1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * sd.c Copyright (C) 1992 Drew Eckhardt 4 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale 5 * 6 * Linux scsi disk driver 7 * Initial versions: Drew Eckhardt 8 * Subsequent revisions: Eric Youngdale 9 * Modification history: 10 * - Drew Eckhardt <drew@colorado.edu> original 11 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 12 * outstanding request, and other enhancements. 13 * Support loadable low-level scsi drivers. 14 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 15 * eight major numbers. 16 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs. 17 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 18 * sd_init and cleanups. 19 * - Alex Davis <letmein@erols.com> Fix problem where partition info 20 * not being read in sd_open. Fix problem where removable media 21 * could be ejected after sd_open. 22 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x 23 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 24 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 25 * Support 32k/1M disks. 26 * 27 * Logging policy (needs CONFIG_SCSI_LOGGING defined): 28 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2 29 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1 30 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1 31 * - entering other commands: SCSI_LOG_HLQUEUE level 3 32 * Note: when the logging level is set by the user, it must be greater 33 * than the level indicated above to trigger output. 34 */ 35 36 #include <linux/module.h> 37 #include <linux/fs.h> 38 #include <linux/kernel.h> 39 #include <linux/mm.h> 40 #include <linux/bio.h> 41 #include <linux/hdreg.h> 42 #include <linux/errno.h> 43 #include <linux/idr.h> 44 #include <linux/interrupt.h> 45 #include <linux/init.h> 46 #include <linux/blkdev.h> 47 #include <linux/blkpg.h> 48 #include <linux/blk-pm.h> 49 #include <linux/delay.h> 50 #include <linux/rw_hint.h> 51 #include <linux/major.h> 52 #include <linux/mutex.h> 53 #include <linux/string_helpers.h> 54 #include <linux/slab.h> 55 #include <linux/sed-opal.h> 56 #include <linux/pm_runtime.h> 57 #include <linux/pr.h> 58 #include <linux/t10-pi.h> 59 #include <linux/uaccess.h> 60 #include <asm/unaligned.h> 61 62 #include <scsi/scsi.h> 63 #include <scsi/scsi_cmnd.h> 64 #include <scsi/scsi_dbg.h> 65 #include <scsi/scsi_device.h> 66 #include <scsi/scsi_driver.h> 67 #include <scsi/scsi_eh.h> 68 #include <scsi/scsi_host.h> 69 #include <scsi/scsi_ioctl.h> 70 #include <scsi/scsicam.h> 71 #include <scsi/scsi_common.h> 72 73 #include "sd.h" 74 #include "scsi_priv.h" 75 #include "scsi_logging.h" 76 77 MODULE_AUTHOR("Eric Youngdale"); 78 MODULE_DESCRIPTION("SCSI disk (sd) driver"); 79 MODULE_LICENSE("GPL"); 80 81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR); 82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR); 83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR); 84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR); 85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR); 86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR); 87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR); 88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR); 89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR); 90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR); 91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR); 92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR); 93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR); 94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR); 95 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR); 96 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR); 97 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK); 98 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD); 99 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC); 100 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC); 101 102 #define SD_MINORS 16 103 104 static void sd_config_discard(struct scsi_disk *, unsigned int); 105 static void sd_config_write_same(struct scsi_disk *); 106 static int sd_revalidate_disk(struct gendisk *); 107 static void sd_unlock_native_capacity(struct gendisk *disk); 108 static void sd_shutdown(struct device *); 109 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer); 110 static void scsi_disk_release(struct device *cdev); 111 112 static DEFINE_IDA(sd_index_ida); 113 114 static mempool_t *sd_page_pool; 115 static struct lock_class_key sd_bio_compl_lkclass; 116 117 static const char *sd_cache_types[] = { 118 "write through", "none", "write back", 119 "write back, no read (daft)" 120 }; 121 122 static void sd_set_flush_flag(struct scsi_disk *sdkp) 123 { 124 bool wc = false, fua = false; 125 126 if (sdkp->WCE) { 127 wc = true; 128 if (sdkp->DPOFUA) 129 fua = true; 130 } 131 132 blk_queue_write_cache(sdkp->disk->queue, wc, fua); 133 } 134 135 static ssize_t 136 cache_type_store(struct device *dev, struct device_attribute *attr, 137 const char *buf, size_t count) 138 { 139 int ct, rcd, wce, sp; 140 struct scsi_disk *sdkp = to_scsi_disk(dev); 141 struct scsi_device *sdp = sdkp->device; 142 char buffer[64]; 143 char *buffer_data; 144 struct scsi_mode_data data; 145 struct scsi_sense_hdr sshdr; 146 static const char temp[] = "temporary "; 147 int len, ret; 148 149 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 150 /* no cache control on RBC devices; theoretically they 151 * can do it, but there's probably so many exceptions 152 * it's not worth the risk */ 153 return -EINVAL; 154 155 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) { 156 buf += sizeof(temp) - 1; 157 sdkp->cache_override = 1; 158 } else { 159 sdkp->cache_override = 0; 160 } 161 162 ct = sysfs_match_string(sd_cache_types, buf); 163 if (ct < 0) 164 return -EINVAL; 165 166 rcd = ct & 0x01 ? 1 : 0; 167 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0; 168 169 if (sdkp->cache_override) { 170 sdkp->WCE = wce; 171 sdkp->RCD = rcd; 172 sd_set_flush_flag(sdkp); 173 return count; 174 } 175 176 if (scsi_mode_sense(sdp, 0x08, 8, 0, buffer, sizeof(buffer), SD_TIMEOUT, 177 sdkp->max_retries, &data, NULL)) 178 return -EINVAL; 179 len = min_t(size_t, sizeof(buffer), data.length - data.header_length - 180 data.block_descriptor_length); 181 buffer_data = buffer + data.header_length + 182 data.block_descriptor_length; 183 buffer_data[2] &= ~0x05; 184 buffer_data[2] |= wce << 2 | rcd; 185 sp = buffer_data[0] & 0x80 ? 1 : 0; 186 buffer_data[0] &= ~0x80; 187 188 /* 189 * Ensure WP, DPOFUA, and RESERVED fields are cleared in 190 * received mode parameter buffer before doing MODE SELECT. 191 */ 192 data.device_specific = 0; 193 194 ret = scsi_mode_select(sdp, 1, sp, buffer_data, len, SD_TIMEOUT, 195 sdkp->max_retries, &data, &sshdr); 196 if (ret) { 197 if (ret > 0 && scsi_sense_valid(&sshdr)) 198 sd_print_sense_hdr(sdkp, &sshdr); 199 return -EINVAL; 200 } 201 sd_revalidate_disk(sdkp->disk); 202 return count; 203 } 204 205 static ssize_t 206 manage_start_stop_show(struct device *dev, 207 struct device_attribute *attr, char *buf) 208 { 209 struct scsi_disk *sdkp = to_scsi_disk(dev); 210 struct scsi_device *sdp = sdkp->device; 211 212 return sysfs_emit(buf, "%u\n", 213 sdp->manage_system_start_stop && 214 sdp->manage_runtime_start_stop && 215 sdp->manage_shutdown); 216 } 217 static DEVICE_ATTR_RO(manage_start_stop); 218 219 static ssize_t 220 manage_system_start_stop_show(struct device *dev, 221 struct device_attribute *attr, char *buf) 222 { 223 struct scsi_disk *sdkp = to_scsi_disk(dev); 224 struct scsi_device *sdp = sdkp->device; 225 226 return sysfs_emit(buf, "%u\n", sdp->manage_system_start_stop); 227 } 228 229 static ssize_t 230 manage_system_start_stop_store(struct device *dev, 231 struct device_attribute *attr, 232 const char *buf, size_t count) 233 { 234 struct scsi_disk *sdkp = to_scsi_disk(dev); 235 struct scsi_device *sdp = sdkp->device; 236 bool v; 237 238 if (!capable(CAP_SYS_ADMIN)) 239 return -EACCES; 240 241 if (kstrtobool(buf, &v)) 242 return -EINVAL; 243 244 sdp->manage_system_start_stop = v; 245 246 return count; 247 } 248 static DEVICE_ATTR_RW(manage_system_start_stop); 249 250 static ssize_t 251 manage_runtime_start_stop_show(struct device *dev, 252 struct device_attribute *attr, char *buf) 253 { 254 struct scsi_disk *sdkp = to_scsi_disk(dev); 255 struct scsi_device *sdp = sdkp->device; 256 257 return sysfs_emit(buf, "%u\n", sdp->manage_runtime_start_stop); 258 } 259 260 static ssize_t 261 manage_runtime_start_stop_store(struct device *dev, 262 struct device_attribute *attr, 263 const char *buf, size_t count) 264 { 265 struct scsi_disk *sdkp = to_scsi_disk(dev); 266 struct scsi_device *sdp = sdkp->device; 267 bool v; 268 269 if (!capable(CAP_SYS_ADMIN)) 270 return -EACCES; 271 272 if (kstrtobool(buf, &v)) 273 return -EINVAL; 274 275 sdp->manage_runtime_start_stop = v; 276 277 return count; 278 } 279 static DEVICE_ATTR_RW(manage_runtime_start_stop); 280 281 static ssize_t manage_shutdown_show(struct device *dev, 282 struct device_attribute *attr, char *buf) 283 { 284 struct scsi_disk *sdkp = to_scsi_disk(dev); 285 struct scsi_device *sdp = sdkp->device; 286 287 return sysfs_emit(buf, "%u\n", sdp->manage_shutdown); 288 } 289 290 static ssize_t manage_shutdown_store(struct device *dev, 291 struct device_attribute *attr, 292 const char *buf, size_t count) 293 { 294 struct scsi_disk *sdkp = to_scsi_disk(dev); 295 struct scsi_device *sdp = sdkp->device; 296 bool v; 297 298 if (!capable(CAP_SYS_ADMIN)) 299 return -EACCES; 300 301 if (kstrtobool(buf, &v)) 302 return -EINVAL; 303 304 sdp->manage_shutdown = v; 305 306 return count; 307 } 308 static DEVICE_ATTR_RW(manage_shutdown); 309 310 static ssize_t 311 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf) 312 { 313 struct scsi_disk *sdkp = to_scsi_disk(dev); 314 315 return sprintf(buf, "%u\n", sdkp->device->allow_restart); 316 } 317 318 static ssize_t 319 allow_restart_store(struct device *dev, struct device_attribute *attr, 320 const char *buf, size_t count) 321 { 322 bool v; 323 struct scsi_disk *sdkp = to_scsi_disk(dev); 324 struct scsi_device *sdp = sdkp->device; 325 326 if (!capable(CAP_SYS_ADMIN)) 327 return -EACCES; 328 329 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 330 return -EINVAL; 331 332 if (kstrtobool(buf, &v)) 333 return -EINVAL; 334 335 sdp->allow_restart = v; 336 337 return count; 338 } 339 static DEVICE_ATTR_RW(allow_restart); 340 341 static ssize_t 342 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf) 343 { 344 struct scsi_disk *sdkp = to_scsi_disk(dev); 345 int ct = sdkp->RCD + 2*sdkp->WCE; 346 347 return sprintf(buf, "%s\n", sd_cache_types[ct]); 348 } 349 static DEVICE_ATTR_RW(cache_type); 350 351 static ssize_t 352 FUA_show(struct device *dev, struct device_attribute *attr, char *buf) 353 { 354 struct scsi_disk *sdkp = to_scsi_disk(dev); 355 356 return sprintf(buf, "%u\n", sdkp->DPOFUA); 357 } 358 static DEVICE_ATTR_RO(FUA); 359 360 static ssize_t 361 protection_type_show(struct device *dev, struct device_attribute *attr, 362 char *buf) 363 { 364 struct scsi_disk *sdkp = to_scsi_disk(dev); 365 366 return sprintf(buf, "%u\n", sdkp->protection_type); 367 } 368 369 static ssize_t 370 protection_type_store(struct device *dev, struct device_attribute *attr, 371 const char *buf, size_t count) 372 { 373 struct scsi_disk *sdkp = to_scsi_disk(dev); 374 unsigned int val; 375 int err; 376 377 if (!capable(CAP_SYS_ADMIN)) 378 return -EACCES; 379 380 err = kstrtouint(buf, 10, &val); 381 382 if (err) 383 return err; 384 385 if (val <= T10_PI_TYPE3_PROTECTION) 386 sdkp->protection_type = val; 387 388 return count; 389 } 390 static DEVICE_ATTR_RW(protection_type); 391 392 static ssize_t 393 protection_mode_show(struct device *dev, struct device_attribute *attr, 394 char *buf) 395 { 396 struct scsi_disk *sdkp = to_scsi_disk(dev); 397 struct scsi_device *sdp = sdkp->device; 398 unsigned int dif, dix; 399 400 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type); 401 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type); 402 403 if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) { 404 dif = 0; 405 dix = 1; 406 } 407 408 if (!dif && !dix) 409 return sprintf(buf, "none\n"); 410 411 return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif); 412 } 413 static DEVICE_ATTR_RO(protection_mode); 414 415 static ssize_t 416 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf) 417 { 418 struct scsi_disk *sdkp = to_scsi_disk(dev); 419 420 return sprintf(buf, "%u\n", sdkp->ATO); 421 } 422 static DEVICE_ATTR_RO(app_tag_own); 423 424 static ssize_t 425 thin_provisioning_show(struct device *dev, struct device_attribute *attr, 426 char *buf) 427 { 428 struct scsi_disk *sdkp = to_scsi_disk(dev); 429 430 return sprintf(buf, "%u\n", sdkp->lbpme); 431 } 432 static DEVICE_ATTR_RO(thin_provisioning); 433 434 /* sysfs_match_string() requires dense arrays */ 435 static const char *lbp_mode[] = { 436 [SD_LBP_FULL] = "full", 437 [SD_LBP_UNMAP] = "unmap", 438 [SD_LBP_WS16] = "writesame_16", 439 [SD_LBP_WS10] = "writesame_10", 440 [SD_LBP_ZERO] = "writesame_zero", 441 [SD_LBP_DISABLE] = "disabled", 442 }; 443 444 static ssize_t 445 provisioning_mode_show(struct device *dev, struct device_attribute *attr, 446 char *buf) 447 { 448 struct scsi_disk *sdkp = to_scsi_disk(dev); 449 450 return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]); 451 } 452 453 static ssize_t 454 provisioning_mode_store(struct device *dev, struct device_attribute *attr, 455 const char *buf, size_t count) 456 { 457 struct scsi_disk *sdkp = to_scsi_disk(dev); 458 struct scsi_device *sdp = sdkp->device; 459 int mode; 460 461 if (!capable(CAP_SYS_ADMIN)) 462 return -EACCES; 463 464 if (sd_is_zoned(sdkp)) { 465 sd_config_discard(sdkp, SD_LBP_DISABLE); 466 return count; 467 } 468 469 if (sdp->type != TYPE_DISK) 470 return -EINVAL; 471 472 mode = sysfs_match_string(lbp_mode, buf); 473 if (mode < 0) 474 return -EINVAL; 475 476 sd_config_discard(sdkp, mode); 477 478 return count; 479 } 480 static DEVICE_ATTR_RW(provisioning_mode); 481 482 /* sysfs_match_string() requires dense arrays */ 483 static const char *zeroing_mode[] = { 484 [SD_ZERO_WRITE] = "write", 485 [SD_ZERO_WS] = "writesame", 486 [SD_ZERO_WS16_UNMAP] = "writesame_16_unmap", 487 [SD_ZERO_WS10_UNMAP] = "writesame_10_unmap", 488 }; 489 490 static ssize_t 491 zeroing_mode_show(struct device *dev, struct device_attribute *attr, 492 char *buf) 493 { 494 struct scsi_disk *sdkp = to_scsi_disk(dev); 495 496 return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]); 497 } 498 499 static ssize_t 500 zeroing_mode_store(struct device *dev, struct device_attribute *attr, 501 const char *buf, size_t count) 502 { 503 struct scsi_disk *sdkp = to_scsi_disk(dev); 504 int mode; 505 506 if (!capable(CAP_SYS_ADMIN)) 507 return -EACCES; 508 509 mode = sysfs_match_string(zeroing_mode, buf); 510 if (mode < 0) 511 return -EINVAL; 512 513 sdkp->zeroing_mode = mode; 514 515 return count; 516 } 517 static DEVICE_ATTR_RW(zeroing_mode); 518 519 static ssize_t 520 max_medium_access_timeouts_show(struct device *dev, 521 struct device_attribute *attr, char *buf) 522 { 523 struct scsi_disk *sdkp = to_scsi_disk(dev); 524 525 return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts); 526 } 527 528 static ssize_t 529 max_medium_access_timeouts_store(struct device *dev, 530 struct device_attribute *attr, const char *buf, 531 size_t count) 532 { 533 struct scsi_disk *sdkp = to_scsi_disk(dev); 534 int err; 535 536 if (!capable(CAP_SYS_ADMIN)) 537 return -EACCES; 538 539 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts); 540 541 return err ? err : count; 542 } 543 static DEVICE_ATTR_RW(max_medium_access_timeouts); 544 545 static ssize_t 546 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr, 547 char *buf) 548 { 549 struct scsi_disk *sdkp = to_scsi_disk(dev); 550 551 return sprintf(buf, "%u\n", sdkp->max_ws_blocks); 