1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * sd.c Copyright (C) 1992 Drew Eckhardt 4 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale 5 * 6 * Linux scsi disk driver 7 * Initial versions: Drew Eckhardt 8 * Subsequent revisions: Eric Youngdale 9 * Modification history: 10 * - Drew Eckhardt <drew@colorado.edu> original 11 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 12 * outstanding request, and other enhancements. 13 * Support loadable low-level scsi drivers. 14 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 15 * eight major numbers. 16 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs. 17 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 18 * sd_init and cleanups. 19 * - Alex Davis <letmein@erols.com> Fix problem where partition info 20 * not being read in sd_open. Fix problem where removable media 21 * could be ejected after sd_open. 22 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x 23 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 24 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 25 * Support 32k/1M disks. 26 * 27 * Logging policy (needs CONFIG_SCSI_LOGGING defined): 28 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2 29 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1 30 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1 31 * - entering other commands: SCSI_LOG_HLQUEUE level 3 32 * Note: when the logging level is set by the user, it must be greater 33 * than the level indicated above to trigger output. 34 */ 35 36 #include <linux/module.h> 37 #include <linux/fs.h> 38 #include <linux/kernel.h> 39 #include <linux/mm.h> 40 #include <linux/bio.h> 41 #include <linux/hdreg.h> 42 #include <linux/errno.h> 43 #include <linux/idr.h> 44 #include <linux/interrupt.h> 45 #include <linux/init.h> 46 #include <linux/blkdev.h> 47 #include <linux/blkpg.h> 48 #include <linux/blk-pm.h> 49 #include <linux/delay.h> 50 #include <linux/rw_hint.h> 51 #include <linux/major.h> 52 #include <linux/mutex.h> 53 #include <linux/string_helpers.h> 54 #include <linux/slab.h> 55 #include <linux/sed-opal.h> 56 #include <linux/pm_runtime.h> 57 #include <linux/pr.h> 58 #include <linux/t10-pi.h> 59 #include <linux/uaccess.h> 60 #include <asm/unaligned.h> 61 62 #include <scsi/scsi.h> 63 #include <scsi/scsi_cmnd.h> 64 #include <scsi/scsi_dbg.h> 65 #include <scsi/scsi_device.h> 66 #include <scsi/scsi_driver.h> 67 #include <scsi/scsi_eh.h> 68 #include <scsi/scsi_host.h> 69 #include <scsi/scsi_ioctl.h> 70 #include <scsi/scsicam.h> 71 #include <scsi/scsi_common.h> 72 73 #include "sd.h" 74 #include "scsi_priv.h" 75 #include "scsi_logging.h" 76 77 MODULE_AUTHOR("Eric Youngdale"); 78 MODULE_DESCRIPTION("SCSI disk (sd) driver"); 79 MODULE_LICENSE("GPL"); 80 81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR); 82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR); 83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR); 84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR); 85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR); 86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR); 87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR); 88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR); 89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR); 90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR); 91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR); 92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR); 93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR); 94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR); 95 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR); 96 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR); 97 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK); 98 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD); 99 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC); 100 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC); 101 102 #define SD_MINORS 16 103 104 static void sd_config_discard(struct scsi_disk *, unsigned int); 105 static void sd_config_write_same(struct scsi_disk *); 106 static int sd_revalidate_disk(struct gendisk *); 107 static void sd_unlock_native_capacity(struct gendisk *disk); 108 static void sd_shutdown(struct device *); 109 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer); 110 static void scsi_disk_release(struct device *cdev); 111 112 static DEFINE_IDA(sd_index_ida); 113 114 static mempool_t *sd_page_pool; 115 static struct lock_class_key sd_bio_compl_lkclass; 116 117 static const char *sd_cache_types[] = { 118 "write through", "none", "write back", 119 "write back, no read (daft)" 120 }; 121 122 static void sd_set_flush_flag(struct scsi_disk *sdkp) 123 { 124 bool wc = false, fua = false; 125 126 if (sdkp->WCE) { 127 wc = true; 128 if (sdkp->DPOFUA) 129 fua = true; 130 } 131 132 blk_queue_write_cache(sdkp->disk->queue, wc, fua); 133 } 134 135 static ssize_t 136 cache_type_store(struct device *dev, struct device_attribute *attr, 137 const char *buf, size_t count) 138 { 139 int ct, rcd, wce, sp; 140 struct scsi_disk *sdkp = to_scsi_disk(dev); 141 struct scsi_device *sdp = sdkp->device; 142 char buffer[64]; 143 char *buffer_data; 144 struct scsi_mode_data data; 145 struct scsi_sense_hdr sshdr; 146 static const char temp[] = "temporary "; 147 int len, ret; 148 149 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 150 /* no cache control on RBC devices; theoretically they 151 * can do it, but there's probably so many exceptions 152 * it's not worth the risk */ 153 return -EINVAL; 154 155 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) { 156 buf += sizeof(temp) - 1; 157 sdkp->cache_override = 1; 158 } else { 159 sdkp->cache_override = 0; 160 } 161 162 ct = sysfs_match_string(sd_cache_types, buf); 163 if (ct < 0) 164 return -EINVAL; 165 166 rcd = ct & 0x01 ? 1 : 0; 167 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0; 168 169 if (sdkp->cache_override) { 170 sdkp->WCE = wce; 171 sdkp->RCD = rcd; 172 sd_set_flush_flag(sdkp); 173 return count; 174 } 175 176 if (scsi_mode_sense(sdp, 0x08, 8, 0, buffer, sizeof(buffer), SD_TIMEOUT, 177 sdkp->max_retries, &data, NULL)) 178 return -EINVAL; 179 len = min_t(size_t, sizeof(buffer), data.length - data.header_length - 180 data.block_descriptor_length); 181 buffer_data = buffer + data.header_length + 182 data.block_descriptor_length; 183 buffer_data[2] &= ~0x05; 184 buffer_data[2] |= wce << 2 | rcd; 185 sp = buffer_data[0] & 0x80 ? 1 : 0; 186 buffer_data[0] &= ~0x80; 187 188 /* 189 * Ensure WP, DPOFUA, and RESERVED fields are cleared in 190 * received mode parameter buffer before doing MODE SELECT. 191 */ 192 data.device_specific = 0; 193 194 ret = scsi_mode_select(sdp, 1, sp, buffer_data, len, SD_TIMEOUT, 195 sdkp->max_retries, &data, &sshdr); 196 if (ret) { 197 if (ret > 0 && scsi_sense_valid(&sshdr)) 198 sd_print_sense_hdr(sdkp, &sshdr); 199 return -EINVAL; 200 } 201 sd_revalidate_disk(sdkp->disk); 202 return count; 203 } 204 205 static ssize_t 206 manage_start_stop_show(struct device *dev, 207 struct device_attribute *attr, char *buf) 208 { 209 struct scsi_disk *sdkp = to_scsi_disk(dev); 210 struct scsi_device *sdp = sdkp->device; 211 212 return sysfs_emit(buf, "%u\n", 213 sdp->manage_system_start_stop && 214 sdp->manage_runtime_start_stop && 215 sdp->manage_shutdown); 216 } 217 static DEVICE_ATTR_RO(manage_start_stop); 218 219 static ssize_t 220 manage_system_start_stop_show(struct device *dev, 221 struct device_attribute *attr, char *buf) 222 { 223 struct scsi_disk *sdkp = to_scsi_disk(dev); 224 struct scsi_device *sdp = sdkp->device; 225 226 return sysfs_emit(buf, "%u\n", sdp->manage_system_start_stop); 227 } 228 229 static ssize_t 230 manage_system_start_stop_store(struct device *dev, 231 struct device_attribute *attr, 232 const char *buf, size_t count) 233 { 234 struct scsi_disk *sdkp = to_scsi_disk(dev); 235 struct scsi_device *sdp = sdkp->device; 236 bool v; 237 238 if (!capable(CAP_SYS_ADMIN)) 239 return -EACCES; 240 241 if (kstrtobool(buf, &v)) 242 return -EINVAL; 243 244 sdp->manage_system_start_stop = v; 245 246 return count; 247 } 248 static DEVICE_ATTR_RW(manage_system_start_stop); 249 250 static ssize_t 251 manage_runtime_start_stop_show(struct device *dev, 252 struct device_attribute *attr, char *buf) 253 { 254 struct scsi_disk *sdkp = to_scsi_disk(dev); 255 struct scsi_device *sdp = sdkp->device; 256 257 return sysfs_emit(buf, "%u\n", sdp->manage_runtime_start_stop); 258 } 259 260 static ssize_t 261 manage_runtime_start_stop_store(struct device *dev, 262 struct device_attribute *attr, 263 const char *buf, size_t count) 264 { 265 struct scsi_disk *sdkp = to_scsi_disk(dev); 266 struct scsi_device *sdp = sdkp->device; 267 bool v; 268 269 if (!capable(CAP_SYS_ADMIN)) 270 return -EACCES; 271 272 if (kstrtobool(buf, &v)) 273 return -EINVAL; 274 275 sdp->manage_runtime_start_stop = v; 276 277 return count; 278 } 279 static DEVICE_ATTR_RW(manage_runtime_start_stop); 280 281 static ssize_t manage_shutdown_show(struct device *dev, 282 struct device_attribute *attr, char *buf) 283 { 284 struct scsi_disk *sdkp = to_scsi_disk(dev); 285 struct scsi_device *sdp = sdkp->device; 286 287 return sysfs_emit(buf, "%u\n", sdp->manage_shutdown); 288 } 289 290 static ssize_t manage_shutdown_store(struct device *dev, 291 struct device_attribute *attr, 292 const char *buf, size_t count) 293 { 294 struct scsi_disk *sdkp = to_scsi_disk(dev); 295 struct scsi_device *sdp = sdkp->device; 296 bool v; 297 298 if (!capable(CAP_SYS_ADMIN)) 299 return -EACCES; 300 301 if (kstrtobool(buf, &v)) 302 return -EINVAL; 303 304 sdp->manage_shutdown = v; 305 306 return count; 307 } 308 static DEVICE_ATTR_RW(manage_shutdown); 309 310 static ssize_t 311 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf) 312 { 313 struct scsi_disk *sdkp = to_scsi_disk(dev); 314 315 return sprintf(buf, "%u\n", sdkp->device->allow_restart); 316 } 317 318 static ssize_t 319 allow_restart_store(struct device *dev, struct device_attribute *attr, 320 const char *buf, size_t count) 321 { 322 bool v; 323 struct scsi_disk *sdkp = to_scsi_disk(dev); 324 struct scsi_device *sdp = sdkp->device; 325 326 if (!capable(CAP_SYS_ADMIN)) 327 return -EACCES; 328 329 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 330 return -EINVAL; 331 332 if (kstrtobool(buf, &v)) 333 return -EINVAL; 334 335 sdp->allow_restart = v; 336 337 return count; 338 } 339 static DEVICE_ATTR_RW(allow_restart); 340 341 static ssize_t 342 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf) 343 { 344 struct scsi_disk *sdkp = to_scsi_disk(dev); 345 int ct = sdkp->RCD + 2*sdkp->WCE; 346 347 return sprintf(buf, "%s\n", sd_cache_types[ct]); 348 } 349 static DEVICE_ATTR_RW(cache_type); 350 351 static ssize_t 352 FUA_show(struct device *dev, struct device_attribute *attr, char *buf) 353 { 354 struct scsi_disk *sdkp = to_scsi_disk(dev); 355 356 return sprintf(buf, "%u\n", sdkp->DPOFUA); 357 } 358 static DEVICE_ATTR_RO(FUA); 359 360 static ssize_t 361 protection_type_show(struct device *dev, struct device_attribute *attr, 362 char *buf) 363 { 364 struct scsi_disk *sdkp = to_scsi_disk(dev); 365 366 return sprintf(buf, "%u\n", sdkp->protection_type); 367 } 368 369 static ssize_t 370 protection_type_store(struct device *dev, struct device_attribute *attr, 371 const char *buf, size_t count) 372 { 373 struct scsi_disk *sdkp = to_scsi_disk(dev); 374 unsigned int val; 375 int err; 376 377 if (!capable(CAP_SYS_ADMIN)) 378 return -EACCES; 379 380 err = kstrtouint(buf, 10, &val); 381 382 if (err) 383 return err; 384 385 if (val <= T10_PI_TYPE3_PROTECTION) 386 sdkp->protection_type = val; 387 388 return count; 389 } 390 static DEVICE_ATTR_RW(protection_type); 391 392 static ssize_t 393 protection_mode_show(struct device *dev, struct device_attribute *attr, 394 char *buf) 395 { 396 struct scsi_disk *sdkp = to_scsi_disk(dev); 397 struct scsi_device *sdp = sdkp->device; 398 unsigned int dif, dix; 399 400 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type); 401 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type); 402 403 if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) { 404 dif = 0; 405 dix = 1; 406 } 407 408 if (!dif && !dix) 409 return sprintf(buf, "none\n"); 410 411 return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif); 412 } 413 static DEVICE_ATTR_RO(protection_mode); 414 415 static ssize_t 416 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf) 417 { 418 struct scsi_disk *sdkp = to_scsi_disk(dev); 419 420 return sprintf(buf, "%u\n", sdkp->ATO); 421 } 422 static DEVICE_ATTR_RO(app_tag_own); 423 424 static ssize_t 425 thin_provisioning_show(struct device *dev, struct device_attribute *attr, 426 char *buf) 427 { 428 struct scsi_disk *sdkp = to_scsi_disk(dev); 429 430 return sprintf(buf, "%u\n", sdkp->lbpme); 431 } 432 static DEVICE_ATTR_RO(thin_provisioning); 433 434 /* sysfs_match_string() requires dense arrays */ 435 static const char *lbp_mode[] = { 436 [SD_LBP_FULL] = "full", 437 [SD_LBP_UNMAP] = "unmap", 438 [SD_LBP_WS16] = "writesame_16", 439 [SD_LBP_WS10] = "writesame_10", 440 [SD_LBP_ZERO] = "writesame_zero", 441 [SD_LBP_DISABLE] = "disabled", 442 }; 443 444 static ssize_t 445 provisioning_mode_show(struct device *dev, struct device_attribute *attr, 446 char *buf) 447 { 448 struct scsi_disk *sdkp = to_scsi_disk(dev); 449 450 return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]); 451 } 452 453 static ssize_t 454 provisioning_mode_store(struct device *dev, struct device_attribute *attr, 455 const char *buf, size_t count) 456 { 457 struct scsi_disk *sdkp = to_scsi_disk(dev); 458 struct scsi_device *sdp = sdkp->device; 459 int mode; 460 461 if (!capable(CAP_SYS_ADMIN)) 462 return -EACCES; 463 464 if (sd_is_zoned(sdkp)) { 465 sd_config_discard(sdkp, SD_LBP_DISABLE); 466 return count; 467 } 468 469 if (sdp->type != TYPE_DISK) 470 return -EINVAL; 471 472 mode = sysfs_match_string(lbp_mode, buf); 473 if (mode < 0) 474 return -EINVAL; 475 476 sd_config_discard(sdkp, mode); 477 478 return count; 479 } 480 static DEVICE_ATTR_RW(provisioning_mode); 481 482 /* sysfs_match_string() requires dense arrays */ 483 static const char *zeroing_mode[] = { 484 [SD_ZERO_WRITE] = "write", 485 [SD_ZERO_WS] = "writesame", 486 [SD_ZERO_WS16_UNMAP] = "writesame_16_unmap", 487 [SD_ZERO_WS10_UNMAP] = "writesame_10_unmap", 488 }; 489 490 static ssize_t 491 zeroing_mode_show(struct device *dev, struct device_attribute *attr, 492 char *buf) 493 { 494 struct scsi_disk *sdkp = to_scsi_disk(dev); 495 496 return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]); 497 } 498 499 static ssize_t 500 zeroing_mode_store(struct device *dev, struct device_attribute *attr, 501 const char *buf, size_t count) 502 { 503 struct scsi_disk *sdkp = to_scsi_disk(dev); 504 int mode; 505 506 if (!capable(CAP_SYS_ADMIN)) 507 return -EACCES; 508 509 mode = sysfs_match_string(zeroing_mode, buf); 510 if (mode < 0) 511 return -EINVAL; 512 513 sdkp->zeroing_mode = mode; 514 515 return count; 516 } 517 static DEVICE_ATTR_RW(zeroing_mode); 518 519 static ssize_t 520 max_medium_access_timeouts_show(struct device *dev, 521 struct device_attribute *attr, char *buf) 522 { 523 struct scsi_disk *sdkp = to_scsi_disk(dev); 524 525 return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts); 526 } 527 528 static ssize_t 529 max_medium_access_timeouts_store(struct device *dev, 530 struct device_attribute *attr, const char *buf, 531 size_t count) 532 { 533 struct scsi_disk *sdkp = to_scsi_disk(dev); 534 int err; 535 536 if (!capable(CAP_SYS_ADMIN)) 537 return -EACCES; 538 539 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts); 540 541 return err ? err : count; 542 } 543 static DEVICE_ATTR_RW(max_medium_access_timeouts); 544 545 static ssize_t 546 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr, 547 char *buf) 548 { 549 struct scsi_disk *sdkp = to_scsi_disk(dev); 550 551 return