6;
2941 		dbd = 8;
2942 	} else {
2943 		modepage = 8;
2944 		dbd = 0;
2945 	}
2946 
2947 	/* cautiously ask */
2948 	res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len,
2949 			&data, &sshdr);
2950 
2951 	if (res < 0)
2952 		goto bad_sense;
2953 
2954 	if (!data.header_length) {
2955 		modepage = 6;
2956 		first_len = 0;
2957 		sd_first_printk(KERN_ERR, sdkp,
2958 				"Missing header in MODE_SENSE response\n");
2959 	}
2960 
2961 	/* that went OK, now ask for the proper length */
2962 	len = data.length;
2963 
2964 	/*
2965 	 * We're only interested in the first three bytes, actually.
2966 	 * But the data cache page is defined for the first 20.
2967 	 */
2968 	if (len < 3)
2969 		goto bad_sense;
2970 	else if (len > SD_BUF_SIZE) {
2971 		sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2972 			  "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2973 		len = SD_BUF_SIZE;
2974 	}
2975 	if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2976 		len = 192;
2977 
2978 	/* Get the data */
2979 	if (len > first_len)
2980 		res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len,
2981 				&data, &sshdr);
2982 
2983 	if (!res) {
2984 		int offset = data.header_length + data.block_descriptor_length;
2985 
2986 		while (offset < len) {
2987 			u8 page_code = buffer[offset] & 0x3F;
2988 			u8 spf       = buffer[offset] & 0x40;
2989 
2990 			if (page_code == 8 || page_code == 6) {
2991 				/* We're interested only in the first 3 bytes.
2992 				 */
2993 				if (len - offset <= 2) {
2994 					sd_first_printk(KERN_ERR, sdkp,
2995 						"Incomplete mode parameter "
2996 							"data\n");
2997 					goto defaults;
2998 				} else {
2999 					modepage = page_code;
3000 					goto Page_found;
3001 				}
3002 			} else {
3003 				/* Go to the next page */
3004 				if (spf && len - offset > 3)
3005 					offset += 4 + (buffer[offset+2] << 8) +
3006 						buffer[offset+3];
3007 				else if (!spf && len - offset > 1)
3008 					offset += 2 + buffer[offset+1];
3009 				else {
3010 					sd_first_printk(KERN_ERR, sdkp,
3011 							"Incomplete mode "
3012 							"parameter data\n");
3013 					goto defaults;
3014 				}
3015 			}
3016 		}
3017 
3018 		sd_first_printk(KERN_WARNING, sdkp,
3019 				"No Caching mode page found\n");
3020 		goto defaults;
3021 
3022 	Page_found:
3023 		if (modepage == 8) {
3024 			sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
3025 			sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
3026 		} else {
3027 			sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
3028 			sdkp->RCD = 0;
3029 		}
3030 
3031 		sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
3032 		if (sdp->broken_fua) {
3033 			sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
3034 			sdkp->DPOFUA = 0;
3035 		} else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
3036 			   !sdkp->device->use_16_for_rw) {
3037 			sd_first_printk(KERN_NOTICE, sdkp,
3038 				  "Uses READ/WRITE(6), disabling FUA\n");
3039 			sdkp->DPOFUA = 0;
3040 		}
3041 
3042 		/* No cache flush allowed for write protected devices */
3043 		if (sdkp->WCE && sdkp->write_prot)
3044 			sdkp->WCE = 0;
3045 
3046 		if (sdkp->first_scan || old_wce != sdkp->WCE ||
3047 		    old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
3048 			sd_printk(KERN_NOTICE, sdkp,
3049 				  "Write cache: %s, read cache: %s, %s\n",
3050 				  sdkp->WCE ? "enabled" : "disabled",
3051 				  sdkp->RCD ? "disabled" : "enabled",
3052 				  sdkp->DPOFUA ? "supports DPO and FUA"
3053 				  : "doesn't support DPO or FUA");
3054 
3055 		return;
3056 	}
3057 
3058 bad_sense:
3059 	if (res == -EIO && scsi_sense_valid(&sshdr) &&
3060 	    sshdr.sense_key == ILLEGAL_REQUEST &&
3061 	    sshdr.asc == 0x24 && sshdr.ascq == 0x0)
3062 		/* Invalid field in CDB */
3063 		sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
3064 	else
3065 		sd_first_printk(KERN_ERR, sdkp,
3066 				"Asking for cache data failed\n");
3067 
3068 defaults:
3069 	if (sdp->wce_default_on) {
3070 		sd_first_printk(KERN_NOTICE, sdkp,
3071 				"Assuming drive cache: write back\n");
3072 		sdkp->WCE = 1;
3073 	} else {
3074 		sd_first_printk(KERN_WARNING, sdkp,
3075 				"Assuming drive cache: write through\n");
3076 		sdkp->WCE = 0;
3077 	}
3078 	sdkp->RCD = 0;
3079 	sdkp->DPOFUA = 0;
3080 }
3081 
3082 static bool sd_is_perm_stream(struct scsi_disk *sdkp, unsigned int stream_id)
3083 {
3084 	u8 cdb[16] = { SERVICE_ACTION_IN_16, SAI_GET_STREAM_STATUS };
3085 	struct {
3086 		struct scsi_stream_status_header h;
3087 		struct scsi_stream_status s;
3088 	} buf;
3089 	struct scsi_device *sdev = sdkp->device;
3090 	struct scsi_sense_hdr sshdr;
3091 	const struct scsi_exec_args exec_args = {
3092 		.sshdr = &sshdr,
3093 	};
3094 	int res;
3095 
3096 	put_unaligned_be16(stream_id, &cdb[4]);
3097 	put_unaligned_be32(sizeof(buf), &cdb[10]);
3098 
3099 	res = scsi_execute_cmd(sdev, cdb, REQ_OP_DRV_IN, &buf, sizeof(buf),
3100 			       SD_TIMEOUT, sdkp->max_retries, &exec_args);
3101 	if (res < 0)
3102 		return false;
3103 	if (scsi_status_is_check_condition(res) && scsi_sense_valid(&sshdr))
3104 		sd_print_sense_hdr(sdkp, &sshdr);
3105 	if (res)
3106 		return false;
3107 	if (get_unaligned_be32(&buf.h.len) < sizeof(struct scsi_stream_status))
3108 		return false;
3109 	return buf.h.stream_status[0].perm;
3110 }
3111 
3112 static void sd_read_io_hints(struct scsi_disk *sdkp, unsigned char *buffer)
3113 {
3114 	struct scsi_device *sdp = sdkp->device;
3115 	const struct scsi_io_group_descriptor *desc, *start, *end;
3116 	u16 permanent_stream_count_old;
3117 	struct scsi_sense_hdr sshdr;
3118 	struct scsi_mode_data data;
3119 	int res;
3120 
3121 	res = scsi_mode_sense(sdp, /*dbd=*/0x8, /*modepage=*/0x0a,
3122 			      /*subpage=*/0x05, buffer, SD_BUF_SIZE, SD_TIMEOUT,
3123 			      sdkp->max_retries, &data, &sshdr);
3124 	if (res < 0)
3125 		return;
3126 	start = (void *)buffer + data.header_length + 16;
3127 	end = (void *)buffer + ALIGN_DOWN(data.header_length + data.length,
3128 					  sizeof(*end));
3129 	/*
3130 	 * From "SBC-5 Constrained Streams with Data Lifetimes": Device severs
3131 	 * should assign the lowest numbered stream identifiers to permanent
3132 	 * streams.