552 } 553 554 static ssize_t 555 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr, 556 const char *buf, size_t count) 557 { 558 struct scsi_disk *sdkp = to_scsi_disk(dev); 559 struct scsi_device *sdp = sdkp->device; 560 unsigned long max; 561 int err; 562 563 if (!capable(CAP_SYS_ADMIN)) 564 return -EACCES; 565 566 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 567 return -EINVAL; 568 569 err = kstrtoul(buf, 10, &max); 570 571 if (err) 572 return err; 573 574 if (max == 0) 575 sdp->no_write_same = 1; 576 else if (max <= SD_MAX_WS16_BLOCKS) { 577 sdp->no_write_same = 0; 578 sdkp->max_ws_blocks = max; 579 } 580 581 sd_config_write_same(sdkp); 582 583 return count; 584 } 585 static DEVICE_ATTR_RW(max_write_same_blocks); 586 587 static ssize_t 588 zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf) 589 { 590 struct scsi_disk *sdkp = to_scsi_disk(dev); 591 592 if (sdkp->device->type == TYPE_ZBC) 593 return sprintf(buf, "host-managed\n"); 594 if (sdkp->zoned == 1) 595 return sprintf(buf, "host-aware\n"); 596 if (sdkp->zoned == 2) 597 return sprintf(buf, "drive-managed\n"); 598 return sprintf(buf, "none\n"); 599 } 600 static DEVICE_ATTR_RO(zoned_cap); 601 602 static ssize_t 603 max_retries_store(struct device *dev, struct device_attribute *attr, 604 const char *buf, size_t count) 605 { 606 struct scsi_disk *sdkp = to_scsi_disk(dev); 607 struct scsi_device *sdev = sdkp->device; 608 int retries, err; 609 610 err = kstrtoint(buf, 10, &retries); 611 if (err) 612 return err; 613 614 if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) { 615 sdkp->max_retries = retries; 616 return count; 617 } 618 619 sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n", 620 SD_MAX_RETRIES); 621 return -EINVAL; 622 } 623 624 static ssize_t 625 max_retries_show(struct device *dev, struct device_attribute *attr, 626 char *buf) 627 { 628 struct scsi_disk *sdkp = to_scsi_disk(dev); 629 630 return sprintf(buf, "%d\n", sdkp->max_retries); 631 } 632 633 static DEVICE_ATTR_RW(max_retries); 634 635 static struct attribute *sd_disk_attrs[] = { 636 &dev_attr_cache_type.attr, 637 &dev_attr_FUA.attr, 638 &dev_attr_allow_restart.attr, 639 &dev_attr_manage_start_stop.attr, 640 &dev_attr_manage_system_start_stop.attr, 641 &dev_attr_manage_runtime_start_stop.attr, 642 &dev_attr_manage_shutdown.attr, 643 &dev_attr_protection_type.attr, 644 &dev_attr_protection_mode.attr, 645 &dev_attr_app_tag_own.attr, 646 &dev_attr_thin_provisioning.attr, 647 &dev_attr_provisioning_mode.attr, 648 &dev_attr_zeroing_mode.attr, 649 &dev_attr_max_write_same_blocks.attr, 650 &dev_attr_max_medium_access_timeouts.attr, 651 &dev_attr_zoned_cap.attr, 652 &dev_attr_max_retries.attr, 653 NULL, 654 }; 655 ATTRIBUTE_GROUPS(sd_disk); 656 657 static struct class sd_disk_class = { 658 .name = "scsi_disk", 659 .dev_release = scsi_disk_release, 660 .dev_groups = sd_disk_groups, 661 }; 662 663 /* 664 * Don't request a new module, as that could deadlock in multipath 665 * environment. 666 */ 667 static void sd_default_probe(dev_t devt) 668 { 669 } 670 671 /* 672 * Device no to disk mapping: 673 * 674 * major disc2 disc p1 675 * |............|.............|....|....| <- dev_t 676 * 31 20 19 8 7 4 3 0 677 * 678 * Inside a major, we have 16k disks, however mapped non- 679 * contiguously. The first 16 disks are for major0, the next 680 * ones with major1, ... Disk 256 is for major0 again, disk 272 681 * for major1, ... 682 * As we stay compatible with our numbering scheme, we can reuse 683 * the well-know SCSI majors 8, 65--71, 136--143. 684 */ 685 static int sd_major(int major_idx) 686 { 687 switch (major_idx) { 688 case 0: 689 return SCSI_DISK0_MAJOR; 690 case 1 ... 7: 691 return SCSI_DISK1_MAJOR + major_idx - 1; 692 case 8 ... 15: 693 return SCSI_DISK8_MAJOR + major_idx - 8; 694 default: 695 BUG(); 696 return 0; /* shut up gcc */ 697 } 698 } 699 700 #ifdef CONFIG_BLK_SED_OPAL 701 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, 702 size_t len, bool send) 703 { 704 struct scsi_disk *sdkp = data; 705 struct scsi_device *sdev = sdkp->device; 706 u8 cdb[12] = { 0, }; 707 const struct scsi_exec_args exec_args = { 708 .req_flags = BLK_MQ_REQ_PM, 709 }; 710 int ret; 711 712 cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN; 713 cdb[1] = secp; 714 put_unaligned_be16(spsp, &cdb[2]); 715 put_unaligned_be32(len, &cdb[6]); 716 717 ret = scsi_execute_cmd(sdev, cdb, send ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 718 buffer, len, SD_TIMEOUT, sdkp->max_retries, 719 &exec_args); 720 return ret <= 0 ? ret : -EIO; 721 } 722 #endif /* CONFIG_BLK_SED_OPAL */ 723 724 /* 725 * Look up the DIX operation based on whether the command is read or 726 * write and whether dix and dif are enabled. 727 */ 728 static unsigned int sd_prot_op(bool write, bool dix, bool dif) 729 { 730 /* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */ 731 static const unsigned int ops[] = { /* wrt dix dif */ 732 SCSI_PROT_NORMAL, /* 0 0 0 */ 733 SCSI_PROT_READ_STRIP, /* 0 0 1 */ 734 SCSI_PROT_READ_INSERT, /* 0 1 0 */ 735 SCSI_PROT_READ_PASS, /* 0 1 1 */ 736 SCSI_PROT_NORMAL, /* 1 0 0 */ 737 SCSI_PROT_WRITE_INSERT, /* 1 0 1 */ 738 SCSI_PROT_WRITE_STRIP, /* 1 1 0 */ 739 SCSI_PROT_WRITE_PASS, /* 1 1 1 */ 740 }; 741 742 return ops[write << 2 | dix << 1 | dif]; 743 } 744 745 /* 746 * Returns a mask of the protection flags that are valid for a given DIX 747 * operation. 748 */ 749 static unsigned int sd_prot_flag_mask(unsigned int prot_op) 750 { 751 static const unsigned int flag_mask[] = { 752 [SCSI_PROT_NORMAL] = 0, 753 754 [SCSI_PROT_READ_STRIP] = SCSI_PROT_TRANSFER_PI | 755 SCSI_PROT_GUARD_CHECK | 756 SCSI_PROT_REF_CHECK | 757 SCSI_PROT_REF_INCREMENT, 758 759 [SCSI_PROT_READ_INSERT] = SCSI_PROT_REF_INCREMENT | 760 SCSI_PROT_IP_CHECKSUM, 761 762 [SCSI_PROT_READ_PASS] = SCSI_PROT_TRANSFER_PI | 763 SCSI_PROT_GUARD_CHECK | 764 SCSI_PROT_REF_CHECK | 765 SCSI_PROT_REF_INCREMENT | 766 SCSI_PROT_IP_CHECKSUM, 767 768 [SCSI_PROT_WRITE_INSERT] = SCSI_PROT_TRANSFER_PI | 769 SCSI_PROT_REF_INCREMENT, 770 771 [SCSI_PROT_WRITE_STRIP] = SCSI_PROT_GUARD_CHECK | 772 SCSI_PROT_REF_CHECK | 773 SCSI_PROT_REF_INCREMENT | 774 SCSI_PROT_IP_CHECKSUM, 775 776 [SCSI_PROT_WRITE_PASS] = SCSI_PROT_TRANSFER_PI | 777 SCSI_PROT_GUARD_CHECK | 778 SCSI_PROT_REF_CHECK | 779 SCSI_PROT_REF_INCREMENT | 780 SCSI_PROT_IP_CHECKSUM, 781 }; 782 783 return flag_mask[prot_op]; 784 } 785 786 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd, 787 unsigned int dix, unsigned int dif) 788 { 789 struct request *rq = scsi_cmd_to_rq(scmd); 790 struct bio *bio = rq->bio; 791 unsigned int prot_op = sd_prot_op(rq_data_dir(rq), dix, dif); 792 unsigned int protect = 0; 793 794 if (dix) { /* DIX Type 0, 1, 2, 3 */ 795 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM)) 796 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM; 797 798 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 799 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK; 800 } 801 802 if (dif != T10_PI_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */ 803 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT; 804 805 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 806 scmd->prot_flags |= SCSI_PROT_REF_CHECK; 807 } 808 809 if (dif) { /* DIX/DIF Type 1, 2, 3 */ 810 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI; 811 812 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK)) 813 protect = 3 << 5; /* Disable target PI checking */ 814 else 815 protect = 1 << 5; /* Enable target PI checking */ 816 } 817 818 scsi_set_prot_op(scmd, prot_op); 819 scsi_set_prot_type(scmd, dif); 820 scmd->prot_flags &= sd_prot_flag_mask(prot_op); 821 822 return protect; 823 } 824 825 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode) 826 { 827 struct request_queue *q = sdkp->disk->queue; 828 unsigned int logical_block_size = sdkp->device->sector_size; 829 unsigned int max_blocks = 0; 830 831 q->limits.discard_alignment = 832 sdkp->unmap_alignment * logical_block_size; 833 q->limits.discard_granularity = 834 max(sdkp->physical_block_size, 835 sdkp->unmap_granularity * logical_block_size); 836 sdkp->provisioning_mode = mode; 837 838 switch (mode) { 839 840 case SD_LBP_FULL: 841 case SD_LBP_DISABLE: 842 blk_queue_max_discard_sectors(q, 0); 843 return; 844 845 case SD_LBP_UNMAP: 846 max_blocks = min_not_zero(sdkp->max_unmap_blocks, 847 (u32)SD_MAX_WS16_BLOCKS); 848 break; 849 850 case SD_LBP_WS16: 851 if (sdkp->device->unmap_limit_for_ws) 852 max_blocks = sdkp->max_unmap_blocks; 853 else 854 max_blocks = sdkp->max_ws_blocks; 855 856 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS); 857 break; 858 859 case SD_LBP_WS10: 860 if (sdkp->device->unmap_limit_for_ws) 861 max_blocks = sdkp->max_unmap_blocks; 862 else 863 max_blocks = sdkp->max_ws_blocks; 864 865 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS); 866 break; 867 868 case SD_LBP_ZERO: 869 max_blocks = min_not_zero(sdkp->max_ws_blocks, 870 (u32)SD_MAX_WS10_BLOCKS); 871 break; 872 } 873 874 blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9)); 875 } 876 877 static void *sd_set_special_bvec(struct request *rq, unsigned int data_len) 878 { 879 struct page *page; 880 881 page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 882 if (!page) 883 return NULL; 884 clear_highpage(page); 885 bvec_set_page(&rq->special_vec, page, data_len, 0); 886 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 887 return bvec_virt(&rq->special_vec); 888 } 889 890 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd) 891 { 892 struct scsi_device *sdp = cmd->device; 893 struct request *rq = scsi_cmd_to_rq(cmd); 894 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 895 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 896 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 897 unsigned int data_len = 24; 898 char *buf; 899 900 buf = sd_set_special_bvec(rq, data_len); 901 if (!buf) 902 return BLK_STS_RESOURCE; 903 904 cmd->cmd_len = 10; 905 cmd->cmnd[0] = UNMAP; 906 cmd->cmnd[8] = 24; 907 908 put_unaligned_be16(6 + 16, &buf[0]); 909 put_unaligned_be16(16, &buf[2]); 910 put_unaligned_be64(lba, &buf[8]); 911 put_unaligned_be32(nr_blocks, &buf[16]); 912 913 cmd->allowed = sdkp->max_retries; 914 cmd->transfersize = data_len; 915 rq->timeout = SD_TIMEOUT; 916 917 return scsi_alloc_sgtables(cmd); 918 } 919 920 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd, 921 bool unmap) 922 { 923 struct scsi_device *sdp = cmd->device; 924 struct request *rq = scsi_cmd_to_rq(cmd); 925 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 926 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 927 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 928 u32 data_len = sdp->sector_size; 929 930 if (!sd_set_special_bvec(rq, data_len)) 931 return BLK_STS_RESOURCE; 932 933 cmd->cmd_len = 16; 934 cmd->cmnd[0] = WRITE_SAME_16; 935 if (unmap) 936 cmd->cmnd[1] = 0x8; /* UNMAP */ 937 put_unaligned_be64(lba, &cmd->cmnd[2]); 938 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 939 940 cmd->allowed = sdkp->max_retries; 941 cmd->transfersize = data_len; 942 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 943 944 return scsi_alloc_sgtables(cmd); 945 } 946 947 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd, 948 bool unmap) 949 { 950 struct scsi_device *sdp = cmd->device; 951 struct request *rq = scsi_cmd_to_rq(cmd); 952 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 953 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 954 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 955 u32 data_len = sdp->sector_size; 956 957 if (!sd_set_special_bvec(rq, data_len)) 958 return BLK_STS_RESOURCE; 959 960 cmd->cmd_len = 10; 961 cmd->cmnd[0] = WRITE_SAME; 962 if (unmap) 963 cmd->cmnd[1] = 0x8; /* UNMAP */ 964 put_unaligned_be32(lba, &cmd->cmnd[2]); 965 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 966 967 cmd->allowed = sdkp->max_retries; 968 cmd->transfersize = data_len; 969 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 970 971 return scsi_alloc_sgtables(cmd); 972 } 973 974 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd) 975 { 976 struct request *rq = scsi_cmd_to_rq(cmd); 977 struct scsi_device *sdp = cmd->device; 978 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 979 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 980 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 981 982 if (!(rq->cmd_flags & REQ_NOUNMAP)) { 983 switch (sdkp->zeroing_mode) { 984 case SD_ZERO_WS16_UNMAP: 985 return sd_setup_write_same16_cmnd(cmd, true); 986 case SD_ZERO_WS10_UNMAP: 987 return sd_setup_write_same10_cmnd(cmd, true); 988 } 989 } 990 991 if (sdp->no_write_same) { 992 rq->rq_flags |= RQF_QUIET; 993 return BLK_STS_TARGET; 994 } 995 996 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) 997 return sd_setup_write_same16_cmnd(cmd, false); 998 999 return sd_setup_write_same10_cmnd(cmd, false); 1000 } 1001 1002 static void sd_config_write_same(struct scsi_disk *sdkp) 1003 { 1004 struct request_queue *q = sdkp->disk->queue; 1005 unsigned int logical_block_size = sdkp->device->sector_size; 1006 1007 if (sdkp->device->no_write_same) { 1008 sdkp->max_ws_blocks = 0; 1009 goto out; 1010 } 1011 1012 /* Some devices can not handle block counts above 0xffff despite 1013 * supporting WRITE SAME(16). Consequently we default to 64k 1014 * blocks per I/O unless the device explicitly advertises a 1015 * bigger limit. 1016 */ 1017 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS) 1018 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 1019 (u32)SD_MAX_WS16_BLOCKS); 1020 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes) 1021 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 1022 (u32)SD_MAX_WS10_BLOCKS); 1023 else { 1024 sdkp->device->no_write_same = 1; 1025 sdkp->max_ws_blocks = 0; 1026 } 1027 1028 if (sdkp->lbprz && sdkp->lbpws) 1029 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP; 1030 else if (sdkp->lbprz && sdkp->lbpws10) 1031 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP; 1032 else if (sdkp->max_ws_blocks) 1033 sdkp->zeroing_mode = SD_ZERO_WS; 1034 else 1035 sdkp->zeroing_mode = SD_ZERO_WRITE; 1036 1037 if (sdkp->max_ws_blocks && 1038 sdkp->physical_block_size > logical_block_size) { 1039 /* 1040 * Reporting a maximum number of blocks that is not aligned 1041 * on the device physical size would cause a large write same 1042 * request to be split into physically unaligned chunks by 1043 * __blkdev_issue_write_zeroes() even if the caller of this 1044 * functions took care to align the large request. So make sure 1045 * the maximum reported is aligned to the device physical block 1046 * size. This is only an optional optimization for regular 1047 * disks, but this is mandatory to avoid failure of large write 1048 * same requests directed at sequential write required zones of 1049 * host-managed ZBC disks. 1050 */ 1051 sdkp->max_ws_blocks = 1052 round_down(sdkp->max_ws_blocks, 1053 bytes_to_logical(sdkp->device, 1054 sdkp->physical_block_size)); 1055 } 1056 1057 out: 1058 blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks * 1059 (logical_block_size >> 9)); 1060 } 1061 1062 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd) 1063 { 1064 struct request *rq = scsi_cmd_to_rq(cmd); 1065 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 1066 1067 /* flush requests don't perform I/O, zero the S/G table */ 1068 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1069 1070 if (cmd->device->use_16_for_sync) { 1071 cmd->cmnd[0] = SYNCHRONIZE_CACHE_16; 1072 cmd->cmd_len = 16; 1073 } else { 1074 cmd->cmnd[0] = SYNCHRONIZE_CACHE; 1075 cmd->cmd_len = 10; 1076 } 1077 cmd->transfersize = 0; 1078 cmd->allowed = sdkp->max_retries; 1079 1080 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER; 1081 return BLK_STS_OK; 1082 } 1083 1084 /** 1085 * sd_group_number() - Compute the GROUP NUMBER field 1086 * @cmd: SCSI command for which to compute the value of the six-bit GROUP NUMBER 1087 * field. 