1 /* 2 * sd.c Copyright (C) 1992 Drew Eckhardt 3 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale 4 * 5 * Linux scsi disk driver 6 * Initial versions: Drew Eckhardt 7 * Subsequent revisions: Eric Youngdale 8 * Modification history: 9 * - Drew Eckhardt <drew@colorado.edu> original 10 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 11 * outstanding request, and other enhancements. 12 * Support loadable low-level scsi drivers. 13 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 14 * eight major numbers. 15 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs. 16 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 17 * sd_init and cleanups. 18 * - Alex Davis <letmein@erols.com> Fix problem where partition info 19 * not being read in sd_open. Fix problem where removable media 20 * could be ejected after sd_open. 21 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x 22 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 23 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 24 * Support 32k/1M disks. 25 * 26 * Logging policy (needs CONFIG_SCSI_LOGGING defined): 27 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2 28 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1 29 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1 30 * - entering other commands: SCSI_LOG_HLQUEUE level 3 31 * Note: when the logging level is set by the user, it must be greater 32 * than the level indicated above to trigger output. 33 */ 34 35 #include <linux/module.h> 36 #include <linux/fs.h> 37 #include <linux/kernel.h> 38 #include <linux/mm.h> 39 #include <linux/bio.h> 40 #include <linux/genhd.h> 41 #include <linux/hdreg.h> 42 #include <linux/errno.h> 43 #include <linux/idr.h> 44 #include <linux/interrupt.h> 45 #include <linux/init.h> 46 #include <linux/blkdev.h> 47 #include <linux/blkpg.h> 48 #include <linux/delay.h> 49 #include <linux/mutex.h> 50 #include <linux/string_helpers.h> 51 #include <linux/async.h> 52 #include <linux/slab.h> 53 #include <linux/pm_runtime.h> 54 #include <linux/pr.h> 55 #include <asm/uaccess.h> 56 #include <asm/unaligned.h> 57 58 #include <scsi/scsi.h> 59 #include <scsi/scsi_cmnd.h> 60 #include <scsi/scsi_dbg.h> 61 #include <scsi/scsi_device.h> 62 #include <scsi/scsi_driver.h> 63 #include <scsi/scsi_eh.h> 64 #include <scsi/scsi_host.h> 65 #include <scsi/scsi_ioctl.h> 66 #include <scsi/scsicam.h> 67 68 #include "sd.h" 69 #include "scsi_priv.h" 70 #include "scsi_logging.h" 71 72 MODULE_AUTHOR("Eric Youngdale"); 73 MODULE_DESCRIPTION("SCSI disk (sd) driver"); 74 MODULE_LICENSE("GPL"); 75 76 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR); 77 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR); 78 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR); 79 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR); 80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR); 81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR); 82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR); 83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR); 84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR); 85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR); 86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR); 87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR); 88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR); 89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR); 90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR); 91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR); 92 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK); 93 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD); 94 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC); 95 96 #if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT) 97 #define SD_MINORS 16 98 #else 99 #define SD_MINORS 0 100 #endif 101 102 static void sd_config_discard(struct scsi_disk *, unsigned int); 103 static void sd_config_write_same(struct scsi_disk *); 104 static int sd_revalidate_disk(struct gendisk *); 105 static void sd_unlock_native_capacity(struct gendisk *disk); 106 static int sd_probe(struct device *); 107 static int sd_remove(struct device *); 108 static void sd_shutdown(struct device *); 109 static int sd_suspend_system(struct device *); 110 static int sd_suspend_runtime(struct device *); 111 static int sd_resume(struct device *); 112 static void sd_rescan(struct device *); 113 static int sd_init_command(struct scsi_cmnd *SCpnt); 114 static void sd_uninit_command(struct scsi_cmnd *SCpnt); 115 static int sd_done(struct scsi_cmnd *); 116 static int sd_eh_action(struct scsi_cmnd *, int); 117 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer); 118 static void scsi_disk_release(struct device *cdev); 119 static void sd_print_sense_hdr(struct scsi_disk *, struct scsi_sense_hdr *); 120 static void sd_print_result(const struct scsi_disk *, const char *, int); 121 122 static DEFINE_SPINLOCK(sd_index_lock); 123 static DEFINE_IDA(sd_index_ida); 124 125 /* This semaphore is used to mediate the 0->1 reference get in the 126 * face of object destruction (i.e. we can't allow a get on an 127 * object after last put) */ 128 static DEFINE_MUTEX(sd_ref_mutex); 129 130 static struct kmem_cache *sd_cdb_cache; 131 static mempool_t *sd_cdb_pool; 132 133 static const char *sd_cache_types[] = { 134 "write through", "none", "write back", 135 "write back, no read (daft)" 136 }; 137 138 static void sd_set_flush_flag(struct scsi_disk *sdkp) 139 { 140 unsigned flush = 0; 141 142 if (sdkp->WCE) { 143 flush |= REQ_FLUSH; 144 if (sdkp->DPOFUA) 145 flush |= REQ_FUA; 146 } 147 148 blk_queue_flush(sdkp->disk->queue, flush); 149 } 150 151 static ssize_t 152 cache_type_store(struct device *dev, struct device_attribute *attr, 153 const char *buf, size_t count) 154 { 155 int i, ct = -1, rcd, wce, sp; 156 struct scsi_disk *sdkp = to_scsi_disk(dev); 157 struct scsi_device *sdp = sdkp->device; 158 char buffer[64]; 159 char *buffer_data; 160 struct scsi_mode_data data; 161 struct scsi_sense_hdr sshdr; 162 static const char temp[] = "temporary "; 163 int len; 164 165 if (sdp->type != TYPE_DISK) 166 /* no cache control on RBC devices; theoretically they 167 * can do it, but there's probably so many exceptions 168 * it's not worth the risk */ 169 return -EINVAL; 170 171 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) { 172 buf += sizeof(temp) - 1; 173 sdkp->cache_override = 1; 174 } else { 175 sdkp->cache_override = 0; 176 } 177 178 for (i = 0; i < ARRAY_SIZE(sd_cache_types); i++) { 179 len = strlen(sd_cache_types[i]); 180 if (strncmp(sd_cache_types[i], buf, len) == 0 && 181 buf[len] == '\n') { 182 ct = i; 183 break; 184 } 185 } 186 if (ct < 0) 187 return -EINVAL; 188 rcd = ct & 0x01 ? 1 : 0; 189 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0; 190 191 if (sdkp->cache_override) { 192 sdkp->WCE = wce; 193 sdkp->RCD = rcd; 194 sd_set_flush_flag(sdkp); 195 return count; 196 } 197 198 if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT, 199 SD_MAX_RETRIES, &data, NULL)) 200 return -EINVAL; 201 len = min_t(size_t, sizeof(buffer), data.length - data.header_length - 202 data.block_descriptor_length); 203 buffer_data = buffer + data.header_length + 204 data.block_descriptor_length; 205 buffer_data[2] &= ~0x05; 206 buffer_data[2] |= wce << 2 | rcd; 207 sp = buffer_data[0] & 0x80 ? 1 : 0; 208 buffer_data[0] &= ~0x80; 209 210 if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT, 211 SD_MAX_RETRIES, &data, &sshdr)) { 212 if (scsi_sense_valid(&sshdr)) 213 sd_print_sense_hdr(sdkp, &sshdr); 214 return -EINVAL; 215 } 216 revalidate_disk(sdkp->disk); 217 return count; 218 } 219 220 static ssize_t 221 manage_start_stop_show(struct device *dev, struct device_attribute *attr, 222 char *buf) 223 { 224 struct scsi_disk *sdkp = to_scsi_disk(dev); 225 struct scsi_device *sdp = sdkp->device; 226 227 return snprintf(buf, 20, "%u\n", sdp->manage_start_stop); 228 } 229 230 static ssize_t 231 manage_start_stop_store(struct device *dev, struct device_attribute *attr, 232 const char *buf, size_t count) 233 { 234 struct scsi_disk *sdkp = to_scsi_disk(dev); 235 struct scsi_device *sdp = sdkp->device; 236 237 if (!capable(CAP_SYS_ADMIN)) 238 return -EACCES; 239 240 sdp->manage_start_stop = simple_strtoul(buf, NULL, 10); 241 242 return count; 243 } 244 static DEVICE_ATTR_RW(manage_start_stop); 245 246 static ssize_t 247 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf) 248 { 249 struct scsi_disk *sdkp = to_scsi_disk(dev); 250 251 return snprintf(buf, 40, "%d\n", sdkp->device->allow_restart); 252 } 253 254 static ssize_t 255 allow_restart_store(struct device *dev, struct device_attribute *attr, 256 const char *buf, size_t count) 257 { 258 struct scsi_disk *sdkp = to_scsi_disk(dev); 259 struct scsi_device *sdp = sdkp->device; 260 261 if (!capable(CAP_SYS_ADMIN)) 262 return -EACCES; 263 264 if (sdp->type != TYPE_DISK) 265 return -EINVAL; 266 267 sdp->allow_restart = simple_strtoul(buf, NULL, 10); 268 269 return count; 270 } 271 static DEVICE_ATTR_RW(allow_restart); 272 273 static ssize_t 274 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf) 275 { 276 struct scsi_disk *sdkp = to_scsi_disk(dev); 277 int ct = sdkp->RCD + 2*sdkp->WCE; 278 279 return snprintf(buf, 40, "%s\n", sd_cache_types[ct]); 280 } 281 static DEVICE_ATTR_RW(cache_type); 282 283 static ssize_t 284 FUA_show(struct device *dev, struct device_attribute *attr, char *buf) 285 { 286 struct scsi_disk *sdkp = to_scsi_disk(dev); 287 288 return snprintf(buf, 20, "%u\n", sdkp->DPOFUA); 289 } 290 static DEVICE_ATTR_RO(FUA); 291 292 static ssize_t 293 protection_type_show(struct device *dev, struct device_attribute *attr, 294 char *buf) 295 { 296 struct scsi_disk *sdkp = to_scsi_disk(dev); 297 298 return snprintf(buf, 20, "%u\n", sdkp->protection_type); 299 } 300 301 static ssize_t 302 protection_type_store(struct device *dev, struct device_attribute *attr, 303 const char *buf, size_t count) 304 { 305 struct scsi_disk *sdkp = to_scsi_disk(dev); 306 unsigned int val; 307 int err; 308 309 if (!capable(CAP_SYS_ADMIN)) 310 return -EACCES; 311 312 err = kstrtouint(buf, 10, &val); 313 314 if (err) 315 return err; 316 317 if (val >= 0 && val <= SD_DIF_TYPE3_PROTECTION) 318 sdkp->protection_type = val; 319 320 return count; 321 } 322 static DEVICE_ATTR_RW(protection_type); 323 324 static ssize_t 325 protection_mode_show(struct device *dev, struct device_attribute *attr, 326 char *buf) 327 { 328 struct scsi_disk *sdkp = to_scsi_disk(dev); 329 struct scsi_device *sdp = sdkp->device; 330 unsigned int dif, dix; 331 332 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type); 333 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type); 334 335 if (!dix && scsi_host_dix_capable(sdp->host, SD_DIF_TYPE0_PROTECTION)) { 336 dif = 0; 337 dix = 1; 338 } 339 340 if (!dif && !dix) 341 return snprintf(buf, 20, "none\n"); 342 343 return snprintf(buf, 20, "%s%u\n", dix ? "dix" : "dif", dif); 344 } 345 static DEVICE_ATTR_RO(protection_mode); 346 347 static ssize_t 348 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf) 349 { 350 struct scsi_disk *sdkp = to_scsi_disk(dev); 351 352 return snprintf(buf, 20, "%u\n", sdkp->ATO); 353 } 354 static DEVICE_ATTR_RO(app_tag_own); 355 356 static ssize_t 357 thin_provisioning_show(struct device *dev, struct device_attribute *attr, 358 char *buf) 359 { 360 struct scsi_disk *sdkp = to_scsi_disk(dev); 361 362 return snprintf(buf, 20, "%u\n", sdkp->lbpme); 363 } 364 static DEVICE_ATTR_RO(thin_provisioning); 365 366 static const char *lbp_mode[] = { 367 [SD_LBP_FULL] = "full", 368 [SD_LBP_UNMAP] = "unmap", 369 [SD_LBP_WS16] = "writesame_16", 370 [SD_LBP_WS10] = "writesame_10", 371 [SD_LBP_ZERO] = "writesame_zero", 372 [SD_LBP_DISABLE] = "disabled", 373 }; 374 375 static ssize_t 376 provisioning_mode_show(struct device *dev, struct device_attribute *attr, 377 char *buf) 378 { 379 struct scsi_disk *sdkp = to_scsi_disk(dev); 380 381 return snprintf(buf, 20, "%s\n", lbp_mode[sdkp->provisioning_mode]); 382 } 383 384 static ssize_t 385 provisioning_mode_store(struct device *dev, struct device_attribute *attr, 386 const char *buf, size_t count) 387 { 388 struct scsi_disk *sdkp = to_scsi_disk(dev); 389 struct scsi_device *sdp = sdkp->device; 390 391 if (!capable(CAP_SYS_ADMIN)) 392 return -EACCES; 393 394 if (sdp->type != TYPE_DISK) 395 return -EINVAL; 396 397 if (!strncmp(buf, lbp_mode[SD_LBP_UNMAP], 20)) 398 sd_config_discard(sdkp, SD_LBP_UNMAP); 399 else if (!strncmp(buf, lbp_mode[SD_LBP_WS16], 20)) 400 sd_config_discard(sdkp, SD_LBP_WS16); 401 else if (!strncmp(buf, lbp_mode[SD_LBP_WS10], 20)) 402 sd_config_discard(sdkp, SD_LBP_WS10); 403 else if (!strncmp(buf, lbp_mode[SD_LBP_ZERO], 