sprintf(buf, "%u\n", sdkp->max_ws_blocks); 552 } 553 554 static ssize_t 555 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr, 556 const char *buf, size_t count) 557 { 558 struct scsi_disk *sdkp = to_scsi_disk(dev); 559 struct scsi_device *sdp = sdkp->device; 560 unsigned long max; 561 int err; 562 563 if (!capable(CAP_SYS_ADMIN)) 564 return -EACCES; 565 566 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 567 return -EINVAL; 568 569 err = kstrtoul(buf, 10, &max); 570 571 if (err) 572 return err; 573 574 if (max == 0) 575 sdp->no_write_same = 1; 576 else if (max <= SD_MAX_WS16_BLOCKS) { 577 sdp->no_write_same = 0; 578 sdkp->max_ws_blocks = max; 579 } 580 581 sd_config_write_same(sdkp); 582 583 return count; 584 } 585 static DEVICE_ATTR_RW(max_write_same_blocks); 586 587 static ssize_t 588 zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf) 589 { 590 struct scsi_disk *sdkp = to_scsi_disk(dev); 591 592 if (sdkp->device->type == TYPE_ZBC) 593 return sprintf(buf, "host-managed\n"); 594 if (sdkp->zoned == 1) 595 return sprintf(buf, "host-aware\n"); 596 if (sdkp->zoned == 2) 597 return sprintf(buf, "drive-managed\n"); 598 return sprintf(buf, "none\n"); 599 } 600 static DEVICE_ATTR_RO(zoned_cap); 601 602 static ssize_t 603 max_retries_store(struct device *dev, struct device_attribute *attr, 604 const char *buf, size_t count) 605 { 606 struct scsi_disk *sdkp = to_scsi_disk(dev); 607 struct scsi_device *sdev = sdkp->device; 608 int retries, err; 609 610 err = kstrtoint(buf, 10, &retries); 611 if (err) 612 return err; 613 614 if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) { 615 sdkp->max_retries = retries; 616 return count; 617 } 618 619 sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n", 620 SD_MAX_RETRIES); 621 return -EINVAL; 622 } 623 624 static ssize_t 625 max_retries_show(struct device *dev, struct device_attribute *attr, 626 char *buf) 627 { 628 struct scsi_disk *sdkp = to_scsi_disk(dev); 629 630 return sprintf(buf, "%d\n", sdkp->max_retries); 631 } 632 633 static DEVICE_ATTR_RW(max_retries); 634 635 static struct attribute *sd_disk_attrs[] = { 636 &dev_attr_cache_type.attr, 637 &dev_attr_FUA.attr, 638 &dev_attr_allow_restart.attr, 639 &dev_attr_manage_start_stop.attr, 640 &dev_attr_manage_system_start_stop.attr, 641 &dev_attr_manage_runtime_start_stop.attr, 642 &dev_attr_manage_shutdown.attr, 643 &dev_attr_protection_type.attr, 644 &dev_attr_protection_mode.attr, 645 &dev_attr_app_tag_own.attr, 646 &dev_attr_thin_provisioning.attr, 647 &dev_attr_provisioning_mode.attr, 648 &dev_attr_zeroing_mode.attr, 649 &dev_attr_max_write_same_blocks.attr, 650 &dev_attr_max_medium_access_timeouts.attr, 651 &dev_attr_zoned_cap.attr, 652 &dev_attr_max_retries.attr, 653 NULL, 654 }; 655 ATTRIBUTE_GROUPS(sd_disk); 656 657 static struct class sd_disk_class = { 658 .name = "scsi_disk", 659 .dev_release = scsi_disk_release, 660 .dev_groups = sd_disk_groups, 661 }; 662 663 /* 664 * Don't request a new module, as that could deadlock in multipath 665 * environment. 666 */ 667 static void sd_default_probe(dev_t devt) 668 { 669 } 670 671 /* 672 * Device no to disk mapping: 673 * 674 * major disc2 disc p1 675 * |............|.............|....|....| <- dev_t 676 * 31 20 19 8 7 4 3 0 677 * 678 * Inside a major, we have 16k disks, however mapped non- 679 * contiguously. The first 16 disks are for major0, the next 680 * ones with major1, ... Disk 256 is for major0 again, disk 272 681 * for major1, ... 682 * As we stay compatible with our numbering scheme, we can reuse 683 * the well-know SCSI majors 8, 65--71, 136--143. 684 */ 685 static int sd_major(int major_idx) 686 { 687 switch (major_idx) { 688 case 0: 689 return SCSI_DISK0_MAJOR; 690 case 1 ... 7: 691 return SCSI_DISK1_MAJOR + major_idx - 1; 692 case 8 ... 15: 693 return SCSI_DISK8_MAJOR + major_idx - 8; 694 default: 695 BUG(); 696 return 0; /* shut up gcc */ 697 } 698 } 699 700 #ifdef CONFIG_BLK_SED_OPAL 701 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, 702 size_t len, bool send) 703 { 704 struct scsi_disk *sdkp = data; 705 struct scsi_device *sdev = sdkp->device; 706 u8 cdb[12] = { 0, }; 707 const struct scsi_exec_args exec_args = { 708 .req_flags = BLK_MQ_REQ_PM, 709 }; 710 int ret; 711 712 cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN; 713 cdb[1] = secp; 714 put_unaligned_be16(spsp, &cdb[2]); 715 put_unaligned_be32(len, &cdb[6]); 716 717 ret = scsi_execute_cmd(sdev, cdb, send ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 718 buffer, len, SD_TIMEOUT, sdkp->max_retries, 719 &exec_args); 720 return ret <= 0 ? ret : -EIO; 721 } 722 #endif /* CONFIG_BLK_SED_OPAL */ 723 724 /* 725 * Look up the DIX operation based on whether the command is read or 726 * write and whether dix and dif are enabled. 727 */ 728 static unsigned int sd_prot_op(bool write, bool dix, bool dif) 729 { 730 /* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */ 731 static const unsigned int ops[] = { /* wrt dix dif */ 732 SCSI_PROT_NORMAL, /* 0 0 0 */ 733 SCSI_PROT_READ_STRIP, /* 0 0 1 */ 734 SCSI_PROT_READ_INSERT, /* 0 1 0 */ 735 SCSI_PROT_READ_PASS, /* 0 1 1 */ 736 SCSI_PROT_NORMAL, /* 1 0 0 */ 737 SCSI_PROT_WRITE_INSERT, /* 1 0 1 */ 738 SCSI_PROT_WRITE_STRIP, /* 1 1 0 */ 739 SCSI_PROT_WRITE_PASS, /* 1 1 1 */ 740 }; 741 742 return ops[write << 2 | dix << 1 | dif]; 743 } 744 745 /* 746 * Returns a mask of the protection flags that are valid for a given DIX 747 * operation. 748 */ 749 static unsigned int sd_prot_flag_mask(unsigned int prot_op) 750 { 751 static const unsigned int flag_mask[] = { 752 [SCSI_PROT_NORMAL] = 0, 753 754 [SCSI_PROT_READ_STRIP] = SCSI_PROT_TRANSFER_PI | 755 SCSI_PROT_GUARD_CHECK | 756 SCSI_PROT_REF_CHECK | 757 SCSI_PROT_REF_INCREMENT, 758 759 [SCSI_PROT_READ_INSERT] = SCSI_PROT_REF_INCREMENT | 760 SCSI_PROT_IP_CHECKSUM, 761 762 [SCSI_PROT_READ_PASS] = SCSI_PROT_TRANSFER_PI | 763 SCSI_PROT_GUARD_CHECK | 764 SCSI_PROT_REF_CHECK | 765 SCSI_PROT_REF_INCREMENT | 766 SCSI_PROT_IP_CHECKSUM, 767 768 [SCSI_PROT_WRITE_INSERT] = SCSI_PROT_TRANSFER_PI | 769 SCSI_PROT_REF_INCREMENT, 770 771 [SCSI_PROT_WRITE_STRIP] = SCSI_PROT_GUARD_CHECK | 772 SCSI_PROT_REF_CHECK | 773 SCSI_PROT_REF_INCREMENT | 774 SCSI_PROT_IP_CHECKSUM, 775 776 [SCSI_PROT_WRITE_PASS] = SCSI_PROT_TRANSFER_PI | 777 SCSI_PROT_GUARD_CHECK | 778 SCSI_PROT_REF_CHECK | 779 SCSI_PROT_REF_INCREMENT | 780 SCSI_PROT_IP_CHECKSUM, 781 }; 782 783 return flag_mask[prot_op]; 784 } 785 786 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd, 787 unsigned int dix, unsigned int dif) 788 { 789 struct request *rq = scsi_cmd_to_rq(scmd); 790 struct bio *bio = rq->bio; 791 unsigned int prot_op = sd_prot_op(rq_data_dir(rq), dix, dif); 792 unsigned int protect = 0; 793 794 if (dix) { /* DIX Type 0, 1, 2, 3 */ 795 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM)) 796 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM; 797 798 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 799 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK; 800 } 801 802 if (dif != T10_PI_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */ 803 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT; 804 805 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 806 scmd->prot_flags |= SCSI_PROT_REF_CHECK; 807 } 808 809 if (dif) { /* DIX/DIF Type 1, 2, 3 */ 810 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI; 811 812 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK)) 813 protect = 3 << 5; /* Disable target PI checking */ 814 else 815 protect = 1 << 5; /* Enable target PI checking */ 816 } 817 818 scsi_set_prot_op(scmd, prot_op); 819 scsi_set_prot_type(scmd, dif); 820 scmd->prot_flags &= sd_prot_flag_mask(prot_op); 821 822 return protect; 823 } 824 825 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode) 826 { 827 struct request_queue *q = sdkp->disk->queue; 828 unsigned int logical_block_size = sdkp->device->sector_size; 829 unsigned int max_blocks = 0; 830 831 q->limits.discard_alignment = 832 sdkp->unmap_alignment * logical_block_size; 833 q->limits.discard_granularity = 834 max(sdkp->physical_block_size, 835 sdkp->unmap_granularity * logical_block_size); 836 sdkp->provisioning_mode = mode; 837 838 switch (mode) { 839 840 case SD_LBP_FULL: 841 case SD_LBP_DISABLE: 842 blk_queue_max_discard_sectors(q, 0); 843 return; 844 845 case SD_LBP_UNMAP: 846 max_blocks = min_not_zero(sdkp->max_unmap_blocks, 847 (u32)SD_MAX_WS16_BLOCKS); 848 break; 849 850 case SD_LBP_WS16: 851 if (sdkp->device->unmap_limit_for_ws) 852 max_blocks = sdkp->max_unmap_blocks; 853 else 854 max_blocks = sdkp->max_ws_blocks; 855 856 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS); 857 break; 858 859 case SD_LBP_WS10: 860 if (sdkp->device->unmap_limit_for_ws) 861 max_blocks = sdkp->max_unmap_blocks; 862 else 863 max_blocks = sdkp->max_ws_blocks; 864 865 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS); 866 break; 867 868 case SD_LBP_ZERO: 869 max_blocks = min_not_zero(sdkp->max_ws_blocks, 870 (u32)SD_MAX_WS10_BLOCKS); 871 break; 872 } 873 874 blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9)); 875 } 876 877 static void *sd_set_special_bvec(struct request *rq, unsigned int data_len) 878 { 879 struct page *page; 880 881 page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 882 if (!page) 883 return NULL; 884 clear_highpage(page); 885 bvec_set_page(&rq->special_vec, page, data_len, 0); 886 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 887 return bvec_virt(&rq->special_vec); 888 } 889 890 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd) 891 { 892 struct scsi_device *sdp = cmd->device; 893 struct request *rq = scsi_cmd_to_rq(cmd); 894 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 895 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 896 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 897 unsigned int data_len = 24; 898 char *buf; 899 900 buf = sd_set_special_bvec(rq, data_len); 901 if (!buf) 902 return BLK_STS_RESOURCE; 903 904 cmd->cmd_len = 10; 905 cmd->cmnd[0] = UNMAP; 906 cmd->cmnd[8] = 24; 907 908 put_unaligned_be16(6 + 16, &buf[0]); 909 put_unaligned_be16(16, &buf[2]); 910 put_unaligned_be64(lba, &buf[8]); 911 put_unaligned_be32(nr_blocks, &buf[16]); 912 913 cmd->allowed = sdkp->max_retries; 914 cmd->transfersize = data_len; 915 rq->timeout = SD_TIMEOUT; 916 917 return scsi_alloc_sgtables(cmd); 918 } 919 920 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd, 921 bool unmap) 922 { 923 struct scsi_device *sdp = cmd->device; 924 struct request *rq = scsi_cmd_to_rq(cmd); 925 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 926 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 927 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 928 u32 data_len = sdp->sector_size; 929 930 if (!sd_set_special_bvec(rq, data_len)) 931 return BLK_STS_RESOURCE; 932 933 cmd->cmd_len = 16; 934 cmd->cmnd[0] = WRITE_SAME_16; 935 if (unmap) 936 cmd->cmnd[1] = 0x8; /* UNMAP */ 937 put_unaligned_be64(lba, &cmd->cmnd[2]); 938 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 939 940 cmd->allowed = sdkp->max_retries; 941 cmd->transfersize = data_len; 942 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 943 944 return scsi_alloc_sgtables(cmd); 945 } 946 947 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd, 948 bool unmap) 949 { 950 struct scsi_device *sdp = cmd->device; 951 struct request *rq = scsi_cmd_to_rq(cmd); 952 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 953 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 954 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 955 u32 data_len = sdp->sector_size; 956 957 if (!sd_set_special_bvec(rq, data_len)) 958 return BLK_STS_RESOURCE; 959 960 cmd->cmd_len = 10; 961 cmd->cmnd[0] = WRITE_SAME; 962 if (unmap) 963 cmd->cmnd[1] = 0x8; /* UNMAP */ 964 put_unaligned_be32(lba, &cmd->cmnd[2]); 965 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 966 967 cmd->allowed = sdkp->max_retries; 968 cmd->transfersize = data_len; 969 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 970 971 return scsi_alloc_sgtables(cmd); 972 } 973 974 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd) 975 { 976 struct request *rq = scsi_cmd_to_rq(cmd); 977 struct scsi_device *sdp = cmd->device; 978 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 979 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 980 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 981 982 if (!(rq->cmd_flags & REQ_NOUNMAP)) { 983 switch (sdkp->zeroing_mode) { 984 case SD_ZERO_WS16_UNMAP: 985 return sd_setup_write_same16_cmnd(cmd, true); 986 case SD_ZERO_WS10_UNMAP: 987 return sd_setup_write_same10_cmnd(cmd, true); 988 } 989 } 990 991 if (sdp->no_write_same) { 992 rq->rq_flags |= RQF_QUIET; 993 return BLK_STS_TARGET; 994 } 995 996 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) 997 return sd_setup_write_same16_cmnd(cmd, false); 998 999 return sd_setup_write_same10_cmnd(cmd, false); 1000 } 1001 1002 static void sd_config_write_same(struct scsi_disk *sdkp) 1003 { 1004 struct request_queue *q = sdkp->disk->queue; 1005 unsigned int logical_block_size = sdkp->device->sector_size; 1006 1007 if (sdkp->device->no_write_same) { 1008 sdkp->max_ws_blocks = 0; 1009 goto out; 1010 } 1011 1012 /* Some devices can not handle block counts above 0xffff despite 1013 * supporting WRITE SAME(16). Consequently we default to 64k 1014 * blocks per I/O unless the device explicitly advertises a 1015 * bigger limit. 1016 */ 1017 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS) 1018 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 1019 (u32)SD_MAX_WS16_BLOCKS); 1020 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes) 1021 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 1022 (u32)SD_MAX_WS10_BLOCKS); 1023 else { 1024 sdkp->device->no_write_same = 1; 1025 sdkp->max_ws_blocks = 0; 1026 } 1027 1028 if (sdkp->lbprz && sdkp->lbpws) 1029 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP; 1030 else if (sdkp->lbprz && sdkp->lbpws10) 1031 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP; 1032 else if (sdkp->max_ws_blocks) 1033 sdkp->zeroing_mode = SD_ZERO_WS; 1034 else 1035 sdkp->zeroing_mode = SD_ZERO_WRITE; 1036 1037 if (sdkp->max_ws_blocks && 1038 sdkp->physical_block_size > logical_block_size) { 1039 /* 1040 * Reporting a maximum number of blocks that is not aligned 1041 * on the device physical size would cause a large write same 1042 * request to be split into physically unaligned chunks by 1043 * __blkdev_issue_write_zeroes() even if the caller of this 1044 * functions took care to align the large request. So make sure 1045 * the maximum reported is aligned to the device physical block 1046 * size. This is only an optional optimization for regular 1047 * disks, but this is mandatory to avoid failure of large write 1048 * same requests directed at sequential write required zones of 1049 * host-managed ZBC disks. 1050 */ 1051 sdkp->max_ws_blocks = 1052 round_down(sdkp->max_ws_blocks, 1053 bytes_to_logical(sdkp->device, 1054 sdkp->physical_block_size)); 1055 } 1056 1057 out: 1058 blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks * 1059 (logical_block_size >> 9)); 1060 } 1061 1062 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd) 1063 { 1064 struct request *rq = scsi_cmd_to_rq(cmd); 1065 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 1066 1067 /* flush requests don't perform I/O, zero the S/G table */ 1068 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1069 1070 if (cmd->device->use_16_for_sync) { 1071 cmd->cmnd[0] = SYNCHRONIZE_CACHE_16; 1072 cmd->cmd_len = 16; 1073 } else { 1074 cmd->cmnd[0] = SYNCHRONIZE_CACHE; 1075 cmd->cmd_len = 10; 1076 } 1077 cmd->transfersize = 0; 1078 cmd->allowed = sdkp->max_retries; 1079 1080 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER; 1081 return BLK_STS_OK; 1082 } 1083 1084 /** 1085 * sd_group_number() - Compute the GROUP NUMBER field 1086 * @cmd: SCSI command for which to compute the value of the six-bit GROUP NUMBER 1087 * field. 