1088 * 1089 * From SBC-5 r05 (https://www.t10.org/cgi-bin/ac.pl?t=f&f=sbc5r05.pdf): 1090 * 0: no relative lifetime. 1091 * 1: shortest relative lifetime. 1092 * 2: second shortest relative lifetime. 1093 * 3 - 0x3d: intermediate relative lifetimes. 1094 * 0x3e: second longest relative lifetime. 1095 * 0x3f: longest relative lifetime. 1096 */ 1097 static u8 sd_group_number(struct scsi_cmnd *cmd) 1098 { 1099 const struct request *rq = scsi_cmd_to_rq(cmd); 1100 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 1101 1102 if (!sdkp->rscs) 1103 return 0; 1104 1105 return min3((u32)rq->write_hint, (u32)sdkp->permanent_stream_count, 1106 0x3fu); 1107 } 1108 1109 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write, 1110 sector_t lba, unsigned int nr_blocks, 1111 unsigned char flags, unsigned int dld) 1112 { 1113 cmd->cmd_len = SD_EXT_CDB_SIZE; 1114 cmd->cmnd[0] = VARIABLE_LENGTH_CMD; 1115 cmd->cmnd[6] = sd_group_number(cmd); 1116 cmd->cmnd[7] = 0x18; /* Additional CDB len */ 1117 cmd->cmnd[9] = write ? WRITE_32 : READ_32; 1118 cmd->cmnd[10] = flags; 1119 cmd->cmnd[11] = dld & 0x07; 1120 put_unaligned_be64(lba, &cmd->cmnd[12]); 1121 put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */ 1122 put_unaligned_be32(nr_blocks, &cmd->cmnd[28]); 1123 1124 return BLK_STS_OK; 1125 } 1126 1127 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write, 1128 sector_t lba, unsigned int nr_blocks, 1129 unsigned char flags, unsigned int dld) 1130 { 1131 cmd->cmd_len = 16; 1132 cmd->cmnd[0] = write ? WRITE_16 : READ_16; 1133 cmd->cmnd[1] = flags | ((dld >> 2) & 0x01); 1134 cmd->cmnd[14] = ((dld & 0x03) << 6) | sd_group_number(cmd); 1135 cmd->cmnd[15] = 0; 1136 put_unaligned_be64(lba, &cmd->cmnd[2]); 1137 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 1138 1139 return BLK_STS_OK; 1140 } 1141 1142 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write, 1143 sector_t lba, unsigned int nr_blocks, 1144 unsigned char flags) 1145 { 1146 cmd->cmd_len = 10; 1147 cmd->cmnd[0] = write ? WRITE_10 : READ_10; 1148 cmd->cmnd[1] = flags; 1149 cmd->cmnd[6] = sd_group_number(cmd); 1150 cmd->cmnd[9] = 0; 1151 put_unaligned_be32(lba, &cmd->cmnd[2]); 1152 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 1153 1154 return BLK_STS_OK; 1155 } 1156 1157 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write, 1158 sector_t lba, unsigned int nr_blocks, 1159 unsigned char flags) 1160 { 1161 /* Avoid that 0 blocks gets translated into 256 blocks. */ 1162 if (WARN_ON_ONCE(nr_blocks == 0)) 1163 return BLK_STS_IOERR; 1164 1165 if (unlikely(flags & 0x8)) { 1166 /* 1167 * This happens only if this drive failed 10byte rw 1168 * command with ILLEGAL_REQUEST during operation and 1169 * thus turned off use_10_for_rw. 1170 */ 1171 scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n"); 1172 return BLK_STS_IOERR; 1173 } 1174 1175 cmd->cmd_len = 6; 1176 cmd->cmnd[0] = write ? WRITE_6 : READ_6; 1177 cmd->cmnd[1] = (lba >> 16) & 0x1f; 1178 cmd->cmnd[2] = (lba >> 8) & 0xff; 1179 cmd->cmnd[3] = lba & 0xff; 1180 cmd->cmnd[4] = nr_blocks; 1181 cmd->cmnd[5] = 0; 1182 1183 return BLK_STS_OK; 1184 } 1185 1186 /* 1187 * Check if a command has a duration limit set. If it does, and the target 1188 * device supports CDL and the feature is enabled, return the limit 1189 * descriptor index to use. Return 0 (no limit) otherwise. 1190 */ 1191 static int sd_cdl_dld(struct scsi_disk *sdkp, struct scsi_cmnd *scmd) 1192 { 1193 struct scsi_device *sdp = sdkp->device; 1194 int hint; 1195 1196 if (!sdp->cdl_supported || !sdp->cdl_enable) 1197 return 0; 1198 1199 /* 1200 * Use "no limit" if the request ioprio does not specify a duration 1201 * limit hint. 1202 */ 1203 hint = IOPRIO_PRIO_HINT(req_get_ioprio(scsi_cmd_to_rq(scmd))); 1204 if (hint < IOPRIO_HINT_DEV_DURATION_LIMIT_1 || 1205 hint > IOPRIO_HINT_DEV_DURATION_LIMIT_7) 1206 return 0; 1207 1208 return (hint - IOPRIO_HINT_DEV_DURATION_LIMIT_1) + 1; 1209 } 1210 1211 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd) 1212 { 1213 struct request *rq = scsi_cmd_to_rq(cmd); 1214 struct scsi_device *sdp = cmd->device; 1215 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 1216 sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 1217 sector_t threshold; 1218 unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 1219 unsigned int mask = logical_to_sectors(sdp, 1) - 1; 1220 bool write = rq_data_dir(rq) == WRITE; 1221 unsigned char protect, fua; 1222 unsigned int dld; 1223 blk_status_t ret; 1224 unsigned int dif; 1225 bool dix; 1226 1227 ret = scsi_alloc_sgtables(cmd); 1228 if (ret != BLK_STS_OK) 1229 return ret; 1230 1231 ret = BLK_STS_IOERR; 1232 if (!scsi_device_online(sdp) || sdp->changed) { 1233 scmd_printk(KERN_ERR, cmd, "device offline or changed\n"); 1234 goto fail; 1235 } 1236 1237 if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->q->disk)) { 1238 scmd_printk(KERN_ERR, cmd, "access beyond end of device\n"); 1239 goto fail; 1240 } 1241 1242 if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) { 1243 scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n"); 1244 goto fail; 1245 } 1246 1247 /* 1248 * Some SD card readers can't handle accesses which touch the 1249 * last one or two logical blocks. Split accesses as needed. 1250 */ 1251 threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS; 1252 1253 if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) { 1254 if (lba < threshold) { 1255 /* Access up to the threshold but not beyond */ 1256 nr_blocks = threshold - lba; 1257 } else { 1258 /* Access only a single logical block */ 1259 nr_blocks = 1; 1260 } 1261 } 1262 1263 if (req_op(rq) == REQ_OP_ZONE_APPEND) { 1264 ret = sd_zbc_prepare_zone_append(cmd, &lba, nr_blocks); 1265 if (ret) 1266 goto fail; 1267 } 1268 1269 fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0; 1270 dix = scsi_prot_sg_count(cmd); 1271 dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type); 1272 dld = sd_cdl_dld(sdkp, cmd); 1273 1274 if (dif || dix) 1275 protect = sd_setup_protect_cmnd(cmd, dix, dif); 1276 else 1277 protect = 0; 1278 1279 if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) { 1280 ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks, 1281 protect | fua, dld); 1282 } else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) { 1283 ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks, 1284 protect | fua, dld); 1285 } else if ((nr_blocks > 0xff) || (lba > 0x1fffff) || 1286 sdp->use_10_for_rw || protect || rq->write_hint) { 1287 ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks, 1288 protect | fua); 1289 } else { 1290 ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks, 1291 protect | fua); 1292 } 1293 1294 if (unlikely(ret != BLK_STS_OK)) 1295 goto fail; 1296 1297 /* 1298 * We shouldn't disconnect in the middle of a sector, so with a dumb 1299 * host adapter, it's safe to assume that we can at least transfer 1300 * this many bytes between each connect / disconnect. 1301 */ 1302 cmd->transfersize = sdp->sector_size; 1303 cmd->underflow = nr_blocks << 9; 1304 cmd->allowed = sdkp->max_retries; 1305 cmd->sdb.length = nr_blocks * sdp->sector_size; 1306 1307 SCSI_LOG_HLQUEUE(1, 1308 scmd_printk(KERN_INFO, cmd, 1309 "%s: block=%llu, count=%d\n", __func__, 1310 (unsigned long long)blk_rq_pos(rq), 1311 blk_rq_sectors(rq))); 1312 SCSI_LOG_HLQUEUE(2, 1313 scmd_printk(KERN_INFO, cmd, 1314 "%s %d/%u 512 byte blocks.\n", 1315 write ? "writing" : "reading", nr_blocks, 1316 blk_rq_sectors(rq))); 1317 1318 /* 1319 * This indicates that the command is ready from our end to be queued. 1320 */ 1321 return BLK_STS_OK; 1322 fail: 1323 scsi_free_sgtables(cmd); 1324 return ret; 1325 } 1326 1327 static blk_status_t sd_init_command(struct scsi_cmnd *cmd) 1328 { 1329 struct request *rq = scsi_cmd_to_rq(cmd); 1330 1331 switch (req_op(rq)) { 1332 case REQ_OP_DISCARD: 1333 switch (scsi_disk(rq->q->disk)->provisioning_mode) { 1334 case SD_LBP_UNMAP: 1335 return sd_setup_unmap_cmnd(cmd); 1336 case SD_LBP_WS16: 1337 return sd_setup_write_same16_cmnd(cmd, true); 1338 case SD_LBP_WS10: 1339 return sd_setup_write_same10_cmnd(cmd, true); 1340 case SD_LBP_ZERO: 1341 return sd_setup_write_same10_cmnd(cmd, false); 1342 default: 1343 return BLK_STS_TARGET; 1344 } 1345 case REQ_OP_WRITE_ZEROES: 1346 return sd_setup_write_zeroes_cmnd(cmd); 1347 case REQ_OP_FLUSH: 1348 return sd_setup_flush_cmnd(cmd); 1349 case REQ_OP_READ: 1350 case REQ_OP_WRITE: 1351 case REQ_OP_ZONE_APPEND: 1352 return sd_setup_read_write_cmnd(cmd); 1353 case REQ_OP_ZONE_RESET: 1354 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER, 1355 false); 1356 case REQ_OP_ZONE_RESET_ALL: 1357 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER, 1358 true); 1359 case REQ_OP_ZONE_OPEN: 1360 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false); 1361 case REQ_OP_ZONE_CLOSE: 1362 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false); 1363 case REQ_OP_ZONE_FINISH: 1364 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false); 1365 default: 1366 WARN_ON_ONCE(1); 1367 return BLK_STS_NOTSUPP; 1368 } 1369 } 1370 1371 static void sd_uninit_command(struct scsi_cmnd *SCpnt) 1372 { 1373 struct request *rq = scsi_cmd_to_rq(SCpnt); 1374 1375 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1376 mempool_free(rq->special_vec.bv_page, sd_page_pool); 1377 } 1378 1379 static bool sd_need_revalidate(struct gendisk *disk, struct scsi_disk *sdkp) 1380 { 1381 if (sdkp->device->removable || sdkp->write_prot) { 1382 if (disk_check_media_change(disk)) 1383 return true; 1384 } 1385 1386 /* 1387 * Force a full rescan after ioctl(BLKRRPART). While the disk state has 1388 * nothing to do with partitions, BLKRRPART is used to force a full 1389 * revalidate after things like a format for historical reasons. 1390 */ 1391 return test_bit(GD_NEED_PART_SCAN, &disk->state); 1392 } 1393 1394 /** 1395 * sd_open - open a scsi disk device 1396 * @disk: disk to open 1397 * @mode: open mode 1398 * 1399 * Returns 0 if successful. Returns a negated errno value in case 1400 * of error. 1401 * 1402 * Note: This can be called from a user context (e.g. fsck(1) ) 1403 * or from within the kernel (e.g. as a result of a mount(1) ). 1404 * In the latter case @inode and @filp carry an abridged amount 1405 * of information as noted above. 1406 * 1407 * Locking: called with disk->open_mutex held. 1408 **/ 1409 static int sd_open(struct gendisk *disk, blk_mode_t mode) 1410 { 1411 struct scsi_disk *sdkp = scsi_disk(disk); 1412 struct scsi_device *sdev = sdkp->device; 1413 int retval; 1414 1415 if (scsi_device_get(sdev)) 1416 return -ENXIO; 1417 1418 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n")); 1419 1420 /* 1421 * If the device is in error recovery, wait until it is done. 1422 * If the device is offline, then disallow any access to it. 1423 */ 1424 retval = -ENXIO; 1425 if (!scsi_block_when_processing_errors(sdev)) 1426 goto error_out; 1427 1428 if (sd_need_revalidate(disk, sdkp)) 1429 sd_revalidate_disk(disk); 1430 1431 /* 1432 * If the drive is empty, just let the open fail. 1433 */ 1434 retval = -ENOMEDIUM; 1435 if (sdev->removable && !sdkp->media_present && 1436 !(mode & BLK_OPEN_NDELAY)) 1437 goto error_out; 1438 1439 /* 1440 * If the device has the write protect tab set, have the open fail 1441 * if the user expects to be able to write to the thing. 1442 */ 1443 retval = -EROFS; 1444 if (sdkp->write_prot && (mode & BLK_OPEN_WRITE)) 1445 goto error_out; 1446 1447 /* 1448 * It is possible that the disk changing stuff resulted in 1449 * the device being taken offline. If this is the case, 1450 * report this to the user, and don't pretend that the 1451 * open actually succeeded. 1452 */ 1453 retval = -ENXIO; 1454 if (!scsi_device_online(sdev)) 1455 goto error_out; 1456 1457 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) { 1458 if (scsi_block_when_processing_errors(sdev)) 1459 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT); 1460 } 1461 1462 return 0; 1463 1464 error_out: 1465 scsi_device_put(sdev); 1466 return retval; 1467 } 1468 1469 /** 1470 * sd_release - invoked when the (last) close(2) is called on this 1471 * scsi disk. 1472 * @disk: disk to release 1473 * 1474 * Returns 0. 1475 * 1476 * Note: may block (uninterruptible) if error recovery is underway 1477 * on this disk. 1478 * 1479 * Locking: called with disk->open_mutex held. 1480 **/ 1481 static void sd_release(struct gendisk *disk) 1482 { 1483 struct scsi_disk *sdkp = scsi_disk(disk); 1484 struct scsi_device *sdev = sdkp->device; 1485 1486 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n")); 1487 1488 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) { 1489 if (scsi_block_when_processing_errors(sdev)) 1490 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW); 1491 } 1492 1493 scsi_device_put(sdev); 1494 } 1495 1496 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1497 { 1498 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1499 struct scsi_device *sdp = sdkp->device; 1500 struct Scsi_Host *host = sdp->host; 1501 sector_t capacity = logical_to_sectors(sdp, sdkp->capacity); 1502 int diskinfo[4]; 1503 1504 /* default to most commonly used values */ 1505 diskinfo[0] = 0x40; /* 1 << 6 */ 1506 diskinfo[1] = 0x20; /* 1 << 5 */ 1507 diskinfo[2] = capacity >> 11; 1508 1509 /* override with calculated, extended default, or driver values */ 1510 if (host->hostt->bios_param) 1511 host->hostt->bios_param(sdp, bdev, capacity, diskinfo); 1512 else 1513 scsicam_bios_param(bdev, capacity, diskinfo); 1514 1515 geo->heads = diskinfo[0]; 1516 geo->sectors = diskinfo[1]; 1517 geo->cylinders = diskinfo[2]; 1518 return 0; 1519 } 1520 1521 /** 1522 * sd_ioctl - process an ioctl 1523 * @bdev: target block device 1524 * @mode: open mode 1525 * @cmd: ioctl command number 1526 * @arg: this is third argument given to ioctl(2) system call. 1527 * Often contains a pointer. 1528 * 1529 * Returns 0 if successful (some ioctls return positive numbers on 1530 * success as well). Returns a negated errno value in case of error. 1531 * 1532 * Note: most ioctls are forward onto the block subsystem or further 1533 * down in the scsi subsystem. 1534 **/ 1535 static int sd_ioctl(struct block_device *bdev, blk_mode_t mode, 1536 unsigned int cmd, unsigned long arg) 1537 { 1538 struct gendisk *disk = bdev->bd_disk; 1539 struct scsi_disk *sdkp = scsi_disk(disk); 1540 struct scsi_device *sdp = sdkp->device; 1541 void __user *p = (void __user *)arg; 1542 int error; 1543 1544 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, " 1545 "cmd=0x%x\n", disk->disk_name, cmd)); 1546 1547 if (bdev_is_partition(bdev) && !capable(CAP_SYS_RAWIO)) 1548 return -ENOIOCTLCMD; 1549 1550 /* 1551 * If we are in the middle of error recovery, don't let anyone 1552 * else try and use this device. Also, if error recovery fails, it 1553 * may try and take the device offline, in which case all further 1554 * access to the device is prohibited. 1555 */ 1556 error = scsi_ioctl_block_when_processing_errors(sdp, cmd, 1557 (mode & BLK_OPEN_NDELAY)); 1558 if (error) 1559 return error; 1560 1561 if (is_sed_ioctl(cmd)) 1562 return sed_ioctl(sdkp->opal_dev, cmd, p); 1563 return scsi_ioctl(sdp, mode & BLK_OPEN_WRITE, cmd, p); 1564 } 1565 1566 static void set_media_not_present(struct scsi_disk *sdkp) 1567 { 1568 if (sdkp->media_present) 1569 sdkp->device->changed = 1; 1570 1571 if (sdkp->device->removable) { 1572 sdkp->media_present = 0; 1573 sdkp->capacity = 0; 1574 } 1575 } 1576 1577 static int media_not_present(struct scsi_disk *sdkp, 1578 struct scsi_sense_hdr *sshdr) 1579 { 1580 if (!scsi_sense_valid(sshdr)) 1581 return 0; 1582 1583 /* not invoked for commands that could return deferred errors */ 1584 switch (sshdr->sense_key) { 1585 case UNIT_ATTENTION: 1586 case NOT_READY: 1587 /* medium not present */ 1588 if (sshdr->asc == 0x3A) { 1589 set_media_not_present(sdkp); 1590 return 1; 1591 } 1592 } 1593 return 0; 1594 } 1595 1596 /** 1597 * sd_check_events - check media events 1598 * @disk: kernel device descriptor 1599 * @clearing: disk events currently being cleared 1600 * 1601 * Returns mask of DISK_EVENT_*. 