1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * sd.c Copyright (C) 1992 Drew Eckhardt 4 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale 5 * 6 * Linux scsi disk driver 7 * Initial versions: Drew Eckhardt 8 * Subsequent revisions: Eric Youngdale 9 * Modification history: 10 * - Drew Eckhardt <drew@colorado.edu> original 11 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 12 * outstanding request, and other enhancements. 13 * Support loadable low-level scsi drivers. 14 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 15 * eight major numbers. 16 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs. 17 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 18 * sd_init and cleanups. 19 * - Alex Davis <letmein@erols.com> Fix problem where partition info 20 * not being read in sd_open. Fix problem where removable media 21 * could be ejected after sd_open. 22 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x 23 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 24 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 25 * Support 32k/1M disks. 26 * 27 * Logging policy (needs CONFIG_SCSI_LOGGING defined): 28 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2 29 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1 30 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1 31 * - entering other commands: SCSI_LOG_HLQUEUE level 3 32 * Note: when the logging level is set by the user, it must be greater 33 * than the level indicated above to trigger output. 34 */ 35 36 #include <linux/module.h> 37 #include <linux/fs.h> 38 #include <linux/kernel.h> 39 #include <linux/mm.h> 40 #include <linux/bio.h> 41 #include <linux/genhd.h> 42 #include <linux/hdreg.h> 43 #include <linux/errno.h> 44 #include <linux/idr.h> 45 #include <linux/interrupt.h> 46 #include <linux/init.h> 47 #include <linux/blkdev.h> 48 #include <linux/blkpg.h> 49 #include <linux/blk-pm.h> 50 #include <linux/delay.h> 51 #include <linux/mutex.h> 52 #include <linux/string_helpers.h> 53 #include <linux/async.h> 54 #include <linux/slab.h> 55 #include <linux/sed-opal.h> 56 #include <linux/pm_runtime.h> 57 #include <linux/pr.h> 58 #include <linux/t10-pi.h> 59 #include <linux/uaccess.h> 60 #include <asm/unaligned.h> 61 62 #include <scsi/scsi.h> 63 #include <scsi/scsi_cmnd.h> 64 #include <scsi/scsi_dbg.h> 65 #include <scsi/scsi_device.h> 66 #include <scsi/scsi_driver.h> 67 #include <scsi/scsi_eh.h> 68 #include <scsi/scsi_host.h> 69 #include <scsi/scsi_ioctl.h> 70 #include <scsi/scsicam.h> 71 72 #include "sd.h" 73 #include "scsi_priv.h" 74 #include "scsi_logging.h" 75 76 MODULE_AUTHOR("Eric Youngdale"); 77 MODULE_DESCRIPTION("SCSI disk (sd) driver"); 78 MODULE_LICENSE("GPL"); 79 80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR); 81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR); 82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR); 83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR); 84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR); 85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR); 86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR); 87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR); 88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR); 89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR); 90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR); 91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR); 92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR); 93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR); 94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR); 95 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR); 96 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK); 97 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD); 98 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC); 99 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC); 100 101 #if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT) 102 #define SD_MINORS 16 103 #else 104 #define SD_MINORS 0 105 #endif 106 107 static void sd_config_discard(struct scsi_disk *, unsigned int); 108 static void sd_config_write_same(struct scsi_disk *); 109 static int sd_revalidate_disk(struct gendisk *); 110 static void sd_unlock_native_capacity(struct gendisk *disk); 111 static int sd_probe(struct device *); 112 static int sd_remove(struct device *); 113 static void sd_shutdown(struct device *); 114 static int sd_suspend_system(struct device *); 115 static int sd_suspend_runtime(struct device *); 116 static int sd_resume(struct device *); 117 static void sd_rescan(struct device *); 118 static blk_status_t sd_init_command(struct scsi_cmnd *SCpnt); 119 static void sd_uninit_command(struct scsi_cmnd *SCpnt); 120 static int sd_done(struct scsi_cmnd *); 121 static void sd_eh_reset(struct scsi_cmnd *); 122 static int sd_eh_action(struct scsi_cmnd *, int); 123 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer); 124 static void scsi_disk_release(struct device *cdev); 125 126 static DEFINE_IDA(sd_index_ida); 127 128 /* This semaphore is used to mediate the 0->1 reference get in the 129 * face of object destruction (i.e. we can't allow a get on an 130 * object after last put) */ 131 static DEFINE_MUTEX(sd_ref_mutex); 132 133 static struct kmem_cache *sd_cdb_cache; 134 static mempool_t *sd_cdb_pool; 135 static mempool_t *sd_page_pool; 136 137 static const char *sd_cache_types[] = { 138 "write through", "none", "write back", 139 "write back, no read (daft)" 140 }; 141 142 static void sd_set_flush_flag(struct scsi_disk *sdkp) 143 { 144 bool wc = false, fua = false; 145 146 if (sdkp->WCE) { 147 wc = true; 148 if (sdkp->DPOFUA) 149 fua = true; 150 } 151 152 blk_queue_write_cache(sdkp->disk->queue, wc, fua); 153 } 154 155 static ssize_t 156 cache_type_store(struct device *dev, struct device_attribute *attr, 157 const char *buf, size_t count) 158 { 159 int ct, rcd, wce, sp; 160 struct scsi_disk *sdkp = to_scsi_disk(dev); 161 struct scsi_device *sdp = sdkp->device; 162 char buffer[64]; 163 char *buffer_data; 164 struct scsi_mode_data data; 165 struct scsi_sense_hdr sshdr; 166 static const char temp[] = "temporary "; 167 int len; 168 169 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 170 /* no cache control on RBC devices; theoretically they 171 * can do it, but there's probably so many exceptions 172 * it's not worth the risk */ 173 return -EINVAL; 174 175 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) { 176 buf += sizeof(temp) - 1; 177 sdkp->cache_override = 1; 178 } else { 179 sdkp->cache_override = 0; 180 } 181 182 ct = sysfs_match_string(sd_cache_types, buf); 183 if (ct < 0) 184 return -EINVAL; 185 186 rcd = ct & 0x01 ? 1 : 0; 187 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0; 188 189 if (sdkp->cache_override) { 190 sdkp->WCE = wce; 191 sdkp->RCD = rcd; 192 sd_set_flush_flag(sdkp); 193 return count; 194 } 195 196 if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT, 197 SD_MAX_RETRIES, &data, NULL)) 198 return -EINVAL; 199 len = min_t(size_t, sizeof(buffer), data.length - data.header_length - 200 data.block_descriptor_length); 201 buffer_data = buffer + data.header_length + 202 data.block_descriptor_length; 203 buffer_data[2] &= ~0x05; 204 buffer_data[2] |= wce << 2 | rcd; 205 sp = buffer_data[0] & 0x80 ? 1 : 0; 206 buffer_data[0] &= ~0x80; 207 208 /* 209 * Ensure WP, DPOFUA, and RESERVED fields are cleared in 210 * received mode parameter buffer before doing MODE SELECT. 211 */ 212 data.device_specific = 0; 213 214 if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT, 215 SD_MAX_RETRIES, &data, &sshdr)) { 216 if (scsi_sense_valid(&sshdr)) 217 sd_print_sense_hdr(sdkp, &sshdr); 218 return -EINVAL; 219 } 220 sd_revalidate_disk(sdkp->disk); 221 return count; 222 } 223 224 static ssize_t 225 manage_start_stop_show(struct device *dev, struct device_attribute *attr, 226 char *buf) 227 { 228 struct scsi_disk *sdkp = to_scsi_disk(dev); 229 struct scsi_device *sdp = sdkp->device; 230 231 return sprintf(buf, "%u\n", sdp->manage_start_stop); 232 } 233 234 static ssize_t 235 manage_start_stop_store(struct device *dev, struct device_attribute *attr, 236 const char *buf, size_t count) 237 { 238 struct scsi_disk *sdkp = to_scsi_disk(dev); 239 struct scsi_device *sdp = sdkp->device; 240 bool v; 241 242 if (!capable(CAP_SYS_ADMIN)) 243 return -EACCES; 244 245 if (kstrtobool(buf, &v)) 246 return -EINVAL; 247 248 sdp->manage_start_stop = v; 249 250 return count; 251 } 252 static DEVICE_ATTR_RW(manage_start_stop); 253 254 static ssize_t 255 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf) 256 { 257 struct scsi_disk *sdkp = to_scsi_disk(dev); 258 259 return sprintf(buf, "%u\n", sdkp->device->allow_restart); 260 } 261 262 static ssize_t 263 allow_restart_store(struct device *dev, struct device_attribute *attr, 264 const char *buf, size_t count) 265 { 266 bool v; 267 struct scsi_disk *sdkp = to_scsi_disk(dev); 268 struct scsi_device *sdp = sdkp->device; 269 270 if (!capable(CAP_SYS_ADMIN)) 271 return -EACCES; 272 273 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 274 return -EINVAL; 275 276 if (kstrtobool(buf, &v)) 277 return -EINVAL; 278 279 sdp->allow_restart = v; 280 281 return count; 282 } 283 static DEVICE_ATTR_RW(allow_restart); 284 285 static ssize_t 286 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf) 287 { 288 struct scsi_disk *sdkp = to_scsi_disk(dev); 289 int ct = sdkp->RCD + 2*sdkp->WCE; 290 291 return sprintf(buf, "%s\n", sd_cache_types[ct]); 292 } 293 static DEVICE_ATTR_RW(cache_type); 294 295 static ssize_t 296 FUA_show(struct device *dev, struct device_attribute *attr, char *buf) 297 { 298 struct scsi_disk *sdkp = to_scsi_disk(dev); 299 300 return sprintf(buf, "%u\n", sdkp->DPOFUA); 301 } 302 static DEVICE_ATTR_RO(FUA); 303 304 static ssize_t 305 protection_type_show(struct device *dev, struct device_attribute *attr, 306 char *buf) 307 { 308 struct scsi_disk *sdkp = to_scsi_disk(dev); 309 310 return sprintf(buf, "%u\n", sdkp->protection_type); 311 } 312 313 static ssize_t 314 protection_type_store(struct device *dev, struct device_attribute *attr, 315 const char *buf, size_t count) 316 { 317 struct scsi_disk *sdkp = to_scsi_disk(dev); 318 unsigned int val; 319 int err; 320 321 if (!capable(CAP_SYS_ADMIN)) 322 return -EACCES; 323 324 err = kstrtouint(buf, 10, &val); 325 326 if (err) 327 return err; 328 329 if (val <= T10_PI_TYPE3_PROTECTION) 330 sdkp->protection_type = val; 331 332 return count; 333 } 334 static DEVICE_ATTR_RW(protection_type); 335 336 static ssize_t 337 protection_mode_show(struct device *dev, struct device_attribute *attr, 338 char *buf) 339 { 340 struct scsi_disk *sdkp = to_scsi_disk(dev); 341 struct scsi_device *sdp = sdkp->device; 342 unsigned int dif, dix; 343 344 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type); 345 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type); 346 347 if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) { 348 dif = 0; 349 dix = 1; 350 } 351 352 if (!dif && !dix) 353 return sprintf(buf, "none\n"); 354 355 return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif); 356 } 357 static DEVICE_ATTR_RO(protection_mode); 358 359 static ssize_t 360 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf) 361 { 362 struct scsi_disk *sdkp = to_scsi_disk(dev); 363 364 return sprintf(buf, "%u\n", sdkp->ATO); 365 } 366 static DEVICE_ATTR_RO(app_tag_own); 367 368 static ssize_t 369 thin_provisioning_show(struct device *dev, struct device_attribute *attr, 370 char *buf) 371 { 372 struct scsi_disk *sdkp = to_scsi_disk(dev); 373 374 return sprintf(buf, "%u\n", sdkp->lbpme); 375 } 376 static DEVICE_ATTR_RO(thin_provisioning); 377 378 /* sysfs_match_string() requires dense arrays */ 379 static const char *lbp_mode[] = { 380 [SD_LBP_FULL] = "full", 381 [SD_LBP_UNMAP] = "unmap", 382 [SD_LBP_WS16] = "writesame_16", 383 [SD_LBP_WS10] = "writesame_10", 384 [SD_LBP_ZERO] = "writesame_zero", 385 [SD_LBP_DISABLE] = "disabled", 386 }; 387 388 static ssize_t 389 provisioning_mode_show(struct device *dev, struct device_attribute *attr, 390 char *buf) 391 { 392 struct scsi_disk *sdkp = to_scsi_disk(dev); 393 394 return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]); 395 } 396 397 static ssize_t 398 provisioning_mode_store(struct device *dev, struct device_attribute *attr, 399 const char *buf, size_t count) 400 { 401 struct scsi_disk *sdkp = to_scsi_disk(dev); 402 struct scsi_device *sdp = sdkp->device; 403 int mode; 404 405 if (!capable(CAP_SYS_ADMIN)) 406 return -EACCES; 407 408 if (sd_is_zoned(sdkp)) { 409 sd_config_discard(sdkp, SD_LBP_DISABLE); 410 return count; 411 } 412 413 if (sdp->type != TYPE_DISK) 414 return -EINVAL; 415 416 mode = sysfs_match_string(lbp_mode, buf); 417 if (mode < 0) 418 return -EINVAL; 419 420 sd_config_discard(sdkp, mode); 421 422 return count; 423 } 424 static DEVICE_ATTR_RW(provisioning_mode); 425 426 /* sysfs_match_string() requires dense arrays */ 427 static const char *zeroing_mode[] = { 428 [SD_ZERO_WRITE] = "write", 429 [SD_ZERO_WS] = "writesame", 430 [SD_ZERO_WS16_UNMAP] = "writesame_16_unmap", 431 [SD_ZERO_WS10_UNMAP] = "writesame_10_unmap", 432 }; 433 434 static ssize_t 435 zeroing_mode_show(struct device *dev, struct device_attribute *attr, 436 char *buf) 437 { 438 struct scsi_disk *sdkp = to_scsi_disk(dev); 439 440 return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]); 441 } 442 443 static ssize_t 444 zeroing_mode_store(struct device *dev, struct device_attribute *attr, 445 const char *buf, size_t count) 446 { 447 struct scsi_disk *sdkp = to_scsi_disk(dev); 448 int mode; 449 450 if (!capable(CAP_SYS_ADMIN)) 451 return -EACCES; 452 453 mode = sysfs_match_string(zeroing_mode, buf); 454 if (mode < 0) 455 return -EINVAL; 456 457 sdkp->zeroing_mode = mode; 458 459 return count; 460 } 461 static DEVICE_ATTR_RW(zeroing_mode); 462 463 static ssize_t 464 max_medium_access_timeouts_show(struct device *dev, 465 struct device_attribute *attr, char *buf) 466 { 467 struct scsi_disk *sdkp = to_scsi_disk(dev); 468 469 