xref: /linux/drivers/scsi/sd.c (revision 1abbef4f51724fb11f09adf0e75275f7cb422a8a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *      sd.c Copyright (C) 1992 Drew Eckhardt
4  *           Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
5  *
6  *      Linux scsi disk driver
7  *              Initial versions: Drew Eckhardt
8  *              Subsequent revisions: Eric Youngdale
9  *	Modification history:
10  *       - Drew Eckhardt <drew@colorado.edu> original
11  *       - Eric Youngdale <eric@andante.org> add scatter-gather, multiple
12  *         outstanding request, and other enhancements.
13  *         Support loadable low-level scsi drivers.
14  *       - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using
15  *         eight major numbers.
16  *       - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
17  *	 - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in
18  *	   sd_init and cleanups.
19  *	 - Alex Davis <letmein@erols.com> Fix problem where partition info
20  *	   not being read in sd_open. Fix problem where removable media
21  *	   could be ejected after sd_open.
22  *	 - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
23  *	 - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox
24  *	   <willy@debian.org>, Kurt Garloff <garloff@suse.de>:
25  *	   Support 32k/1M disks.
26  *
27  *	Logging policy (needs CONFIG_SCSI_LOGGING defined):
28  *	 - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
29  *	 - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
30  *	 - entering sd_ioctl: SCSI_LOG_IOCTL level 1
31  *	 - entering other commands: SCSI_LOG_HLQUEUE level 3
32  *	Note: when the logging level is set by the user, it must be greater
33  *	than the level indicated above to trigger output.
34  */
35 
36 #include <linux/module.h>
37 #include <linux/fs.h>
38 #include <linux/kernel.h>
39 #include <linux/mm.h>
40 #include <linux/bio.h>
41 #include <linux/genhd.h>
42 #include <linux/hdreg.h>
43 #include <linux/errno.h>
44 #include <linux/idr.h>
45 #include <linux/interrupt.h>
46 #include <linux/init.h>
47 #include <linux/blkdev.h>
48 #include <linux/blkpg.h>
49 #include <linux/blk-pm.h>
50 #include <linux/delay.h>
51 #include <linux/mutex.h>
52 #include <linux/string_helpers.h>
53 #include <linux/async.h>
54 #include <linux/slab.h>
55 #include <linux/sed-opal.h>
56 #include <linux/pm_runtime.h>
57 #include <linux/pr.h>
58 #include <linux/t10-pi.h>
59 #include <linux/uaccess.h>
60 #include <asm/unaligned.h>
61 
62 #include <scsi/scsi.h>
63 #include <scsi/scsi_cmnd.h>
64 #include <scsi/scsi_dbg.h>
65 #include <scsi/scsi_device.h>
66 #include <scsi/scsi_driver.h>
67 #include <scsi/scsi_eh.h>
68 #include <scsi/scsi_host.h>
69 #include <scsi/scsi_ioctl.h>
70 #include <scsi/scsicam.h>
71 
72 #include "sd.h"
73 #include "scsi_priv.h"
74 #include "scsi_logging.h"
75 
76 MODULE_AUTHOR("Eric Youngdale");
77 MODULE_DESCRIPTION("SCSI disk (sd) driver");
78 MODULE_LICENSE("GPL");
79 
80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
95 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
96 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
97 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
98 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
99 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
100 
101 #if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT)
102 #define SD_MINORS	16
103 #else
104 #define SD_MINORS	0
105 #endif
106 
107 static void sd_config_discard(struct scsi_disk *, unsigned int);
108 static void sd_config_write_same(struct scsi_disk *);
109 static int  sd_revalidate_disk(struct gendisk *);
110 static void sd_unlock_native_capacity(struct gendisk *disk);
111 static int  sd_probe(struct device *);
112 static int  sd_remove(struct device *);
113 static void sd_shutdown(struct device *);
114 static int sd_suspend_system(struct device *);
115 static int sd_suspend_runtime(struct device *);
116 static int sd_resume(struct device *);
117 static void sd_rescan(struct device *);
118 static blk_status_t sd_init_command(struct scsi_cmnd *SCpnt);
119 static void sd_uninit_command(struct scsi_cmnd *SCpnt);
120 static int sd_done(struct scsi_cmnd *);
121 static void sd_eh_reset(struct scsi_cmnd *);
122 static int sd_eh_action(struct scsi_cmnd *, int);
123 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
124 static void scsi_disk_release(struct device *cdev);
125 
126 static DEFINE_IDA(sd_index_ida);
127 
128 /* This semaphore is used to mediate the 0->1 reference get in the
129  * face of object destruction (i.e. we can't allow a get on an
130  * object after last put) */
131 static DEFINE_MUTEX(sd_ref_mutex);
132 
133 static struct kmem_cache *sd_cdb_cache;
134 static mempool_t *sd_cdb_pool;
135 static mempool_t *sd_page_pool;
136 
137 static const char *sd_cache_types[] = {
138 	"write through", "none", "write back",
139 	"write back, no read (daft)"
140 };
141 
142 static void sd_set_flush_flag(struct scsi_disk *sdkp)
143 {
144 	bool wc = false, fua = false;
145 
146 	if (sdkp->WCE) {
147 		wc = true;
148 		if (sdkp->DPOFUA)
149 			fua = true;
150 	}
151 
152 	blk_queue_write_cache(sdkp->disk->queue, wc, fua);
153 }
154 
155 static ssize_t
156 cache_type_store(struct device *dev, struct device_attribute *attr,
157 		 const char *buf, size_t count)
158 {
159 	int ct, rcd, wce, sp;
160 	struct scsi_disk *sdkp = to_scsi_disk(dev);
161 	struct scsi_device *sdp = sdkp->device;
162 	char buffer[64];
163 	char *buffer_data;
164 	struct scsi_mode_data data;
165 	struct scsi_sense_hdr sshdr;
166 	static const char temp[] = "temporary ";
167 	int len;
168 
169 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
170 		/* no cache control on RBC devices; theoretically they
171 		 * can do it, but there's probably so many exceptions
172 		 * it's not worth the risk */
173 		return -EINVAL;
174 
175 	if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
176 		buf += sizeof(temp) - 1;
177 		sdkp->cache_override = 1;
178 	} else {
179 		sdkp->cache_override = 0;
180 	}
181 
182 	ct = sysfs_match_string(sd_cache_types, buf);
183 	if (ct < 0)
184 		return -EINVAL;
185 
186 	rcd = ct & 0x01 ? 1 : 0;
187 	wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
188 
189 	if (sdkp->cache_override) {
190 		sdkp->WCE = wce;
191 		sdkp->RCD = rcd;
192 		sd_set_flush_flag(sdkp);
193 		return count;
194 	}
195 
196 	if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT,
197 			    SD_MAX_RETRIES, &data, NULL))
198 		return -EINVAL;
199 	len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
200 		  data.block_descriptor_length);
201 	buffer_data = buffer + data.header_length +
202 		data.block_descriptor_length;
203 	buffer_data[2] &= ~0x05;
204 	buffer_data[2] |= wce << 2 | rcd;
205 	sp = buffer_data[0] & 0x80 ? 1 : 0;
206 	buffer_data[0] &= ~0x80;
207 
208 	/*
209 	 * Ensure WP, DPOFUA, and RESERVED fields are cleared in
210 	 * received mode parameter buffer before doing MODE SELECT.
211 	 */
212 	data.device_specific = 0;
213 
214 	if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT,
215 			     SD_MAX_RETRIES, &data, &sshdr)) {
216 		if (scsi_sense_valid(&sshdr))
217 			sd_print_sense_hdr(sdkp, &sshdr);
218 		return -EINVAL;
219 	}
220 	sd_revalidate_disk(sdkp->disk);
221 	return count;
222 }
223 
224 static ssize_t
225 manage_start_stop_show(struct device *dev, struct device_attribute *attr,
226 		       char *buf)
227 {
228 	struct scsi_disk *sdkp = to_scsi_disk(dev);
229 	struct scsi_device *sdp = sdkp->device;
230 
231 	return sprintf(buf, "%u\n", sdp->manage_start_stop);
232 }
233 
234 static ssize_t
235 manage_start_stop_store(struct device *dev, struct device_attribute *attr,
236 			const char *buf, size_t count)
237 {
238 	struct scsi_disk *sdkp = to_scsi_disk(dev);
239 	struct scsi_device *sdp = sdkp->device;
240 	bool v;
241 
242 	if (!capable(CAP_SYS_ADMIN))
243 		return -EACCES;
244 
245 	if (kstrtobool(buf, &v))
246 		return -EINVAL;
247 
248 	sdp->manage_start_stop = v;
249 
250 	return count;
251 }
252 static DEVICE_ATTR_RW(manage_start_stop);
253 
254 static ssize_t
255 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
256 {
257 	struct scsi_disk *sdkp = to_scsi_disk(dev);
258 
259 	return sprintf(buf, "%u\n", sdkp->device->allow_restart);
260 }
261 
262 static ssize_t
263 allow_restart_store(struct device *dev, struct device_attribute *attr,
264 		    const char *buf, size_t count)
265 {
266 	bool v;
267 	struct scsi_disk *sdkp = to_scsi_disk(dev);
268 	struct scsi_device *sdp = sdkp->device;
269 
270 	if (!capable(CAP_SYS_ADMIN))
271 		return -EACCES;
272 
273 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
274 		return -EINVAL;
275 
276 	if (kstrtobool(buf, &v))
277 		return -EINVAL;
278 
279 	sdp->allow_restart = v;
280 
281 	return count;
282 }
283 static DEVICE_ATTR_RW(allow_restart);
284 
285 static ssize_t
286 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
287 {
288 	struct scsi_disk *sdkp = to_scsi_disk(dev);
289 	int ct = sdkp->RCD + 2*sdkp->WCE;
290 
291 	return sprintf(buf, "%s\n", sd_cache_types[ct]);
292 }
293 static DEVICE_ATTR_RW(cache_type);
294 
295 static ssize_t
296 FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
297 {
298 	struct scsi_disk *sdkp = to_scsi_disk(dev);
299 
300 	return sprintf(buf, "%u\n", sdkp->DPOFUA);
301 }
302 static DEVICE_ATTR_RO(FUA);
303 
304 static ssize_t
305 protection_type_show(struct device *dev, struct device_attribute *attr,
306 		     char *buf)
307 {
308 	struct scsi_disk *sdkp = to_scsi_disk(dev);
309 
310 	return sprintf(buf, "%u\n", sdkp->protection_type);
311 }
312 
313 static ssize_t
314 protection_type_store(struct device *dev, struct device_attribute *attr,
315 		      const char *buf, size_t count)
316 {
317 	struct scsi_disk *sdkp = to_scsi_disk(dev);
318 	unsigned int val;
319 	int err;
320 
321 	if (!capable(CAP_SYS_ADMIN))
322 		return -EACCES;
323 
324 	err = kstrtouint(buf, 10, &val);
325 
326 	if (err)
327 		return err;
328 
329 	if (val <= T10_PI_TYPE3_PROTECTION)
330 		sdkp->protection_type = val;
331 
332 	return count;
333 }
334 static DEVICE_ATTR_RW(protection_type);
335 
336 static ssize_t
337 protection_mode_show(struct device *dev, struct device_attribute *attr,
338 		     char *buf)
339 {
340 	struct scsi_disk *sdkp = to_scsi_disk(dev);
341 	struct scsi_device *sdp = sdkp->device;
342 	unsigned int dif, dix;
343 
344 	dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
345 	dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
346 
347 	if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
348 		dif = 0;
349 		dix = 1;
350 	}
351 
352 	if (!dif && !dix)
353 		return sprintf(buf, "none\n");
354 
355 	return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
356 }
357 static DEVICE_ATTR_RO(protection_mode);
358 
359 static ssize_t
360 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
361 {
362 	struct scsi_disk *sdkp = to_scsi_disk(dev);
363 
364 	return sprintf(buf, "%u\n", sdkp->ATO);
365 }
366 static DEVICE_ATTR_RO(app_tag_own);
367 
368 static ssize_t
369 thin_provisioning_show(struct device *dev, struct device_attribute *attr,
370 		       char *buf)
371 {
372 	struct scsi_disk *sdkp = to_scsi_disk(dev);
373 
374 	return sprintf(buf, "%u\n", sdkp->lbpme);
375 }
376 static DEVICE_ATTR_RO(thin_provisioning);
377 
378 /* sysfs_match_string() requires dense arrays */
379 static const char *lbp_mode[] = {
380 	[SD_LBP_FULL]		= "full",
381 	[SD_LBP_UNMAP]		= "unmap",
382 	[SD_LBP_WS16]		= "writesame_16",
383 	[SD_LBP_WS10]		= "writesame_10",
384 	[SD_LBP_ZERO]		= "writesame_zero",
385 	[SD_LBP_DISABLE]	= "disabled",
386 };
387 
388 static ssize_t
389 provisioning_mode_show(struct device *dev, struct device_attribute *attr,
390 		       char *buf)
391 {
392 	struct scsi_disk *sdkp = to_scsi_disk(dev);
393 
394 	return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
395 }
396 
397 static ssize_t
398 provisioning_mode_store(struct device *dev, struct device_attribute *attr,
399 			const char *buf, size_t count)
400 {
401 	struct scsi_disk *sdkp = to_scsi_disk(dev);
402 	struct scsi_device *sdp = sdkp->device;
403 	int mode;
404 
405 	if (!capable(CAP_SYS_ADMIN))
406 		return -EACCES;
407 
408 	if (sd_is_zoned(sdkp)) {
409 		sd_config_discard(sdkp, SD_LBP_DISABLE);
410 		return count;
411 	}
412 
413 	if (sdp->type != TYPE_DISK)
414 		return -EINVAL;
415 
416 	mode = sysfs_match_string(lbp_mode, buf);
417 	if (mode < 0)
418 		return -EINVAL;
419 
420 	sd_config_discard(sdkp, mode);
421 
422 	return count;
423 }
424 static DEVICE_ATTR_RW(provisioning_mode);
425 
426 /* sysfs_match_string() requires dense arrays */
427 static const char *zeroing_mode[] = {
428 	[SD_ZERO_WRITE]		= "write",
429 	[SD_ZERO_WS]		= "writesame",
430 	[SD_ZERO_WS16_UNMAP]	= "writesame_16_unmap",
431 	[SD_ZERO_WS10_UNMAP]	= "writesame_10_unmap",
432 };
433 
434 static ssize_t
435 zeroing_mode_show(struct device *dev, struct device_attribute *attr,
436 		  char *buf)
437 {
438 	struct scsi_disk *sdkp = to_scsi_disk(dev);
439 
440 	return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
441 }
442 
443 static ssize_t
444 zeroing_mode_store(struct device *dev, struct device_attribute *attr,
445 		   const char *buf, size_t count)
446 {
447 	struct scsi_disk *sdkp = to_scsi_disk(dev);
448 	int mode;
449 
450 	if (!capable(CAP_SYS_ADMIN))
451 		return -EACCES;
452 
453 	mode = sysfs_match_string(zeroing_mode, buf);
454 	if (mode < 0)
455 		return -EINVAL;
456 
457 	sdkp->zeroing_mode = mode;
458 
459 	return count;
460 }
461 static DEVICE_ATTR_RW(zeroing_mode);
462 
463 static ssize_t
464 max_medium_access_timeouts_show(struct device *dev,
465 				struct device_attribute *attr, char *buf)
466 {
467 	struct scsi_disk *sdkp = to_scsi_disk(dev);
468 
469 	return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
470 }
471 
472 static ssize_t
473 max_medium_access_timeouts_store(struct device *dev,
474 				 struct device_attribute *attr, const char *buf,
475 				 size_t count)
476 {
477 	struct scsi_disk *sdkp = to_scsi_disk(dev);
478 	int err;
479 
480 	if (!capable(CAP_SYS_ADMIN))
481 		return -EACCES;
482 
483 	err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
484 
485 	return err ? err : count;
486 }
487 static DEVICE_ATTR_RW(max_medium_access_timeouts);
488 
489 static ssize_t
490 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
491 			   char *buf)
492 {
493 	struct scsi_disk *sdkp = to_scsi_disk(dev);
494 
495 	return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
496 }
497 
498 static ssize_t
499 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
500 			    const char *buf, size_t count)
501 {
502 	struct scsi_disk *sdkp = to_scsi_disk(dev);
503 	struct scsi_device *sdp = sdkp->device;
504 	unsigned long max;
505 	int err;
506 
507 	if (!capable(CAP_SYS_ADMIN))
508 		return -EACCES;
509 
510 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
511 		return -EINVAL;
512 
513 	err = kstrtoul(buf, 10, &max);
514 
515 	if (err)
516 		return err;
517 
518 	if (max == 0)
519 		sdp->no_write_same = 1;
520 	else if (max <= SD_MAX_WS16_BLOCKS) {
521 		sdp->no_write_same = 0;
522 		sdkp->max_ws_blocks = max;
523 	}
524 
525 	sd_config_write_same(sdkp);
526 
527 	return count;
528 }
529 static DEVICE_ATTR_RW(max_write_same_blocks);
530 
531 static ssize_t
532 zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf)
533 {
534 	struct scsi_disk *sdkp = to_scsi_disk(dev);
535 
536 	if (sdkp->device->type == TYPE_ZBC)
537 		return sprintf(buf, "host-managed\n");
538 	if (sdkp->zoned == 1)
539 		return sprintf(buf, "host-aware\n");
540 	if (sdkp->zoned == 2)
541 		return sprintf(buf, "drive-managed\n");
542 	return sprintf(buf, "none\n");
543 }
544 static DEVICE_ATTR_RO(zoned_cap);
545 
546 static struct attribute *sd_disk_attrs[] = {
547 	&dev_attr_cache_type.attr,
548 	&dev_attr_FUA.attr,
549 	&dev_attr_allow_restart.attr,
550 	&dev_attr_manage_start_stop.attr,
551 	&dev_attr_protection_type.attr,
552 	&dev_attr_protection_mode.attr,
553 	&dev_attr_app_tag_own.attr,
554 	&dev_attr_thin_provisioning.attr,
555 	&dev_attr_provisioning_mode.attr,
556 	&dev_attr_zeroing_mode.attr,
557 	&dev_attr_max_write_same_blocks.attr,
558 	&dev_attr_max_medium_access_timeouts.attr,
559 	&dev_attr_zoned_cap.attr,
560 	NULL,
561 };
562 ATTRIBUTE_GROUPS(sd_disk);
563 
564 static struct class sd_disk_class = {
565 	.name		= "scsi_disk",
566 	.owner		= THIS_MODULE,
567 	.dev_release	= scsi_disk_release,
568 	.dev_groups	= sd_disk_groups,
569 };
570 
571 static const struct dev_pm_ops sd_pm_ops = {
572 	.suspend		= sd_suspend_system,
573 	.resume			= sd_resume,
574 	.poweroff		= sd_suspend_system,
575 	.restore		= sd_resume,
576 	.runtime_suspend	= sd_suspend_runtime,
577 	.runtime_resume		= sd_resume,
578 };
579 
580 static struct scsi_driver sd_template = {
581 	.gendrv = {
582 		.name		= "sd",
583 		.owner		= THIS_MODULE,
584 		.probe		= sd_probe,
585 		.probe_type	= PROBE_PREFER_ASYNCHRONOUS,
586 		.remove		= sd_remove,
587 		.shutdown	= sd_shutdown,
588 		.pm		= &sd_pm_ops,
589 	},
590 	.rescan			= sd_rescan,
591 	.init_command		= sd_init_command,
592 	.uninit_command		= sd_uninit_command,
593 	.done			= sd_done,
594 	.eh_action		= sd_eh_action,
595 	.eh_reset		= sd_eh_reset,
596 };
597 
598 /*
599  * Dummy kobj_map->probe function.