1088 * 1089 * From SBC-5 r05 (https://www.t10.org/cgi-bin/ac.pl?t=f&f=sbc5r05.pdf): 1090 * 0: no relative lifetime. 1091 * 1: shortest relative lifetime. 1092 * 2: second shortest relative lifetime. 1093 * 3 - 0x3d: intermediate relative lifetimes. 1094 * 0x3e: second longest relative lifetime. 1095 * 0x3f: longest relative lifetime. 1096 */ 1097 static u8 sd_group_number(struct scsi_cmnd *cmd) 1098 { 1099 const struct request *rq = scsi_cmd_to_rq(cmd); 1100 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 1101 1102 if (!sdkp->rscs) 1103 return 0; 1104 1105 return min3((u32)rq->write_hint, (u32)sdkp->permanent_stream_count, 1106 0x3fu); 1107 } 1108 1109 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write, 1110 sector_t lba, unsigned int nr_blocks, 1111 unsigned char flags, unsigned int dld) 1112 { 1113 cmd->cmd_len = SD_EXT_CDB_SIZE; 1114 cmd->cmnd[0] = VARIABLE_LENGTH_CMD; 1115 cmd->cmnd[6] = sd_group_number(cmd); 1116 cmd->cmnd[7] = 0x18; /* Additional CDB len */ 1117 cmd->cmnd[9] = write ? WRITE_32 : READ_32; 1118 cmd->cmnd[10] = flags; 1119 cmd->cmnd[11] = dld & 0x07; 1120 put_unaligned_be64(lba, &cmd->cmnd[12]); 1121 put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */ 1122 put_unaligned_be32(nr_blocks, &cmd->cmnd[28]); 1123 1124 return BLK_STS_OK; 1125 } 1126 1127 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write, 1128 sector_t lba, unsigned int nr_blocks, 1129 unsigned char flags, unsigned int dld) 1130 { 1131 cmd->cmd_len = 16; 1132 cmd->cmnd[0] = write ? WRITE_16 : READ_16; 1133 cmd->cmnd[1] = flags | ((dld >> 2) & 0x01); 1134 cmd->cmnd[14] = ((dld & 0x03) << 6) | sd_group_number(cmd); 1135 cmd->cmnd[15] = 0; 1136 put_unaligned_be64(lba, &cmd->cmnd[2]); 1137 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 1138 1139 return BLK_STS_OK; 1140 } 1141 1142 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write, 1143 sector_t lba, unsigned int nr_blocks, 1144 unsigned char flags) 1145 { 1146 cmd->cmd_len = 10; 1147 cmd->cmnd[0] = write ? WRITE_10 : READ_10; 1148 cmd->cmnd[1] = flags; 1149 cmd->cmnd[6] = sd_group_number(cmd); 1150 cmd->cmnd[9] = 0; 1151 put_unaligned_be32(lba, &cmd->cmnd[2]); 1152 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 1153 1154 return BLK_STS_OK; 1155 } 1156 1157 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write, 1158 sector_t lba, unsigned int nr_blocks, 1159 unsigned char flags) 1160 { 1161 /* Avoid that 0 blocks gets translated into 256 blocks. */ 1162 if (WARN_ON_ONCE(nr_blocks == 0)) 1163 return BLK_STS_IOERR; 1164 1165 if (unlikely(flags & 0x8)) { 1166 /* 1167 * This happens only if this drive failed 10byte rw 1168 * command with ILLEGAL_REQUEST during operation and 1169 * thus turned off use_10_for_rw. 1170 */ 1171 scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n"); 1172 return BLK_STS_IOERR; 1173 } 1174 1175 cmd->cmd_len = 6; 1176 cmd->cmnd[0] = write ? WRITE_6 : READ_6; 1177 cmd->cmnd[1] = (lba >> 16) & 0x1f; 1178 cmd->cmnd[2] = (lba >> 8) & 0xff; 1179 cmd->cmnd[3] = lba & 0xff; 1180 cmd->cmnd[4] = nr_blocks; 1181 cmd->cmnd[5] = 0; 1182 1183 return BLK_STS_OK; 1184 } 1185 1186 /* 1187 * Check if a command has a duration limit set. If it does, and the target 1188 * device supports CDL and the feature is enabled, return the limit 1189 * descriptor index to use. Return 0 (no limit) otherwise. 1190 */ 1191 static int sd_cdl_dld(struct scsi_disk *sdkp, struct scsi_cmnd *scmd) 1192 { 1193 struct scsi_device *sdp = sdkp->device; 1194 int hint; 1195 1196 if (!sdp->cdl_supported || !sdp->cdl_enable) 1197 return 0; 1198 1199 /* 1200 * Use "no limit" if the request ioprio does not specify a duration 1201 * limit hint. 1202 */ 1203 hint = IOPRIO_PRIO_HINT(req_get_ioprio(scsi_cmd_to_rq(scmd))); 1204 if (hint < IOPRIO_HINT_DEV_DURATION_LIMIT_1 || 1205 hint > IOPRIO_HINT_DEV_DURATION_LIMIT_7) 1206 return 0; 1207 1208 return (hint - IOPRIO_HINT_DEV_DURATION_LIMIT_1) + 1; 1209 } 1210 1211 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd) 1212 { 1213 struct request *rq = scsi_cmd_to_rq(cmd); 1214 struct scsi_device *sdp = cmd->device; 1215 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 1216 sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 1217 sector_t threshold; 1218 unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 1219 unsigned int mask = logical_to_sectors(sdp, 1) - 1; 1220 bool write = rq_data_dir(rq) == WRITE; 1221 unsigned char protect, fua; 1222 unsigned int dld; 1223 blk_status_t ret; 1224 unsigned int dif; 1225 bool dix; 1226 1227 ret = scsi_alloc_sgtables(cmd); 1228 if (ret != BLK_STS_OK) 1229 return ret; 1230 1231 ret = BLK_STS_IOERR; 1232 if (!scsi_device_online(sdp) || sdp->changed) { 1233 scmd_printk(KERN_ERR, cmd, "device offline or changed\n"); 1234 goto fail; 1235 } 1236 1237 if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->q->disk)) { 1238 scmd_printk(KERN_ERR, cmd, "access beyond end of device\n"); 1239 goto fail; 1240 } 1241 1242 if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) { 1243 scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n"); 1244 goto fail; 1245 } 1246 1247 /* 1248 * Some SD card readers can't handle accesses which touch the 1249 * last one or two logical blocks. Split accesses as needed. 1250 */ 1251 threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS; 1252 1253 if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) { 1254 if (lba < threshold) { 1255 /* Access up to the threshold but not beyond */ 1256 nr_blocks = threshold - lba; 1257 } else { 1258 /* Access only a single logical block */ 1259 nr_blocks = 1; 1260 } 1261 } 1262 1263 fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0; 1264 dix = scsi_prot_sg_count(cmd); 1265 dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type); 1266 dld = sd_cdl_dld(sdkp, cmd); 1267 1268 if (dif || dix) 1269 protect = sd_setup_protect_cmnd(cmd, dix, dif); 1270 else 1271 protect = 0; 1272 1273 if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) { 1274 ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks, 1275 protect | fua, dld); 1276 } else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) { 1277 ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks, 1278 protect | fua, dld); 1279 } else if ((nr_blocks > 0xff) || (lba > 0x1fffff) || 1280 sdp->use_10_for_rw || protect || rq->write_hint) { 1281 ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks, 1282 protect | fua); 1283 } else { 1284 ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks, 1285 protect | fua); 1286 } 1287 1288 if (unlikely(ret != BLK_STS_OK)) 1289 goto fail; 1290 1291 /* 1292 * We shouldn't disconnect in the middle of a sector, so with a dumb 1293 * host adapter, it's safe to assume that we can at least transfer 1294 * this many bytes between each connect / disconnect. 1295 */ 1296 cmd->transfersize = sdp->sector_size; 1297 cmd->underflow = nr_blocks << 9; 1298 cmd->allowed = sdkp->max_retries; 1299 cmd->sdb.length = nr_blocks * sdp->sector_size; 1300 1301 SCSI_LOG_HLQUEUE(1, 1302 scmd_printk(KERN_INFO, cmd, 1303 "%s: block=%llu, count=%d\n", __func__, 1304 (unsigned long long)blk_rq_pos(rq), 1305 blk_rq_sectors(rq))); 1306 SCSI_LOG_HLQUEUE(2, 1307 scmd_printk(KERN_INFO, cmd, 1308 "%s %d/%u 512 byte blocks.\n", 1309 write ? "writing" : "reading", nr_blocks, 1310 blk_rq_sectors(rq))); 1311 1312 /* 1313 * This indicates that the command is ready from our end to be queued. 1314 */ 1315 return BLK_STS_OK; 1316 fail: 1317 scsi_free_sgtables(cmd); 1318 return ret; 1319 } 1320 1321 static blk_status_t sd_init_command(struct scsi_cmnd *cmd) 1322 { 1323 struct request *rq = scsi_cmd_to_rq(cmd); 1324 1325 switch (req_op(rq)) { 1326 case REQ_OP_DISCARD: 1327 switch (scsi_disk(rq->q->disk)->provisioning_mode) { 1328 case SD_LBP_UNMAP: 1329 return sd_setup_unmap_cmnd(cmd); 1330 case SD_LBP_WS16: 1331 return sd_setup_write_same16_cmnd(cmd, true); 1332 case SD_LBP_WS10: 1333 return sd_setup_write_same10_cmnd(cmd, true); 1334 case SD_LBP_ZERO: 1335 return sd_setup_write_same10_cmnd(cmd, false); 1336 default: 1337 return BLK_STS_TARGET; 1338 } 1339 case REQ_OP_WRITE_ZEROES: 1340 return sd_setup_write_zeroes_cmnd(cmd); 1341 case REQ_OP_FLUSH: 1342 return sd_setup_flush_cmnd(cmd); 1343 case REQ_OP_READ: 1344 case REQ_OP_WRITE: 1345 return sd_setup_read_write_cmnd(cmd); 1346 case REQ_OP_ZONE_RESET: 1347 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER, 1348 false); 1349 case REQ_OP_ZONE_RESET_ALL: 1350 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER, 1351 true); 1352 case REQ_OP_ZONE_OPEN: 1353 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false); 1354 case REQ_OP_ZONE_CLOSE: 1355 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false); 1356 case REQ_OP_ZONE_FINISH: 1357 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false); 1358 default: 1359 WARN_ON_ONCE(1); 1360 return BLK_STS_NOTSUPP; 1361 } 1362 } 1363 1364 static void sd_uninit_command(struct scsi_cmnd *SCpnt) 1365 { 1366 struct request *rq = scsi_cmd_to_rq(SCpnt); 1367 1368 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1369 mempool_free(rq->special_vec.bv_page, sd_page_pool); 1370 } 1371 1372 static bool sd_need_revalidate(struct gendisk *disk, struct scsi_disk *sdkp) 1373 { 1374 if (sdkp->device->removable || sdkp->write_prot) { 1375 if (disk_check_media_change(disk)) 1376 return true; 1377 } 1378 1379 /* 1380 * Force a full rescan after ioctl(BLKRRPART). While the disk state has 1381 * nothing to do with partitions, BLKRRPART is used to force a full 1382 * revalidate after things like a format for historical reasons. 1383 */ 1384 return test_bit(GD_NEED_PART_SCAN, &disk->state); 1385 } 1386 1387 /** 1388 * sd_open - open a scsi disk device 1389 * @disk: disk to open 1390 * @mode: open mode 1391 * 1392 * Returns 0 if successful. Returns a negated errno value in case 1393 * of error. 1394 * 1395 * Note: This can be called from a user context (e.g. fsck(1) ) 1396 * or from within the kernel (e.g. as a result of a mount(1) ). 1397 * In the latter case @inode and @filp carry an abridged amount 1398 * of information as noted above. 1399 * 1400 * Locking: called with disk->open_mutex held. 1401 **/ 1402 static int sd_open(struct gendisk *disk, blk_mode_t mode) 1403 { 1404 struct scsi_disk *sdkp = scsi_disk(disk); 1405 struct scsi_device *sdev = sdkp->device; 1406 int retval; 1407 1408 if (scsi_device_get(sdev)) 1409 return -ENXIO; 1410 1411 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n")); 1412 1413 /* 1414 * If the device is in error recovery, wait until it is done. 1415 * If the device is offline, then disallow any access to it. 1416 */ 1417 retval = -ENXIO; 1418 if (!scsi_block_when_processing_errors(sdev)) 1419 goto error_out; 1420 1421 if (sd_need_revalidate(disk, sdkp)) 1422 sd_revalidate_disk(disk); 1423 1424 /* 1425 * If the drive is empty, just let the open fail. 1426 */ 1427 retval = -ENOMEDIUM; 1428 if (sdev->removable && !sdkp->media_present && 1429 !(mode & BLK_OPEN_NDELAY)) 1430 goto error_out; 1431 1432 /* 1433 * If the device has the write protect tab set, have the open fail 1434 * if the user expects to be able to write to the thing. 1435 */ 1436 retval = -EROFS; 1437 if (sdkp->write_prot && (mode & BLK_OPEN_WRITE)) 1438 goto error_out; 1439 1440 /* 1441 * It is possible that the disk changing stuff resulted in 1442 * the device being taken offline. If this is the case, 1443 * report this to the user, and don't pretend that the 1444 * open actually succeeded. 1445 */ 1446 retval = -ENXIO; 1447 if (!scsi_device_online(sdev)) 1448 goto error_out; 1449 1450 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) { 1451 if (scsi_block_when_processing_errors(sdev)) 1452 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT); 1453 } 1454 1455 return 0; 1456 1457 error_out: 1458 scsi_device_put(sdev); 1459 return retval; 1460 } 1461 1462 /** 1463 * sd_release - invoked when the (last) close(2) is called on this 1464 * scsi disk. 1465 * @disk: disk to release 1466 * 1467 * Returns 0. 1468 * 1469 * Note: may block (uninterruptible) if error recovery is underway 1470 * on this disk. 1471 * 1472 * Locking: called with disk->open_mutex held. 1473 **/ 1474 static void sd_release(struct gendisk *disk) 1475 { 1476 struct scsi_disk *sdkp = scsi_disk(disk); 1477 struct scsi_device *sdev = sdkp->device; 1478 1479 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n")); 1480 1481 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) { 1482 if (scsi_block_when_processing_errors(sdev)) 1483 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW); 1484 } 1485 1486 scsi_device_put(sdev); 1487 } 1488 1489 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1490 { 1491 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1492 struct scsi_device *sdp = sdkp->device; 1493 struct Scsi_Host *host = sdp->host; 1494 sector_t capacity = logical_to_sectors(sdp, sdkp->capacity); 1495 int diskinfo[4]; 1496 1497 /* default to most commonly used values */ 1498 diskinfo[0] = 0x40; /* 1 << 6 */ 1499 diskinfo[1] = 0x20; /* 1 << 5 */ 1500 diskinfo[2] = capacity >> 11; 1501 1502 /* override with calculated, extended default, or driver values */ 1503 if (host->hostt->bios_param) 1504 host->hostt->bios_param(sdp, bdev, capacity, diskinfo); 1505 else 1506 scsicam_bios_param(bdev, capacity, diskinfo); 1507 1508 geo->heads = diskinfo[0]; 1509 geo->sectors = diskinfo[1]; 1510 geo->cylinders = diskinfo[2]; 1511 return 0; 1512 } 1513 1514 /** 1515 * sd_ioctl - process an ioctl 1516 * @bdev: target block device 1517 * @mode: open mode 1518 * @cmd: ioctl command number 1519 * @arg: this is third argument given to ioctl(2) system call. 1520 * Often contains a pointer. 1521 * 1522 * Returns 0 if successful (some ioctls return positive numbers on 1523 * success as well). Returns a negated errno value in case of error. 1524 * 1525 * Note: most ioctls are forward onto the block subsystem or further 1526 * down in the scsi subsystem. 1527 **/ 1528 static int sd_ioctl(struct block_device *bdev, blk_mode_t mode, 1529 unsigned int cmd, unsigned long arg) 1530 { 1531 struct gendisk *disk = bdev->bd_disk; 1532 struct scsi_disk *sdkp = scsi_disk(disk); 1533 struct scsi_device *sdp = sdkp->device; 1534 void __user *p = (void __user *)arg; 1535 int error; 1536 1537 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, " 1538 "cmd=0x%x\n", disk->disk_name, cmd)); 1539 1540 if (bdev_is_partition(bdev) && !capable(CAP_SYS_RAWIO)) 1541 return -ENOIOCTLCMD; 1542 1543 /* 1544 * If we are in the middle of error recovery, don't let anyone 1545 * else try and use this device. Also, if error recovery fails, it 1546 * may try and take the device offline, in which case all further 1547 * access to the device is prohibited. 1548 */ 1549 error = scsi_ioctl_block_when_processing_errors(sdp, cmd, 1550 (mode & BLK_OPEN_NDELAY)); 1551 if (error) 1552 return error; 1553 1554 if (is_sed_ioctl(cmd)) 1555 return sed_ioctl(sdkp->opal_dev, cmd, p); 1556 return scsi_ioctl(sdp, mode & BLK_OPEN_WRITE, cmd, p); 1557 } 1558 1559 static void set_media_not_present(struct scsi_disk *sdkp) 1560 { 1561 if (sdkp->media_present) 1562 sdkp->device->changed = 1; 1563 1564 if (sdkp->device->removable) { 1565 sdkp->media_present = 0; 1566 sdkp->capacity = 0; 1567 } 1568 } 1569 1570 static int media_not_present(struct scsi_disk *sdkp, 1571 struct scsi_sense_hdr *sshdr) 1572 { 1573 if (!scsi_sense_valid(sshdr)) 1574 return 0; 1575 1576 /* not invoked for commands that could return deferred errors */ 1577 switch (sshdr->sense_key) { 1578 case UNIT_ATTENTION: 1579 case NOT_READY: 1580 /* medium not present */ 1581 if (sshdr->asc == 0x3A) { 1582 set_media_not_present(sdkp); 1583 return 1; 1584 } 1585 } 1586 return 0; 1587 } 1588 1589 /** 1590 * sd_check_events - check media events 1591 * @disk: kernel device descriptor 1592 * @clearing: disk events currently being cleared 1593 * 1594 * Returns mask of DISK_EVENT_*. 