3133 	 */
3134 	for (desc = start; desc < end; desc++)
3135 		if (!desc->st_enble || !sd_is_perm_stream(sdkp, desc - start))
3136 			break;
3137 	permanent_stream_count_old = sdkp->permanent_stream_count;
3138 	sdkp->permanent_stream_count = desc - start;
3139 	if (sdkp->rscs && sdkp->permanent_stream_count < 2)
3140 		sd_printk(KERN_INFO, sdkp,
3141 			  "Unexpected: RSCS has been set and the permanent stream count is %u\n",
3142 			  sdkp->permanent_stream_count);
3143 	else if (sdkp->permanent_stream_count != permanent_stream_count_old)
3144 		sd_printk(KERN_INFO, sdkp, "permanent stream count = %d\n",
3145 			  sdkp->permanent_stream_count);
3146 }
3147 
3148 /*
3149  * The ATO bit indicates whether the DIF application tag is available
3150  * for use by the operating system.
3151  */
3152 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
3153 {
3154 	int res, offset;
3155 	struct scsi_device *sdp = sdkp->device;
3156 	struct scsi_mode_data data;
3157 	struct scsi_sense_hdr sshdr;
3158 
3159 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
3160 		return;
3161 
3162 	if (sdkp->protection_type == 0)
3163 		return;
3164 
3165 	res = scsi_mode_sense(sdp, 1, 0x0a, 0, buffer, 36, SD_TIMEOUT,
3166 			      sdkp->max_retries, &data, &sshdr);
3167 
3168 	if (res < 0 || !data.header_length ||
3169 	    data.length < 6) {
3170 		sd_first_printk(KERN_WARNING, sdkp,
3171 			  "getting Control mode page failed, assume no ATO\n");
3172 
3173 		if (res == -EIO && scsi_sense_valid(&sshdr))
3174 			sd_print_sense_hdr(sdkp, &sshdr);
3175 
3176 		return;
3177 	}
3178 
3179 	offset = data.header_length + data.block_descriptor_length;
3180 
3181 	if ((buffer[offset] & 0x3f) != 0x0a) {
3182 		sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
3183 		return;
3184 	}
3185 
3186 	if ((buffer[offset + 5] & 0x80) == 0)
3187 		return;
3188 
3189 	sdkp->ATO = 1;
3190 
3191 	return;
3192 }
3193 
3194 /**
3195  * sd_read_block_limits - Query disk device for preferred I/O sizes.
3196  * @sdkp: disk to query
3197  */
3198 static void sd_read_block_limits(struct scsi_disk *sdkp)
3199 {
3200 	struct scsi_vpd *vpd;
3201 
3202 	rcu_read_lock();
3203 
3204 	vpd = rcu_dereference(sdkp->device->vpd_pgb0);
3205 	if (!vpd || vpd->len < 16)
3206 		goto out;
3207 
3208 	sdkp->min_xfer_blocks = get_unaligned_be16(&vpd->data[6]);
3209 	sdkp->max_xfer_blocks = get_unaligned_be32(&vpd->data[8]);
3210 	sdkp->opt_xfer_blocks = get_unaligned_be32(&vpd->data[12]);
3211 
3212 	if (vpd->len >= 64) {
3213 		unsigned int lba_count, desc_count;
3214 
3215 		sdkp->max_ws_blocks = (u32)get_unaligned_be64(&vpd->data[36]);
3216 
3217 		if (!sdkp->lbpme)
3218 			goto out;
3219 
3220 		lba_count = get_unaligned_be32(&vpd->data[20]);
3221 		desc_count = get_unaligned_be32(&vpd->data[24]);
3222 
3223 		if (lba_count && desc_count)
3224 			sdkp->max_unmap_blocks = lba_count;
3225 
3226 		sdkp->unmap_granularity = get_unaligned_be32(&vpd->data[28]);
3227 
3228 		if (vpd->data[32] & 0x80)
3229 			sdkp->unmap_alignment =
3230 				get_unaligned_be32(&vpd->data[32]) & ~(1 << 31);
3231 
3232 		if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
3233 
3234 			if (sdkp->max_unmap_blocks)
3235 				sd_config_discard(sdkp, SD_LBP_UNMAP);
3236 			else
3237 				sd_config_discard(sdkp, SD_LBP_WS16);
3238 
3239 		} else {	/* LBP VPD page tells us what to use */
3240 			if (sdkp->lbpu && sdkp->max_unmap_blocks)
3241 				sd_config_discard(sdkp, SD_LBP_UNMAP);
3242 			else if (sdkp->lbpws)
3243 				sd_config_discard(sdkp, SD_LBP_WS16);
3244 			else if (sdkp->lbpws10)
3245 				sd_config_discard(sdkp, SD_LBP_WS10);
3246 			else
3247 				sd_config_discard(sdkp, SD_LBP_DISABLE);
3248 		}
3249 	}
3250 
3251  out:
3252 	rcu_read_unlock();
3253 }
3254 
3255 /* Parse the Block Limits Extension VPD page (0xb7) */
3256 static void sd_read_block_limits_ext(struct scsi_disk *sdkp)
3257 {
3258 	struct scsi_vpd *vpd;
3259 
3260 	rcu_read_lock();
3261 	vpd = rcu_dereference(sdkp->device->vpd_pgb7);
3262 	if (vpd && vpd->len >= 2)
3263 		sdkp->rscs = vpd->data[5] & 1;
3264 	rcu_read_unlock();
3265 }
3266 
3267 /**
3268  * sd_read_block_characteristics - Query block dev. characteristics
3269  * @sdkp: disk to query
3270  */
3271 static void sd_read_block_characteristics(struct scsi_disk *sdkp)
3272 {
3273 	struct request_queue *q = sdkp->disk->queue;
3274 	struct scsi_vpd *vpd;
3275 	u16 rot;
3276 
3277 	rcu_read_lock();
3278 	vpd = rcu_dereference(sdkp->device->vpd_pgb1);
3279 
3280 	if (!vpd || vpd->len < 8) {
3281 		rcu_read_unlock();
3282 	        return;
3283 	}
3284 
3285 	rot = get_unaligned_be16(&vpd->data[4]);
3286 	sdkp->zoned = (vpd->data[8] >> 4) & 3;
3287 	rcu_read_unlock();
3288 
3289 	if (rot == 1) {
3290 		blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
3291 		blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
3292 	}
3293 
3294 
3295 #ifdef CONFIG_BLK_DEV_ZONED /* sd_probe rejects ZBD devices early otherwise */
3296 	if (sdkp->device->type == TYPE_ZBC) {
3297 		/*
3298 		 * Host-managed.