1602 * 1603 * Note: this function is invoked from the block subsystem. 1604 **/ 1605 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing) 1606 { 1607 struct scsi_disk *sdkp = disk->private_data; 1608 struct scsi_device *sdp; 1609 int retval; 1610 bool disk_changed; 1611 1612 if (!sdkp) 1613 return 0; 1614 1615 sdp = sdkp->device; 1616 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n")); 1617 1618 /* 1619 * If the device is offline, don't send any commands - just pretend as 1620 * if the command failed. If the device ever comes back online, we 1621 * can deal with it then. It is only because of unrecoverable errors 1622 * that we would ever take a device offline in the first place. 1623 */ 1624 if (!scsi_device_online(sdp)) { 1625 set_media_not_present(sdkp); 1626 goto out; 1627 } 1628 1629 /* 1630 * Using TEST_UNIT_READY enables differentiation between drive with 1631 * no cartridge loaded - NOT READY, drive with changed cartridge - 1632 * UNIT ATTENTION, or with same cartridge - GOOD STATUS. 1633 * 1634 * Drives that auto spin down. eg iomega jaz 1G, will be started 1635 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever 1636 * sd_revalidate() is called. 1637 */ 1638 if (scsi_block_when_processing_errors(sdp)) { 1639 struct scsi_sense_hdr sshdr = { 0, }; 1640 1641 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries, 1642 &sshdr); 1643 1644 /* failed to execute TUR, assume media not present */ 1645 if (retval < 0 || host_byte(retval)) { 1646 set_media_not_present(sdkp); 1647 goto out; 1648 } 1649 1650 if (media_not_present(sdkp, &sshdr)) 1651 goto out; 1652 } 1653 1654 /* 1655 * For removable scsi disk we have to recognise the presence 1656 * of a disk in the drive. 1657 */ 1658 if (!sdkp->media_present) 1659 sdp->changed = 1; 1660 sdkp->media_present = 1; 1661 out: 1662 /* 1663 * sdp->changed is set under the following conditions: 1664 * 1665 * Medium present state has changed in either direction. 1666 * Device has indicated UNIT_ATTENTION. 1667 */ 1668 disk_changed = sdp->changed; 1669 sdp->changed = 0; 1670 return disk_changed ? DISK_EVENT_MEDIA_CHANGE : 0; 1671 } 1672 1673 static int sd_sync_cache(struct scsi_disk *sdkp) 1674 { 1675 int res; 1676 struct scsi_device *sdp = sdkp->device; 1677 const int timeout = sdp->request_queue->rq_timeout 1678 * SD_FLUSH_TIMEOUT_MULTIPLIER; 1679 /* Leave the rest of the command zero to indicate flush everything. */ 1680 const unsigned char cmd[16] = { sdp->use_16_for_sync ? 1681 SYNCHRONIZE_CACHE_16 : SYNCHRONIZE_CACHE }; 1682 struct scsi_sense_hdr sshdr; 1683 struct scsi_failure failure_defs[] = { 1684 { 1685 .allowed = 3, 1686 .result = SCMD_FAILURE_RESULT_ANY, 1687 }, 1688 {} 1689 }; 1690 struct scsi_failures failures = { 1691 .failure_definitions = failure_defs, 1692 }; 1693 const struct scsi_exec_args exec_args = { 1694 .req_flags = BLK_MQ_REQ_PM, 1695 .sshdr = &sshdr, 1696 .failures = &failures, 1697 }; 1698 1699 if (!scsi_device_online(sdp)) 1700 return -ENODEV; 1701 1702 res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, timeout, 1703 sdkp->max_retries, &exec_args); 1704 if (res) { 1705 sd_print_result(sdkp, "Synchronize Cache(10) failed", res); 1706 1707 if (res < 0) 1708 return res; 1709 1710 if (scsi_status_is_check_condition(res) && 1711 scsi_sense_valid(&sshdr)) { 1712 sd_print_sense_hdr(sdkp, &sshdr); 1713 1714 /* we need to evaluate the error return */ 1715 if (sshdr.asc == 0x3a || /* medium not present */ 1716 sshdr.asc == 0x20 || /* invalid command */ 1717 (sshdr.asc == 0x74 && sshdr.ascq == 0x71)) /* drive is password locked */ 1718 /* this is no error here */ 1719 return 0; 1720 /* 1721 * This drive doesn't support sync and there's not much 1722 * we can do because this is called during shutdown 1723 * or suspend so just return success so those operations 1724 * can proceed. 1725 */ 1726 if (sshdr.sense_key == ILLEGAL_REQUEST) 1727 return 0; 1728 } 1729 1730 switch (host_byte(res)) { 1731 /* ignore errors due to racing a disconnection */ 1732 case DID_BAD_TARGET: 1733 case DID_NO_CONNECT: 1734 return 0; 1735 /* signal the upper layer it might try again */ 1736 case DID_BUS_BUSY: 1737 case DID_IMM_RETRY: 1738 case DID_REQUEUE: 1739 case DID_SOFT_ERROR: 1740 return -EBUSY; 1741 default: 1742 return -EIO; 1743 } 1744 } 1745 return 0; 1746 } 1747 1748 static void sd_rescan(struct device *dev) 1749 { 1750 struct scsi_disk *sdkp = dev_get_drvdata(dev); 1751 1752 sd_revalidate_disk(sdkp->disk); 1753 } 1754 1755 static int sd_get_unique_id(struct gendisk *disk, u8 id[16], 1756 enum blk_unique_id type) 1757 { 1758 struct scsi_device *sdev = scsi_disk(disk)->device; 1759 const struct scsi_vpd *vpd; 1760 const unsigned char *d; 1761 int ret = -ENXIO, len; 1762 1763 rcu_read_lock(); 1764 vpd = rcu_dereference(sdev->vpd_pg83); 1765 if (!vpd) 1766 goto out_unlock; 1767 1768 ret = -EINVAL; 1769 for (d = vpd->data + 4; d < vpd->data + vpd->len; d += d[3] + 4) { 1770 /* we only care about designators with LU association */ 1771 if (((d[1] >> 4) & 0x3) != 0x00) 1772 continue; 1773 if ((d[1] & 0xf) != type) 1774 continue; 1775 1776 /* 1777 * Only exit early if a 16-byte descriptor was found. Otherwise 1778 * keep looking as one with more entropy might still show up. 1779 */ 1780 len = d[3]; 1781 if (len != 8 && len != 12 && len != 16) 1782 continue; 1783 ret = len; 1784 memcpy(id, d + 4, len); 1785 if (len == 16) 1786 break; 1787 } 1788 out_unlock: 1789 rcu_read_unlock(); 1790 return ret; 1791 } 1792 1793 static int sd_scsi_to_pr_err(struct scsi_sense_hdr *sshdr, int result) 1794 { 1795 switch (host_byte(result)) { 1796 case DID_TRANSPORT_MARGINAL: 1797 case DID_TRANSPORT_DISRUPTED: 1798 case DID_BUS_BUSY: 1799 return PR_STS_RETRY_PATH_FAILURE; 1800 case DID_NO_CONNECT: 1801 return PR_STS_PATH_FAILED; 1802 case DID_TRANSPORT_FAILFAST: 1803 return PR_STS_PATH_FAST_FAILED; 1804 } 1805 1806 switch (status_byte(result)) { 1807 case SAM_STAT_RESERVATION_CONFLICT: 1808 return PR_STS_RESERVATION_CONFLICT; 1809 case SAM_STAT_CHECK_CONDITION: 1810 if (!scsi_sense_valid(sshdr)) 1811 return PR_STS_IOERR; 1812 1813 if (sshdr->sense_key == ILLEGAL_REQUEST && 1814 (sshdr->asc == 0x26 || sshdr->asc == 0x24)) 1815 return -EINVAL; 1816 1817 fallthrough; 1818 default: 1819 return PR_STS_IOERR; 1820 } 1821 } 1822 1823 static int sd_pr_in_command(struct block_device *bdev, u8 sa, 1824 unsigned char *data, int data_len) 1825 { 1826 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1827 struct scsi_device *sdev = sdkp->device; 1828 struct scsi_sense_hdr sshdr; 1829 u8 cmd[10] = { PERSISTENT_RESERVE_IN, sa }; 1830 struct scsi_failure failure_defs[] = { 1831 { 1832 .sense = UNIT_ATTENTION, 1833 .asc = SCMD_FAILURE_ASC_ANY, 1834 .ascq = SCMD_FAILURE_ASCQ_ANY, 1835 .allowed = 5, 1836 .result = SAM_STAT_CHECK_CONDITION, 1837 }, 1838 {} 1839 }; 1840 struct scsi_failures failures = { 1841 .failure_definitions = failure_defs, 1842 }; 1843 const struct scsi_exec_args exec_args = { 1844 .sshdr = &sshdr, 1845 .failures = &failures, 1846 }; 1847 int result; 1848 1849 put_unaligned_be16(data_len, &cmd[7]); 1850 1851 result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, data, data_len, 1852 SD_TIMEOUT, sdkp->max_retries, &exec_args); 1853 if (scsi_status_is_check_condition(result) && 1854 scsi_sense_valid(&sshdr)) { 1855 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result); 1856 scsi_print_sense_hdr(sdev, NULL, &sshdr); 1857 } 1858 1859 if (result <= 0) 1860 return result; 1861 1862 return sd_scsi_to_pr_err(&sshdr, result); 1863 } 1864 1865 static int sd_pr_read_keys(struct block_device *bdev, struct pr_keys *keys_info) 1866 { 1867 int result, i, data_offset, num_copy_keys; 1868 u32 num_keys = keys_info->num_keys; 1869 int data_len = num_keys * 8 + 8; 1870 u8 *data; 1871 1872 data = kzalloc(data_len, GFP_KERNEL); 1873 if (!data) 1874 return -ENOMEM; 1875 1876 result = sd_pr_in_command(bdev, READ_KEYS, data, data_len); 1877 if (result) 1878 goto free_data; 1879 1880 keys_info->generation = get_unaligned_be32(&data[0]); 1881 keys_info->num_keys = get_unaligned_be32(&data[4]) / 8; 1882 1883 data_offset = 8; 1884 num_copy_keys = min(num_keys, keys_info->num_keys); 1885 1886 for (i = 0; i < num_copy_keys; i++) { 1887 keys_info->keys[i] = get_unaligned_be64(&data[data_offset]); 1888 data_offset += 8; 1889 } 1890 1891 free_data: 1892 kfree(data); 1893 return result; 1894 } 1895 1896 static int sd_pr_read_reservation(struct block_device *bdev, 1897 struct pr_held_reservation *rsv) 1898 { 1899 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1900 struct scsi_device *sdev = sdkp->device; 1901 u8 data[24] = { }; 1902 int result, len; 1903 1904 result = sd_pr_in_command(bdev, READ_RESERVATION, data, sizeof(data)); 1905 if (result) 1906 return result; 1907 1908 len = get_unaligned_be32(&data[4]); 1909 if (!len) 1910 return 0; 1911 1912 /* Make sure we have at least the key and type */ 1913 if (len < 14) { 1914 sdev_printk(KERN_INFO, sdev, 1915 "READ RESERVATION failed due to short return buffer of %d bytes\n", 1916 len); 1917 return -EINVAL; 1918 } 1919 1920 rsv->generation = get_unaligned_be32(&data[0]); 1921 rsv->key = get_unaligned_be64(&data[8]); 1922 rsv->type = scsi_pr_type_to_block(data[21] & 0x0f); 1923 return 0; 1924 } 1925 1926 static int sd_pr_out_command(struct block_device *bdev, u8 sa, u64 key, 1927 u64 sa_key, enum scsi_pr_type type, u8 flags) 1928 { 1929 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1930 struct scsi_device *sdev = sdkp->device; 1931 struct scsi_sense_hdr sshdr; 1932 struct scsi_failure failure_defs[] = { 1933 { 1934 .sense = UNIT_ATTENTION, 1935 .asc = SCMD_FAILURE_ASC_ANY, 1936 .ascq = SCMD_FAILURE_ASCQ_ANY, 1937 .allowed = 5, 1938 .result = SAM_STAT_CHECK_CONDITION, 1939 }, 1940 {} 1941 }; 1942 struct scsi_failures failures = { 1943 .failure_definitions = failure_defs, 1944 }; 1945 const struct scsi_exec_args exec_args = { 1946 .sshdr = &sshdr, 1947 .failures = &failures, 1948 }; 1949 int result; 1950 u8 cmd[16] = { 0, }; 1951 u8 data[24] = { 0, }; 1952 1953 cmd[0] = PERSISTENT_RESERVE_OUT; 1954 cmd[1] = sa; 1955 cmd[2] = type; 1956 put_unaligned_be32(sizeof(data), &cmd[5]); 1957 1958 put_unaligned_be64(key, &data[0]); 1959 put_unaligned_be64(sa_key, &data[8]); 1960 data[20] = flags; 1961 1962 result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, &data, 1963 sizeof(data), SD_TIMEOUT, sdkp->max_retries, 1964 &exec_args); 1965 1966 if (scsi_status_is_check_condition(result) && 1967 scsi_sense_valid(&sshdr)) { 1968 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result); 1969 scsi_print_sense_hdr(sdev, NULL, &sshdr); 1970 } 1971 1972 if (result <= 0) 1973 return result; 1974 1975 return sd_scsi_to_pr_err(&sshdr, result); 1976 } 1977 1978 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 1979 u32 flags) 1980 { 1981 if (flags & ~PR_FL_IGNORE_KEY) 1982 return -EOPNOTSUPP; 1983 return sd_pr_out_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00, 1984 old_key, new_key, 0, 1985 (1 << 0) /* APTPL */); 1986 } 1987 1988 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 1989 u32 flags) 1990 { 1991 if (flags) 1992 return -EOPNOTSUPP; 1993 return sd_pr_out_command(bdev, 0x01, key, 0, 1994 block_pr_type_to_scsi(type), 0); 1995 } 1996 1997 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 1998 { 1999 return sd_pr_out_command(bdev, 0x02, key, 0, 2000 block_pr_type_to_scsi(type), 0); 2001 } 2002 2003 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 2004 enum pr_type type, bool abort) 2005 { 2006 return sd_pr_out_command(bdev, abort ? 0x05 : 0x04, old_key, new_key, 2007 block_pr_type_to_scsi(type), 0); 2008 } 2009 2010 static int sd_pr_clear(struct block_device *bdev, u64 key) 2011 { 2012 return sd_pr_out_command(bdev, 0x03, key, 0, 0, 0); 2013 } 2014 2015 static const struct pr_ops sd_pr_ops = { 2016 .pr_register = sd_pr_register, 2017 .pr_reserve = sd_pr_reserve, 2018 .pr_release = sd_pr_release, 2019 .pr_preempt = sd_pr_preempt, 2020 .pr_clear = sd_pr_clear, 2021 .pr_read_keys = sd_pr_read_keys, 2022 .pr_read_reservation = sd_pr_read_reservation, 2023 }; 2024 2025 static void scsi_disk_free_disk(struct gendisk *disk) 2026 { 2027 struct scsi_disk *sdkp = scsi_disk(disk); 2028 2029 put_device(&sdkp->disk_dev); 2030 } 2031 2032 static const struct block_device_operations sd_fops = { 2033 .owner = THIS_MODULE, 2034 .open = sd_open, 2035 .release = sd_release, 2036 .ioctl = sd_ioctl, 2037 .getgeo = sd_getgeo, 2038 .compat_ioctl = blkdev_compat_ptr_ioctl, 2039 .check_events = sd_check_events, 2040 .unlock_native_capacity = sd_unlock_native_capacity, 2041 .report_zones = sd_zbc_report_zones, 2042 .get_unique_id = sd_get_unique_id, 2043 .free_disk = scsi_disk_free_disk, 2044 .pr_ops = &sd_pr_ops, 2045 }; 2046 2047 /** 2048 * sd_eh_reset - reset error handling callback 2049 * @scmd: sd-issued command that has failed 2050 * 2051 * This function is called by the SCSI midlayer before starting 2052 * SCSI EH. When counting medium access failures we have to be 2053 * careful to register it only only once per device and SCSI EH run; 2054 * there might be several timed out commands which will cause the 2055 * 'max_medium_access_timeouts' counter to trigger after the first 2056 * SCSI EH run already and set the device to offline. 2057 * So this function resets the internal counter before starting SCSI EH. 2058 **/ 2059 static void sd_eh_reset(struct scsi_cmnd *scmd) 2060 { 2061 struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk); 2062 2063 /* New SCSI EH run, reset gate variable */ 2064 sdkp->ignore_medium_access_errors = false; 2065 } 2066 2067 /** 2068 * sd_eh_action - error handling callback 2069 * @scmd: sd-issued command that has failed 2070 * @eh_disp: The recovery disposition suggested by the midlayer 2071 * 2072 * This function is called by the SCSI midlayer upon completion of an 2073 * error test command (currently TEST UNIT READY). The result of sending 2074 * the eh command is passed in eh_disp. We're looking for devices that 2075 * fail medium access commands but are OK with non access commands like 2076 * test unit ready (so wrongly see the device as having a successful 2077 * recovery) 2078 **/ 2079 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp) 2080 { 2081 struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk); 2082 struct scsi_device *sdev = scmd->device; 2083 2084 if (!scsi_device_online(sdev) || 2085 !scsi_medium_access_command(scmd) || 2086 host_byte(scmd->result) != DID_TIME_OUT || 2087 eh_disp != SUCCESS) 2088 return eh_disp; 2089 2090 /* 2091 * The device has timed out executing a medium access command. 2092 * However, the TEST UNIT READY command sent during error 2093 * handling completed successfully. Either the device is in the 2094 * process of recovering or has it suffered an internal failure 2095 * that prevents access to the storage medium. 2096 */ 2097 if (!sdkp->ignore_medium_access_errors) { 2098 sdkp->medium_access_timed_out++; 2099 sdkp->ignore_medium_access_errors = true; 2100 } 2101 2102 /* 2103 * If the device keeps failing read/write commands but TEST UNIT 2104 * READY always completes successfully we assume that medium 2105 * access is no longer possible and take the device offline. 2106 */ 2107 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) { 2108 scmd_printk(KERN_ERR, scmd, 2109 "Medium access timeout failure. Offlining disk!\n"); 2110 mutex_lock(&sdev->state_mutex); 2111 scsi_device_set_state(sdev, SDEV_OFFLINE); 2112 mutex_unlock(&sdev->state_mutex); 2113 2114 return SUCCESS; 2115 } 2116 2117 return eh_disp; 2118 } 2119 2120 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd) 2121 { 2122 struct request *req = scsi_cmd_to_rq(scmd); 2123 struct scsi_device *sdev = scmd->device; 2124 unsigned int transferred, good_bytes; 2125 u64 start_lba, end_lba, bad_lba; 2126 2127 /* 2128 * Some commands have a payload smaller than the device logical 2129 * block size (e.g. INQUIRY on a 4K disk). 