20)) 404 sd_config_discard(sdkp, SD_LBP_ZERO); 405 else if (!strncmp(buf, lbp_mode[SD_LBP_DISABLE], 20)) 406 sd_config_discard(sdkp, SD_LBP_DISABLE); 407 else 408 return -EINVAL; 409 410 return count; 411 } 412 static DEVICE_ATTR_RW(provisioning_mode); 413 414 static ssize_t 415 max_medium_access_timeouts_show(struct device *dev, 416 struct device_attribute *attr, char *buf) 417 { 418 struct scsi_disk *sdkp = to_scsi_disk(dev); 419 420 return snprintf(buf, 20, "%u\n", sdkp->max_medium_access_timeouts); 421 } 422 423 static ssize_t 424 max_medium_access_timeouts_store(struct device *dev, 425 struct device_attribute *attr, const char *buf, 426 size_t count) 427 { 428 struct scsi_disk *sdkp = to_scsi_disk(dev); 429 int err; 430 431 if (!capable(CAP_SYS_ADMIN)) 432 return -EACCES; 433 434 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts); 435 436 return err ? err : count; 437 } 438 static DEVICE_ATTR_RW(max_medium_access_timeouts); 439 440 static ssize_t 441 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr, 442 char *buf) 443 { 444 struct scsi_disk *sdkp = to_scsi_disk(dev); 445 446 return snprintf(buf, 20, "%u\n", sdkp->max_ws_blocks); 447 } 448 449 static ssize_t 450 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr, 451 const char *buf, size_t count) 452 { 453 struct scsi_disk *sdkp = to_scsi_disk(dev); 454 struct scsi_device *sdp = sdkp->device; 455 unsigned long max; 456 int err; 457 458 if (!capable(CAP_SYS_ADMIN)) 459 return -EACCES; 460 461 if (sdp->type != TYPE_DISK) 462 return -EINVAL; 463 464 err = kstrtoul(buf, 10, &max); 465 466 if (err) 467 return err; 468 469 if (max == 0) 470 sdp->no_write_same = 1; 471 else if (max <= SD_MAX_WS16_BLOCKS) { 472 sdp->no_write_same = 0; 473 sdkp->max_ws_blocks = max; 474 } 475 476 sd_config_write_same(sdkp); 477 478 return count; 479 } 480 static DEVICE_ATTR_RW(max_write_same_blocks); 481 482 static struct attribute *sd_disk_attrs[] = { 483 &dev_attr_cache_type.attr, 484 &dev_attr_FUA.attr, 485 &dev_attr_allow_restart.attr, 486 &dev_attr_manage_start_stop.attr, 487 &dev_attr_protection_type.attr, 488 &dev_attr_protection_mode.attr, 489 &dev_attr_app_tag_own.attr, 490 &dev_attr_thin_provisioning.attr, 491 &dev_attr_provisioning_mode.attr, 492 &dev_attr_max_write_same_blocks.attr, 493 &dev_attr_max_medium_access_timeouts.attr, 494 NULL, 495 }; 496 ATTRIBUTE_GROUPS(sd_disk); 497 498 static struct class sd_disk_class = { 499 .name = "scsi_disk", 500 .owner = THIS_MODULE, 501 .dev_release = scsi_disk_release, 502 .dev_groups = sd_disk_groups, 503 }; 504 505 static const struct dev_pm_ops sd_pm_ops = { 506 .suspend = sd_suspend_system, 507 .resume = sd_resume, 508 .poweroff = sd_suspend_system, 509 .restore = sd_resume, 510 .runtime_suspend = sd_suspend_runtime, 511 .runtime_resume = sd_resume, 512 }; 513 514 static struct scsi_driver sd_template = { 515 .gendrv = { 516 .name = "sd", 517 .owner = THIS_MODULE, 518 .probe = sd_probe, 519 .remove = sd_remove, 520 .shutdown = sd_shutdown, 521 .pm = &sd_pm_ops, 522 }, 523 .rescan = sd_rescan, 524 .init_command = sd_init_command, 525 .uninit_command = sd_uninit_command, 526 .done = sd_done, 527 .eh_action = sd_eh_action, 528 }; 529 530 /* 531 * Dummy kobj_map->probe function. 532 * The default ->probe function will call modprobe, which is 533 * pointless as this module is already loaded. 534 */ 535 static struct kobject *sd_default_probe(dev_t devt, int *partno, void *data) 536 { 537 return NULL; 538 } 539 540 /* 541 * Device no to disk mapping: 542 * 543 * major disc2 disc p1 544 * |............|.............|....|....| <- dev_t 545 * 31 20 19 8 7 4 3 0 546 * 547 * Inside a major, we have 16k disks, however mapped non- 548 * contiguously. The first 16 disks are for major0, the next 549 * ones with major1, ... Disk 256 is for major0 again, disk 272 550 * for major1, ... 551 * As we stay compatible with our numbering scheme, we can reuse 552 * the well-know SCSI majors 8, 65--71, 136--143. 553 */ 554 static int sd_major(int major_idx) 555 { 556 switch (major_idx) { 557 case 0: 558 return SCSI_DISK0_MAJOR; 559 case 1 ... 7: 560 return SCSI_DISK1_MAJOR + major_idx - 1; 561 case 8 ... 15: 562 return SCSI_DISK8_MAJOR + major_idx - 8; 563 default: 564 BUG(); 565 return 0; /* shut up gcc */ 566 } 567 } 568 569 static struct scsi_disk *scsi_disk_get(struct gendisk *disk) 570 { 571 struct scsi_disk *sdkp = NULL; 572 573 mutex_lock(&sd_ref_mutex); 574 575 if (disk->private_data) { 576 sdkp = scsi_disk(disk); 577 if (scsi_device_get(sdkp->device) == 0) 578 get_device(&sdkp->dev); 579 else 580 sdkp = NULL; 581 } 582 mutex_unlock(&sd_ref_mutex); 583 return sdkp; 584 } 585 586 static void scsi_disk_put(struct scsi_disk *sdkp) 587 { 588 struct scsi_device *sdev = sdkp->device; 589 590 mutex_lock(&sd_ref_mutex); 591 put_device(&sdkp->dev); 592 scsi_device_put(sdev); 593 mutex_unlock(&sd_ref_mutex); 594 } 595 596 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd, 597 unsigned int dix, unsigned int dif) 598 { 599 struct bio *bio = scmd->request->bio; 600 unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif); 601 unsigned int protect = 0; 602 603 if (dix) { /* DIX Type 0, 1, 2, 3 */ 604 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM)) 605 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM; 606 607 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 608 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK; 609 } 610 611 if (dif != SD_DIF_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */ 612 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT; 613 614 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 615 scmd->prot_flags |= SCSI_PROT_REF_CHECK; 616 } 617 618 if (dif) { /* DIX/DIF Type 1, 2, 3 */ 619 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI; 620 621 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK)) 622 protect = 3 << 5; /* Disable target PI checking */ 623 else 624 protect = 1 << 5; /* Enable target PI checking */ 625 } 626 627 scsi_set_prot_op(scmd, prot_op); 628 scsi_set_prot_type(scmd, dif); 629 scmd->prot_flags &= sd_prot_flag_mask(prot_op); 630 631 return protect; 632 } 633 634 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode) 635 { 636 struct request_queue *q = sdkp->disk->queue; 637 unsigned int logical_block_size = sdkp->device->sector_size; 638 unsigned int max_blocks = 0; 639 640 q->limits.discard_zeroes_data = 0; 641 642 /* 643 * When LBPRZ is reported, discard alignment and granularity 644 * must be fixed to the logical block size. Otherwise the block 645 * layer will drop misaligned portions of the request which can 646 * lead to data corruption. If LBPRZ is not set, we honor the 647 * device preference. 648 */ 649 if (sdkp->lbprz) { 650 q->limits.discard_alignment = 0; 651 q->limits.discard_granularity = logical_block_size; 652 } else { 653 q->limits.discard_alignment = sdkp->unmap_alignment * 654 logical_block_size; 655 q->limits.discard_granularity = 656 max(sdkp->physical_block_size, 657 sdkp->unmap_granularity * logical_block_size); 658 } 659 660 sdkp->provisioning_mode = mode; 661 662 switch (mode) { 663 664 case SD_LBP_DISABLE: 665 blk_queue_max_discard_sectors(q, 0); 666 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q); 667 return; 668 669 case SD_LBP_UNMAP: 670 max_blocks = min_not_zero(sdkp->max_unmap_blocks, 671 (u32)SD_MAX_WS16_BLOCKS); 672 break; 673 674 case SD_LBP_WS16: 675 max_blocks = min_not_zero(sdkp->max_ws_blocks, 676 (u32)SD_MAX_WS16_BLOCKS); 677 q->limits.discard_zeroes_data = sdkp->lbprz; 678 break; 679 680 case SD_LBP_WS10: 681 max_blocks = min_not_zero(sdkp->max_ws_blocks, 682 (u32)SD_MAX_WS10_BLOCKS); 683 q->limits.discard_zeroes_data = sdkp->lbprz; 684 break; 685 686 case SD_LBP_ZERO: 687 max_blocks = min_not_zero(sdkp->max_ws_blocks, 688 (u32)SD_MAX_WS10_BLOCKS); 689 q->limits.discard_zeroes_data = 1; 690 break; 691 } 692 693 blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9)); 694 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q); 695 } 696 697 /** 698 * sd_setup_discard_cmnd - unmap blocks on thinly provisioned device 699 * @sdp: scsi device to operate one 700 * @rq: Request to prepare 701 * 702 * Will issue either UNMAP or WRITE SAME(16) depending on preference 703 * indicated by target device. 704 **/ 705 static int sd_setup_discard_cmnd(struct scsi_cmnd *cmd) 706 { 707 struct request *rq = cmd->request; 708 struct scsi_device *sdp = cmd->device; 709 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 710 sector_t sector = blk_rq_pos(rq); 711 unsigned int nr_sectors = blk_rq_sectors(rq); 712 unsigned int nr_bytes = blk_rq_bytes(rq); 713 unsigned int len; 714 int ret; 715 char *buf; 716 struct page *page; 717 718 sector >>= ilog2(sdp->sector_size) - 9; 719 nr_sectors >>= ilog2(sdp->sector_size) - 9; 720 721 page = alloc_page(GFP_ATOMIC | __GFP_ZERO); 722 if (!page) 723 return BLKPREP_DEFER; 724 725 switch (sdkp->provisioning_mode) { 726 case SD_LBP_UNMAP: 727 buf = page_address(page); 728 729 cmd->cmd_len = 10; 730 cmd->cmnd[0] = UNMAP; 731 cmd->cmnd[8] = 24; 732 733 put_unaligned_be16(6 + 16, &buf[0]); 734 put_unaligned_be16(16, &buf[2]); 735 put_unaligned_be64(sector, &buf[8]); 736 put_unaligned_be32(nr_sectors, &buf[16]); 737 738 len = 24; 739 break; 740 741 case SD_LBP_WS16: 742 cmd->cmd_len = 16; 743 cmd->cmnd[0] = WRITE_SAME_16; 744 cmd->cmnd[1] = 0x8; /* UNMAP */ 745 put_unaligned_be64(sector, &cmd->cmnd[2]); 746 put_unaligned_be32(nr_sectors, &cmd->cmnd[10]); 747 748 len = sdkp->device->sector_size; 749 break; 750 751 case SD_LBP_WS10: 752 case SD_LBP_ZERO: 753 cmd->cmd_len = 10; 754 cmd->cmnd[0] = WRITE_SAME; 755 if (sdkp->provisioning_mode == SD_LBP_WS10) 756 cmd->cmnd[1] = 0x8; /* UNMAP */ 757 put_unaligned_be32(sector, &cmd->cmnd[2]); 758 put_unaligned_be16(nr_sectors, &cmd->cmnd[7]); 759 760 len = sdkp->device->sector_size; 761 break; 762 763 default: 764 ret = BLKPREP_INVALID; 765 goto out; 766 } 767 768 rq->completion_data = page; 769 rq->timeout = SD_TIMEOUT; 770 771 cmd->transfersize = len; 772 cmd->allowed = SD_MAX_RETRIES; 773 774 /* 775 * Initially __data_len is set to the amount of data that needs to be 776 * transferred to the target. This amount depends on whether WRITE SAME 777 * or UNMAP is being used. After the scatterlist has been mapped by 778 * scsi_init_io() we set __data_len to the size of the area to be 779 * discarded on disk. This allows us to report completion on the full 780 * amount of blocks described by the request. 781 */ 782 blk_add_request_payload(rq, page, len); 783 ret = scsi_init_io(cmd); 784 rq->__data_len = nr_bytes; 785 786 out: 787 if (ret != BLKPREP_OK) 788 __free_page(page); 789 return ret; 790 } 791 792 static void sd_config_write_same(struct scsi_disk *sdkp) 793 { 794 struct request_queue *q = sdkp->disk->queue; 795 unsigned int logical_block_size = sdkp->device->sector_size; 796 797 if (sdkp->device->no_write_same) { 798 sdkp->max_ws_blocks = 0; 799 goto out; 800 } 801 802 /* Some devices can not handle block counts above 0xffff despite 803 * supporting WRITE SAME(16). Consequently we default to 64k 804 * blocks per I/O unless the device explicitly advertises a 805 * bigger limit. 806 */ 807 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS) 808 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 809 (u32)SD_MAX_WS16_BLOCKS); 810 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes) 811 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 812 (u32)SD_MAX_WS10_BLOCKS); 813 else { 814 sdkp->device->no_write_same = 1; 815 sdkp->max_ws_blocks = 0; 816 } 817 818 out: 819 blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks * 820 (logical_block_size >> 9)); 821 } 822 823 /** 824 * sd_setup_write_same_cmnd - write the same data to multiple blocks 825 * @cmd: command to prepare 826 * 827 * Will issue either WRITE SAME(10) or WRITE SAME(16) depending on 828 * preference indicated by target device. 829 **/ 830 static int sd_setup_write_same_cmnd(struct scsi_cmnd *cmd) 831 { 832 struct request *rq = cmd->request; 833 struct scsi_device *sdp = cmd->device; 834 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 835 struct bio *bio = rq->bio; 836 sector_t sector = blk_rq_pos(rq); 837 unsigned int nr_sectors = blk_rq_sectors(rq); 838 unsigned int nr_bytes = blk_rq_bytes(rq); 839 int ret; 840 841 if (sdkp->device->no_write_same) 842 return BLKPREP_INVALID; 843 844 BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size); 845 846 sector >>= ilog2(sdp->sector_size) - 9; 847 nr_sectors >>= ilog2(sdp->sector_size) - 9; 848 849 rq->timeout = SD_WRITE_SAME_TIMEOUT; 850 851 if (sdkp->ws16 || sector > 0xffffffff || nr_sectors > 0xffff) { 852 cmd->cmd_len = 16; 853 cmd->cmnd[0] = WRITE_SAME_16; 854 put_unaligned_be64(sector, &cmd->cmnd[2]); 855 put_unaligned_be32(nr_sectors, &cmd->cmnd[10]); 856 } else { 857 cmd->cmd_len = 10; 858 cmd->cmnd[0] = WRITE_SAME; 859 put_unaligned_be32(sector, &cmd->cmnd[2]); 860 put_unaligned_be16(nr_sectors, &cmd->cmnd[7]); 861 } 862 863 cmd->transfersize = sdp->sector_size; 864 cmd->allowed = SD_MAX_RETRIES; 865 866 /* 867 * For WRITE_SAME the data transferred in the DATA IN buffer is 868 * different from the amount of data actually written to the target. 