3299 		 */
3300 		disk_set_zoned(sdkp->disk);
3301 
3302 		/*
3303 		 * Per ZBC and ZAC specifications, writes in sequential write
3304 		 * required zones of host-managed devices must be aligned to
3305 		 * the device physical block size.
3306 		 */
3307 		blk_queue_zone_write_granularity(q, sdkp->physical_block_size);
3308 	} else {
3309 		/*
3310 		 * Host-aware devices are treated as conventional.
3311 		 */
3312 		WARN_ON_ONCE(blk_queue_is_zoned(q));
3313 	}
3314 #endif /* CONFIG_BLK_DEV_ZONED */
3315 
3316 	if (!sdkp->first_scan)
3317 		return;
3318 
3319 	if (blk_queue_is_zoned(q))
3320 		sd_printk(KERN_NOTICE, sdkp, "Host-managed zoned block device\n");
3321 	else if (sdkp->zoned == 1)
3322 		sd_printk(KERN_NOTICE, sdkp, "Host-aware SMR disk used as regular disk\n");
3323 	else if (sdkp->zoned == 2)
3324 		sd_printk(KERN_NOTICE, sdkp, "Drive-managed SMR disk\n");
3325 }
3326 
3327 /**
3328  * sd_read_block_provisioning - Query provisioning VPD page
3329  * @sdkp: disk to query
3330  */
3331 static void sd_read_block_provisioning(struct scsi_disk *sdkp)
3332 {
3333 	struct scsi_vpd *vpd;
3334 
3335 	if (sdkp->lbpme == 0)
3336 		return;
3337 
3338 	rcu_read_lock();
3339 	vpd = rcu_dereference(sdkp->device->vpd_pgb2);
3340 
3341 	if (!vpd || vpd->len < 8) {
3342 		rcu_read_unlock();
3343 		return;
3344 	}
3345 
3346 	sdkp->lbpvpd	= 1;
3347 	sdkp->lbpu	= (vpd->data[5] >> 7) & 1; /* UNMAP */
3348 	sdkp->lbpws	= (vpd->data[5] >> 6) & 1; /* WRITE SAME(16) w/ UNMAP */
3349 	sdkp->lbpws10	= (vpd->data[5] >> 5) & 1; /* WRITE SAME(10) w/ UNMAP */
3350 	rcu_read_unlock();
3351 }
3352 
3353 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
3354 {
3355 	struct scsi_device *sdev = sdkp->device;
3356 
3357 	if (sdev->host->no_write_same) {
3358 		sdev->no_write_same = 1;
3359 
3360 		return;
3361 	}
3362 
3363 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY, 0) < 0) {
3364 		struct scsi_vpd *vpd;
3365 
3366 		sdev->no_report_opcodes = 1;
3367 
3368 		/* Disable WRITE SAME if REPORT SUPPORTED OPERATION
3369 		 * CODES is unsupported and the device has an ATA
3370 		 * Information VPD page (SAT).
3371 		 */
3372 		rcu_read_lock();
3373 		vpd = rcu_dereference(sdev->vpd_pg89);
3374 		if (vpd)
3375 			sdev->no_write_same = 1;
3376 		rcu_read_unlock();
3377 	}
3378 
3379 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16, 0) == 1)
3380 		sdkp->ws16 = 1;
3381 
3382 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME, 0) == 1)
3383 		sdkp->ws10 = 1;
3384 }
3385 
3386 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3387 {
3388 	struct scsi_device *sdev = sdkp->device;
3389 
3390 	if (!sdev->security_supported)
3391 		return;
3392 
3393 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3394 			SECURITY_PROTOCOL_IN, 0) == 1 &&
3395 	    scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3396 			SECURITY_PROTOCOL_OUT, 0) == 1)
3397 		sdkp->security = 1;
3398 }
3399 
3400 static inline sector_t sd64_to_sectors(struct scsi_disk *sdkp, u8 *buf)
3401 {
3402 	return logical_to_sectors(sdkp->device, get_unaligned_be64(buf));
3403 }
3404 
3405 /**
3406  * sd_read_cpr - Query concurrent positioning ranges
3407  * @sdkp:	disk to query
3408  */
3409 static void sd_read_cpr(struct scsi_disk *sdkp)
3410 {
3411 	struct blk_independent_access_ranges *iars = NULL;
3412 	unsigned char *buffer = NULL;
3413 	unsigned int nr_cpr = 0;
3414 	int i, vpd_len, buf_len = SD_BUF_SIZE;
3415 	u8 *desc;
3416 
3417 	/*
3418 	 * We need to have the capacity set first for the block layer to be
3419 	 * able to check the ranges.
3420 	 */
3421 	if (sdkp->first_scan)
3422 		return;
3423 
3424 	if (!sdkp->capacity)
3425 		goto out;
3426 
3427 	/*
3428 	 * Concurrent Positioning Ranges VPD: there can be at most 256 ranges,
3429 	 * leading to a maximum page size of 64 + 256*32 bytes.