600  * The default ->probe function will call modprobe, which is
601  * pointless as this module is already loaded.
602  */
603 static struct kobject *sd_default_probe(dev_t devt, int *partno, void *data)
604 {
605 	return NULL;
606 }
607 
608 /*
609  * Device no to disk mapping:
610  *
611  *       major         disc2     disc  p1
612  *   |............|.............|....|....| <- dev_t
613  *    31        20 19          8 7  4 3  0
614  *
615  * Inside a major, we have 16k disks, however mapped non-
616  * contiguously. The first 16 disks are for major0, the next
617  * ones with major1, ... Disk 256 is for major0 again, disk 272
618  * for major1, ...
619  * As we stay compatible with our numbering scheme, we can reuse
620  * the well-know SCSI majors 8, 65--71, 136--143.
621  */
622 static int sd_major(int major_idx)
623 {
624 	switch (major_idx) {
625 	case 0:
626 		return SCSI_DISK0_MAJOR;
627 	case 1 ... 7:
628 		return SCSI_DISK1_MAJOR + major_idx - 1;
629 	case 8 ... 15:
630 		return SCSI_DISK8_MAJOR + major_idx - 8;
631 	default:
632 		BUG();
633 		return 0;	/* shut up gcc */
634 	}
635 }
636 
637 static struct scsi_disk *scsi_disk_get(struct gendisk *disk)
638 {
639 	struct scsi_disk *sdkp = NULL;
640 
641 	mutex_lock(&sd_ref_mutex);
642 
643 	if (disk->private_data) {
644 		sdkp = scsi_disk(disk);
645 		if (scsi_device_get(sdkp->device) == 0)
646 			get_device(&sdkp->dev);
647 		else
648 			sdkp = NULL;
649 	}
650 	mutex_unlock(&sd_ref_mutex);
651 	return sdkp;
652 }
653 
654 static void scsi_disk_put(struct scsi_disk *sdkp)
655 {
656 	struct scsi_device *sdev = sdkp->device;
657 
658 	mutex_lock(&sd_ref_mutex);
659 	put_device(&sdkp->dev);
660 	scsi_device_put(sdev);
661 	mutex_unlock(&sd_ref_mutex);
662 }
663 
664 #ifdef CONFIG_BLK_SED_OPAL
665 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
666 		size_t len, bool send)
667 {
668 	struct scsi_device *sdev = data;
669 	u8 cdb[12] = { 0, };
670 	int ret;
671 
672 	cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
673 	cdb[1] = secp;
674 	put_unaligned_be16(spsp, &cdb[2]);
675 	put_unaligned_be32(len, &cdb[6]);
676 
677 	ret = scsi_execute_req(sdev, cdb,
678 			send ? DMA_TO_DEVICE : DMA_FROM_DEVICE,
679 			buffer, len, NULL, SD_TIMEOUT, SD_MAX_RETRIES, NULL);
680 	return ret <= 0 ? ret : -EIO;
681 }
682 #endif /* CONFIG_BLK_SED_OPAL */
683 
684 /*
685  * Look up the DIX operation based on whether the command is read or
686  * write and whether dix and dif are enabled.
687  */
688 static unsigned int sd_prot_op(bool write, bool dix, bool dif)
689 {
690 	/* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */
691 	static const unsigned int ops[] = {	/* wrt dix dif */
692 		SCSI_PROT_NORMAL,		/*  0	0   0  */
693 		SCSI_PROT_READ_STRIP,		/*  0	0   1  */
694 		SCSI_PROT_READ_INSERT,		/*  0	1   0  */
695 		SCSI_PROT_READ_PASS,		/*  0	1   1  */
696 		SCSI_PROT_NORMAL,		/*  1	0   0  */
697 		SCSI_PROT_WRITE_INSERT,		/*  1	0   1  */
698 		SCSI_PROT_WRITE_STRIP,		/*  1	1   0  */
699 		SCSI_PROT_WRITE_PASS,		/*  1	1   1  */
700 	};
701 
702 	return ops[write << 2 | dix << 1 | dif];
703 }
704 
705 /*
706  * Returns a mask of the protection flags that are valid for a given DIX
707  * operation.
708  */
709 static unsigned int sd_prot_flag_mask(unsigned int prot_op)
710 {
711 	static const unsigned int flag_mask[] = {
712 		[SCSI_PROT_NORMAL]		= 0,
713 
714 		[SCSI_PROT_READ_STRIP]		= SCSI_PROT_TRANSFER_PI |
715 						  SCSI_PROT_GUARD_CHECK |
716 						  SCSI_PROT_REF_CHECK |
717 						  SCSI_PROT_REF_INCREMENT,
718 
719 		[SCSI_PROT_READ_INSERT]		= SCSI_PROT_REF_INCREMENT |
720 						  SCSI_PROT_IP_CHECKSUM,
721 
722 		[SCSI_PROT_READ_PASS]		= SCSI_PROT_TRANSFER_PI |
723 						  SCSI_PROT_GUARD_CHECK |
724 						  SCSI_PROT_REF_CHECK |
725 						  SCSI_PROT_REF_INCREMENT |
726 						  SCSI_PROT_IP_CHECKSUM,
727 
728 		[SCSI_PROT_WRITE_INSERT]	= SCSI_PROT_TRANSFER_PI |
729 						  SCSI_PROT_REF_INCREMENT,
730 
731 		[SCSI_PROT_WRITE_STRIP]		= SCSI_PROT_GUARD_CHECK |
732 						  SCSI_PROT_REF_CHECK |
733 						  SCSI_PROT_REF_INCREMENT |
734 						  SCSI_PROT_IP_CHECKSUM,
735 
736 		[SCSI_PROT_WRITE_PASS]		= SCSI_PROT_TRANSFER_PI |
737 						  SCSI_PROT_GUARD_CHECK |
738 						  SCSI_PROT_REF_CHECK |
739 						  SCSI_PROT_REF_INCREMENT |
740 						  SCSI_PROT_IP_CHECKSUM,
741 	};
742 
743 	return flag_mask[prot_op];
744 }
745 
746 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
747 					   unsigned int dix, unsigned int dif)
748 {
749 	struct bio *bio = scmd->request->bio;
750 	unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif);
751 	unsigned int protect = 0;
752 
753 	if (dix) {				/* DIX Type 0, 1, 2, 3 */
754 		if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
755 			scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
756 
757 		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
758 			scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
759 	}
760 
761 	if (dif != T10_PI_TYPE3_PROTECTION) {	/* DIX/DIF Type 0, 1, 2 */
762 		scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
763 
764 		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
765 			scmd->prot_flags |= SCSI_PROT_REF_CHECK;
766 	}
767 
768 	if (dif) {				/* DIX/DIF Type 1, 2, 3 */
769 		scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
770 
771 		if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
772 			protect = 3 << 5;	/* Disable target PI checking */
773 		else
774 			protect = 1 << 5;	/* Enable target PI checking */
775 	}
776 
777 	scsi_set_prot_op(scmd, prot_op);
778 	scsi_set_prot_type(scmd, dif);
779 	scmd->prot_flags &= sd_prot_flag_mask(prot_op);
780 
781 	return protect;
782 }
783 
784 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
785 {
786 	struct request_queue *q = sdkp->disk->queue;
787 	unsigned int logical_block_size = sdkp->device->sector_size;
788 	unsigned int max_blocks = 0;
789 
790 	q->limits.discard_alignment =
791 		sdkp->unmap_alignment * logical_block_size;
792 	q->limits.discard_granularity =
793 		max(sdkp->physical_block_size,
794 		    sdkp->unmap_granularity * logical_block_size);
795 	sdkp->provisioning_mode = mode;
796 
797 	switch (mode) {
798 
799 	case SD_LBP_FULL:
800 	case SD_LBP_DISABLE:
801 		blk_queue_max_discard_sectors(q, 0);
802 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
803 		return;
804 
805 	case SD_LBP_UNMAP:
806 		max_blocks = min_not_zero(sdkp->max_unmap_blocks,
807 					  (u32)SD_MAX_WS16_BLOCKS);
808 		break;
809 
810 	case SD_LBP_WS16:
811 		if (sdkp->device->unmap_limit_for_ws)
812 			max_blocks = sdkp->max_unmap_blocks;
813 		else
814 			max_blocks = sdkp->max_ws_blocks;
815 
816 		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
817 		break;
818 
819 	case SD_LBP_WS10:
820 		if (sdkp->device->unmap_limit_for_ws)
821 			max_blocks = sdkp->max_unmap_blocks;
822 		else
823 			max_blocks = sdkp->max_ws_blocks;
824 
825 		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
826 		break;
827 
828 	case SD_LBP_ZERO:
829 		max_blocks = min_not_zero(sdkp->max_ws_blocks,
830 					  (u32)SD_MAX_WS10_BLOCKS);
831 		break;
832 	}
833 
834 	blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
835 	blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
836 }
837 
838 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
839 {
840 	struct scsi_device *sdp = cmd->device;
841 	struct request *rq = cmd->request;
842 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
843 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
844 	unsigned int data_len = 24;
845 	char *buf;
846 
847 	rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
848 	if (!rq->special_vec.bv_page)
849 		return BLK_STS_RESOURCE;
850 	clear_highpage(rq->special_vec.bv_page);
851 	rq->special_vec.bv_offset = 0;
852 	rq->special_vec.bv_len = data_len;
853 	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
854 
855 	cmd->cmd_len = 10;
856 	cmd->cmnd[0] = UNMAP;
857 	cmd->cmnd[8] = 24;
858 
859 	buf = page_address(rq->special_vec.bv_page);
860 	put_unaligned_be16(6 + 16, &buf[0]);
861 	put_unaligned_be16(16, &buf[2]);
862 	put_unaligned_be64(lba, &buf[8]);
863 	put_unaligned_be32(nr_blocks, &buf[16]);
864 
865 	cmd->allowed = SD_MAX_RETRIES;
866 	cmd->transfersize = data_len;
867 	rq->timeout = SD_TIMEOUT;
868 
869 	return scsi_init_io(cmd);
870 }
871 
872 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd,
873 		bool unmap)
874 {
875 	struct scsi_device *sdp = cmd->device;
876 	struct request *rq = cmd->request;
877 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
878 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
879 	u32 data_len = sdp->sector_size;
880 
881 	rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
882 	if (!rq->special_vec.bv_page)
883 		return BLK_STS_RESOURCE;
884 	clear_highpage(rq->special_vec.bv_page);
885 	rq->special_vec.bv_offset = 0;
886 	rq->special_vec.bv_len = data_len;
887 	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
888 
889 	cmd->cmd_len = 16;
890 	cmd->cmnd[0] = WRITE_SAME_16;
891 	if (unmap)
892 		cmd->cmnd[1] = 0x8; /* UNMAP */
893 	put_unaligned_be64(lba, &cmd->cmnd[2]);
894 	put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
895 
896 	cmd->allowed = SD_MAX_RETRIES;
897 	cmd->transfersize = data_len;
898 	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
899 
900 	return scsi_init_io(cmd);
901 }
902 
903 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd,
904 		bool unmap)
905 {
906 	struct scsi_device *sdp = cmd->device;
907 	struct request *rq = cmd->request;
908 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
909 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
910 	u32 data_len = sdp->sector_size;
911 
912 	rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
913 	if (!rq->special_vec.bv_page)
914 		return BLK_STS_RESOURCE;
915 	clear_highpage(rq->special_vec.bv_page);
916 	rq->special_vec.bv_offset = 0;
917 	rq->special_vec.bv_len = data_len;
918 	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
919 
920 	cmd->cmd_len = 10;
921 	cmd->cmnd[0] = WRITE_SAME;
922 	if (unmap)
923 		cmd->cmnd[1] = 0x8; /* UNMAP */
924 	put_unaligned_be32(lba, &cmd->cmnd[2]);
925 	put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
926 
927 	cmd->allowed = SD_MAX_RETRIES;
928 	cmd->transfersize = data_len;
929 	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
930 
931 	return scsi_init_io(cmd);
932 }
933 
934 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
935 {
936 	struct request *rq = cmd->request;
937 	struct scsi_device *sdp = cmd->device;
938 	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
939 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
940 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
941 
942 	if (!(rq->cmd_flags & REQ_NOUNMAP)) {
943 		switch (sdkp->zeroing_mode) {
944 		case SD_ZERO_WS16_UNMAP:
945 			return sd_setup_write_same16_cmnd(cmd, true);
946 		case SD_ZERO_WS10_UNMAP:
947 			return sd_setup_write_same10_cmnd(cmd, true);
948 		}
949 	}
950 
951 	if (sdp->no_write_same)
952 		return BLK_STS_TARGET;
953 
954 	if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff)
955 		return sd_setup_write_same16_cmnd(cmd, false);
956 
957 	return sd_setup_write_same10_cmnd(cmd, false);
958 }
959 
960 static void sd_config_write_same(struct scsi_disk *sdkp)
961 {
962 	struct request_queue *q = sdkp->disk->queue;
963 	unsigned int logical_block_size = sdkp->device->sector_size;
964 
965 	if (sdkp->device->no_write_same) {
966 		sdkp->max_ws_blocks = 0;
967 		goto out;
968 	}
969 
970 	/* Some devices can not handle block counts above 0xffff despite
971 	 * supporting WRITE SAME(16). Consequently we default to 64k
972 	 * blocks per I/O unless the device explicitly advertises a
973 	 * bigger limit.