869 * 870 * We set up __data_len to the amount of data transferred from the 871 * DATA IN buffer so that blk_rq_map_sg set up the proper S/G list 872 * to transfer a single sector of data first, but then reset it to 873 * the amount of data to be written right after so that the I/O path 874 * knows how much to actually write. 875 */ 876 rq->__data_len = sdp->sector_size; 877 ret = scsi_init_io(cmd); 878 rq->__data_len = nr_bytes; 879 return ret; 880 } 881 882 static int sd_setup_flush_cmnd(struct scsi_cmnd *cmd) 883 { 884 struct request *rq = cmd->request; 885 886 /* flush requests don't perform I/O, zero the S/G table */ 887 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 888 889 cmd->cmnd[0] = SYNCHRONIZE_CACHE; 890 cmd->cmd_len = 10; 891 cmd->transfersize = 0; 892 cmd->allowed = SD_MAX_RETRIES; 893 894 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER; 895 return BLKPREP_OK; 896 } 897 898 static int sd_setup_read_write_cmnd(struct scsi_cmnd *SCpnt) 899 { 900 struct request *rq = SCpnt->request; 901 struct scsi_device *sdp = SCpnt->device; 902 struct gendisk *disk = rq->rq_disk; 903 struct scsi_disk *sdkp; 904 sector_t block = blk_rq_pos(rq); 905 sector_t threshold; 906 unsigned int this_count = blk_rq_sectors(rq); 907 unsigned int dif, dix; 908 int ret; 909 unsigned char protect; 910 911 ret = scsi_init_io(SCpnt); 912 if (ret != BLKPREP_OK) 913 goto out; 914 SCpnt = rq->special; 915 sdkp = scsi_disk(disk); 916 917 /* from here on until we're complete, any goto out 918 * is used for a killable error condition */ 919 ret = BLKPREP_KILL; 920 921 SCSI_LOG_HLQUEUE(1, 922 scmd_printk(KERN_INFO, SCpnt, 923 "%s: block=%llu, count=%d\n", 924 __func__, (unsigned long long)block, this_count)); 925 926 if (!sdp || !scsi_device_online(sdp) || 927 block + blk_rq_sectors(rq) > get_capacity(disk)) { 928 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, 929 "Finishing %u sectors\n", 930 blk_rq_sectors(rq))); 931 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, 932 "Retry with 0x%p\n", SCpnt)); 933 goto out; 934 } 935 936 if (sdp->changed) { 937 /* 938 * quietly refuse to do anything to a changed disc until 939 * the changed bit has been reset 940 */ 941 /* printk("SCSI disk has been changed or is not present. Prohibiting further I/O.\n"); */ 942 goto out; 943 } 944 945 /* 946 * Some SD card readers can't handle multi-sector accesses which touch 947 * the last one or two hardware sectors. Split accesses as needed. 948 */ 949 threshold = get_capacity(disk) - SD_LAST_BUGGY_SECTORS * 950 (sdp->sector_size / 512); 951 952 if (unlikely(sdp->last_sector_bug && block + this_count > threshold)) { 953 if (block < threshold) { 954 /* Access up to the threshold but not beyond */ 955 this_count = threshold - block; 956 } else { 957 /* Access only a single hardware sector */ 958 this_count = sdp->sector_size / 512; 959 } 960 } 961 962 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, "block=%llu\n", 963 (unsigned long long)block)); 964 965 /* 966 * If we have a 1K hardware sectorsize, prevent access to single 967 * 512 byte sectors. In theory we could handle this - in fact 968 * the scsi cdrom driver must be able to handle this because 969 * we typically use 1K blocksizes, and cdroms typically have 970 * 2K hardware sectorsizes. Of course, things are simpler 971 * with the cdrom, since it is read-only. For performance 972 * reasons, the filesystems should be able to handle this 973 * and not force the scsi disk driver to use bounce buffers 974 * for this. 975 */ 976 if (sdp->sector_size == 1024) { 977 if ((block & 1) || (blk_rq_sectors(rq) & 1)) { 978 scmd_printk(KERN_ERR, SCpnt, 979 "Bad block number requested\n"); 980 goto out; 981 } else { 982 block = block >> 1; 983 this_count = this_count >> 1; 984 } 985 } 986 if (sdp->sector_size == 2048) { 987 if ((block & 3) || (blk_rq_sectors(rq) & 3)) { 988 scmd_printk(KERN_ERR, SCpnt, 989 "Bad block number requested\n"); 990 goto out; 991 } else { 992 block = block >> 2; 993 this_count = this_count >> 2; 994 } 995 } 996 if (sdp->sector_size == 4096) { 997 if ((block & 7) || (blk_rq_sectors(rq) & 7)) { 998 scmd_printk(KERN_ERR, SCpnt, 999 "Bad block number requested\n"); 1000 goto out; 1001 } else { 1002 block = block >> 3; 1003 this_count = this_count >> 3; 1004 } 1005 } 1006 if (rq_data_dir(rq) == WRITE) { 1007 SCpnt->cmnd[0] = WRITE_6; 1008 1009 if (blk_integrity_rq(rq)) 1010 sd_dif_prepare(SCpnt); 1011 1012 } else if (rq_data_dir(rq) == READ) { 1013 SCpnt->cmnd[0] = READ_6; 1014 } else { 1015 scmd_printk(KERN_ERR, SCpnt, "Unknown command %llx\n", (unsigned long long) rq->cmd_flags); 1016 goto out; 1017 } 1018 1019 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, 1020 "%s %d/%u 512 byte blocks.\n", 1021 (rq_data_dir(rq) == WRITE) ? 1022 "writing" : "reading", this_count, 1023 blk_rq_sectors(rq))); 1024 1025 dix = scsi_prot_sg_count(SCpnt); 1026 dif = scsi_host_dif_capable(SCpnt->device->host, sdkp->protection_type); 1027 1028 if (dif || dix) 1029 protect = sd_setup_protect_cmnd(SCpnt, dix, dif); 1030 else 1031 protect = 0; 1032 1033 if (protect && sdkp->protection_type == SD_DIF_TYPE2_PROTECTION) { 1034 SCpnt->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC); 1035 1036 if (unlikely(SCpnt->cmnd == NULL)) { 1037 ret = BLKPREP_DEFER; 1038 goto out; 1039 } 1040 1041 SCpnt->cmd_len = SD_EXT_CDB_SIZE; 1042 memset(SCpnt->cmnd, 0, SCpnt->cmd_len); 1043 SCpnt->cmnd[0] = VARIABLE_LENGTH_CMD; 1044 SCpnt->cmnd[7] = 0x18; 1045 SCpnt->cmnd[9] = (rq_data_dir(rq) == READ) ? READ_32 : WRITE_32; 1046 SCpnt->cmnd[10] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0); 1047 1048 /* LBA */ 1049 SCpnt->cmnd[12] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0; 1050 SCpnt->cmnd[13] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0; 1051 SCpnt->cmnd[14] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0; 1052 SCpnt->cmnd[15] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0; 1053 SCpnt->cmnd[16] = (unsigned char) (block >> 24) & 0xff; 1054 SCpnt->cmnd[17] = (unsigned char) (block >> 16) & 0xff; 1055 SCpnt->cmnd[18] = (unsigned char) (block >> 8) & 0xff; 1056 SCpnt->cmnd[19] = (unsigned char) block & 0xff; 1057 1058 /* Expected Indirect LBA */ 1059 SCpnt->cmnd[20] = (unsigned char) (block >> 24) & 0xff; 1060 SCpnt->cmnd[21] = (unsigned char) (block >> 16) & 0xff; 1061 SCpnt->cmnd[22] = (unsigned char) (block >> 8) & 0xff; 1062 SCpnt->cmnd[23] = (unsigned char) block & 0xff; 1063 1064 /* Transfer length */ 1065 SCpnt->cmnd[28] = (unsigned char) (this_count >> 24) & 0xff; 1066 SCpnt->cmnd[29] = (unsigned char) (this_count >> 16) & 0xff; 1067 SCpnt->cmnd[30] = (unsigned char) (this_count >> 8) & 0xff; 1068 SCpnt->cmnd[31] = (unsigned char) this_count & 0xff; 1069 } else if (sdp->use_16_for_rw || (this_count > 0xffff)) { 1070 SCpnt->cmnd[0] += READ_16 - READ_6; 1071 SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0); 1072 SCpnt->cmnd[2] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0; 1073 SCpnt->cmnd[3] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0; 1074 SCpnt->cmnd[4] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0; 1075 SCpnt->cmnd[5] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0; 1076 SCpnt->cmnd[6] = (unsigned char) (block >> 24) & 0xff; 1077 SCpnt->cmnd[7] = (unsigned char) (block >> 16) & 0xff; 1078 SCpnt->cmnd[8] = (unsigned char) (block >> 8) & 0xff; 1079 SCpnt->cmnd[9] = (unsigned char) block & 0xff; 1080 SCpnt->cmnd[10] = (unsigned char) (this_count >> 24) & 0xff; 1081 SCpnt->cmnd[11] = (unsigned char) (this_count >> 16) & 0xff; 1082 SCpnt->cmnd[12] = (unsigned char) (this_count >> 8) & 0xff; 1083 SCpnt->cmnd[13] = (unsigned char) this_count & 0xff; 1084 SCpnt->cmnd[14] = SCpnt->cmnd[15] = 0; 1085 } else if ((this_count > 0xff) || (block > 0x1fffff) || 1086 scsi_device_protection(SCpnt->device) || 1087 SCpnt->device->use_10_for_rw) { 1088 SCpnt->cmnd[0] += READ_10 - READ_6; 1089 SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0); 1090 SCpnt->cmnd[2] = (unsigned char) (block >> 24) & 0xff; 1091 SCpnt->cmnd[3] = (unsigned char) (block >> 16) & 0xff; 1092 SCpnt->cmnd[4] = (unsigned char) (block >> 8) & 0xff; 1093 SCpnt->cmnd[5] = (unsigned char) block & 0xff; 1094 SCpnt->cmnd[6] = SCpnt->cmnd[9] = 0; 1095 SCpnt->cmnd[7] = (unsigned char) (this_count >> 8) & 0xff; 1096 SCpnt->cmnd[8] = (unsigned char) this_count & 0xff; 1097 } else { 1098 if (unlikely(rq->cmd_flags & REQ_FUA)) { 1099 /* 1100 * This happens only if this drive failed 1101 * 10byte rw command with ILLEGAL_REQUEST 1102 * during operation and thus turned off 1103 * use_10_for_rw. 1104 */ 1105 scmd_printk(KERN_ERR, SCpnt, 1106 "FUA write on READ/WRITE(6) drive\n"); 1107 goto out; 1108 } 1109 1110 SCpnt->cmnd[1] |= (unsigned char) ((block >> 16) & 0x1f); 1111 SCpnt->cmnd[2] = (unsigned char) ((block >> 8) & 0xff); 1112 SCpnt->cmnd[3] = (unsigned char) block & 0xff; 1113 SCpnt->cmnd[4] = (unsigned char) this_count; 1114 SCpnt->cmnd[5] = 0; 1115 } 1116 SCpnt->sdb.length = this_count * sdp->sector_size; 1117 1118 /* 1119 * We shouldn't disconnect in the middle of a sector, so with a dumb 1120 * host adapter, it's safe to assume that we can at least transfer 1121 * this many bytes between each connect / disconnect. 1122 */ 1123 SCpnt->transfersize = sdp->sector_size; 1124 SCpnt->underflow = this_count << 9; 1125 SCpnt->allowed = SD_MAX_RETRIES; 1126 1127 /* 1128 * This indicates that the command is ready from our end to be 1129 * queued. 1130 */ 1131 ret = BLKPREP_OK; 1132 out: 1133 return ret; 1134 } 1135 1136 static int sd_init_command(struct scsi_cmnd *cmd) 1137 { 1138 struct request *rq = cmd->request; 1139 1140 if (rq->cmd_flags & REQ_DISCARD) 1141 return sd_setup_discard_cmnd(cmd); 1142 else if (rq->cmd_flags & REQ_WRITE_SAME) 1143 return sd_setup_write_same_cmnd(cmd); 1144 else if (rq->cmd_flags & REQ_FLUSH) 1145 return sd_setup_flush_cmnd(cmd); 1146 else 1147 return sd_setup_read_write_cmnd(cmd); 1148 } 1149 1150 static void sd_uninit_command(struct scsi_cmnd *SCpnt) 1151 { 1152 struct request *rq = SCpnt->request; 1153 1154 if (rq->cmd_flags & REQ_DISCARD) 1155 __free_page(rq->completion_data); 1156 1157 if (SCpnt->cmnd != rq->cmd) { 1158 mempool_free(SCpnt->cmnd, sd_cdb_pool); 1159 SCpnt->cmnd = NULL; 1160 SCpnt->cmd_len = 0; 1161 } 1162 } 1163 1164 /** 1165 * sd_open - open a scsi disk device 1166 * @inode: only i_rdev member may be used 1167 * @filp: only f_mode and f_flags may be used 1168 * 1169 * Returns 0 if successful. Returns a negated errno value in case 1170 * of error. 1171 * 1172 * Note: This can be called from a user context (e.g. fsck(1) ) 1173 * or from within the kernel (e.g. as a result of a mount(1) ). 1174 * In the latter case @inode and @filp carry an abridged amount 1175 * of information as noted above. 1176 * 1177 * Locking: called with bdev->bd_mutex held. 1178 **/ 1179 static int sd_open(struct block_device *bdev, fmode_t mode) 1180 { 1181 struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk); 1182 struct scsi_device *sdev; 1183 int retval; 1184 1185 if (!sdkp) 1186 return -ENXIO; 1187 1188 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n")); 1189 1190 sdev = sdkp->device; 1191 1192 /* 1193 * If the device is in error recovery, wait until it is done. 1194 * If the device is offline, then disallow any access to it. 1195 */ 1196 retval = -ENXIO; 1197 if (!scsi_block_when_processing_errors(sdev)) 1198 goto error_out; 1199 1200 if (sdev->removable || sdkp->write_prot) 1201 check_disk_change(bdev); 1202 1203 /* 1204 * If the drive is empty, just let the open fail. 1205 */ 1206 retval = -ENOMEDIUM; 1207 if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY)) 1208 goto error_out; 1209 1210 /* 1211 * If the device has the write protect tab set, have the open fail 1212 * if the user expects to be able to write to the thing. 1213 */ 1214 retval = -EROFS; 1215 if (sdkp->write_prot && (mode & FMODE_WRITE)) 1216 goto error_out; 1217 1218 /* 1219 * It is possible that the disk changing stuff resulted in 1220 * the device being taken offline. If this is the case, 1221 * report this to the user, and don't pretend that the 1222 * open actually succeeded. 