3430 	 */
3431 	buf_len = 64 + 256*32;
3432 	buffer = kmalloc(buf_len, GFP_KERNEL);
3433 	if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb9, buffer, buf_len))
3434 		goto out;
3435 
3436 	/* We must have at least a 64B header and one 32B range descriptor */
3437 	vpd_len = get_unaligned_be16(&buffer[2]) + 4;
3438 	if (vpd_len > buf_len || vpd_len < 64 + 32 || (vpd_len & 31)) {
3439 		sd_printk(KERN_ERR, sdkp,
3440 			  "Invalid Concurrent Positioning Ranges VPD page\n");
3441 		goto out;
3442 	}
3443 
3444 	nr_cpr = (vpd_len - 64) / 32;
3445 	if (nr_cpr == 1) {
3446 		nr_cpr = 0;
3447 		goto out;
3448 	}
3449 
3450 	iars = disk_alloc_independent_access_ranges(sdkp->disk, nr_cpr);
3451 	if (!iars) {
3452 		nr_cpr = 0;
3453 		goto out;
3454 	}
3455 
3456 	desc = &buffer[64];
3457 	for (i = 0; i < nr_cpr; i++, desc += 32) {
3458 		if (desc[0] != i) {
3459 			sd_printk(KERN_ERR, sdkp,
3460 				"Invalid Concurrent Positioning Range number\n");
3461 			nr_cpr = 0;
3462 			break;
3463 		}
3464 
3465 		iars->ia_range[i].sector = sd64_to_sectors(sdkp, desc + 8);
3466 		iars->ia_range[i].nr_sectors = sd64_to_sectors(sdkp, desc + 16);
3467 	}
3468 
3469 out:
3470 	disk_set_independent_access_ranges(sdkp->disk, iars);
3471 	if (nr_cpr && sdkp->nr_actuators != nr_cpr) {
3472 		sd_printk(KERN_NOTICE, sdkp,
3473 			  "%u concurrent positioning ranges\n", nr_cpr);
3474 		sdkp->nr_actuators = nr_cpr;
3475 	}
3476 
3477 	kfree(buffer);
3478 }
3479 
3480 static bool sd_validate_min_xfer_size(struct scsi_disk *sdkp)
3481 {
3482 	struct scsi_device *sdp = sdkp->device;
3483 	unsigned int min_xfer_bytes =
3484 		logical_to_bytes(sdp, sdkp->min_xfer_blocks);
3485 
3486 	if (sdkp->min_xfer_blocks == 0)
3487 		return false;
3488 
3489 	if (min_xfer_bytes & (sdkp->physical_block_size - 1)) {
3490 		sd_first_printk(KERN_WARNING, sdkp,
3491 				"Preferred minimum I/O size %u bytes not a " \
3492 				"multiple of physical block size (%u bytes)\n",
3493 				min_xfer_bytes, sdkp->physical_block_size);
3494 		sdkp->min_xfer_blocks = 0;
3495 		return false;
3496 	}
3497 
3498 	sd_first_printk(KERN_INFO, sdkp, "Preferred minimum I/O size %u bytes\n",
3499 			min_xfer_bytes);
3500 	return true;
3501 }
3502 
3503 /*
3504  * Determine the device's preferred I/O size for reads and writes
3505  * unless the reported value is unreasonably small, large, not a
3506  * multiple of the physical block size, or simply garbage.
3507  */
3508 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp,
3509 				      unsigned int dev_max)
3510 {
3511 	struct scsi_device *sdp = sdkp->device;
3512 	unsigned int opt_xfer_bytes =
3513 		logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3514 	unsigned int min_xfer_bytes =
3515 		logical_to_bytes(sdp, sdkp->min_xfer_blocks);
3516 
3517 	if (sdkp->opt_xfer_blocks == 0)
3518 		return false;
3519 
3520 	if (sdkp->opt_xfer_blocks > dev_max) {
3521 		sd_first_printk(KERN_WARNING, sdkp,
3522 				"Optimal transfer size %u logical blocks " \
3523 				"> dev_max (%u logical blocks)\n",
3524 				sdkp->opt_xfer_blocks, dev_max);
3525 		return false;
3526 	}
3527 
3528 	if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) {
3529 		sd_first_printk(KERN_WARNING, sdkp,
3530 				"Optimal transfer size %u logical blocks " \
3531 				"> sd driver limit (%u logical blocks)\n",
3532 				sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS);
3533 		return false;
3534 	}
3535 
3536 	if (opt_xfer_bytes < PAGE_SIZE) {
3537 		sd_first_printk(KERN_WARNING, sdkp,
3538 				"Optimal transfer size %u bytes < " \
3539 				"PAGE_SIZE (%u bytes)\n",
3540 				opt_xfer_bytes, (unsigned int)PAGE_SIZE);
3541 		return false;
3542 	}
3543 
3544 	if (min_xfer_bytes && opt_xfer_bytes % min_xfer_bytes) {
3545 		sd_first_printk(KERN_WARNING, sdkp,
3546 				"Optimal transfer size %u bytes not a " \
3547 				"multiple of preferred minimum block " \
3548 				"size (%u bytes)\n",
3549 				opt_xfer_bytes, min_xfer_bytes);
3550 		return false;
3551 	}
3552 
3553 	if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) {
3554 		sd_first_printk(KERN_WARNING, sdkp,
3555 				"Optimal transfer size %u bytes not a " \
3556 				"multiple of physical block size (%u bytes)\n",
3557 				opt_xfer_bytes, sdkp->physical_block_size);
3558 		return false;
3559 	}
3560 
3561 	sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n",
3562 			opt_xfer_bytes);
3563 	return true;
3564 }
3565 
3566 static void sd_read_block_zero(struct scsi_disk *sdkp)
3567 {
3568 	unsigned int buf_len = sdkp->device->sector_size;
3569 	char *buffer, cmd[10] = { };
3570 
3571 	buffer = kmalloc(buf_len, GFP_KERNEL);
3572 	if (!buffer)
3573 		return;
3574 
3575 	cmd[0] = READ_10;
3576 	put_unaligned_be32(0, &cmd[2]); /* Logical block address 0 */
3577 	put_unaligned_be16(1, &cmd[7]);	/* Transfer 1 logical block */
3578 
3579 	scsi_execute_cmd(sdkp->device, cmd, REQ_OP_DRV_IN, buffer, buf_len,
3580 			 SD_TIMEOUT, sdkp->max_retries, NULL);
3581 	kfree(buffer);
3582 }
3583 
3584 /**
3585  *	sd_revalidate_disk - called the first time a new disk is seen,
3586  *	performs disk spin up, read_capacity, etc.