1595 * 1596 * Note: this function is invoked from the block subsystem. 1597 **/ 1598 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing) 1599 { 1600 struct scsi_disk *sdkp = disk->private_data; 1601 struct scsi_device *sdp; 1602 int retval; 1603 bool disk_changed; 1604 1605 if (!sdkp) 1606 return 0; 1607 1608 sdp = sdkp->device; 1609 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n")); 1610 1611 /* 1612 * If the device is offline, don't send any commands - just pretend as 1613 * if the command failed. If the device ever comes back online, we 1614 * can deal with it then. It is only because of unrecoverable errors 1615 * that we would ever take a device offline in the first place. 1616 */ 1617 if (!scsi_device_online(sdp)) { 1618 set_media_not_present(sdkp); 1619 goto out; 1620 } 1621 1622 /* 1623 * Using TEST_UNIT_READY enables differentiation between drive with 1624 * no cartridge loaded - NOT READY, drive with changed cartridge - 1625 * UNIT ATTENTION, or with same cartridge - GOOD STATUS. 1626 * 1627 * Drives that auto spin down. eg iomega jaz 1G, will be started 1628 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever 1629 * sd_revalidate() is called. 1630 */ 1631 if (scsi_block_when_processing_errors(sdp)) { 1632 struct scsi_sense_hdr sshdr = { 0, }; 1633 1634 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries, 1635 &sshdr); 1636 1637 /* failed to execute TUR, assume media not present */ 1638 if (retval < 0 || host_byte(retval)) { 1639 set_media_not_present(sdkp); 1640 goto out; 1641 } 1642 1643 if (media_not_present(sdkp, &sshdr)) 1644 goto out; 1645 } 1646 1647 /* 1648 * For removable scsi disk we have to recognise the presence 1649 * of a disk in the drive. 1650 */ 1651 if (!sdkp->media_present) 1652 sdp->changed = 1; 1653 sdkp->media_present = 1; 1654 out: 1655 /* 1656 * sdp->changed is set under the following conditions: 1657 * 1658 * Medium present state has changed in either direction. 1659 * Device has indicated UNIT_ATTENTION. 1660 */ 1661 disk_changed = sdp->changed; 1662 sdp->changed = 0; 1663 return disk_changed ? DISK_EVENT_MEDIA_CHANGE : 0; 1664 } 1665 1666 static int sd_sync_cache(struct scsi_disk *sdkp) 1667 { 1668 int res; 1669 struct scsi_device *sdp = sdkp->device; 1670 const int timeout = sdp->request_queue->rq_timeout 1671 * SD_FLUSH_TIMEOUT_MULTIPLIER; 1672 /* Leave the rest of the command zero to indicate flush everything. */ 1673 const unsigned char cmd[16] = { sdp->use_16_for_sync ? 1674 SYNCHRONIZE_CACHE_16 : SYNCHRONIZE_CACHE }; 1675 struct scsi_sense_hdr sshdr; 1676 struct scsi_failure failure_defs[] = { 1677 { 1678 .allowed = 3, 1679 .result = SCMD_FAILURE_RESULT_ANY, 1680 }, 1681 {} 1682 }; 1683 struct scsi_failures failures = { 1684 .failure_definitions = failure_defs, 1685 }; 1686 const struct scsi_exec_args exec_args = { 1687 .req_flags = BLK_MQ_REQ_PM, 1688 .sshdr = &sshdr, 1689 .failures = &failures, 1690 }; 1691 1692 if (!scsi_device_online(sdp)) 1693 return -ENODEV; 1694 1695 res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, timeout, 1696 sdkp->max_retries, &exec_args); 1697 if (res) { 1698 sd_print_result(sdkp, "Synchronize Cache(10) failed", res); 1699 1700 if (res < 0) 1701 return res; 1702 1703 if (scsi_status_is_check_condition(res) && 1704 scsi_sense_valid(&sshdr)) { 1705 sd_print_sense_hdr(sdkp, &sshdr); 1706 1707 /* we need to evaluate the error return */ 1708 if (sshdr.asc == 0x3a || /* medium not present */ 1709 sshdr.asc == 0x20 || /* invalid command */ 1710 (sshdr.asc == 0x74 && sshdr.ascq == 0x71)) /* drive is password locked */ 1711 /* this is no error here */ 1712 return 0; 1713 /* 1714 * This drive doesn't support sync and there's not much 1715 * we can do because this is called during shutdown 1716 * or suspend so just return success so those operations 1717 * can proceed. 1718 */ 1719 if (sshdr.sense_key == ILLEGAL_REQUEST) 1720 return 0; 1721 } 1722 1723 switch (host_byte(res)) { 1724 /* ignore errors due to racing a disconnection */ 1725 case DID_BAD_TARGET: 1726 case DID_NO_CONNECT: 1727 return 0; 1728 /* signal the upper layer it might try again */ 1729 case DID_BUS_BUSY: 1730 case DID_IMM_RETRY: 1731 case DID_REQUEUE: 1732 case DID_SOFT_ERROR: 1733 return -EBUSY; 1734 default: 1735 return -EIO; 1736 } 1737 } 1738 return 0; 1739 } 1740 1741 static void sd_rescan(struct device *dev) 1742 { 1743 struct scsi_disk *sdkp = dev_get_drvdata(dev); 1744 1745 sd_revalidate_disk(sdkp->disk); 1746 } 1747 1748 static int sd_get_unique_id(struct gendisk *disk, u8 id[16], 1749 enum blk_unique_id type) 1750 { 1751 struct scsi_device *sdev = scsi_disk(disk)->device; 1752 const struct scsi_vpd *vpd; 1753 const unsigned char *d; 1754 int ret = -ENXIO, len; 1755 1756 rcu_read_lock(); 1757 vpd = rcu_dereference(sdev->vpd_pg83); 1758 if (!vpd) 1759 goto out_unlock; 1760 1761 ret = -EINVAL; 1762 for (d = vpd->data + 4; d < vpd->data + vpd->len; d += d[3] + 4) { 1763 /* we only care about designators with LU association */ 1764 if (((d[1] >> 4) & 0x3) != 0x00) 1765 continue; 1766 if ((d[1] & 0xf) != type) 1767 continue; 1768 1769 /* 1770 * Only exit early if a 16-byte descriptor was found. Otherwise 1771 * keep looking as one with more entropy might still show up. 1772 */ 1773 len = d[3]; 1774 if (len != 8 && len != 12 && len != 16) 1775 continue; 1776 ret = len; 1777 memcpy(id, d + 4, len); 1778 if (len == 16) 1779 break; 1780 } 1781 out_unlock: 1782 rcu_read_unlock(); 1783 return ret; 1784 } 1785 1786 static int sd_scsi_to_pr_err(struct scsi_sense_hdr *sshdr, int result) 1787 { 1788 switch (host_byte(result)) { 1789 case DID_TRANSPORT_MARGINAL: 1790 case DID_TRANSPORT_DISRUPTED: 1791 case DID_BUS_BUSY: 1792 return PR_STS_RETRY_PATH_FAILURE; 1793 case DID_NO_CONNECT: 1794 return PR_STS_PATH_FAILED; 1795 case DID_TRANSPORT_FAILFAST: 1796 return PR_STS_PATH_FAST_FAILED; 1797 } 1798 1799 switch (status_byte(result)) { 1800 case SAM_STAT_RESERVATION_CONFLICT: 1801 return PR_STS_RESERVATION_CONFLICT; 1802 case SAM_STAT_CHECK_CONDITION: 1803 if (!scsi_sense_valid(sshdr)) 1804 return PR_STS_IOERR; 1805 1806 if (sshdr->sense_key == ILLEGAL_REQUEST && 1807 (sshdr->asc == 0x26 || sshdr->asc == 0x24)) 1808 return -EINVAL; 1809 1810 fallthrough; 1811 default: 1812 return PR_STS_IOERR; 1813 } 1814 } 1815 1816 static int sd_pr_in_command(struct block_device *bdev, u8 sa, 1817 unsigned char *data, int data_len) 1818 { 1819 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1820 struct scsi_device *sdev = sdkp->device; 1821 struct scsi_sense_hdr sshdr; 1822 u8 cmd[10] = { PERSISTENT_RESERVE_IN, sa }; 1823 struct scsi_failure failure_defs[] = { 1824 { 1825 .sense = UNIT_ATTENTION, 1826 .asc = SCMD_FAILURE_ASC_ANY, 1827 .ascq = SCMD_FAILURE_ASCQ_ANY, 1828 .allowed = 5, 1829 .result = SAM_STAT_CHECK_CONDITION, 1830 }, 1831 {} 1832 }; 1833 struct scsi_failures failures = { 1834 .failure_definitions = failure_defs, 1835 }; 1836 const struct scsi_exec_args exec_args = { 1837 .sshdr = &sshdr, 1838 .failures = &failures, 1839 }; 1840 int result; 1841 1842 put_unaligned_be16(data_len, &cmd[7]); 1843 1844 result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, data, data_len, 1845 SD_TIMEOUT, sdkp->max_retries, &exec_args); 1846 if (scsi_status_is_check_condition(result) && 1847 scsi_sense_valid(&sshdr)) { 1848 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result); 1849 scsi_print_sense_hdr(sdev, NULL, &sshdr); 1850 } 1851 1852 if (result <= 0) 1853 return result; 1854 1855 return sd_scsi_to_pr_err(&sshdr, result); 1856 } 1857 1858 static int sd_pr_read_keys(struct block_device *bdev, struct pr_keys *keys_info) 1859 { 1860 int result, i, data_offset, num_copy_keys; 1861 u32 num_keys = keys_info->num_keys; 1862 int data_len = num_keys * 8 + 8; 1863 u8 *data; 1864 1865 data = kzalloc(data_len, GFP_KERNEL); 1866 if (!data) 1867 return -ENOMEM; 1868 1869 result = sd_pr_in_command(bdev, READ_KEYS, data, data_len); 1870 if (result) 1871 goto free_data; 1872 1873 keys_info->generation = get_unaligned_be32(&data[0]); 1874 keys_info->num_keys = get_unaligned_be32(&data[4]) / 8; 1875 1876 data_offset = 8; 1877 num_copy_keys = min(num_keys, keys_info->num_keys); 1878 1879 for (i = 0; i < num_copy_keys; i++) { 1880 keys_info->keys[i] = get_unaligned_be64(&data[data_offset]); 1881 data_offset += 8; 1882 } 1883 1884 free_data: 1885 kfree(data); 1886 return result; 1887 } 1888 1889 static int sd_pr_read_reservation(struct block_device *bdev, 1890 struct pr_held_reservation *rsv) 1891 { 1892 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1893 struct scsi_device *sdev = sdkp->device; 1894 u8 data[24] = { }; 1895 int result, len; 1896 1897 result = sd_pr_in_command(bdev, READ_RESERVATION, data, sizeof(data)); 1898 if (result) 1899 return result; 1900 1901 len = get_unaligned_be32(&data[4]); 1902 if (!len) 1903 return 0; 1904 1905 /* Make sure we have at least the key and type */ 1906 if (len < 14) { 1907 sdev_printk(KERN_INFO, sdev, 1908 "READ RESERVATION failed due to short return buffer of %d bytes\n", 1909 len); 1910 return -EINVAL; 1911 } 1912 1913 rsv->generation = get_unaligned_be32(&data[0]); 1914 rsv->key = get_unaligned_be64(&data[8]); 1915 rsv->type = scsi_pr_type_to_block(data[21] & 0x0f); 1916 return 0; 1917 } 1918 1919 static int sd_pr_out_command(struct block_device *bdev, u8 sa, u64 key, 1920 u64 sa_key, enum scsi_pr_type type, u8 flags) 1921 { 1922 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1923 struct scsi_device *sdev = sdkp->device; 1924 struct scsi_sense_hdr sshdr; 1925 struct scsi_failure failure_defs[] = { 1926 { 1927 .sense = UNIT_ATTENTION, 1928 .asc = SCMD_FAILURE_ASC_ANY, 1929 .ascq = SCMD_FAILURE_ASCQ_ANY, 1930 .allowed = 5, 1931 .result = SAM_STAT_CHECK_CONDITION, 1932 }, 1933 {} 1934 }; 1935 struct scsi_failures failures = { 1936 .failure_definitions = failure_defs, 1937 }; 1938 const struct scsi_exec_args exec_args = { 1939 .sshdr = &sshdr, 1940 .failures = &failures, 1941 }; 1942 int result; 1943 u8 cmd[16] = { 0, }; 1944 u8 data[24] = { 0, }; 1945 1946 cmd[0] = PERSISTENT_RESERVE_OUT; 1947 cmd[1] = sa; 1948 cmd[2] = type; 1949 put_unaligned_be32(sizeof(data), &cmd[5]); 1950 1951 put_unaligned_be64(key, &data[0]); 1952 put_unaligned_be64(sa_key, &data[8]); 1953 data[20] = flags; 1954 1955 result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, &data, 1956 sizeof(data), SD_TIMEOUT, sdkp->max_retries, 1957 &exec_args); 1958 1959 if (scsi_status_is_check_condition(result) && 1960 scsi_sense_valid(&sshdr)) { 1961 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result); 1962 scsi_print_sense_hdr(sdev, NULL, &sshdr); 1963 } 1964 1965 if (result <= 0) 1966 return result; 1967 1968 return sd_scsi_to_pr_err(&sshdr, result); 1969 } 1970 1971 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 1972 u32 flags) 1973 { 1974 if (flags & ~PR_FL_IGNORE_KEY) 1975 return -EOPNOTSUPP; 1976 return sd_pr_out_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00, 1977 old_key, new_key, 0, 1978 (1 << 0) /* APTPL */); 1979 } 1980 1981 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 1982 u32 flags) 1983 { 1984 if (flags) 1985 return -EOPNOTSUPP; 1986 return sd_pr_out_command(bdev, 0x01, key, 0, 1987 block_pr_type_to_scsi(type), 0); 1988 } 1989 1990 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 1991 { 1992 return sd_pr_out_command(bdev, 0x02, key, 0, 1993 block_pr_type_to_scsi(type), 0); 1994 } 1995 1996 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 1997 enum pr_type type, bool abort) 1998 { 1999 return sd_pr_out_command(bdev, abort ? 0x05 : 0x04, old_key, new_key, 2000 block_pr_type_to_scsi(type), 0); 2001 } 2002 2003 static int sd_pr_clear(struct block_device *bdev, u64 key) 2004 { 2005 return sd_pr_out_command(bdev, 0x03, key, 0, 0, 0); 2006 } 2007 2008 static const struct pr_ops sd_pr_ops = { 2009 .pr_register = sd_pr_register, 2010 .pr_reserve = sd_pr_reserve, 2011 .pr_release = sd_pr_release, 2012 .pr_preempt = sd_pr_preempt, 2013 .pr_clear = sd_pr_clear, 2014 .pr_read_keys = sd_pr_read_keys, 2015 .pr_read_reservation = sd_pr_read_reservation, 2016 }; 2017 2018 static void scsi_disk_free_disk(struct gendisk *disk) 2019 { 2020 struct scsi_disk *sdkp = scsi_disk(disk); 2021 2022 put_device(&sdkp->disk_dev); 2023 } 2024 2025 static const struct block_device_operations sd_fops = { 2026 .owner = THIS_MODULE, 2027 .open = sd_open, 2028 .release = sd_release, 2029 .ioctl = sd_ioctl, 2030 .getgeo = sd_getgeo, 2031 .compat_ioctl = blkdev_compat_ptr_ioctl, 2032 .check_events = sd_check_events, 2033 .unlock_native_capacity = sd_unlock_native_capacity, 2034 .report_zones = sd_zbc_report_zones, 2035 .get_unique_id = sd_get_unique_id, 2036 .free_disk = scsi_disk_free_disk, 2037 .pr_ops = &sd_pr_ops, 2038 }; 2039 2040 /** 2041 * sd_eh_reset - reset error handling callback 2042 * @scmd: sd-issued command that has failed 2043 * 2044 * This function is called by the SCSI midlayer before starting 2045 * SCSI EH. When counting medium access failures we have to be 2046 * careful to register it only only once per device and SCSI EH run; 2047 * there might be several timed out commands which will cause the 2048 * 'max_medium_access_timeouts' counter to trigger after the first 2049 * SCSI EH run already and set the device to offline. 2050 * So this function resets the internal counter before starting SCSI EH. 2051 **/ 2052 static void sd_eh_reset(struct scsi_cmnd *scmd) 2053 { 2054 struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk); 2055 2056 /* New SCSI EH run, reset gate variable */ 2057 sdkp->ignore_medium_access_errors = false; 2058 } 2059 2060 /** 2061 * sd_eh_action - error handling callback 2062 * @scmd: sd-issued command that has failed 2063 * @eh_disp: The recovery disposition suggested by the midlayer 2064 * 2065 * This function is called by the SCSI midlayer upon completion of an 2066 * error test command (currently TEST UNIT READY). The result of sending 2067 * the eh command is passed in eh_disp. We're looking for devices that 2068 * fail medium access commands but are OK with non access commands like 2069 * test unit ready (so wrongly see the device as having a successful 2070 * recovery) 2071 **/ 2072 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp) 2073 { 2074 struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk); 2075 struct scsi_device *sdev = scmd->device; 2076 2077 if (!scsi_device_online(sdev) || 2078 !scsi_medium_access_command(scmd) || 2079 host_byte(scmd->result) != DID_TIME_OUT || 2080 eh_disp != SUCCESS) 2081 return eh_disp; 2082 2083 /* 2084 * The device has timed out executing a medium access command. 2085 * However, the TEST UNIT READY command sent during error 2086 * handling completed successfully. Either the device is in the 2087 * process of recovering or has it suffered an internal failure 2088 * that prevents access to the storage medium. 2089 */ 2090 if (!sdkp->ignore_medium_access_errors) { 2091 sdkp->medium_access_timed_out++; 2092 sdkp->ignore_medium_access_errors = true; 2093 } 2094 2095 /* 2096 * If the device keeps failing read/write commands but TEST UNIT 2097 * READY always completes successfully we assume that medium 2098 * access is no longer possible and take the device offline. 2099 */ 2100 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) { 2101 scmd_printk(KERN_ERR, scmd, 2102 "Medium access timeout failure. Offlining disk!\n"); 2103 mutex_lock(&sdev->state_mutex); 2104 scsi_device_set_state(sdev, SDEV_OFFLINE); 2105 mutex_unlock(&sdev->state_mutex); 2106 2107 return SUCCESS; 2108 } 2109 2110 return eh_disp; 2111 } 2112 2113 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd) 2114 { 2115 struct request *req = scsi_cmd_to_rq(scmd); 2116 struct scsi_device *sdev = scmd->device; 2117 unsigned int transferred, good_bytes; 2118 u64 start_lba, end_lba, bad_lba; 2119 2120 /* 2121 * Some commands have a payload smaller than the device logical 2122 * block size (e.g. INQUIRY on a 4K disk). 