974 	 */
975 	if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
976 		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
977 						   (u32)SD_MAX_WS16_BLOCKS);
978 	else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
979 		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
980 						   (u32)SD_MAX_WS10_BLOCKS);
981 	else {
982 		sdkp->device->no_write_same = 1;
983 		sdkp->max_ws_blocks = 0;
984 	}
985 
986 	if (sdkp->lbprz && sdkp->lbpws)
987 		sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
988 	else if (sdkp->lbprz && sdkp->lbpws10)
989 		sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
990 	else if (sdkp->max_ws_blocks)
991 		sdkp->zeroing_mode = SD_ZERO_WS;
992 	else
993 		sdkp->zeroing_mode = SD_ZERO_WRITE;
994 
995 	if (sdkp->max_ws_blocks &&
996 	    sdkp->physical_block_size > logical_block_size) {
997 		/*
998 		 * Reporting a maximum number of blocks that is not aligned
999 		 * on the device physical size would cause a large write same
1000 		 * request to be split into physically unaligned chunks by
1001 		 * __blkdev_issue_write_zeroes() and __blkdev_issue_write_same()
1002 		 * even if the caller of these functions took care to align the
1003 		 * large request. So make sure the maximum reported is aligned
1004 		 * to the device physical block size. This is only an optional
1005 		 * optimization for regular disks, but this is mandatory to
1006 		 * avoid failure of large write same requests directed at
1007 		 * sequential write required zones of host-managed ZBC disks.
1008 		 */
1009 		sdkp->max_ws_blocks =
1010 			round_down(sdkp->max_ws_blocks,
1011 				   bytes_to_logical(sdkp->device,
1012 						    sdkp->physical_block_size));
1013 	}
1014 
1015 out:
1016 	blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks *
1017 					 (logical_block_size >> 9));
1018 	blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks *
1019 					 (logical_block_size >> 9));
1020 }
1021 
1022 /**
1023  * sd_setup_write_same_cmnd - write the same data to multiple blocks
1024  * @cmd: command to prepare
1025  *
1026  * Will set up either WRITE SAME(10) or WRITE SAME(16) depending on
1027  * the preference indicated by the target device.
1028  **/
1029 static blk_status_t sd_setup_write_same_cmnd(struct scsi_cmnd *cmd)
1030 {
1031 	struct request *rq = cmd->request;
1032 	struct scsi_device *sdp = cmd->device;
1033 	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
1034 	struct bio *bio = rq->bio;
1035 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1036 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1037 	blk_status_t ret;
1038 
1039 	if (sdkp->device->no_write_same)
1040 		return BLK_STS_TARGET;
1041 
1042 	BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size);
1043 
1044 	rq->timeout = SD_WRITE_SAME_TIMEOUT;
1045 
1046 	if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) {
1047 		cmd->cmd_len = 16;
1048 		cmd->cmnd[0] = WRITE_SAME_16;
1049 		put_unaligned_be64(lba, &cmd->cmnd[2]);
1050 		put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1051 	} else {
1052 		cmd->cmd_len = 10;
1053 		cmd->cmnd[0] = WRITE_SAME;
1054 		put_unaligned_be32(lba, &cmd->cmnd[2]);
1055 		put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1056 	}
1057 
1058 	cmd->transfersize = sdp->sector_size;
1059 	cmd->allowed = SD_MAX_RETRIES;
1060 
1061 	/*
1062 	 * For WRITE SAME the data transferred via the DATA OUT buffer is
1063 	 * different from the amount of data actually written to the target.
1064 	 *
1065 	 * We set up __data_len to the amount of data transferred via the
1066 	 * DATA OUT buffer so that blk_rq_map_sg sets up the proper S/G list
1067 	 * to transfer a single sector of data first, but then reset it to
1068 	 * the amount of data to be written right after so that the I/O path
1069 	 * knows how much to actually write.
1070 	 */
1071 	rq->__data_len = sdp->sector_size;
1072 	ret = scsi_init_io(cmd);
1073 	rq->__data_len = blk_rq_bytes(rq);
1074 
1075 	return ret;
1076 }
1077 
1078 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
1079 {
1080 	struct request *rq = cmd->request;
1081 
1082 	/* flush requests don't perform I/O, zero the S/G table */
1083 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1084 
1085 	cmd->cmnd[0] = SYNCHRONIZE_CACHE;
1086 	cmd->cmd_len = 10;
1087 	cmd->transfersize = 0;
1088 	cmd->allowed = SD_MAX_RETRIES;
1089 
1090 	rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
1091 	return BLK_STS_OK;
1092 }
1093 
1094 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write,
1095 				       sector_t lba, unsigned int nr_blocks,
1096 				       unsigned char flags)
1097 {
1098 	cmd->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC);
1099 	if (unlikely(cmd->cmnd == NULL))
1100 		return BLK_STS_RESOURCE;
1101 
1102 	cmd->cmd_len = SD_EXT_CDB_SIZE;
1103 	memset(cmd->cmnd, 0, cmd->cmd_len);
1104 
1105 	cmd->cmnd[0]  = VARIABLE_LENGTH_CMD;
1106 	cmd->cmnd[7]  = 0x18; /* Additional CDB len */
1107 	cmd->cmnd[9]  = write ? WRITE_32 : READ_32;
1108 	cmd->cmnd[10] = flags;
1109 	put_unaligned_be64(lba, &cmd->cmnd[12]);
1110 	put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */
1111 	put_unaligned_be32(nr_blocks, &cmd->cmnd[28]);
1112 
1113 	return BLK_STS_OK;
1114 }
1115 
1116 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write,
1117 				       sector_t lba, unsigned int nr_blocks,
1118 				       unsigned char flags)
1119 {
1120 	cmd->cmd_len  = 16;
1121 	cmd->cmnd[0]  = write ? WRITE_16 : READ_16;
1122 	cmd->cmnd[1]  = flags;
1123 	cmd->cmnd[14] = 0;
1124 	cmd->cmnd[15] = 0;
1125 	put_unaligned_be64(lba, &cmd->cmnd[2]);
1126 	put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1127 
1128 	return BLK_STS_OK;
1129 }
1130 
1131 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write,
1132 				       sector_t lba, unsigned int nr_blocks,
1133 				       unsigned char flags)
1134 {
1135 	cmd->cmd_len = 10;
1136 	cmd->cmnd[0] = write ? WRITE_10 : READ_10;
1137 	cmd->cmnd[1] = flags;
1138 	cmd->cmnd[6] = 0;
1139 	cmd->cmnd[9] = 0;
1140 	put_unaligned_be32(lba, &cmd->cmnd[2]);
1141 	put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1142 
1143 	return BLK_STS_OK;
1144 }
1145 
1146 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write,
1147 				      sector_t lba, unsigned int nr_blocks,
1148 				      unsigned char flags)
1149 {
1150 	/* Avoid that 0 blocks gets translated into 256 blocks. */
1151 	if (WARN_ON_ONCE(nr_blocks == 0))
1152 		return BLK_STS_IOERR;
1153 
1154 	if (unlikely(flags & 0x8)) {
1155 		/*
1156 		 * This happens only if this drive failed 10byte rw
1157 		 * command with ILLEGAL_REQUEST during operation and
1158 		 * thus turned off use_10_for_rw.
1159 		 */
1160 		scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n");
1161 		return BLK_STS_IOERR;
1162 	}
1163 
1164 	cmd->cmd_len = 6;
1165 	cmd->cmnd[0] = write ? WRITE_6 : READ_6;
1166 	cmd->cmnd[1] = (lba >> 16) & 0x1f;
1167 	cmd->cmnd[2] = (lba >> 8) & 0xff;
1168 	cmd->cmnd[3] = lba & 0xff;
1169 	cmd->cmnd[4] = nr_blocks;
1170 	cmd->cmnd[5] = 0;
1171 
1172 	return BLK_STS_OK;
1173 }
1174 
1175 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd)
1176 {
1177 	struct request *rq = cmd->request;
1178 	struct scsi_device *sdp = cmd->device;
1179 	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
1180 	sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1181 	sector_t threshold;
1182 	unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1183 	unsigned int mask = logical_to_sectors(sdp, 1) - 1;
1184 	bool write = rq_data_dir(rq) == WRITE;
1185 	unsigned char protect, fua;
1186 	blk_status_t ret;
1187 	unsigned int dif;
1188 	bool dix;
1189 
1190 	ret = scsi_init_io(cmd);
1191 	if (ret != BLK_STS_OK)
1192 		return ret;
1193 
1194 	if (!scsi_device_online(sdp) || sdp->changed) {
1195 		scmd_printk(KERN_ERR, cmd, "device offline or changed\n");
1196 		return BLK_STS_IOERR;
1197 	}
1198 
1199 	if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->rq_disk)) {
1200 		scmd_printk(KERN_ERR, cmd, "access beyond end of device\n");
1201 		return BLK_STS_IOERR;
1202 	}
1203 
1204 	if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) {
1205 		scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n");
1206 		return BLK_STS_IOERR;
1207 	}
1208 
1209 	/*
1210 	 * Some SD card readers can't handle accesses which touch the
1211 	 * last one or two logical blocks. Split accesses as needed.
1212 	 */
1213 	threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS;
1214 
1215 	if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) {
1216 		if (lba < threshold) {
1217 			/* Access up to the threshold but not beyond */
1218 			nr_blocks = threshold - lba;
1219 		} else {
1220 			/* Access only a single logical block */
1221 			nr_blocks = 1;
1222 		}
1223 	}
1224 
1225 	if (req_op(rq) == REQ_OP_ZONE_APPEND) {
1226 		ret = sd_zbc_prepare_zone_append(cmd, &lba, nr_blocks);
1227 		if (ret)
1228 			return ret;
1229 	}
1230 
1231 	fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0;
1232 	dix = scsi_prot_sg_count(cmd);
1233 	dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type);
1234 
1235 	if (dif || dix)
1236 		protect = sd_setup_protect_cmnd(cmd, dix, dif);
1237 	else
1238 		protect = 0;
1239 
1240 	if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1241 		ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks,
1242 					 protect | fua);
1243 	} else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) {
1244 		ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks,
1245 					 protect | fua);
1246 	} else if ((nr_blocks > 0xff) || (lba > 0x1fffff) ||
1247 		   sdp->use_10_for_rw || protect) {
1248 		ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks,
1249 					 protect | fua);
1250 	} else {
1251 		ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks,
1252 					protect | fua);
1253 	}
1254 
1255 	if (unlikely(ret != BLK_STS_OK))
1256 		return ret;
1257 
1258 	/*
1259 	 * We shouldn't disconnect in the middle of a sector, so with a dumb
1260 	 * host adapter, it's safe to assume that we can at least transfer
1261 	 * this many bytes between each connect / disconnect.
1262 	 */
1263 	cmd->transfersize = sdp->sector_size;
1264 	cmd->underflow = nr_blocks << 9;
1265 	cmd->allowed = SD_MAX_RETRIES;
1266 	cmd->sdb.length = nr_blocks * sdp->sector_size;
1267 
1268 	SCSI_LOG_HLQUEUE(1,
1269 			 scmd_printk(KERN_INFO, cmd,
1270 				     "%s: block=%llu, count=%d\n", __func__,
1271 				     (unsigned long long)blk_rq_pos(rq),
1272 				     blk_rq_sectors(rq)));
1273 	SCSI_LOG_HLQUEUE(2,
1274 			 scmd_printk(KERN_INFO, cmd,
1275 				     "%s %d/%u 512 byte blocks.\n",
1276 				     write ? "writing" : "reading", nr_blocks,
1277 				     blk_rq_sectors(rq)));
1278 
1279 	/*
1280 	 * This indicates that the command is ready from our end to be
1281 	 * queued.
1282 	 */
1283 	return BLK_STS_OK;
1284 }
1285 
1286 static blk_status_t sd_init_command(struct scsi_cmnd *cmd)
1287 {
1288 	struct request *rq = cmd->request;
1289 
1290 	switch (req_op(rq)) {
1291 	case REQ_OP_DISCARD:
1292 		switch (scsi_disk(rq->rq_disk)->provisioning_mode) {
1293 		case SD_LBP_UNMAP:
1294 			return sd_setup_unmap_cmnd(cmd);
1295 		case SD_LBP_WS16:
1296 			return sd_setup_write_same16_cmnd(cmd, true);
1297 		case SD_LBP_WS10:
1298 			return sd_setup_write_same10_cmnd(cmd, true);
1299 		case SD_LBP_ZERO:
1300 			return sd_setup_write_same10_cmnd(cmd, false);
1301 		default:
1302 			return BLK_STS_TARGET;
1303 		}
1304 	case REQ_OP_WRITE_ZEROES:
1305 		return sd_setup_write_zeroes_cmnd(cmd);
1306 	case REQ_OP_WRITE_SAME:
1307 		return sd_setup_write_same_cmnd(cmd);
1308 	case REQ_OP_FLUSH:
1309 		return sd_setup_flush_cmnd(cmd);
1310 	case REQ_OP_READ:
1311 	case REQ_OP_WRITE:
1312 	case REQ_OP_ZONE_APPEND:
1313 		return sd_setup_read_write_cmnd(cmd);
1314 	case REQ_OP_ZONE_RESET:
1315 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1316 						   false);
1317 	case REQ_OP_ZONE_RESET_ALL:
1318 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1319 						   true);
1320 	case REQ_OP_ZONE_OPEN:
1321 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false);
1322 	case REQ_OP_ZONE_CLOSE:
1323 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false);
1324 	case REQ_OP_ZONE_FINISH:
1325 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false);
1326 	default:
1327 		WARN_ON_ONCE(1);
1328 		return BLK_STS_NOTSUPP;
1329 	}
1330 }
1331 
1332 static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1333 {
1334 	struct request *rq = SCpnt->request;
1335 	u8 *cmnd;
1336 
1337 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1338 		mempool_free(rq->special_vec.bv_page, sd_page_pool);
1339 
1340 	if (SCpnt->cmnd != scsi_req(rq)->cmd) {
1341 		cmnd = SCpnt->cmnd;
1342 		SCpnt->cmnd = NULL;
1343 		SCpnt->cmd_len = 0;
1344 		mempool_free(cmnd, sd_cdb_pool);
1345 	}
1346 }
1347 
1348 /**
1349  *	sd_open - open a scsi disk device
1350  *	@bdev: Block device of the scsi disk to open
1351  *	@mode: FMODE_* mask
1352  *
1353  *	Returns 0 if successful. Returns a negated errno value in case
1354  *	of error.
1355  *
1356  *	Note: This can be called from a user context (e.g. fsck(1) )
1357  *	or from within the kernel (e.g. as a result of a mount(1) ).
1358  *	In the latter case @inode and @filp carry an abridged amount
1359  *	of information as noted above.
1360  *
1361  *	Locking: called with bdev->bd_mutex held.
1362  **/
1363 static int sd_open(struct block_device *bdev, fmode_t mode)
1364 {
1365 	struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk);
1366 	struct scsi_device *sdev;
1367 	int retval;
1368 
1369 	if (!sdkp)
1370 		return -ENXIO;
1371 
1372 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1373 
1374 	sdev = sdkp->device;
1375 
1376 	/*
1377 	 * If the device is in error recovery, wait until it is done.
1378 	 * If the device is offline, then disallow any access to it.
1379 	 */
1380 	retval = -ENXIO;
1381 	if (!scsi_block_when_processing_errors(sdev))
1382 		goto error_out;
1383 
1384 	if (sdev->removable || sdkp->write_prot) {
1385 		if (bdev_check_media_change(bdev))
1386 			sd_revalidate_disk(bdev->bd_disk);
1387 	}
1388 
1389 	/*
1390 	 * If the drive is empty, just let the open fail.
1391 	 */
1392 	retval = -ENOMEDIUM;
1393 	if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY))
1394 		goto error_out;
1395 
1396 	/*
1397 	 * If the device has the write protect tab set, have the open fail
1398 	 * if the user expects to be able to write to the thing.
1399 	 */
1400 	retval = -EROFS;
1401 	if (sdkp->write_prot && (mode & FMODE_WRITE))
1402 		goto error_out;
1403 
1404 	/*
1405 	 * It is possible that the disk changing stuff resulted in
1406 	 * the device being taken offline.  If this is the case,
1407 	 * report this to the user, and don't pretend that the
1408 	 * open actually succeeded.