3587  *	@disk: struct gendisk we care about
3588  **/
3589 static int sd_revalidate_disk(struct gendisk *disk)
3590 {
3591 	struct scsi_disk *sdkp = scsi_disk(disk);
3592 	struct scsi_device *sdp = sdkp->device;
3593 	struct request_queue *q = sdkp->disk->queue;
3594 	sector_t old_capacity = sdkp->capacity;
3595 	unsigned char *buffer;
3596 	unsigned int dev_max, rw_max;
3597 
3598 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3599 				      "sd_revalidate_disk\n"));
3600 
3601 	/*
3602 	 * If the device is offline, don't try and read capacity or any
3603 	 * of the other niceties.
3604 	 */
3605 	if (!scsi_device_online(sdp))
3606 		goto out;
3607 
3608 	buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3609 	if (!buffer) {
3610 		sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3611 			  "allocation failure.\n");
3612 		goto out;
3613 	}
3614 
3615 	sd_spinup_disk(sdkp);
3616 
3617 	/*
3618 	 * Without media there is no reason to ask; moreover, some devices
3619 	 * react badly if we do.
3620 	 */
3621 	if (sdkp->media_present) {
3622 		sd_read_capacity(sdkp, buffer);
3623 		/*
3624 		 * Some USB/UAS devices return generic values for mode pages
3625 		 * until the media has been accessed. Trigger a READ operation
3626 		 * to force the device to populate mode pages.
3627 		 */
3628 		if (sdp->read_before_ms)
3629 			sd_read_block_zero(sdkp);
3630 		/*
3631 		 * set the default to rotational.  All non-rotational devices
3632 		 * support the block characteristics VPD page, which will
3633 		 * cause this to be updated correctly and any device which
3634 		 * doesn't support it should be treated as rotational.
3635 		 */
3636 		blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
3637 		blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q);
3638 
3639 		if (scsi_device_supports_vpd(sdp)) {
3640 			sd_read_block_provisioning(sdkp);
3641 			sd_read_block_limits(sdkp);
3642 			sd_read_block_limits_ext(sdkp);
3643 			sd_read_block_characteristics(sdkp);
3644 			sd_zbc_read_zones(sdkp, buffer);
3645 			sd_read_cpr(sdkp);
3646 		}
3647 
3648 		sd_print_capacity(sdkp, old_capacity);
3649 
3650 		sd_read_write_protect_flag(sdkp, buffer);
3651 		sd_read_cache_type(sdkp, buffer);
3652 		sd_read_io_hints(sdkp, buffer);
3653 		sd_read_app_tag_own(sdkp, buffer);
3654 		sd_read_write_same(sdkp, buffer);
3655 		sd_read_security(sdkp, buffer);
3656 		sd_config_protection(sdkp);
3657 	}
3658 
3659 	/*
3660 	 * We now have all cache related info, determine how we deal
3661 	 * with flush requests.
3662 	 */
3663 	sd_set_flush_flag(sdkp);
3664 
3665 	/* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3666 	dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3667 
3668 	/* Some devices report a maximum block count for READ/WRITE requests. */
3669 	dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3670 	q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3671 
3672 	if (sd_validate_min_xfer_size(sdkp))
3673 		blk_queue_io_min(sdkp->disk->queue,
3674 				 logical_to_bytes(sdp, sdkp->min_xfer_blocks));
3675 	else
3676 		blk_queue_io_min(sdkp->disk->queue, 0);
3677 
3678 	if (sd_validate_opt_xfer_size(sdkp, dev_max)) {
3679 		q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3680 		rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
3681 	} else {
3682 		q->limits.io_opt = 0;
3683 		rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
3684 				      (sector_t)BLK_DEF_MAX_SECTORS_CAP);
3685 	}
3686 
3687 	/*
3688 	 * Limit default to SCSI host optimal sector limit if set. There may be
3689 	 * an impact on performance for when the size of a request exceeds this
3690 	 * host limit.
3691 	 */
3692 	rw_max = min_not_zero(rw_max, sdp->host->opt_sectors);
3693 
3694 	/* Do not exceed controller limit */
3695 	rw_max = min(rw_max, queue_max_hw_sectors(q));
3696 
3697 	/*
3698 	 * Only update max_sectors if previously unset or if the current value
3699 	 * exceeds the capabilities of the hardware.
3700 	 */
3701 	if (sdkp->first_scan ||
3702 	    q->limits.max_sectors > q->limits.max_dev_sectors ||
3703 	    q->limits.max_sectors > q->limits.max_hw_sectors) {
3704 		q->limits.max_sectors = rw_max;
3705 		q->limits.max_user_sectors = rw_max;
3706 	}
3707 
3708 	sdkp->first_scan = 0;
3709 
3710 	set_capacity_and_notify(disk, logical_to_sectors(sdp, sdkp->capacity));
3711 	sd_config_write_same(sdkp);
3712 	kfree(buffer);
3713 
3714 	/*
3715 	 * For a zoned drive, revalidating the zones can be done only once
3716 	 * the gendisk capacity is set. So if this fails, set back the gendisk
3717 	 * capacity to 0.
3718 	 */
3719 	if (sd_zbc_revalidate_zones(sdkp))
3720 		set_capacity_and_notify(disk, 0);
3721 
3722  out:
3723 	return 0;
3724 }
3725 
3726 /**
3727  *	sd_unlock_native_capacity - unlock native capacity
3728  *	@disk: struct gendisk to set capacity for
3729  *
3730  *	Block layer calls this function if it detects that partitions
3731  *	on @disk reach beyond the end of the device.  If the SCSI host
3732  *	implements ->unlock_native_capacity() method, it's invoked to
3733  *	give it a chance to adjust the device capacity.
3734  *
3735  *	CONTEXT:
3736  *	Defined by block layer.  Might sleep.
3737  */
3738 static void sd_unlock_native_capacity(struct gendisk *disk)
3739 {
3740 	struct scsi_device *sdev = scsi_disk(disk)->device;
3741 
3742 	if (sdev->host->hostt->unlock_native_capacity)
3743 		sdev->host->hostt->unlock_native_capacity(sdev);
3744 }
3745 
3746 /**
3747  *	sd_format_disk_name - format disk name
3748  *	@prefix: name prefix - ie. "sd" for SCSI disks
3749  *	@index: index of the disk to format name for
3750  *	@buf: output buffer
3751  *	@buflen: length of the output buffer
3752  *
3753  *	SCSI disk names starts at sda.  The 26th device is sdz and the
3754  *	27th is sdaa.  The last one for two lettered suffix is sdzz
3755  *	which is followed by sdaaa.