2123 */ 2124 if (scsi_bufflen(scmd) <= sdev->sector_size) 2125 return 0; 2126 2127 /* Check if we have a 'bad_lba' information */ 2128 if (!scsi_get_sense_info_fld(scmd->sense_buffer, 2129 SCSI_SENSE_BUFFERSIZE, 2130 &bad_lba)) 2131 return 0; 2132 2133 /* 2134 * If the bad lba was reported incorrectly, we have no idea where 2135 * the error is. 2136 */ 2137 start_lba = sectors_to_logical(sdev, blk_rq_pos(req)); 2138 end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd)); 2139 if (bad_lba < start_lba || bad_lba >= end_lba) 2140 return 0; 2141 2142 /* 2143 * resid is optional but mostly filled in. When it's unused, 2144 * its value is zero, so we assume the whole buffer transferred 2145 */ 2146 transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd); 2147 2148 /* This computation should always be done in terms of the 2149 * resolution of the device's medium. 2150 */ 2151 good_bytes = logical_to_bytes(sdev, bad_lba - start_lba); 2152 2153 return min(good_bytes, transferred); 2154 } 2155 2156 /** 2157 * sd_done - bottom half handler: called when the lower level 2158 * driver has completed (successfully or otherwise) a scsi command. 2159 * @SCpnt: mid-level's per command structure. 2160 * 2161 * Note: potentially run from within an ISR. Must not block. 2162 **/ 2163 static int sd_done(struct scsi_cmnd *SCpnt) 2164 { 2165 int result = SCpnt->result; 2166 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt); 2167 unsigned int sector_size = SCpnt->device->sector_size; 2168 unsigned int resid; 2169 struct scsi_sense_hdr sshdr; 2170 struct request *req = scsi_cmd_to_rq(SCpnt); 2171 struct scsi_disk *sdkp = scsi_disk(req->q->disk); 2172 int sense_valid = 0; 2173 int sense_deferred = 0; 2174 2175 switch (req_op(req)) { 2176 case REQ_OP_DISCARD: 2177 case REQ_OP_WRITE_ZEROES: 2178 case REQ_OP_ZONE_RESET: 2179 case REQ_OP_ZONE_RESET_ALL: 2180 case REQ_OP_ZONE_OPEN: 2181 case REQ_OP_ZONE_CLOSE: 2182 case REQ_OP_ZONE_FINISH: 2183 if (!result) { 2184 good_bytes = blk_rq_bytes(req); 2185 scsi_set_resid(SCpnt, 0); 2186 } else { 2187 good_bytes = 0; 2188 scsi_set_resid(SCpnt, blk_rq_bytes(req)); 2189 } 2190 break; 2191 default: 2192 /* 2193 * In case of bogus fw or device, we could end up having 2194 * an unaligned partial completion. Check this here and force 2195 * alignment. 2196 */ 2197 resid = scsi_get_resid(SCpnt); 2198 if (resid & (sector_size - 1)) { 2199 sd_printk(KERN_INFO, sdkp, 2200 "Unaligned partial completion (resid=%u, sector_sz=%u)\n", 2201 resid, sector_size); 2202 scsi_print_command(SCpnt); 2203 resid = min(scsi_bufflen(SCpnt), 2204 round_up(resid, sector_size)); 2205 scsi_set_resid(SCpnt, resid); 2206 } 2207 } 2208 2209 if (result) { 2210 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr); 2211 if (sense_valid) 2212 sense_deferred = scsi_sense_is_deferred(&sshdr); 2213 } 2214 sdkp->medium_access_timed_out = 0; 2215 2216 if (!scsi_status_is_check_condition(result) && 2217 (!sense_valid || sense_deferred)) 2218 goto out; 2219 2220 switch (sshdr.sense_key) { 2221 case HARDWARE_ERROR: 2222 case MEDIUM_ERROR: 2223 good_bytes = sd_completed_bytes(SCpnt); 2224 break; 2225 case RECOVERED_ERROR: 2226 good_bytes = scsi_bufflen(SCpnt); 2227 break; 2228 case NO_SENSE: 2229 /* This indicates a false check condition, so ignore it. An 2230 * unknown amount of data was transferred so treat it as an 2231 * error. 2232 */ 2233 SCpnt->result = 0; 2234 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 2235 break; 2236 case ABORTED_COMMAND: 2237 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */ 2238 good_bytes = sd_completed_bytes(SCpnt); 2239 break; 2240 case ILLEGAL_REQUEST: 2241 switch (sshdr.asc) { 2242 case 0x10: /* DIX: Host detected corruption */ 2243 good_bytes = sd_completed_bytes(SCpnt); 2244 break; 2245 case 0x20: /* INVALID COMMAND OPCODE */ 2246 case 0x24: /* INVALID FIELD IN CDB */ 2247 switch (SCpnt->cmnd[0]) { 2248 case UNMAP: 2249 sd_config_discard(sdkp, SD_LBP_DISABLE); 2250 break; 2251 case WRITE_SAME_16: 2252 case WRITE_SAME: 2253 if (SCpnt->cmnd[1] & 8) { /* UNMAP */ 2254 sd_config_discard(sdkp, SD_LBP_DISABLE); 2255 } else { 2256 sdkp->device->no_write_same = 1; 2257 sd_config_write_same(sdkp); 2258 req->rq_flags |= RQF_QUIET; 2259 } 2260 break; 2261 } 2262 } 2263 break; 2264 default: 2265 break; 2266 } 2267 2268 out: 2269 if (sd_is_zoned(sdkp)) 2270 good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr); 2271 2272 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt, 2273 "sd_done: completed %d of %d bytes\n", 2274 good_bytes, scsi_bufflen(SCpnt))); 2275 2276 return good_bytes; 2277 } 2278 2279 /* 2280 * spinup disk - called only in sd_revalidate_disk() 2281 */ 2282 static void 2283 sd_spinup_disk(struct scsi_disk *sdkp) 2284 { 2285 static const u8 cmd[10] = { TEST_UNIT_READY }; 2286 unsigned long spintime_expire = 0; 2287 int spintime, sense_valid = 0; 2288 unsigned int the_result; 2289 struct scsi_sense_hdr sshdr; 2290 struct scsi_failure failure_defs[] = { 2291 /* Do not retry Medium Not Present */ 2292 { 2293 .sense = UNIT_ATTENTION, 2294 .asc = 0x3A, 2295 .ascq = SCMD_FAILURE_ASCQ_ANY, 2296 .result = SAM_STAT_CHECK_CONDITION, 2297 }, 2298 { 2299 .sense = NOT_READY, 2300 .asc = 0x3A, 2301 .ascq = SCMD_FAILURE_ASCQ_ANY, 2302 .result = SAM_STAT_CHECK_CONDITION, 2303 }, 2304 /* Retry when scsi_status_is_good would return false 3 times */ 2305 { 2306 .result = SCMD_FAILURE_STAT_ANY, 2307 .allowed = 3, 2308 }, 2309 {} 2310 }; 2311 struct scsi_failures failures = { 2312 .failure_definitions = failure_defs, 2313 }; 2314 const struct scsi_exec_args exec_args = { 2315 .sshdr = &sshdr, 2316 .failures = &failures, 2317 }; 2318 2319 spintime = 0; 2320 2321 /* Spin up drives, as required. Only do this at boot time */ 2322 /* Spinup needs to be done for module loads too. */ 2323 do { 2324 bool media_was_present = sdkp->media_present; 2325 2326 scsi_failures_reset_retries(&failures); 2327 2328 the_result = scsi_execute_cmd(sdkp->device, cmd, REQ_OP_DRV_IN, 2329 NULL, 0, SD_TIMEOUT, 2330 sdkp->max_retries, &exec_args); 2331 2332 2333 if (the_result > 0) { 2334 /* 2335 * If the drive has indicated to us that it doesn't 2336 * have any media in it, don't bother with any more 2337 * polling. 2338 */ 2339 if (media_not_present(sdkp, &sshdr)) { 2340 if (media_was_present) 2341 sd_printk(KERN_NOTICE, sdkp, 2342 "Media removed, stopped polling\n"); 2343 return; 2344 } 2345 sense_valid = scsi_sense_valid(&sshdr); 2346 } 2347 2348 if (!scsi_status_is_check_condition(the_result)) { 2349 /* no sense, TUR either succeeded or failed 2350 * with a status error */ 2351 if(!spintime && !scsi_status_is_good(the_result)) { 2352 sd_print_result(sdkp, "Test Unit Ready failed", 2353 the_result); 2354 } 2355 break; 2356 } 2357 2358 /* 2359 * The device does not want the automatic start to be issued. 2360 */ 2361 if (sdkp->device->no_start_on_add) 2362 break; 2363 2364 if (sense_valid && sshdr.sense_key == NOT_READY) { 2365 if (sshdr.asc == 4 && sshdr.ascq == 3) 2366 break; /* manual intervention required */ 2367 if (sshdr.asc == 4 && sshdr.ascq == 0xb) 2368 break; /* standby */ 2369 if (sshdr.asc == 4 && sshdr.ascq == 0xc) 2370 break; /* unavailable */ 2371 if (sshdr.asc == 4 && sshdr.ascq == 0x1b) 2372 break; /* sanitize in progress */ 2373 if (sshdr.asc == 4 && sshdr.ascq == 0x24) 2374 break; /* depopulation in progress */ 2375 if (sshdr.asc == 4 && sshdr.ascq == 0x25) 2376 break; /* depopulation restoration in progress */ 2377 /* 2378 * Issue command to spin up drive when not ready 2379 */ 2380 if (!spintime) { 2381 /* Return immediately and start spin cycle */ 2382 const u8 start_cmd[10] = { 2383 [0] = START_STOP, 2384 [1] = 1, 2385 [4] = sdkp->device->start_stop_pwr_cond ? 2386 0x11 : 1, 2387 }; 2388 2389 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk..."); 2390 scsi_execute_cmd(sdkp->device, start_cmd, 2391 REQ_OP_DRV_IN, NULL, 0, 2392 SD_TIMEOUT, sdkp->max_retries, 2393 &exec_args); 2394 spintime_expire = jiffies + 100 * HZ; 2395 spintime = 1; 2396 } 2397 /* Wait 1 second for next try */ 2398 msleep(1000); 2399 printk(KERN_CONT "."); 2400 2401 /* 2402 * Wait for USB flash devices with slow firmware. 2403 * Yes, this sense key/ASC combination shouldn't 2404 * occur here. It's characteristic of these devices. 2405 */ 2406 } else if (sense_valid && 2407 sshdr.sense_key == UNIT_ATTENTION && 2408 sshdr.asc == 0x28) { 2409 if (!spintime) { 2410 spintime_expire = jiffies + 5 * HZ; 2411 spintime = 1; 2412 } 2413 /* Wait 1 second for next try */ 2414 msleep(1000); 2415 } else { 2416 /* we don't understand the sense code, so it's 2417 * probably pointless to loop */ 2418 if(!spintime) { 2419 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n"); 2420 sd_print_sense_hdr(sdkp, &sshdr); 2421 } 2422 break; 2423 } 2424 2425 } while (spintime && time_before_eq(jiffies, spintime_expire)); 2426 2427 if (spintime) { 2428 if (scsi_status_is_good(the_result)) 2429 printk(KERN_CONT "ready\n"); 2430 else 2431 printk(KERN_CONT "not responding...\n"); 2432 } 2433 } 2434 2435 /* 2436 * Determine whether disk supports Data Integrity Field. 2437 */ 2438 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer) 2439 { 2440 struct scsi_device *sdp = sdkp->device; 2441 u8 type; 2442 2443 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) { 2444 sdkp->protection_type = 0; 2445 return 0; 2446 } 2447 2448 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */ 2449 2450 if (type > T10_PI_TYPE3_PROTECTION) { 2451 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \ 2452 " protection type %u. Disabling disk!\n", 2453 type); 2454 sdkp->protection_type = 0; 2455 return -ENODEV; 2456 } 2457 2458 sdkp->protection_type = type; 2459 2460 return 0; 2461 } 2462 2463 static void sd_config_protection(struct scsi_disk *sdkp) 2464 { 2465 struct scsi_device *sdp = sdkp->device; 2466 2467 sd_dif_config_host(sdkp); 2468 2469 if (!sdkp->protection_type) 2470 return; 2471 2472 if (!scsi_host_dif_capable(sdp->host, sdkp->protection_type)) { 2473 sd_first_printk(KERN_NOTICE, sdkp, 2474 "Disabling DIF Type %u protection\n", 2475 sdkp->protection_type); 2476 sdkp->protection_type = 0; 2477 } 2478 2479 sd_first_printk(KERN_NOTICE, sdkp, "Enabling DIF Type %u protection\n", 2480 sdkp->protection_type); 2481 } 2482 2483 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp, 2484 struct scsi_sense_hdr *sshdr, int sense_valid, 2485 int the_result) 2486 { 2487 if (sense_valid) 2488 sd_print_sense_hdr(sdkp, sshdr); 2489 else 2490 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n"); 2491 2492 /* 2493 * Set dirty bit for removable devices if not ready - 2494 * sometimes drives will not report this properly. 2495 */ 2496 if (sdp->removable && 2497 sense_valid && sshdr->sense_key == NOT_READY) 2498 set_media_not_present(sdkp); 2499 2500 /* 2501 * We used to set media_present to 0 here to indicate no media 2502 * in the drive, but some drives fail read capacity even with 2503 * media present, so we can't do that. 2504 */ 2505 sdkp->capacity = 0; /* unknown mapped to zero - as usual */ 2506 } 2507 2508 #define RC16_LEN 32 2509 #if RC16_LEN > SD_BUF_SIZE 2510 #error RC16_LEN must not be more than SD_BUF_SIZE 2511 #endif 2512 2513 #define READ_CAPACITY_RETRIES_ON_RESET 10 2514 2515 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp, 2516 unsigned char *buffer) 2517 { 2518 unsigned char cmd[16]; 2519 struct scsi_sense_hdr sshdr; 2520 const struct scsi_exec_args exec_args = { 2521 .sshdr = &sshdr, 2522 }; 2523 int sense_valid = 0; 2524 int the_result; 2525 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2526 unsigned int alignment; 2527 unsigned long long lba; 2528 unsigned sector_size; 2529 2530 if (sdp->no_read_capacity_16) 2531 return -EINVAL; 2532 2533 do { 2534 memset(cmd, 0, 16); 2535 cmd[0] = SERVICE_ACTION_IN_16; 2536 cmd[1] = SAI_READ_CAPACITY_16; 2537 cmd[13] = RC16_LEN; 2538 memset(buffer, 0, RC16_LEN); 2539 2540 the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, 2541 buffer, RC16_LEN, SD_TIMEOUT, 2542 sdkp->max_retries, &exec_args); 2543 if (the_result > 0) { 2544 if (media_not_present(sdkp, &sshdr)) 2545 return -ENODEV; 2546 2547 sense_valid = scsi_sense_valid(&sshdr); 2548 if (sense_valid && 2549 sshdr.sense_key == ILLEGAL_REQUEST && 2550 (sshdr.asc == 0x20 || sshdr.asc == 0x24) && 2551 sshdr.ascq == 0x00) 2552 /* Invalid Command Operation Code or 2553 * Invalid Field in CDB, just retry 2554 * silently with RC10 */ 2555 return -EINVAL; 2556 if (sense_valid && 2557 sshdr.sense_key == UNIT_ATTENTION && 2558 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2559 /* Device reset might occur several times, 2560 * give it one more chance */ 2561 if (--reset_retries > 0) 2562 continue; 2563 } 2564 retries--; 2565 2566 } while (the_result && retries); 2567 2568 if (the_result) { 2569 sd_print_result(sdkp, "Read Capacity(16) failed", the_result); 2570 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2571 return -EINVAL; 2572 } 2573 2574 sector_size = get_unaligned_be32(&buffer[8]); 2575 lba = get_unaligned_be64(&buffer[0]); 2576 2577 if (sd_read_protection_type(sdkp, buffer) < 0) { 2578 sdkp->capacity = 0; 2579 return -ENODEV; 2580 } 2581 2582 /* Logical blocks per physical block exponent */ 2583 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size; 2584 2585 /* RC basis */ 2586 sdkp->rc_basis = (buffer[12] >> 4) & 0x3; 2587 2588 /* Lowest aligned logical block */ 2589 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size; 2590 blk_queue_alignment_offset(sdp->request_queue, alignment); 2591 if (alignment && sdkp->first_scan) 2592 sd_printk(KERN_NOTICE, sdkp, 2593 "physical block alignment offset: %u\n", alignment); 2594 2595 if (buffer[14] & 0x80) { /* LBPME */ 2596 sdkp->lbpme = 1; 2597 2598 if (buffer[14] & 0x40) /* LBPRZ */ 2599 sdkp->lbprz = 1; 2600 2601 sd_config_discard(sdkp, SD_LBP_WS16); 2602 } 2603 2604 sdkp->capacity = lba + 1; 2605 return sector_size; 2606 } 2607 2608 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp, 2609 unsigned char *buffer) 2610 { 2611 static const u8 cmd[10] = { READ_CAPACITY }; 2612 struct scsi_sense_hdr sshdr; 2613 struct scsi_failure failure_defs[] = { 2614 /* Do not retry Medium Not Present */ 2615 { 2616 .sense = UNIT_ATTENTION, 2617 .asc = 0x3A, 2618 .result = SAM_STAT_CHECK_CONDITION, 2619 }, 2620 { 2621 .sense = NOT_READY, 2622 .asc = 0x3A, 2623 .result = SAM_STAT_CHECK_CONDITION, 2624 }, 2625 /* Device reset might occur several times so retry a lot */ 2626 { 2627 .sense = UNIT_ATTENTION, 2628 .asc = 0x29, 2629 .allowed = READ_CAPACITY_RETRIES_ON_RESET, 2630 .result = SAM_STAT_CHECK_CONDITION, 2631 }, 2632 /* Any other error not listed above retry 3 times */ 2633 { 2634 .result = SCMD_FAILURE_RESULT_ANY, 2635 .allowed = 3, 2636 }, 2637 {} 2638 }; 2639 struct scsi_failures failures = { 2640 .failure_definitions = failure_defs, 2641 }; 2642 const struct scsi_exec_args exec_args = { 2643 .sshdr = &sshdr, 2644 .failures = &failures, 2645 }; 2646 int sense_valid = 0; 2647 int the_result; 2648 sector_t lba; 2649 unsigned sector_size; 2650 2651 memset(buffer, 0, 8); 2652 2653 the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, buffer, 2654 8, SD_TIMEOUT, sdkp->max_retries, 2655 &exec_args); 2656 2657 if (the_result > 0) { 2658 sense_valid = scsi_sense_valid(&sshdr); 2659 2660 if (media_not_present(sdkp, &sshdr)) 2661 return -ENODEV; 2662 } 2663 2664 if (the_result) { 2665 sd_print_result(sdkp, "Read Capacity(10) failed", the_result); 2666 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2667 return -EINVAL; 2668 } 2669 2670 sector_size = get_unaligned_be32(&buffer[4]); 2671 lba = get_unaligned_be32(&buffer[0]); 2672 2673 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) { 2674 /* Some buggy (usb cardreader) devices return an lba of 2675 0xffffffff when the want to report a size of 0 (with 2676 which they really mean no media is present) */ 2677 sdkp->capacity = 0; 2678 sdkp->physical_block_size = sector_size; 2679 return sector_size; 2680 } 2681 2682 sdkp->capacity = lba + 1; 2683 sdkp->physical_block_size = sector_size; 2684 return sector_size; 2685 } 2686 2687 static int sd_try_rc16_first(struct scsi_device *sdp) 2688 { 2689 if (sdp->host->max_cmd_len < 16) 2690 return 0; 2691 if (sdp->try_rc_10_first) 2692 return 0; 2693 if (sdp->scsi_level > SCSI_SPC_2) 2694 return 1; 2695 if (scsi_device_protection(sdp)) 2696 return 1; 2697 return 0; 2698 } 2699 2700 /* 2701 * read disk capacity 2702 */ 2703 static void 2704 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer) 2705 { 2706 int sector_size; 2707 struct scsi_device *sdp = sdkp->device; 2708 2709 if (sd_try_rc16_first(sdp)) { 2710 sector_size = read_capacity_16(sdkp, sdp, buffer); 2711 if (sector_size == -EOVERFLOW) 2712 goto got_data; 2713 if (sector_size == -ENODEV) 2714 return; 2715 if (sector_size < 0) 2716 sector_size = read_capacity_10(sdkp, sdp, buffer); 2717 if (sector_size < 0) 2718 return; 2719 } else { 2720 sector_size = read_capacity_10(sdkp, sdp, buffer); 2721 if (sector_size == -EOVERFLOW) 2722 goto got_data; 2723 if (sector_size < 0) 2724 return; 2725 if ((sizeof(sdkp->capacity) > 4) && 2726 (sdkp->capacity > 0xffffffffULL)) { 2727 int old_sector_size = sector_size; 2728 sd_printk(KERN_NOTICE, sdkp, "Very big device. " 2729 "Trying to use READ CAPACITY(16).