2130 */ 2131 if (scsi_bufflen(scmd) <= sdev->sector_size) 2132 return 0; 2133 2134 /* Check if we have a 'bad_lba' information */ 2135 if (!scsi_get_sense_info_fld(scmd->sense_buffer, 2136 SCSI_SENSE_BUFFERSIZE, 2137 &bad_lba)) 2138 return 0; 2139 2140 /* 2141 * If the bad lba was reported incorrectly, we have no idea where 2142 * the error is. 2143 */ 2144 start_lba = sectors_to_logical(sdev, blk_rq_pos(req)); 2145 end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd)); 2146 if (bad_lba < start_lba || bad_lba >= end_lba) 2147 return 0; 2148 2149 /* 2150 * resid is optional but mostly filled in. When it's unused, 2151 * its value is zero, so we assume the whole buffer transferred 2152 */ 2153 transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd); 2154 2155 /* This computation should always be done in terms of the 2156 * resolution of the device's medium. 2157 */ 2158 good_bytes = logical_to_bytes(sdev, bad_lba - start_lba); 2159 2160 return min(good_bytes, transferred); 2161 } 2162 2163 /** 2164 * sd_done - bottom half handler: called when the lower level 2165 * driver has completed (successfully or otherwise) a scsi command. 2166 * @SCpnt: mid-level's per command structure. 2167 * 2168 * Note: potentially run from within an ISR. Must not block. 2169 **/ 2170 static int sd_done(struct scsi_cmnd *SCpnt) 2171 { 2172 int result = SCpnt->result; 2173 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt); 2174 unsigned int sector_size = SCpnt->device->sector_size; 2175 unsigned int resid; 2176 struct scsi_sense_hdr sshdr; 2177 struct request *req = scsi_cmd_to_rq(SCpnt); 2178 struct scsi_disk *sdkp = scsi_disk(req->q->disk); 2179 int sense_valid = 0; 2180 int sense_deferred = 0; 2181 2182 switch (req_op(req)) { 2183 case REQ_OP_DISCARD: 2184 case REQ_OP_WRITE_ZEROES: 2185 case REQ_OP_ZONE_RESET: 2186 case REQ_OP_ZONE_RESET_ALL: 2187 case REQ_OP_ZONE_OPEN: 2188 case REQ_OP_ZONE_CLOSE: 2189 case REQ_OP_ZONE_FINISH: 2190 if (!result) { 2191 good_bytes = blk_rq_bytes(req); 2192 scsi_set_resid(SCpnt, 0); 2193 } else { 2194 good_bytes = 0; 2195 scsi_set_resid(SCpnt, blk_rq_bytes(req)); 2196 } 2197 break; 2198 default: 2199 /* 2200 * In case of bogus fw or device, we could end up having 2201 * an unaligned partial completion. Check this here and force 2202 * alignment. 2203 */ 2204 resid = scsi_get_resid(SCpnt); 2205 if (resid & (sector_size - 1)) { 2206 sd_printk(KERN_INFO, sdkp, 2207 "Unaligned partial completion (resid=%u, sector_sz=%u)\n", 2208 resid, sector_size); 2209 scsi_print_command(SCpnt); 2210 resid = min(scsi_bufflen(SCpnt), 2211 round_up(resid, sector_size)); 2212 scsi_set_resid(SCpnt, resid); 2213 } 2214 } 2215 2216 if (result) { 2217 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr); 2218 if (sense_valid) 2219 sense_deferred = scsi_sense_is_deferred(&sshdr); 2220 } 2221 sdkp->medium_access_timed_out = 0; 2222 2223 if (!scsi_status_is_check_condition(result) && 2224 (!sense_valid || sense_deferred)) 2225 goto out; 2226 2227 switch (sshdr.sense_key) { 2228 case HARDWARE_ERROR: 2229 case MEDIUM_ERROR: 2230 good_bytes = sd_completed_bytes(SCpnt); 2231 break; 2232 case RECOVERED_ERROR: 2233 good_bytes = scsi_bufflen(SCpnt); 2234 break; 2235 case NO_SENSE: 2236 /* This indicates a false check condition, so ignore it. An 2237 * unknown amount of data was transferred so treat it as an 2238 * error. 2239 */ 2240 SCpnt->result = 0; 2241 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 2242 break; 2243 case ABORTED_COMMAND: 2244 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */ 2245 good_bytes = sd_completed_bytes(SCpnt); 2246 break; 2247 case ILLEGAL_REQUEST: 2248 switch (sshdr.asc) { 2249 case 0x10: /* DIX: Host detected corruption */ 2250 good_bytes = sd_completed_bytes(SCpnt); 2251 break; 2252 case 0x20: /* INVALID COMMAND OPCODE */ 2253 case 0x24: /* INVALID FIELD IN CDB */ 2254 switch (SCpnt->cmnd[0]) { 2255 case UNMAP: 2256 sd_config_discard(sdkp, SD_LBP_DISABLE); 2257 break; 2258 case WRITE_SAME_16: 2259 case WRITE_SAME: 2260 if (SCpnt->cmnd[1] & 8) { /* UNMAP */ 2261 sd_config_discard(sdkp, SD_LBP_DISABLE); 2262 } else { 2263 sdkp->device->no_write_same = 1; 2264 sd_config_write_same(sdkp); 2265 req->rq_flags |= RQF_QUIET; 2266 } 2267 break; 2268 } 2269 } 2270 break; 2271 default: 2272 break; 2273 } 2274 2275 out: 2276 if (sd_is_zoned(sdkp)) 2277 good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr); 2278 2279 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt, 2280 "sd_done: completed %d of %d bytes\n", 2281 good_bytes, scsi_bufflen(SCpnt))); 2282 2283 return good_bytes; 2284 } 2285 2286 /* 2287 * spinup disk - called only in sd_revalidate_disk() 2288 */ 2289 static void 2290 sd_spinup_disk(struct scsi_disk *sdkp) 2291 { 2292 static const u8 cmd[10] = { TEST_UNIT_READY }; 2293 unsigned long spintime_expire = 0; 2294 int spintime, sense_valid = 0; 2295 unsigned int the_result; 2296 struct scsi_sense_hdr sshdr; 2297 struct scsi_failure failure_defs[] = { 2298 /* Do not retry Medium Not Present */ 2299 { 2300 .sense = UNIT_ATTENTION, 2301 .asc = 0x3A, 2302 .ascq = SCMD_FAILURE_ASCQ_ANY, 2303 .result = SAM_STAT_CHECK_CONDITION, 2304 }, 2305 { 2306 .sense = NOT_READY, 2307 .asc = 0x3A, 2308 .ascq = SCMD_FAILURE_ASCQ_ANY, 2309 .result = SAM_STAT_CHECK_CONDITION, 2310 }, 2311 /* Retry when scsi_status_is_good would return false 3 times */ 2312 { 2313 .result = SCMD_FAILURE_STAT_ANY, 2314 .allowed = 3, 2315 }, 2316 {} 2317 }; 2318 struct scsi_failures failures = { 2319 .failure_definitions = failure_defs, 2320 }; 2321 const struct scsi_exec_args exec_args = { 2322 .sshdr = &sshdr, 2323 .failures = &failures, 2324 }; 2325 2326 spintime = 0; 2327 2328 /* Spin up drives, as required. Only do this at boot time */ 2329 /* Spinup needs to be done for module loads too. */ 2330 do { 2331 bool media_was_present = sdkp->media_present; 2332 2333 scsi_failures_reset_retries(&failures); 2334 2335 the_result = scsi_execute_cmd(sdkp->device, cmd, REQ_OP_DRV_IN, 2336 NULL, 0, SD_TIMEOUT, 2337 sdkp->max_retries, &exec_args); 2338 2339 2340 if (the_result > 0) { 2341 /* 2342 * If the drive has indicated to us that it doesn't 2343 * have any media in it, don't bother with any more 2344 * polling. 2345 */ 2346 if (media_not_present(sdkp, &sshdr)) { 2347 if (media_was_present) 2348 sd_printk(KERN_NOTICE, sdkp, 2349 "Media removed, stopped polling\n"); 2350 return; 2351 } 2352 sense_valid = scsi_sense_valid(&sshdr); 2353 } 2354 2355 if (!scsi_status_is_check_condition(the_result)) { 2356 /* no sense, TUR either succeeded or failed 2357 * with a status error */ 2358 if(!spintime && !scsi_status_is_good(the_result)) { 2359 sd_print_result(sdkp, "Test Unit Ready failed", 2360 the_result); 2361 } 2362 break; 2363 } 2364 2365 /* 2366 * The device does not want the automatic start to be issued. 2367 */ 2368 if (sdkp->device->no_start_on_add) 2369 break; 2370 2371 if (sense_valid && sshdr.sense_key == NOT_READY) { 2372 if (sshdr.asc == 4 && sshdr.ascq == 3) 2373 break; /* manual intervention required */ 2374 if (sshdr.asc == 4 && sshdr.ascq == 0xb) 2375 break; /* standby */ 2376 if (sshdr.asc == 4 && sshdr.ascq == 0xc) 2377 break; /* unavailable */ 2378 if (sshdr.asc == 4 && sshdr.ascq == 0x1b) 2379 break; /* sanitize in progress */ 2380 if (sshdr.asc == 4 && sshdr.ascq == 0x24) 2381 break; /* depopulation in progress */ 2382 if (sshdr.asc == 4 && sshdr.ascq == 0x25) 2383 break; /* depopulation restoration in progress */ 2384 /* 2385 * Issue command to spin up drive when not ready 2386 */ 2387 if (!spintime) { 2388 /* Return immediately and start spin cycle */ 2389 const u8 start_cmd[10] = { 2390 [0] = START_STOP, 2391 [1] = 1, 2392 [4] = sdkp->device->start_stop_pwr_cond ? 2393 0x11 : 1, 2394 }; 2395 2396 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk..."); 2397 scsi_execute_cmd(sdkp->device, start_cmd, 2398 REQ_OP_DRV_IN, NULL, 0, 2399 SD_TIMEOUT, sdkp->max_retries, 2400 &exec_args); 2401 spintime_expire = jiffies + 100 * HZ; 2402 spintime = 1; 2403 } 2404 /* Wait 1 second for next try */ 2405 msleep(1000); 2406 printk(KERN_CONT "."); 2407 2408 /* 2409 * Wait for USB flash devices with slow firmware. 2410 * Yes, this sense key/ASC combination shouldn't 2411 * occur here. It's characteristic of these devices. 2412 */ 2413 } else if (sense_valid && 2414 sshdr.sense_key == UNIT_ATTENTION && 2415 sshdr.asc == 0x28) { 2416 if (!spintime) { 2417 spintime_expire = jiffies + 5 * HZ; 2418 spintime = 1; 2419 } 2420 /* Wait 1 second for next try */ 2421 msleep(1000); 2422 } else { 2423 /* we don't understand the sense code, so it's 2424 * probably pointless to loop */ 2425 if(!spintime) { 2426 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n"); 2427 sd_print_sense_hdr(sdkp, &sshdr); 2428 } 2429 break; 2430 } 2431 2432 } while (spintime && time_before_eq(jiffies, spintime_expire)); 2433 2434 if (spintime) { 2435 if (scsi_status_is_good(the_result)) 2436 printk(KERN_CONT "ready\n"); 2437 else 2438 printk(KERN_CONT "not responding...\n"); 2439 } 2440 } 2441 2442 /* 2443 * Determine whether disk supports Data Integrity Field. 2444 */ 2445 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer) 2446 { 2447 struct scsi_device *sdp = sdkp->device; 2448 u8 type; 2449 2450 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) { 2451 sdkp->protection_type = 0; 2452 return 0; 2453 } 2454 2455 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */ 2456 2457 if (type > T10_PI_TYPE3_PROTECTION) { 2458 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \ 2459 " protection type %u. Disabling disk!\n", 2460 type); 2461 sdkp->protection_type = 0; 2462 return -ENODEV; 2463 } 2464 2465 sdkp->protection_type = type; 2466 2467 return 0; 2468 } 2469 2470 static void sd_config_protection(struct scsi_disk *sdkp) 2471 { 2472 struct scsi_device *sdp = sdkp->device; 2473 2474 sd_dif_config_host(sdkp); 2475 2476 if (!sdkp->protection_type) 2477 return; 2478 2479 if (!scsi_host_dif_capable(sdp->host, sdkp->protection_type)) { 2480 sd_first_printk(KERN_NOTICE, sdkp, 2481 "Disabling DIF Type %u protection\n", 2482 sdkp->protection_type); 2483 sdkp->protection_type = 0; 2484 } 2485 2486 sd_first_printk(KERN_NOTICE, sdkp, "Enabling DIF Type %u protection\n", 2487 sdkp->protection_type); 2488 } 2489 2490 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp, 2491 struct scsi_sense_hdr *sshdr, int sense_valid, 2492 int the_result) 2493 { 2494 if (sense_valid) 2495 sd_print_sense_hdr(sdkp, sshdr); 2496 else 2497 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n"); 2498 2499 /* 2500 * Set dirty bit for removable devices if not ready - 2501 * sometimes drives will not report this properly. 2502 */ 2503 if (sdp->removable && 2504 sense_valid && sshdr->sense_key == NOT_READY) 2505 set_media_not_present(sdkp); 2506 2507 /* 2508 * We used to set media_present to 0 here to indicate no media 2509 * in the drive, but some drives fail read capacity even with 2510 * media present, so we can't do that. 2511 */ 2512 sdkp->capacity = 0; /* unknown mapped to zero - as usual */ 2513 } 2514 2515 #define RC16_LEN 32 2516 #if RC16_LEN > SD_BUF_SIZE 2517 #error RC16_LEN must not be more than SD_BUF_SIZE 2518 #endif 2519 2520 #define READ_CAPACITY_RETRIES_ON_RESET 10 2521 2522 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp, 2523 unsigned char *buffer) 2524 { 2525 unsigned char cmd[16]; 2526 struct scsi_sense_hdr sshdr; 2527 const struct scsi_exec_args exec_args = { 2528 .sshdr = &sshdr, 2529 }; 2530 int sense_valid = 0; 2531 int the_result; 2532 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2533 unsigned int alignment; 2534 unsigned long long lba; 2535 unsigned sector_size; 2536 2537 if (sdp->no_read_capacity_16) 2538 return -EINVAL; 2539 2540 do { 2541 memset(cmd, 0, 16); 2542 cmd[0] = SERVICE_ACTION_IN_16; 2543 cmd[1] = SAI_READ_CAPACITY_16; 2544 cmd[13] = RC16_LEN; 2545 memset(buffer, 0, RC16_LEN); 2546 2547 the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, 2548 buffer, RC16_LEN, SD_TIMEOUT, 2549 sdkp->max_retries, &exec_args); 2550 if (the_result > 0) { 2551 if (media_not_present(sdkp, &sshdr)) 2552 return -ENODEV; 2553 2554 sense_valid = scsi_sense_valid(&sshdr); 2555 if (sense_valid && 2556 sshdr.sense_key == ILLEGAL_REQUEST && 2557 (sshdr.asc == 0x20 || sshdr.asc == 0x24) && 2558 sshdr.ascq == 0x00) 2559 /* Invalid Command Operation Code or 2560 * Invalid Field in CDB, just retry 2561 * silently with RC10 */ 2562 return -EINVAL; 2563 if (sense_valid && 2564 sshdr.sense_key == UNIT_ATTENTION && 2565 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2566 /* Device reset might occur several times, 2567 * give it one more chance */ 2568 if (--reset_retries > 0) 2569 continue; 2570 } 2571 retries--; 2572 2573 } while (the_result && retries); 2574 2575 if (the_result) { 2576 sd_print_result(sdkp, "Read Capacity(16) failed", the_result); 2577 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2578 return -EINVAL; 2579 } 2580 2581 sector_size = get_unaligned_be32(&buffer[8]); 2582 lba = get_unaligned_be64(&buffer[0]); 2583 2584 if (sd_read_protection_type(sdkp, buffer) < 0) { 2585 sdkp->capacity = 0; 2586 return -ENODEV; 2587 } 2588 2589 /* Logical blocks per physical block exponent */ 2590 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size; 2591 2592 /* RC basis */ 2593 sdkp->rc_basis = (buffer[12] >> 4) & 0x3; 2594 2595 /* Lowest aligned logical block */ 2596 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size; 2597 blk_queue_alignment_offset(sdp->request_queue, alignment); 2598 if (alignment && sdkp->first_scan) 2599 sd_printk(KERN_NOTICE, sdkp, 2600 "physical block alignment offset: %u\n", alignment); 2601 2602 if (buffer[14] & 0x80) { /* LBPME */ 2603 sdkp->lbpme = 1; 2604 2605 if (buffer[14] & 0x40) /* LBPRZ */ 2606 sdkp->lbprz = 1; 2607 2608 sd_config_discard(sdkp, SD_LBP_WS16); 2609 } 2610 2611 sdkp->capacity = lba + 1; 2612 return sector_size; 2613 } 2614 2615 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp, 2616 unsigned char *buffer) 2617 { 2618 static const u8 cmd[10] = { READ_CAPACITY }; 2619 struct scsi_sense_hdr sshdr; 2620 struct scsi_failure failure_defs[] = { 2621 /* Do not retry Medium Not Present */ 2622 { 2623 .sense = UNIT_ATTENTION, 2624 .asc = 0x3A, 2625 .result = SAM_STAT_CHECK_CONDITION, 2626 }, 2627 { 2628 .sense = NOT_READY, 2629 .asc = 0x3A, 2630 .result = SAM_STAT_CHECK_CONDITION, 2631 }, 2632 /* Device reset might occur several times so retry a lot */ 2633 { 2634 .sense = UNIT_ATTENTION, 2635 .asc = 0x29, 2636 .allowed = READ_CAPACITY_RETRIES_ON_RESET, 2637 .result = SAM_STAT_CHECK_CONDITION, 2638 }, 2639 /* Any other error not listed above retry 3 times */ 2640 { 2641 .result = SCMD_FAILURE_RESULT_ANY, 2642 .allowed = 3, 2643 }, 2644 {} 2645 }; 2646 struct scsi_failures failures = { 2647 .failure_definitions = failure_defs, 2648 }; 2649 const struct scsi_exec_args exec_args = { 2650 .sshdr = &sshdr, 2651 .failures = &failures, 2652 }; 2653 int sense_valid = 0; 2654 int the_result; 2655 sector_t lba; 2656 unsigned sector_size; 2657 2658 memset(buffer, 0, 8); 2659 2660 the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, buffer, 2661 8, SD_TIMEOUT, sdkp->max_retries, 2662 &exec_args); 2663 2664 if (the_result > 0) { 2665 sense_valid = scsi_sense_valid(&sshdr); 2666 2667 if (media_not_present(sdkp, &sshdr)) 2668 return -ENODEV; 2669 } 2670 2671 if (the_result) { 2672 sd_print_result(sdkp, "Read Capacity(10) failed", the_result); 2673 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2674 return -EINVAL; 2675 } 2676 2677 sector_size = get_unaligned_be32(&buffer[4]); 2678 lba = get_unaligned_be32(&buffer[0]); 2679 2680 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) { 2681 /* Some buggy (usb cardreader) devices return an lba of 2682 0xffffffff when the want to report a size of 0 (with 2683 which they really mean no media is present) */ 2684 sdkp->capacity = 0; 2685 sdkp->physical_block_size = sector_size; 2686 return sector_size; 2687 } 2688 2689 sdkp->capacity = lba + 1; 2690 sdkp->physical_block_size = sector_size; 2691 return sector_size; 2692 } 2693 2694 static int sd_try_rc16_first(struct scsi_device *sdp) 2695 { 2696 if (sdp->host->max_cmd_len < 16) 2697 return 0; 2698 if (sdp->try_rc_10_first) 2699 return 0; 2700 if (sdp->scsi_level > SCSI_SPC_2) 2701 return 1; 2702 if (scsi_device_protection(sdp)) 2703 return 1; 2704 return 0; 2705 } 2706 2707 /* 2708 * read disk capacity 2709 */ 2710 static void 2711 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer) 2712 { 2713 int sector_size; 2714 struct scsi_device *sdp = sdkp->device; 2715 2716 if (sd_try_rc16_first(sdp)) { 2717 sector_size = read_capacity_16(sdkp, sdp, buffer); 2718 if (sector_size == -EOVERFLOW) 2719 goto got_data; 2720 if (sector_size == -ENODEV) 2721 return; 2722 if (sector_size < 0) 2723 sector_size = read_capacity_10(sdkp, sdp, buffer); 2724 if (sector_size < 0) 2725 return; 2726 } else { 2727 sector_size = read_capacity_10(sdkp, sdp, buffer); 2728 if (sector_size == -EOVERFLOW) 2729 goto got_data; 2730 if (sector_size < 0) 2731 return; 2732 if ((sizeof(sdkp->capacity) > 4) && 2733 (sdkp->capacity > 0xffffffffULL)) { 2734 int old_sector_size = sector_size; 2735 sd_printk(KERN_NOTICE, sdkp, "Very big device. " 2736 "Trying to use READ CAPACITY(16).