return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts); 470 } 471 472 static ssize_t 473 max_medium_access_timeouts_store(struct device *dev, 474 struct device_attribute *attr, const char *buf, 475 size_t count) 476 { 477 struct scsi_disk *sdkp = to_scsi_disk(dev); 478 int err; 479 480 if (!capable(CAP_SYS_ADMIN)) 481 return -EACCES; 482 483 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts); 484 485 return err ? err : count; 486 } 487 static DEVICE_ATTR_RW(max_medium_access_timeouts); 488 489 static ssize_t 490 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr, 491 char *buf) 492 { 493 struct scsi_disk *sdkp = to_scsi_disk(dev); 494 495 return sprintf(buf, "%u\n", sdkp->max_ws_blocks); 496 } 497 498 static ssize_t 499 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr, 500 const char *buf, size_t count) 501 { 502 struct scsi_disk *sdkp = to_scsi_disk(dev); 503 struct scsi_device *sdp = sdkp->device; 504 unsigned long max; 505 int err; 506 507 if (!capable(CAP_SYS_ADMIN)) 508 return -EACCES; 509 510 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 511 return -EINVAL; 512 513 err = kstrtoul(buf, 10, &max); 514 515 if (err) 516 return err; 517 518 if (max == 0) 519 sdp->no_write_same = 1; 520 else if (max <= SD_MAX_WS16_BLOCKS) { 521 sdp->no_write_same = 0; 522 sdkp->max_ws_blocks = max; 523 } 524 525 sd_config_write_same(sdkp); 526 527 return count; 528 } 529 static DEVICE_ATTR_RW(max_write_same_blocks); 530 531 static ssize_t 532 zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf) 533 { 534 struct scsi_disk *sdkp = to_scsi_disk(dev); 535 536 if (sdkp->device->type == TYPE_ZBC) 537 return sprintf(buf, "host-managed\n"); 538 if (sdkp->zoned == 1) 539 return sprintf(buf, "host-aware\n"); 540 if (sdkp->zoned == 2) 541 return sprintf(buf, "drive-managed\n"); 542 return sprintf(buf, "none\n"); 543 } 544 static DEVICE_ATTR_RO(zoned_cap); 545 546 static struct attribute *sd_disk_attrs[] = { 547 &dev_attr_cache_type.attr, 548 &dev_attr_FUA.attr, 549 &dev_attr_allow_restart.attr, 550 &dev_attr_manage_start_stop.attr, 551 &dev_attr_protection_type.attr, 552 &dev_attr_protection_mode.attr, 553 &dev_attr_app_tag_own.attr, 554 &dev_attr_thin_provisioning.attr, 555 &dev_attr_provisioning_mode.attr, 556 &dev_attr_zeroing_mode.attr, 557 &dev_attr_max_write_same_blocks.attr, 558 &dev_attr_max_medium_access_timeouts.attr, 559 &dev_attr_zoned_cap.attr, 560 NULL, 561 }; 562 ATTRIBUTE_GROUPS(sd_disk); 563 564 static struct class sd_disk_class = { 565 .name = "scsi_disk", 566 .owner = THIS_MODULE, 567 .dev_release = scsi_disk_release, 568 .dev_groups = sd_disk_groups, 569 }; 570 571 static const struct dev_pm_ops sd_pm_ops = { 572 .suspend = sd_suspend_system, 573 .resume = sd_resume, 574 .poweroff = sd_suspend_system, 575 .restore = sd_resume, 576 .runtime_suspend = sd_suspend_runtime, 577 .runtime_resume = sd_resume, 578 }; 579 580 static struct scsi_driver sd_template = { 581 .gendrv = { 582 .name = "sd", 583 .owner = THIS_MODULE, 584 .probe = sd_probe, 585 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 586 .remove = sd_remove, 587 .shutdown = sd_shutdown, 588 .pm = &sd_pm_ops, 589 }, 590 .rescan = sd_rescan, 591 .init_command = sd_init_command, 592 .uninit_command = sd_uninit_command, 593 .done = sd_done, 594 .eh_action = sd_eh_action, 595 .eh_reset = sd_eh_reset, 596 }; 597 598 /* 599 * Dummy kobj_map->probe function. 600 * The default ->probe function will call modprobe, which is 601 * pointless as this module is already loaded. 602 */ 603 static struct kobject *sd_default_probe(dev_t devt, int *partno, void *data) 604 { 605 return NULL; 606 } 607 608 /* 609 * Device no to disk mapping: 610 * 611 * major disc2 disc p1 612 * |............|.............|....|....| <- dev_t 613 * 31 20 19 8 7 4 3 0 614 * 615 * Inside a major, we have 16k disks, however mapped non- 616 * contiguously. The first 16 disks are for major0, the next 617 * ones with major1, ... Disk 256 is for major0 again, disk 272 618 * for major1, ... 619 * As we stay compatible with our numbering scheme, we can reuse 620 * the well-know SCSI majors 8, 65--71, 136--143. 621 */ 622 static int sd_major(int major_idx) 623 { 624 switch (major_idx) { 625 case 0: 626 return SCSI_DISK0_MAJOR; 627 case 1 ... 7: 628 return SCSI_DISK1_MAJOR + major_idx - 1; 629 case 8 ... 15: 630 return SCSI_DISK8_MAJOR + major_idx - 8; 631 default: 632 BUG(); 633 return 0; /* shut up gcc */ 634 } 635 } 636 637 static struct scsi_disk *scsi_disk_get(struct gendisk *disk) 638 { 639 struct scsi_disk *sdkp = NULL; 640 641 mutex_lock(&sd_ref_mutex); 642 643 if (disk->private_data) { 644 sdkp = scsi_disk(disk); 645 if (scsi_device_get(sdkp->device) == 0) 646 get_device(&sdkp->dev); 647 else 648 sdkp = NULL; 649 } 650 mutex_unlock(&sd_ref_mutex); 651 return sdkp; 652 } 653 654 static void scsi_disk_put(struct scsi_disk *sdkp) 655 { 656 struct scsi_device *sdev = sdkp->device; 657 658 mutex_lock(&sd_ref_mutex); 659 put_device(&sdkp->dev); 660 scsi_device_put(sdev); 661 mutex_unlock(&sd_ref_mutex); 662 } 663 664 #ifdef CONFIG_BLK_SED_OPAL 665 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, 666 size_t len, bool send) 667 { 668 struct scsi_device *sdev = data; 669 u8 cdb[12] = { 0, }; 670 int ret; 671 672 cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN; 673 cdb[1] = secp; 674 put_unaligned_be16(spsp, &cdb[2]); 675 put_unaligned_be32(len, &cdb[6]); 676 677 ret = scsi_execute_req(sdev, cdb, 678 send ? DMA_TO_DEVICE : DMA_FROM_DEVICE, 679 buffer, len, NULL, SD_TIMEOUT, SD_MAX_RETRIES, NULL); 680 return ret <= 0 ? ret : -EIO; 681 } 682 #endif /* CONFIG_BLK_SED_OPAL */ 683 684 /* 685 * Look up the DIX operation based on whether the command is read or 686 * write and whether dix and dif are enabled. 687 */ 688 static unsigned int sd_prot_op(bool write, bool dix, bool dif) 689 { 690 /* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */ 691 static const unsigned int ops[] = { /* wrt dix dif */ 692 SCSI_PROT_NORMAL, /* 0 0 0 */ 693 SCSI_PROT_READ_STRIP, /* 0 0 1 */ 694 SCSI_PROT_READ_INSERT, /* 0 1 0 */ 695 SCSI_PROT_READ_PASS, /* 0 1 1 */ 696 SCSI_PROT_NORMAL, /* 1 0 0 */ 697 SCSI_PROT_WRITE_INSERT, /* 1 0 1 */ 698 SCSI_PROT_WRITE_STRIP, /* 1 1 0 */ 699 SCSI_PROT_WRITE_PASS, /* 1 1 1 */ 700 }; 701 702 return ops[write << 2 | dix << 1 | dif]; 703 } 704 705 /* 706 * Returns a mask of the protection flags that are valid for a given DIX 707 * operation. 708 */ 709 static unsigned int sd_prot_flag_mask(unsigned int prot_op) 710 { 711 static const unsigned int flag_mask[] = { 712 [SCSI_PROT_NORMAL] = 0, 713 714 [SCSI_PROT_READ_STRIP] = SCSI_PROT_TRANSFER_PI | 715 SCSI_PROT_GUARD_CHECK | 716 SCSI_PROT_REF_CHECK | 717 SCSI_PROT_REF_INCREMENT, 718 719 [SCSI_PROT_READ_INSERT] = SCSI_PROT_REF_INCREMENT | 720 SCSI_PROT_IP_CHECKSUM, 721 722 [SCSI_PROT_READ_PASS] = SCSI_PROT_TRANSFER_PI | 723 SCSI_PROT_GUARD_CHECK | 724 SCSI_PROT_REF_CHECK | 725 SCSI_PROT_REF_INCREMENT | 726 SCSI_PROT_IP_CHECKSUM, 727 728 [SCSI_PROT_WRITE_INSERT] = SCSI_PROT_TRANSFER_PI | 729 SCSI_PROT_REF_INCREMENT, 730 731 [SCSI_PROT_WRITE_STRIP] = SCSI_PROT_GUARD_CHECK | 732 SCSI_PROT_REF_CHECK | 733 SCSI_PROT_REF_INCREMENT | 734 SCSI_PROT_IP_CHECKSUM, 735 736 [SCSI_PROT_WRITE_PASS] = SCSI_PROT_TRANSFER_PI | 737 SCSI_PROT_GUARD_CHECK | 738 SCSI_PROT_REF_CHECK | 739 SCSI_PROT_REF_INCREMENT | 740 SCSI_PROT_IP_CHECKSUM, 741 }; 742 743 return flag_mask[prot_op]; 744 } 745 746 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd, 747 unsigned int dix, unsigned int dif) 748 { 749 struct bio *bio = scmd->request->bio; 750 unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif); 751 unsigned int protect = 0; 752 753 if (dix) { /* DIX Type 0, 1, 2, 3 */ 754 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM)) 755 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM; 756 757 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 758 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK; 759 } 760 761 if (dif != T10_PI_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */ 762 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT; 763 764 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 765 scmd->prot_flags |= SCSI_PROT_REF_CHECK; 766 } 767 768 if (dif) { /* DIX/DIF Type 1, 2, 3 */ 769 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI; 770 771 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK)) 772 protect = 3 << 5; /* Disable target PI checking */ 773 else 774 protect = 1 << 5; /* Enable target PI checking */ 775 } 776 777 scsi_set_prot_op(scmd, prot_op); 778 scsi_set_prot_type(scmd, dif); 779 scmd->prot_flags &= sd_prot_flag_mask(prot_op); 780 781 return protect; 782 } 783 784 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode) 785 { 786 struct request_queue *q = sdkp->disk->queue; 787 unsigned int logical_block_size = sdkp->device->sector_size; 788 unsigned int max_blocks = 0; 789 790 q->limits.discard_alignment = 791 sdkp->unmap_alignment * logical_block_size; 792 q->limits.discard_granularity = 793 max(sdkp->physical_block_size, 794 sdkp->unmap_granularity * logical_block_size); 795 sdkp->provisioning_mode = mode; 796 797 switch (mode) { 798 799 case SD_LBP_FULL: 800 case SD_LBP_DISABLE: 801 blk_queue_max_discard_sectors(q, 0); 802 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q); 803 return; 804 805 case SD_LBP_UNMAP: 806 max_blocks = min_not_zero(sdkp->max_unmap_blocks, 807 (u32)SD_MAX_WS16_BLOCKS); 808 break; 809 810 case SD_LBP_WS16: 811 if (sdkp->device->unmap_limit_for_ws) 812 max_blocks = sdkp->max_unmap_blocks; 813 else 814 max_blocks = sdkp->max_ws_blocks; 815 816 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS); 817 break; 818 819 case SD_LBP_WS10: 820 if (sdkp->device->unmap_limit_for_ws) 821 max_blocks = sdkp->max_unmap_blocks; 822 else 823 max_blocks = sdkp->max_ws_blocks; 824 825 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS); 826 break; 827 828 case SD_LBP_ZERO: 829 max_blocks = min_not_zero(sdkp->max_ws_blocks, 830 (u32)SD_MAX_WS10_BLOCKS); 831 break; 832 } 833 834 blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9)); 835 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q); 836 } 837 838 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd) 839 { 840 struct scsi_device *sdp = cmd->device; 841 struct request *rq = cmd->request; 842 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 843 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 844 unsigned int data_len = 24; 845 char *buf; 846 847 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 848 if (!rq->special_vec.bv_page) 849 return BLK_STS_RESOURCE; 850 clear_highpage(rq->special_vec.bv_page); 851 rq->special_vec.bv_offset = 0; 852 rq->special_vec.bv_len = data_len; 853 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 854 855 cmd->cmd_len = 10; 856 cmd->cmnd[0] = UNMAP; 857 cmd->cmnd[8] = 24; 858 859 buf = page_address(rq->special_vec.bv_page); 860 put_unaligned_be16(6 + 16, &buf[0]); 861 put_unaligned_be16(16, &buf[2]); 862 put_unaligned_be64(lba, &buf[8]); 863 put_unaligned_be32(nr_blocks, &buf[16]); 864 865 cmd->allowed = SD_MAX_RETRIES; 866 cmd->transfersize = data_len; 867 rq->timeout = SD_TIMEOUT; 868 869 return scsi_init_io(cmd); 870 } 871 872 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd, 873 bool unmap) 874 { 875 struct scsi_device *sdp = cmd->device; 876 struct request *rq = cmd->request; 877 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 878 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 879 u32 data_len = sdp->sector_size; 880 881 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 882 if (!rq->special_vec.bv_page) 883 return BLK_STS_RESOURCE; 884 clear_highpage(rq->special_vec.bv_page); 885 rq->special_vec.bv_offset = 0; 886 rq->special_vec.bv_len = data_len; 887 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 888 889 cmd->cmd_len = 16; 890 cmd->cmnd[0] = WRITE_SAME_16; 891 if (unmap) 892 cmd->cmnd[1] = 0x8; /* UNMAP */ 893 put_unaligned_be64(lba, &cmd->cmnd[2]); 894 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 895 896 cmd->allowed = SD_MAX_RETRIES; 897 cmd->transfersize = data_len; 898 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 899 900 return scsi_init_io(cmd); 901 } 902 903 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd, 904 bool unmap) 905 { 906 struct scsi_device *sdp = cmd->device; 907 struct request *rq = cmd->request; 908 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 909 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 910 u32 data_len = sdp->sector_size; 911 912 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 913 if (!rq->special_vec.bv_page) 914 return BLK_STS_RESOURCE; 915 clear_highpage(rq->special_vec.bv_page); 916 rq->special_vec.bv_offset = 0; 917 rq->special_vec.bv_len = data_len; 918 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 919 920 cmd->cmd_len = 10; 921 cmd->cmnd[0] = WRITE_SAME; 922 if (unmap) 923 cmd->cmnd[1] = 0x8; /* UNMAP */ 924 put_unaligned_be32(lba, &cmd->cmnd[2]); 925 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 926 927 cmd->allowed = SD_MAX_RETRIES; 928 cmd->transfersize = data_len; 929 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 930 931 return scsi_init_io(cmd); 932 } 933 934 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd) 935 { 936 struct request *rq = cmd->request; 937 struct scsi_device *sdp = cmd->device; 938 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 939 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 940 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 941 942 if (!(rq->cmd_flags & REQ_NOUNMAP)) { 943 switch (sdkp->zeroing_mode) { 944 case SD_ZERO_WS16_UNMAP: 945 return sd_setup_write_same16_cmnd(cmd, true); 946 case SD_ZERO_WS10_UNMAP: 947 return sd_setup_write_same10_cmnd(cmd, true); 948 } 949 } 950 951 if (sdp->no_write_same) 952 return BLK_STS_TARGET; 953 954 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) 955 return sd_setup_write_same16_cmnd(cmd, false); 956 957 return sd_setup_write_same10_cmnd(cmd, false); 958 } 959 960 static void sd_config_write_same(struct scsi_disk *sdkp) 961 { 962 struct request_queue *q = sdkp->disk->queue; 963 unsigned int logical_block_size = sdkp->device->sector_size; 964 965 if (sdkp->device->no_write_same) { 966 sdkp->max_ws_blocks = 0; 967 goto out; 968 } 969 970 /* Some devices can not handle block counts above 0xffff despite 971 * supporting WRITE SAME(16). Consequently we default to 64k 972 * blocks per I/O unless the device explicitly advertises a 973 * bigger limit. 