1223 */ 1224 retval = -ENXIO; 1225 if (!scsi_device_online(sdev)) 1226 goto error_out; 1227 1228 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) { 1229 if (scsi_block_when_processing_errors(sdev)) 1230 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT); 1231 } 1232 1233 return 0; 1234 1235 error_out: 1236 scsi_disk_put(sdkp); 1237 return retval; 1238 } 1239 1240 /** 1241 * sd_release - invoked when the (last) close(2) is called on this 1242 * scsi disk. 1243 * @inode: only i_rdev member may be used 1244 * @filp: only f_mode and f_flags may be used 1245 * 1246 * Returns 0. 1247 * 1248 * Note: may block (uninterruptible) if error recovery is underway 1249 * on this disk. 1250 * 1251 * Locking: called with bdev->bd_mutex held. 1252 **/ 1253 static void sd_release(struct gendisk *disk, fmode_t mode) 1254 { 1255 struct scsi_disk *sdkp = scsi_disk(disk); 1256 struct scsi_device *sdev = sdkp->device; 1257 1258 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n")); 1259 1260 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) { 1261 if (scsi_block_when_processing_errors(sdev)) 1262 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW); 1263 } 1264 1265 /* 1266 * XXX and what if there are packets in flight and this close() 1267 * XXX is followed by a "rmmod sd_mod"? 1268 */ 1269 1270 scsi_disk_put(sdkp); 1271 } 1272 1273 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1274 { 1275 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1276 struct scsi_device *sdp = sdkp->device; 1277 struct Scsi_Host *host = sdp->host; 1278 sector_t capacity = logical_to_sectors(sdp, sdkp->capacity); 1279 int diskinfo[4]; 1280 1281 /* default to most commonly used values */ 1282 diskinfo[0] = 0x40; /* 1 << 6 */ 1283 diskinfo[1] = 0x20; /* 1 << 5 */ 1284 diskinfo[2] = capacity >> 11; 1285 1286 /* override with calculated, extended default, or driver values */ 1287 if (host->hostt->bios_param) 1288 host->hostt->bios_param(sdp, bdev, capacity, diskinfo); 1289 else 1290 scsicam_bios_param(bdev, capacity, diskinfo); 1291 1292 geo->heads = diskinfo[0]; 1293 geo->sectors = diskinfo[1]; 1294 geo->cylinders = diskinfo[2]; 1295 return 0; 1296 } 1297 1298 /** 1299 * sd_ioctl - process an ioctl 1300 * @inode: only i_rdev/i_bdev members may be used 1301 * @filp: only f_mode and f_flags may be used 1302 * @cmd: ioctl command number 1303 * @arg: this is third argument given to ioctl(2) system call. 1304 * Often contains a pointer. 1305 * 1306 * Returns 0 if successful (some ioctls return positive numbers on 1307 * success as well). Returns a negated errno value in case of error. 1308 * 1309 * Note: most ioctls are forward onto the block subsystem or further 1310 * down in the scsi subsystem. 1311 **/ 1312 static int sd_ioctl(struct block_device *bdev, fmode_t mode, 1313 unsigned int cmd, unsigned long arg) 1314 { 1315 struct gendisk *disk = bdev->bd_disk; 1316 struct scsi_disk *sdkp = scsi_disk(disk); 1317 struct scsi_device *sdp = sdkp->device; 1318 void __user *p = (void __user *)arg; 1319 int error; 1320 1321 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, " 1322 "cmd=0x%x\n", disk->disk_name, cmd)); 1323 1324 error = scsi_verify_blk_ioctl(bdev, cmd); 1325 if (error < 0) 1326 return error; 1327 1328 /* 1329 * If we are in the middle of error recovery, don't let anyone 1330 * else try and use this device. Also, if error recovery fails, it 1331 * may try and take the device offline, in which case all further 1332 * access to the device is prohibited. 1333 */ 1334 error = scsi_ioctl_block_when_processing_errors(sdp, cmd, 1335 (mode & FMODE_NDELAY) != 0); 1336 if (error) 1337 goto out; 1338 1339 /* 1340 * Send SCSI addressing ioctls directly to mid level, send other 1341 * ioctls to block level and then onto mid level if they can't be 1342 * resolved. 1343 */ 1344 switch (cmd) { 1345 case SCSI_IOCTL_GET_IDLUN: 1346 case SCSI_IOCTL_GET_BUS_NUMBER: 1347 error = scsi_ioctl(sdp, cmd, p); 1348 break; 1349 default: 1350 error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p); 1351 if (error != -ENOTTY) 1352 break; 1353 error = scsi_ioctl(sdp, cmd, p); 1354 break; 1355 } 1356 out: 1357 return error; 1358 } 1359 1360 static void set_media_not_present(struct scsi_disk *sdkp) 1361 { 1362 if (sdkp->media_present) 1363 sdkp->device->changed = 1; 1364 1365 if (sdkp->device->removable) { 1366 sdkp->media_present = 0; 1367 sdkp->capacity = 0; 1368 } 1369 } 1370 1371 static int media_not_present(struct scsi_disk *sdkp, 1372 struct scsi_sense_hdr *sshdr) 1373 { 1374 if (!scsi_sense_valid(sshdr)) 1375 return 0; 1376 1377 /* not invoked for commands that could return deferred errors */ 1378 switch (sshdr->sense_key) { 1379 case UNIT_ATTENTION: 1380 case NOT_READY: 1381 /* medium not present */ 1382 if (sshdr->asc == 0x3A) { 1383 set_media_not_present(sdkp); 1384 return 1; 1385 } 1386 } 1387 return 0; 1388 } 1389 1390 /** 1391 * sd_check_events - check media events 1392 * @disk: kernel device descriptor 1393 * @clearing: disk events currently being cleared 1394 * 1395 * Returns mask of DISK_EVENT_*. 1396 * 1397 * Note: this function is invoked from the block subsystem. 1398 **/ 1399 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing) 1400 { 1401 struct scsi_disk *sdkp = scsi_disk(disk); 1402 struct scsi_device *sdp = sdkp->device; 1403 struct scsi_sense_hdr *sshdr = NULL; 1404 int retval; 1405 1406 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n")); 1407 1408 /* 1409 * If the device is offline, don't send any commands - just pretend as 1410 * if the command failed. If the device ever comes back online, we 1411 * can deal with it then. It is only because of unrecoverable errors 1412 * that we would ever take a device offline in the first place. 1413 */ 1414 if (!scsi_device_online(sdp)) { 1415 set_media_not_present(sdkp); 1416 goto out; 1417 } 1418 1419 /* 1420 * Using TEST_UNIT_READY enables differentiation between drive with 1421 * no cartridge loaded - NOT READY, drive with changed cartridge - 1422 * UNIT ATTENTION, or with same cartridge - GOOD STATUS. 1423 * 1424 * Drives that auto spin down. eg iomega jaz 1G, will be started 1425 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever 1426 * sd_revalidate() is called. 1427 */ 1428 retval = -ENODEV; 1429 1430 if (scsi_block_when_processing_errors(sdp)) { 1431 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL); 1432 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, SD_MAX_RETRIES, 1433 sshdr); 1434 } 1435 1436 /* failed to execute TUR, assume media not present */ 1437 if (host_byte(retval)) { 1438 set_media_not_present(sdkp); 1439 goto out; 1440 } 1441 1442 if (media_not_present(sdkp, sshdr)) 1443 goto out; 1444 1445 /* 1446 * For removable scsi disk we have to recognise the presence 1447 * of a disk in the drive. 1448 */ 1449 if (!sdkp->media_present) 1450 sdp->changed = 1; 1451 sdkp->media_present = 1; 1452 out: 1453 /* 1454 * sdp->changed is set under the following conditions: 1455 * 1456 * Medium present state has changed in either direction. 1457 * Device has indicated UNIT_ATTENTION. 1458 */ 1459 kfree(sshdr); 1460 retval = sdp->changed ? DISK_EVENT_MEDIA_CHANGE : 0; 1461 sdp->changed = 0; 1462 return retval; 1463 } 1464 1465 static int sd_sync_cache(struct scsi_disk *sdkp) 1466 { 1467 int retries, res; 1468 struct scsi_device *sdp = sdkp->device; 1469 const int timeout = sdp->request_queue->rq_timeout 1470 * SD_FLUSH_TIMEOUT_MULTIPLIER; 1471 struct scsi_sense_hdr sshdr; 1472 1473 if (!scsi_device_online(sdp)) 1474 return -ENODEV; 1475 1476 for (retries = 3; retries > 0; --retries) { 1477 unsigned char cmd[10] = { 0 }; 1478 1479 cmd[0] = SYNCHRONIZE_CACHE; 1480 /* 1481 * Leave the rest of the command zero to indicate 1482 * flush everything. 1483 */ 1484 res = scsi_execute_req_flags(sdp, cmd, DMA_NONE, NULL, 0, 1485 &sshdr, timeout, SD_MAX_RETRIES, 1486 NULL, REQ_PM); 1487 if (res == 0) 1488 break; 1489 } 1490 1491 if (res) { 1492 sd_print_result(sdkp, "Synchronize Cache(10) failed", res); 1493 1494 if (driver_byte(res) & DRIVER_SENSE) 1495 sd_print_sense_hdr(sdkp, &sshdr); 1496 /* we need to evaluate the error return */ 1497 if (scsi_sense_valid(&sshdr) && 1498 (sshdr.asc == 0x3a || /* medium not present */ 1499 sshdr.asc == 0x20)) /* invalid command */ 1500 /* this is no error here */ 1501 return 0; 1502 1503 switch (host_byte(res)) { 1504 /* ignore errors due to racing a disconnection */ 1505 case DID_BAD_TARGET: 1506 case DID_NO_CONNECT: 1507 return 0; 1508 /* signal the upper layer it might try again */ 1509 case DID_BUS_BUSY: 1510 case DID_IMM_RETRY: 1511 case DID_REQUEUE: 1512 case DID_SOFT_ERROR: 1513 return -EBUSY; 1514 default: 1515 return -EIO; 1516 } 1517 } 1518 return 0; 1519 } 1520 1521 static void sd_rescan(struct device *dev) 1522 { 1523 struct scsi_disk *sdkp = dev_get_drvdata(dev); 1524 1525 revalidate_disk(sdkp->disk); 1526 } 1527 1528 1529 #ifdef CONFIG_COMPAT 1530 /* 1531 * This gets directly called from VFS. When the ioctl 1532 * is not recognized we go back to the other translation paths. 1533 */ 1534 static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode, 1535 unsigned int cmd, unsigned long arg) 1536 { 1537 struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device; 1538 int error; 1539 1540 error = scsi_ioctl_block_when_processing_errors(sdev, cmd, 1541 (mode & FMODE_NDELAY) != 0); 1542 if (error) 1543 return error; 1544 1545 /* 1546 * Let the static ioctl translation table take care of it. 1547 */ 1548 if (!sdev->host->hostt->compat_ioctl) 1549 return -ENOIOCTLCMD; 1550 return sdev->host->hostt->compat_ioctl(sdev, cmd, (void __user *)arg); 1551 } 1552 #endif 1553 1554 static char sd_pr_type(enum pr_type type) 1555 { 1556 switch (type) { 1557 case PR_WRITE_EXCLUSIVE: 1558 return 0x01; 1559 case PR_EXCLUSIVE_ACCESS: 1560 return 0x03; 1561 case PR_WRITE_EXCLUSIVE_REG_ONLY: 1562 return 0x05; 1563 case PR_EXCLUSIVE_ACCESS_REG_ONLY: 1564 return 0x06; 1565 case PR_WRITE_EXCLUSIVE_ALL_REGS: 1566 return 0x07; 1567 case PR_EXCLUSIVE_ACCESS_ALL_REGS: 1568 return 0x08; 1569 default: 1570 return 0; 1571 } 1572 }; 1573 1574 static int sd_pr_command(struct block_device *bdev, u8 sa, 1575 u64 key, u64 sa_key, u8 type, u8 flags) 1576 { 1577 struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device; 1578 struct scsi_sense_hdr sshdr; 1579 int result; 1580 u8 cmd[16] = { 0, }; 1581 u8 data[24] = { 0, }; 1582 1583 cmd[0] = PERSISTENT_RESERVE_OUT; 1584 cmd[1] = sa; 1585 cmd[2] = type; 1586 put_unaligned_be32(sizeof(data), &cmd[5]); 1587 1588 put_unaligned_be64(key, &data[0]); 1589 put_unaligned_be64(sa_key, &data[8]); 1590 data[20] = flags; 1591 1592 result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data), 1593 &sshdr, SD_TIMEOUT, SD_MAX_RETRIES, NULL); 1594 1595 if ((driver_byte(result) & DRIVER_SENSE) && 1596 (scsi_sense_valid(&sshdr))) { 1597 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result); 1598 scsi_print_sense_hdr(sdev, NULL, &sshdr); 1599 } 1600 1601 return result; 1602 } 1603 1604 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 1605 u32 flags) 1606 { 1607 if (flags & ~PR_FL_IGNORE_KEY) 1608 return -EOPNOTSUPP; 1609 return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00, 1610 old_key, new_key, 0, 1611 (1 << 0) /* APTPL */ | 1612 (1 << 2) /* ALL_TG_PT */); 1613 } 1614 1615 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 1616 u32 flags) 1617 { 1618 if (flags) 1619 return -EOPNOTSUPP; 1620 return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0); 1621 } 1622 1623 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 1624 { 1625 return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0); 1626 } 1627 1628 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 1629 enum pr_type type, bool abort) 1630 { 1631 return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key, 1632 sd_pr_type(type), 0); 1633 } 1634 1635 static int sd_pr_clear(struct block_device *bdev, u64 key) 1636 { 1637 return sd_pr_command(bdev, 0x03, key, 0, 0, 0); 1638 } 1639 1640 static const struct pr_ops sd_pr_ops = { 1641 .pr_register = sd_pr_register, 1642 .pr_reserve = sd_pr_reserve, 1643 .pr_release = sd_pr_release, 1644 .pr_preempt = sd_pr_preempt, 1645 .pr_clear = sd_pr_clear, 1646 }; 1647 1648 static const struct block_device_operations sd_fops = { 1649 .owner = THIS_MODULE, 1650 .open = sd_open, 1651 .release = sd_release, 1652 .ioctl = sd_ioctl, 1653 .getgeo = sd_getgeo, 1654 #ifdef CONFIG_COMPAT 1655 .compat_ioctl = sd_compat_ioctl, 1656 #endif 1657 .check_events = sd_check_events, 1658 .revalidate_disk = sd_revalidate_disk, 1659 .unlock_native_capacity = sd_unlock_native_capacity, 1660 .pr_ops = &sd_pr_ops, 1661 }; 1662 1663 /** 1664 * sd_eh_action - error handling callback 1665 * @scmd: sd-issued command that has failed 1666 * @eh_disp: The recovery disposition suggested by the midlayer 1667 * 1668 * This function is called by the SCSI midlayer upon completion of an 1669 * error test command (currently TEST UNIT READY). The result of sending 1670 * the eh command is passed in eh_disp. We're looking for devices that 1671 * fail medium access commands but are OK with non access commands like 1672 * test unit ready (so wrongly see the device as having a successful 1673 * recovery) 1674 **/ 1675 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp) 1676 { 1677 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk); 1678 1679 if (!scsi_device_online(scmd->device) || 1680 !scsi_medium_access_command(scmd) || 1681 host_byte(scmd->result) != DID_TIME_OUT || 1682 eh_disp != SUCCESS) 1683 return eh_disp; 1684 1685 /* 1686 * The device has timed out executing a medium access command. 