\n"); 2737 sector_size = read_capacity_16(sdkp, sdp, buffer); 2738 if (sector_size < 0) { 2739 sd_printk(KERN_NOTICE, sdkp, 2740 "Using 0xffffffff as device size\n"); 2741 sdkp->capacity = 1 + (sector_t) 0xffffffff; 2742 sector_size = old_sector_size; 2743 goto got_data; 2744 } 2745 /* Remember that READ CAPACITY(16) succeeded */ 2746 sdp->try_rc_10_first = 0; 2747 } 2748 } 2749 2750 /* Some devices are known to return the total number of blocks, 2751 * not the highest block number. Some devices have versions 2752 * which do this and others which do not. Some devices we might 2753 * suspect of doing this but we don't know for certain. 2754 * 2755 * If we know the reported capacity is wrong, decrement it. If 2756 * we can only guess, then assume the number of blocks is even 2757 * (usually true but not always) and err on the side of lowering 2758 * the capacity. 2759 */ 2760 if (sdp->fix_capacity || 2761 (sdp->guess_capacity && (sdkp->capacity & 0x01))) { 2762 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count " 2763 "from its reported value: %llu\n", 2764 (unsigned long long) sdkp->capacity); 2765 --sdkp->capacity; 2766 } 2767 2768 got_data: 2769 if (sector_size == 0) { 2770 sector_size = 512; 2771 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, " 2772 "assuming 512.\n"); 2773 } 2774 2775 if (sector_size != 512 && 2776 sector_size != 1024 && 2777 sector_size != 2048 && 2778 sector_size != 4096) { 2779 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n", 2780 sector_size); 2781 /* 2782 * The user might want to re-format the drive with 2783 * a supported sectorsize. Once this happens, it 2784 * would be relatively trivial to set the thing up. 2785 * For this reason, we leave the thing in the table. 2786 */ 2787 sdkp->capacity = 0; 2788 /* 2789 * set a bogus sector size so the normal read/write 2790 * logic in the block layer will eventually refuse any 2791 * request on this device without tripping over power 2792 * of two sector size assumptions 2793 */ 2794 sector_size = 512; 2795 } 2796 blk_queue_logical_block_size(sdp->request_queue, sector_size); 2797 blk_queue_physical_block_size(sdp->request_queue, 2798 sdkp->physical_block_size); 2799 sdkp->device->sector_size = sector_size; 2800 2801 if (sdkp->capacity > 0xffffffff) 2802 sdp->use_16_for_rw = 1; 2803 2804 } 2805 2806 /* 2807 * Print disk capacity 2808 */ 2809 static void 2810 sd_print_capacity(struct scsi_disk *sdkp, 2811 sector_t old_capacity) 2812 { 2813 int sector_size = sdkp->device->sector_size; 2814 char cap_str_2[10], cap_str_10[10]; 2815 2816 if (!sdkp->first_scan && old_capacity == sdkp->capacity) 2817 return; 2818 2819 string_get_size(sdkp->capacity, sector_size, 2820 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2)); 2821 string_get_size(sdkp->capacity, sector_size, 2822 STRING_UNITS_10, cap_str_10, sizeof(cap_str_10)); 2823 2824 sd_printk(KERN_NOTICE, sdkp, 2825 "%llu %d-byte logical blocks: (%s/%s)\n", 2826 (unsigned long long)sdkp->capacity, 2827 sector_size, cap_str_10, cap_str_2); 2828 2829 if (sdkp->physical_block_size != sector_size) 2830 sd_printk(KERN_NOTICE, sdkp, 2831 "%u-byte physical blocks\n", 2832 sdkp->physical_block_size); 2833 } 2834 2835 /* called with buffer of length 512 */ 2836 static inline int 2837 sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage, 2838 unsigned char *buffer, int len, struct scsi_mode_data *data, 2839 struct scsi_sense_hdr *sshdr) 2840 { 2841 /* 2842 * If we must use MODE SENSE(10), make sure that the buffer length 2843 * is at least 8 bytes so that the mode sense header fits. 2844 */ 2845 if (sdkp->device->use_10_for_ms && len < 8) 2846 len = 8; 2847 2848 return scsi_mode_sense(sdkp->device, dbd, modepage, 0, buffer, len, 2849 SD_TIMEOUT, sdkp->max_retries, data, sshdr); 2850 } 2851 2852 /* 2853 * read write protect setting, if possible - called only in sd_revalidate_disk() 2854 * called with buffer of length SD_BUF_SIZE 2855 */ 2856 static void 2857 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer) 2858 { 2859 int res; 2860 struct scsi_device *sdp = sdkp->device; 2861 struct scsi_mode_data data; 2862 int old_wp = sdkp->write_prot; 2863 2864 set_disk_ro(sdkp->disk, 0); 2865 if (sdp->skip_ms_page_3f) { 2866 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n"); 2867 return; 2868 } 2869 2870 if (sdp->use_192_bytes_for_3f) { 2871 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL); 2872 } else { 2873 /* 2874 * First attempt: ask for all pages (0x3F), but only 4 bytes. 2875 * We have to start carefully: some devices hang if we ask 2876 * for more than is available. 2877 */ 2878 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL); 2879 2880 /* 2881 * Second attempt: ask for page 0 When only page 0 is 2882 * implemented, a request for page 3F may return Sense Key 2883 * 5: Illegal Request, Sense Code 24: Invalid field in 2884 * CDB. 2885 */ 2886 if (res < 0) 2887 res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL); 2888 2889 /* 2890 * Third attempt: ask 255 bytes, as we did earlier. 2891 */ 2892 if (res < 0) 2893 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255, 2894 &data, NULL); 2895 } 2896 2897 if (res < 0) { 2898 sd_first_printk(KERN_WARNING, sdkp, 2899 "Test WP failed, assume Write Enabled\n"); 2900 } else { 2901 sdkp->write_prot = ((data.device_specific & 0x80) != 0); 2902 set_disk_ro(sdkp->disk, sdkp->write_prot); 2903 if (sdkp->first_scan || old_wp != sdkp->write_prot) { 2904 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n", 2905 sdkp->write_prot ? "on" : "off"); 2906 sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer); 2907 } 2908 } 2909 } 2910 2911 /* 2912 * sd_read_cache_type - called only from sd_revalidate_disk() 2913 * called with buffer of length SD_BUF_SIZE 2914 */ 2915 static void 2916 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer) 2917 { 2918 int len = 0, res; 2919 struct scsi_device *sdp = sdkp->device; 2920 2921 int dbd; 2922 int modepage; 2923 int first_len; 2924 struct scsi_mode_data data; 2925 struct scsi_sense_hdr sshdr; 2926 int old_wce = sdkp->WCE; 2927 int old_rcd = sdkp->RCD; 2928 int old_dpofua = sdkp->DPOFUA; 2929 2930 2931 if (sdkp->cache_override) 2932 return; 2933 2934 first_len = 4; 2935 if (sdp->skip_ms_page_8) { 2936 if (sdp->type == TYPE_RBC) 2937 goto defaults; 2938 else { 2939 if (sdp->skip_ms_page_3f) 2940 goto defaults; 2941 modepage = 0x3F; 2942 if (sdp->use_192_bytes_for_3f) 2943 first_len = 192; 2944 dbd = 0; 2945 } 2946 } else if (sdp->type == TYPE_RBC) { 2947 modepage = 6; 2948 dbd = 8; 2949 } else { 2950 modepage = 8; 2951 dbd = 0; 2952 } 2953 2954 /* cautiously ask */ 2955 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len, 2956 &data, &sshdr); 2957 2958 if (res < 0) 2959 goto bad_sense; 2960 2961 if (!data.header_length) { 2962 modepage = 6; 2963 first_len = 0; 2964 sd_first_printk(KERN_ERR, sdkp, 2965 "Missing header in MODE_SENSE response\n"); 2966 } 2967 2968 /* that went OK, now ask for the proper length */ 2969 len = data.length; 2970 2971 /* 2972 * We're only interested in the first three bytes, actually. 2973 * But the data cache page is defined for the first 20. 2974 */ 2975 if (len < 3) 2976 goto bad_sense; 2977 else if (len > SD_BUF_SIZE) { 2978 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter " 2979 "data from %d to %d bytes\n", len, SD_BUF_SIZE); 2980 len = SD_BUF_SIZE; 2981 } 2982 if (modepage == 0x3F && sdp->use_192_bytes_for_3f) 2983 len = 192; 2984 2985 /* Get the data */ 2986 if (len > first_len) 2987 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len, 2988 &data, &sshdr); 2989 2990 if (!res) { 2991 int offset = data.header_length + data.block_descriptor_length; 2992 2993 while (offset < len) { 2994 u8 page_code = buffer[offset] & 0x3F; 2995 u8 spf = buffer[offset] & 0x40; 2996 2997 if (page_code == 8 || page_code == 6) { 2998 /* We're interested only in the first 3 bytes. 2999 */ 3000 if (len - offset <= 2) { 3001 sd_first_printk(KERN_ERR, sdkp, 3002 "Incomplete mode parameter " 3003 "data\n"); 3004 goto defaults; 3005 } else { 3006 modepage = page_code; 3007 goto Page_found; 3008 } 3009 } else { 3010 /* Go to the next page */ 3011 if (spf && len - offset > 3) 3012 offset += 4 + (buffer[offset+2] << 8) + 3013 buffer[offset+3]; 3014 else if (!spf && len - offset > 1) 3015 offset += 2 + buffer[offset+1]; 3016 else { 3017 sd_first_printk(KERN_ERR, sdkp, 3018 "Incomplete mode " 3019 "parameter data\n"); 3020 goto defaults; 3021 } 3022 } 3023 } 3024 3025 sd_first_printk(KERN_WARNING, sdkp, 3026 "No Caching mode page found\n"); 3027 goto defaults; 3028 3029 Page_found: 3030 if (modepage == 8) { 3031 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0); 3032 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0); 3033 } else { 3034 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0); 3035 sdkp->RCD = 0; 3036 } 3037 3038 sdkp->DPOFUA = (data.device_specific & 0x10) != 0; 3039 if (sdp->broken_fua) { 3040 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n"); 3041 sdkp->DPOFUA = 0; 3042 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw && 3043 !sdkp->device->use_16_for_rw) { 3044 sd_first_printk(KERN_NOTICE, sdkp, 3045 "Uses READ/WRITE(6), disabling FUA\n"); 3046 sdkp->DPOFUA = 0; 3047 } 3048 3049 /* No cache flush allowed for write protected devices */ 3050 if (sdkp->WCE && sdkp->write_prot) 3051 sdkp->WCE = 0; 3052 3053 if (sdkp->first_scan || old_wce != sdkp->WCE || 3054 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA) 3055 sd_printk(KERN_NOTICE, sdkp, 3056 "Write cache: %s, read cache: %s, %s\n", 3057 sdkp->WCE ? "enabled" : "disabled", 3058 sdkp->RCD ? "disabled" : "enabled", 3059 sdkp->DPOFUA ? "supports DPO and FUA" 3060 : "doesn't support DPO or FUA"); 3061 3062 return; 3063 } 3064 3065 bad_sense: 3066 if (res == -EIO && scsi_sense_valid(&sshdr) && 3067 sshdr.sense_key == ILLEGAL_REQUEST && 3068 sshdr.asc == 0x24 && sshdr.ascq == 0x0) 3069 /* Invalid field in CDB */ 3070 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n"); 3071 else 3072 sd_first_printk(KERN_ERR, sdkp, 3073 "Asking for cache data failed\n"); 3074 3075 defaults: 3076 if (sdp->wce_default_on) { 3077 sd_first_printk(KERN_NOTICE, sdkp, 3078 "Assuming drive cache: write back\n"); 3079 sdkp->WCE = 1; 3080 } else { 3081 sd_first_printk(KERN_WARNING, sdkp, 3082 "Assuming drive cache: write through\n"); 3083 sdkp->WCE = 0; 3084 } 3085 sdkp->RCD = 0; 3086 sdkp->DPOFUA = 0; 3087 } 3088 3089 static bool sd_is_perm_stream(struct scsi_disk *sdkp, unsigned int stream_id) 3090 { 3091 u8 cdb[16] = { SERVICE_ACTION_IN_16, SAI_GET_STREAM_STATUS }; 3092 struct { 3093 struct scsi_stream_status_header h; 3094 struct scsi_stream_status s; 3095 } buf; 3096 struct scsi_device *sdev = sdkp->device; 3097 struct scsi_sense_hdr sshdr; 3098 const struct scsi_exec_args exec_args = { 3099 .sshdr = &sshdr, 3100 }; 3101 int res; 3102 3103 put_unaligned_be16(stream_id, &cdb[4]); 3104 put_unaligned_be32(sizeof(buf), &cdb[10]); 3105 3106 res = scsi_execute_cmd(sdev, cdb, REQ_OP_DRV_IN, &buf, sizeof(buf), 3107 SD_TIMEOUT, sdkp->max_retries, &exec_args); 3108 if (res < 0) 3109 return false; 3110 if (scsi_status_is_check_condition(res) && scsi_sense_valid(&sshdr)) 3111 sd_print_sense_hdr(sdkp, &sshdr); 3112 if (res) 3113 return false; 3114 if (get_unaligned_be32(&buf.h.len) < sizeof(struct scsi_stream_status)) 3115 return false; 3116 return buf.h.stream_status[0].perm; 3117 } 3118 3119 static void sd_read_io_hints(struct scsi_disk *sdkp, unsigned char *buffer) 3120 { 3121 struct scsi_device *sdp = sdkp->device; 3122 const struct scsi_io_group_descriptor *desc, *start, *end; 3123 struct scsi_sense_hdr sshdr; 3124 struct scsi_mode_data data; 3125 int res; 3126 3127 res = scsi_mode_sense(sdp, /*dbd=*/0x8, /*modepage=*/0x0a, 3128 /*subpage=*/0x05, buffer, SD_BUF_SIZE, SD_TIMEOUT, 3129 sdkp->max_retries, &data, &sshdr); 3130 if (res < 0) 3131 return; 3132 start = (void *)buffer + data.header_length + 16; 3133 end = (void *)buffer + ALIGN_DOWN(data.header_length + data.length, 3134 sizeof(*end)); 3135 /* 3136 * From "SBC-5 Constrained Streams with Data Lifetimes": Device severs 3137 * should assign the lowest numbered stream identifiers to permanent 3138 * streams. 3139 */ 3140 for (desc = start; desc < end; desc++) 3141 if (!desc->st_enble || !sd_is_perm_stream(sdkp, desc - start)) 3142 break; 3143 sdkp->permanent_stream_count = desc - start; 3144 if (sdkp->rscs && sdkp->permanent_stream_count < 2) 3145 sd_printk(KERN_INFO, sdkp, 3146 "Unexpected: RSCS has been set and the permanent stream count is %u\n", 3147 sdkp->permanent_stream_count); 3148 else if (sdkp->permanent_stream_count) 3149 sd_printk(KERN_INFO, sdkp, "permanent stream count = %d\n", 3150 sdkp->permanent_stream_count); 3151 } 3152 3153 /* 3154 * The ATO bit indicates whether the DIF application tag is available 3155 * for use by the operating system. 3156 */ 3157 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer) 3158 { 3159 int res, offset; 3160 struct scsi_device *sdp = sdkp->device; 3161 struct scsi_mode_data data; 3162 struct scsi_sense_hdr sshdr; 3163 3164 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 3165 return; 3166 3167 if (sdkp->protection_type == 0) 3168 return; 3169 3170 res = scsi_mode_sense(sdp, 1, 0x0a, 0, buffer, 36, SD_TIMEOUT, 3171 sdkp->max_retries, &data, &sshdr); 3172 3173 if (res < 0 || !data.header_length || 3174 data.length < 6) { 3175 sd_first_printk(KERN_WARNING, sdkp, 3176 "getting Control mode page failed, assume no ATO\n"); 3177 3178 if (res == -EIO && scsi_sense_valid(&sshdr)) 3179 sd_print_sense_hdr(sdkp, &sshdr); 3180 3181 return; 3182 } 3183 3184 offset = data.header_length + data.block_descriptor_length; 3185 3186 if ((buffer[offset] & 0x3f) != 0x0a) { 3187 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n"); 3188 return; 3189 } 3190 3191 if ((buffer[offset + 5] & 0x80) == 0) 3192 return; 3193 3194 sdkp->ATO = 1; 3195 3196 return; 3197 } 3198 3199 /** 3200 * sd_read_block_limits - Query disk device for preferred I/O sizes. 