974 */ 975 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS) 976 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 977 (u32)SD_MAX_WS16_BLOCKS); 978 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes) 979 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 980 (u32)SD_MAX_WS10_BLOCKS); 981 else { 982 sdkp->device->no_write_same = 1; 983 sdkp->max_ws_blocks = 0; 984 } 985 986 if (sdkp->lbprz && sdkp->lbpws) 987 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP; 988 else if (sdkp->lbprz && sdkp->lbpws10) 989 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP; 990 else if (sdkp->max_ws_blocks) 991 sdkp->zeroing_mode = SD_ZERO_WS; 992 else 993 sdkp->zeroing_mode = SD_ZERO_WRITE; 994 995 if (sdkp->max_ws_blocks && 996 sdkp->physical_block_size > logical_block_size) { 997 /* 998 * Reporting a maximum number of blocks that is not aligned 999 * on the device physical size would cause a large write same 1000 * request to be split into physically unaligned chunks by 1001 * __blkdev_issue_write_zeroes() and __blkdev_issue_write_same() 1002 * even if the caller of these functions took care to align the 1003 * large request. So make sure the maximum reported is aligned 1004 * to the device physical block size. This is only an optional 1005 * optimization for regular disks, but this is mandatory to 1006 * avoid failure of large write same requests directed at 1007 * sequential write required zones of host-managed ZBC disks. 1008 */ 1009 sdkp->max_ws_blocks = 1010 round_down(sdkp->max_ws_blocks, 1011 bytes_to_logical(sdkp->device, 1012 sdkp->physical_block_size)); 1013 } 1014 1015 out: 1016 blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks * 1017 (logical_block_size >> 9)); 1018 blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks * 1019 (logical_block_size >> 9)); 1020 } 1021 1022 /** 1023 * sd_setup_write_same_cmnd - write the same data to multiple blocks 1024 * @cmd: command to prepare 1025 * 1026 * Will set up either WRITE SAME(10) or WRITE SAME(16) depending on 1027 * the preference indicated by the target device. 1028 **/ 1029 static blk_status_t sd_setup_write_same_cmnd(struct scsi_cmnd *cmd) 1030 { 1031 struct request *rq = cmd->request; 1032 struct scsi_device *sdp = cmd->device; 1033 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 1034 struct bio *bio = rq->bio; 1035 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 1036 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 1037 blk_status_t ret; 1038 1039 if (sdkp->device->no_write_same) 1040 return BLK_STS_TARGET; 1041 1042 BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size); 1043 1044 rq->timeout = SD_WRITE_SAME_TIMEOUT; 1045 1046 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) { 1047 cmd->cmd_len = 16; 1048 cmd->cmnd[0] = WRITE_SAME_16; 1049 put_unaligned_be64(lba, &cmd->cmnd[2]); 1050 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 1051 } else { 1052 cmd->cmd_len = 10; 1053 cmd->cmnd[0] = WRITE_SAME; 1054 put_unaligned_be32(lba, &cmd->cmnd[2]); 1055 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 1056 } 1057 1058 cmd->transfersize = sdp->sector_size; 1059 cmd->allowed = SD_MAX_RETRIES; 1060 1061 /* 1062 * For WRITE SAME the data transferred via the DATA OUT buffer is 1063 * different from the amount of data actually written to the target. 1064 * 1065 * We set up __data_len to the amount of data transferred via the 1066 * DATA OUT buffer so that blk_rq_map_sg sets up the proper S/G list 1067 * to transfer a single sector of data first, but then reset it to 1068 * the amount of data to be written right after so that the I/O path 1069 * knows how much to actually write. 1070 */ 1071 rq->__data_len = sdp->sector_size; 1072 ret = scsi_init_io(cmd); 1073 rq->__data_len = blk_rq_bytes(rq); 1074 1075 return ret; 1076 } 1077 1078 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd) 1079 { 1080 struct request *rq = cmd->request; 1081 1082 /* flush requests don't perform I/O, zero the S/G table */ 1083 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1084 1085 cmd->cmnd[0] = SYNCHRONIZE_CACHE; 1086 cmd->cmd_len = 10; 1087 cmd->transfersize = 0; 1088 cmd->allowed = SD_MAX_RETRIES; 1089 1090 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER; 1091 return BLK_STS_OK; 1092 } 1093 1094 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write, 1095 sector_t lba, unsigned int nr_blocks, 1096 unsigned char flags) 1097 { 1098 cmd->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC); 1099 if (unlikely(cmd->cmnd == NULL)) 1100 return BLK_STS_RESOURCE; 1101 1102 cmd->cmd_len = SD_EXT_CDB_SIZE; 1103 memset(cmd->cmnd, 0, cmd->cmd_len); 1104 1105 cmd->cmnd[0] = VARIABLE_LENGTH_CMD; 1106 cmd->cmnd[7] = 0x18; /* Additional CDB len */ 1107 cmd->cmnd[9] = write ? WRITE_32 : READ_32; 1108 cmd->cmnd[10] = flags; 1109 put_unaligned_be64(lba, &cmd->cmnd[12]); 1110 put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */ 1111 put_unaligned_be32(nr_blocks, &cmd->cmnd[28]); 1112 1113 return BLK_STS_OK; 1114 } 1115 1116 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write, 1117 sector_t lba, unsigned int nr_blocks, 1118 unsigned char flags) 1119 { 1120 cmd->cmd_len = 16; 1121 cmd->cmnd[0] = write ? WRITE_16 : READ_16; 1122 cmd->cmnd[1] = flags; 1123 cmd->cmnd[14] = 0; 1124 cmd->cmnd[15] = 0; 1125 put_unaligned_be64(lba, &cmd->cmnd[2]); 1126 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 1127 1128 return BLK_STS_OK; 1129 } 1130 1131 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write, 1132 sector_t lba, unsigned int nr_blocks, 1133 unsigned char flags) 1134 { 1135 cmd->cmd_len = 10; 1136 cmd->cmnd[0] = write ? WRITE_10 : READ_10; 1137 cmd->cmnd[1] = flags; 1138 cmd->cmnd[6] = 0; 1139 cmd->cmnd[9] = 0; 1140 put_unaligned_be32(lba, &cmd->cmnd[2]); 1141 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 1142 1143 return BLK_STS_OK; 1144 } 1145 1146 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write, 1147 sector_t lba, unsigned int nr_blocks, 1148 unsigned char flags) 1149 { 1150 /* Avoid that 0 blocks gets translated into 256 blocks. */ 1151 if (WARN_ON_ONCE(nr_blocks == 0)) 1152 return BLK_STS_IOERR; 1153 1154 if (unlikely(flags & 0x8)) { 1155 /* 1156 * This happens only if this drive failed 10byte rw 1157 * command with ILLEGAL_REQUEST during operation and 1158 * thus turned off use_10_for_rw. 1159 */ 1160 scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n"); 1161 return BLK_STS_IOERR; 1162 } 1163 1164 cmd->cmd_len = 6; 1165 cmd->cmnd[0] = write ? WRITE_6 : READ_6; 1166 cmd->cmnd[1] = (lba >> 16) & 0x1f; 1167 cmd->cmnd[2] = (lba >> 8) & 0xff; 1168 cmd->cmnd[3] = lba & 0xff; 1169 cmd->cmnd[4] = nr_blocks; 1170 cmd->cmnd[5] = 0; 1171 1172 return BLK_STS_OK; 1173 } 1174 1175 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd) 1176 { 1177 struct request *rq = cmd->request; 1178 struct scsi_device *sdp = cmd->device; 1179 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 1180 sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 1181 sector_t threshold; 1182 unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 1183 unsigned int mask = logical_to_sectors(sdp, 1) - 1; 1184 bool write = rq_data_dir(rq) == WRITE; 1185 unsigned char protect, fua; 1186 blk_status_t ret; 1187 unsigned int dif; 1188 bool dix; 1189 1190 ret = scsi_init_io(cmd); 1191 if (ret != BLK_STS_OK) 1192 return ret; 1193 1194 if (!scsi_device_online(sdp) || sdp->changed) { 1195 scmd_printk(KERN_ERR, cmd, "device offline or changed\n"); 1196 return BLK_STS_IOERR; 1197 } 1198 1199 if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->rq_disk)) { 1200 scmd_printk(KERN_ERR, cmd, "access beyond end of device\n"); 1201 return BLK_STS_IOERR; 1202 } 1203 1204 if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) { 1205 scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n"); 1206 return BLK_STS_IOERR; 1207 } 1208 1209 /* 1210 * Some SD card readers can't handle accesses which touch the 1211 * last one or two logical blocks. Split accesses as needed. 1212 */ 1213 threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS; 1214 1215 if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) { 1216 if (lba < threshold) { 1217 /* Access up to the threshold but not beyond */ 1218 nr_blocks = threshold - lba; 1219 } else { 1220 /* Access only a single logical block */ 1221 nr_blocks = 1; 1222 } 1223 } 1224 1225 if (req_op(rq) == REQ_OP_ZONE_APPEND) { 1226 ret = sd_zbc_prepare_zone_append(cmd, &lba, nr_blocks); 1227 if (ret) 1228 return ret; 1229 } 1230 1231 fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0; 1232 dix = scsi_prot_sg_count(cmd); 1233 dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type); 1234 1235 if (dif || dix) 1236 protect = sd_setup_protect_cmnd(cmd, dix, dif); 1237 else 1238 protect = 0; 1239 1240 if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) { 1241 ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks, 1242 protect | fua); 1243 } else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) { 1244 ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks, 1245 protect | fua); 1246 } else if ((nr_blocks > 0xff) || (lba > 0x1fffff) || 1247 sdp->use_10_for_rw || protect) { 1248 ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks, 1249 protect | fua); 1250 } else { 1251 ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks, 1252 protect | fua); 1253 } 1254 1255 if (unlikely(ret != BLK_STS_OK)) 1256 return ret; 1257 1258 /* 1259 * We shouldn't disconnect in the middle of a sector, so with a dumb 1260 * host adapter, it's safe to assume that we can at least transfer 1261 * this many bytes between each connect / disconnect. 1262 */ 1263 cmd->transfersize = sdp->sector_size; 1264 cmd->underflow = nr_blocks << 9; 1265 cmd->allowed = SD_MAX_RETRIES; 1266 cmd->sdb.length = nr_blocks * sdp->sector_size; 1267 1268 SCSI_LOG_HLQUEUE(1, 1269 scmd_printk(KERN_INFO, cmd, 1270 "%s: block=%llu, count=%d\n", __func__, 1271 (unsigned long long)blk_rq_pos(rq), 1272 blk_rq_sectors(rq))); 1273 SCSI_LOG_HLQUEUE(2, 1274 scmd_printk(KERN_INFO, cmd, 1275 "%s %d/%u 512 byte blocks.\n", 1276 write ? "writing" : "reading", nr_blocks, 1277 blk_rq_sectors(rq))); 1278 1279 /* 1280 * This indicates that the command is ready from our end to be 1281 * queued. 1282 */ 1283 return BLK_STS_OK; 1284 } 1285 1286 static blk_status_t sd_init_command(struct scsi_cmnd *cmd) 1287 { 1288 struct request *rq = cmd->request; 1289 1290 switch (req_op(rq)) { 1291 case REQ_OP_DISCARD: 1292 switch (scsi_disk(rq->rq_disk)->provisioning_mode) { 1293 case SD_LBP_UNMAP: 1294 return sd_setup_unmap_cmnd(cmd); 1295 case SD_LBP_WS16: 1296 return sd_setup_write_same16_cmnd(cmd, true); 1297 case SD_LBP_WS10: 1298 return sd_setup_write_same10_cmnd(cmd, true); 1299 case SD_LBP_ZERO: 1300 return sd_setup_write_same10_cmnd(cmd, false); 1301 default: 1302 return BLK_STS_TARGET; 1303 } 1304 case REQ_OP_WRITE_ZEROES: 1305 return sd_setup_write_zeroes_cmnd(cmd); 1306 case REQ_OP_WRITE_SAME: 1307 return sd_setup_write_same_cmnd(cmd); 1308 case REQ_OP_FLUSH: 1309 return sd_setup_flush_cmnd(cmd); 1310 case REQ_OP_READ: 1311 case REQ_OP_WRITE: 1312 case REQ_OP_ZONE_APPEND: 1313 return sd_setup_read_write_cmnd(cmd); 1314 case REQ_OP_ZONE_RESET: 1315 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER, 1316 false); 1317 case REQ_OP_ZONE_RESET_ALL: 1318 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER, 1319 true); 1320 case REQ_OP_ZONE_OPEN: 1321 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false); 1322 case REQ_OP_ZONE_CLOSE: 1323 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false); 1324 case REQ_OP_ZONE_FINISH: 1325 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false); 1326 default: 1327 WARN_ON_ONCE(1); 1328 return BLK_STS_NOTSUPP; 1329 } 1330 } 1331 1332 static void sd_uninit_command(struct scsi_cmnd *SCpnt) 1333 { 1334 struct request *rq = SCpnt->request; 1335 u8 *cmnd; 1336 1337 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1338 mempool_free(rq->special_vec.bv_page, sd_page_pool); 1339 1340 if (SCpnt->cmnd != scsi_req(rq)->cmd) { 1341 cmnd = SCpnt->cmnd; 1342 SCpnt->cmnd = NULL; 1343 SCpnt->cmd_len = 0; 1344 mempool_free(cmnd, sd_cdb_pool); 1345 } 1346 } 1347 1348 /** 1349 * sd_open - open a scsi disk device 1350 * @bdev: Block device of the scsi disk to open 1351 * @mode: FMODE_* mask 1352 * 1353 * Returns 0 if successful. Returns a negated errno value in case 1354 * of error. 1355 * 1356 * Note: This can be called from a user context (e.g. fsck(1) ) 1357 * or from within the kernel (e.g. as a result of a mount(1) ). 1358 * In the latter case @inode and @filp carry an abridged amount 1359 * of information as noted above. 1360 * 1361 * Locking: called with bdev->bd_mutex held. 1362 **/ 1363 static int sd_open(struct block_device *bdev, fmode_t mode) 1364 { 1365 struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk); 1366 struct scsi_device *sdev; 1367 int retval; 1368 1369 if (!sdkp) 1370 return -ENXIO; 1371 1372 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n")); 1373 1374 sdev = sdkp->device; 1375 1376 /* 1377 * If the device is in error recovery, wait until it is done. 1378 * If the device is offline, then disallow any access to it. 1379 */ 1380 retval = -ENXIO; 1381 if (!scsi_block_when_processing_errors(sdev)) 1382 goto error_out; 1383 1384 if (sdev->removable || sdkp->write_prot) { 1385 if (bdev_check_media_change(bdev)) 1386 sd_revalidate_disk(bdev->bd_disk); 1387 } 1388 1389 /* 1390 * If the drive is empty, just let the open fail. 1391 */ 1392 retval = -ENOMEDIUM; 1393 if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY)) 1394 goto error_out; 1395 1396 /* 1397 * If the device has the write protect tab set, have the open fail 1398 * if the user expects to be able to write to the thing. 