3756  *
3757  *	This is basically 26 base counting with one extra 'nil' entry
3758  *	at the beginning from the second digit on and can be
3759  *	determined using similar method as 26 base conversion with the
3760  *	index shifted -1 after each digit is computed.
3761  *
3762  *	CONTEXT:
3763  *	Don't care.
3764  *
3765  *	RETURNS:
3766  *	0 on success, -errno on failure.
3767  */
3768 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3769 {
3770 	const int base = 'z' - 'a' + 1;
3771 	char *begin = buf + strlen(prefix);
3772 	char *end = buf + buflen;
3773 	char *p;
3774 	int unit;
3775 
3776 	p = end - 1;
3777 	*p = '\0';
3778 	unit = base;
3779 	do {
3780 		if (p == begin)
3781 			return -EINVAL;
3782 		*--p = 'a' + (index % unit);
3783 		index = (index / unit) - 1;
3784 	} while (index >= 0);
3785 
3786 	memmove(begin, p, end - p);
3787 	memcpy(buf, prefix, strlen(prefix));
3788 
3789 	return 0;
3790 }
3791 
3792 /**
3793  *	sd_probe - called during driver initialization and whenever a
3794  *	new scsi device is attached to the system. It is called once
3795  *	for each scsi device (not just disks) present.
3796  *	@dev: pointer to device object
3797  *
3798  *	Returns 0 if successful (or not interested in this scsi device
3799  *	(e.g. scanner)); 1 when there is an error.
3800  *
3801  *	Note: this function is invoked from the scsi mid-level.
3802  *	This function sets up the mapping between a given
3803  *	<host,channel,id,lun> (found in sdp) and new device name
3804  *	(e.g. /dev/sda). More precisely it is the block device major
3805  *	and minor number that is chosen here.
3806  *
3807  *	Assume sd_probe is not re-entrant (for time being)
3808  *	Also think about sd_probe() and sd_remove() running coincidentally.
3809  **/
3810 static int sd_probe(struct device *dev)
3811 {
3812 	struct scsi_device *sdp = to_scsi_device(dev);
3813 	struct scsi_disk *sdkp;
3814 	struct gendisk *gd;
3815 	int index;
3816 	int error;
3817 
3818 	scsi_autopm_get_device(sdp);
3819 	error = -ENODEV;
3820 	if (sdp->type != TYPE_DISK &&
3821 	    sdp->type != TYPE_ZBC &&
3822 	    sdp->type != TYPE_MOD &&
3823 	    sdp->type != TYPE_RBC)
3824 		goto out;
3825 
3826 	if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) && sdp->type == TYPE_ZBC) {
3827 		sdev_printk(KERN_WARNING, sdp,
3828 			    "Unsupported ZBC host-managed device.\n");
3829 		goto out;
3830 	}
3831 
3832 	SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3833 					"sd_probe\n"));
3834 
3835 	error = -ENOMEM;
3836 	sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3837 	if (!sdkp)
3838 		goto out;
3839 
3840 	gd = blk_mq_alloc_disk_for_queue(sdp->request_queue,
3841 					 &sd_bio_compl_lkclass);
3842 	if (!gd)
3843 		goto out_free;
3844 
3845 	index = ida_alloc(&sd_index_ida, GFP_KERNEL);
3846 	if (index < 0) {
3847 		sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3848 		goto out_put;
3849 	}
3850 
3851 	error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3852 	if (error) {
3853 		sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3854 		goto out_free_index;
3855 	}
3856 
3857 	sdkp->device = sdp;
3858 	sdkp->disk = gd;
3859 	sdkp->index = index;
3860 	sdkp->max_retries = SD_MAX_RETRIES;
3861 	atomic_set(&sdkp->openers, 0);
3862 	atomic_set(&sdkp->device->ioerr_cnt, 0);
3863 
3864 	if (!sdp->request_queue->rq_timeout) {
3865 		if (sdp->type != TYPE_MOD)
3866 			blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3867 		else
3868 			blk_queue_rq_timeout(sdp->request_queue,
3869 					     SD_MOD_TIMEOUT);
3870 	}
3871 
3872 	device_initialize(&sdkp->disk_dev);
3873 	sdkp->disk_dev.parent = get_device(dev);
3874 	sdkp->disk_dev.class = &sd_disk_class;
3875 	dev_set_name(&sdkp->disk_dev, "%s", dev_name(dev));
3876 
3877 	error = device_add(&sdkp->disk_dev);
3878 	if (error) {
3879 		put_device(&sdkp->disk_dev);
3880 		goto out;
3881 	}
3882 
3883 	dev_set_drvdata(dev, sdkp);
3884 
3885 	gd->major = sd_major((index & 0xf0) >> 4);
3886 	gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3887 	gd->minors = SD_MINORS;
3888 
3889 	gd->fops = &sd_fops;
3890 	gd->private_data = sdkp;
3891 
3892 	/* defaults, until the device tells us otherwise */
3893 	sdp->sector_size = 512;
3894 	sdkp->capacity = 0;
3895 	sdkp->media_present = 1;
3896 	sdkp->write_prot = 0;
3897 	sdkp->cache_override = 0;
3898 	sdkp->WCE = 0;
3899 	sdkp->RCD = 0;
3900 	sdkp->ATO = 0;
3901 	sdkp->first_scan = 1;
3902 	sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3903 
3904 	sd_revalidate_disk(gd);
3905 
3906 	if (sdp->removable) {
3907 		gd->flags |= GENHD_FL_REMOVABLE;
3908 		gd->events |= DISK_EVENT_MEDIA_CHANGE;
3909 		gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT;
3910 	}
3911 
3912 	blk_pm_runtime_init(sdp->request_queue, dev);
3913 	if (sdp->rpm_autosuspend) {
3914 		pm_runtime_set_autosuspend_delay(dev,
3915 			sdp->host->rpm_autosuspend_delay);
3916 	}
3917 
3918 	error = device_add_disk(dev, gd, NULL);
3919 	if (error) {
3920 		device_unregister(&sdkp->disk_dev);
3921 		put_disk(gd);
3922 		goto out;
3923 	}
3924 
3925 	if (sdkp->security) {
3926 		sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit);
3927 		if (sdkp->opal_dev)
3928 			sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
3929 	}
3930 
3931 	sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3932 		  sdp->removable ? "removable " : "");
3933 	scsi_autopm_put_device(sdp);
3934 
3935 	return 0;
3936 
3937  out_free_index:
3938 	ida_free(&sd_index_ida, index);
3939  out_put:
3940 	put_disk(gd);
3941  out_free:
3942 	kfree(sdkp);
3943  out:
3944 	scsi_autopm_put_device(sdp);
3945 	return error;
3946 }
3947 
3948 /**
3949  *	sd_remove - called whenever a scsi disk (previously recognized by
3950  *	sd_probe) is detached from the system. It is called (potentially
3951  *	multiple times) during sd module unload.