1409 	 */
1410 	retval = -ENXIO;
1411 	if (!scsi_device_online(sdev))
1412 		goto error_out;
1413 
1414 	if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1415 		if (scsi_block_when_processing_errors(sdev))
1416 			scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1417 	}
1418 
1419 	return 0;
1420 
1421 error_out:
1422 	scsi_disk_put(sdkp);
1423 	return retval;
1424 }
1425 
1426 /**
1427  *	sd_release - invoked when the (last) close(2) is called on this
1428  *	scsi disk.
1429  *	@disk: disk to release
1430  *	@mode: FMODE_* mask
1431  *
1432  *	Returns 0.
1433  *
1434  *	Note: may block (uninterruptible) if error recovery is underway
1435  *	on this disk.
1436  *
1437  *	Locking: called with bdev->bd_mutex held.
1438  **/
1439 static void sd_release(struct gendisk *disk, fmode_t mode)
1440 {
1441 	struct scsi_disk *sdkp = scsi_disk(disk);
1442 	struct scsi_device *sdev = sdkp->device;
1443 
1444 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1445 
1446 	if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1447 		if (scsi_block_when_processing_errors(sdev))
1448 			scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1449 	}
1450 
1451 	scsi_disk_put(sdkp);
1452 }
1453 
1454 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1455 {
1456 	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1457 	struct scsi_device *sdp = sdkp->device;
1458 	struct Scsi_Host *host = sdp->host;
1459 	sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1460 	int diskinfo[4];
1461 
1462 	/* default to most commonly used values */
1463 	diskinfo[0] = 0x40;	/* 1 << 6 */
1464 	diskinfo[1] = 0x20;	/* 1 << 5 */
1465 	diskinfo[2] = capacity >> 11;
1466 
1467 	/* override with calculated, extended default, or driver values */
1468 	if (host->hostt->bios_param)
1469 		host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1470 	else
1471 		scsicam_bios_param(bdev, capacity, diskinfo);
1472 
1473 	geo->heads = diskinfo[0];
1474 	geo->sectors = diskinfo[1];
1475 	geo->cylinders = diskinfo[2];
1476 	return 0;
1477 }
1478 
1479 /**
1480  *	sd_ioctl - process an ioctl
1481  *	@bdev: target block device
1482  *	@mode: FMODE_* mask
1483  *	@cmd: ioctl command number
1484  *	@p: this is third argument given to ioctl(2) system call.
1485  *	Often contains a pointer.
1486  *
1487  *	Returns 0 if successful (some ioctls return positive numbers on
1488  *	success as well). Returns a negated errno value in case of error.
1489  *
1490  *	Note: most ioctls are forward onto the block subsystem or further
1491  *	down in the scsi subsystem.
1492  **/
1493 static int sd_ioctl_common(struct block_device *bdev, fmode_t mode,
1494 			   unsigned int cmd, void __user *p)
1495 {
1496 	struct gendisk *disk = bdev->bd_disk;
1497 	struct scsi_disk *sdkp = scsi_disk(disk);
1498 	struct scsi_device *sdp = sdkp->device;
1499 	int error;
1500 
1501 	SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1502 				    "cmd=0x%x\n", disk->disk_name, cmd));
1503 
1504 	error = scsi_verify_blk_ioctl(bdev, cmd);
1505 	if (error < 0)
1506 		return error;
1507 
1508 	/*
1509 	 * If we are in the middle of error recovery, don't let anyone
1510 	 * else try and use this device.  Also, if error recovery fails, it
1511 	 * may try and take the device offline, in which case all further
1512 	 * access to the device is prohibited.
1513 	 */
1514 	error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1515 			(mode & FMODE_NDELAY) != 0);
1516 	if (error)
1517 		goto out;
1518 
1519 	if (is_sed_ioctl(cmd))
1520 		return sed_ioctl(sdkp->opal_dev, cmd, p);
1521 
1522 	/*
1523 	 * Send SCSI addressing ioctls directly to mid level, send other
1524 	 * ioctls to block level and then onto mid level if they can't be
1525 	 * resolved.
1526 	 */
1527 	switch (cmd) {
1528 		case SCSI_IOCTL_GET_IDLUN:
1529 		case SCSI_IOCTL_GET_BUS_NUMBER:
1530 			error = scsi_ioctl(sdp, cmd, p);
1531 			break;
1532 		default:
1533 			error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p);
1534 			break;
1535 	}
1536 out:
1537 	return error;
1538 }
1539 
1540 static void set_media_not_present(struct scsi_disk *sdkp)
1541 {
1542 	if (sdkp->media_present)
1543 		sdkp->device->changed = 1;
1544 
1545 	if (sdkp->device->removable) {
1546 		sdkp->media_present = 0;
1547 		sdkp->capacity = 0;
1548 	}
1549 }
1550 
1551 static int media_not_present(struct scsi_disk *sdkp,
1552 			     struct scsi_sense_hdr *sshdr)
1553 {
1554 	if (!scsi_sense_valid(sshdr))
1555 		return 0;
1556 
1557 	/* not invoked for commands that could return deferred errors */
1558 	switch (sshdr->sense_key) {
1559 	case UNIT_ATTENTION:
1560 	case NOT_READY:
1561 		/* medium not present */
1562 		if (sshdr->asc == 0x3A) {
1563 			set_media_not_present(sdkp);
1564 			return 1;
1565 		}
1566 	}
1567 	return 0;
1568 }
1569 
1570 /**
1571  *	sd_check_events - check media events
1572  *	@disk: kernel device descriptor
1573  *	@clearing: disk events currently being cleared
1574  *
1575  *	Returns mask of DISK_EVENT_*.
1576  *
1577  *	Note: this function is invoked from the block subsystem.
1578  **/
1579 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1580 {
1581 	struct scsi_disk *sdkp = scsi_disk_get(disk);
1582 	struct scsi_device *sdp;
1583 	int retval;
1584 
1585 	if (!sdkp)
1586 		return 0;
1587 
1588 	sdp = sdkp->device;
1589 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1590 
1591 	/*
1592 	 * If the device is offline, don't send any commands - just pretend as
1593 	 * if the command failed.  If the device ever comes back online, we
1594 	 * can deal with it then.  It is only because of unrecoverable errors
1595 	 * that we would ever take a device offline in the first place.
1596 	 */
1597 	if (!scsi_device_online(sdp)) {
1598 		set_media_not_present(sdkp);
1599 		goto out;
1600 	}
1601 
1602 	/*
1603 	 * Using TEST_UNIT_READY enables differentiation between drive with
1604 	 * no cartridge loaded - NOT READY, drive with changed cartridge -
1605 	 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1606 	 *
1607 	 * Drives that auto spin down. eg iomega jaz 1G, will be started
1608 	 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1609 	 * sd_revalidate() is called.
1610 	 */
1611 	if (scsi_block_when_processing_errors(sdp)) {
1612 		struct scsi_sense_hdr sshdr = { 0, };
1613 
1614 		retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, SD_MAX_RETRIES,
1615 					      &sshdr);
1616 
1617 		/* failed to execute TUR, assume media not present */
1618 		if (host_byte(retval)) {
1619 			set_media_not_present(sdkp);
1620 			goto out;
1621 		}
1622 
1623 		if (media_not_present(sdkp, &sshdr))
1624 			goto out;
1625 	}
1626 
1627 	/*
1628 	 * For removable scsi disk we have to recognise the presence
1629 	 * of a disk in the drive.
1630 	 */
1631 	if (!sdkp->media_present)
1632 		sdp->changed = 1;
1633 	sdkp->media_present = 1;
1634 out:
1635 	/*
1636 	 * sdp->changed is set under the following conditions:
1637 	 *
1638 	 *	Medium present state has changed in either direction.
1639 	 *	Device has indicated UNIT_ATTENTION.
1640 	 */
1641 	retval = sdp->changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1642 	sdp->changed = 0;
1643 	scsi_disk_put(sdkp);
1644 	return retval;
1645 }
1646 
1647 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
1648 {
1649 	int retries, res;
1650 	struct scsi_device *sdp = sdkp->device;
1651 	const int timeout = sdp->request_queue->rq_timeout
1652 		* SD_FLUSH_TIMEOUT_MULTIPLIER;
1653 	struct scsi_sense_hdr my_sshdr;
1654 
1655 	if (!scsi_device_online(sdp))
1656 		return -ENODEV;
1657 
1658 	/* caller might not be interested in sense, but we need it */
1659 	if (!sshdr)
1660 		sshdr = &my_sshdr;
1661 
1662 	for (retries = 3; retries > 0; --retries) {
1663 		unsigned char cmd[10] = { 0 };
1664 
1665 		cmd[0] = SYNCHRONIZE_CACHE;
1666 		/*
1667 		 * Leave the rest of the command zero to indicate
1668 		 * flush everything.
1669 		 */
1670 		res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr,
1671 				timeout, SD_MAX_RETRIES, 0, RQF_PM, NULL);
1672 		if (res == 0)
1673 			break;
1674 	}
1675 
1676 	if (res) {
1677 		sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1678 
1679 		if (driver_byte(res) == DRIVER_SENSE)
1680 			sd_print_sense_hdr(sdkp, sshdr);
1681 
1682 		/* we need to evaluate the error return  */
1683 		if (scsi_sense_valid(sshdr) &&
1684 			(sshdr->asc == 0x3a ||	/* medium not present */
1685 			 sshdr->asc == 0x20 ||	/* invalid command */
1686 			 (sshdr->asc == 0x74 && sshdr->ascq == 0x71)))	/* drive is password locked */
1687 				/* this is no error here */
1688 				return 0;
1689 
1690 		switch (host_byte(res)) {
1691 		/* ignore errors due to racing a disconnection */
1692 		case DID_BAD_TARGET:
1693 		case DID_NO_CONNECT:
1694 			return 0;
1695 		/* signal the upper layer it might try again */
1696 		case DID_BUS_BUSY:
1697 		case DID_IMM_RETRY:
1698 		case DID_REQUEUE:
1699 		case DID_SOFT_ERROR:
1700 			return -EBUSY;
1701 		default:
1702 			return -EIO;
1703 		}
1704 	}
1705 	return 0;
1706 }
1707 
1708 static void sd_rescan(struct device *dev)
1709 {
1710 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
1711 	int ret;
1712 
1713 	ret = sd_revalidate_disk(sdkp->disk);
1714 	revalidate_disk_size(sdkp->disk, ret == 0);
1715 }
1716 
1717 static int sd_ioctl(struct block_device *bdev, fmode_t mode,
1718 		    unsigned int cmd, unsigned long arg)
1719 {
1720 	void __user *p = (void __user *)arg;
1721 	int ret;
1722 
1723 	ret = sd_ioctl_common(bdev, mode, cmd, p);
1724 	if (ret != -ENOTTY)
1725 		return ret;
1726 
1727 	return scsi_ioctl(scsi_disk(bdev->bd_disk)->device, cmd, p);
1728 }
1729 
1730 #ifdef CONFIG_COMPAT
1731 static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode,
1732 			   unsigned int cmd, unsigned long arg)
1733 {
1734 	void __user *p = compat_ptr(arg);
1735 	int ret;
1736 
1737 	ret = sd_ioctl_common(bdev, mode, cmd, p);
1738 	if (ret != -ENOTTY)
1739 		return ret;
1740 
1741 	return scsi_compat_ioctl(scsi_disk(bdev->bd_disk)->device, cmd, p);
1742 }
1743 #endif
1744 
1745 static char sd_pr_type(enum pr_type type)
1746 {
1747 	switch (type) {
1748 	case PR_WRITE_EXCLUSIVE:
1749 		return 0x01;
1750 	case PR_EXCLUSIVE_ACCESS:
1751 		return 0x03;
1752 	case PR_WRITE_EXCLUSIVE_REG_ONLY:
1753 		return 0x05;
1754 	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1755 		return 0x06;
1756 	case PR_WRITE_EXCLUSIVE_ALL_REGS:
1757 		return 0x07;
1758 	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1759 		return 0x08;
1760 	default:
1761 		return 0;
1762 	}
1763 };
1764 
1765 static int sd_pr_command(struct block_device *bdev, u8 sa,
1766 		u64 key, u64 sa_key, u8 type, u8 flags)
1767 {
1768 	struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
1769 	struct scsi_sense_hdr sshdr;
1770 	int result;
1771 	u8 cmd[16] = { 0, };
1772 	u8 data[24] = { 0, };
1773 
1774 	cmd[0] = PERSISTENT_RESERVE_OUT;
1775 	cmd[1] = sa;
1776 	cmd[2] = type;
1777 	put_unaligned_be32(sizeof(data), &cmd[5]);
1778 
1779 	put_unaligned_be64(key, &data[0]);
1780 	put_unaligned_be64(sa_key, &data[8]);
1781 	data[20] = flags;
1782 
1783 	result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data),
1784 			&sshdr, SD_TIMEOUT, SD_MAX_RETRIES, NULL);
1785 
1786 	if (driver_byte(result) == DRIVER_SENSE &&
1787 	    scsi_sense_valid(&sshdr)) {
1788 		sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1789 		scsi_print_sense_hdr(sdev, NULL, &sshdr);
1790 	}
1791 
1792 	return result;
1793 }
1794 
1795 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1796 		u32 flags)
1797 {
1798 	if (flags & ~PR_FL_IGNORE_KEY)
1799 		return -EOPNOTSUPP;
1800 	return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1801 			old_key, new_key, 0,
1802 			(1 << 0) /* APTPL */);
1803 }
1804 
1805 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1806 		u32 flags)
1807 {
1808 	if (flags)
1809 		return -EOPNOTSUPP;
1810 	return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0);
1811 }
1812 
1813 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1814 {
1815 	return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0);
1816 }
1817 
1818 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1819 		enum pr_type type, bool abort)
1820 {
1821 	return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
1822 			     sd_pr_type(type), 0);
1823 }
1824 
1825 static int sd_pr_clear(struct block_device *bdev, u64 key)
1826 {
1827 	return sd_pr_command(bdev, 0x03, key, 0, 0, 0);
1828 }
1829 
1830 static const struct pr_ops sd_pr_ops = {
1831 	.pr_register	= sd_pr_register,
1832 	.pr_reserve	= sd_pr_reserve,
1833 	.pr_release	= sd_pr_release,
1834 	.pr_preempt	= sd_pr_preempt,
1835 	.pr_clear	= sd_pr_clear,
1836 };
1837 
1838 static const struct block_device_operations sd_fops = {
1839 	.owner			= THIS_MODULE,
1840 	.open			= sd_open,
1841 	.release		= sd_release,
1842 	.ioctl			= sd_ioctl,
1843 	.getgeo			= sd_getgeo,
1844 #ifdef CONFIG_COMPAT
1845 	.compat_ioctl		= sd_compat_ioctl,
1846 #endif
1847 	.check_events		= sd_check_events,
1848 	.unlock_native_capacity	= sd_unlock_native_capacity,
1849 	.report_zones		= sd_zbc_report_zones,
1850 	.pr_ops			= &sd_pr_ops,
1851 };
1852 
1853 /**
1854  *	sd_eh_reset - reset error handling callback
1855  *	@scmd:		sd-issued command that has failed
1856  *
1857  *	This function is called by the SCSI midlayer before starting
1858  *	SCSI EH. When counting medium access failures we have to be
1859  *	careful to register it only only once per device and SCSI EH run;
1860  *	there might be several timed out commands which will cause the
1861  *	'max_medium_access_timeouts' counter to trigger after the first
1862  *	SCSI EH run already and set the device to offline.
1863  *	So this function resets the internal counter before starting SCSI EH.
1864  **/
1865 static void sd_eh_reset(struct scsi_cmnd *scmd)
1866 {
1867 	struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1868 
1869 	/* New SCSI EH run, reset gate variable */
1870 	sdkp->ignore_medium_access_errors = false;
1871 }
1872 
1873 /**
1874  *	sd_eh_action - error handling callback
1875  *	@scmd:		sd-issued command that has failed
1876  *	@eh_disp:	The recovery disposition suggested by the midlayer
1877  *
1878  *	This function is called by the SCSI midlayer upon completion of an
1879  *	error test command (currently TEST UNIT READY). The result of sending
1880  *	the eh command is passed in eh_disp.  We're looking for devices that
1881  *	fail medium access commands but are OK with non access commands like
1882  *	test unit ready (so wrongly see the device as having a successful
1883  *	recovery)
1884  **/
1885 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
1886 {
1887 	struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1888 	struct scsi_device *sdev = scmd->device;
1889 
1890 	if (!scsi_device_online(sdev) ||
1891 	    !scsi_medium_access_command(scmd) ||
1892 	    host_byte(scmd->result) != DID_TIME_OUT ||
1893 	    eh_disp != SUCCESS)
1894 		return eh_disp;
1895 
1896 	/*
1897 	 * The device has timed out executing a medium access command.