1399 */ 1400 retval = -EROFS; 1401 if (sdkp->write_prot && (mode & FMODE_WRITE)) 1402 goto error_out; 1403 1404 /* 1405 * It is possible that the disk changing stuff resulted in 1406 * the device being taken offline. If this is the case, 1407 * report this to the user, and don't pretend that the 1408 * open actually succeeded. 1409 */ 1410 retval = -ENXIO; 1411 if (!scsi_device_online(sdev)) 1412 goto error_out; 1413 1414 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) { 1415 if (scsi_block_when_processing_errors(sdev)) 1416 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT); 1417 } 1418 1419 return 0; 1420 1421 error_out: 1422 scsi_disk_put(sdkp); 1423 return retval; 1424 } 1425 1426 /** 1427 * sd_release - invoked when the (last) close(2) is called on this 1428 * scsi disk. 1429 * @disk: disk to release 1430 * @mode: FMODE_* mask 1431 * 1432 * Returns 0. 1433 * 1434 * Note: may block (uninterruptible) if error recovery is underway 1435 * on this disk. 1436 * 1437 * Locking: called with bdev->bd_mutex held. 1438 **/ 1439 static void sd_release(struct gendisk *disk, fmode_t mode) 1440 { 1441 struct scsi_disk *sdkp = scsi_disk(disk); 1442 struct scsi_device *sdev = sdkp->device; 1443 1444 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n")); 1445 1446 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) { 1447 if (scsi_block_when_processing_errors(sdev)) 1448 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW); 1449 } 1450 1451 scsi_disk_put(sdkp); 1452 } 1453 1454 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1455 { 1456 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1457 struct scsi_device *sdp = sdkp->device; 1458 struct Scsi_Host *host = sdp->host; 1459 sector_t capacity = logical_to_sectors(sdp, sdkp->capacity); 1460 int diskinfo[4]; 1461 1462 /* default to most commonly used values */ 1463 diskinfo[0] = 0x40; /* 1 << 6 */ 1464 diskinfo[1] = 0x20; /* 1 << 5 */ 1465 diskinfo[2] = capacity >> 11; 1466 1467 /* override with calculated, extended default, or driver values */ 1468 if (host->hostt->bios_param) 1469 host->hostt->bios_param(sdp, bdev, capacity, diskinfo); 1470 else 1471 scsicam_bios_param(bdev, capacity, diskinfo); 1472 1473 geo->heads = diskinfo[0]; 1474 geo->sectors = diskinfo[1]; 1475 geo->cylinders = diskinfo[2]; 1476 return 0; 1477 } 1478 1479 /** 1480 * sd_ioctl - process an ioctl 1481 * @bdev: target block device 1482 * @mode: FMODE_* mask 1483 * @cmd: ioctl command number 1484 * @p: this is third argument given to ioctl(2) system call. 1485 * Often contains a pointer. 1486 * 1487 * Returns 0 if successful (some ioctls return positive numbers on 1488 * success as well). Returns a negated errno value in case of error. 1489 * 1490 * Note: most ioctls are forward onto the block subsystem or further 1491 * down in the scsi subsystem. 1492 **/ 1493 static int sd_ioctl_common(struct block_device *bdev, fmode_t mode, 1494 unsigned int cmd, void __user *p) 1495 { 1496 struct gendisk *disk = bdev->bd_disk; 1497 struct scsi_disk *sdkp = scsi_disk(disk); 1498 struct scsi_device *sdp = sdkp->device; 1499 int error; 1500 1501 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, " 1502 "cmd=0x%x\n", disk->disk_name, cmd)); 1503 1504 error = scsi_verify_blk_ioctl(bdev, cmd); 1505 if (error < 0) 1506 return error; 1507 1508 /* 1509 * If we are in the middle of error recovery, don't let anyone 1510 * else try and use this device. Also, if error recovery fails, it 1511 * may try and take the device offline, in which case all further 1512 * access to the device is prohibited. 1513 */ 1514 error = scsi_ioctl_block_when_processing_errors(sdp, cmd, 1515 (mode & FMODE_NDELAY) != 0); 1516 if (error) 1517 goto out; 1518 1519 if (is_sed_ioctl(cmd)) 1520 return sed_ioctl(sdkp->opal_dev, cmd, p); 1521 1522 /* 1523 * Send SCSI addressing ioctls directly to mid level, send other 1524 * ioctls to block level and then onto mid level if they can't be 1525 * resolved. 1526 */ 1527 switch (cmd) { 1528 case SCSI_IOCTL_GET_IDLUN: 1529 case SCSI_IOCTL_GET_BUS_NUMBER: 1530 error = scsi_ioctl(sdp, cmd, p); 1531 break; 1532 default: 1533 error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p); 1534 break; 1535 } 1536 out: 1537 return error; 1538 } 1539 1540 static void set_media_not_present(struct scsi_disk *sdkp) 1541 { 1542 if (sdkp->media_present) 1543 sdkp->device->changed = 1; 1544 1545 if (sdkp->device->removable) { 1546 sdkp->media_present = 0; 1547 sdkp->capacity = 0; 1548 } 1549 } 1550 1551 static int media_not_present(struct scsi_disk *sdkp, 1552 struct scsi_sense_hdr *sshdr) 1553 { 1554 if (!scsi_sense_valid(sshdr)) 1555 return 0; 1556 1557 /* not invoked for commands that could return deferred errors */ 1558 switch (sshdr->sense_key) { 1559 case UNIT_ATTENTION: 1560 case NOT_READY: 1561 /* medium not present */ 1562 if (sshdr->asc == 0x3A) { 1563 set_media_not_present(sdkp); 1564 return 1; 1565 } 1566 } 1567 return 0; 1568 } 1569 1570 /** 1571 * sd_check_events - check media events 1572 * @disk: kernel device descriptor 1573 * @clearing: disk events currently being cleared 1574 * 1575 * Returns mask of DISK_EVENT_*. 1576 * 1577 * Note: this function is invoked from the block subsystem. 1578 **/ 1579 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing) 1580 { 1581 struct scsi_disk *sdkp = scsi_disk_get(disk); 1582 struct scsi_device *sdp; 1583 int retval; 1584 1585 if (!sdkp) 1586 return 0; 1587 1588 sdp = sdkp->device; 1589 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n")); 1590 1591 /* 1592 * If the device is offline, don't send any commands - just pretend as 1593 * if the command failed. If the device ever comes back online, we 1594 * can deal with it then. It is only because of unrecoverable errors 1595 * that we would ever take a device offline in the first place. 1596 */ 1597 if (!scsi_device_online(sdp)) { 1598 set_media_not_present(sdkp); 1599 goto out; 1600 } 1601 1602 /* 1603 * Using TEST_UNIT_READY enables differentiation between drive with 1604 * no cartridge loaded - NOT READY, drive with changed cartridge - 1605 * UNIT ATTENTION, or with same cartridge - GOOD STATUS. 1606 * 1607 * Drives that auto spin down. eg iomega jaz 1G, will be started 1608 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever 1609 * sd_revalidate() is called. 1610 */ 1611 if (scsi_block_when_processing_errors(sdp)) { 1612 struct scsi_sense_hdr sshdr = { 0, }; 1613 1614 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, SD_MAX_RETRIES, 1615 &sshdr); 1616 1617 /* failed to execute TUR, assume media not present */ 1618 if (host_byte(retval)) { 1619 set_media_not_present(sdkp); 1620 goto out; 1621 } 1622 1623 if (media_not_present(sdkp, &sshdr)) 1624 goto out; 1625 } 1626 1627 /* 1628 * For removable scsi disk we have to recognise the presence 1629 * of a disk in the drive. 1630 */ 1631 if (!sdkp->media_present) 1632 sdp->changed = 1; 1633 sdkp->media_present = 1; 1634 out: 1635 /* 1636 * sdp->changed is set under the following conditions: 1637 * 1638 * Medium present state has changed in either direction. 1639 * Device has indicated UNIT_ATTENTION. 1640 */ 1641 retval = sdp->changed ? DISK_EVENT_MEDIA_CHANGE : 0; 1642 sdp->changed = 0; 1643 scsi_disk_put(sdkp); 1644 return retval; 1645 } 1646 1647 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr) 1648 { 1649 int retries, res; 1650 struct scsi_device *sdp = sdkp->device; 1651 const int timeout = sdp->request_queue->rq_timeout 1652 * SD_FLUSH_TIMEOUT_MULTIPLIER; 1653 struct scsi_sense_hdr my_sshdr; 1654 1655 if (!scsi_device_online(sdp)) 1656 return -ENODEV; 1657 1658 /* caller might not be interested in sense, but we need it */ 1659 if (!sshdr) 1660 sshdr = &my_sshdr; 1661 1662 for (retries = 3; retries > 0; --retries) { 1663 unsigned char cmd[10] = { 0 }; 1664 1665 cmd[0] = SYNCHRONIZE_CACHE; 1666 /* 1667 * Leave the rest of the command zero to indicate 1668 * flush everything. 1669 */ 1670 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr, 1671 timeout, SD_MAX_RETRIES, 0, RQF_PM, NULL); 1672 if (res == 0) 1673 break; 1674 } 1675 1676 if (res) { 1677 sd_print_result(sdkp, "Synchronize Cache(10) failed", res); 1678 1679 if (driver_byte(res) == DRIVER_SENSE) 1680 sd_print_sense_hdr(sdkp, sshdr); 1681 1682 /* we need to evaluate the error return */ 1683 if (scsi_sense_valid(sshdr) && 1684 (sshdr->asc == 0x3a || /* medium not present */ 1685 sshdr->asc == 0x20 || /* invalid command */ 1686 (sshdr->asc == 0x74 && sshdr->ascq == 0x71))) /* drive is password locked */ 1687 /* this is no error here */ 1688 return 0; 1689 1690 switch (host_byte(res)) { 1691 /* ignore errors due to racing a disconnection */ 1692 case DID_BAD_TARGET: 1693 case DID_NO_CONNECT: 1694 return 0; 1695 /* signal the upper layer it might try again */ 1696 case DID_BUS_BUSY: 1697 case DID_IMM_RETRY: 1698 case DID_REQUEUE: 1699 case DID_SOFT_ERROR: 1700 return -EBUSY; 1701 default: 1702 return -EIO; 1703 } 1704 } 1705 return 0; 1706 } 1707 1708 static void sd_rescan(struct device *dev) 1709 { 1710 struct scsi_disk *sdkp = dev_get_drvdata(dev); 1711 int ret; 1712 1713 ret = sd_revalidate_disk(sdkp->disk); 1714 revalidate_disk_size(sdkp->disk, ret == 0); 1715 } 1716 1717 static int sd_ioctl(struct block_device *bdev, fmode_t mode, 1718 unsigned int cmd, unsigned long arg) 1719 { 1720 void __user *p = (void __user *)arg; 1721 int ret; 1722 1723 ret = sd_ioctl_common(bdev, mode, cmd, p); 1724 if (ret != -ENOTTY) 1725 return ret; 1726 1727 return scsi_ioctl(scsi_disk(bdev->bd_disk)->device, cmd, p); 1728 } 1729 1730 #ifdef CONFIG_COMPAT 1731 static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode, 1732 unsigned int cmd, unsigned long arg) 1733 { 1734 void __user *p = compat_ptr(arg); 1735 int ret; 1736 1737 ret = sd_ioctl_common(bdev, mode, cmd, p); 1738 if (ret != -ENOTTY) 1739 return ret; 1740 1741 return scsi_compat_ioctl(scsi_disk(bdev->bd_disk)->device, cmd, p); 1742 } 1743 #endif 1744 1745 static char sd_pr_type(enum pr_type type) 1746 { 1747 switch (type) { 1748 case PR_WRITE_EXCLUSIVE: 1749 return 0x01; 1750 case PR_EXCLUSIVE_ACCESS: 1751 return 0x03; 1752 case PR_WRITE_EXCLUSIVE_REG_ONLY: 1753 return 0x05; 1754 case PR_EXCLUSIVE_ACCESS_REG_ONLY: 1755 return 0x06; 1756 case PR_WRITE_EXCLUSIVE_ALL_REGS: 1757 return 0x07; 1758 case PR_EXCLUSIVE_ACCESS_ALL_REGS: 1759 return 0x08; 1760 default: 1761 return 0; 1762 } 1763 }; 1764 1765 static int sd_pr_command(struct block_device *bdev, u8 sa, 1766 u64 key, u64 sa_key, u8 type, u8 flags) 1767 { 1768 struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device; 1769 struct scsi_sense_hdr sshdr; 1770 int result; 1771 u8 cmd[16] = { 0, }; 1772 u8 data[24] = { 0, }; 1773 1774 cmd[0] = PERSISTENT_RESERVE_OUT; 1775 cmd[1] = sa; 1776 cmd[2] = type; 1777 put_unaligned_be32(sizeof(data), &cmd[5]); 1778 1779 put_unaligned_be64(key, &data[0]); 1780 put_unaligned_be64(sa_key, &data[8]); 1781 data[20] = flags; 1782 1783 result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data), 1784 &sshdr, SD_TIMEOUT, SD_MAX_RETRIES, NULL); 1785 1786 if (driver_byte(result) == DRIVER_SENSE && 1787 scsi_sense_valid(&sshdr)) { 1788 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result); 1789 scsi_print_sense_hdr(sdev, NULL, &sshdr); 1790 } 1791 1792 return result; 1793 } 1794 1795 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 1796 u32 flags) 1797 { 1798 if (flags & ~PR_FL_IGNORE_KEY) 1799 return -EOPNOTSUPP; 1800 return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00, 1801 old_key, new_key, 0, 1802 (1 << 0) /* APTPL */); 1803 } 1804 1805 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 1806 u32 flags) 1807 { 1808 if (flags) 1809 return -EOPNOTSUPP; 1810 return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0); 1811 } 1812 1813 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 1814 { 1815 return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0); 1816 } 1817 1818 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 1819 enum pr_type type, bool abort) 1820 { 1821 return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key, 1822 sd_pr_type(type), 0); 1823 } 1824 1825 static int sd_pr_clear(struct block_device *bdev, u64 key) 1826 { 1827 return sd_pr_command(bdev, 0x03, key, 0, 0, 0); 1828 } 1829 1830 static const struct pr_ops sd_pr_ops = { 1831 .pr_register = sd_pr_register, 1832 .pr_reserve = sd_pr_reserve, 1833 .pr_release = sd_pr_release, 1834 .pr_preempt = sd_pr_preempt, 1835 .pr_clear = sd_pr_clear, 1836 }; 1837 1838 static const struct block_device_operations sd_fops = { 1839 .owner = THIS_MODULE, 1840 .open = sd_open, 1841 .release = sd_release, 1842 .ioctl = sd_ioctl, 1843 .getgeo = sd_getgeo, 1844 #ifdef CONFIG_COMPAT 1845 .compat_ioctl = sd_compat_ioctl, 1846 #endif 1847 .check_events = sd_check_events, 1848 .unlock_native_capacity = sd_unlock_native_capacity, 1849 .report_zones = sd_zbc_report_zones, 1850 .pr_ops = &sd_pr_ops, 1851 }; 1852 1853 /** 1854 * sd_eh_reset - reset error handling callback 1855 * @scmd: sd-issued command that has failed 1856 * 1857 * This function is called by the SCSI midlayer before starting 1858 * SCSI EH. When counting medium access failures we have to be 1859 * careful to register it only only once per device and SCSI EH run; 1860 * there might be several timed out commands which will cause the 1861 * 'max_medium_access_timeouts' counter to trigger after the first 1862 * SCSI EH run already and set the device to offline. 