3952  *	@dev: pointer to device object
3953  *
3954  *	Note: this function is invoked from the scsi mid-level.
3955  *	This function potentially frees up a device name (e.g. /dev/sdc)
3956  *	that could be re-used by a subsequent sd_probe().
3957  *	This function is not called when the built-in sd driver is "exit-ed".
3958  **/
3959 static int sd_remove(struct device *dev)
3960 {
3961 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3962 
3963 	scsi_autopm_get_device(sdkp->device);
3964 
3965 	device_del(&sdkp->disk_dev);
3966 	del_gendisk(sdkp->disk);
3967 	if (!sdkp->suspended)
3968 		sd_shutdown(dev);
3969 
3970 	put_disk(sdkp->disk);
3971 	return 0;
3972 }
3973 
3974 static void scsi_disk_release(struct device *dev)
3975 {
3976 	struct scsi_disk *sdkp = to_scsi_disk(dev);
3977 
3978 	ida_free(&sd_index_ida, sdkp->index);
3979 	put_device(&sdkp->device->sdev_gendev);
3980 	free_opal_dev(sdkp->opal_dev);
3981 
3982 	kfree(sdkp);
3983 }
3984 
3985 static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3986 {
3987 	unsigned char cmd[6] = { START_STOP };	/* START_VALID */
3988 	struct scsi_sense_hdr sshdr;
3989 	const struct scsi_exec_args exec_args = {
3990 		.sshdr = &sshdr,
3991 		.req_flags = BLK_MQ_REQ_PM,
3992 	};
3993 	struct scsi_device *sdp = sdkp->device;
3994 	int res;
3995 
3996 	if (start)
3997 		cmd[4] |= 1;	/* START */
3998 
3999 	if (sdp->start_stop_pwr_cond)
4000 		cmd[4] |= start ? 1 << 4 : 3 << 4;	/* Active or Standby */
4001 
4002 	if (!scsi_device_online(sdp))
4003 		return -ENODEV;
4004 
4005 	res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, SD_TIMEOUT,
4006 			       sdkp->max_retries, &exec_args);
4007 	if (res) {
4008 		sd_print_result(sdkp, "Start/Stop Unit failed", res);
4009 		if (res > 0 && scsi_sense_valid(&sshdr)) {
4010 			sd_print_sense_hdr(sdkp, &sshdr);
4011 			/* 0x3a is medium not present */
4012 			if (sshdr.asc == 0x3a)
4013 				res = 0;
4014 		}
4015 	}
4016 
4017 	/* SCSI error codes must not go to the generic layer */
4018 	if (res)
4019 		return -EIO;
4020 
4021 	return 0;
4022 }
4023 
4024 /*
4025  * Send a SYNCHRONIZE CACHE instruction down to the device through
4026  * the normal SCSI command structure.  Wait for the command to
4027  * complete.
4028  */
4029 static void sd_shutdown(struct device *dev)
4030 {
4031 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
4032 
4033 	if (!sdkp)
4034 		return;         /* this can happen */
4035 
4036 	if (pm_runtime_suspended(dev))
4037 		return;
4038 
4039 	if (sdkp->WCE && sdkp->media_present) {
4040 		sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
4041 		sd_sync_cache(sdkp);
4042 	}
4043 
4044 	if ((system_state != SYSTEM_RESTART &&
4045 	     sdkp->device->manage_system_start_stop) ||
4046 	    (system_state == SYSTEM_POWER_OFF &&
4047 	     sdkp->device->manage_shutdown)) {
4048 		sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
4049 		sd_start_stop_device(sdkp, 0);
4050 	}
4051 }
4052 
4053 static inline bool sd_do_start_stop(struct scsi_device *sdev, bool runtime)
4054 {
4055 	return (sdev->manage_system_start_stop && !runtime) ||
4056 		(sdev->manage_runtime_start_stop && runtime);
4057 }
4058 
4059 static int sd_suspend_common(struct device *dev, bool runtime)
4060 {
4061 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
4062 	int ret = 0;
4063 
4064 	if (!sdkp)	/* E.g.: runtime suspend following sd_remove() */
4065 		return 0;
4066 
4067 	if (sdkp->WCE && sdkp->media_present) {
4068 		if (!sdkp->device->silence_suspend)
4069 			sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
4070 		ret = sd_sync_cache(sdkp);
4071 		/* ignore OFFLINE device */
4072 		if (ret == -ENODEV)
4073 			return 0;
4074 
4075 		if (ret)
4076 			return ret;
4077 	}
4078 
4079 	if (sd_do_start_stop(sdkp->device, runtime)) {
4080 		if (!sdkp->device->silence_suspend)
4081 			sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
4082 		/* an error is not worth aborting a system sleep */
4083 		ret = sd_start_stop_device(sdkp, 0);
4084 		if (!runtime)
4085 			ret = 0;
4086 	}
4087 
4088 	if (!ret)
4089 		sdkp->suspended = true;
4090 
4091 	return ret;
4092 }
4093 
4094 static int sd_suspend_system(struct device *dev)
4095 {
4096 	if (pm_runtime_suspended(dev))
4097 		return 0;
4098 
4099 	return sd_suspend_common(dev, false);
4100 }
4101 
4102 static int sd_suspend_runtime(struct device *dev)
4103 {
4104 	return sd_suspend_common(dev, true);
4105 }
4106 
4107 static int sd_resume(struct device *dev)
4108 {
4109 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
4110 
4111 	sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
4112 
4113 	if (opal_unlock_from_suspend(sdkp->opal_dev)) {
4114 		sd_printk(KERN_NOTICE, sdkp, "OPAL unlock failed\n");
4115 		return -EIO;
4116 	}
4117 
4118 	return 0;
4119 }
4120 
4121 static int sd_resume_common(struct device *dev, bool runtime)
4122 {
4123 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
4124 	int ret;
4125 