\n"); 2730 sector_size = read_capacity_16(sdkp, sdp, buffer); 2731 if (sector_size < 0) { 2732 sd_printk(KERN_NOTICE, sdkp, 2733 "Using 0xffffffff as device size\n"); 2734 sdkp->capacity = 1 + (sector_t) 0xffffffff; 2735 sector_size = old_sector_size; 2736 goto got_data; 2737 } 2738 /* Remember that READ CAPACITY(16) succeeded */ 2739 sdp->try_rc_10_first = 0; 2740 } 2741 } 2742 2743 /* Some devices are known to return the total number of blocks, 2744 * not the highest block number. Some devices have versions 2745 * which do this and others which do not. Some devices we might 2746 * suspect of doing this but we don't know for certain. 2747 * 2748 * If we know the reported capacity is wrong, decrement it. If 2749 * we can only guess, then assume the number of blocks is even 2750 * (usually true but not always) and err on the side of lowering 2751 * the capacity. 2752 */ 2753 if (sdp->fix_capacity || 2754 (sdp->guess_capacity && (sdkp->capacity & 0x01))) { 2755 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count " 2756 "from its reported value: %llu\n", 2757 (unsigned long long) sdkp->capacity); 2758 --sdkp->capacity; 2759 } 2760 2761 got_data: 2762 if (sector_size == 0) { 2763 sector_size = 512; 2764 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, " 2765 "assuming 512.\n"); 2766 } 2767 2768 if (sector_size != 512 && 2769 sector_size != 1024 && 2770 sector_size != 2048 && 2771 sector_size != 4096) { 2772 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n", 2773 sector_size); 2774 /* 2775 * The user might want to re-format the drive with 2776 * a supported sectorsize. Once this happens, it 2777 * would be relatively trivial to set the thing up. 2778 * For this reason, we leave the thing in the table. 2779 */ 2780 sdkp->capacity = 0; 2781 /* 2782 * set a bogus sector size so the normal read/write 2783 * logic in the block layer will eventually refuse any 2784 * request on this device without tripping over power 2785 * of two sector size assumptions 2786 */ 2787 sector_size = 512; 2788 } 2789 blk_queue_logical_block_size(sdp->request_queue, sector_size); 2790 blk_queue_physical_block_size(sdp->request_queue, 2791 sdkp->physical_block_size); 2792 sdkp->device->sector_size = sector_size; 2793 2794 if (sdkp->capacity > 0xffffffff) 2795 sdp->use_16_for_rw = 1; 2796 2797 } 2798 2799 /* 2800 * Print disk capacity 2801 */ 2802 static void 2803 sd_print_capacity(struct scsi_disk *sdkp, 2804 sector_t old_capacity) 2805 { 2806 int sector_size = sdkp->device->sector_size; 2807 char cap_str_2[10], cap_str_10[10]; 2808 2809 if (!sdkp->first_scan && old_capacity == sdkp->capacity) 2810 return; 2811 2812 string_get_size(sdkp->capacity, sector_size, 2813 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2)); 2814 string_get_size(sdkp->capacity, sector_size, 2815 STRING_UNITS_10, cap_str_10, sizeof(cap_str_10)); 2816 2817 sd_printk(KERN_NOTICE, sdkp, 2818 "%llu %d-byte logical blocks: (%s/%s)\n", 2819 (unsigned long long)sdkp->capacity, 2820 sector_size, cap_str_10, cap_str_2); 2821 2822 if (sdkp->physical_block_size != sector_size) 2823 sd_printk(KERN_NOTICE, sdkp, 2824 "%u-byte physical blocks\n", 2825 sdkp->physical_block_size); 2826 } 2827 2828 /* called with buffer of length 512 */ 2829 static inline int 2830 sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage, 2831 unsigned char *buffer, int len, struct scsi_mode_data *data, 2832 struct scsi_sense_hdr *sshdr) 2833 { 2834 /* 2835 * If we must use MODE SENSE(10), make sure that the buffer length 2836 * is at least 8 bytes so that the mode sense header fits. 2837 */ 2838 if (sdkp->device->use_10_for_ms && len < 8) 2839 len = 8; 2840 2841 return scsi_mode_sense(sdkp->device, dbd, modepage, 0, buffer, len, 2842 SD_TIMEOUT, sdkp->max_retries, data, sshdr); 2843 } 2844 2845 /* 2846 * read write protect setting, if possible - called only in sd_revalidate_disk() 2847 * called with buffer of length SD_BUF_SIZE 2848 */ 2849 static void 2850 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer) 2851 { 2852 int res; 2853 struct scsi_device *sdp = sdkp->device; 2854 struct scsi_mode_data data; 2855 int old_wp = sdkp->write_prot; 2856 2857 set_disk_ro(sdkp->disk, 0); 2858 if (sdp->skip_ms_page_3f) { 2859 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n"); 2860 return; 2861 } 2862 2863 if (sdp->use_192_bytes_for_3f) { 2864 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL); 2865 } else { 2866 /* 2867 * First attempt: ask for all pages (0x3F), but only 4 bytes. 2868 * We have to start carefully: some devices hang if we ask 2869 * for more than is available. 2870 */ 2871 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL); 2872 2873 /* 2874 * Second attempt: ask for page 0 When only page 0 is 2875 * implemented, a request for page 3F may return Sense Key 2876 * 5: Illegal Request, Sense Code 24: Invalid field in 2877 * CDB. 2878 */ 2879 if (res < 0) 2880 res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL); 2881 2882 /* 2883 * Third attempt: ask 255 bytes, as we did earlier. 2884 */ 2885 if (res < 0) 2886 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255, 2887 &data, NULL); 2888 } 2889 2890 if (res < 0) { 2891 sd_first_printk(KERN_WARNING, sdkp, 2892 "Test WP failed, assume Write Enabled\n"); 2893 } else { 2894 sdkp->write_prot = ((data.device_specific & 0x80) != 0); 2895 set_disk_ro(sdkp->disk, sdkp->write_prot); 2896 if (sdkp->first_scan || old_wp != sdkp->write_prot) { 2897 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n", 2898 sdkp->write_prot ? "on" : "off"); 2899 sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer); 2900 } 2901 } 2902 } 2903 2904 /* 2905 * sd_read_cache_type - called only from sd_revalidate_disk() 2906 * called with buffer of length SD_BUF_SIZE 2907 */ 2908 static void 2909 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer) 2910 { 2911 int len = 0, res; 2912 struct scsi_device *sdp = sdkp->device; 2913 2914 int dbd; 2915 int modepage; 2916 int first_len; 2917 struct scsi_mode_data data; 2918 struct scsi_sense_hdr sshdr; 2919 int old_wce = sdkp->WCE; 2920 int old_rcd = sdkp->RCD; 2921 int old_dpofua = sdkp->DPOFUA; 2922 2923 2924 if (sdkp->cache_override) 2925 return; 2926 2927 first_len = 4; 2928 if (sdp->skip_ms_page_8) { 2929 if (sdp->type == TYPE_RBC) 2930 goto defaults; 2931 else { 2932 if (sdp->skip_ms_page_3f) 2933 goto defaults; 2934 modepage = 0x3F; 2935 if (sdp->use_192_bytes_for_3f) 2936 first_len = 192; 2937 dbd = 0; 2938 } 2939 } else if (sdp->type == TYPE_RBC) { 2940 modepage = 6; 2941 dbd = 8; 2942 } else { 2943 modepage = 8; 2944 dbd = 0; 2945 } 2946 2947 /* cautiously ask */ 2948 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len, 2949 &data, &sshdr); 2950 2951 if (res < 0) 2952 goto bad_sense; 2953 2954 if (!data.header_length) { 2955 modepage = 6; 2956 first_len = 0; 2957 sd_first_printk(KERN_ERR, sdkp, 2958 "Missing header in MODE_SENSE response\n"); 2959 } 2960 2961 /* that went OK, now ask for the proper length */ 2962 len = data.length; 2963 2964 /* 2965 * We're only interested in the first three bytes, actually. 2966 * But the data cache page is defined for the first 20. 2967 */ 2968 if (len < 3) 2969 goto bad_sense; 2970 else if (len > SD_BUF_SIZE) { 2971 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter " 2972 "data from %d to %d bytes\n", len, SD_BUF_SIZE); 2973 len = SD_BUF_SIZE; 2974 } 2975 if (modepage == 0x3F && sdp->use_192_bytes_for_3f) 2976 len = 192; 2977 2978 /* Get the data */ 2979 if (len > first_len) 2980 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len, 2981 &data, &sshdr); 2982 2983 if (!res) { 2984 int offset = data.header_length + data.block_descriptor_length; 2985 2986 while (offset < len) { 2987 u8 page_code = buffer[offset] & 0x3F; 2988 u8 spf = buffer[offset] & 0x40; 2989 2990 if (page_code == 8 || page_code == 6) { 2991 /* We're interested only in the first 3 bytes. 2992 */ 2993 if (len - offset <= 2) { 2994 sd_first_printk(KERN_ERR, sdkp, 2995 "Incomplete mode parameter " 2996 "data\n"); 2997 goto defaults; 2998 } else { 2999 modepage = page_code; 3000 goto Page_found; 3001 } 3002 } else { 3003 /* Go to the next page */ 3004 if (spf && len - offset > 3) 3005 offset += 4 + (buffer[offset+2] << 8) + 3006 buffer[offset+3]; 3007 else if (!spf && len - offset > 1) 3008 offset += 2 + buffer[offset+1]; 3009 else { 3010 sd_first_printk(KERN_ERR, sdkp, 3011 "Incomplete mode " 3012 "parameter data\n"); 3013 goto defaults; 3014 } 3015 } 3016 } 3017 3018 sd_first_printk(KERN_WARNING, sdkp, 3019 "No Caching mode page found\n"); 3020 goto defaults; 3021 3022 Page_found: 3023 if (modepage == 8) { 3024 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0); 3025 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0); 3026 } else { 3027 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0); 3028 sdkp->RCD = 0; 3029 } 3030 3031 sdkp->DPOFUA = (data.device_specific & 0x10) != 0; 3032 if (sdp->broken_fua) { 3033 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n"); 3034 sdkp->DPOFUA = 0; 3035 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw && 3036 !sdkp->device->use_16_for_rw) { 3037 sd_first_printk(KERN_NOTICE, sdkp, 3038 "Uses READ/WRITE(6), disabling FUA\n"); 3039 sdkp->DPOFUA = 0; 3040 } 3041 3042 /* No cache flush allowed for write protected devices */ 3043 if (sdkp->WCE && sdkp->write_prot) 3044 sdkp->WCE = 0; 3045 3046 if (sdkp->first_scan || old_wce != sdkp->WCE || 3047 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA) 3048 sd_printk(KERN_NOTICE, sdkp, 3049 "Write cache: %s, read cache: %s, %s\n", 3050 sdkp->WCE ? "enabled" : "disabled", 3051 sdkp->RCD ? "disabled" : "enabled", 3052 sdkp->DPOFUA ? "supports DPO and FUA" 3053 : "doesn't support DPO or FUA"); 3054 3055 return; 3056 } 3057 3058 bad_sense: 3059 if (res == -EIO && scsi_sense_valid(&sshdr) && 3060 sshdr.sense_key == ILLEGAL_REQUEST && 3061 sshdr.asc == 0x24 && sshdr.ascq == 0x0) 3062 /* Invalid field in CDB */ 3063 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n"); 3064 else 3065 sd_first_printk(KERN_ERR, sdkp, 3066 "Asking for cache data failed\n"); 3067 3068 defaults: 3069 if (sdp->wce_default_on) { 3070 sd_first_printk(KERN_NOTICE, sdkp, 3071 "Assuming drive cache: write back\n"); 3072 sdkp->WCE = 1; 3073 } else { 3074 sd_first_printk(KERN_WARNING, sdkp, 3075 "Assuming drive cache: write through\n"); 3076 sdkp->WCE = 0; 3077 } 3078 sdkp->RCD = 0; 3079 sdkp->DPOFUA = 0; 3080 } 3081 3082 static bool sd_is_perm_stream(struct scsi_disk *sdkp, unsigned int stream_id) 3083 { 3084 u8 cdb[16] = { SERVICE_ACTION_IN_16, SAI_GET_STREAM_STATUS }; 3085 struct { 3086 struct scsi_stream_status_header h; 3087 struct scsi_stream_status s; 3088 } buf; 3089 struct scsi_device *sdev = sdkp->device; 3090 struct scsi_sense_hdr sshdr; 3091 const struct scsi_exec_args exec_args = { 3092 .sshdr = &sshdr, 3093 }; 3094 int res; 3095 3096 put_unaligned_be16(stream_id, &cdb[4]); 3097 put_unaligned_be32(sizeof(buf), &cdb[10]); 3098 3099 res = scsi_execute_cmd(sdev, cdb, REQ_OP_DRV_IN, &buf, sizeof(buf), 3100 SD_TIMEOUT, sdkp->max_retries, &exec_args); 3101 if (res < 0) 3102 return false; 3103 if (scsi_status_is_check_condition(res) && scsi_sense_valid(&sshdr)) 3104 sd_print_sense_hdr(sdkp, &sshdr); 3105 if (res) 3106 return false; 3107 if (get_unaligned_be32(&buf.h.len) < sizeof(struct scsi_stream_status)) 3108 return false; 3109 return buf.h.stream_status[0].perm; 3110 } 3111 3112 static void sd_read_io_hints(struct scsi_disk *sdkp, unsigned char *buffer) 3113 { 3114 struct scsi_device *sdp = sdkp->device; 3115 const struct scsi_io_group_descriptor *desc, *start, *end; 3116 u16 permanent_stream_count_old; 3117 struct scsi_sense_hdr sshdr; 3118 struct scsi_mode_data data; 3119 int res; 3120 3121 res = scsi_mode_sense(sdp, /*dbd=*/0x8, /*modepage=*/0x0a, 3122 /*subpage=*/0x05, buffer, SD_BUF_SIZE, SD_TIMEOUT, 3123 sdkp->max_retries, &data, &sshdr); 3124 if (res < 0) 3125 return; 3126 start = (void *)buffer + data.header_length + 16; 3127 end = (void *)buffer + ALIGN_DOWN(data.header_length + data.length, 3128 sizeof(*end)); 3129 /* 3130 * From "SBC-5 Constrained Streams with Data Lifetimes": Device severs 3131 * should assign the lowest numbered stream identifiers to permanent 3132 * streams. 3133 */ 3134 for (desc = start; desc < end; desc++) 3135 if (!desc->st_enble || !sd_is_perm_stream(sdkp, desc - start)) 3136 break; 3137 permanent_stream_count_old = sdkp->permanent_stream_count; 3138 sdkp->permanent_stream_count = desc - start; 3139 if (sdkp->rscs && sdkp->permanent_stream_count < 2) 3140 sd_printk(KERN_INFO, sdkp, 3141 "Unexpected: RSCS has been set and the permanent stream count is %u\n", 3142 sdkp->permanent_stream_count); 3143 else if (sdkp->permanent_stream_count != permanent_stream_count_old) 3144 sd_printk(KERN_INFO, sdkp, "permanent stream count = %d\n", 3145 sdkp->permanent_stream_count); 3146 } 3147 3148 /* 3149 * The ATO bit indicates whether the DIF application tag is available 3150 * for use by the operating system. 3151 */ 3152 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer) 3153 { 3154 int res, offset; 3155 struct scsi_device *sdp = sdkp->device; 3156 struct scsi_mode_data data; 3157 struct scsi_sense_hdr sshdr; 3158 3159 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 3160 return; 3161 3162 if (sdkp->protection_type == 0) 3163 return; 3164 3165 res = scsi_mode_sense(sdp, 1, 0x0a, 0, buffer, 36, SD_TIMEOUT, 3166 sdkp->max_retries, &data, &sshdr); 3167 3168 if (res < 0 || !data.header_length || 3169 data.length < 6) { 3170 sd_first_printk(KERN_WARNING, sdkp, 3171 "getting Control mode page failed, assume no ATO\n"); 3172 3173 if (res == -EIO && scsi_sense_valid(&sshdr)) 3174 sd_print_sense_hdr(sdkp, &sshdr); 3175 3176 return; 3177 } 3178 3179 offset = data.header_length + data.block_descriptor_length; 3180 3181 if ((buffer[offset] & 0x3f) != 0x0a) { 3182 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n"); 3183 return; 3184 } 3185 3186 if ((buffer[offset + 5] & 0x80) == 0) 3187 return; 3188 3189 sdkp->ATO = 1; 3190 3191 return; 3192 } 3193 3194 /** 3195 * sd_read_block_limits - Query disk device for preferred I/O sizes. 