1687 * However, the TEST UNIT READY command sent during error 1688 * handling completed successfully. Either the device is in the 1689 * process of recovering or has it suffered an internal failure 1690 * that prevents access to the storage medium. 1691 */ 1692 sdkp->medium_access_timed_out++; 1693 1694 /* 1695 * If the device keeps failing read/write commands but TEST UNIT 1696 * READY always completes successfully we assume that medium 1697 * access is no longer possible and take the device offline. 1698 */ 1699 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) { 1700 scmd_printk(KERN_ERR, scmd, 1701 "Medium access timeout failure. Offlining disk!\n"); 1702 scsi_device_set_state(scmd->device, SDEV_OFFLINE); 1703 1704 return FAILED; 1705 } 1706 1707 return eh_disp; 1708 } 1709 1710 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd) 1711 { 1712 u64 start_lba = blk_rq_pos(scmd->request); 1713 u64 end_lba = blk_rq_pos(scmd->request) + (scsi_bufflen(scmd) / 512); 1714 u64 factor = scmd->device->sector_size / 512; 1715 u64 bad_lba; 1716 int info_valid; 1717 /* 1718 * resid is optional but mostly filled in. When it's unused, 1719 * its value is zero, so we assume the whole buffer transferred 1720 */ 1721 unsigned int transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd); 1722 unsigned int good_bytes; 1723 1724 if (scmd->request->cmd_type != REQ_TYPE_FS) 1725 return 0; 1726 1727 info_valid = scsi_get_sense_info_fld(scmd->sense_buffer, 1728 SCSI_SENSE_BUFFERSIZE, 1729 &bad_lba); 1730 if (!info_valid) 1731 return 0; 1732 1733 if (scsi_bufflen(scmd) <= scmd->device->sector_size) 1734 return 0; 1735 1736 /* be careful ... don't want any overflows */ 1737 do_div(start_lba, factor); 1738 do_div(end_lba, factor); 1739 1740 /* The bad lba was reported incorrectly, we have no idea where 1741 * the error is. 1742 */ 1743 if (bad_lba < start_lba || bad_lba >= end_lba) 1744 return 0; 1745 1746 /* This computation should always be done in terms of 1747 * the resolution of the device's medium. 1748 */ 1749 good_bytes = (bad_lba - start_lba) * scmd->device->sector_size; 1750 return min(good_bytes, transferred); 1751 } 1752 1753 /** 1754 * sd_done - bottom half handler: called when the lower level 1755 * driver has completed (successfully or otherwise) a scsi command. 1756 * @SCpnt: mid-level's per command structure. 1757 * 1758 * Note: potentially run from within an ISR. Must not block. 1759 **/ 1760 static int sd_done(struct scsi_cmnd *SCpnt) 1761 { 1762 int result = SCpnt->result; 1763 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt); 1764 struct scsi_sense_hdr sshdr; 1765 struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk); 1766 struct request *req = SCpnt->request; 1767 int sense_valid = 0; 1768 int sense_deferred = 0; 1769 unsigned char op = SCpnt->cmnd[0]; 1770 unsigned char unmap = SCpnt->cmnd[1] & 8; 1771 1772 if (req->cmd_flags & REQ_DISCARD || req->cmd_flags & REQ_WRITE_SAME) { 1773 if (!result) { 1774 good_bytes = blk_rq_bytes(req); 1775 scsi_set_resid(SCpnt, 0); 1776 } else { 1777 good_bytes = 0; 1778 scsi_set_resid(SCpnt, blk_rq_bytes(req)); 1779 } 1780 } 1781 1782 if (result) { 1783 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr); 1784 if (sense_valid) 1785 sense_deferred = scsi_sense_is_deferred(&sshdr); 1786 } 1787 sdkp->medium_access_timed_out = 0; 1788 1789 if (driver_byte(result) != DRIVER_SENSE && 1790 (!sense_valid || sense_deferred)) 1791 goto out; 1792 1793 switch (sshdr.sense_key) { 1794 case HARDWARE_ERROR: 1795 case MEDIUM_ERROR: 1796 good_bytes = sd_completed_bytes(SCpnt); 1797 break; 1798 case RECOVERED_ERROR: 1799 good_bytes = scsi_bufflen(SCpnt); 1800 break; 1801 case NO_SENSE: 1802 /* This indicates a false check condition, so ignore it. An 1803 * unknown amount of data was transferred so treat it as an 1804 * error. 1805 */ 1806 SCpnt->result = 0; 1807 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 1808 break; 1809 case ABORTED_COMMAND: 1810 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */ 1811 good_bytes = sd_completed_bytes(SCpnt); 1812 break; 1813 case ILLEGAL_REQUEST: 1814 if (sshdr.asc == 0x10) /* DIX: Host detected corruption */ 1815 good_bytes = sd_completed_bytes(SCpnt); 1816 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */ 1817 if (sshdr.asc == 0x20 || sshdr.asc == 0x24) { 1818 switch (op) { 1819 case UNMAP: 1820 sd_config_discard(sdkp, SD_LBP_DISABLE); 1821 break; 1822 case WRITE_SAME_16: 1823 case WRITE_SAME: 1824 if (unmap) 1825 sd_config_discard(sdkp, SD_LBP_DISABLE); 1826 else { 1827 sdkp->device->no_write_same = 1; 1828 sd_config_write_same(sdkp); 1829 1830 good_bytes = 0; 1831 req->__data_len = blk_rq_bytes(req); 1832 req->cmd_flags |= REQ_QUIET; 1833 } 1834 } 1835 } 1836 break; 1837 default: 1838 break; 1839 } 1840 out: 1841 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt, 1842 "sd_done: completed %d of %d bytes\n", 1843 good_bytes, scsi_bufflen(SCpnt))); 1844 1845 if (rq_data_dir(SCpnt->request) == READ && scsi_prot_sg_count(SCpnt)) 1846 sd_dif_complete(SCpnt, good_bytes); 1847 1848 return good_bytes; 1849 } 1850 1851 /* 1852 * spinup disk - called only in sd_revalidate_disk() 1853 */ 1854 static void 1855 sd_spinup_disk(struct scsi_disk *sdkp) 1856 { 1857 unsigned char cmd[10]; 1858 unsigned long spintime_expire = 0; 1859 int retries, spintime; 1860 unsigned int the_result; 1861 struct scsi_sense_hdr sshdr; 1862 int sense_valid = 0; 1863 1864 spintime = 0; 1865 1866 /* Spin up drives, as required. Only do this at boot time */ 1867 /* Spinup needs to be done for module loads too. */ 1868 do { 1869 retries = 0; 1870 1871 do { 1872 cmd[0] = TEST_UNIT_READY; 1873 memset((void *) &cmd[1], 0, 9); 1874 1875 the_result = scsi_execute_req(sdkp->device, cmd, 1876 DMA_NONE, NULL, 0, 1877 &sshdr, SD_TIMEOUT, 1878 SD_MAX_RETRIES, NULL); 1879 1880 /* 1881 * If the drive has indicated to us that it 1882 * doesn't have any media in it, don't bother 1883 * with any more polling. 1884 */ 1885 if (media_not_present(sdkp, &sshdr)) 1886 return; 1887 1888 if (the_result) 1889 sense_valid = scsi_sense_valid(&sshdr); 1890 retries++; 1891 } while (retries < 3 && 1892 (!scsi_status_is_good(the_result) || 1893 ((driver_byte(the_result) & DRIVER_SENSE) && 1894 sense_valid && sshdr.sense_key == UNIT_ATTENTION))); 1895 1896 if ((driver_byte(the_result) & DRIVER_SENSE) == 0) { 1897 /* no sense, TUR either succeeded or failed 1898 * with a status error */ 1899 if(!spintime && !scsi_status_is_good(the_result)) { 1900 sd_print_result(sdkp, "Test Unit Ready failed", 1901 the_result); 1902 } 1903 break; 1904 } 1905 1906 /* 1907 * The device does not want the automatic start to be issued. 1908 */ 1909 if (sdkp->device->no_start_on_add) 1910 break; 1911 1912 if (sense_valid && sshdr.sense_key == NOT_READY) { 1913 if (sshdr.asc == 4 && sshdr.ascq == 3) 1914 break; /* manual intervention required */ 1915 if (sshdr.asc == 4 && sshdr.ascq == 0xb) 1916 break; /* standby */ 1917 if (sshdr.asc == 4 && sshdr.ascq == 0xc) 1918 break; /* unavailable */ 1919 /* 1920 * Issue command to spin up drive when not ready 1921 */ 1922 if (!spintime) { 1923 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk..."); 1924 cmd[0] = START_STOP; 1925 cmd[1] = 1; /* Return immediately */ 1926 memset((void *) &cmd[2], 0, 8); 1927 cmd[4] = 1; /* Start spin cycle */ 1928 if (sdkp->device->start_stop_pwr_cond) 1929 cmd[4] |= 1 << 4; 1930 scsi_execute_req(sdkp->device, cmd, DMA_NONE, 1931 NULL, 0, &sshdr, 1932 SD_TIMEOUT, SD_MAX_RETRIES, 1933 NULL); 1934 spintime_expire = jiffies + 100 * HZ; 1935 spintime = 1; 1936 } 1937 /* Wait 1 second for next try */ 1938 msleep(1000); 1939 printk("."); 1940 1941 /* 1942 * Wait for USB flash devices with slow firmware. 1943 * Yes, this sense key/ASC combination shouldn't 1944 * occur here. It's characteristic of these devices. 1945 */ 1946 } else if (sense_valid && 1947 sshdr.sense_key == UNIT_ATTENTION && 1948 sshdr.asc == 0x28) { 1949 if (!spintime) { 1950 spintime_expire = jiffies + 5 * HZ; 1951 spintime = 1; 1952 } 1953 /* Wait 1 second for next try */ 1954 msleep(1000); 1955 } else { 1956 /* we don't understand the sense code, so it's 1957 * probably pointless to loop */ 1958 if(!spintime) { 1959 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n"); 1960 sd_print_sense_hdr(sdkp, &sshdr); 1961 } 1962 break; 1963 } 1964 1965 } while (spintime && time_before_eq(jiffies, spintime_expire)); 1966 1967 if (spintime) { 1968 if (scsi_status_is_good(the_result)) 1969 printk("ready\n"); 1970 else 1971 printk("not responding...\n"); 1972 } 1973 } 1974 1975 1976 /* 1977 * Determine whether disk supports Data Integrity Field. 1978 */ 1979 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer) 1980 { 1981 struct scsi_device *sdp = sdkp->device; 1982 u8 type; 1983 int ret = 0; 1984 1985 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) 1986 return ret; 1987 1988 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */ 1989 1990 if (type > SD_DIF_TYPE3_PROTECTION) 1991 ret = -ENODEV; 1992 else if (scsi_host_dif_capable(sdp->host, type)) 1993 ret = 1; 1994 1995 if (sdkp->first_scan || type != sdkp->protection_type) 1996 switch (ret) { 1997 case -ENODEV: 1998 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \ 1999 " protection type %u. Disabling disk!\n", 2000 type); 2001 break; 2002 case 1: 2003 sd_printk(KERN_NOTICE, sdkp, 2004 "Enabling DIF Type %u protection\n", type); 2005 break; 2006 case 0: 2007 sd_printk(KERN_NOTICE, sdkp, 2008 "Disabling DIF Type %u protection\n", type); 2009 break; 2010 } 2011 2012 sdkp->protection_type = type; 2013 2014 return ret; 2015 } 2016 2017 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp, 2018 struct scsi_sense_hdr *sshdr, int sense_valid, 2019 int the_result) 2020 { 2021 if (driver_byte(the_result) & DRIVER_SENSE) 2022 sd_print_sense_hdr(sdkp, sshdr); 2023 else 2024 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n"); 2025 2026 /* 2027 * Set dirty bit for removable devices if not ready - 2028 * sometimes drives will not report this properly. 2029 */ 2030 if (sdp->removable && 2031 sense_valid && sshdr->sense_key == NOT_READY) 2032 set_media_not_present(sdkp); 2033 2034 /* 2035 * We used to set media_present to 0 here to indicate no media 2036 * in the drive, but some drives fail read capacity even with 2037 * media present, so we can't do that. 2038 */ 2039 sdkp->capacity = 0; /* unknown mapped to zero - as usual */ 2040 } 2041 2042 #define RC16_LEN 32 2043 #if RC16_LEN > SD_BUF_SIZE 2044 #error RC16_LEN must not be more than SD_BUF_SIZE 2045 #endif 2046 2047 #define READ_CAPACITY_RETRIES_ON_RESET 10 2048 2049 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp, 2050 unsigned char *buffer) 2051 { 2052 unsigned char cmd[16]; 2053 struct scsi_sense_hdr sshdr; 2054 int sense_valid = 0; 2055 int the_result; 2056 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2057 unsigned int alignment; 2058 unsigned long long lba; 2059 unsigned sector_size; 2060 2061 if (sdp->no_read_capacity_16) 2062 return -EINVAL; 2063 2064 do { 2065 memset(cmd, 0, 16); 2066 cmd[0] = SERVICE_ACTION_IN_16; 2067 cmd[1] = SAI_READ_CAPACITY_16; 2068 cmd[13] = RC16_LEN; 2069 memset(buffer, 0, RC16_LEN); 2070 2071 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, 2072 buffer, RC16_LEN, &sshdr, 2073 SD_TIMEOUT, SD_MAX_RETRIES, NULL); 2074 2075 if (media_not_present(sdkp, &sshdr)) 2076 return -ENODEV; 2077 2078 if (the_result) { 2079 sense_valid = scsi_sense_valid(&sshdr); 2080 if (sense_valid && 2081 sshdr.sense_key == ILLEGAL_REQUEST && 2082 (sshdr.asc == 0x20 || sshdr.asc == 0x24) && 2083 sshdr.ascq == 0x00) 2084 /* Invalid Command Operation Code or 2085 * Invalid Field in CDB, just retry 2086 * silently with RC10 */ 2087 return -EINVAL; 2088 if (sense_valid && 2089 sshdr.sense_key == UNIT_ATTENTION && 2090 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2091 /* Device reset might occur several times, 2092 * give it one more chance */ 2093 if (--reset_retries > 0) 2094 continue; 2095 } 2096 retries--; 2097 2098 } while (the_result && retries); 2099 2100 if (the_result) { 2101 sd_print_result(sdkp, "Read Capacity(16) failed", the_result); 2102 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2103 return -EINVAL; 2104 } 2105 2106 sector_size = get_unaligned_be32(&buffer[8]); 2107 lba = get_unaligned_be64(&buffer[0]); 2108 2109 if (sd_read_protection_type(sdkp, buffer) < 0) { 2110 sdkp->capacity = 0; 2111 return -ENODEV; 2112 } 2113 2114 if ((sizeof(sdkp->capacity) == 4) && (lba >= 0xffffffffULL)) { 2115 sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a " 2116 "kernel compiled with support for large block " 2117 "devices.