1898 	 * However, the TEST UNIT READY command sent during error
1899 	 * handling completed successfully. Either the device is in the
1900 	 * process of recovering or has it suffered an internal failure
1901 	 * that prevents access to the storage medium.
1902 	 */
1903 	if (!sdkp->ignore_medium_access_errors) {
1904 		sdkp->medium_access_timed_out++;
1905 		sdkp->ignore_medium_access_errors = true;
1906 	}
1907 
1908 	/*
1909 	 * If the device keeps failing read/write commands but TEST UNIT
1910 	 * READY always completes successfully we assume that medium
1911 	 * access is no longer possible and take the device offline.
1912 	 */
1913 	if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
1914 		scmd_printk(KERN_ERR, scmd,
1915 			    "Medium access timeout failure. Offlining disk!\n");
1916 		mutex_lock(&sdev->state_mutex);
1917 		scsi_device_set_state(sdev, SDEV_OFFLINE);
1918 		mutex_unlock(&sdev->state_mutex);
1919 
1920 		return SUCCESS;
1921 	}
1922 
1923 	return eh_disp;
1924 }
1925 
1926 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
1927 {
1928 	struct request *req = scmd->request;
1929 	struct scsi_device *sdev = scmd->device;
1930 	unsigned int transferred, good_bytes;
1931 	u64 start_lba, end_lba, bad_lba;
1932 
1933 	/*
1934 	 * Some commands have a payload smaller than the device logical
1935 	 * block size (e.g. INQUIRY on a 4K disk).
1936 	 */
1937 	if (scsi_bufflen(scmd) <= sdev->sector_size)
1938 		return 0;
1939 
1940 	/* Check if we have a 'bad_lba' information */
1941 	if (!scsi_get_sense_info_fld(scmd->sense_buffer,
1942 				     SCSI_SENSE_BUFFERSIZE,
1943 				     &bad_lba))
1944 		return 0;
1945 
1946 	/*
1947 	 * If the bad lba was reported incorrectly, we have no idea where
1948 	 * the error is.
1949 	 */
1950 	start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
1951 	end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
1952 	if (bad_lba < start_lba || bad_lba >= end_lba)
1953 		return 0;
1954 
1955 	/*
1956 	 * resid is optional but mostly filled in.  When it's unused,
1957 	 * its value is zero, so we assume the whole buffer transferred
1958 	 */
1959 	transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
1960 
1961 	/* This computation should always be done in terms of the
1962 	 * resolution of the device's medium.
1963 	 */
1964 	good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
1965 
1966 	return min(good_bytes, transferred);
1967 }
1968 
1969 /**
1970  *	sd_done - bottom half handler: called when the lower level
1971  *	driver has completed (successfully or otherwise) a scsi command.
1972  *	@SCpnt: mid-level's per command structure.
1973  *
1974  *	Note: potentially run from within an ISR. Must not block.
1975  **/
1976 static int sd_done(struct scsi_cmnd *SCpnt)
1977 {
1978 	int result = SCpnt->result;
1979 	unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
1980 	unsigned int sector_size = SCpnt->device->sector_size;
1981 	unsigned int resid;
1982 	struct scsi_sense_hdr sshdr;
1983 	struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk);
1984 	struct request *req = SCpnt->request;
1985 	int sense_valid = 0;
1986 	int sense_deferred = 0;
1987 
1988 	switch (req_op(req)) {
1989 	case REQ_OP_DISCARD:
1990 	case REQ_OP_WRITE_ZEROES:
1991 	case REQ_OP_WRITE_SAME:
1992 	case REQ_OP_ZONE_RESET:
1993 	case REQ_OP_ZONE_RESET_ALL:
1994 	case REQ_OP_ZONE_OPEN:
1995 	case REQ_OP_ZONE_CLOSE:
1996 	case REQ_OP_ZONE_FINISH:
1997 		if (!result) {
1998 			good_bytes = blk_rq_bytes(req);
1999 			scsi_set_resid(SCpnt, 0);
2000 		} else {
2001 			good_bytes = 0;
2002 			scsi_set_resid(SCpnt, blk_rq_bytes(req));
2003 		}
2004 		break;
2005 	default:
2006 		/*
2007 		 * In case of bogus fw or device, we could end up having
2008 		 * an unaligned partial completion. Check this here and force
2009 		 * alignment.
2010 		 */
2011 		resid = scsi_get_resid(SCpnt);
2012 		if (resid & (sector_size - 1)) {
2013 			sd_printk(KERN_INFO, sdkp,
2014 				"Unaligned partial completion (resid=%u, sector_sz=%u)\n",
2015 				resid, sector_size);
2016 			scsi_print_command(SCpnt);
2017 			resid = min(scsi_bufflen(SCpnt),
2018 				    round_up(resid, sector_size));
2019 			scsi_set_resid(SCpnt, resid);
2020 		}
2021 	}
2022 
2023 	if (result) {
2024 		sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
2025 		if (sense_valid)
2026 			sense_deferred = scsi_sense_is_deferred(&sshdr);
2027 	}
2028 	sdkp->medium_access_timed_out = 0;
2029 
2030 	if (driver_byte(result) != DRIVER_SENSE &&
2031 	    (!sense_valid || sense_deferred))
2032 		goto out;
2033 
2034 	switch (sshdr.sense_key) {
2035 	case HARDWARE_ERROR:
2036 	case MEDIUM_ERROR:
2037 		good_bytes = sd_completed_bytes(SCpnt);
2038 		break;
2039 	case RECOVERED_ERROR:
2040 		good_bytes = scsi_bufflen(SCpnt);
2041 		break;
2042 	case NO_SENSE:
2043 		/* This indicates a false check condition, so ignore it.  An
2044 		 * unknown amount of data was transferred so treat it as an
2045 		 * error.
2046 		 */
2047 		SCpnt->result = 0;
2048 		memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
2049 		break;
2050 	case ABORTED_COMMAND:
2051 		if (sshdr.asc == 0x10)  /* DIF: Target detected corruption */
2052 			good_bytes = sd_completed_bytes(SCpnt);
2053 		break;
2054 	case ILLEGAL_REQUEST:
2055 		switch (sshdr.asc) {
2056 		case 0x10:	/* DIX: Host detected corruption */
2057 			good_bytes = sd_completed_bytes(SCpnt);
2058 			break;
2059 		case 0x20:	/* INVALID COMMAND OPCODE */
2060 		case 0x24:	/* INVALID FIELD IN CDB */
2061 			switch (SCpnt->cmnd[0]) {
2062 			case UNMAP:
2063 				sd_config_discard(sdkp, SD_LBP_DISABLE);
2064 				break;
2065 			case WRITE_SAME_16:
2066 			case WRITE_SAME:
2067 				if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2068 					sd_config_discard(sdkp, SD_LBP_DISABLE);
2069 				} else {
2070 					sdkp->device->no_write_same = 1;
2071 					sd_config_write_same(sdkp);
2072 					req->rq_flags |= RQF_QUIET;
2073 				}
2074 				break;
2075 			}
2076 		}
2077 		break;
2078 	default:
2079 		break;
2080 	}
2081 
2082  out:
2083 	if (sd_is_zoned(sdkp))
2084 		good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2085 
2086 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2087 					   "sd_done: completed %d of %d bytes\n",
2088 					   good_bytes, scsi_bufflen(SCpnt)));
2089 
2090 	return good_bytes;
2091 }
2092 
2093 /*
2094  * spinup disk - called only in sd_revalidate_disk()
2095  */
2096 static void
2097 sd_spinup_disk(struct scsi_disk *sdkp)
2098 {
2099 	unsigned char cmd[10];
2100 	unsigned long spintime_expire = 0;
2101 	int retries, spintime;
2102 	unsigned int the_result;
2103 	struct scsi_sense_hdr sshdr;
2104 	int sense_valid = 0;
2105 
2106 	spintime = 0;
2107 
2108 	/* Spin up drives, as required.  Only do this at boot time */
2109 	/* Spinup needs to be done for module loads too. */
2110 	do {
2111 		retries = 0;
2112 
2113 		do {
2114 			cmd[0] = TEST_UNIT_READY;
2115 			memset((void *) &cmd[1], 0, 9);
2116 
2117 			the_result = scsi_execute_req(sdkp->device, cmd,
2118 						      DMA_NONE, NULL, 0,
2119 						      &sshdr, SD_TIMEOUT,
2120 						      SD_MAX_RETRIES, NULL);
2121 
2122 			/*
2123 			 * If the drive has indicated to us that it
2124 			 * doesn't have any media in it, don't bother
2125 			 * with any more polling.
2126 			 */
2127 			if (media_not_present(sdkp, &sshdr))
2128 				return;
2129 
2130 			if (the_result)
2131 				sense_valid = scsi_sense_valid(&sshdr);
2132 			retries++;
2133 		} while (retries < 3 &&
2134 			 (!scsi_status_is_good(the_result) ||
2135 			  ((driver_byte(the_result) == DRIVER_SENSE) &&
2136 			  sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
2137 
2138 		if (driver_byte(the_result) != DRIVER_SENSE) {
2139 			/* no sense, TUR either succeeded or failed
2140 			 * with a status error */
2141 			if(!spintime && !scsi_status_is_good(the_result)) {
2142 				sd_print_result(sdkp, "Test Unit Ready failed",
2143 						the_result);
2144 			}
2145 			break;
2146 		}
2147 
2148 		/*
2149 		 * The device does not want the automatic start to be issued.
2150 		 */
2151 		if (sdkp->device->no_start_on_add)
2152 			break;
2153 
2154 		if (sense_valid && sshdr.sense_key == NOT_READY) {
2155 			if (sshdr.asc == 4 && sshdr.ascq == 3)
2156 				break;	/* manual intervention required */
2157 			if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2158 				break;	/* standby */
2159 			if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2160 				break;	/* unavailable */
2161 			if (sshdr.asc == 4 && sshdr.ascq == 0x1b)
2162 				break;	/* sanitize in progress */
2163 			/*
2164 			 * Issue command to spin up drive when not ready
2165 			 */
2166 			if (!spintime) {
2167 				sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2168 				cmd[0] = START_STOP;
2169 				cmd[1] = 1;	/* Return immediately */
2170 				memset((void *) &cmd[2], 0, 8);
2171 				cmd[4] = 1;	/* Start spin cycle */
2172 				if (sdkp->device->start_stop_pwr_cond)
2173 					cmd[4] |= 1 << 4;
2174 				scsi_execute_req(sdkp->device, cmd, DMA_NONE,
2175 						 NULL, 0, &sshdr,
2176 						 SD_TIMEOUT, SD_MAX_RETRIES,
2177 						 NULL);
2178 				spintime_expire = jiffies + 100 * HZ;
2179 				spintime = 1;
2180 			}
2181 			/* Wait 1 second for next try */
2182 			msleep(1000);
2183 			printk(KERN_CONT ".");
2184 
2185 		/*
2186 		 * Wait for USB flash devices with slow firmware.
2187 		 * Yes, this sense key/ASC combination shouldn't
2188 		 * occur here.  It's characteristic of these devices.
2189 		 */
2190 		} else if (sense_valid &&
2191 				sshdr.sense_key == UNIT_ATTENTION &&
2192 				sshdr.asc == 0x28) {
2193 			if (!spintime) {
2194 				spintime_expire = jiffies + 5 * HZ;
2195 				spintime = 1;
2196 			}
2197 			/* Wait 1 second for next try */
2198 			msleep(1000);
2199 		} else {
2200 			/* we don't understand the sense code, so it's
2201 			 * probably pointless to loop */
2202 			if(!spintime) {
2203 				sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2204 				sd_print_sense_hdr(sdkp, &sshdr);
2205 			}
2206 			break;
2207 		}
2208 
2209 	} while (spintime && time_before_eq(jiffies, spintime_expire));
2210 
2211 	if (spintime) {
2212 		if (scsi_status_is_good(the_result))
2213 			printk(KERN_CONT "ready\n");
2214 		else
2215 			printk(KERN_CONT "not responding...\n");
2216 	}
2217 }
2218 
2219 /*
2220  * Determine whether disk supports Data Integrity Field.
2221  */
2222 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2223 {
2224 	struct scsi_device *sdp = sdkp->device;
2225 	u8 type;
2226 	int ret = 0;
2227 
2228 	if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) {
2229 		sdkp->protection_type = 0;
2230 		return ret;
2231 	}
2232 
2233 	type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2234 
2235 	if (type > T10_PI_TYPE3_PROTECTION)
2236 		ret = -ENODEV;
2237 	else if (scsi_host_dif_capable(sdp->host, type))
2238 		ret = 1;
2239 
2240 	if (sdkp->first_scan || type != sdkp->protection_type)
2241 		switch (ret) {
2242 		case -ENODEV:
2243 			sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \
2244 				  " protection type %u. Disabling disk!\n",
2245 				  type);
2246 			break;
2247 		case 1:
2248 			sd_printk(KERN_NOTICE, sdkp,
2249 				  "Enabling DIF Type %u protection\n", type);
2250 			break;
2251 		case 0:
2252 			sd_printk(KERN_NOTICE, sdkp,
2253 				  "Disabling DIF Type %u protection\n", type);
2254 			break;
2255 		}
2256 
2257 	sdkp->protection_type = type;
2258 
2259 	return ret;
2260 }
2261 
2262 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2263 			struct scsi_sense_hdr *sshdr, int sense_valid,
2264 			int the_result)
2265 {
2266 	if (driver_byte(the_result) == DRIVER_SENSE)
2267 		sd_print_sense_hdr(sdkp, sshdr);
2268 	else
2269 		sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2270 
2271 	/*
2272 	 * Set dirty bit for removable devices if not ready -
2273 	 * sometimes drives will not report this properly.
2274 	 */
2275 	if (sdp->removable &&
2276 	    sense_valid && sshdr->sense_key == NOT_READY)
2277 		set_media_not_present(sdkp);
2278 
2279 	/*
2280 	 * We used to set media_present to 0 here to indicate no media
2281 	 * in the drive, but some drives fail read capacity even with
2282 	 * media present, so we can't do that.