4126 	if (!sdkp)	/* E.g.: runtime resume at the start of sd_probe() */
4127 		return 0;
4128 
4129 	if (!sd_do_start_stop(sdkp->device, runtime)) {
4130 		sdkp->suspended = false;
4131 		return 0;
4132 	}
4133 
4134 	sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
4135 	ret = sd_start_stop_device(sdkp, 1);
4136 	if (!ret) {
4137 		sd_resume(dev);
4138 		sdkp->suspended = false;
4139 	}
4140 
4141 	return ret;
4142 }
4143 
4144 static int sd_resume_system(struct device *dev)
4145 {
4146 	if (pm_runtime_suspended(dev)) {
4147 		struct scsi_disk *sdkp = dev_get_drvdata(dev);
4148 		struct scsi_device *sdp = sdkp ? sdkp->device : NULL;
4149 
4150 		if (sdp && sdp->force_runtime_start_on_system_start)
4151 			pm_request_resume(dev);
4152 
4153 		return 0;
4154 	}
4155 
4156 	return sd_resume_common(dev, false);
4157 }
4158 
4159 static int sd_resume_runtime(struct device *dev)
4160 {
4161 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
4162 	struct scsi_device *sdp;
4163 
4164 	if (!sdkp)	/* E.g.: runtime resume at the start of sd_probe() */
4165 		return 0;
4166 
4167 	sdp = sdkp->device;
4168 
4169 	if (sdp->ignore_media_change) {
4170 		/* clear the device's sense data */
4171 		static const u8 cmd[10] = { REQUEST_SENSE };
4172 		const struct scsi_exec_args exec_args = {
4173 			.req_flags = BLK_MQ_REQ_PM,
4174 		};
4175 
4176 		if (scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0,
4177 				     sdp->request_queue->rq_timeout, 1,
4178 				     &exec_args))
4179 			sd_printk(KERN_NOTICE, sdkp,
4180 				  "Failed to clear sense data\n");
4181 	}
4182 
4183 	return sd_resume_common(dev, true);
4184 }
4185 
4186 static const struct dev_pm_ops sd_pm_ops = {
4187 	.suspend		= sd_suspend_system,
4188 	.resume			= sd_resume_system,
4189 	.poweroff		= sd_suspend_system,
4190 	.restore		= sd_resume_system,
4191 	.runtime_suspend	= sd_suspend_runtime,
4192 	.runtime_resume		= sd_resume_runtime,
4193 };
4194 
4195 static struct scsi_driver sd_template = {
4196 	.gendrv = {
4197 		.name		= "sd",
4198 		.probe		= sd_probe,
4199 		.probe_type	= PROBE_PREFER_ASYNCHRONOUS,
4200 		.remove		= sd_remove,
4201 		.shutdown	= sd_shutdown,
4202 		.pm		= &sd_pm_ops,
4203 	},
4204 	.rescan			= sd_rescan,
4205 	.resume			= sd_resume,
4206 	.init_command		= sd_init_command,
4207 	.uninit_command		= sd_uninit_command,
4208 	.done			= sd_done,
4209 	.eh_action		= sd_eh_action,
4210 	.eh_reset		= sd_eh_reset,
4211 };
4212 
4213 /**
4214  *	init_sd - entry point for this driver (both when built in or when
4215  *	a module).
4216  *
4217  *	Note: this function registers this driver with the scsi mid-level.
4218  **/
4219 static int __init init_sd(void)
4220 {
4221 	int majors = 0, i, err;
4222 
4223 	SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
4224 
4225 	for (i = 0; i < SD_MAJORS; i++) {
4226 		if (__register_blkdev(sd_major(i), "sd", sd_default_probe))
4227 			continue;
4228 		majors++;
4229 	}
4230 
4231 	if (!majors)
4232 		return -ENODEV;
4233 
4234 	err = class_register(&sd_disk_class);
4235 	if (err)
4236 		goto err_out;
4237 
4238 	sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0);
4239 	if (!sd_page_pool) {
4240 		printk(KERN_ERR "sd: can't init discard page pool\n");
4241 		err = -ENOMEM;
4242 		goto err_out_class;
4243 	}
4244 
4245 	err = scsi_register_driver(&sd_template.gendrv);
4246 	if (err)
4247 		goto err_out_driver;
4248 
4249 	return 0;
4250 
4251 err_out_driver:
4252 	mempool_destroy(sd_page_pool);
4253 err_out_class:
4254 	class_unregister(&sd_disk_class);
4255 err_out:
4256 	for (i = 0; i < SD_MAJORS; i++)
4257 		unregister_blkdev(sd_major(i), "sd");
4258 	return err;
4259 }
4260 
4261 /**
4262  *	exit_sd - exit point for this driver (when it is a module).
4263  *
4264  *	Note: this function unregisters this driver from the scsi mid-level.
4265  **/
4266 static void __exit exit_sd(void)
4267 {
4268 	int i;
4269 
4270 	SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
4271 
4272 	scsi_unregister_driver(&sd_template.gendrv);
4273 	mempool_destroy(sd_page_pool);
4274 
4275 	class_unregister(&sd_disk_class);
4276 
4277 	for (i = 0; i < SD_MAJORS; i++)
4278 		unregister_blkdev(sd_major(i), "sd");
4279 }
4280 
4281 module_init(init_sd);
4282 module_exit(exit_sd);
4283 
4284 void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
4285 {
4286 	scsi_print_sense_hdr(sdkp->device,
4287 			     sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
4288 }
4289 
4290 void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result)
4291 {
4292 	const char *hb_string = scsi_hostbyte_string(result);
4293 
4294 	if (hb_string)
4295 		sd_printk(KERN_INFO, sdkp,
4296 			  "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
4297 			  hb_string ? hb_string : "invalid",
4298 			  "DRIVER_OK");
4299 	else
4300 		sd_printk(KERN_INFO, sdkp,
4301 			  "%s: Result: hostbyte=0x%02x driverbyte=%s\n",
4302 			  msg, host_byte(result), "DRIVER_OK");
4303 }
4304