3196 * @sdkp: disk to query 3197 */ 3198 static void sd_read_block_limits(struct scsi_disk *sdkp) 3199 { 3200 struct scsi_vpd *vpd; 3201 3202 rcu_read_lock(); 3203 3204 vpd = rcu_dereference(sdkp->device->vpd_pgb0); 3205 if (!vpd || vpd->len < 16) 3206 goto out; 3207 3208 sdkp->min_xfer_blocks = get_unaligned_be16(&vpd->data[6]); 3209 sdkp->max_xfer_blocks = get_unaligned_be32(&vpd->data[8]); 3210 sdkp->opt_xfer_blocks = get_unaligned_be32(&vpd->data[12]); 3211 3212 if (vpd->len >= 64) { 3213 unsigned int lba_count, desc_count; 3214 3215 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&vpd->data[36]); 3216 3217 if (!sdkp->lbpme) 3218 goto out; 3219 3220 lba_count = get_unaligned_be32(&vpd->data[20]); 3221 desc_count = get_unaligned_be32(&vpd->data[24]); 3222 3223 if (lba_count && desc_count) 3224 sdkp->max_unmap_blocks = lba_count; 3225 3226 sdkp->unmap_granularity = get_unaligned_be32(&vpd->data[28]); 3227 3228 if (vpd->data[32] & 0x80) 3229 sdkp->unmap_alignment = 3230 get_unaligned_be32(&vpd->data[32]) & ~(1 << 31); 3231 3232 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */ 3233 3234 if (sdkp->max_unmap_blocks) 3235 sd_config_discard(sdkp, SD_LBP_UNMAP); 3236 else 3237 sd_config_discard(sdkp, SD_LBP_WS16); 3238 3239 } else { /* LBP VPD page tells us what to use */ 3240 if (sdkp->lbpu && sdkp->max_unmap_blocks) 3241 sd_config_discard(sdkp, SD_LBP_UNMAP); 3242 else if (sdkp->lbpws) 3243 sd_config_discard(sdkp, SD_LBP_WS16); 3244 else if (sdkp->lbpws10) 3245 sd_config_discard(sdkp, SD_LBP_WS10); 3246 else 3247 sd_config_discard(sdkp, SD_LBP_DISABLE); 3248 } 3249 } 3250 3251 out: 3252 rcu_read_unlock(); 3253 } 3254 3255 /* Parse the Block Limits Extension VPD page (0xb7) */ 3256 static void sd_read_block_limits_ext(struct scsi_disk *sdkp) 3257 { 3258 struct scsi_vpd *vpd; 3259 3260 rcu_read_lock(); 3261 vpd = rcu_dereference(sdkp->device->vpd_pgb7); 3262 if (vpd && vpd->len >= 2) 3263 sdkp->rscs = vpd->data[5] & 1; 3264 rcu_read_unlock(); 3265 } 3266 3267 /** 3268 * sd_read_block_characteristics - Query block dev. characteristics 3269 * @sdkp: disk to query 3270 */ 3271 static void sd_read_block_characteristics(struct scsi_disk *sdkp) 3272 { 3273 struct request_queue *q = sdkp->disk->queue; 3274 struct scsi_vpd *vpd; 3275 u16 rot; 3276 3277 rcu_read_lock(); 3278 vpd = rcu_dereference(sdkp->device->vpd_pgb1); 3279 3280 if (!vpd || vpd->len < 8) { 3281 rcu_read_unlock(); 3282 return; 3283 } 3284 3285 rot = get_unaligned_be16(&vpd->data[4]); 3286 sdkp->zoned = (vpd->data[8] >> 4) & 3; 3287 rcu_read_unlock(); 3288 3289 if (rot == 1) { 3290 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 3291 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q); 3292 } 3293 3294 3295 #ifdef CONFIG_BLK_DEV_ZONED /* sd_probe rejects ZBD devices early otherwise */ 3296 if (sdkp->device->type == TYPE_ZBC) { 3297 /* 3298 * Host-managed. 3299 */ 3300 disk_set_zoned(sdkp->disk); 3301 3302 /* 3303 * Per ZBC and ZAC specifications, writes in sequential write 3304 * required zones of host-managed devices must be aligned to 3305 * the device physical block size. 3306 */ 3307 blk_queue_zone_write_granularity(q, sdkp->physical_block_size); 3308 } else { 3309 /* 3310 * Host-aware devices are treated as conventional. 3311 */ 3312 WARN_ON_ONCE(blk_queue_is_zoned(q)); 3313 } 3314 #endif /* CONFIG_BLK_DEV_ZONED */ 3315 3316 if (!sdkp->first_scan) 3317 return; 3318 3319 if (blk_queue_is_zoned(q)) 3320 sd_printk(KERN_NOTICE, sdkp, "Host-managed zoned block device\n"); 3321 else if (sdkp->zoned == 1) 3322 sd_printk(KERN_NOTICE, sdkp, "Host-aware SMR disk used as regular disk\n"); 3323 else if (sdkp->zoned == 2) 3324 sd_printk(KERN_NOTICE, sdkp, "Drive-managed SMR disk\n"); 3325 } 3326 3327 /** 3328 * sd_read_block_provisioning - Query provisioning VPD page 3329 * @sdkp: disk to query 3330 */ 3331 static void sd_read_block_provisioning(struct scsi_disk *sdkp) 3332 { 3333 struct scsi_vpd *vpd; 3334 3335 if (sdkp->lbpme == 0) 3336 return; 3337 3338 rcu_read_lock(); 3339 vpd = rcu_dereference(sdkp->device->vpd_pgb2); 3340 3341 if (!vpd || vpd->len < 8) { 3342 rcu_read_unlock(); 3343 return; 3344 } 3345 3346 sdkp->lbpvpd = 1; 3347 sdkp->lbpu = (vpd->data[5] >> 7) & 1; /* UNMAP */ 3348 sdkp->lbpws = (vpd->data[5] >> 6) & 1; /* WRITE SAME(16) w/ UNMAP */ 3349 sdkp->lbpws10 = (vpd->data[5] >> 5) & 1; /* WRITE SAME(10) w/ UNMAP */ 3350 rcu_read_unlock(); 3351 } 3352 3353 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer) 3354 { 3355 struct scsi_device *sdev = sdkp->device; 3356 3357 if (sdev->host->no_write_same) { 3358 sdev->no_write_same = 1; 3359 3360 return; 3361 } 3362 3363 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY, 0) < 0) { 3364 struct scsi_vpd *vpd; 3365 3366 sdev->no_report_opcodes = 1; 3367 3368 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION 3369 * CODES is unsupported and the device has an ATA 3370 * Information VPD page (SAT). 3371 */ 3372 rcu_read_lock(); 3373 vpd = rcu_dereference(sdev->vpd_pg89); 3374 if (vpd) 3375 sdev->no_write_same = 1; 3376 rcu_read_unlock(); 3377 } 3378 3379 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16, 0) == 1) 3380 sdkp->ws16 = 1; 3381 3382 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME, 0) == 1) 3383 sdkp->ws10 = 1; 3384 } 3385 3386 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer) 3387 { 3388 struct scsi_device *sdev = sdkp->device; 3389 3390 if (!sdev->security_supported) 3391 return; 3392 3393 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3394 SECURITY_PROTOCOL_IN, 0) == 1 && 3395 scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3396 SECURITY_PROTOCOL_OUT, 0) == 1) 3397 sdkp->security = 1; 3398 } 3399 3400 static inline sector_t sd64_to_sectors(struct scsi_disk *sdkp, u8 *buf) 3401 { 3402 return logical_to_sectors(sdkp->device, get_unaligned_be64(buf)); 3403 } 3404 3405 /** 3406 * sd_read_cpr - Query concurrent positioning ranges 3407 * @sdkp: disk to query 3408 */ 3409 static void sd_read_cpr(struct scsi_disk *sdkp) 3410 { 3411 struct blk_independent_access_ranges *iars = NULL; 3412 unsigned char *buffer = NULL; 3413 unsigned int nr_cpr = 0; 3414 int i, vpd_len, buf_len = SD_BUF_SIZE; 3415 u8 *desc; 3416 3417 /* 3418 * We need to have the capacity set first for the block layer to be 3419 * able to check the ranges. 3420 */ 3421 if (sdkp->first_scan) 3422 return; 3423 3424 if (!sdkp->capacity) 3425 goto out; 3426 3427 /* 3428 * Concurrent Positioning Ranges VPD: there can be at most 256 ranges, 3429 * leading to a maximum page size of 64 + 256*32 bytes. 3430 */ 3431 buf_len = 64 + 256*32; 3432 buffer = kmalloc(buf_len, GFP_KERNEL); 3433 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb9, buffer, buf_len)) 3434 goto out; 3435 3436 /* We must have at least a 64B header and one 32B range descriptor */ 3437 vpd_len = get_unaligned_be16(&buffer[2]) + 4; 3438 if (vpd_len > buf_len || vpd_len < 64 + 32 || (vpd_len & 31)) { 3439 sd_printk(KERN_ERR, sdkp, 3440 "Invalid Concurrent Positioning Ranges VPD page\n"); 3441 goto out; 3442 } 3443 3444 nr_cpr = (vpd_len - 64) / 32; 3445 if (nr_cpr == 1) { 3446 nr_cpr = 0; 3447 goto out; 3448 } 3449 3450 iars = disk_alloc_independent_access_ranges(sdkp->disk, nr_cpr); 3451 if (!iars) { 3452 nr_cpr = 0; 3453 goto out; 3454 } 3455 3456 desc = &buffer[64]; 3457 for (i = 0; i < nr_cpr; i++, desc += 32) { 3458 if (desc[0] != i) { 3459 sd_printk(KERN_ERR, sdkp, 3460 "Invalid Concurrent Positioning Range number\n"); 3461 nr_cpr = 0; 3462 break; 3463 } 3464 3465 iars->ia_range[i].sector = sd64_to_sectors(sdkp, desc + 8); 3466 iars->ia_range[i].nr_sectors = sd64_to_sectors(sdkp, desc + 16); 3467 } 3468 3469 out: 3470 disk_set_independent_access_ranges(sdkp->disk, iars); 3471 if (nr_cpr && sdkp->nr_actuators != nr_cpr) { 3472 sd_printk(KERN_NOTICE, sdkp, 3473 "%u concurrent positioning ranges\n", nr_cpr); 3474 sdkp->nr_actuators = nr_cpr; 3475 } 3476 3477 kfree(buffer); 3478 } 3479 3480 static bool sd_validate_min_xfer_size(struct scsi_disk *sdkp) 3481 { 3482 struct scsi_device *sdp = sdkp->device; 3483 unsigned int min_xfer_bytes = 3484 logical_to_bytes(sdp, sdkp->min_xfer_blocks); 3485 3486 if (sdkp->min_xfer_blocks == 0) 3487 return false; 3488 3489 if (min_xfer_bytes & (sdkp->physical_block_size - 1)) { 3490 sd_first_printk(KERN_WARNING, sdkp, 3491 "Preferred minimum I/O size %u bytes not a " \ 3492 "multiple of physical block size (%u bytes)\n", 3493 min_xfer_bytes, sdkp->physical_block_size); 3494 sdkp->min_xfer_blocks = 0; 3495 return false; 3496 } 3497 3498 sd_first_printk(KERN_INFO, sdkp, "Preferred minimum I/O size %u bytes\n", 3499 min_xfer_bytes); 3500 return true; 3501 } 3502 3503 /* 3504 * Determine the device's preferred I/O size for reads and writes 3505 * unless the reported value is unreasonably small, large, not a 3506 * multiple of the physical block size, or simply garbage. 3507 */ 3508 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp, 3509 unsigned int dev_max) 3510 { 3511 struct scsi_device *sdp = sdkp->device; 3512 unsigned int opt_xfer_bytes = 3513 logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 3514 unsigned int min_xfer_bytes = 3515 logical_to_bytes(sdp, sdkp->min_xfer_blocks); 3516 3517 if (sdkp->opt_xfer_blocks == 0) 3518 return false; 3519 3520 if (sdkp->opt_xfer_blocks > dev_max) { 3521 sd_first_printk(KERN_WARNING, sdkp, 3522 "Optimal transfer size %u logical blocks " \ 3523 "> dev_max (%u logical blocks)\n", 3524 sdkp->opt_xfer_blocks, dev_max); 3525 return false; 3526 } 3527 3528 if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) { 3529 sd_first_printk(KERN_WARNING, sdkp, 3530 "Optimal transfer size %u logical blocks " \ 3531 "> sd driver limit (%u logical blocks)\n", 3532 sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS); 3533 return false; 3534 } 3535 3536 if (opt_xfer_bytes < PAGE_SIZE) { 3537 sd_first_printk(KERN_WARNING, sdkp, 3538 "Optimal transfer size %u bytes < " \ 3539 "PAGE_SIZE (%u bytes)\n", 3540 opt_xfer_bytes, (unsigned int)PAGE_SIZE); 3541 return false; 3542 } 3543 3544 if (min_xfer_bytes && opt_xfer_bytes % min_xfer_bytes) { 3545 sd_first_printk(KERN_WARNING, sdkp, 3546 "Optimal transfer size %u bytes not a " \ 3547 "multiple of preferred minimum block " \ 3548 "size (%u bytes)\n", 3549 opt_xfer_bytes, min_xfer_bytes); 3550 return false; 3551 } 3552 3553 if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) { 3554 sd_first_printk(KERN_WARNING, sdkp, 3555 "Optimal transfer size %u bytes not a " \ 3556 "multiple of physical block size (%u bytes)\n", 3557 opt_xfer_bytes, sdkp->physical_block_size); 3558 return false; 3559 } 3560 3561 sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n", 3562 opt_xfer_bytes); 3563 return true; 3564 } 3565 3566 static void sd_read_block_zero(struct scsi_disk *sdkp) 3567 { 3568 unsigned int buf_len = sdkp->device->sector_size; 3569 char *buffer, cmd[10] = { }; 3570 3571 buffer = kmalloc(buf_len, GFP_KERNEL); 3572 if (!buffer) 3573 return; 3574 3575 cmd[0] = READ_10; 3576 put_unaligned_be32(0, &cmd[2]); /* Logical block address 0 */ 3577 put_unaligned_be16(1, &cmd[7]); /* Transfer 1 logical block */ 3578 3579 scsi_execute_cmd(sdkp->device, cmd, REQ_OP_DRV_IN, buffer, buf_len, 3580 SD_TIMEOUT, sdkp->max_retries, NULL); 3581 kfree(buffer); 3582 } 3583 3584 /** 3585 * sd_revalidate_disk - called the first time a new disk is seen, 3586 * performs disk spin up, read_capacity, etc. 3587 * @disk: struct gendisk we care about 3588 **/ 3589 static int sd_revalidate_disk(struct gendisk *disk) 3590 { 3591 struct scsi_disk *sdkp = scsi_disk(disk); 3592 struct scsi_device *sdp = sdkp->device; 3593 struct request_queue *q = sdkp->disk->queue; 3594 sector_t old_capacity = sdkp->capacity; 3595 unsigned char *buffer; 3596 unsigned int dev_max, rw_max; 3597 3598 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, 3599 "sd_revalidate_disk\n")); 3600 3601 /* 3602 * If the device is offline, don't try and read capacity or any 3603 * of the other niceties. 3604 */ 3605 if (!scsi_device_online(sdp)) 3606 goto out; 3607 3608 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL); 3609 if (!buffer) { 3610 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory " 3611 "allocation failure.\n"); 3612 goto out; 3613 } 3614 3615 sd_spinup_disk(sdkp); 3616 3617 /* 3618 * Without media there is no reason to ask; moreover, some devices 3619 * react badly if we do. 3620 */ 3621 if (sdkp->media_present) { 3622 sd_read_capacity(sdkp, buffer); 3623 /* 3624 * Some USB/UAS devices return generic values for mode pages 3625 * until the media has been accessed. Trigger a READ operation 3626 * to force the device to populate mode pages. 3627 */ 3628 if (sdp->read_before_ms) 3629 sd_read_block_zero(sdkp); 3630 /* 3631 * set the default to rotational. All non-rotational devices 3632 * support the block characteristics VPD page, which will 3633 * cause this to be updated correctly and any device which 3634 * doesn't support it should be treated as rotational. 3635 */ 3636 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q); 3637 blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q); 3638 3639 if (scsi_device_supports_vpd(sdp)) { 3640 sd_read_block_provisioning(sdkp); 3641 sd_read_block_limits(sdkp); 3642 sd_read_block_limits_ext(sdkp); 3643 sd_read_block_characteristics(sdkp); 3644 sd_zbc_read_zones(sdkp, buffer); 3645 sd_read_cpr(sdkp); 3646 } 3647 3648 sd_print_capacity(sdkp, old_capacity); 3649 3650 sd_read_write_protect_flag(sdkp, buffer); 3651 sd_read_cache_type(sdkp, buffer); 3652 sd_read_io_hints(sdkp, buffer); 3653 sd_read_app_tag_own(sdkp, buffer); 3654 sd_read_write_same(sdkp, buffer); 3655 sd_read_security(sdkp, buffer); 3656 sd_config_protection(sdkp); 3657 } 3658 3659 /* 3660 * We now have all cache related info, determine how we deal 3661 * with flush requests. 3662 */ 3663 sd_set_flush_flag(sdkp); 3664 3665 /* Initial block count limit based on CDB TRANSFER LENGTH field size. */ 3666 dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS; 3667 3668 /* Some devices report a maximum block count for READ/WRITE requests. */ 3669 dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks); 3670 q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max); 3671 3672 if (sd_validate_min_xfer_size(sdkp)) 3673 blk_queue_io_min(sdkp->disk->queue, 3674 logical_to_bytes(sdp, sdkp->min_xfer_blocks)); 3675 else 3676 blk_queue_io_min(sdkp->disk->queue, 0); 3677 3678 if (sd_validate_opt_xfer_size(sdkp, dev_max)) { 3679 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 3680 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks); 3681 } else { 3682 q->limits.io_opt = 0; 3683 rw_max = min_not_zero(logical_to_sectors(sdp, dev_max), 3684 (sector_t)BLK_DEF_MAX_SECTORS_CAP); 3685 } 3686 3687 /* 3688 * Limit default to SCSI host optimal sector limit if set. There may be 3689 * an impact on performance for when the size of a request exceeds this 3690 * host limit. 3691 */ 3692 rw_max = min_not_zero(rw_max, sdp->host->opt_sectors); 3693 3694 /* Do not exceed controller limit */ 3695 rw_max = min(rw_max, queue_max_hw_sectors(q)); 3696 3697 /* 3698 * Only update max_sectors if previously unset or if the current value 3699 * exceeds the capabilities of the hardware. 3700 */ 3701 if (sdkp->first_scan || 3702 q->limits.max_sectors > q->limits.max_dev_sectors || 3703 q->limits.max_sectors > q->limits.max_hw_sectors) 3704 q->limits.max_sectors = rw_max; 3705 3706 sdkp->first_scan = 0; 3707 3708 set_capacity_and_notify(disk, logical_to_sectors(sdp, sdkp->capacity)); 3709 sd_config_write_same(sdkp); 3710 kfree(buffer); 3711 3712 /* 3713 * For a zoned drive, revalidating the zones can be done only once 3714 * the gendisk capacity is set. So if this fails, set back the gendisk 3715 * capacity to 0. 3716 */ 3717 if (sd_zbc_revalidate_zones(sdkp)) 3718 set_capacity_and_notify(disk, 0); 3719 3720 out: 3721 return 0; 3722 } 3723 3724 /** 3725 * sd_unlock_native_capacity - unlock native capacity 3726 * @disk: struct gendisk to set capacity for 3727 * 3728 * Block layer calls this function if it detects that partitions 3729 * on @disk reach beyond the end of the device. If the SCSI host 3730 * implements ->unlock_native_capacity() method, it's invoked to 3731 * give it a chance to adjust the device capacity. 