3201 * @sdkp: disk to query 3202 */ 3203 static void sd_read_block_limits(struct scsi_disk *sdkp) 3204 { 3205 struct scsi_vpd *vpd; 3206 3207 rcu_read_lock(); 3208 3209 vpd = rcu_dereference(sdkp->device->vpd_pgb0); 3210 if (!vpd || vpd->len < 16) 3211 goto out; 3212 3213 sdkp->min_xfer_blocks = get_unaligned_be16(&vpd->data[6]); 3214 sdkp->max_xfer_blocks = get_unaligned_be32(&vpd->data[8]); 3215 sdkp->opt_xfer_blocks = get_unaligned_be32(&vpd->data[12]); 3216 3217 if (vpd->len >= 64) { 3218 unsigned int lba_count, desc_count; 3219 3220 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&vpd->data[36]); 3221 3222 if (!sdkp->lbpme) 3223 goto out; 3224 3225 lba_count = get_unaligned_be32(&vpd->data[20]); 3226 desc_count = get_unaligned_be32(&vpd->data[24]); 3227 3228 if (lba_count && desc_count) 3229 sdkp->max_unmap_blocks = lba_count; 3230 3231 sdkp->unmap_granularity = get_unaligned_be32(&vpd->data[28]); 3232 3233 if (vpd->data[32] & 0x80) 3234 sdkp->unmap_alignment = 3235 get_unaligned_be32(&vpd->data[32]) & ~(1 << 31); 3236 3237 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */ 3238 3239 if (sdkp->max_unmap_blocks) 3240 sd_config_discard(sdkp, SD_LBP_UNMAP); 3241 else 3242 sd_config_discard(sdkp, SD_LBP_WS16); 3243 3244 } else { /* LBP VPD page tells us what to use */ 3245 if (sdkp->lbpu && sdkp->max_unmap_blocks) 3246 sd_config_discard(sdkp, SD_LBP_UNMAP); 3247 else if (sdkp->lbpws) 3248 sd_config_discard(sdkp, SD_LBP_WS16); 3249 else if (sdkp->lbpws10) 3250 sd_config_discard(sdkp, SD_LBP_WS10); 3251 else 3252 sd_config_discard(sdkp, SD_LBP_DISABLE); 3253 } 3254 } 3255 3256 out: 3257 rcu_read_unlock(); 3258 } 3259 3260 /* Parse the Block Limits Extension VPD page (0xb7) */ 3261 static void sd_read_block_limits_ext(struct scsi_disk *sdkp) 3262 { 3263 struct scsi_vpd *vpd; 3264 3265 rcu_read_lock(); 3266 vpd = rcu_dereference(sdkp->device->vpd_pgb7); 3267 if (vpd && vpd->len >= 2) 3268 sdkp->rscs = vpd->data[5] & 1; 3269 rcu_read_unlock(); 3270 } 3271 3272 /** 3273 * sd_read_block_characteristics - Query block dev. characteristics 3274 * @sdkp: disk to query 3275 */ 3276 static void sd_read_block_characteristics(struct scsi_disk *sdkp) 3277 { 3278 struct request_queue *q = sdkp->disk->queue; 3279 struct scsi_vpd *vpd; 3280 u16 rot; 3281 3282 rcu_read_lock(); 3283 vpd = rcu_dereference(sdkp->device->vpd_pgb1); 3284 3285 if (!vpd || vpd->len < 8) { 3286 rcu_read_unlock(); 3287 return; 3288 } 3289 3290 rot = get_unaligned_be16(&vpd->data[4]); 3291 sdkp->zoned = (vpd->data[8] >> 4) & 3; 3292 rcu_read_unlock(); 3293 3294 if (rot == 1) { 3295 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 3296 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q); 3297 } 3298 3299 3300 #ifdef CONFIG_BLK_DEV_ZONED /* sd_probe rejects ZBD devices early otherwise */ 3301 if (sdkp->device->type == TYPE_ZBC) { 3302 /* 3303 * Host-managed. 3304 */ 3305 disk_set_zoned(sdkp->disk); 3306 3307 /* 3308 * Per ZBC and ZAC specifications, writes in sequential write 3309 * required zones of host-managed devices must be aligned to 3310 * the device physical block size. 3311 */ 3312 blk_queue_zone_write_granularity(q, sdkp->physical_block_size); 3313 } else { 3314 /* 3315 * Host-aware devices are treated as conventional. 3316 */ 3317 WARN_ON_ONCE(blk_queue_is_zoned(q)); 3318 } 3319 #endif /* CONFIG_BLK_DEV_ZONED */ 3320 3321 if (!sdkp->first_scan) 3322 return; 3323 3324 if (blk_queue_is_zoned(q)) 3325 sd_printk(KERN_NOTICE, sdkp, "Host-managed zoned block device\n"); 3326 else if (sdkp->zoned == 1) 3327 sd_printk(KERN_NOTICE, sdkp, "Host-aware SMR disk used as regular disk\n"); 3328 else if (sdkp->zoned == 2) 3329 sd_printk(KERN_NOTICE, sdkp, "Drive-managed SMR disk\n"); 3330 } 3331 3332 /** 3333 * sd_read_block_provisioning - Query provisioning VPD page 3334 * @sdkp: disk to query 3335 */ 3336 static void sd_read_block_provisioning(struct scsi_disk *sdkp) 3337 { 3338 struct scsi_vpd *vpd; 3339 3340 if (sdkp->lbpme == 0) 3341 return; 3342 3343 rcu_read_lock(); 3344 vpd = rcu_dereference(sdkp->device->vpd_pgb2); 3345 3346 if (!vpd || vpd->len < 8) { 3347 rcu_read_unlock(); 3348 return; 3349 } 3350 3351 sdkp->lbpvpd = 1; 3352 sdkp->lbpu = (vpd->data[5] >> 7) & 1; /* UNMAP */ 3353 sdkp->lbpws = (vpd->data[5] >> 6) & 1; /* WRITE SAME(16) w/ UNMAP */ 3354 sdkp->lbpws10 = (vpd->data[5] >> 5) & 1; /* WRITE SAME(10) w/ UNMAP */ 3355 rcu_read_unlock(); 3356 } 3357 3358 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer) 3359 { 3360 struct scsi_device *sdev = sdkp->device; 3361 3362 if (sdev->host->no_write_same) { 3363 sdev->no_write_same = 1; 3364 3365 return; 3366 } 3367 3368 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY, 0) < 0) { 3369 struct scsi_vpd *vpd; 3370 3371 sdev->no_report_opcodes = 1; 3372 3373 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION 3374 * CODES is unsupported and the device has an ATA 3375 * Information VPD page (SAT). 3376 */ 3377 rcu_read_lock(); 3378 vpd = rcu_dereference(sdev->vpd_pg89); 3379 if (vpd) 3380 sdev->no_write_same = 1; 3381 rcu_read_unlock(); 3382 } 3383 3384 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16, 0) == 1) 3385 sdkp->ws16 = 1; 3386 3387 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME, 0) == 1) 3388 sdkp->ws10 = 1; 3389 } 3390 3391 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer) 3392 { 3393 struct scsi_device *sdev = sdkp->device; 3394 3395 if (!sdev->security_supported) 3396 return; 3397 3398 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3399 SECURITY_PROTOCOL_IN, 0) == 1 && 3400 scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3401 SECURITY_PROTOCOL_OUT, 0) == 1) 3402 sdkp->security = 1; 3403 } 3404 3405 static inline sector_t sd64_to_sectors(struct scsi_disk *sdkp, u8 *buf) 3406 { 3407 return logical_to_sectors(sdkp->device, get_unaligned_be64(buf)); 3408 } 3409 3410 /** 3411 * sd_read_cpr - Query concurrent positioning ranges 3412 * @sdkp: disk to query 3413 */ 3414 static void sd_read_cpr(struct scsi_disk *sdkp) 3415 { 3416 struct blk_independent_access_ranges *iars = NULL; 3417 unsigned char *buffer = NULL; 3418 unsigned int nr_cpr = 0; 3419 int i, vpd_len, buf_len = SD_BUF_SIZE; 3420 u8 *desc; 3421 3422 /* 3423 * We need to have the capacity set first for the block layer to be 3424 * able to check the ranges. 3425 */ 3426 if (sdkp->first_scan) 3427 return; 3428 3429 if (!sdkp->capacity) 3430 goto out; 3431 3432 /* 3433 * Concurrent Positioning Ranges VPD: there can be at most 256 ranges, 3434 * leading to a maximum page size of 64 + 256*32 bytes. 3435 */ 3436 buf_len = 64 + 256*32; 3437 buffer = kmalloc(buf_len, GFP_KERNEL); 3438 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb9, buffer, buf_len)) 3439 goto out; 3440 3441 /* We must have at least a 64B header and one 32B range descriptor */ 3442 vpd_len = get_unaligned_be16(&buffer[2]) + 4; 3443 if (vpd_len > buf_len || vpd_len < 64 + 32 || (vpd_len & 31)) { 3444 sd_printk(KERN_ERR, sdkp, 3445 "Invalid Concurrent Positioning Ranges VPD page\n"); 3446 goto out; 3447 } 3448 3449 nr_cpr = (vpd_len - 64) / 32; 3450 if (nr_cpr == 1) { 3451 nr_cpr = 0; 3452 goto out; 3453 } 3454 3455 iars = disk_alloc_independent_access_ranges(sdkp->disk, nr_cpr); 3456 if (!iars) { 3457 nr_cpr = 0; 3458 goto out; 3459 } 3460 3461 desc = &buffer[64]; 3462 for (i = 0; i < nr_cpr; i++, desc += 32) { 3463 if (desc[0] != i) { 3464 sd_printk(KERN_ERR, sdkp, 3465 "Invalid Concurrent Positioning Range number\n"); 3466 nr_cpr = 0; 3467 break; 3468 } 3469 3470 iars->ia_range[i].sector = sd64_to_sectors(sdkp, desc + 8); 3471 iars->ia_range[i].nr_sectors = sd64_to_sectors(sdkp, desc + 16); 3472 } 3473 3474 out: 3475 disk_set_independent_access_ranges(sdkp->disk, iars); 3476 if (nr_cpr && sdkp->nr_actuators != nr_cpr) { 3477 sd_printk(KERN_NOTICE, sdkp, 3478 "%u concurrent positioning ranges\n", nr_cpr); 3479 sdkp->nr_actuators = nr_cpr; 3480 } 3481 3482 kfree(buffer); 3483 } 3484 3485 static bool sd_validate_min_xfer_size(struct scsi_disk *sdkp) 3486 { 3487 struct scsi_device *sdp = sdkp->device; 3488 unsigned int min_xfer_bytes = 3489 logical_to_bytes(sdp, sdkp->min_xfer_blocks); 3490 3491 if (sdkp->min_xfer_blocks == 0) 3492 return false; 3493 3494 if (min_xfer_bytes & (sdkp->physical_block_size - 1)) { 3495 sd_first_printk(KERN_WARNING, sdkp, 3496 "Preferred minimum I/O size %u bytes not a " \ 3497 "multiple of physical block size (%u bytes)\n", 3498 min_xfer_bytes, sdkp->physical_block_size); 3499 sdkp->min_xfer_blocks = 0; 3500 return false; 3501 } 3502 3503 sd_first_printk(KERN_INFO, sdkp, "Preferred minimum I/O size %u bytes\n", 3504 min_xfer_bytes); 3505 return true; 3506 } 3507 3508 /* 3509 * Determine the device's preferred I/O size for reads and writes 3510 * unless the reported value is unreasonably small, large, not a 3511 * multiple of the physical block size, or simply garbage. 3512 */ 3513 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp, 3514 unsigned int dev_max) 3515 { 3516 struct scsi_device *sdp = sdkp->device; 3517 unsigned int opt_xfer_bytes = 3518 logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 3519 unsigned int min_xfer_bytes = 3520 logical_to_bytes(sdp, sdkp->min_xfer_blocks); 3521 3522 if (sdkp->opt_xfer_blocks == 0) 3523 return false; 3524 3525 if (sdkp->opt_xfer_blocks > dev_max) { 3526 sd_first_printk(KERN_WARNING, sdkp, 3527 "Optimal transfer size %u logical blocks " \ 3528 "> dev_max (%u logical blocks)\n", 3529 sdkp->opt_xfer_blocks, dev_max); 3530 return false; 3531 } 3532 3533 if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) { 3534 sd_first_printk(KERN_WARNING, sdkp, 3535 "Optimal transfer size %u logical blocks " \ 3536 "> sd driver limit (%u logical blocks)\n", 3537 sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS); 3538 return false; 3539 } 3540 3541 if (opt_xfer_bytes < PAGE_SIZE) { 3542 sd_first_printk(KERN_WARNING, sdkp, 3543 "Optimal transfer size %u bytes < " \ 3544 "PAGE_SIZE (%u bytes)\n", 3545 opt_xfer_bytes, (unsigned int)PAGE_SIZE); 3546 return false; 3547 } 3548 3549 if (min_xfer_bytes && opt_xfer_bytes % min_xfer_bytes) { 3550 sd_first_printk(KERN_WARNING, sdkp, 3551 "Optimal transfer size %u bytes not a " \ 3552 "multiple of preferred minimum block " \ 3553 "size (%u bytes)\n", 3554 opt_xfer_bytes, min_xfer_bytes); 3555 return false; 3556 } 3557 3558 if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) { 3559 sd_first_printk(KERN_WARNING, sdkp, 3560 "Optimal transfer size %u bytes not a " \ 3561 "multiple of physical block size (%u bytes)\n", 3562 opt_xfer_bytes, sdkp->physical_block_size); 3563 return false; 3564 } 3565 3566 sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n", 3567 opt_xfer_bytes); 3568 return true; 3569 } 3570 3571 static void sd_read_block_zero(struct scsi_disk *sdkp) 3572 { 3573 unsigned int buf_len = sdkp->device->sector_size; 3574 char *buffer, cmd[10] = { }; 3575 3576 buffer = kmalloc(buf_len, GFP_KERNEL); 3577 if (!buffer) 3578 return; 3579 3580 cmd[0] = READ_10; 3581 put_unaligned_be32(0, &cmd[2]); /* Logical block address 0 */ 3582 put_unaligned_be16(1, &cmd[7]); /* Transfer 1 logical block */ 3583 3584 scsi_execute_cmd(sdkp->device, cmd, REQ_OP_DRV_IN, buffer, buf_len, 3585 SD_TIMEOUT, sdkp->max_retries, NULL); 3586 kfree(buffer); 3587 } 3588 3589 /** 3590 * sd_revalidate_disk - called the first time a new disk is seen, 3591 * performs disk spin up, read_capacity, etc. 3592 * @disk: struct gendisk we care about 3593 **/ 3594 static int sd_revalidate_disk(struct gendisk *disk) 3595 { 3596 struct scsi_disk *sdkp = scsi_disk(disk); 3597 struct scsi_device *sdp = sdkp->device; 3598 struct request_queue *q = sdkp->disk->queue; 3599 sector_t old_capacity = sdkp->capacity; 3600 unsigned char *buffer; 3601 unsigned int dev_max, rw_max; 3602 3603 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, 3604 "sd_revalidate_disk\n")); 3605 3606 /* 3607 * If the device is offline, don't try and read capacity or any 3608 * of the other niceties. 3609 */ 3610 if (!scsi_device_online(sdp)) 3611 goto out; 3612 3613 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL); 3614 if (!buffer) { 3615 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory " 3616 "allocation failure.\n"); 3617 goto out; 3618 } 3619 3620 sd_spinup_disk(sdkp); 3621 3622 /* 3623 * Without media there is no reason to ask; moreover, some devices 3624 * react badly if we do. 3625 */ 3626 if (sdkp->media_present) { 3627 sd_read_capacity(sdkp, buffer); 3628 /* 3629 * Some USB/UAS devices return generic values for mode pages 3630 * until the media has been accessed. Trigger a READ operation 3631 * to force the device to populate mode pages. 3632 */ 3633 if (sdp->read_before_ms) 3634 sd_read_block_zero(sdkp); 3635 /* 3636 * set the default to rotational. All non-rotational devices 3637 * support the block characteristics VPD page, which will 3638 * cause this to be updated correctly and any device which 3639 * doesn't support it should be treated as rotational. 3640 */ 3641 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q); 3642 blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q); 3643 3644 if (scsi_device_supports_vpd(sdp)) { 3645 sd_read_block_provisioning(sdkp); 3646 sd_read_block_limits(sdkp); 3647 sd_read_block_limits_ext(sdkp); 3648 sd_read_block_characteristics(sdkp); 3649 sd_zbc_read_zones(sdkp, buffer); 3650 sd_read_cpr(sdkp); 3651 } 3652 3653 sd_print_capacity(sdkp, old_capacity); 3654 3655 sd_read_write_protect_flag(sdkp, buffer); 3656 sd_read_cache_type(sdkp, buffer); 3657 sd_read_io_hints(sdkp, buffer); 3658 sd_read_app_tag_own(sdkp, buffer); 3659 sd_read_write_same(sdkp, buffer); 3660 sd_read_security(sdkp, buffer); 3661 sd_config_protection(sdkp); 3662 } 3663 3664 /* 3665 * We now have all cache related info, determine how we deal 3666 * with flush requests. 3667 */ 3668 sd_set_flush_flag(sdkp); 3669 3670 /* Initial block count limit based on CDB TRANSFER LENGTH field size. */ 3671 dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS; 3672 3673 /* Some devices report a maximum block count for READ/WRITE requests. */ 3674 dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks); 3675 q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max); 3676 3677 if (sd_validate_min_xfer_size(sdkp)) 3678 blk_queue_io_min(sdkp->disk->queue, 3679 logical_to_bytes(sdp, sdkp->min_xfer_blocks)); 3680 else 3681 blk_queue_io_min(sdkp->disk->queue, 0); 3682 3683 if (sd_validate_opt_xfer_size(sdkp, dev_max)) { 3684 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 3685 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks); 3686 } else { 3687 q->limits.io_opt = 0; 3688 rw_max = min_not_zero(logical_to_sectors(sdp, dev_max), 3689 (sector_t)BLK_DEF_MAX_SECTORS_CAP); 3690 } 3691 3692 /* 3693 * Limit default to SCSI host optimal sector limit if set. There may be 3694 * an impact on performance for when the size of a request exceeds this 3695 * host limit. 3696 */ 3697 rw_max = min_not_zero(rw_max, sdp->host->opt_sectors); 3698 3699 /* Do not exceed controller limit */ 3700 rw_max = min(rw_max, queue_max_hw_sectors(q)); 3701 3702 /* 3703 * Only update max_sectors if previously unset or if the current value 3704 * exceeds the capabilities of the hardware. 3705 */ 3706 if (sdkp->first_scan || 3707 q->limits.max_sectors > q->limits.max_dev_sectors || 3708 q->limits.max_sectors > q->limits.max_hw_sectors) 3709 q->limits.max_sectors = rw_max; 3710 3711 sdkp->first_scan = 0; 3712 3713 set_capacity_and_notify(disk, logical_to_sectors(sdp, sdkp->capacity)); 3714 sd_config_write_same(sdkp); 3715 kfree(buffer); 3716 3717 /* 3718 * For a zoned drive, revalidating the zones can be done only once 3719 * the gendisk capacity is set. So if this fails, set back the gendisk 3720 * capacity to 0. 3721 */ 3722 if (sd_zbc_revalidate_zones(sdkp)) 3723 set_capacity_and_notify(disk, 0); 3724 3725 out: 3726 return 0; 3727 } 3728 3729 /** 3730 * sd_unlock_native_capacity - unlock native capacity 3731 * @disk: struct gendisk to set capacity for 3732 * 3733 * Block layer calls this function if it detects that partitions 3734 * on @disk reach beyond the end of the device. If the SCSI host 3735 * implements ->unlock_native_capacity() method, it's invoked to 3736 * give it a chance to adjust the device capacity. 