\n"); 2118 sdkp->capacity = 0; 2119 return -EOVERFLOW; 2120 } 2121 2122 /* Logical blocks per physical block exponent */ 2123 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size; 2124 2125 /* Lowest aligned logical block */ 2126 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size; 2127 blk_queue_alignment_offset(sdp->request_queue, alignment); 2128 if (alignment && sdkp->first_scan) 2129 sd_printk(KERN_NOTICE, sdkp, 2130 "physical block alignment offset: %u\n", alignment); 2131 2132 if (buffer[14] & 0x80) { /* LBPME */ 2133 sdkp->lbpme = 1; 2134 2135 if (buffer[14] & 0x40) /* LBPRZ */ 2136 sdkp->lbprz = 1; 2137 2138 sd_config_discard(sdkp, SD_LBP_WS16); 2139 } 2140 2141 sdkp->capacity = lba + 1; 2142 return sector_size; 2143 } 2144 2145 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp, 2146 unsigned char *buffer) 2147 { 2148 unsigned char cmd[16]; 2149 struct scsi_sense_hdr sshdr; 2150 int sense_valid = 0; 2151 int the_result; 2152 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2153 sector_t lba; 2154 unsigned sector_size; 2155 2156 do { 2157 cmd[0] = READ_CAPACITY; 2158 memset(&cmd[1], 0, 9); 2159 memset(buffer, 0, 8); 2160 2161 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, 2162 buffer, 8, &sshdr, 2163 SD_TIMEOUT, SD_MAX_RETRIES, NULL); 2164 2165 if (media_not_present(sdkp, &sshdr)) 2166 return -ENODEV; 2167 2168 if (the_result) { 2169 sense_valid = scsi_sense_valid(&sshdr); 2170 if (sense_valid && 2171 sshdr.sense_key == UNIT_ATTENTION && 2172 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2173 /* Device reset might occur several times, 2174 * give it one more chance */ 2175 if (--reset_retries > 0) 2176 continue; 2177 } 2178 retries--; 2179 2180 } while (the_result && retries); 2181 2182 if (the_result) { 2183 sd_print_result(sdkp, "Read Capacity(10) failed", the_result); 2184 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2185 return -EINVAL; 2186 } 2187 2188 sector_size = get_unaligned_be32(&buffer[4]); 2189 lba = get_unaligned_be32(&buffer[0]); 2190 2191 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) { 2192 /* Some buggy (usb cardreader) devices return an lba of 2193 0xffffffff when the want to report a size of 0 (with 2194 which they really mean no media is present) */ 2195 sdkp->capacity = 0; 2196 sdkp->physical_block_size = sector_size; 2197 return sector_size; 2198 } 2199 2200 if ((sizeof(sdkp->capacity) == 4) && (lba == 0xffffffff)) { 2201 sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a " 2202 "kernel compiled with support for large block " 2203 "devices.\n"); 2204 sdkp->capacity = 0; 2205 return -EOVERFLOW; 2206 } 2207 2208 sdkp->capacity = lba + 1; 2209 sdkp->physical_block_size = sector_size; 2210 return sector_size; 2211 } 2212 2213 static int sd_try_rc16_first(struct scsi_device *sdp) 2214 { 2215 if (sdp->host->max_cmd_len < 16) 2216 return 0; 2217 if (sdp->try_rc_10_first) 2218 return 0; 2219 if (sdp->scsi_level > SCSI_SPC_2) 2220 return 1; 2221 if (scsi_device_protection(sdp)) 2222 return 1; 2223 return 0; 2224 } 2225 2226 /* 2227 * read disk capacity 2228 */ 2229 static void 2230 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer) 2231 { 2232 int sector_size; 2233 struct scsi_device *sdp = sdkp->device; 2234 sector_t old_capacity = sdkp->capacity; 2235 2236 if (sd_try_rc16_first(sdp)) { 2237 sector_size = read_capacity_16(sdkp, sdp, buffer); 2238 if (sector_size == -EOVERFLOW) 2239 goto got_data; 2240 if (sector_size == -ENODEV) 2241 return; 2242 if (sector_size < 0) 2243 sector_size = read_capacity_10(sdkp, sdp, buffer); 2244 if (sector_size < 0) 2245 return; 2246 } else { 2247 sector_size = read_capacity_10(sdkp, sdp, buffer); 2248 if (sector_size == -EOVERFLOW) 2249 goto got_data; 2250 if (sector_size < 0) 2251 return; 2252 if ((sizeof(sdkp->capacity) > 4) && 2253 (sdkp->capacity > 0xffffffffULL)) { 2254 int old_sector_size = sector_size; 2255 sd_printk(KERN_NOTICE, sdkp, "Very big device. " 2256 "Trying to use READ CAPACITY(16).\n"); 2257 sector_size = read_capacity_16(sdkp, sdp, buffer); 2258 if (sector_size < 0) { 2259 sd_printk(KERN_NOTICE, sdkp, 2260 "Using 0xffffffff as device size\n"); 2261 sdkp->capacity = 1 + (sector_t) 0xffffffff; 2262 sector_size = old_sector_size; 2263 goto got_data; 2264 } 2265 } 2266 } 2267 2268 /* Some devices are known to return the total number of blocks, 2269 * not the highest block number. Some devices have versions 2270 * which do this and others which do not. Some devices we might 2271 * suspect of doing this but we don't know for certain. 2272 * 2273 * If we know the reported capacity is wrong, decrement it. If 2274 * we can only guess, then assume the number of blocks is even 2275 * (usually true but not always) and err on the side of lowering 2276 * the capacity. 2277 */ 2278 if (sdp->fix_capacity || 2279 (sdp->guess_capacity && (sdkp->capacity & 0x01))) { 2280 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count " 2281 "from its reported value: %llu\n", 2282 (unsigned long long) sdkp->capacity); 2283 --sdkp->capacity; 2284 } 2285 2286 got_data: 2287 if (sector_size == 0) { 2288 sector_size = 512; 2289 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, " 2290 "assuming 512.\n"); 2291 } 2292 2293 if (sector_size != 512 && 2294 sector_size != 1024 && 2295 sector_size != 2048 && 2296 sector_size != 4096) { 2297 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n", 2298 sector_size); 2299 /* 2300 * The user might want to re-format the drive with 2301 * a supported sectorsize. Once this happens, it 2302 * would be relatively trivial to set the thing up. 2303 * For this reason, we leave the thing in the table. 2304 */ 2305 sdkp->capacity = 0; 2306 /* 2307 * set a bogus sector size so the normal read/write 2308 * logic in the block layer will eventually refuse any 2309 * request on this device without tripping over power 2310 * of two sector size assumptions 2311 */ 2312 sector_size = 512; 2313 } 2314 blk_queue_logical_block_size(sdp->request_queue, sector_size); 2315 2316 { 2317 char cap_str_2[10], cap_str_10[10]; 2318 2319 string_get_size(sdkp->capacity, sector_size, 2320 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2)); 2321 string_get_size(sdkp->capacity, sector_size, 2322 STRING_UNITS_10, cap_str_10, 2323 sizeof(cap_str_10)); 2324 2325 if (sdkp->first_scan || old_capacity != sdkp->capacity) { 2326 sd_printk(KERN_NOTICE, sdkp, 2327 "%llu %d-byte logical blocks: (%s/%s)\n", 2328 (unsigned long long)sdkp->capacity, 2329 sector_size, cap_str_10, cap_str_2); 2330 2331 if (sdkp->physical_block_size != sector_size) 2332 sd_printk(KERN_NOTICE, sdkp, 2333 "%u-byte physical blocks\n", 2334 sdkp->physical_block_size); 2335 } 2336 } 2337 2338 if (sdkp->capacity > 0xffffffff) 2339 sdp->use_16_for_rw = 1; 2340 2341 blk_queue_physical_block_size(sdp->request_queue, 2342 sdkp->physical_block_size); 2343 sdkp->device->sector_size = sector_size; 2344 } 2345 2346 /* called with buffer of length 512 */ 2347 static inline int 2348 sd_do_mode_sense(struct scsi_device *sdp, int dbd, int modepage, 2349 unsigned char *buffer, int len, struct scsi_mode_data *data, 2350 struct scsi_sense_hdr *sshdr) 2351 { 2352 return scsi_mode_sense(sdp, dbd, modepage, buffer, len, 2353 SD_TIMEOUT, SD_MAX_RETRIES, data, 2354 sshdr); 2355 } 2356 2357 /* 2358 * read write protect setting, if possible - called only in sd_revalidate_disk() 2359 * called with buffer of length SD_BUF_SIZE 2360 */ 2361 static void 2362 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer) 2363 { 2364 int res; 2365 struct scsi_device *sdp = sdkp->device; 2366 struct scsi_mode_data data; 2367 int old_wp = sdkp->write_prot; 2368 2369 set_disk_ro(sdkp->disk, 0); 2370 if (sdp->skip_ms_page_3f) { 2371 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n"); 2372 return; 2373 } 2374 2375 if (sdp->use_192_bytes_for_3f) { 2376 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 192, &data, NULL); 2377 } else { 2378 /* 2379 * First attempt: ask for all pages (0x3F), but only 4 bytes. 2380 * We have to start carefully: some devices hang if we ask 2381 * for more than is available. 2382 */ 2383 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 4, &data, NULL); 2384 2385 /* 2386 * Second attempt: ask for page 0 When only page 0 is 2387 * implemented, a request for page 3F may return Sense Key 2388 * 5: Illegal Request, Sense Code 24: Invalid field in 2389 * CDB. 2390 */ 2391 if (!scsi_status_is_good(res)) 2392 res = sd_do_mode_sense(sdp, 0, 0, buffer, 4, &data, NULL); 2393 2394 /* 2395 * Third attempt: ask 255 bytes, as we did earlier. 2396 */ 2397 if (!scsi_status_is_good(res)) 2398 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 255, 2399 &data, NULL); 2400 } 2401 2402 if (!scsi_status_is_good(res)) { 2403 sd_first_printk(KERN_WARNING, sdkp, 2404 "Test WP failed, assume Write Enabled\n"); 2405 } else { 2406 sdkp->write_prot = ((data.device_specific & 0x80) != 0); 2407 set_disk_ro(sdkp->disk, sdkp->write_prot); 2408 if (sdkp->first_scan || old_wp != sdkp->write_prot) { 2409 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n", 2410 sdkp->write_prot ? "on" : "off"); 2411 sd_printk(KERN_DEBUG, sdkp, 2412 "Mode Sense: %02x %02x %02x %02x\n", 2413 buffer[0], buffer[1], buffer[2], buffer[3]); 2414 } 2415 } 2416 } 2417 2418 /* 2419 * sd_read_cache_type - called only from sd_revalidate_disk() 2420 * called with buffer of length SD_BUF_SIZE 2421 */ 2422 static void 2423 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer) 2424 { 2425 int len = 0, res; 2426 struct scsi_device *sdp = sdkp->device; 2427 2428 int dbd; 2429 int modepage; 2430 int first_len; 2431 struct scsi_mode_data data; 2432 struct scsi_sense_hdr sshdr; 2433 int old_wce = sdkp->WCE; 2434 int old_rcd = sdkp->RCD; 2435 int old_dpofua = sdkp->DPOFUA; 2436 2437 2438 if (sdkp->cache_override) 2439 return; 2440 2441 first_len = 4; 2442 if (sdp->skip_ms_page_8) { 2443 if (sdp->type == TYPE_RBC) 2444 goto defaults; 2445 else { 2446 if (sdp->skip_ms_page_3f) 2447 goto defaults; 2448 modepage = 0x3F; 2449 if (sdp->use_192_bytes_for_3f) 2450 first_len = 192; 2451 dbd = 0; 2452 } 2453 } else if (sdp->type == TYPE_RBC) { 2454 modepage = 6; 2455 dbd = 8; 2456 } else { 2457 modepage = 8; 2458 dbd = 0; 2459 } 2460 2461 /* cautiously ask */ 2462 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, first_len, 2463 &data, &sshdr); 2464 2465 if (!scsi_status_is_good(res)) 2466 goto bad_sense; 2467 2468 if (!data.header_length) { 2469 modepage = 6; 2470 first_len = 0; 2471 sd_first_printk(KERN_ERR, sdkp, 2472 "Missing header in MODE_SENSE response\n"); 2473 } 2474 2475 /* that went OK, now ask for the proper length */ 2476 len = data.length; 2477 2478 /* 2479 * We're only interested in the first three bytes, actually. 2480 * But the data cache page is defined for the first 20. 2481 */ 2482 if (len < 3) 2483 goto bad_sense; 2484 else if (len > SD_BUF_SIZE) { 2485 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter " 2486 "data from %d to %d bytes\n", len, SD_BUF_SIZE); 2487 len = SD_BUF_SIZE; 2488 } 2489 if (modepage == 0x3F && sdp->use_192_bytes_for_3f) 2490 len = 192; 2491 2492 /* Get the data */ 2493 if (len > first_len) 2494 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, len, 2495 &data, &sshdr); 2496 2497 if (scsi_status_is_good(res)) { 2498 int offset = data.header_length + data.block_descriptor_length; 2499 2500 while (offset < len) { 2501 u8 page_code = buffer[offset] & 0x3F; 2502 u8 spf = buffer[offset] & 0x40; 2503 2504 if (page_code == 8 || page_code == 6) { 2505 /* We're interested only in the first 3 bytes. 