2283 	 */
2284 	sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2285 }
2286 
2287 #define RC16_LEN 32
2288 #if RC16_LEN > SD_BUF_SIZE
2289 #error RC16_LEN must not be more than SD_BUF_SIZE
2290 #endif
2291 
2292 #define READ_CAPACITY_RETRIES_ON_RESET	10
2293 
2294 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2295 						unsigned char *buffer)
2296 {
2297 	unsigned char cmd[16];
2298 	struct scsi_sense_hdr sshdr;
2299 	int sense_valid = 0;
2300 	int the_result;
2301 	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2302 	unsigned int alignment;
2303 	unsigned long long lba;
2304 	unsigned sector_size;
2305 
2306 	if (sdp->no_read_capacity_16)
2307 		return -EINVAL;
2308 
2309 	do {
2310 		memset(cmd, 0, 16);
2311 		cmd[0] = SERVICE_ACTION_IN_16;
2312 		cmd[1] = SAI_READ_CAPACITY_16;
2313 		cmd[13] = RC16_LEN;
2314 		memset(buffer, 0, RC16_LEN);
2315 
2316 		the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2317 					buffer, RC16_LEN, &sshdr,
2318 					SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2319 
2320 		if (media_not_present(sdkp, &sshdr))
2321 			return -ENODEV;
2322 
2323 		if (the_result) {
2324 			sense_valid = scsi_sense_valid(&sshdr);
2325 			if (sense_valid &&
2326 			    sshdr.sense_key == ILLEGAL_REQUEST &&
2327 			    (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2328 			    sshdr.ascq == 0x00)
2329 				/* Invalid Command Operation Code or
2330 				 * Invalid Field in CDB, just retry
2331 				 * silently with RC10 */
2332 				return -EINVAL;
2333 			if (sense_valid &&
2334 			    sshdr.sense_key == UNIT_ATTENTION &&
2335 			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2336 				/* Device reset might occur several times,
2337 				 * give it one more chance */
2338 				if (--reset_retries > 0)
2339 					continue;
2340 		}
2341 		retries--;
2342 
2343 	} while (the_result && retries);
2344 
2345 	if (the_result) {
2346 		sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2347 		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2348 		return -EINVAL;
2349 	}
2350 
2351 	sector_size = get_unaligned_be32(&buffer[8]);
2352 	lba = get_unaligned_be64(&buffer[0]);
2353 
2354 	if (sd_read_protection_type(sdkp, buffer) < 0) {
2355 		sdkp->capacity = 0;
2356 		return -ENODEV;
2357 	}
2358 
2359 	/* Logical blocks per physical block exponent */
2360 	sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2361 
2362 	/* RC basis */
2363 	sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2364 
2365 	/* Lowest aligned logical block */
2366 	alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2367 	blk_queue_alignment_offset(sdp->request_queue, alignment);
2368 	if (alignment && sdkp->first_scan)
2369 		sd_printk(KERN_NOTICE, sdkp,
2370 			  "physical block alignment offset: %u\n", alignment);
2371 
2372 	if (buffer[14] & 0x80) { /* LBPME */
2373 		sdkp->lbpme = 1;
2374 
2375 		if (buffer[14] & 0x40) /* LBPRZ */
2376 			sdkp->lbprz = 1;
2377 
2378 		sd_config_discard(sdkp, SD_LBP_WS16);
2379 	}
2380 
2381 	sdkp->capacity = lba + 1;
2382 	return sector_size;
2383 }
2384 
2385 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2386 						unsigned char *buffer)
2387 {
2388 	unsigned char cmd[16];
2389 	struct scsi_sense_hdr sshdr;
2390 	int sense_valid = 0;
2391 	int the_result;
2392 	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2393 	sector_t lba;
2394 	unsigned sector_size;
2395 
2396 	do {
2397 		cmd[0] = READ_CAPACITY;
2398 		memset(&cmd[1], 0, 9);
2399 		memset(buffer, 0, 8);
2400 
2401 		the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2402 					buffer, 8, &sshdr,
2403 					SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2404 
2405 		if (media_not_present(sdkp, &sshdr))
2406 			return -ENODEV;
2407 
2408 		if (the_result) {
2409 			sense_valid = scsi_sense_valid(&sshdr);
2410 			if (sense_valid &&
2411 			    sshdr.sense_key == UNIT_ATTENTION &&
2412 			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2413 				/* Device reset might occur several times,
2414 				 * give it one more chance */
2415 				if (--reset_retries > 0)
2416 					continue;
2417 		}
2418 		retries--;
2419 
2420 	} while (the_result && retries);
2421 
2422 	if (the_result) {
2423 		sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2424 		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2425 		return -EINVAL;
2426 	}
2427 
2428 	sector_size = get_unaligned_be32(&buffer[4]);
2429 	lba = get_unaligned_be32(&buffer[0]);
2430 
2431 	if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2432 		/* Some buggy (usb cardreader) devices return an lba of
2433 		   0xffffffff when the want to report a size of 0 (with
2434 		   which they really mean no media is present) */
2435 		sdkp->capacity = 0;
2436 		sdkp->physical_block_size = sector_size;
2437 		return sector_size;
2438 	}
2439 
2440 	sdkp->capacity = lba + 1;
2441 	sdkp->physical_block_size = sector_size;
2442 	return sector_size;
2443 }
2444 
2445 static int sd_try_rc16_first(struct scsi_device *sdp)
2446 {
2447 	if (sdp->host->max_cmd_len < 16)
2448 		return 0;
2449 	if (sdp->try_rc_10_first)
2450 		return 0;
2451 	if (sdp->scsi_level > SCSI_SPC_2)
2452 		return 1;
2453 	if (scsi_device_protection(sdp))
2454 		return 1;
2455 	return 0;
2456 }
2457 
2458 /*
2459  * read disk capacity
2460  */
2461 static void
2462 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2463 {
2464 	int sector_size;
2465 	struct scsi_device *sdp = sdkp->device;
2466 
2467 	if (sd_try_rc16_first(sdp)) {
2468 		sector_size = read_capacity_16(sdkp, sdp, buffer);
2469 		if (sector_size == -EOVERFLOW)
2470 			goto got_data;
2471 		if (sector_size == -ENODEV)
2472 			return;
2473 		if (sector_size < 0)
2474 			sector_size = read_capacity_10(sdkp, sdp, buffer);
2475 		if (sector_size < 0)
2476 			return;
2477 	} else {
2478 		sector_size = read_capacity_10(sdkp, sdp, buffer);
2479 		if (sector_size == -EOVERFLOW)
2480 			goto got_data;
2481 		if (sector_size < 0)
2482 			return;
2483 		if ((sizeof(sdkp->capacity) > 4) &&
2484 		    (sdkp->capacity > 0xffffffffULL)) {
2485 			int old_sector_size = sector_size;
2486 			sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2487 					"Trying to use READ CAPACITY(16).\n");
2488 			sector_size = read_capacity_16(sdkp, sdp, buffer);
2489 			if (sector_size < 0) {
2490 				sd_printk(KERN_NOTICE, sdkp,
2491 					"Using 0xffffffff as device size\n");
2492 				sdkp->capacity = 1 + (sector_t) 0xffffffff;
2493 				sector_size = old_sector_size;
2494 				goto got_data;
2495 			}
2496 			/* Remember that READ CAPACITY(16) succeeded */
2497 			sdp->try_rc_10_first = 0;
2498 		}
2499 	}
2500 
2501 	/* Some devices are known to return the total number of blocks,
2502 	 * not the highest block number.  Some devices have versions
2503 	 * which do this and others which do not.  Some devices we might
2504 	 * suspect of doing this but we don't know for certain.
2505 	 *
2506 	 * If we know the reported capacity is wrong, decrement it.  If
2507 	 * we can only guess, then assume the number of blocks is even
2508 	 * (usually true but not always) and err on the side of lowering
2509 	 * the capacity.
2510 	 */
2511 	if (sdp->fix_capacity ||
2512 	    (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2513 		sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2514 				"from its reported value: %llu\n",
2515 				(unsigned long long) sdkp->capacity);
2516 		--sdkp->capacity;
2517 	}
2518 
2519 got_data:
2520 	if (sector_size == 0) {
2521 		sector_size = 512;
2522 		sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2523 			  "assuming 512.\n");
2524 	}
2525 
2526 	if (sector_size != 512 &&
2527 	    sector_size != 1024 &&
2528 	    sector_size != 2048 &&
2529 	    sector_size != 4096) {
2530 		sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2531 			  sector_size);
2532 		/*
2533 		 * The user might want to re-format the drive with
2534 		 * a supported sectorsize.  Once this happens, it
2535 		 * would be relatively trivial to set the thing up.
2536 		 * For this reason, we leave the thing in the table.
2537 		 */
2538 		sdkp->capacity = 0;
2539 		/*
2540 		 * set a bogus sector size so the normal read/write
2541 		 * logic in the block layer will eventually refuse any
2542 		 * request on this device without tripping over power
2543 		 * of two sector size assumptions
2544 		 */
2545 		sector_size = 512;
2546 	}
2547 	blk_queue_logical_block_size(sdp->request_queue, sector_size);
2548 	blk_queue_physical_block_size(sdp->request_queue,
2549 				      sdkp->physical_block_size);
2550 	sdkp->device->sector_size = sector_size;
2551 
2552 	if (sdkp->capacity > 0xffffffff)
2553 		sdp->use_16_for_rw = 1;
2554 
2555 }
2556 
2557 /*
2558  * Print disk capacity
2559  */
2560 static void
2561 sd_print_capacity(struct scsi_disk *sdkp,
2562 		  sector_t old_capacity)
2563 {
2564 	int sector_size = sdkp->device->sector_size;
2565 	char cap_str_2[10], cap_str_10[10];
2566 
2567 	if (!sdkp->first_scan && old_capacity == sdkp->capacity)
2568 		return;
2569 
2570 	string_get_size(sdkp->capacity, sector_size,
2571 			STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2572 	string_get_size(sdkp->capacity, sector_size,
2573 			STRING_UNITS_10, cap_str_10, sizeof(cap_str_10));
2574 
2575 	sd_printk(KERN_NOTICE, sdkp,
2576 		  "%llu %d-byte logical blocks: (%s/%s)\n",
2577 		  (unsigned long long)sdkp->capacity,
2578 		  sector_size, cap_str_10, cap_str_2);
2579 
2580 	if (sdkp->physical_block_size != sector_size)
2581 		sd_printk(KERN_NOTICE, sdkp,
2582 			  "%u-byte physical blocks\n",
2583 			  sdkp->physical_block_size);
2584 }
2585 
2586 /* called with buffer of length 512 */
2587 static inline int
2588 sd_do_mode_sense(struct scsi_device *sdp, int dbd, int modepage,
2589 		 unsigned char *buffer, int len, struct scsi_mode_data *data,
2590 		 struct scsi_sense_hdr *sshdr)
2591 {
2592 	return scsi_mode_sense(sdp, dbd, modepage, buffer, len,
2593 			       SD_TIMEOUT, SD_MAX_RETRIES, data,
2594 			       sshdr);
2595 }
2596 
2597 /*
2598  * read write protect setting, if possible - called only in sd_revalidate_disk()
2599  * called with buffer of length SD_BUF_SIZE
2600  */
2601 static void
2602 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2603 {
2604 	int res;
2605 	struct scsi_device *sdp = sdkp->device;
2606 	struct scsi_mode_data data;
2607 	int old_wp = sdkp->write_prot;
2608 
2609 	set_disk_ro(sdkp->disk, 0);
2610 	if (sdp->skip_ms_page_3f) {
2611 		sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2612 		return;
2613 	}
2614 
2615 	if (sdp->use_192_bytes_for_3f) {
2616 		res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 192, &data, NULL);
2617 	} else {
2618 		/*
2619 		 * First attempt: ask for all pages (0x3F), but only 4 bytes.
2620 		 * We have to start carefully: some devices hang if we ask
2621 		 * for more than is available.
2622 		 */
2623 		res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 4, &data, NULL);
2624 
2625 		/*
2626 		 * Second attempt: ask for page 0 When only page 0 is
2627 		 * implemented, a request for page 3F may return Sense Key
2628 		 * 5: Illegal Request, Sense Code 24: Invalid field in
2629 		 * CDB.
2630 		 */
2631 		if (!scsi_status_is_good(res))
2632 			res = sd_do_mode_sense(sdp, 0, 0, buffer, 4, &data, NULL);
2633 
2634 		/*
2635 		 * Third attempt: ask 255 bytes, as we did earlier.
2636 		 */
2637 		if (!scsi_status_is_good(res))
2638 			res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 255,
2639 					       &data, NULL);
2640 	}
2641 
2642 	if (!scsi_status_is_good(res)) {
2643 		sd_first_printk(KERN_WARNING, sdkp,
2644 			  "Test WP failed, assume Write Enabled\n");
2645 	} else {
2646 		sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2647 		set_disk_ro(sdkp->disk, sdkp->write_prot);
2648 		if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2649 			sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2650 				  sdkp->write_prot ? "on" : "off");
2651 			sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
2652 		}
2653 	}
2654 }
2655 
2656 /*
2657  * sd_read_cache_type - called only from sd_revalidate_disk()
2658  * called with buffer of length SD_BUF_SIZE
2659  */
2660 static void
2661 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2662 {
2663 	int len = 0, res;
2664 	struct scsi_device *sdp = sdkp->device;
2665 
2666 	int dbd;
2667 	int modepage;
2668 	int first_len;
2669 	struct scsi_mode_data data;
2670 	struct scsi_sense_hdr sshdr;
2671 	int old_wce = sdkp->WCE;
2672 	int old_rcd = sdkp->RCD;
2673 	int old_dpofua = sdkp->DPOFUA;
2674 
2675 
2676 	if (sdkp->cache_override)
2677 		return;
2678 
2679 	first_len = 4;
2680 	if (sdp->skip_ms_page_8) {
2681 		if (sdp->type == TYPE_RBC)
2682 			goto defaults;
2683 		else {
2684 			if (sdp->skip_ms_page_3f)
2685 				goto defaults;
2686 			modepage = 0x3F;
2687 			if (sdp->use_192_bytes_for_3f)
2688 				first_len = 192;
2689 			dbd = 0;
2690 		}
2691 	} else if (sdp->type == TYPE_RBC) {
2692 		modepage = 6;
2693 		dbd = 8;
2694 	} else {
2695 		modepage = 8;
2696 		dbd = 0;
2697 	}
2698 
2699 	/* cautiously ask */
2700 	res = sd_do_mode_sense(sdp, dbd, modepage, buffer, first_len,
2701 			&data, &sshdr);
2702 
2703 	if (!scsi_status_is_good(res))
2704 		goto bad_sense;
2705 
2706 	if (!data.header_length) {
2707 		modepage = 6;
2708 		first_len = 0;
2709 		sd_first_printk(KERN_ERR, sdkp,
2710 				"Missing header in MODE_SENSE response\n");
2711 	}
2712 
2713 	/* that went OK, now ask for the proper length */
2714 	len = data.length;
2715 
2716 	/*
2717 	 * We're only interested in the first three bytes, actually.
2718 	 * But the data cache page is defined for the first 20.
2719 	 */
2720 	if (len < 3)
2721 		goto bad_sense;
2722 	else if (len > SD_BUF_SIZE) {
2723 		sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2724 			  "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2725 		len = SD_BUF_SIZE;
2726 	}
2727 	if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2728 		len = 192;
2729 
2730 	/* Get the data */
2731 	if (len > first_len)
2732 		res = sd_do_mode_sense(sdp, dbd, modepage, buffer, len,
2733 				&data, &sshdr);
2734 
2735 	if (scsi_status_is_good(res)) {
2736 		int offset = data.header_length + data.block_descriptor_length;
2737 
2738 		while (offset < len) {
2739 			u8 page_code = buffer[offset] & 0x3F;
2740 			u8 spf       = buffer[offset] & 0x40;
2741 
2742 			if (page_code == 8 || page_code == 6) {
2743 				/* We're interested only in the first 3 bytes.
2744 				 */
2745 				if (len - offset <= 2) {
2746 					sd_first_printk(KERN_ERR, sdkp,
2747 						"Incomplete mode parameter "
2748 							"data\n");
2749 					goto defaults;
2750 				} else {
2751 					modepage = page_code;
2752 					goto Page_found;
2753 				}
2754 			} else {
2755 				/* Go to the next page */
2756 				if (spf && len - offset > 3)
2757 					offset += 4 + (buffer[offset+2] << 8) +
2758 						buffer[offset+3];
2759 				else if (!spf && len - offset > 1)
2760 					offset += 2 + buffer[offset+1];
2761 				else {
2762 					sd_first_printk(KERN_ERR, sdkp,
2763 							"Incomplete mode "
2764 							"parameter data\n");
2765 					goto defaults;
2766 				}
2767 			}
2768 		}
2769 
2770 		sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n");
2771 		goto defaults;
2772 
2773 	Page_found:
2774 		if (modepage == 8) {
2775 			sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2776 			sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2777 		} else {
2778 			sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2779 			sdkp->RCD = 0;
2780 		}
2781 
2782 		sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2783 		if (sdp->broken_fua) {
2784 			sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2785 			sdkp->DPOFUA = 0;
2786 		} else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
2787 			   !sdkp->device->use_16_for_rw) {
2788 			sd_first_printk(KERN_NOTICE, sdkp,
2789 				  "Uses READ/WRITE(6), disabling FUA\n");
2790 			sdkp->DPOFUA = 0;
2791 		}
2792 
2793 		/* No cache flush allowed for write protected devices */
2794 		if (sdkp->WCE && sdkp->write_prot)
2795 			sdkp->WCE = 0;
2796 
2797 		if (sdkp->first_scan || old_wce != sdkp->WCE ||
2798 		    old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2799 			sd_printk(KERN_NOTICE, sdkp,
2800 				  "Write cache: %s, read cache: %s, %s\n",
2801 				  sdkp->WCE ? "enabled" : "disabled",
2802 				  sdkp->RCD ? "disabled" : "enabled",
2803 				  sdkp->DPOFUA ? "supports DPO and FUA"
2804 				  : "doesn't support DPO or FUA");
2805 
2806 		return;
2807 	}
2808 
2809 bad_sense:
2810 	if (scsi_sense_valid(&sshdr) &&
2811 	    sshdr.sense_key == ILLEGAL_REQUEST &&
2812 	    sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2813 		/* Invalid field in CDB */
2814 		sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2815 	else
2816 		sd_first_printk(KERN_ERR, sdkp,
2817 				"Asking for cache data failed\n");
2818 
2819 defaults:
2820 	if (sdp->wce_default_on) {
2821 		sd_first_printk(KERN_NOTICE, sdkp,
2822 				"Assuming drive cache: write back\n");
2823 		sdkp->WCE = 1;
2824 	} else {
2825 		sd_first_printk(KERN_ERR, sdkp,
2826 				"Assuming drive cache: write through\n");
2827 		sdkp->WCE = 0;
2828 	}
2829 	sdkp->RCD = 0;
2830 	sdkp->DPOFUA = 0;
2831 }
2832 
2833 /*
2834  * The ATO bit indicates whether the DIF application tag is available
2835  * for use by the operating system.