1863 * So this function resets the internal counter before starting SCSI EH. 1864 **/ 1865 static void sd_eh_reset(struct scsi_cmnd *scmd) 1866 { 1867 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk); 1868 1869 /* New SCSI EH run, reset gate variable */ 1870 sdkp->ignore_medium_access_errors = false; 1871 } 1872 1873 /** 1874 * sd_eh_action - error handling callback 1875 * @scmd: sd-issued command that has failed 1876 * @eh_disp: The recovery disposition suggested by the midlayer 1877 * 1878 * This function is called by the SCSI midlayer upon completion of an 1879 * error test command (currently TEST UNIT READY). The result of sending 1880 * the eh command is passed in eh_disp. We're looking for devices that 1881 * fail medium access commands but are OK with non access commands like 1882 * test unit ready (so wrongly see the device as having a successful 1883 * recovery) 1884 **/ 1885 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp) 1886 { 1887 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk); 1888 struct scsi_device *sdev = scmd->device; 1889 1890 if (!scsi_device_online(sdev) || 1891 !scsi_medium_access_command(scmd) || 1892 host_byte(scmd->result) != DID_TIME_OUT || 1893 eh_disp != SUCCESS) 1894 return eh_disp; 1895 1896 /* 1897 * The device has timed out executing a medium access command. 1898 * However, the TEST UNIT READY command sent during error 1899 * handling completed successfully. Either the device is in the 1900 * process of recovering or has it suffered an internal failure 1901 * that prevents access to the storage medium. 1902 */ 1903 if (!sdkp->ignore_medium_access_errors) { 1904 sdkp->medium_access_timed_out++; 1905 sdkp->ignore_medium_access_errors = true; 1906 } 1907 1908 /* 1909 * If the device keeps failing read/write commands but TEST UNIT 1910 * READY always completes successfully we assume that medium 1911 * access is no longer possible and take the device offline. 1912 */ 1913 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) { 1914 scmd_printk(KERN_ERR, scmd, 1915 "Medium access timeout failure. Offlining disk!\n"); 1916 mutex_lock(&sdev->state_mutex); 1917 scsi_device_set_state(sdev, SDEV_OFFLINE); 1918 mutex_unlock(&sdev->state_mutex); 1919 1920 return SUCCESS; 1921 } 1922 1923 return eh_disp; 1924 } 1925 1926 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd) 1927 { 1928 struct request *req = scmd->request; 1929 struct scsi_device *sdev = scmd->device; 1930 unsigned int transferred, good_bytes; 1931 u64 start_lba, end_lba, bad_lba; 1932 1933 /* 1934 * Some commands have a payload smaller than the device logical 1935 * block size (e.g. INQUIRY on a 4K disk). 1936 */ 1937 if (scsi_bufflen(scmd) <= sdev->sector_size) 1938 return 0; 1939 1940 /* Check if we have a 'bad_lba' information */ 1941 if (!scsi_get_sense_info_fld(scmd->sense_buffer, 1942 SCSI_SENSE_BUFFERSIZE, 1943 &bad_lba)) 1944 return 0; 1945 1946 /* 1947 * If the bad lba was reported incorrectly, we have no idea where 1948 * the error is. 1949 */ 1950 start_lba = sectors_to_logical(sdev, blk_rq_pos(req)); 1951 end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd)); 1952 if (bad_lba < start_lba || bad_lba >= end_lba) 1953 return 0; 1954 1955 /* 1956 * resid is optional but mostly filled in. When it's unused, 1957 * its value is zero, so we assume the whole buffer transferred 1958 */ 1959 transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd); 1960 1961 /* This computation should always be done in terms of the 1962 * resolution of the device's medium. 1963 */ 1964 good_bytes = logical_to_bytes(sdev, bad_lba - start_lba); 1965 1966 return min(good_bytes, transferred); 1967 } 1968 1969 /** 1970 * sd_done - bottom half handler: called when the lower level 1971 * driver has completed (successfully or otherwise) a scsi command. 1972 * @SCpnt: mid-level's per command structure. 1973 * 1974 * Note: potentially run from within an ISR. Must not block. 1975 **/ 1976 static int sd_done(struct scsi_cmnd *SCpnt) 1977 { 1978 int result = SCpnt->result; 1979 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt); 1980 unsigned int sector_size = SCpnt->device->sector_size; 1981 unsigned int resid; 1982 struct scsi_sense_hdr sshdr; 1983 struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk); 1984 struct request *req = SCpnt->request; 1985 int sense_valid = 0; 1986 int sense_deferred = 0; 1987 1988 switch (req_op(req)) { 1989 case REQ_OP_DISCARD: 1990 case REQ_OP_WRITE_ZEROES: 1991 case REQ_OP_WRITE_SAME: 1992 case REQ_OP_ZONE_RESET: 1993 case REQ_OP_ZONE_RESET_ALL: 1994 case REQ_OP_ZONE_OPEN: 1995 case REQ_OP_ZONE_CLOSE: 1996 case REQ_OP_ZONE_FINISH: 1997 if (!result) { 1998 good_bytes = blk_rq_bytes(req); 1999 scsi_set_resid(SCpnt, 0); 2000 } else { 2001 good_bytes = 0; 2002 scsi_set_resid(SCpnt, blk_rq_bytes(req)); 2003 } 2004 break; 2005 default: 2006 /* 2007 * In case of bogus fw or device, we could end up having 2008 * an unaligned partial completion. Check this here and force 2009 * alignment. 2010 */ 2011 resid = scsi_get_resid(SCpnt); 2012 if (resid & (sector_size - 1)) { 2013 sd_printk(KERN_INFO, sdkp, 2014 "Unaligned partial completion (resid=%u, sector_sz=%u)\n", 2015 resid, sector_size); 2016 scsi_print_command(SCpnt); 2017 resid = min(scsi_bufflen(SCpnt), 2018 round_up(resid, sector_size)); 2019 scsi_set_resid(SCpnt, resid); 2020 } 2021 } 2022 2023 if (result) { 2024 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr); 2025 if (sense_valid) 2026 sense_deferred = scsi_sense_is_deferred(&sshdr); 2027 } 2028 sdkp->medium_access_timed_out = 0; 2029 2030 if (driver_byte(result) != DRIVER_SENSE && 2031 (!sense_valid || sense_deferred)) 2032 goto out; 2033 2034 switch (sshdr.sense_key) { 2035 case HARDWARE_ERROR: 2036 case MEDIUM_ERROR: 2037 good_bytes = sd_completed_bytes(SCpnt); 2038 break; 2039 case RECOVERED_ERROR: 2040 good_bytes = scsi_bufflen(SCpnt); 2041 break; 2042 case NO_SENSE: 2043 /* This indicates a false check condition, so ignore it. An 2044 * unknown amount of data was transferred so treat it as an 2045 * error. 2046 */ 2047 SCpnt->result = 0; 2048 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 2049 break; 2050 case ABORTED_COMMAND: 2051 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */ 2052 good_bytes = sd_completed_bytes(SCpnt); 2053 break; 2054 case ILLEGAL_REQUEST: 2055 switch (sshdr.asc) { 2056 case 0x10: /* DIX: Host detected corruption */ 2057 good_bytes = sd_completed_bytes(SCpnt); 2058 break; 2059 case 0x20: /* INVALID COMMAND OPCODE */ 2060 case 0x24: /* INVALID FIELD IN CDB */ 2061 switch (SCpnt->cmnd[0]) { 2062 case UNMAP: 2063 sd_config_discard(sdkp, SD_LBP_DISABLE); 2064 break; 2065 case WRITE_SAME_16: 2066 case WRITE_SAME: 2067 if (SCpnt->cmnd[1] & 8) { /* UNMAP */ 2068 sd_config_discard(sdkp, SD_LBP_DISABLE); 2069 } else { 2070 sdkp->device->no_write_same = 1; 2071 sd_config_write_same(sdkp); 2072 req->rq_flags |= RQF_QUIET; 2073 } 2074 break; 2075 } 2076 } 2077 break; 2078 default: 2079 break; 2080 } 2081 2082 out: 2083 if (sd_is_zoned(sdkp)) 2084 good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr); 2085 2086 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt, 2087 "sd_done: completed %d of %d bytes\n", 2088 good_bytes, scsi_bufflen(SCpnt))); 2089 2090 return good_bytes; 2091 } 2092 2093 /* 2094 * spinup disk - called only in sd_revalidate_disk() 2095 */ 2096 static void 2097 sd_spinup_disk(struct scsi_disk *sdkp) 2098 { 2099 unsigned char cmd[10]; 2100 unsigned long spintime_expire = 0; 2101 int retries, spintime; 2102 unsigned int the_result; 2103 struct scsi_sense_hdr sshdr; 2104 int sense_valid = 0; 2105 2106 spintime = 0; 2107 2108 /* Spin up drives, as required. Only do this at boot time */ 2109 /* Spinup needs to be done for module loads too. */ 2110 do { 2111 retries = 0; 2112 2113 do { 2114 cmd[0] = TEST_UNIT_READY; 2115 memset((void *) &cmd[1], 0, 9); 2116 2117 the_result = scsi_execute_req(sdkp->device, cmd, 2118 DMA_NONE, NULL, 0, 2119 &sshdr, SD_TIMEOUT, 2120 SD_MAX_RETRIES, NULL); 2121 2122 /* 2123 * If the drive has indicated to us that it 2124 * doesn't have any media in it, don't bother 2125 * with any more polling. 2126 */ 2127 if (media_not_present(sdkp, &sshdr)) 2128 return; 2129 2130 if (the_result) 2131 sense_valid = scsi_sense_valid(&sshdr); 2132 retries++; 2133 } while (retries < 3 && 2134 (!scsi_status_is_good(the_result) || 2135 ((driver_byte(the_result) == DRIVER_SENSE) && 2136 sense_valid && sshdr.sense_key == UNIT_ATTENTION))); 2137 2138 if (driver_byte(the_result) != DRIVER_SENSE) { 2139 /* no sense, TUR either succeeded or failed 2140 * with a status error */ 2141 if(!spintime && !scsi_status_is_good(the_result)) { 2142 sd_print_result(sdkp, "Test Unit Ready failed", 2143 the_result); 2144 } 2145 break; 2146 } 2147 2148 /* 2149 * The device does not want the automatic start to be issued. 2150 */ 2151 if (sdkp->device->no_start_on_add) 2152 break; 2153 2154 if (sense_valid && sshdr.sense_key == NOT_READY) { 2155 if (sshdr.asc == 4 && sshdr.ascq == 3) 2156 break; /* manual intervention required */ 2157 if (sshdr.asc == 4 && sshdr.ascq == 0xb) 2158 break; /* standby */ 2159 if (sshdr.asc == 4 && sshdr.ascq == 0xc) 2160 break; /* unavailable */ 2161 if (sshdr.asc == 4 && sshdr.ascq == 0x1b) 2162 break; /* sanitize in progress */ 2163 /* 2164 * Issue command to spin up drive when not ready 2165 */ 2166 if (!spintime) { 2167 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk..."); 2168 cmd[0] = START_STOP; 2169 cmd[1] = 1; /* Return immediately */ 2170 memset((void *) &cmd[2], 0, 8); 2171 cmd[4] = 1; /* Start spin cycle */ 2172 if (sdkp->device->start_stop_pwr_cond) 2173 cmd[4] |= 1 << 4; 2174 scsi_execute_req(sdkp->device, cmd, DMA_NONE, 2175 NULL, 0, &sshdr, 2176 SD_TIMEOUT, SD_MAX_RETRIES, 2177 NULL); 2178 spintime_expire = jiffies + 100 * HZ; 2179 spintime = 1; 2180 } 2181 /* Wait 1 second for next try */ 2182 msleep(1000); 2183 printk(KERN_CONT "."); 2184 2185 /* 2186 * Wait for USB flash devices with slow firmware. 2187 * Yes, this sense key/ASC combination shouldn't 2188 * occur here. It's characteristic of these devices. 2189 */ 2190 } else if (sense_valid && 2191 sshdr.sense_key == UNIT_ATTENTION && 2192 sshdr.asc == 0x28) { 2193 if (!spintime) { 2194 spintime_expire = jiffies + 5 * HZ; 2195 spintime = 1; 2196 } 2197 /* Wait 1 second for next try */ 2198 msleep(1000); 2199 } else { 2200 /* we don't understand the sense code, so it's 2201 * probably pointless to loop */ 2202 if(!spintime) { 2203 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n"); 2204 sd_print_sense_hdr(sdkp, &sshdr); 2205 } 2206 break; 2207 } 2208 2209 } while (spintime && time_before_eq(jiffies, spintime_expire)); 2210 2211 if (spintime) { 2212 if (scsi_status_is_good(the_result)) 2213 printk(KERN_CONT "ready\n"); 2214 else 2215 printk(KERN_CONT "not responding...\n"); 2216 } 2217 } 2218 2219 /* 2220 * Determine whether disk supports Data Integrity Field. 2221 */ 2222 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer) 2223 { 2224 struct scsi_device *sdp = sdkp->device; 2225 u8 type; 2226 int ret = 0; 2227 2228 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) { 2229 sdkp->protection_type = 0; 2230 return ret; 2231 } 2232 2233 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */ 2234 2235 if (type > T10_PI_TYPE3_PROTECTION) 2236 ret = -ENODEV; 2237 else if (scsi_host_dif_capable(sdp->host, type)) 2238 ret = 1; 2239 2240 if (sdkp->first_scan || type != sdkp->protection_type) 2241 switch (ret) { 2242 case -ENODEV: 2243 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \ 2244 " protection type %u. Disabling disk!\n", 2245 type); 2246 break; 2247 case 1: 2248 sd_printk(KERN_NOTICE, sdkp, 2249 "Enabling DIF Type %u protection\n", type); 2250 break; 2251 case 0: 2252 sd_printk(KERN_NOTICE, sdkp, 2253 "Disabling DIF Type %u protection\n", type); 2254 break; 2255 } 2256 2257 sdkp->protection_type = type; 2258 2259 return ret; 2260 } 2261 2262 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp, 2263 struct scsi_sense_hdr *sshdr, int sense_valid, 2264 int the_result) 2265 { 2266 if (driver_byte(the_result) == DRIVER_SENSE) 2267 sd_print_sense_hdr(sdkp, sshdr); 2268 else 2269 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n"); 2270 2271 /* 2272 * Set dirty bit for removable devices if not ready - 2273 * sometimes drives will not report this properly. 