3737 * 3738 * CONTEXT: 3739 * Defined by block layer. Might sleep. 3740 */ 3741 static void sd_unlock_native_capacity(struct gendisk *disk) 3742 { 3743 struct scsi_device *sdev = scsi_disk(disk)->device; 3744 3745 if (sdev->host->hostt->unlock_native_capacity) 3746 sdev->host->hostt->unlock_native_capacity(sdev); 3747 } 3748 3749 /** 3750 * sd_format_disk_name - format disk name 3751 * @prefix: name prefix - ie. "sd" for SCSI disks 3752 * @index: index of the disk to format name for 3753 * @buf: output buffer 3754 * @buflen: length of the output buffer 3755 * 3756 * SCSI disk names starts at sda. The 26th device is sdz and the 3757 * 27th is sdaa. The last one for two lettered suffix is sdzz 3758 * which is followed by sdaaa. 3759 * 3760 * This is basically 26 base counting with one extra 'nil' entry 3761 * at the beginning from the second digit on and can be 3762 * determined using similar method as 26 base conversion with the 3763 * index shifted -1 after each digit is computed. 3764 * 3765 * CONTEXT: 3766 * Don't care. 3767 * 3768 * RETURNS: 3769 * 0 on success, -errno on failure. 3770 */ 3771 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen) 3772 { 3773 const int base = 'z' - 'a' + 1; 3774 char *begin = buf + strlen(prefix); 3775 char *end = buf + buflen; 3776 char *p; 3777 int unit; 3778 3779 p = end - 1; 3780 *p = '\0'; 3781 unit = base; 3782 do { 3783 if (p == begin) 3784 return -EINVAL; 3785 *--p = 'a' + (index % unit); 3786 index = (index / unit) - 1; 3787 } while (index >= 0); 3788 3789 memmove(begin, p, end - p); 3790 memcpy(buf, prefix, strlen(prefix)); 3791 3792 return 0; 3793 } 3794 3795 /** 3796 * sd_probe - called during driver initialization and whenever a 3797 * new scsi device is attached to the system. It is called once 3798 * for each scsi device (not just disks) present. 3799 * @dev: pointer to device object 3800 * 3801 * Returns 0 if successful (or not interested in this scsi device 3802 * (e.g. scanner)); 1 when there is an error. 3803 * 3804 * Note: this function is invoked from the scsi mid-level. 3805 * This function sets up the mapping between a given 3806 * <host,channel,id,lun> (found in sdp) and new device name 3807 * (e.g. /dev/sda). More precisely it is the block device major 3808 * and minor number that is chosen here. 3809 * 3810 * Assume sd_probe is not re-entrant (for time being) 3811 * Also think about sd_probe() and sd_remove() running coincidentally. 3812 **/ 3813 static int sd_probe(struct device *dev) 3814 { 3815 struct scsi_device *sdp = to_scsi_device(dev); 3816 struct scsi_disk *sdkp; 3817 struct gendisk *gd; 3818 int index; 3819 int error; 3820 3821 scsi_autopm_get_device(sdp); 3822 error = -ENODEV; 3823 if (sdp->type != TYPE_DISK && 3824 sdp->type != TYPE_ZBC && 3825 sdp->type != TYPE_MOD && 3826 sdp->type != TYPE_RBC) 3827 goto out; 3828 3829 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) && sdp->type == TYPE_ZBC) { 3830 sdev_printk(KERN_WARNING, sdp, 3831 "Unsupported ZBC host-managed device.\n"); 3832 goto out; 3833 } 3834 3835 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp, 3836 "sd_probe\n")); 3837 3838 error = -ENOMEM; 3839 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL); 3840 if (!sdkp) 3841 goto out; 3842 3843 gd = blk_mq_alloc_disk_for_queue(sdp->request_queue, 3844 &sd_bio_compl_lkclass); 3845 if (!gd) 3846 goto out_free; 3847 3848 index = ida_alloc(&sd_index_ida, GFP_KERNEL); 3849 if (index < 0) { 3850 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n"); 3851 goto out_put; 3852 } 3853 3854 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN); 3855 if (error) { 3856 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n"); 3857 goto out_free_index; 3858 } 3859 3860 sdkp->device = sdp; 3861 sdkp->disk = gd; 3862 sdkp->index = index; 3863 sdkp->max_retries = SD_MAX_RETRIES; 3864 atomic_set(&sdkp->openers, 0); 3865 atomic_set(&sdkp->device->ioerr_cnt, 0); 3866 3867 if (!sdp->request_queue->rq_timeout) { 3868 if (sdp->type != TYPE_MOD) 3869 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT); 3870 else 3871 blk_queue_rq_timeout(sdp->request_queue, 3872 SD_MOD_TIMEOUT); 3873 } 3874 3875 device_initialize(&sdkp->disk_dev); 3876 sdkp->disk_dev.parent = get_device(dev); 3877 sdkp->disk_dev.class = &sd_disk_class; 3878 dev_set_name(&sdkp->disk_dev, "%s", dev_name(dev)); 3879 3880 error = device_add(&sdkp->disk_dev); 3881 if (error) { 3882 put_device(&sdkp->disk_dev); 3883 goto out; 3884 } 3885 3886 dev_set_drvdata(dev, sdkp); 3887 3888 gd->major = sd_major((index & 0xf0) >> 4); 3889 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00); 3890 gd->minors = SD_MINORS; 3891 3892 gd->fops = &sd_fops; 3893 gd->private_data = sdkp; 3894 3895 /* defaults, until the device tells us otherwise */ 3896 sdp->sector_size = 512; 3897 sdkp->capacity = 0; 3898 sdkp->media_present = 1; 3899 sdkp->write_prot = 0; 3900 sdkp->cache_override = 0; 3901 sdkp->WCE = 0; 3902 sdkp->RCD = 0; 3903 sdkp->ATO = 0; 3904 sdkp->first_scan = 1; 3905 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS; 3906 3907 sd_revalidate_disk(gd); 3908 3909 if (sdp->removable) { 3910 gd->flags |= GENHD_FL_REMOVABLE; 3911 gd->events |= DISK_EVENT_MEDIA_CHANGE; 3912 gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT; 3913 } 3914 3915 blk_pm_runtime_init(sdp->request_queue, dev); 3916 if (sdp->rpm_autosuspend) { 3917 pm_runtime_set_autosuspend_delay(dev, 3918 sdp->host->rpm_autosuspend_delay); 3919 } 3920 3921 error = device_add_disk(dev, gd, NULL); 3922 if (error) { 3923 device_unregister(&sdkp->disk_dev); 3924 put_disk(gd); 3925 goto out; 3926 } 3927 3928 if (sdkp->security) { 3929 sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit); 3930 if (sdkp->opal_dev) 3931 sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n"); 3932 } 3933 3934 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n", 3935 sdp->removable ? "removable " : ""); 3936 scsi_autopm_put_device(sdp); 3937 3938 return 0; 3939 3940 out_free_index: 3941 ida_free(&sd_index_ida, index); 3942 out_put: 3943 put_disk(gd); 3944 out_free: 3945 kfree(sdkp); 3946 out: 3947 scsi_autopm_put_device(sdp); 3948 return error; 3949 } 3950 3951 /** 3952 * sd_remove - called whenever a scsi disk (previously recognized by 3953 * sd_probe) is detached from the system. It is called (potentially 3954 * multiple times) during sd module unload. 3955 * @dev: pointer to device object 3956 * 3957 * Note: this function is invoked from the scsi mid-level. 3958 * This function potentially frees up a device name (e.g. /dev/sdc) 3959 * that could be re-used by a subsequent sd_probe(). 3960 * This function is not called when the built-in sd driver is "exit-ed". 3961 **/ 3962 static int sd_remove(struct device *dev) 3963 { 3964 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3965 3966 scsi_autopm_get_device(sdkp->device); 3967 3968 device_del(&sdkp->disk_dev); 3969 del_gendisk(sdkp->disk); 3970 if (!sdkp->suspended) 3971 sd_shutdown(dev); 3972 3973 put_disk(sdkp->disk); 3974 return 0; 3975 } 3976 3977 static void scsi_disk_release(struct device *dev) 3978 { 3979 struct scsi_disk *sdkp = to_scsi_disk(dev); 3980 3981 ida_free(&sd_index_ida, sdkp->index); 3982 sd_zbc_free_zone_info(sdkp); 3983 put_device(&sdkp->device->sdev_gendev); 3984 free_opal_dev(sdkp->opal_dev); 3985 3986 kfree(sdkp); 3987 } 3988 3989 static int sd_start_stop_device(struct scsi_disk *sdkp, int start) 3990 { 3991 unsigned char cmd[6] = { START_STOP }; /* START_VALID */ 3992 struct scsi_sense_hdr sshdr; 3993 const struct scsi_exec_args exec_args = { 3994 .sshdr = &sshdr, 3995 .req_flags = BLK_MQ_REQ_PM, 3996 }; 3997 struct scsi_device *sdp = sdkp->device; 3998 int res; 3999 4000 if (start) 4001 cmd[4] |= 1; /* START */ 4002 4003 if (sdp->start_stop_pwr_cond) 4004 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */ 4005 4006 if (!scsi_device_online(sdp)) 4007 return -ENODEV; 4008 4009 res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, SD_TIMEOUT, 4010 sdkp->max_retries, &exec_args); 4011 if (res) { 4012 sd_print_result(sdkp, "Start/Stop Unit failed", res); 4013 if (res > 0 && scsi_sense_valid(&sshdr)) { 4014 sd_print_sense_hdr(sdkp, &sshdr); 4015 /* 0x3a is medium not present */ 4016 if (sshdr.asc == 0x3a) 4017 res = 0; 4018 } 4019 } 4020 4021 /* SCSI error codes must not go to the generic layer */ 4022 if (res) 4023 return -EIO; 4024 4025 return 0; 4026 } 4027 4028 /* 4029 * Send a SYNCHRONIZE CACHE instruction down to the device through 4030 * the normal SCSI command structure. Wait for the command to 4031 * complete. 4032 */ 4033 static void sd_shutdown(struct device *dev) 4034 { 4035 struct scsi_disk *sdkp = dev_get_drvdata(dev); 4036 4037 if (!sdkp) 4038 return; /* this can happen */ 4039 4040 if (pm_runtime_suspended(dev)) 4041 return; 4042 4043 if (sdkp->WCE && sdkp->media_present) { 4044 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 4045 sd_sync_cache(sdkp); 4046 } 4047 4048 if ((system_state != SYSTEM_RESTART && 4049 sdkp->device->manage_system_start_stop) || 4050 (system_state == SYSTEM_POWER_OFF && 4051 sdkp->device->manage_shutdown)) { 4052 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 4053 sd_start_stop_device(sdkp, 0); 4054 } 4055 } 4056 4057 static inline bool sd_do_start_stop(struct scsi_device *sdev, bool runtime) 4058 { 4059 return (sdev->manage_system_start_stop && !runtime) || 4060 (sdev->manage_runtime_start_stop && runtime); 4061 } 4062 4063 static int sd_suspend_common(struct device *dev, bool runtime) 4064 { 4065 struct scsi_disk *sdkp = dev_get_drvdata(dev); 4066 int ret = 0; 4067 4068 if (!sdkp) /* E.g.: runtime suspend following sd_remove() */ 4069 return 0; 4070 4071 if (sdkp->WCE && sdkp->media_present) { 4072 if (!sdkp->device->silence_suspend) 4073 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 4074 ret = sd_sync_cache(sdkp); 4075 /* ignore OFFLINE device */ 4076 if (ret == -ENODEV) 4077 return 0; 4078 4079 if (ret) 4080 return ret; 4081 } 4082 4083 if (sd_do_start_stop(sdkp->device, runtime)) { 4084 if (!sdkp->device->silence_suspend) 4085 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 4086 /* an error is not worth aborting a system sleep */ 4087 ret = sd_start_stop_device(sdkp, 0); 4088 if (!runtime) 4089 ret = 0; 4090 } 4091 4092 if (!ret) 4093 sdkp->suspended = true; 4094 4095 return ret; 4096 } 4097 4098 static int sd_suspend_system(struct device *dev) 4099 { 4100 if (pm_runtime_suspended(dev)) 4101 return 0; 4102 4103 return sd_suspend_common(dev, false); 4104 } 4105 4106 static int sd_suspend_runtime(struct device *dev) 4107 { 4108 return sd_suspend_common(dev, true); 4109 } 4110 4111 static int sd_resume(struct device *dev) 4112 { 4113 struct scsi_disk *sdkp = dev_get_drvdata(dev); 4114 4115 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n"); 4116 4117 if (opal_unlock_from_suspend(sdkp->opal_dev)) { 4118 sd_printk(KERN_NOTICE, sdkp, "OPAL unlock failed\n"); 4119 return -EIO; 4120 } 4121 4122 return 0; 4123 } 4124 4125 static int sd_resume_common(struct device *dev, bool runtime) 4126 { 4127 struct scsi_disk *sdkp = dev_get_drvdata(dev); 4128 int ret; 4129 4130 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */ 4131 return 0; 4132 4133 if (!sd_do_start_stop(sdkp->device, runtime)) { 4134 sdkp->suspended = false; 4135 return 0; 4136 } 4137 4138 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n"); 4139 ret = sd_start_stop_device(sdkp, 1); 4140 if (!ret) { 4141 sd_resume(dev); 4142 sdkp->suspended = false; 4143 } 4144 4145 return ret; 4146 } 4147 4148 static int sd_resume_system(struct device *dev) 4149 { 4150 if (pm_runtime_suspended(dev)) { 4151 struct scsi_disk *sdkp = dev_get_drvdata(dev); 4152 struct scsi_device *sdp = sdkp ? sdkp->device : NULL; 4153 4154 if (sdp && sdp->force_runtime_start_on_system_start) 4155 pm_request_resume(dev); 4156 4157 return 0; 4158 } 4159 4160 return sd_resume_common(dev, false); 4161 } 4162 4163 static int sd_resume_runtime(struct device *dev) 4164 { 4165 struct scsi_disk *sdkp = dev_get_drvdata(dev); 4166 struct scsi_device *sdp; 4167 4168 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */ 4169 return 0; 4170 4171 sdp = sdkp->device; 4172 4173 if (sdp->ignore_media_change) { 4174 /* clear the device's sense data */ 4175 static const u8 cmd[10] = { REQUEST_SENSE }; 4176 const struct scsi_exec_args exec_args = { 4177 .req_flags = BLK_MQ_REQ_PM, 4178 }; 4179 4180 if (scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, 4181 sdp->request_queue->rq_timeout, 1, 4182 &exec_args)) 4183 sd_printk(KERN_NOTICE, sdkp, 4184 "Failed to clear sense data\n"); 4185 } 4186 4187 return sd_resume_common(dev, true); 4188 } 4189 4190 static const struct dev_pm_ops sd_pm_ops = { 4191 .suspend = sd_suspend_system, 4192 .resume = sd_resume_system, 4193 .poweroff = sd_suspend_system, 4194 .restore = sd_resume_system, 4195 .runtime_suspend = sd_suspend_runtime, 4196 .runtime_resume = sd_resume_runtime, 4197 }; 4198 4199 static struct scsi_driver sd_template = { 4200 .gendrv = { 4201 .name = "sd", 4202 .owner = THIS_MODULE, 4203 .probe = sd_probe, 4204 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 4205 .remove = sd_remove, 4206 .shutdown = sd_shutdown, 4207 .pm = &sd_pm_ops, 4208 }, 4209 .rescan = sd_rescan, 4210 .resume = sd_resume, 4211 .init_command = sd_init_command, 4212 .uninit_command = sd_uninit_command, 4213 .done = sd_done, 4214 .eh_action = sd_eh_action, 4215 .eh_reset = sd_eh_reset, 4216 }; 4217 4218 /** 4219 * init_sd - entry point for this driver (both when built in or when 4220 * a module). 4221 * 4222 * Note: this function registers this driver with the scsi mid-level. 4223 **/ 4224 static int __init init_sd(void) 4225 { 4226 int majors = 0, i, err; 4227 4228 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n")); 4229 4230 for (i = 0; i < SD_MAJORS; i++) { 4231 if (__register_blkdev(sd_major(i), "sd", sd_default_probe)) 4232 continue; 4233 majors++; 4234 } 4235 4236 if (!majors) 4237 return -ENODEV; 4238 4239 err = class_register(&sd_disk_class); 4240 if (err) 4241 goto err_out; 4242 4243 sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0); 4244 if (!sd_page_pool) { 4245 printk(KERN_ERR "sd: can't init discard page pool\n"); 4246 err = -ENOMEM; 4247 goto err_out_class; 4248 } 4249 4250 err = scsi_register_driver(&sd_template.gendrv); 4251 if (err) 4252 goto err_out_driver; 4253 4254 return 0; 4255 4256 err_out_driver: 4257 mempool_destroy(sd_page_pool); 4258 err_out_class: 4259 class_unregister(&sd_disk_class); 4260 err_out: 4261 for (i = 0; i < SD_MAJORS; i++) 4262 unregister_blkdev(sd_major(i), "sd"); 4263 return err; 4264 } 4265 4266 /** 4267 * exit_sd - exit point for this driver (when it is a module). 4268 * 4269 * Note: this function unregisters this driver from the scsi mid-level. 4270 **/ 4271 static void __exit exit_sd(void) 4272 { 4273 int i; 4274 4275 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n")); 4276 4277 scsi_unregister_driver(&sd_template.gendrv); 4278 mempool_destroy(sd_page_pool); 4279 4280 class_unregister(&sd_disk_class); 4281 4282 for (i = 0; i < SD_MAJORS; i++) 4283 unregister_blkdev(sd_major(i), "sd"); 4284 } 4285 4286 module_init(init_sd); 4287 module_exit(exit_sd); 4288 4289 void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr) 4290 { 4291 scsi_print_sense_hdr(sdkp->device, 4292 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr); 4293 } 4294 4295 void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result) 4296 { 4297 const char *hb_string = scsi_hostbyte_string(result); 4298 4299 if (hb_string) 4300 sd_printk(KERN_INFO, sdkp, 4301 "%s: Result: hostbyte=%s driverbyte=%s\n", msg, 4302 hb_string ? hb_string : "invalid", 4303 "DRIVER_OK"); 4304 else 4305 sd_printk(KERN_INFO, sdkp, 4306 "%s: Result: hostbyte=0x%02x driverbyte=%s\n", 4307 msg, host_byte(result), "DRIVER_OK"); 4308 } 4309