2836  */
2837 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
2838 {
2839 	int res, offset;
2840 	struct scsi_device *sdp = sdkp->device;
2841 	struct scsi_mode_data data;
2842 	struct scsi_sense_hdr sshdr;
2843 
2844 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
2845 		return;
2846 
2847 	if (sdkp->protection_type == 0)
2848 		return;
2849 
2850 	res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT,
2851 			      SD_MAX_RETRIES, &data, &sshdr);
2852 
2853 	if (!scsi_status_is_good(res) || !data.header_length ||
2854 	    data.length < 6) {
2855 		sd_first_printk(KERN_WARNING, sdkp,
2856 			  "getting Control mode page failed, assume no ATO\n");
2857 
2858 		if (scsi_sense_valid(&sshdr))
2859 			sd_print_sense_hdr(sdkp, &sshdr);
2860 
2861 		return;
2862 	}
2863 
2864 	offset = data.header_length + data.block_descriptor_length;
2865 
2866 	if ((buffer[offset] & 0x3f) != 0x0a) {
2867 		sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
2868 		return;
2869 	}
2870 
2871 	if ((buffer[offset + 5] & 0x80) == 0)
2872 		return;
2873 
2874 	sdkp->ATO = 1;
2875 
2876 	return;
2877 }
2878 
2879 /**
2880  * sd_read_block_limits - Query disk device for preferred I/O sizes.
2881  * @sdkp: disk to query
2882  */
2883 static void sd_read_block_limits(struct scsi_disk *sdkp)
2884 {
2885 	unsigned int sector_sz = sdkp->device->sector_size;
2886 	const int vpd_len = 64;
2887 	unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL);
2888 
2889 	if (!buffer ||
2890 	    /* Block Limits VPD */
2891 	    scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len))
2892 		goto out;
2893 
2894 	blk_queue_io_min(sdkp->disk->queue,
2895 			 get_unaligned_be16(&buffer[6]) * sector_sz);
2896 
2897 	sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]);
2898 	sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]);
2899 
2900 	if (buffer[3] == 0x3c) {
2901 		unsigned int lba_count, desc_count;
2902 
2903 		sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]);
2904 
2905 		if (!sdkp->lbpme)
2906 			goto out;
2907 
2908 		lba_count = get_unaligned_be32(&buffer[20]);
2909 		desc_count = get_unaligned_be32(&buffer[24]);
2910 
2911 		if (lba_count && desc_count)
2912 			sdkp->max_unmap_blocks = lba_count;
2913 
2914 		sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]);
2915 
2916 		if (buffer[32] & 0x80)
2917 			sdkp->unmap_alignment =
2918 				get_unaligned_be32(&buffer[32]) & ~(1 << 31);
2919 
2920 		if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
2921 
2922 			if (sdkp->max_unmap_blocks)
2923 				sd_config_discard(sdkp, SD_LBP_UNMAP);
2924 			else
2925 				sd_config_discard(sdkp, SD_LBP_WS16);
2926 
2927 		} else {	/* LBP VPD page tells us what to use */
2928 			if (sdkp->lbpu && sdkp->max_unmap_blocks)
2929 				sd_config_discard(sdkp, SD_LBP_UNMAP);
2930 			else if (sdkp->lbpws)
2931 				sd_config_discard(sdkp, SD_LBP_WS16);
2932 			else if (sdkp->lbpws10)
2933 				sd_config_discard(sdkp, SD_LBP_WS10);
2934 			else
2935 				sd_config_discard(sdkp, SD_LBP_DISABLE);
2936 		}
2937 	}
2938 
2939  out:
2940 	kfree(buffer);
2941 }
2942 
2943 /**
2944  * sd_read_block_characteristics - Query block dev. characteristics
2945  * @sdkp: disk to query
2946  */
2947 static void sd_read_block_characteristics(struct scsi_disk *sdkp)
2948 {
2949 	struct request_queue *q = sdkp->disk->queue;
2950 	unsigned char *buffer;
2951 	u16 rot;
2952 	const int vpd_len = 64;
2953 
2954 	buffer = kmalloc(vpd_len, GFP_KERNEL);
2955 
2956 	if (!buffer ||
2957 	    /* Block Device Characteristics VPD */
2958 	    scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len))
2959 		goto out;
2960 
2961 	rot = get_unaligned_be16(&buffer[4]);
2962 
2963 	if (rot == 1) {
2964 		blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
2965 		blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
2966 	}
2967 
2968 	if (sdkp->device->type == TYPE_ZBC) {
2969 		/* Host-managed */
2970 		blk_queue_set_zoned(sdkp->disk, BLK_ZONED_HM);
2971 	} else {
2972 		sdkp->zoned = (buffer[8] >> 4) & 3;
2973 		if (sdkp->zoned == 1) {
2974 			/* Host-aware */
2975 			blk_queue_set_zoned(sdkp->disk, BLK_ZONED_HA);
2976 		} else {
2977 			/* Regular disk or drive managed disk */
2978 			blk_queue_set_zoned(sdkp->disk, BLK_ZONED_NONE);
2979 		}
2980 	}
2981 
2982 	if (!sdkp->first_scan)
2983 		goto out;
2984 
2985 	if (blk_queue_is_zoned(q)) {
2986 		sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n",
2987 		      q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware");
2988 	} else {
2989 		if (sdkp->zoned == 1)
2990 			sd_printk(KERN_NOTICE, sdkp,
2991 				  "Host-aware SMR disk used as regular disk\n");
2992 		else if (sdkp->zoned == 2)
2993 			sd_printk(KERN_NOTICE, sdkp,
2994 				  "Drive-managed SMR disk\n");
2995 	}
2996 
2997  out:
2998 	kfree(buffer);
2999 }
3000 
3001 /**
3002  * sd_read_block_provisioning - Query provisioning VPD page
3003  * @sdkp: disk to query
3004  */
3005 static void sd_read_block_provisioning(struct scsi_disk *sdkp)
3006 {
3007 	unsigned char *buffer;
3008 	const int vpd_len = 8;
3009 
3010 	if (sdkp->lbpme == 0)
3011 		return;
3012 
3013 	buffer = kmalloc(vpd_len, GFP_KERNEL);
3014 
3015 	if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len))
3016 		goto out;
3017 
3018 	sdkp->lbpvpd	= 1;
3019 	sdkp->lbpu	= (buffer[5] >> 7) & 1;	/* UNMAP */
3020 	sdkp->lbpws	= (buffer[5] >> 6) & 1;	/* WRITE SAME(16) with UNMAP */
3021 	sdkp->lbpws10	= (buffer[5] >> 5) & 1;	/* WRITE SAME(10) with UNMAP */
3022 
3023  out:
3024 	kfree(buffer);
3025 }
3026 
3027 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
3028 {
3029 	struct scsi_device *sdev = sdkp->device;
3030 
3031 	if (sdev->host->no_write_same) {
3032 		sdev->no_write_same = 1;
3033 
3034 		return;
3035 	}
3036 
3037 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) {
3038 		/* too large values might cause issues with arcmsr */
3039 		int vpd_buf_len = 64;
3040 
3041 		sdev->no_report_opcodes = 1;
3042 
3043 		/* Disable WRITE SAME if REPORT SUPPORTED OPERATION
3044 		 * CODES is unsupported and the device has an ATA
3045 		 * Information VPD page (SAT).
3046 		 */
3047 		if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len))
3048 			sdev->no_write_same = 1;
3049 	}
3050 
3051 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1)
3052 		sdkp->ws16 = 1;
3053 
3054 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1)
3055 		sdkp->ws10 = 1;
3056 }
3057 
3058 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3059 {
3060 	struct scsi_device *sdev = sdkp->device;
3061 
3062 	if (!sdev->security_supported)
3063 		return;
3064 
3065 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3066 			SECURITY_PROTOCOL_IN) == 1 &&
3067 	    scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3068 			SECURITY_PROTOCOL_OUT) == 1)
3069 		sdkp->security = 1;
3070 }
3071 
3072 /*
3073  * Determine the device's preferred I/O size for reads and writes
3074  * unless the reported value is unreasonably small, large, not a
3075  * multiple of the physical block size, or simply garbage.
3076  */
3077 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp,
3078 				      unsigned int dev_max)
3079 {
3080 	struct scsi_device *sdp = sdkp->device;
3081 	unsigned int opt_xfer_bytes =
3082 		logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3083 
3084 	if (sdkp->opt_xfer_blocks == 0)
3085 		return false;
3086 
3087 	if (sdkp->opt_xfer_blocks > dev_max) {
3088 		sd_first_printk(KERN_WARNING, sdkp,
3089 				"Optimal transfer size %u logical blocks " \
3090 				"> dev_max (%u logical blocks)\n",
3091 				sdkp->opt_xfer_blocks, dev_max);
3092 		return false;
3093 	}
3094 
3095 	if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) {
3096 		sd_first_printk(KERN_WARNING, sdkp,
3097 				"Optimal transfer size %u logical blocks " \
3098 				"> sd driver limit (%u logical blocks)\n",
3099 				sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS);
3100 		return false;
3101 	}
3102 
3103 	if (opt_xfer_bytes < PAGE_SIZE) {
3104 		sd_first_printk(KERN_WARNING, sdkp,
3105 				"Optimal transfer size %u bytes < " \
3106 				"PAGE_SIZE (%u bytes)\n",
3107 				opt_xfer_bytes, (unsigned int)PAGE_SIZE);
3108 		return false;
3109 	}
3110 
3111 	if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) {
3112 		sd_first_printk(KERN_WARNING, sdkp,
3113 				"Optimal transfer size %u bytes not a " \
3114 				"multiple of physical block size (%u bytes)\n",
3115 				opt_xfer_bytes, sdkp->physical_block_size);
3116 		return false;
3117 	}
3118 
3119 	sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n",
3120 			opt_xfer_bytes);
3121 	return true;
3122 }
3123 
3124 /**
3125  *	sd_revalidate_disk - called the first time a new disk is seen,
3126  *	performs disk spin up, read_capacity, etc.
3127  *	@disk: struct gendisk we care about
3128  **/
3129 static int sd_revalidate_disk(struct gendisk *disk)
3130 {
3131 	struct scsi_disk *sdkp = scsi_disk(disk);
3132 	struct scsi_device *sdp = sdkp->device;
3133 	struct request_queue *q = sdkp->disk->queue;
3134 	sector_t old_capacity = sdkp->capacity;
3135 	unsigned char *buffer;
3136 	unsigned int dev_max, rw_max;
3137 
3138 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3139 				      "sd_revalidate_disk\n"));
3140 
3141 	/*
3142 	 * If the device is offline, don't try and read capacity or any
3143 	 * of the other niceties.
3144 	 */
3145 	if (!scsi_device_online(sdp))
3146 		goto out;
3147 
3148 	buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3149 	if (!buffer) {
3150 		sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3151 			  "allocation failure.\n");
3152 		goto out;
3153 	}
3154 
3155 	sd_spinup_disk(sdkp);
3156 
3157 	/*
3158 	 * Without media there is no reason to ask; moreover, some devices
3159 	 * react badly if we do.
3160 	 */
3161 	if (sdkp->media_present) {
3162 		sd_read_capacity(sdkp, buffer);
3163 
3164 		/*
3165 		 * set the default to rotational.  All non-rotational devices
3166 		 * support the block characteristics VPD page, which will
3167 		 * cause this to be updated correctly and any device which
3168 		 * doesn't support it should be treated as rotational.
3169 		 */
3170 		blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
3171 		blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q);
3172 
3173 		if (scsi_device_supports_vpd(sdp)) {
3174 			sd_read_block_provisioning(sdkp);
3175 			sd_read_block_limits(sdkp);
3176 			sd_read_block_characteristics(sdkp);
3177 			sd_zbc_read_zones(sdkp, buffer);
3178 		}
3179 
3180 		sd_print_capacity(sdkp, old_capacity);
3181 
3182 		sd_read_write_protect_flag(sdkp, buffer);
3183 		sd_read_cache_type(sdkp, buffer);
3184 		sd_read_app_tag_own(sdkp, buffer);
3185 		sd_read_write_same(sdkp, buffer);
3186 		sd_read_security(sdkp, buffer);
3187 	}
3188 
3189 	/*
3190 	 * We now have all cache related info, determine how we deal
3191 	 * with flush requests.
3192 	 */
3193 	sd_set_flush_flag(sdkp);
3194 
3195 	/* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3196 	dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3197 
3198 	/* Some devices report a maximum block count for READ/WRITE requests. */
3199 	dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3200 	q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3201 
3202 	if (sd_validate_opt_xfer_size(sdkp, dev_max)) {
3203 		q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3204 		rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
3205 	} else {
3206 		q->limits.io_opt = 0;
3207 		rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
3208 				      (sector_t)BLK_DEF_MAX_SECTORS);
3209 	}
3210 
3211 	/* Do not exceed controller limit */
3212 	rw_max = min(rw_max, queue_max_hw_sectors(q));
3213 
3214 	/*
3215 	 * Only update max_sectors if previously unset or if the current value
3216 	 * exceeds the capabilities of the hardware.
3217 	 */
3218 	if (sdkp->first_scan ||
3219 	    q->limits.max_sectors > q->limits.max_dev_sectors ||
3220 	    q->limits.max_sectors > q->limits.max_hw_sectors)
3221 		q->limits.max_sectors = rw_max;
3222 
3223 	sdkp->first_scan = 0;
3224 
3225 	set_capacity_revalidate_and_notify(disk,
3226 		logical_to_sectors(sdp, sdkp->capacity), false);
3227 	sd_config_write_same(sdkp);
3228 	kfree(buffer);
3229 
3230 	/*
3231 	 * For a zoned drive, revalidating the zones can be done only once
3232 	 * the gendisk capacity is set. So if this fails, set back the gendisk
3233 	 * capacity to 0.
3234 	 */
3235 	if (sd_zbc_revalidate_zones(sdkp))
3236 		set_capacity_revalidate_and_notify(disk, 0, false);
3237 
3238  out:
3239 	return 0;
3240 }
3241 
3242 /**
3243  *	sd_unlock_native_capacity - unlock native capacity
3244  *	@disk: struct gendisk to set capacity for
3245  *
3246  *	Block layer calls this function if it detects that partitions
3247  *	on @disk reach beyond the end of the device.  If the SCSI host
3248  *	implements ->unlock_native_capacity() method, it's invoked to
3249  *	give it a chance to adjust the device capacity.
3250  *
3251  *	CONTEXT:
3252  *	Defined by block layer.  Might sleep.
3253  */
3254 static void sd_unlock_native_capacity(struct gendisk *disk)
3255 {
3256 	struct scsi_device *sdev = scsi_disk(disk)->device;
3257 
3258 	if (sdev->host->hostt->unlock_native_capacity)
3259 		sdev->host->hostt->unlock_native_capacity(sdev);
3260 }
3261 
3262 /**
3263  *	sd_format_disk_name - format disk name
3264  *	@prefix: name prefix - ie. "sd" for SCSI disks
3265  *	@index: index of the disk to format name for
3266  *	@buf: output buffer
3267  *	@buflen: length of the output buffer
3268  *
3269  *	SCSI disk names starts at sda.  The 26th device is sdz and the
3270  *	27th is sdaa.  The last one for two lettered suffix is sdzz
3271  *	which is followed by sdaaa.
3272  *
3273  *	This is basically 26 base counting with one extra 'nil' entry
3274  *	at the beginning from the second digit on and can be
3275  *	determined using similar method as 26 base conversion with the
3276  *	index shifted -1 after each digit is computed.
3277  *
3278  *	CONTEXT:
3279  *	Don't care.
3280  *
3281  *	RETURNS:
3282  *	0 on success, -errno on failure.
3283  */
3284 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3285 {
3286 	const int base = 'z' - 'a' + 1;
3287 	char *begin = buf + strlen(prefix);
3288 	char *end = buf + buflen;
3289 	char *p;
3290 	int unit;
3291 
3292 	p = end - 1;
3293 	*p = '\0';
3294 	unit = base;
3295 	do {
3296 		if (p == begin)
3297 			return -EINVAL;
3298 		*--p = 'a' + (index % unit);
3299 		index = (index / unit) - 1;
3300 	} while (index >= 0);
3301 
3302 	memmove(begin, p, end - p);
3303 	memcpy(buf, prefix, strlen(prefix));
3304 
3305 	return 0;
3306 }
3307 
3308 /**
3309  *	sd_probe - called during driver initialization and whenever a
3310  *	new scsi device is attached to the system. It is called once
3311  *	for each scsi device (not just disks) present.