2274 */ 2275 if (sdp->removable && 2276 sense_valid && sshdr->sense_key == NOT_READY) 2277 set_media_not_present(sdkp); 2278 2279 /* 2280 * We used to set media_present to 0 here to indicate no media 2281 * in the drive, but some drives fail read capacity even with 2282 * media present, so we can't do that. 2283 */ 2284 sdkp->capacity = 0; /* unknown mapped to zero - as usual */ 2285 } 2286 2287 #define RC16_LEN 32 2288 #if RC16_LEN > SD_BUF_SIZE 2289 #error RC16_LEN must not be more than SD_BUF_SIZE 2290 #endif 2291 2292 #define READ_CAPACITY_RETRIES_ON_RESET 10 2293 2294 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp, 2295 unsigned char *buffer) 2296 { 2297 unsigned char cmd[16]; 2298 struct scsi_sense_hdr sshdr; 2299 int sense_valid = 0; 2300 int the_result; 2301 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2302 unsigned int alignment; 2303 unsigned long long lba; 2304 unsigned sector_size; 2305 2306 if (sdp->no_read_capacity_16) 2307 return -EINVAL; 2308 2309 do { 2310 memset(cmd, 0, 16); 2311 cmd[0] = SERVICE_ACTION_IN_16; 2312 cmd[1] = SAI_READ_CAPACITY_16; 2313 cmd[13] = RC16_LEN; 2314 memset(buffer, 0, RC16_LEN); 2315 2316 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, 2317 buffer, RC16_LEN, &sshdr, 2318 SD_TIMEOUT, SD_MAX_RETRIES, NULL); 2319 2320 if (media_not_present(sdkp, &sshdr)) 2321 return -ENODEV; 2322 2323 if (the_result) { 2324 sense_valid = scsi_sense_valid(&sshdr); 2325 if (sense_valid && 2326 sshdr.sense_key == ILLEGAL_REQUEST && 2327 (sshdr.asc == 0x20 || sshdr.asc == 0x24) && 2328 sshdr.ascq == 0x00) 2329 /* Invalid Command Operation Code or 2330 * Invalid Field in CDB, just retry 2331 * silently with RC10 */ 2332 return -EINVAL; 2333 if (sense_valid && 2334 sshdr.sense_key == UNIT_ATTENTION && 2335 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2336 /* Device reset might occur several times, 2337 * give it one more chance */ 2338 if (--reset_retries > 0) 2339 continue; 2340 } 2341 retries--; 2342 2343 } while (the_result && retries); 2344 2345 if (the_result) { 2346 sd_print_result(sdkp, "Read Capacity(16) failed", the_result); 2347 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2348 return -EINVAL; 2349 } 2350 2351 sector_size = get_unaligned_be32(&buffer[8]); 2352 lba = get_unaligned_be64(&buffer[0]); 2353 2354 if (sd_read_protection_type(sdkp, buffer) < 0) { 2355 sdkp->capacity = 0; 2356 return -ENODEV; 2357 } 2358 2359 /* Logical blocks per physical block exponent */ 2360 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size; 2361 2362 /* RC basis */ 2363 sdkp->rc_basis = (buffer[12] >> 4) & 0x3; 2364 2365 /* Lowest aligned logical block */ 2366 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size; 2367 blk_queue_alignment_offset(sdp->request_queue, alignment); 2368 if (alignment && sdkp->first_scan) 2369 sd_printk(KERN_NOTICE, sdkp, 2370 "physical block alignment offset: %u\n", alignment); 2371 2372 if (buffer[14] & 0x80) { /* LBPME */ 2373 sdkp->lbpme = 1; 2374 2375 if (buffer[14] & 0x40) /* LBPRZ */ 2376 sdkp->lbprz = 1; 2377 2378 sd_config_discard(sdkp, SD_LBP_WS16); 2379 } 2380 2381 sdkp->capacity = lba + 1; 2382 return sector_size; 2383 } 2384 2385 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp, 2386 unsigned char *buffer) 2387 { 2388 unsigned char cmd[16]; 2389 struct scsi_sense_hdr sshdr; 2390 int sense_valid = 0; 2391 int the_result; 2392 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2393 sector_t lba; 2394 unsigned sector_size; 2395 2396 do { 2397 cmd[0] = READ_CAPACITY; 2398 memset(&cmd[1], 0, 9); 2399 memset(buffer, 0, 8); 2400 2401 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, 2402 buffer, 8, &sshdr, 2403 SD_TIMEOUT, SD_MAX_RETRIES, NULL); 2404 2405 if (media_not_present(sdkp, &sshdr)) 2406 return -ENODEV; 2407 2408 if (the_result) { 2409 sense_valid = scsi_sense_valid(&sshdr); 2410 if (sense_valid && 2411 sshdr.sense_key == UNIT_ATTENTION && 2412 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2413 /* Device reset might occur several times, 2414 * give it one more chance */ 2415 if (--reset_retries > 0) 2416 continue; 2417 } 2418 retries--; 2419 2420 } while (the_result && retries); 2421 2422 if (the_result) { 2423 sd_print_result(sdkp, "Read Capacity(10) failed", the_result); 2424 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2425 return -EINVAL; 2426 } 2427 2428 sector_size = get_unaligned_be32(&buffer[4]); 2429 lba = get_unaligned_be32(&buffer[0]); 2430 2431 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) { 2432 /* Some buggy (usb cardreader) devices return an lba of 2433 0xffffffff when the want to report a size of 0 (with 2434 which they really mean no media is present) */ 2435 sdkp->capacity = 0; 2436 sdkp->physical_block_size = sector_size; 2437 return sector_size; 2438 } 2439 2440 sdkp->capacity = lba + 1; 2441 sdkp->physical_block_size = sector_size; 2442 return sector_size; 2443 } 2444 2445 static int sd_try_rc16_first(struct scsi_device *sdp) 2446 { 2447 if (sdp->host->max_cmd_len < 16) 2448 return 0; 2449 if (sdp->try_rc_10_first) 2450 return 0; 2451 if (sdp->scsi_level > SCSI_SPC_2) 2452 return 1; 2453 if (scsi_device_protection(sdp)) 2454 return 1; 2455 return 0; 2456 } 2457 2458 /* 2459 * read disk capacity 2460 */ 2461 static void 2462 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer) 2463 { 2464 int sector_size; 2465 struct scsi_device *sdp = sdkp->device; 2466 2467 if (sd_try_rc16_first(sdp)) { 2468 sector_size = read_capacity_16(sdkp, sdp, buffer); 2469 if (sector_size == -EOVERFLOW) 2470 goto got_data; 2471 if (sector_size == -ENODEV) 2472 return; 2473 if (sector_size < 0) 2474 sector_size = read_capacity_10(sdkp, sdp, buffer); 2475 if (sector_size < 0) 2476 return; 2477 } else { 2478 sector_size = read_capacity_10(sdkp, sdp, buffer); 2479 if (sector_size == -EOVERFLOW) 2480 goto got_data; 2481 if (sector_size < 0) 2482 return; 2483 if ((sizeof(sdkp->capacity) > 4) && 2484 (sdkp->capacity > 0xffffffffULL)) { 2485 int old_sector_size = sector_size; 2486 sd_printk(KERN_NOTICE, sdkp, "Very big device. " 2487 "Trying to use READ CAPACITY(16).\n"); 2488 sector_size = read_capacity_16(sdkp, sdp, buffer); 2489 if (sector_size < 0) { 2490 sd_printk(KERN_NOTICE, sdkp, 2491 "Using 0xffffffff as device size\n"); 2492 sdkp->capacity = 1 + (sector_t) 0xffffffff; 2493 sector_size = old_sector_size; 2494 goto got_data; 2495 } 2496 /* Remember that READ CAPACITY(16) succeeded */ 2497 sdp->try_rc_10_first = 0; 2498 } 2499 } 2500 2501 /* Some devices are known to return the total number of blocks, 2502 * not the highest block number. Some devices have versions 2503 * which do this and others which do not. Some devices we might 2504 * suspect of doing this but we don't know for certain. 2505 * 2506 * If we know the reported capacity is wrong, decrement it. If 2507 * we can only guess, then assume the number of blocks is even 2508 * (usually true but not always) and err on the side of lowering 2509 * the capacity. 2510 */ 2511 if (sdp->fix_capacity || 2512 (sdp->guess_capacity && (sdkp->capacity & 0x01))) { 2513 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count " 2514 "from its reported value: %llu\n", 2515 (unsigned long long) sdkp->capacity); 2516 --sdkp->capacity; 2517 } 2518 2519 got_data: 2520 if (sector_size == 0) { 2521 sector_size = 512; 2522 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, " 2523 "assuming 512.\n"); 2524 } 2525 2526 if (sector_size != 512 && 2527 sector_size != 1024 && 2528 sector_size != 2048 && 2529 sector_size != 4096) { 2530 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n", 2531 sector_size); 2532 /* 2533 * The user might want to re-format the drive with 2534 * a supported sectorsize. Once this happens, it 2535 * would be relatively trivial to set the thing up. 2536 * For this reason, we leave the thing in the table. 2537 */ 2538 sdkp->capacity = 0; 2539 /* 2540 * set a bogus sector size so the normal read/write 2541 * logic in the block layer will eventually refuse any 2542 * request on this device without tripping over power 2543 * of two sector size assumptions 2544 */ 2545 sector_size = 512; 2546 } 2547 blk_queue_logical_block_size(sdp->request_queue, sector_size); 2548 blk_queue_physical_block_size(sdp->request_queue, 2549 sdkp->physical_block_size); 2550 sdkp->device->sector_size = sector_size; 2551 2552 if (sdkp->capacity > 0xffffffff) 2553 sdp->use_16_for_rw = 1; 2554 2555 } 2556 2557 /* 2558 * Print disk capacity 2559 */ 2560 static void 2561 sd_print_capacity(struct scsi_disk *sdkp, 2562 sector_t old_capacity) 2563 { 2564 int sector_size = sdkp->device->sector_size; 2565 char cap_str_2[10], cap_str_10[10]; 2566 2567 if (!sdkp->first_scan && old_capacity == sdkp->capacity) 2568 return; 2569 2570 string_get_size(sdkp->capacity, sector_size, 2571 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2)); 2572 string_get_size(sdkp->capacity, sector_size, 2573 STRING_UNITS_10, cap_str_10, sizeof(cap_str_10)); 2574 2575 sd_printk(KERN_NOTICE, sdkp, 2576 "%llu %d-byte logical blocks: (%s/%s)\n", 2577 (unsigned long long)sdkp->capacity, 2578 sector_size, cap_str_10, cap_str_2); 2579 2580 if (sdkp->physical_block_size != sector_size) 2581 sd_printk(KERN_NOTICE, sdkp, 2582 "%u-byte physical blocks\n", 2583 sdkp->physical_block_size); 2584 } 2585 2586 /* called with buffer of length 512 */ 2587 static inline int 2588 sd_do_mode_sense(struct scsi_device *sdp, int dbd, int modepage, 2589 unsigned char *buffer, int len, struct scsi_mode_data *data, 2590 struct scsi_sense_hdr *sshdr) 2591 { 2592 return scsi_mode_sense(sdp, dbd, modepage, buffer, len, 2593 SD_TIMEOUT, SD_MAX_RETRIES, data, 2594 sshdr); 2595 } 2596 2597 /* 2598 * read write protect setting, if possible - called only in sd_revalidate_disk() 2599 * called with buffer of length SD_BUF_SIZE 2600 */ 2601 static void 2602 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer) 2603 { 2604 int res; 2605 struct scsi_device *sdp = sdkp->device; 2606 struct scsi_mode_data data; 2607 int old_wp = sdkp->write_prot; 2608 2609 set_disk_ro(sdkp->disk, 0); 2610 if (sdp->skip_ms_page_3f) { 2611 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n"); 2612 return; 2613 } 2614 2615 if (sdp->use_192_bytes_for_3f) { 2616 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 192, &data, NULL); 2617 } else { 2618 /* 2619 * First attempt: ask for all pages (0x3F), but only 4 bytes. 2620 * We have to start carefully: some devices hang if we ask 2621 * for more than is available. 2622 */ 2623 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 4, &data, NULL); 2624 2625 /* 2626 * Second attempt: ask for page 0 When only page 0 is 2627 * implemented, a request for page 3F may return Sense Key 2628 * 5: Illegal Request, Sense Code 24: Invalid field in 2629 * CDB. 2630 */ 2631 if (!scsi_status_is_good(res)) 2632 res = sd_do_mode_sense(sdp, 0, 0, buffer, 4, &data, NULL); 2633 2634 /* 2635 * Third attempt: ask 255 bytes, as we did earlier. 2636 */ 2637 if (!scsi_status_is_good(res)) 2638 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 255, 2639 &data, NULL); 2640 } 2641 2642 if (!scsi_status_is_good(res)) { 2643 sd_first_printk(KERN_WARNING, sdkp, 2644 "Test WP failed, assume Write Enabled\n"); 2645 } else { 2646 sdkp->write_prot = ((data.device_specific & 0x80) != 0); 2647 set_disk_ro(sdkp->disk, sdkp->write_prot); 2648 if (sdkp->first_scan || old_wp != sdkp->write_prot) { 2649 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n", 2650 sdkp->write_prot ? "on" : "off"); 2651 sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer); 2652 } 2653 } 2654 } 2655 2656 /* 2657 * sd_read_cache_type - called only from sd_revalidate_disk() 2658 * called with buffer of length SD_BUF_SIZE 2659 */ 2660 static void 2661 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer) 2662 { 2663 int len = 0, res; 2664 struct scsi_device *sdp = sdkp->device; 2665 2666 int dbd; 2667 int modepage; 2668 int first_len; 2669 struct scsi_mode_data data; 2670 struct scsi_sense_hdr sshdr; 2671 int old_wce = sdkp->WCE; 2672 int old_rcd = sdkp->RCD; 2673 int old_dpofua = sdkp->DPOFUA; 2674 2675 2676 if (sdkp->cache_override) 2677 return; 2678 2679 first_len = 4; 2680 if (sdp->skip_ms_page_8) { 2681 if (sdp->type == TYPE_RBC) 2682 goto defaults; 2683 else { 2684 if (sdp->skip_ms_page_3f) 2685 goto defaults; 2686 modepage = 0x3F; 2687 if (sdp->use_192_bytes_for_3f) 2688 first_len = 192; 2689 dbd = 0; 2690 } 2691 } else if (sdp->type == TYPE_RBC) { 2692 modepage = 6; 2693 dbd = 8; 2694 } else { 2695 modepage = 8; 2696 dbd = 0; 2697 } 2698 2699 /* cautiously ask */ 2700 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, first_len, 2701 &data, &sshdr); 2702 2703 if (!scsi_status_is_good(res)) 2704 goto bad_sense; 2705 2706 if (!data.header_length) { 2707 modepage = 6; 2708 first_len = 0; 2709 sd_first_printk(KERN_ERR, sdkp, 2710 "Missing header in MODE_SENSE response\n"); 2711 } 2712 2713 /* that went OK, now ask for the proper length */ 2714 len = data.length; 2715 2716 /* 2717 * We're only interested in the first three bytes, actually. 2718 * But the data cache page is defined for the first 20. 2719 */ 2720 if (len < 3) 2721 goto bad_sense; 2722 else if (len > SD_BUF_SIZE) { 2723 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter " 2724 "data from %d to %d bytes\n", len, SD_BUF_SIZE); 2725 len = SD_BUF_SIZE; 2726 } 2727 if (modepage == 0x3F && sdp->use_192_bytes_for_3f) 2728 len = 192; 2729 2730 /* Get the data */ 2731 if (len > first_len) 2732 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, len, 2733 &data, &sshdr); 2734 2735 if (scsi_status_is_good(res)) { 2736 int offset = data.header_length + data.block_descriptor_length; 2737 2738 while (offset < len) { 2739 u8 page_code = buffer[offset] & 0x3F; 2740 u8 spf = buffer[offset] & 0x40; 2741 2742 if (page_code == 8 || page_code == 6) { 2743 /* We're interested only in the first 3 bytes. 2744 */ 2745 if (len - offset <= 2) { 2746 sd_first_printk(KERN_ERR, sdkp, 2747 "Incomplete mode parameter " 2748 "data\n"); 2749 goto defaults; 2750 } else { 2751 modepage = page_code; 2752 goto Page_found; 2753 } 2754 } else { 2755 /* Go to the next page */ 2756 if (spf && len - offset > 3) 2757 offset += 4 + (buffer[offset+2] << 8) + 2758 buffer[offset+3]; 2759 else if (!spf && len - offset > 1) 2760 offset += 2 + buffer[offset+1]; 2761 else { 2762 sd_first_printk(KERN_ERR, sdkp, 2763 "Incomplete mode " 2764 "parameter data\n"); 2765 goto defaults; 2766 } 2767 } 2768 } 2769 2770 sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n"); 2771 goto defaults; 2772 2773 Page_found: 2774 if (modepage == 8) { 2775 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0); 2776 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0); 2777 } else { 2778 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0); 2779 sdkp->RCD = 0; 2780 } 2781 2782 sdkp->DPOFUA = (data.device_specific & 0x10) != 0; 2783 if (sdp->broken_fua) { 2784 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n"); 2785 sdkp->DPOFUA = 0; 2786 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw && 2787 !sdkp->device->use_16_for_rw) { 2788 sd_first_printk(KERN_NOTICE, sdkp, 2789 "Uses READ/WRITE(6), disabling FUA\n"); 2790 sdkp->DPOFUA = 0; 2791 } 2792 2793 /* No cache flush allowed for write protected devices */ 2794 if (sdkp->WCE && sdkp->write_prot) 2795 sdkp->WCE = 0; 2796 2797 if (sdkp->first_scan || old_wce != sdkp->WCE || 2798 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA) 2799 sd_printk(KERN_NOTICE, sdkp, 2800 "Write cache: %s, read cache: %s, %s\n", 2801 sdkp->WCE ? "enabled" : "disabled", 2802 sdkp->RCD ? "disabled" : "enabled", 2803 sdkp->DPOFUA ? "supports DPO and FUA" 2804 : "doesn't support DPO or FUA"); 2805 2806 return; 2807 } 2808 2809 bad_sense: 2810 if (scsi_sense_valid(&sshdr) && 2811 sshdr.sense_key == ILLEGAL_REQUEST && 2812 sshdr.asc == 0x24 && sshdr.ascq == 0x0) 2813 /* Invalid field in CDB */ 2814 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n"); 2815 else 2816 sd_first_printk(KERN_ERR, sdkp, 2817 "Asking for cache data failed\n"); 2818 2819 defaults: 2820 if (sdp->wce_default_on) { 2821 sd_first_printk(KERN_NOTICE, sdkp, 2822 "Assuming drive cache: write back\n"); 2823 sdkp->WCE = 1; 2824 } else { 2825 sd_first_printk(KERN_ERR, sdkp, 2826 "Assuming drive cache: write through\n"); 2827 sdkp->WCE = 0; 2828 } 2829 sdkp->RCD = 0; 2830 sdkp->DPOFUA = 0; 2831 } 2832 2833 /* 2834 * The ATO bit indicates whether the DIF application tag is available 2835 * for use by the operating system. 