2506 */ 2507 if (len - offset <= 2) { 2508 sd_first_printk(KERN_ERR, sdkp, 2509 "Incomplete mode parameter " 2510 "data\n"); 2511 goto defaults; 2512 } else { 2513 modepage = page_code; 2514 goto Page_found; 2515 } 2516 } else { 2517 /* Go to the next page */ 2518 if (spf && len - offset > 3) 2519 offset += 4 + (buffer[offset+2] << 8) + 2520 buffer[offset+3]; 2521 else if (!spf && len - offset > 1) 2522 offset += 2 + buffer[offset+1]; 2523 else { 2524 sd_first_printk(KERN_ERR, sdkp, 2525 "Incomplete mode " 2526 "parameter data\n"); 2527 goto defaults; 2528 } 2529 } 2530 } 2531 2532 sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n"); 2533 goto defaults; 2534 2535 Page_found: 2536 if (modepage == 8) { 2537 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0); 2538 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0); 2539 } else { 2540 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0); 2541 sdkp->RCD = 0; 2542 } 2543 2544 sdkp->DPOFUA = (data.device_specific & 0x10) != 0; 2545 if (sdp->broken_fua) { 2546 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n"); 2547 sdkp->DPOFUA = 0; 2548 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw) { 2549 sd_first_printk(KERN_NOTICE, sdkp, 2550 "Uses READ/WRITE(6), disabling FUA\n"); 2551 sdkp->DPOFUA = 0; 2552 } 2553 2554 /* No cache flush allowed for write protected devices */ 2555 if (sdkp->WCE && sdkp->write_prot) 2556 sdkp->WCE = 0; 2557 2558 if (sdkp->first_scan || old_wce != sdkp->WCE || 2559 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA) 2560 sd_printk(KERN_NOTICE, sdkp, 2561 "Write cache: %s, read cache: %s, %s\n", 2562 sdkp->WCE ? "enabled" : "disabled", 2563 sdkp->RCD ? "disabled" : "enabled", 2564 sdkp->DPOFUA ? "supports DPO and FUA" 2565 : "doesn't support DPO or FUA"); 2566 2567 return; 2568 } 2569 2570 bad_sense: 2571 if (scsi_sense_valid(&sshdr) && 2572 sshdr.sense_key == ILLEGAL_REQUEST && 2573 sshdr.asc == 0x24 && sshdr.ascq == 0x0) 2574 /* Invalid field in CDB */ 2575 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n"); 2576 else 2577 sd_first_printk(KERN_ERR, sdkp, 2578 "Asking for cache data failed\n"); 2579 2580 defaults: 2581 if (sdp->wce_default_on) { 2582 sd_first_printk(KERN_NOTICE, sdkp, 2583 "Assuming drive cache: write back\n"); 2584 sdkp->WCE = 1; 2585 } else { 2586 sd_first_printk(KERN_ERR, sdkp, 2587 "Assuming drive cache: write through\n"); 2588 sdkp->WCE = 0; 2589 } 2590 sdkp->RCD = 0; 2591 sdkp->DPOFUA = 0; 2592 } 2593 2594 /* 2595 * The ATO bit indicates whether the DIF application tag is available 2596 * for use by the operating system. 2597 */ 2598 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer) 2599 { 2600 int res, offset; 2601 struct scsi_device *sdp = sdkp->device; 2602 struct scsi_mode_data data; 2603 struct scsi_sense_hdr sshdr; 2604 2605 if (sdp->type != TYPE_DISK) 2606 return; 2607 2608 if (sdkp->protection_type == 0) 2609 return; 2610 2611 res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT, 2612 SD_MAX_RETRIES, &data, &sshdr); 2613 2614 if (!scsi_status_is_good(res) || !data.header_length || 2615 data.length < 6) { 2616 sd_first_printk(KERN_WARNING, sdkp, 2617 "getting Control mode page failed, assume no ATO\n"); 2618 2619 if (scsi_sense_valid(&sshdr)) 2620 sd_print_sense_hdr(sdkp, &sshdr); 2621 2622 return; 2623 } 2624 2625 offset = data.header_length + data.block_descriptor_length; 2626 2627 if ((buffer[offset] & 0x3f) != 0x0a) { 2628 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n"); 2629 return; 2630 } 2631 2632 if ((buffer[offset + 5] & 0x80) == 0) 2633 return; 2634 2635 sdkp->ATO = 1; 2636 2637 return; 2638 } 2639 2640 /** 2641 * sd_read_block_limits - Query disk device for preferred I/O sizes. 2642 * @disk: disk to query 2643 */ 2644 static void sd_read_block_limits(struct scsi_disk *sdkp) 2645 { 2646 unsigned int sector_sz = sdkp->device->sector_size; 2647 const int vpd_len = 64; 2648 unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL); 2649 2650 if (!buffer || 2651 /* Block Limits VPD */ 2652 scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len)) 2653 goto out; 2654 2655 blk_queue_io_min(sdkp->disk->queue, 2656 get_unaligned_be16(&buffer[6]) * sector_sz); 2657 2658 sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]); 2659 sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]); 2660 2661 if (buffer[3] == 0x3c) { 2662 unsigned int lba_count, desc_count; 2663 2664 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]); 2665 2666 if (!sdkp->lbpme) 2667 goto out; 2668 2669 lba_count = get_unaligned_be32(&buffer[20]); 2670 desc_count = get_unaligned_be32(&buffer[24]); 2671 2672 if (lba_count && desc_count) 2673 sdkp->max_unmap_blocks = lba_count; 2674 2675 sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]); 2676 2677 if (buffer[32] & 0x80) 2678 sdkp->unmap_alignment = 2679 get_unaligned_be32(&buffer[32]) & ~(1 << 31); 2680 2681 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */ 2682 2683 if (sdkp->max_unmap_blocks) 2684 sd_config_discard(sdkp, SD_LBP_UNMAP); 2685 else 2686 sd_config_discard(sdkp, SD_LBP_WS16); 2687 2688 } else { /* LBP VPD page tells us what to use */ 2689 if (sdkp->lbpu && sdkp->max_unmap_blocks && !sdkp->lbprz) 2690 sd_config_discard(sdkp, SD_LBP_UNMAP); 2691 else if (sdkp->lbpws) 2692 sd_config_discard(sdkp, SD_LBP_WS16); 2693 else if (sdkp->lbpws10) 2694 sd_config_discard(sdkp, SD_LBP_WS10); 2695 else if (sdkp->lbpu && sdkp->max_unmap_blocks) 2696 sd_config_discard(sdkp, SD_LBP_UNMAP); 2697 else 2698 sd_config_discard(sdkp, SD_LBP_DISABLE); 2699 } 2700 } 2701 2702 out: 2703 kfree(buffer); 2704 } 2705 2706 /** 2707 * sd_read_block_characteristics - Query block dev. characteristics 2708 * @disk: disk to query 2709 */ 2710 static void sd_read_block_characteristics(struct scsi_disk *sdkp) 2711 { 2712 unsigned char *buffer; 2713 u16 rot; 2714 const int vpd_len = 64; 2715 2716 buffer = kmalloc(vpd_len, GFP_KERNEL); 2717 2718 if (!buffer || 2719 /* Block Device Characteristics VPD */ 2720 scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len)) 2721 goto out; 2722 2723 rot = get_unaligned_be16(&buffer[4]); 2724 2725 if (rot == 1) { 2726 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, sdkp->disk->queue); 2727 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, sdkp->disk->queue); 2728 } 2729 2730 out: 2731 kfree(buffer); 2732 } 2733 2734 /** 2735 * sd_read_block_provisioning - Query provisioning VPD page 2736 * @disk: disk to query 2737 */ 2738 static void sd_read_block_provisioning(struct scsi_disk *sdkp) 2739 { 2740 unsigned char *buffer; 2741 const int vpd_len = 8; 2742 2743 if (sdkp->lbpme == 0) 2744 return; 2745 2746 buffer = kmalloc(vpd_len, GFP_KERNEL); 2747 2748 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len)) 2749 goto out; 2750 2751 sdkp->lbpvpd = 1; 2752 sdkp->lbpu = (buffer[5] >> 7) & 1; /* UNMAP */ 2753 sdkp->lbpws = (buffer[5] >> 6) & 1; /* WRITE SAME(16) with UNMAP */ 2754 sdkp->lbpws10 = (buffer[5] >> 5) & 1; /* WRITE SAME(10) with UNMAP */ 2755 2756 out: 2757 kfree(buffer); 2758 } 2759 2760 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer) 2761 { 2762 struct scsi_device *sdev = sdkp->device; 2763 2764 if (sdev->host->no_write_same) { 2765 sdev->no_write_same = 1; 2766 2767 return; 2768 } 2769 2770 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) { 2771 /* too large values might cause issues with arcmsr */ 2772 int vpd_buf_len = 64; 2773 2774 sdev->no_report_opcodes = 1; 2775 2776 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION 2777 * CODES is unsupported and the device has an ATA 2778 * Information VPD page (SAT). 2779 */ 2780 if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len)) 2781 sdev->no_write_same = 1; 2782 } 2783 2784 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1) 2785 sdkp->ws16 = 1; 2786 2787 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1) 2788 sdkp->ws10 = 1; 2789 } 2790 2791 /** 2792 * sd_revalidate_disk - called the first time a new disk is seen, 2793 * performs disk spin up, read_capacity, etc. 2794 * @disk: struct gendisk we care about 2795 **/ 2796 static int sd_revalidate_disk(struct gendisk *disk) 2797 { 2798 struct scsi_disk *sdkp = scsi_disk(disk); 2799 struct scsi_device *sdp = sdkp->device; 2800 struct request_queue *q = sdkp->disk->queue; 2801 unsigned char *buffer; 2802 unsigned int dev_max, rw_max; 2803 2804 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, 2805 "sd_revalidate_disk\n")); 2806 2807 /* 2808 * If the device is offline, don't try and read capacity or any 2809 * of the other niceties. 2810 */ 2811 if (!scsi_device_online(sdp)) 2812 goto out; 2813 2814 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL); 2815 if (!buffer) { 2816 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory " 2817 "allocation failure.\n"); 2818 goto out; 2819 } 2820 2821 sd_spinup_disk(sdkp); 2822 2823 /* 2824 * Without media there is no reason to ask; moreover, some devices 2825 * react badly if we do. 2826 */ 2827 if (sdkp->media_present) { 2828 sd_read_capacity(sdkp, buffer); 2829 2830 if (scsi_device_supports_vpd(sdp)) { 2831 sd_read_block_provisioning(sdkp); 2832 sd_read_block_limits(sdkp); 2833 sd_read_block_characteristics(sdkp); 2834 } 2835 2836 sd_read_write_protect_flag(sdkp, buffer); 2837 sd_read_cache_type(sdkp, buffer); 2838 sd_read_app_tag_own(sdkp, buffer); 2839 sd_read_write_same(sdkp, buffer); 2840 } 2841 2842 sdkp->first_scan = 0; 2843 2844 /* 2845 * We now have all cache related info, determine how we deal 2846 * with flush requests. 2847 */ 2848 sd_set_flush_flag(sdkp); 2849 2850 /* Initial block count limit based on CDB TRANSFER LENGTH field size. */ 2851 dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS; 2852 2853 /* Some devices report a maximum block count for READ/WRITE requests. */ 2854 dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks); 2855 q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max); 2856 2857 /* 2858 * Use the device's preferred I/O size for reads and writes 2859 * unless the reported value is unreasonably small, large, or 2860 * garbage. 2861 */ 2862 if (sdkp->opt_xfer_blocks && 2863 sdkp->opt_xfer_blocks <= dev_max && 2864 sdkp->opt_xfer_blocks <= SD_DEF_XFER_BLOCKS && 2865 sdkp->opt_xfer_blocks * sdp->sector_size >= PAGE_SIZE) 2866 rw_max = q->limits.io_opt = 2867 sdkp->opt_xfer_blocks * sdp->sector_size; 2868 else 2869 rw_max = BLK_DEF_MAX_SECTORS; 2870 2871 /* Combine with controller limits */ 2872 q->limits.max_sectors = min(rw_max, queue_max_hw_sectors(q)); 2873 2874 set_capacity(disk, logical_to_sectors(sdp, sdkp->capacity)); 2875 sd_config_write_same(sdkp); 2876 kfree(buffer); 2877 2878 out: 2879 return 0; 2880 } 2881 2882 /** 2883 * sd_unlock_native_capacity - unlock native capacity 2884 * @disk: struct gendisk to set capacity for 2885 * 2886 * Block layer calls this function if it detects that partitions 2887 * on @disk reach beyond the end of the device. If the SCSI host 2888 * implements ->unlock_native_capacity() method, it's invoked to 2889 * give it a chance to adjust the device capacity. 2890 * 2891 * CONTEXT: 2892 * Defined by block layer. Might sleep. 2893 */ 2894 static void sd_unlock_native_capacity(struct gendisk *disk) 2895 { 2896 struct scsi_device *sdev = scsi_disk(disk)->device; 2897 2898 if (sdev->host->hostt->unlock_native_capacity) 2899 sdev->host->hostt->unlock_native_capacity(sdev); 2900 } 2901 2902 /** 2903 * sd_format_disk_name - format disk name 2904 * @prefix: name prefix - ie. "sd" for SCSI disks 2905 * @index: index of the disk to format name for 2906 * @buf: output buffer 2907 * @buflen: length of the output buffer 2908 * 2909 * SCSI disk names starts at sda. The 26th device is sdz and the 2910 * 27th is sdaa. The last one for two lettered suffix is sdzz 2911 * which is followed by sdaaa. 2912 * 2913 * This is basically 26 base counting with one extra 'nil' entry 2914 * at the beginning from the second digit on and can be 2915 * determined using similar method as 26 base conversion with the 2916 * index shifted -1 after each digit is computed. 2917 * 2918 * CONTEXT: 2919 * Don't care. 2920 * 2921 * RETURNS: 2922 * 0 on success, -errno on failure. 