3312  *	@dev: pointer to device object
3313  *
3314  *	Returns 0 if successful (or not interested in this scsi device
3315  *	(e.g. scanner)); 1 when there is an error.
3316  *
3317  *	Note: this function is invoked from the scsi mid-level.
3318  *	This function sets up the mapping between a given
3319  *	<host,channel,id,lun> (found in sdp) and new device name
3320  *	(e.g. /dev/sda). More precisely it is the block device major
3321  *	and minor number that is chosen here.
3322  *
3323  *	Assume sd_probe is not re-entrant (for time being)
3324  *	Also think about sd_probe() and sd_remove() running coincidentally.
3325  **/
3326 static int sd_probe(struct device *dev)
3327 {
3328 	struct scsi_device *sdp = to_scsi_device(dev);
3329 	struct scsi_disk *sdkp;
3330 	struct gendisk *gd;
3331 	int index;
3332 	int error;
3333 
3334 	scsi_autopm_get_device(sdp);
3335 	error = -ENODEV;
3336 	if (sdp->type != TYPE_DISK &&
3337 	    sdp->type != TYPE_ZBC &&
3338 	    sdp->type != TYPE_MOD &&
3339 	    sdp->type != TYPE_RBC)
3340 		goto out;
3341 
3342 #ifndef CONFIG_BLK_DEV_ZONED
3343 	if (sdp->type == TYPE_ZBC)
3344 		goto out;
3345 #endif
3346 	SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3347 					"sd_probe\n"));
3348 
3349 	error = -ENOMEM;
3350 	sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3351 	if (!sdkp)
3352 		goto out;
3353 
3354 	gd = alloc_disk(SD_MINORS);
3355 	if (!gd)
3356 		goto out_free;
3357 
3358 	index = ida_alloc(&sd_index_ida, GFP_KERNEL);
3359 	if (index < 0) {
3360 		sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3361 		goto out_put;
3362 	}
3363 
3364 	error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3365 	if (error) {
3366 		sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3367 		goto out_free_index;
3368 	}
3369 
3370 	sdkp->device = sdp;
3371 	sdkp->driver = &sd_template;
3372 	sdkp->disk = gd;
3373 	sdkp->index = index;
3374 	atomic_set(&sdkp->openers, 0);
3375 	atomic_set(&sdkp->device->ioerr_cnt, 0);
3376 
3377 	if (!sdp->request_queue->rq_timeout) {
3378 		if (sdp->type != TYPE_MOD)
3379 			blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3380 		else
3381 			blk_queue_rq_timeout(sdp->request_queue,
3382 					     SD_MOD_TIMEOUT);
3383 	}
3384 
3385 	device_initialize(&sdkp->dev);
3386 	sdkp->dev.parent = dev;
3387 	sdkp->dev.class = &sd_disk_class;
3388 	dev_set_name(&sdkp->dev, "%s", dev_name(dev));
3389 
3390 	error = device_add(&sdkp->dev);
3391 	if (error)
3392 		goto out_free_index;
3393 
3394 	get_device(dev);
3395 	dev_set_drvdata(dev, sdkp);
3396 
3397 	gd->major = sd_major((index & 0xf0) >> 4);
3398 	gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3399 
3400 	gd->fops = &sd_fops;
3401 	gd->private_data = &sdkp->driver;
3402 	gd->queue = sdkp->device->request_queue;
3403 
3404 	/* defaults, until the device tells us otherwise */
3405 	sdp->sector_size = 512;
3406 	sdkp->capacity = 0;
3407 	sdkp->media_present = 1;
3408 	sdkp->write_prot = 0;
3409 	sdkp->cache_override = 0;
3410 	sdkp->WCE = 0;
3411 	sdkp->RCD = 0;
3412 	sdkp->ATO = 0;
3413 	sdkp->first_scan = 1;
3414 	sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3415 
3416 	sd_revalidate_disk(gd);
3417 
3418 	gd->flags = GENHD_FL_EXT_DEVT;
3419 	if (sdp->removable) {
3420 		gd->flags |= GENHD_FL_REMOVABLE;
3421 		gd->events |= DISK_EVENT_MEDIA_CHANGE;
3422 		gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT;
3423 	}
3424 
3425 	blk_pm_runtime_init(sdp->request_queue, dev);
3426 	if (sdp->rpm_autosuspend) {
3427 		pm_runtime_set_autosuspend_delay(dev,
3428 			sdp->host->hostt->rpm_autosuspend_delay);
3429 	}
3430 	device_add_disk(dev, gd, NULL);
3431 	if (sdkp->capacity)
3432 		sd_dif_config_host(sdkp);
3433 
3434 	sd_revalidate_disk(gd);
3435 
3436 	if (sdkp->security) {
3437 		sdkp->opal_dev = init_opal_dev(sdp, &sd_sec_submit);
3438 		if (sdkp->opal_dev)
3439 			sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
3440 	}
3441 
3442 	sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3443 		  sdp->removable ? "removable " : "");
3444 	scsi_autopm_put_device(sdp);
3445 
3446 	return 0;
3447 
3448  out_free_index:
3449 	ida_free(&sd_index_ida, index);
3450  out_put:
3451 	put_disk(gd);
3452  out_free:
3453 	sd_zbc_release_disk(sdkp);
3454 	kfree(sdkp);
3455  out:
3456 	scsi_autopm_put_device(sdp);
3457 	return error;
3458 }
3459 
3460 /**
3461  *	sd_remove - called whenever a scsi disk (previously recognized by
3462  *	sd_probe) is detached from the system. It is called (potentially
3463  *	multiple times) during sd module unload.
3464  *	@dev: pointer to device object
3465  *
3466  *	Note: this function is invoked from the scsi mid-level.
3467  *	This function potentially frees up a device name (e.g. /dev/sdc)
3468  *	that could be re-used by a subsequent sd_probe().
3469  *	This function is not called when the built-in sd driver is "exit-ed".
3470  **/
3471 static int sd_remove(struct device *dev)
3472 {
3473 	struct scsi_disk *sdkp;
3474 	dev_t devt;
3475 
3476 	sdkp = dev_get_drvdata(dev);
3477 	devt = disk_devt(sdkp->disk);
3478 	scsi_autopm_get_device(sdkp->device);
3479 
3480 	async_synchronize_full_domain(&scsi_sd_pm_domain);
3481 	device_del(&sdkp->dev);
3482 	del_gendisk(sdkp->disk);
3483 	sd_shutdown(dev);
3484 
3485 	free_opal_dev(sdkp->opal_dev);
3486 
3487 	blk_register_region(devt, SD_MINORS, NULL,
3488 			    sd_default_probe, NULL, NULL);
3489 
3490 	mutex_lock(&sd_ref_mutex);
3491 	dev_set_drvdata(dev, NULL);
3492 	put_device(&sdkp->dev);
3493 	mutex_unlock(&sd_ref_mutex);
3494 
3495 	return 0;
3496 }
3497 
3498 /**
3499  *	scsi_disk_release - Called to free the scsi_disk structure
3500  *	@dev: pointer to embedded class device
3501  *
3502  *	sd_ref_mutex must be held entering this routine.  Because it is
3503  *	called on last put, you should always use the scsi_disk_get()
3504  *	scsi_disk_put() helpers which manipulate the semaphore directly
3505  *	and never do a direct put_device.
3506  **/
3507 static void scsi_disk_release(struct device *dev)
3508 {
3509 	struct scsi_disk *sdkp = to_scsi_disk(dev);
3510 	struct gendisk *disk = sdkp->disk;
3511 	struct request_queue *q = disk->queue;
3512 
3513 	ida_free(&sd_index_ida, sdkp->index);
3514 
3515 	/*
3516 	 * Wait until all requests that are in progress have completed.
3517 	 * This is necessary to avoid that e.g. scsi_end_request() crashes
3518 	 * due to clearing the disk->private_data pointer. Wait from inside
3519 	 * scsi_disk_release() instead of from sd_release() to avoid that
3520 	 * freezing and unfreezing the request queue affects user space I/O
3521 	 * in case multiple processes open a /dev/sd... node concurrently.
3522 	 */
3523 	blk_mq_freeze_queue(q);
3524 	blk_mq_unfreeze_queue(q);
3525 
3526 	disk->private_data = NULL;
3527 	put_disk(disk);
3528 	put_device(&sdkp->device->sdev_gendev);
3529 
3530 	sd_zbc_release_disk(sdkp);
3531 
3532 	kfree(sdkp);
3533 }
3534 
3535 static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3536 {
3537 	unsigned char cmd[6] = { START_STOP };	/* START_VALID */
3538 	struct scsi_sense_hdr sshdr;
3539 	struct scsi_device *sdp = sdkp->device;
3540 	int res;
3541 
3542 	if (start)
3543 		cmd[4] |= 1;	/* START */
3544 
3545 	if (sdp->start_stop_pwr_cond)
3546 		cmd[4] |= start ? 1 << 4 : 3 << 4;	/* Active or Standby */
3547 
3548 	if (!scsi_device_online(sdp))
3549 		return -ENODEV;
3550 
3551 	res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr,
3552 			SD_TIMEOUT, SD_MAX_RETRIES, 0, RQF_PM, NULL);
3553 	if (res) {
3554 		sd_print_result(sdkp, "Start/Stop Unit failed", res);
3555 		if (driver_byte(res) == DRIVER_SENSE)
3556 			sd_print_sense_hdr(sdkp, &sshdr);
3557 		if (scsi_sense_valid(&sshdr) &&
3558 			/* 0x3a is medium not present */
3559 			sshdr.asc == 0x3a)
3560 			res = 0;
3561 	}
3562 
3563 	/* SCSI error codes must not go to the generic layer */
3564 	if (res)
3565 		return -EIO;
3566 
3567 	return 0;
3568 }
3569 
3570 /*
3571  * Send a SYNCHRONIZE CACHE instruction down to the device through
3572  * the normal SCSI command structure.  Wait for the command to
3573  * complete.
3574  */
3575 static void sd_shutdown(struct device *dev)
3576 {
3577 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3578 
3579 	if (!sdkp)
3580 		return;         /* this can happen */
3581 
3582 	if (pm_runtime_suspended(dev))
3583 		return;
3584 
3585 	if (sdkp->WCE && sdkp->media_present) {
3586 		sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3587 		sd_sync_cache(sdkp, NULL);
3588 	}
3589 
3590 	if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) {
3591 		sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3592 		sd_start_stop_device(sdkp, 0);
3593 	}
3594 }
3595 
3596 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors)
3597 {
3598 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3599 	struct scsi_sense_hdr sshdr;
3600 	int ret = 0;
3601 
3602 	if (!sdkp)	/* E.g.: runtime suspend following sd_remove() */
3603 		return 0;
3604 
3605 	if (sdkp->WCE && sdkp->media_present) {
3606 		sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3607 		ret = sd_sync_cache(sdkp, &sshdr);
3608 
3609 		if (ret) {
3610 			/* ignore OFFLINE device */
3611 			if (ret == -ENODEV)
3612 				return 0;
3613 
3614 			if (!scsi_sense_valid(&sshdr) ||
3615 			    sshdr.sense_key != ILLEGAL_REQUEST)
3616 				return ret;
3617 
3618 			/*
3619 			 * sshdr.sense_key == ILLEGAL_REQUEST means this drive
3620 			 * doesn't support sync. There's not much to do and
3621 			 * suspend shouldn't fail.
3622 			 */
3623 			ret = 0;
3624 		}
3625 	}
3626 
3627 	if (sdkp->device->manage_start_stop) {
3628 		sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3629 		/* an error is not worth aborting a system sleep */
3630 		ret = sd_start_stop_device(sdkp, 0);
3631 		if (ignore_stop_errors)
3632 			ret = 0;
3633 	}
3634 
3635 	return ret;
3636 }
3637 
3638 static int sd_suspend_system(struct device *dev)
3639 {
3640 	return sd_suspend_common(dev, true);
3641 }
3642 
3643 static int sd_suspend_runtime(struct device *dev)
3644 {
3645 	return sd_suspend_common(dev, false);
3646 }
3647 
3648 static int sd_resume(struct device *dev)
3649 {
3650 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3651 	int ret;
3652 
3653 	if (!sdkp)	/* E.g.: runtime resume at the start of sd_probe() */
3654 		return 0;
3655 
3656 	if (!sdkp->device->manage_start_stop)
3657 		return 0;
3658 
3659 	sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3660 	ret = sd_start_stop_device(sdkp, 1);
3661 	if (!ret)
3662 		opal_unlock_from_suspend(sdkp->opal_dev);
3663 	return ret;
3664 }
3665 
3666 /**
3667  *	init_sd - entry point for this driver (both when built in or when
3668  *	a module).
3669  *
3670  *	Note: this function registers this driver with the scsi mid-level.
3671  **/
3672 static int __init init_sd(void)
3673 {
3674 	int majors = 0, i, err;
3675 
3676 	SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
3677 
3678 	for (i = 0; i < SD_MAJORS; i++) {
3679 		if (register_blkdev(sd_major(i), "sd") != 0)
3680 			continue;
3681 		majors++;
3682 		blk_register_region(sd_major(i), SD_MINORS, NULL,
3683 				    sd_default_probe, NULL, NULL);
3684 	}
3685 
3686 	if (!majors)
3687 		return -ENODEV;
3688 
3689 	err = class_register(&sd_disk_class);
3690 	if (err)
3691 		goto err_out;
3692 
3693 	sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE,
3694 					 0, 0, NULL);
3695 	if (!sd_cdb_cache) {
3696 		printk(KERN_ERR "sd: can't init extended cdb cache\n");
3697 		err = -ENOMEM;
3698 		goto err_out_class;
3699 	}
3700 
3701 	sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache);
3702 	if (!sd_cdb_pool) {
3703 		printk(KERN_ERR "sd: can't init extended cdb pool\n");
3704 		err = -ENOMEM;
3705 		goto err_out_cache;
3706 	}
3707 
3708 	sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0);
3709 	if (!sd_page_pool) {
3710 		printk(KERN_ERR "sd: can't init discard page pool\n");
3711 		err = -ENOMEM;
3712 		goto err_out_ppool;
3713 	}
3714 
3715 	err = scsi_register_driver(&sd_template.gendrv);
3716 	if (err)
3717 		goto err_out_driver;
3718 
3719 	return 0;
3720 
3721 err_out_driver:
3722 	mempool_destroy(sd_page_pool);
3723 
3724 err_out_ppool:
3725 	mempool_destroy(sd_cdb_pool);
3726 
3727 err_out_cache:
3728 	kmem_cache_destroy(sd_cdb_cache);
3729 
3730 err_out_class:
3731 	class_unregister(&sd_disk_class);
3732 err_out:
3733 	for (i = 0; i < SD_MAJORS; i++)
3734 		unregister_blkdev(sd_major(i), "sd");
3735 	return err;
3736 }
3737 
3738 /**
3739  *	exit_sd - exit point for this driver (when it is a module).
3740  *
3741  *	Note: this function unregisters this driver from the scsi mid-level.
3742  **/
3743 static void __exit exit_sd(void)
3744 {
3745 	int i;
3746 
3747 	SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
3748 
3749 	scsi_unregister_driver(&sd_template.gendrv);
3750 	mempool_destroy(sd_cdb_pool);
3751 	mempool_destroy(sd_page_pool);
3752 	kmem_cache_destroy(sd_cdb_cache);
3753 
3754 	class_unregister(&sd_disk_class);
3755 
3756 	for (i = 0; i < SD_MAJORS; i++) {
3757 		blk_unregister_region(sd_major(i), SD_MINORS);
3758 		unregister_blkdev(sd_major(i), "sd");
3759 	}
3760 }
3761 
3762 module_init(init_sd);
3763 module_exit(exit_sd);
3764 
3765 void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
3766 {
3767 	scsi_print_sense_hdr(sdkp->device,
3768 			     sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
3769 }
3770 
3771 void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result)
3772 {
3773 	const char *hb_string = scsi_hostbyte_string(result);
3774 	const char *db_string = scsi_driverbyte_string(result);
3775 
3776 	if (hb_string || db_string)
3777 		sd_printk(KERN_INFO, sdkp,
3778 			  "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
3779 			  hb_string ? hb_string : "invalid",
3780 			  db_string ? db_string : "invalid");
3781 	else
3782 		sd_printk(KERN_INFO, sdkp,
3783 			  "%s: Result: hostbyte=0x%02x driverbyte=0x%02x\n",
3784 			  msg, host_byte(result), driver_byte(result));
3785 }
3786