2836 */ 2837 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer) 2838 { 2839 int res, offset; 2840 struct scsi_device *sdp = sdkp->device; 2841 struct scsi_mode_data data; 2842 struct scsi_sense_hdr sshdr; 2843 2844 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 2845 return; 2846 2847 if (sdkp->protection_type == 0) 2848 return; 2849 2850 res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT, 2851 SD_MAX_RETRIES, &data, &sshdr); 2852 2853 if (!scsi_status_is_good(res) || !data.header_length || 2854 data.length < 6) { 2855 sd_first_printk(KERN_WARNING, sdkp, 2856 "getting Control mode page failed, assume no ATO\n"); 2857 2858 if (scsi_sense_valid(&sshdr)) 2859 sd_print_sense_hdr(sdkp, &sshdr); 2860 2861 return; 2862 } 2863 2864 offset = data.header_length + data.block_descriptor_length; 2865 2866 if ((buffer[offset] & 0x3f) != 0x0a) { 2867 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n"); 2868 return; 2869 } 2870 2871 if ((buffer[offset + 5] & 0x80) == 0) 2872 return; 2873 2874 sdkp->ATO = 1; 2875 2876 return; 2877 } 2878 2879 /** 2880 * sd_read_block_limits - Query disk device for preferred I/O sizes. 2881 * @sdkp: disk to query 2882 */ 2883 static void sd_read_block_limits(struct scsi_disk *sdkp) 2884 { 2885 unsigned int sector_sz = sdkp->device->sector_size; 2886 const int vpd_len = 64; 2887 unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL); 2888 2889 if (!buffer || 2890 /* Block Limits VPD */ 2891 scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len)) 2892 goto out; 2893 2894 blk_queue_io_min(sdkp->disk->queue, 2895 get_unaligned_be16(&buffer[6]) * sector_sz); 2896 2897 sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]); 2898 sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]); 2899 2900 if (buffer[3] == 0x3c) { 2901 unsigned int lba_count, desc_count; 2902 2903 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]); 2904 2905 if (!sdkp->lbpme) 2906 goto out; 2907 2908 lba_count = get_unaligned_be32(&buffer[20]); 2909 desc_count = get_unaligned_be32(&buffer[24]); 2910 2911 if (lba_count && desc_count) 2912 sdkp->max_unmap_blocks = lba_count; 2913 2914 sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]); 2915 2916 if (buffer[32] & 0x80) 2917 sdkp->unmap_alignment = 2918 get_unaligned_be32(&buffer[32]) & ~(1 << 31); 2919 2920 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */ 2921 2922 if (sdkp->max_unmap_blocks) 2923 sd_config_discard(sdkp, SD_LBP_UNMAP); 2924 else 2925 sd_config_discard(sdkp, SD_LBP_WS16); 2926 2927 } else { /* LBP VPD page tells us what to use */ 2928 if (sdkp->lbpu && sdkp->max_unmap_blocks) 2929 sd_config_discard(sdkp, SD_LBP_UNMAP); 2930 else if (sdkp->lbpws) 2931 sd_config_discard(sdkp, SD_LBP_WS16); 2932 else if (sdkp->lbpws10) 2933 sd_config_discard(sdkp, SD_LBP_WS10); 2934 else 2935 sd_config_discard(sdkp, SD_LBP_DISABLE); 2936 } 2937 } 2938 2939 out: 2940 kfree(buffer); 2941 } 2942 2943 /** 2944 * sd_read_block_characteristics - Query block dev. characteristics 2945 * @sdkp: disk to query 2946 */ 2947 static void sd_read_block_characteristics(struct scsi_disk *sdkp) 2948 { 2949 struct request_queue *q = sdkp->disk->queue; 2950 unsigned char *buffer; 2951 u16 rot; 2952 const int vpd_len = 64; 2953 2954 buffer = kmalloc(vpd_len, GFP_KERNEL); 2955 2956 if (!buffer || 2957 /* Block Device Characteristics VPD */ 2958 scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len)) 2959 goto out; 2960 2961 rot = get_unaligned_be16(&buffer[4]); 2962 2963 if (rot == 1) { 2964 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 2965 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q); 2966 } 2967 2968 if (sdkp->device->type == TYPE_ZBC) { 2969 /* Host-managed */ 2970 blk_queue_set_zoned(sdkp->disk, BLK_ZONED_HM); 2971 } else { 2972 sdkp->zoned = (buffer[8] >> 4) & 3; 2973 if (sdkp->zoned == 1) { 2974 /* Host-aware */ 2975 blk_queue_set_zoned(sdkp->disk, BLK_ZONED_HA); 2976 } else { 2977 /* Regular disk or drive managed disk */ 2978 blk_queue_set_zoned(sdkp->disk, BLK_ZONED_NONE); 2979 } 2980 } 2981 2982 if (!sdkp->first_scan) 2983 goto out; 2984 2985 if (blk_queue_is_zoned(q)) { 2986 sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n", 2987 q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware"); 2988 } else { 2989 if (sdkp->zoned == 1) 2990 sd_printk(KERN_NOTICE, sdkp, 2991 "Host-aware SMR disk used as regular disk\n"); 2992 else if (sdkp->zoned == 2) 2993 sd_printk(KERN_NOTICE, sdkp, 2994 "Drive-managed SMR disk\n"); 2995 } 2996 2997 out: 2998 kfree(buffer); 2999 } 3000 3001 /** 3002 * sd_read_block_provisioning - Query provisioning VPD page 3003 * @sdkp: disk to query 3004 */ 3005 static void sd_read_block_provisioning(struct scsi_disk *sdkp) 3006 { 3007 unsigned char *buffer; 3008 const int vpd_len = 8; 3009 3010 if (sdkp->lbpme == 0) 3011 return; 3012 3013 buffer = kmalloc(vpd_len, GFP_KERNEL); 3014 3015 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len)) 3016 goto out; 3017 3018 sdkp->lbpvpd = 1; 3019 sdkp->lbpu = (buffer[5] >> 7) & 1; /* UNMAP */ 3020 sdkp->lbpws = (buffer[5] >> 6) & 1; /* WRITE SAME(16) with UNMAP */ 3021 sdkp->lbpws10 = (buffer[5] >> 5) & 1; /* WRITE SAME(10) with UNMAP */ 3022 3023 out: 3024 kfree(buffer); 3025 } 3026 3027 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer) 3028 { 3029 struct scsi_device *sdev = sdkp->device; 3030 3031 if (sdev->host->no_write_same) { 3032 sdev->no_write_same = 1; 3033 3034 return; 3035 } 3036 3037 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) { 3038 /* too large values might cause issues with arcmsr */ 3039 int vpd_buf_len = 64; 3040 3041 sdev->no_report_opcodes = 1; 3042 3043 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION 3044 * CODES is unsupported and the device has an ATA 3045 * Information VPD page (SAT). 3046 */ 3047 if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len)) 3048 sdev->no_write_same = 1; 3049 } 3050 3051 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1) 3052 sdkp->ws16 = 1; 3053 3054 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1) 3055 sdkp->ws10 = 1; 3056 } 3057 3058 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer) 3059 { 3060 struct scsi_device *sdev = sdkp->device; 3061 3062 if (!sdev->security_supported) 3063 return; 3064 3065 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3066 SECURITY_PROTOCOL_IN) == 1 && 3067 scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3068 SECURITY_PROTOCOL_OUT) == 1) 3069 sdkp->security = 1; 3070 } 3071 3072 /* 3073 * Determine the device's preferred I/O size for reads and writes 3074 * unless the reported value is unreasonably small, large, not a 3075 * multiple of the physical block size, or simply garbage. 3076 */ 3077 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp, 3078 unsigned int dev_max) 3079 { 3080 struct scsi_device *sdp = sdkp->device; 3081 unsigned int opt_xfer_bytes = 3082 logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 3083 3084 if (sdkp->opt_xfer_blocks == 0) 3085 return false; 3086 3087 if (sdkp->opt_xfer_blocks > dev_max) { 3088 sd_first_printk(KERN_WARNING, sdkp, 3089 "Optimal transfer size %u logical blocks " \ 3090 "> dev_max (%u logical blocks)\n", 3091 sdkp->opt_xfer_blocks, dev_max); 3092 return false; 3093 } 3094 3095 if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) { 3096 sd_first_printk(KERN_WARNING, sdkp, 3097 "Optimal transfer size %u logical blocks " \ 3098 "> sd driver limit (%u logical blocks)\n", 3099 sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS); 3100 return false; 3101 } 3102 3103 if (opt_xfer_bytes < PAGE_SIZE) { 3104 sd_first_printk(KERN_WARNING, sdkp, 3105 "Optimal transfer size %u bytes < " \ 3106 "PAGE_SIZE (%u bytes)\n", 3107 opt_xfer_bytes, (unsigned int)PAGE_SIZE); 3108 return false; 3109 } 3110 3111 if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) { 3112 sd_first_printk(KERN_WARNING, sdkp, 3113 "Optimal transfer size %u bytes not a " \ 3114 "multiple of physical block size (%u bytes)\n", 3115 opt_xfer_bytes, sdkp->physical_block_size); 3116 return false; 3117 } 3118 3119 sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n", 3120 opt_xfer_bytes); 3121 return true; 3122 } 3123 3124 /** 3125 * sd_revalidate_disk - called the first time a new disk is seen, 3126 * performs disk spin up, read_capacity, etc. 3127 * @disk: struct gendisk we care about 3128 **/ 3129 static int sd_revalidate_disk(struct gendisk *disk) 3130 { 3131 struct scsi_disk *sdkp = scsi_disk(disk); 3132 struct scsi_device *sdp = sdkp->device; 3133 struct request_queue *q = sdkp->disk->queue; 3134 sector_t old_capacity = sdkp->capacity; 3135 unsigned char *buffer; 3136 unsigned int dev_max, rw_max; 3137 3138 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, 3139 "sd_revalidate_disk\n")); 3140 3141 /* 3142 * If the device is offline, don't try and read capacity or any 3143 * of the other niceties. 3144 */ 3145 if (!scsi_device_online(sdp)) 3146 goto out; 3147 3148 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL); 3149 if (!buffer) { 3150 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory " 3151 "allocation failure.\n"); 3152 goto out; 3153 } 3154 3155 sd_spinup_disk(sdkp); 3156 3157 /* 3158 * Without media there is no reason to ask; moreover, some devices 3159 * react badly if we do. 3160 */ 3161 if (sdkp->media_present) { 3162 sd_read_capacity(sdkp, buffer); 3163 3164 /* 3165 * set the default to rotational. All non-rotational devices 3166 * support the block characteristics VPD page, which will 3167 * cause this to be updated correctly and any device which 3168 * doesn't support it should be treated as rotational. 3169 */ 3170 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q); 3171 blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q); 3172 3173 if (scsi_device_supports_vpd(sdp)) { 3174 sd_read_block_provisioning(sdkp); 3175 sd_read_block_limits(sdkp); 3176 sd_read_block_characteristics(sdkp); 3177 sd_zbc_read_zones(sdkp, buffer); 3178 } 3179 3180 sd_print_capacity(sdkp, old_capacity); 3181 3182 sd_read_write_protect_flag(sdkp, buffer); 3183 sd_read_cache_type(sdkp, buffer); 3184 sd_read_app_tag_own(sdkp, buffer); 3185 sd_read_write_same(sdkp, buffer); 3186 sd_read_security(sdkp, buffer); 3187 } 3188 3189 /* 3190 * We now have all cache related info, determine how we deal 3191 * with flush requests. 3192 */ 3193 sd_set_flush_flag(sdkp); 3194 3195 /* Initial block count limit based on CDB TRANSFER LENGTH field size. */ 3196 dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS; 3197 3198 /* Some devices report a maximum block count for READ/WRITE requests. */ 3199 dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks); 3200 q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max); 3201 3202 if (sd_validate_opt_xfer_size(sdkp, dev_max)) { 3203 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 3204 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks); 3205 } else { 3206 q->limits.io_opt = 0; 3207 rw_max = min_not_zero(logical_to_sectors(sdp, dev_max), 3208 (sector_t)BLK_DEF_MAX_SECTORS); 3209 } 3210 3211 /* Do not exceed controller limit */ 3212 rw_max = min(rw_max, queue_max_hw_sectors(q)); 3213 3214 /* 3215 * Only update max_sectors if previously unset or if the current value 3216 * exceeds the capabilities of the hardware. 3217 */ 3218 if (sdkp->first_scan || 3219 q->limits.max_sectors > q->limits.max_dev_sectors || 3220 q->limits.max_sectors > q->limits.max_hw_sectors) 3221 q->limits.max_sectors = rw_max; 3222 3223 sdkp->first_scan = 0; 3224 3225 set_capacity_revalidate_and_notify(disk, 3226 logical_to_sectors(sdp, sdkp->capacity), false); 3227 sd_config_write_same(sdkp); 3228 kfree(buffer); 3229 3230 /* 3231 * For a zoned drive, revalidating the zones can be done only once 3232 * the gendisk capacity is set. So if this fails, set back the gendisk 3233 * capacity to 0. 3234 */ 3235 if (sd_zbc_revalidate_zones(sdkp)) 3236 set_capacity_revalidate_and_notify(disk, 0, false); 3237 3238 out: 3239 return 0; 3240 } 3241 3242 /** 3243 * sd_unlock_native_capacity - unlock native capacity 3244 * @disk: struct gendisk to set capacity for 3245 * 3246 * Block layer calls this function if it detects that partitions 3247 * on @disk reach beyond the end of the device. If the SCSI host 3248 * implements ->unlock_native_capacity() method, it's invoked to 3249 * give it a chance to adjust the device capacity. 3250 * 3251 * CONTEXT: 3252 * Defined by block layer. Might sleep. 3253 */ 3254 static void sd_unlock_native_capacity(struct gendisk *disk) 3255 { 3256 struct scsi_device *sdev = scsi_disk(disk)->device; 3257 3258 if (sdev->host->hostt->unlock_native_capacity) 3259 sdev->host->hostt->unlock_native_capacity(sdev); 3260 } 3261 3262 /** 3263 * sd_format_disk_name - format disk name 3264 * @prefix: name prefix - ie. "sd" for SCSI disks 3265 * @index: index of the disk to format name for 3266 * @buf: output buffer 3267 * @buflen: length of the output buffer 3268 * 3269 * SCSI disk names starts at sda. The 26th device is sdz and the 3270 * 27th is sdaa. The last one for two lettered suffix is sdzz 3271 * which is followed by sdaaa. 3272 * 3273 * This is basically 26 base counting with one extra 'nil' entry 3274 * at the beginning from the second digit on and can be 3275 * determined using similar method as 26 base conversion with the 3276 * index shifted -1 after each digit is computed. 3277 * 3278 * CONTEXT: 3279 * Don't care. 3280 * 3281 * RETURNS: 3282 * 0 on success, -errno on failure. 