2923 */ 2924 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen) 2925 { 2926 const int base = 'z' - 'a' + 1; 2927 char *begin = buf + strlen(prefix); 2928 char *end = buf + buflen; 2929 char *p; 2930 int unit; 2931 2932 p = end - 1; 2933 *p = '\0'; 2934 unit = base; 2935 do { 2936 if (p == begin) 2937 return -EINVAL; 2938 *--p = 'a' + (index % unit); 2939 index = (index / unit) - 1; 2940 } while (index >= 0); 2941 2942 memmove(begin, p, end - p); 2943 memcpy(buf, prefix, strlen(prefix)); 2944 2945 return 0; 2946 } 2947 2948 /* 2949 * The asynchronous part of sd_probe 2950 */ 2951 static void sd_probe_async(void *data, async_cookie_t cookie) 2952 { 2953 struct scsi_disk *sdkp = data; 2954 struct scsi_device *sdp; 2955 struct gendisk *gd; 2956 u32 index; 2957 struct device *dev; 2958 2959 sdp = sdkp->device; 2960 gd = sdkp->disk; 2961 index = sdkp->index; 2962 dev = &sdp->sdev_gendev; 2963 2964 gd->major = sd_major((index & 0xf0) >> 4); 2965 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00); 2966 gd->minors = SD_MINORS; 2967 2968 gd->fops = &sd_fops; 2969 gd->private_data = &sdkp->driver; 2970 gd->queue = sdkp->device->request_queue; 2971 2972 /* defaults, until the device tells us otherwise */ 2973 sdp->sector_size = 512; 2974 sdkp->capacity = 0; 2975 sdkp->media_present = 1; 2976 sdkp->write_prot = 0; 2977 sdkp->cache_override = 0; 2978 sdkp->WCE = 0; 2979 sdkp->RCD = 0; 2980 sdkp->ATO = 0; 2981 sdkp->first_scan = 1; 2982 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS; 2983 2984 sd_revalidate_disk(gd); 2985 2986 gd->driverfs_dev = &sdp->sdev_gendev; 2987 gd->flags = GENHD_FL_EXT_DEVT; 2988 if (sdp->removable) { 2989 gd->flags |= GENHD_FL_REMOVABLE; 2990 gd->events |= DISK_EVENT_MEDIA_CHANGE; 2991 } 2992 2993 blk_pm_runtime_init(sdp->request_queue, dev); 2994 add_disk(gd); 2995 if (sdkp->capacity) 2996 sd_dif_config_host(sdkp); 2997 2998 sd_revalidate_disk(gd); 2999 3000 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n", 3001 sdp->removable ? "removable " : ""); 3002 scsi_autopm_put_device(sdp); 3003 put_device(&sdkp->dev); 3004 } 3005 3006 /** 3007 * sd_probe - called during driver initialization and whenever a 3008 * new scsi device is attached to the system. It is called once 3009 * for each scsi device (not just disks) present. 3010 * @dev: pointer to device object 3011 * 3012 * Returns 0 if successful (or not interested in this scsi device 3013 * (e.g. scanner)); 1 when there is an error. 3014 * 3015 * Note: this function is invoked from the scsi mid-level. 3016 * This function sets up the mapping between a given 3017 * <host,channel,id,lun> (found in sdp) and new device name 3018 * (e.g. /dev/sda). More precisely it is the block device major 3019 * and minor number that is chosen here. 3020 * 3021 * Assume sd_probe is not re-entrant (for time being) 3022 * Also think about sd_probe() and sd_remove() running coincidentally. 3023 **/ 3024 static int sd_probe(struct device *dev) 3025 { 3026 struct scsi_device *sdp = to_scsi_device(dev); 3027 struct scsi_disk *sdkp; 3028 struct gendisk *gd; 3029 int index; 3030 int error; 3031 3032 scsi_autopm_get_device(sdp); 3033 error = -ENODEV; 3034 if (sdp->type != TYPE_DISK && sdp->type != TYPE_MOD && sdp->type != TYPE_RBC) 3035 goto out; 3036 3037 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp, 3038 "sd_probe\n")); 3039 3040 error = -ENOMEM; 3041 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL); 3042 if (!sdkp) 3043 goto out; 3044 3045 gd = alloc_disk(SD_MINORS); 3046 if (!gd) 3047 goto out_free; 3048 3049 do { 3050 if (!ida_pre_get(&sd_index_ida, GFP_KERNEL)) 3051 goto out_put; 3052 3053 spin_lock(&sd_index_lock); 3054 error = ida_get_new(&sd_index_ida, &index); 3055 spin_unlock(&sd_index_lock); 3056 } while (error == -EAGAIN); 3057 3058 if (error) { 3059 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n"); 3060 goto out_put; 3061 } 3062 3063 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN); 3064 if (error) { 3065 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n"); 3066 goto out_free_index; 3067 } 3068 3069 sdkp->device = sdp; 3070 sdkp->driver = &sd_template; 3071 sdkp->disk = gd; 3072 sdkp->index = index; 3073 atomic_set(&sdkp->openers, 0); 3074 atomic_set(&sdkp->device->ioerr_cnt, 0); 3075 3076 if (!sdp->request_queue->rq_timeout) { 3077 if (sdp->type != TYPE_MOD) 3078 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT); 3079 else 3080 blk_queue_rq_timeout(sdp->request_queue, 3081 SD_MOD_TIMEOUT); 3082 } 3083 3084 device_initialize(&sdkp->dev); 3085 sdkp->dev.parent = dev; 3086 sdkp->dev.class = &sd_disk_class; 3087 dev_set_name(&sdkp->dev, "%s", dev_name(dev)); 3088 3089 error = device_add(&sdkp->dev); 3090 if (error) 3091 goto out_free_index; 3092 3093 get_device(dev); 3094 dev_set_drvdata(dev, sdkp); 3095 3096 get_device(&sdkp->dev); /* prevent release before async_schedule */ 3097 async_schedule_domain(sd_probe_async, sdkp, &scsi_sd_probe_domain); 3098 3099 return 0; 3100 3101 out_free_index: 3102 spin_lock(&sd_index_lock); 3103 ida_remove(&sd_index_ida, index); 3104 spin_unlock(&sd_index_lock); 3105 out_put: 3106 put_disk(gd); 3107 out_free: 3108 kfree(sdkp); 3109 out: 3110 scsi_autopm_put_device(sdp); 3111 return error; 3112 } 3113 3114 /** 3115 * sd_remove - called whenever a scsi disk (previously recognized by 3116 * sd_probe) is detached from the system. It is called (potentially 3117 * multiple times) during sd module unload. 3118 * @sdp: pointer to mid level scsi device object 3119 * 3120 * Note: this function is invoked from the scsi mid-level. 3121 * This function potentially frees up a device name (e.g. /dev/sdc) 3122 * that could be re-used by a subsequent sd_probe(). 3123 * This function is not called when the built-in sd driver is "exit-ed". 3124 **/ 3125 static int sd_remove(struct device *dev) 3126 { 3127 struct scsi_disk *sdkp; 3128 dev_t devt; 3129 3130 sdkp = dev_get_drvdata(dev); 3131 devt = disk_devt(sdkp->disk); 3132 scsi_autopm_get_device(sdkp->device); 3133 3134 async_synchronize_full_domain(&scsi_sd_pm_domain); 3135 async_synchronize_full_domain(&scsi_sd_probe_domain); 3136 device_del(&sdkp->dev); 3137 del_gendisk(sdkp->disk); 3138 sd_shutdown(dev); 3139 3140 blk_register_region(devt, SD_MINORS, NULL, 3141 sd_default_probe, NULL, NULL); 3142 3143 mutex_lock(&sd_ref_mutex); 3144 dev_set_drvdata(dev, NULL); 3145 put_device(&sdkp->dev); 3146 mutex_unlock(&sd_ref_mutex); 3147 3148 return 0; 3149 } 3150 3151 /** 3152 * scsi_disk_release - Called to free the scsi_disk structure 3153 * @dev: pointer to embedded class device 3154 * 3155 * sd_ref_mutex must be held entering this routine. Because it is 3156 * called on last put, you should always use the scsi_disk_get() 3157 * scsi_disk_put() helpers which manipulate the semaphore directly 3158 * and never do a direct put_device. 3159 **/ 3160 static void scsi_disk_release(struct device *dev) 3161 { 3162 struct scsi_disk *sdkp = to_scsi_disk(dev); 3163 struct gendisk *disk = sdkp->disk; 3164 3165 spin_lock(&sd_index_lock); 3166 ida_remove(&sd_index_ida, sdkp->index); 3167 spin_unlock(&sd_index_lock); 3168 3169 disk->private_data = NULL; 3170 put_disk(disk); 3171 put_device(&sdkp->device->sdev_gendev); 3172 3173 kfree(sdkp); 3174 } 3175 3176 static int sd_start_stop_device(struct scsi_disk *sdkp, int start) 3177 { 3178 unsigned char cmd[6] = { START_STOP }; /* START_VALID */ 3179 struct scsi_sense_hdr sshdr; 3180 struct scsi_device *sdp = sdkp->device; 3181 int res; 3182 3183 if (start) 3184 cmd[4] |= 1; /* START */ 3185 3186 if (sdp->start_stop_pwr_cond) 3187 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */ 3188 3189 if (!scsi_device_online(sdp)) 3190 return -ENODEV; 3191 3192 res = scsi_execute_req_flags(sdp, cmd, DMA_NONE, NULL, 0, &sshdr, 3193 SD_TIMEOUT, SD_MAX_RETRIES, NULL, REQ_PM); 3194 if (res) { 3195 sd_print_result(sdkp, "Start/Stop Unit failed", res); 3196 if (driver_byte(res) & DRIVER_SENSE) 3197 sd_print_sense_hdr(sdkp, &sshdr); 3198 if (scsi_sense_valid(&sshdr) && 3199 /* 0x3a is medium not present */ 3200 sshdr.asc == 0x3a) 3201 res = 0; 3202 } 3203 3204 /* SCSI error codes must not go to the generic layer */ 3205 if (res) 3206 return -EIO; 3207 3208 return 0; 3209 } 3210 3211 /* 3212 * Send a SYNCHRONIZE CACHE instruction down to the device through 3213 * the normal SCSI command structure. Wait for the command to 3214 * complete. 3215 */ 3216 static void sd_shutdown(struct device *dev) 3217 { 3218 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3219 3220 if (!sdkp) 3221 return; /* this can happen */ 3222 3223 if (pm_runtime_suspended(dev)) 3224 return; 3225 3226 if (sdkp->WCE && sdkp->media_present) { 3227 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3228 sd_sync_cache(sdkp); 3229 } 3230 3231 if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) { 3232 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3233 sd_start_stop_device(sdkp, 0); 3234 } 3235 } 3236 3237 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors) 3238 { 3239 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3240 int ret = 0; 3241 3242 if (!sdkp) /* E.g.: runtime suspend following sd_remove() */ 3243 return 0; 3244 3245 if (sdkp->WCE && sdkp->media_present) { 3246 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3247 ret = sd_sync_cache(sdkp); 3248 if (ret) { 3249 /* ignore OFFLINE device */ 3250 if (ret == -ENODEV) 3251 ret = 0; 3252 goto done; 3253 } 3254 } 3255 3256 if (sdkp->device->manage_start_stop) { 3257 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3258 /* an error is not worth aborting a system sleep */ 3259 ret = sd_start_stop_device(sdkp, 0); 3260 if (ignore_stop_errors) 3261 ret = 0; 3262 } 3263 3264 done: 3265 return ret; 3266 } 3267 3268 static int sd_suspend_system(struct device *dev) 3269 { 3270 return sd_suspend_common(dev, true); 3271 } 3272 3273 static int sd_suspend_runtime(struct device *dev) 3274 { 3275 return sd_suspend_common(dev, false); 3276 } 3277 3278 static int sd_resume(struct device *dev) 3279 { 3280 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3281 3282 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */ 3283 return 0; 3284 3285 if (!sdkp->device->manage_start_stop) 3286 return 0; 3287 3288 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n"); 3289 return sd_start_stop_device(sdkp, 1); 3290 } 3291 3292 /** 3293 * init_sd - entry point for this driver (both when built in or when 3294 * a module). 3295 * 3296 * Note: this function registers this driver with the scsi mid-level. 3297 **/ 3298 static int __init init_sd(void) 3299 { 3300 int majors = 0, i, err; 3301 3302 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n")); 3303 3304 for (i = 0; i < SD_MAJORS; i++) { 3305 if (register_blkdev(sd_major(i), "sd") != 0) 3306 continue; 3307 majors++; 3308 blk_register_region(sd_major(i), SD_MINORS, NULL, 3309 sd_default_probe, NULL, NULL); 3310 } 3311 3312 if (!majors) 3313 return -ENODEV; 3314 3315 err = class_register(&sd_disk_class); 3316 if (err) 3317 goto err_out; 3318 3319 sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE, 3320 0, 0, NULL); 3321 if (!sd_cdb_cache) { 3322 printk(KERN_ERR "sd: can't init extended cdb cache\n"); 3323 err = -ENOMEM; 3324 goto err_out_class; 3325 } 3326 3327 sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache); 3328 if (!sd_cdb_pool) { 3329 printk(KERN_ERR "sd: can't init extended cdb pool\n"); 3330 err = -ENOMEM; 3331 goto err_out_cache; 3332 } 3333 3334 err = scsi_register_driver(&sd_template.gendrv); 3335 if (err) 3336 goto err_out_driver; 3337 3338 return 0; 3339 3340 err_out_driver: 3341 mempool_destroy(sd_cdb_pool); 3342 3343 err_out_cache: 3344 kmem_cache_destroy(sd_cdb_cache); 3345 3346 err_out_class: 3347 class_unregister(&sd_disk_class); 3348 err_out: 3349 for (i = 0; i < SD_MAJORS; i++) 3350 unregister_blkdev(sd_major(i), "sd"); 3351 return err; 3352 } 3353 3354 /** 3355 * exit_sd - exit point for this driver (when it is a module). 3356 * 3357 * Note: this function unregisters this driver from the scsi mid-level. 3358 **/ 3359 static void __exit exit_sd(void) 3360 { 3361 int i; 3362 3363 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n")); 3364 3365 scsi_unregister_driver(&sd_template.gendrv); 3366 mempool_destroy(sd_cdb_pool); 3367 kmem_cache_destroy(sd_cdb_cache); 3368 3369 class_unregister(&sd_disk_class); 3370 3371 for (i = 0; i < SD_MAJORS; i++) { 3372 blk_unregister_region(sd_major(i), SD_MINORS); 3373 unregister_blkdev(sd_major(i), "sd"); 3374 } 3375 } 3376 3377 module_init(init_sd); 3378 module_exit(exit_sd); 3379 3380 static void sd_print_sense_hdr(struct scsi_disk *sdkp, 3381 struct scsi_sense_hdr *sshdr) 3382 { 3383 scsi_print_sense_hdr(sdkp->device, 3384 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr); 3385 } 3386 3387 static void sd_print_result(const struct scsi_disk *sdkp, const char *msg, 3388 int result) 3389 { 3390 const char *hb_string = scsi_hostbyte_string(result); 3391 const char *db_string = scsi_driverbyte_string(result); 3392 3393 if (hb_string || db_string) 3394 sd_printk(KERN_INFO, sdkp, 3395 "%s: Result: hostbyte=%s driverbyte=%s\n", msg, 3396 hb_string ? hb_string : "invalid", 3397 db_string ? db_string : "invalid"); 3398 else 3399 sd_printk(KERN_INFO, sdkp, 3400 "%s: Result: hostbyte=0x%02x driverbyte=0x%02x\n", 3401 msg, host_byte(result), driver_byte(result)); 3402 } 3403 3404