3732 * 3733 * CONTEXT: 3734 * Defined by block layer. Might sleep. 3735 */ 3736 static void sd_unlock_native_capacity(struct gendisk *disk) 3737 { 3738 struct scsi_device *sdev = scsi_disk(disk)->device; 3739 3740 if (sdev->host->hostt->unlock_native_capacity) 3741 sdev->host->hostt->unlock_native_capacity(sdev); 3742 } 3743 3744 /** 3745 * sd_format_disk_name - format disk name 3746 * @prefix: name prefix - ie. "sd" for SCSI disks 3747 * @index: index of the disk to format name for 3748 * @buf: output buffer 3749 * @buflen: length of the output buffer 3750 * 3751 * SCSI disk names starts at sda. The 26th device is sdz and the 3752 * 27th is sdaa. The last one for two lettered suffix is sdzz 3753 * which is followed by sdaaa. 3754 * 3755 * This is basically 26 base counting with one extra 'nil' entry 3756 * at the beginning from the second digit on and can be 3757 * determined using similar method as 26 base conversion with the 3758 * index shifted -1 after each digit is computed. 3759 * 3760 * CONTEXT: 3761 * Don't care. 3762 * 3763 * RETURNS: 3764 * 0 on success, -errno on failure. 3765 */ 3766 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen) 3767 { 3768 const int base = 'z' - 'a' + 1; 3769 char *begin = buf + strlen(prefix); 3770 char *end = buf + buflen; 3771 char *p; 3772 int unit; 3773 3774 p = end - 1; 3775 *p = '\0'; 3776 unit = base; 3777 do { 3778 if (p == begin) 3779 return -EINVAL; 3780 *--p = 'a' + (index % unit); 3781 index = (index / unit) - 1; 3782 } while (index >= 0); 3783 3784 memmove(begin, p, end - p); 3785 memcpy(buf, prefix, strlen(prefix)); 3786 3787 return 0; 3788 } 3789 3790 /** 3791 * sd_probe - called during driver initialization and whenever a 3792 * new scsi device is attached to the system. It is called once 3793 * for each scsi device (not just disks) present. 3794 * @dev: pointer to device object 3795 * 3796 * Returns 0 if successful (or not interested in this scsi device 3797 * (e.g. scanner)); 1 when there is an error. 3798 * 3799 * Note: this function is invoked from the scsi mid-level. 3800 * This function sets up the mapping between a given 3801 * <host,channel,id,lun> (found in sdp) and new device name 3802 * (e.g. /dev/sda). More precisely it is the block device major 3803 * and minor number that is chosen here. 3804 * 3805 * Assume sd_probe is not re-entrant (for time being) 3806 * Also think about sd_probe() and sd_remove() running coincidentally. 3807 **/ 3808 static int sd_probe(struct device *dev) 3809 { 3810 struct scsi_device *sdp = to_scsi_device(dev); 3811 struct scsi_disk *sdkp; 3812 struct gendisk *gd; 3813 int index; 3814 int error; 3815 3816 scsi_autopm_get_device(sdp); 3817 error = -ENODEV; 3818 if (sdp->type != TYPE_DISK && 3819 sdp->type != TYPE_ZBC && 3820 sdp->type != TYPE_MOD && 3821 sdp->type != TYPE_RBC) 3822 goto out; 3823 3824 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) && sdp->type == TYPE_ZBC) { 3825 sdev_printk(KERN_WARNING, sdp, 3826 "Unsupported ZBC host-managed device.\n"); 3827 goto out; 3828 } 3829 3830 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp, 3831 "sd_probe\n")); 3832 3833 error = -ENOMEM; 3834 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL); 3835 if (!sdkp) 3836 goto out; 3837 3838 gd = blk_mq_alloc_disk_for_queue(sdp->request_queue, 3839 &sd_bio_compl_lkclass); 3840 if (!gd) 3841 goto out_free; 3842 3843 index = ida_alloc(&sd_index_ida, GFP_KERNEL); 3844 if (index < 0) { 3845 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n"); 3846 goto out_put; 3847 } 3848 3849 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN); 3850 if (error) { 3851 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n"); 3852 goto out_free_index; 3853 } 3854 3855 sdkp->device = sdp; 3856 sdkp->disk = gd; 3857 sdkp->index = index; 3858 sdkp->max_retries = SD_MAX_RETRIES; 3859 atomic_set(&sdkp->openers, 0); 3860 atomic_set(&sdkp->device->ioerr_cnt, 0); 3861 3862 if (!sdp->request_queue->rq_timeout) { 3863 if (sdp->type != TYPE_MOD) 3864 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT); 3865 else 3866 blk_queue_rq_timeout(sdp->request_queue, 3867 SD_MOD_TIMEOUT); 3868 } 3869 3870 device_initialize(&sdkp->disk_dev); 3871 sdkp->disk_dev.parent = get_device(dev); 3872 sdkp->disk_dev.class = &sd_disk_class; 3873 dev_set_name(&sdkp->disk_dev, "%s", dev_name(dev)); 3874 3875 error = device_add(&sdkp->disk_dev); 3876 if (error) { 3877 put_device(&sdkp->disk_dev); 3878 goto out; 3879 } 3880 3881 dev_set_drvdata(dev, sdkp); 3882 3883 gd->major = sd_major((index & 0xf0) >> 4); 3884 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00); 3885 gd->minors = SD_MINORS; 3886 3887 gd->fops = &sd_fops; 3888 gd->private_data = sdkp; 3889 3890 /* defaults, until the device tells us otherwise */ 3891 sdp->sector_size = 512; 3892 sdkp->capacity = 0; 3893 sdkp->media_present = 1; 3894 sdkp->write_prot = 0; 3895 sdkp->cache_override = 0; 3896 sdkp->WCE = 0; 3897 sdkp->RCD = 0; 3898 sdkp->ATO = 0; 3899 sdkp->first_scan = 1; 3900 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS; 3901 3902 sd_revalidate_disk(gd); 3903 3904 if (sdp->removable) { 3905 gd->flags |= GENHD_FL_REMOVABLE; 3906 gd->events |= DISK_EVENT_MEDIA_CHANGE; 3907 gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT; 3908 } 3909 3910 blk_pm_runtime_init(sdp->request_queue, dev); 3911 if (sdp->rpm_autosuspend) { 3912 pm_runtime_set_autosuspend_delay(dev, 3913 sdp->host->rpm_autosuspend_delay); 3914 } 3915 3916 error = device_add_disk(dev, gd, NULL); 3917 if (error) { 3918 device_unregister(&sdkp->disk_dev); 3919 put_disk(gd); 3920 goto out; 3921 } 3922 3923 if (sdkp->security) { 3924 sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit); 3925 if (sdkp->opal_dev) 3926 sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n"); 3927 } 3928 3929 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n", 3930 sdp->removable ? "removable " : ""); 3931 scsi_autopm_put_device(sdp); 3932 3933 return 0; 3934 3935 out_free_index: 3936 ida_free(&sd_index_ida, index); 3937 out_put: 3938 put_disk(gd); 3939 out_free: 3940 kfree(sdkp); 3941 out: 3942 scsi_autopm_put_device(sdp); 3943 return error; 3944 } 3945 3946 /** 3947 * sd_remove - called whenever a scsi disk (previously recognized by 3948 * sd_probe) is detached from the system. It is called (potentially 3949 * multiple times) during sd module unload. 3950 * @dev: pointer to device object 3951 * 3952 * Note: this function is invoked from the scsi mid-level. 3953 * This function potentially frees up a device name (e.g. /dev/sdc) 3954 * that could be re-used by a subsequent sd_probe(). 3955 * This function is not called when the built-in sd driver is "exit-ed". 3956 **/ 3957 static int sd_remove(struct device *dev) 3958 { 3959 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3960 3961 scsi_autopm_get_device(sdkp->device); 3962 3963 device_del(&sdkp->disk_dev); 3964 del_gendisk(sdkp->disk); 3965 if (!sdkp->suspended) 3966 sd_shutdown(dev); 3967 3968 put_disk(sdkp->disk); 3969 return 0; 3970 } 3971 3972 static void scsi_disk_release(struct device *dev) 3973 { 3974 struct scsi_disk *sdkp = to_scsi_disk(dev); 3975 3976 ida_free(&sd_index_ida, sdkp->index); 3977 put_device(&sdkp->device->sdev_gendev); 3978 free_opal_dev(sdkp->opal_dev); 3979 3980 kfree(sdkp); 3981 } 3982 3983 static int sd_start_stop_device(struct scsi_disk *sdkp, int start) 3984 { 3985 unsigned char cmd[6] = { START_STOP }; /* START_VALID */ 3986 struct scsi_sense_hdr sshdr; 3987 const struct scsi_exec_args exec_args = { 3988 .sshdr = &sshdr, 3989 .req_flags = BLK_MQ_REQ_PM, 3990 }; 3991 struct scsi_device *sdp = sdkp->device; 3992 int res; 3993 3994 if (start) 3995 cmd[4] |= 1; /* START */ 3996 3997 if (sdp->start_stop_pwr_cond) 3998 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */ 3999 4000 if (!scsi_device_online(sdp)) 4001 return -ENODEV; 4002 4003 res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, SD_TIMEOUT, 4004 sdkp->max_retries, &exec_args); 4005 if (res) { 4006 sd_print_result(sdkp, "Start/Stop Unit failed", res); 4007 if (res > 0 && scsi_sense_valid(&sshdr)) { 4008 sd_print_sense_hdr(sdkp, &sshdr); 4009 /* 0x3a is medium not present */ 4010 if (sshdr.asc == 0x3a) 4011 res = 0; 4012 } 4013 } 4014 4015 /* SCSI error codes must not go to the generic layer */ 4016 if (res) 4017 return -EIO; 4018 4019 return 0; 4020 } 4021 4022 /* 4023 * Send a SYNCHRONIZE CACHE instruction down to the device through 4024 * the normal SCSI command structure. Wait for the command to 4025 * complete. 4026 */ 4027 static void sd_shutdown(struct device *dev) 4028 { 4029 struct scsi_disk *sdkp = dev_get_drvdata(dev); 4030 4031 if (!sdkp) 4032 return; /* this can happen */ 4033 4034 if (pm_runtime_suspended(dev)) 4035 return; 4036 4037 if (sdkp->WCE && sdkp->media_present) { 4038 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 4039 sd_sync_cache(sdkp); 4040 } 4041 4042 if ((system_state != SYSTEM_RESTART && 4043 sdkp->device->manage_system_start_stop) || 4044 (system_state == SYSTEM_POWER_OFF && 4045 sdkp->device->manage_shutdown)) { 4046 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 4047 sd_start_stop_device(sdkp, 0); 4048 } 4049 } 4050 4051 static inline bool sd_do_start_stop(struct scsi_device *sdev, bool runtime) 4052 { 4053 return (sdev->manage_system_start_stop && !runtime) || 4054 (sdev->manage_runtime_start_stop && runtime); 4055 } 4056 4057 static int sd_suspend_common(struct device *dev, bool runtime) 4058 { 4059 struct scsi_disk *sdkp = dev_get_drvdata(dev); 4060 int ret = 0; 4061 4062 if (!sdkp) /* E.g.: runtime suspend following sd_remove() */ 4063 return 0; 4064 4065 if (sdkp->WCE && sdkp->media_present) { 4066 if (!sdkp->device->silence_suspend) 4067 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 4068 ret = sd_sync_cache(sdkp); 4069 /* ignore OFFLINE device */ 4070 if (ret == -ENODEV) 4071 return 0; 4072 4073 if (ret) 4074 return ret; 4075 } 4076 4077 if (sd_do_start_stop(sdkp->device, runtime)) { 4078 if (!sdkp->device->silence_suspend) 4079 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 4080 /* an error is not worth aborting a system sleep */ 4081 ret = sd_start_stop_device(sdkp, 0); 4082 if (!runtime) 4083 ret = 0; 4084 } 4085 4086 if (!ret) 4087 sdkp->suspended = true; 4088 4089 return ret; 4090 } 4091 4092 static int sd_suspend_system(struct device *dev) 4093 { 4094 if (pm_runtime_suspended(dev)) 4095 return 0; 4096 4097 return sd_suspend_common(dev, false); 4098 } 4099 4100 static int sd_suspend_runtime(struct device *dev) 4101 { 4102 return sd_suspend_common(dev, true); 4103 } 4104 4105 static int sd_resume(struct device *dev) 4106 { 4107 struct scsi_disk *sdkp = dev_get_drvdata(dev); 4108 4109 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n"); 4110 4111 if (opal_unlock_from_suspend(sdkp->opal_dev)) { 4112 sd_printk(KERN_NOTICE, sdkp, "OPAL unlock failed\n"); 4113 return -EIO; 4114 } 4115 4116 return 0; 4117 } 4118 4119 static int sd_resume_common(struct device *dev, bool runtime) 4120 { 4121 struct scsi_disk *sdkp = dev_get_drvdata(dev); 4122 int ret; 4123 4124 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */ 4125 return 0; 4126 4127 if (!sd_do_start_stop(sdkp->device, runtime)) { 4128 sdkp->suspended = false; 4129 return 0; 4130 } 4131 4132 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n"); 4133 ret = sd_start_stop_device(sdkp, 1); 4134 if (!ret) { 4135 sd_resume(dev); 4136 sdkp->suspended = false; 4137 } 4138 4139 return ret; 4140 } 4141 4142 static int sd_resume_system(struct device *dev) 4143 { 4144 if (pm_runtime_suspended(dev)) { 4145 struct scsi_disk *sdkp = dev_get_drvdata(dev); 4146 struct scsi_device *sdp = sdkp ? sdkp->device : NULL; 4147 4148 if (sdp && sdp->force_runtime_start_on_system_start) 4149 pm_request_resume(dev); 4150 4151 return 0; 4152 } 4153 4154 return sd_resume_common(dev, false); 4155 } 4156 4157 static int sd_resume_runtime(struct device *dev) 4158 { 4159 struct scsi_disk *sdkp = dev_get_drvdata(dev); 4160 struct scsi_device *sdp; 4161 4162 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */ 4163 return 0; 4164 4165 sdp = sdkp->device; 4166 4167 if (sdp->ignore_media_change) { 4168 /* clear the device's sense data */ 4169 static const u8 cmd[10] = { REQUEST_SENSE }; 4170 const struct scsi_exec_args exec_args = { 4171 .req_flags = BLK_MQ_REQ_PM, 4172 }; 4173 4174 if (scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, 4175 sdp->request_queue->rq_timeout, 1, 4176 &exec_args)) 4177 sd_printk(KERN_NOTICE, sdkp, 4178 "Failed to clear sense data\n"); 4179 } 4180 4181 return sd_resume_common(dev, true); 4182 } 4183 4184 static const struct dev_pm_ops sd_pm_ops = { 4185 .suspend = sd_suspend_system, 4186 .resume = sd_resume_system, 4187 .poweroff = sd_suspend_system, 4188 .restore = sd_resume_system, 4189 .runtime_suspend = sd_suspend_runtime, 4190 .runtime_resume = sd_resume_runtime, 4191 }; 4192 4193 static struct scsi_driver sd_template = { 4194 .gendrv = { 4195 .name = "sd", 4196 .probe = sd_probe, 4197 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 4198 .remove = sd_remove, 4199 .shutdown = sd_shutdown, 4200 .pm = &sd_pm_ops, 4201 }, 4202 .rescan = sd_rescan, 4203 .resume = sd_resume, 4204 .init_command = sd_init_command, 4205 .uninit_command = sd_uninit_command, 4206 .done = sd_done, 4207 .eh_action = sd_eh_action, 4208 .eh_reset = sd_eh_reset, 4209 }; 4210 4211 /** 4212 * init_sd - entry point for this driver (both when built in or when 4213 * a module). 4214 * 4215 * Note: this function registers this driver with the scsi mid-level. 4216 **/ 4217 static int __init init_sd(void) 4218 { 4219 int majors = 0, i, err; 4220 4221 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n")); 4222 4223 for (i = 0; i < SD_MAJORS; i++) { 4224 if (__register_blkdev(sd_major(i), "sd", sd_default_probe)) 4225 continue; 4226 majors++; 4227 } 4228 4229 if (!majors) 4230 return -ENODEV; 4231 4232 err = class_register(&sd_disk_class); 4233 if (err) 4234 goto err_out; 4235 4236 sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0); 4237 if (!sd_page_pool) { 4238 printk(KERN_ERR "sd: can't init discard page pool\n"); 4239 err = -ENOMEM; 4240 goto err_out_class; 4241 } 4242 4243 err = scsi_register_driver(&sd_template.gendrv); 4244 if (err) 4245 goto err_out_driver; 4246 4247 return 0; 4248 4249 err_out_driver: 4250 mempool_destroy(sd_page_pool); 4251 err_out_class: 4252 class_unregister(&sd_disk_class); 4253 err_out: 4254 for (i = 0; i < SD_MAJORS; i++) 4255 unregister_blkdev(sd_major(i), "sd"); 4256 return err; 4257 } 4258 4259 /** 4260 * exit_sd - exit point for this driver (when it is a module). 4261 * 4262 * Note: this function unregisters this driver from the scsi mid-level. 4263 **/ 4264 static void __exit exit_sd(void) 4265 { 4266 int i; 4267 4268 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n")); 4269 4270 scsi_unregister_driver(&sd_template.gendrv); 4271 mempool_destroy(sd_page_pool); 4272 4273 class_unregister(&sd_disk_class); 4274 4275 for (i = 0; i < SD_MAJORS; i++) 4276 unregister_blkdev(sd_major(i), "sd"); 4277 } 4278 4279 module_init(init_sd); 4280 module_exit(exit_sd); 4281 4282 void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr) 4283 { 4284 scsi_print_sense_hdr(sdkp->device, 4285 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr); 4286 } 4287 4288 void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result) 4289 { 4290 const char *hb_string = scsi_hostbyte_string(result); 4291 4292 if (hb_string) 4293 sd_printk(KERN_INFO, sdkp, 4294 "%s: Result: hostbyte=%s driverbyte=%s\n", msg, 4295 hb_string ? hb_string : "invalid", 4296 "DRIVER_OK"); 4297 else 4298 sd_printk(KERN_INFO, sdkp, 4299 "%s: Result: hostbyte=0x%02x driverbyte=%s\n", 4300 msg, host_byte(result), "DRIVER_OK"); 4301 } 4302