3283 */ 3284 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen) 3285 { 3286 const int base = 'z' - 'a' + 1; 3287 char *begin = buf + strlen(prefix); 3288 char *end = buf + buflen; 3289 char *p; 3290 int unit; 3291 3292 p = end - 1; 3293 *p = '\0'; 3294 unit = base; 3295 do { 3296 if (p == begin) 3297 return -EINVAL; 3298 *--p = 'a' + (index % unit); 3299 index = (index / unit) - 1; 3300 } while (index >= 0); 3301 3302 memmove(begin, p, end - p); 3303 memcpy(buf, prefix, strlen(prefix)); 3304 3305 return 0; 3306 } 3307 3308 /** 3309 * sd_probe - called during driver initialization and whenever a 3310 * new scsi device is attached to the system. It is called once 3311 * for each scsi device (not just disks) present. 3312 * @dev: pointer to device object 3313 * 3314 * Returns 0 if successful (or not interested in this scsi device 3315 * (e.g. scanner)); 1 when there is an error. 3316 * 3317 * Note: this function is invoked from the scsi mid-level. 3318 * This function sets up the mapping between a given 3319 * <host,channel,id,lun> (found in sdp) and new device name 3320 * (e.g. /dev/sda). More precisely it is the block device major 3321 * and minor number that is chosen here. 3322 * 3323 * Assume sd_probe is not re-entrant (for time being) 3324 * Also think about sd_probe() and sd_remove() running coincidentally. 3325 **/ 3326 static int sd_probe(struct device *dev) 3327 { 3328 struct scsi_device *sdp = to_scsi_device(dev); 3329 struct scsi_disk *sdkp; 3330 struct gendisk *gd; 3331 int index; 3332 int error; 3333 3334 scsi_autopm_get_device(sdp); 3335 error = -ENODEV; 3336 if (sdp->type != TYPE_DISK && 3337 sdp->type != TYPE_ZBC && 3338 sdp->type != TYPE_MOD && 3339 sdp->type != TYPE_RBC) 3340 goto out; 3341 3342 #ifndef CONFIG_BLK_DEV_ZONED 3343 if (sdp->type == TYPE_ZBC) 3344 goto out; 3345 #endif 3346 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp, 3347 "sd_probe\n")); 3348 3349 error = -ENOMEM; 3350 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL); 3351 if (!sdkp) 3352 goto out; 3353 3354 gd = alloc_disk(SD_MINORS); 3355 if (!gd) 3356 goto out_free; 3357 3358 index = ida_alloc(&sd_index_ida, GFP_KERNEL); 3359 if (index < 0) { 3360 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n"); 3361 goto out_put; 3362 } 3363 3364 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN); 3365 if (error) { 3366 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n"); 3367 goto out_free_index; 3368 } 3369 3370 sdkp->device = sdp; 3371 sdkp->driver = &sd_template; 3372 sdkp->disk = gd; 3373 sdkp->index = index; 3374 atomic_set(&sdkp->openers, 0); 3375 atomic_set(&sdkp->device->ioerr_cnt, 0); 3376 3377 if (!sdp->request_queue->rq_timeout) { 3378 if (sdp->type != TYPE_MOD) 3379 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT); 3380 else 3381 blk_queue_rq_timeout(sdp->request_queue, 3382 SD_MOD_TIMEOUT); 3383 } 3384 3385 device_initialize(&sdkp->dev); 3386 sdkp->dev.parent = dev; 3387 sdkp->dev.class = &sd_disk_class; 3388 dev_set_name(&sdkp->dev, "%s", dev_name(dev)); 3389 3390 error = device_add(&sdkp->dev); 3391 if (error) 3392 goto out_free_index; 3393 3394 get_device(dev); 3395 dev_set_drvdata(dev, sdkp); 3396 3397 gd->major = sd_major((index & 0xf0) >> 4); 3398 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00); 3399 3400 gd->fops = &sd_fops; 3401 gd->private_data = &sdkp->driver; 3402 gd->queue = sdkp->device->request_queue; 3403 3404 /* defaults, until the device tells us otherwise */ 3405 sdp->sector_size = 512; 3406 sdkp->capacity = 0; 3407 sdkp->media_present = 1; 3408 sdkp->write_prot = 0; 3409 sdkp->cache_override = 0; 3410 sdkp->WCE = 0; 3411 sdkp->RCD = 0; 3412 sdkp->ATO = 0; 3413 sdkp->first_scan = 1; 3414 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS; 3415 3416 sd_revalidate_disk(gd); 3417 3418 gd->flags = GENHD_FL_EXT_DEVT; 3419 if (sdp->removable) { 3420 gd->flags |= GENHD_FL_REMOVABLE; 3421 gd->events |= DISK_EVENT_MEDIA_CHANGE; 3422 gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT; 3423 } 3424 3425 blk_pm_runtime_init(sdp->request_queue, dev); 3426 if (sdp->rpm_autosuspend) { 3427 pm_runtime_set_autosuspend_delay(dev, 3428 sdp->host->hostt->rpm_autosuspend_delay); 3429 } 3430 device_add_disk(dev, gd, NULL); 3431 if (sdkp->capacity) 3432 sd_dif_config_host(sdkp); 3433 3434 sd_revalidate_disk(gd); 3435 3436 if (sdkp->security) { 3437 sdkp->opal_dev = init_opal_dev(sdp, &sd_sec_submit); 3438 if (sdkp->opal_dev) 3439 sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n"); 3440 } 3441 3442 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n", 3443 sdp->removable ? "removable " : ""); 3444 scsi_autopm_put_device(sdp); 3445 3446 return 0; 3447 3448 out_free_index: 3449 ida_free(&sd_index_ida, index); 3450 out_put: 3451 put_disk(gd); 3452 out_free: 3453 sd_zbc_release_disk(sdkp); 3454 kfree(sdkp); 3455 out: 3456 scsi_autopm_put_device(sdp); 3457 return error; 3458 } 3459 3460 /** 3461 * sd_remove - called whenever a scsi disk (previously recognized by 3462 * sd_probe) is detached from the system. It is called (potentially 3463 * multiple times) during sd module unload. 3464 * @dev: pointer to device object 3465 * 3466 * Note: this function is invoked from the scsi mid-level. 3467 * This function potentially frees up a device name (e.g. /dev/sdc) 3468 * that could be re-used by a subsequent sd_probe(). 3469 * This function is not called when the built-in sd driver is "exit-ed". 3470 **/ 3471 static int sd_remove(struct device *dev) 3472 { 3473 struct scsi_disk *sdkp; 3474 dev_t devt; 3475 3476 sdkp = dev_get_drvdata(dev); 3477 devt = disk_devt(sdkp->disk); 3478 scsi_autopm_get_device(sdkp->device); 3479 3480 async_synchronize_full_domain(&scsi_sd_pm_domain); 3481 device_del(&sdkp->dev); 3482 del_gendisk(sdkp->disk); 3483 sd_shutdown(dev); 3484 3485 free_opal_dev(sdkp->opal_dev); 3486 3487 blk_register_region(devt, SD_MINORS, NULL, 3488 sd_default_probe, NULL, NULL); 3489 3490 mutex_lock(&sd_ref_mutex); 3491 dev_set_drvdata(dev, NULL); 3492 put_device(&sdkp->dev); 3493 mutex_unlock(&sd_ref_mutex); 3494 3495 return 0; 3496 } 3497 3498 /** 3499 * scsi_disk_release - Called to free the scsi_disk structure 3500 * @dev: pointer to embedded class device 3501 * 3502 * sd_ref_mutex must be held entering this routine. Because it is 3503 * called on last put, you should always use the scsi_disk_get() 3504 * scsi_disk_put() helpers which manipulate the semaphore directly 3505 * and never do a direct put_device. 3506 **/ 3507 static void scsi_disk_release(struct device *dev) 3508 { 3509 struct scsi_disk *sdkp = to_scsi_disk(dev); 3510 struct gendisk *disk = sdkp->disk; 3511 struct request_queue *q = disk->queue; 3512 3513 ida_free(&sd_index_ida, sdkp->index); 3514 3515 /* 3516 * Wait until all requests that are in progress have completed. 3517 * This is necessary to avoid that e.g. scsi_end_request() crashes 3518 * due to clearing the disk->private_data pointer. Wait from inside 3519 * scsi_disk_release() instead of from sd_release() to avoid that 3520 * freezing and unfreezing the request queue affects user space I/O 3521 * in case multiple processes open a /dev/sd... node concurrently. 3522 */ 3523 blk_mq_freeze_queue(q); 3524 blk_mq_unfreeze_queue(q); 3525 3526 disk->private_data = NULL; 3527 put_disk(disk); 3528 put_device(&sdkp->device->sdev_gendev); 3529 3530 sd_zbc_release_disk(sdkp); 3531 3532 kfree(sdkp); 3533 } 3534 3535 static int sd_start_stop_device(struct scsi_disk *sdkp, int start) 3536 { 3537 unsigned char cmd[6] = { START_STOP }; /* START_VALID */ 3538 struct scsi_sense_hdr sshdr; 3539 struct scsi_device *sdp = sdkp->device; 3540 int res; 3541 3542 if (start) 3543 cmd[4] |= 1; /* START */ 3544 3545 if (sdp->start_stop_pwr_cond) 3546 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */ 3547 3548 if (!scsi_device_online(sdp)) 3549 return -ENODEV; 3550 3551 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr, 3552 SD_TIMEOUT, SD_MAX_RETRIES, 0, RQF_PM, NULL); 3553 if (res) { 3554 sd_print_result(sdkp, "Start/Stop Unit failed", res); 3555 if (driver_byte(res) == DRIVER_SENSE) 3556 sd_print_sense_hdr(sdkp, &sshdr); 3557 if (scsi_sense_valid(&sshdr) && 3558 /* 0x3a is medium not present */ 3559 sshdr.asc == 0x3a) 3560 res = 0; 3561 } 3562 3563 /* SCSI error codes must not go to the generic layer */ 3564 if (res) 3565 return -EIO; 3566 3567 return 0; 3568 } 3569 3570 /* 3571 * Send a SYNCHRONIZE CACHE instruction down to the device through 3572 * the normal SCSI command structure. Wait for the command to 3573 * complete. 3574 */ 3575 static void sd_shutdown(struct device *dev) 3576 { 3577 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3578 3579 if (!sdkp) 3580 return; /* this can happen */ 3581 3582 if (pm_runtime_suspended(dev)) 3583 return; 3584 3585 if (sdkp->WCE && sdkp->media_present) { 3586 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3587 sd_sync_cache(sdkp, NULL); 3588 } 3589 3590 if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) { 3591 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3592 sd_start_stop_device(sdkp, 0); 3593 } 3594 } 3595 3596 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors) 3597 { 3598 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3599 struct scsi_sense_hdr sshdr; 3600 int ret = 0; 3601 3602 if (!sdkp) /* E.g.: runtime suspend following sd_remove() */ 3603 return 0; 3604 3605 if (sdkp->WCE && sdkp->media_present) { 3606 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3607 ret = sd_sync_cache(sdkp, &sshdr); 3608 3609 if (ret) { 3610 /* ignore OFFLINE device */ 3611 if (ret == -ENODEV) 3612 return 0; 3613 3614 if (!scsi_sense_valid(&sshdr) || 3615 sshdr.sense_key != ILLEGAL_REQUEST) 3616 return ret; 3617 3618 /* 3619 * sshdr.sense_key == ILLEGAL_REQUEST means this drive 3620 * doesn't support sync. There's not much to do and 3621 * suspend shouldn't fail. 3622 */ 3623 ret = 0; 3624 } 3625 } 3626 3627 if (sdkp->device->manage_start_stop) { 3628 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3629 /* an error is not worth aborting a system sleep */ 3630 ret = sd_start_stop_device(sdkp, 0); 3631 if (ignore_stop_errors) 3632 ret = 0; 3633 } 3634 3635 return ret; 3636 } 3637 3638 static int sd_suspend_system(struct device *dev) 3639 { 3640 return sd_suspend_common(dev, true); 3641 } 3642 3643 static int sd_suspend_runtime(struct device *dev) 3644 { 3645 return sd_suspend_common(dev, false); 3646 } 3647 3648 static int sd_resume(struct device *dev) 3649 { 3650 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3651 int ret; 3652 3653 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */ 3654 return 0; 3655 3656 if (!sdkp->device->manage_start_stop) 3657 return 0; 3658 3659 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n"); 3660 ret = sd_start_stop_device(sdkp, 1); 3661 if (!ret) 3662 opal_unlock_from_suspend(sdkp->opal_dev); 3663 return ret; 3664 } 3665 3666 /** 3667 * init_sd - entry point for this driver (both when built in or when 3668 * a module). 3669 * 3670 * Note: this function registers this driver with the scsi mid-level. 3671 **/ 3672 static int __init init_sd(void) 3673 { 3674 int majors = 0, i, err; 3675 3676 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n")); 3677 3678 for (i = 0; i < SD_MAJORS; i++) { 3679 if (register_blkdev(sd_major(i), "sd") != 0) 3680 continue; 3681 majors++; 3682 blk_register_region(sd_major(i), SD_MINORS, NULL, 3683 sd_default_probe, NULL, NULL); 3684 } 3685 3686 if (!majors) 3687 return -ENODEV; 3688 3689 err = class_register(&sd_disk_class); 3690 if (err) 3691 goto err_out; 3692 3693 sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE, 3694 0, 0, NULL); 3695 if (!sd_cdb_cache) { 3696 printk(KERN_ERR "sd: can't init extended cdb cache\n"); 3697 err = -ENOMEM; 3698 goto err_out_class; 3699 } 3700 3701 sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache); 3702 if (!sd_cdb_pool) { 3703 printk(KERN_ERR "sd: can't init extended cdb pool\n"); 3704 err = -ENOMEM; 3705 goto err_out_cache; 3706 } 3707 3708 sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0); 3709 if (!sd_page_pool) { 3710 printk(KERN_ERR "sd: can't init discard page pool\n"); 3711 err = -ENOMEM; 3712 goto err_out_ppool; 3713 } 3714 3715 err = scsi_register_driver(&sd_template.gendrv); 3716 if (err) 3717 goto err_out_driver; 3718 3719 return 0; 3720 3721 err_out_driver: 3722 mempool_destroy(sd_page_pool); 3723 3724 err_out_ppool: 3725 mempool_destroy(sd_cdb_pool); 3726 3727 err_out_cache: 3728 kmem_cache_destroy(sd_cdb_cache); 3729 3730 err_out_class: 3731 class_unregister(&sd_disk_class); 3732 err_out: 3733 for (i = 0; i < SD_MAJORS; i++) 3734 unregister_blkdev(sd_major(i), "sd"); 3735 return err; 3736 } 3737 3738 /** 3739 * exit_sd - exit point for this driver (when it is a module). 3740 * 3741 * Note: this function unregisters this driver from the scsi mid-level. 3742 **/ 3743 static void __exit exit_sd(void) 3744 { 3745 int i; 3746 3747 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n")); 3748 3749 scsi_unregister_driver(&sd_template.gendrv); 3750 mempool_destroy(sd_cdb_pool); 3751 mempool_destroy(sd_page_pool); 3752 kmem_cache_destroy(sd_cdb_cache); 3753 3754 class_unregister(&sd_disk_class); 3755 3756 for (i = 0; i < SD_MAJORS; i++) { 3757 blk_unregister_region(sd_major(i), SD_MINORS); 3758 unregister_blkdev(sd_major(i), "sd"); 3759 } 3760 } 3761 3762 module_init(init_sd); 3763 module_exit(exit_sd); 3764 3765 void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr) 3766 { 3767 scsi_print_sense_hdr(sdkp->device, 3768 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr); 3769 } 3770 3771 void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result) 3772 { 3773 const char *hb_string = scsi_hostbyte_string(result); 3774 const char *db_string = scsi_driverbyte_string(result); 3775 3776 if (hb_string || db_string) 3777 sd_printk(KERN_INFO, sdkp, 3778 "%s: Result: hostbyte=%s driverbyte=%s\n", msg, 3779 hb_string ? hb_string : "invalid", 3780 db_string ? db_string : "invalid"); 3781 else 3782 sd_printk(KERN_INFO, sdkp, 3783 "%s: Result: hostbyte=0x%02x driverbyte=0x%02x\n", 3784 msg, host_byte(result), driver_byte(result)); 3785 } 3786