1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Parallel SCSI (SPI) transport specific attributes exported to sysfs. 4 * 5 * Copyright (c) 2003 Silicon Graphics, Inc. All rights reserved. 6 * Copyright (c) 2004, 2005 James Bottomley <James.Bottomley@SteelEye.com> 7 */ 8 #include <linux/ctype.h> 9 #include <linux/init.h> 10 #include <linux/module.h> 11 #include <linux/workqueue.h> 12 #include <linux/blkdev.h> 13 #include <linux/mutex.h> 14 #include <linux/sysfs.h> 15 #include <linux/slab.h> 16 #include <linux/suspend.h> 17 #include <scsi/scsi.h> 18 #include "scsi_priv.h" 19 #include <scsi/scsi_device.h> 20 #include <scsi/scsi_host.h> 21 #include <scsi/scsi_cmnd.h> 22 #include <scsi/scsi_eh.h> 23 #include <scsi/scsi_tcq.h> 24 #include <scsi/scsi_transport.h> 25 #include <scsi/scsi_transport_spi.h> 26 27 #define SPI_NUM_ATTRS 14 /* increase this if you add attributes */ 28 #define SPI_OTHER_ATTRS 1 /* Increase this if you add "always 29 * on" attributes */ 30 #define SPI_HOST_ATTRS 1 31 32 #define SPI_MAX_ECHO_BUFFER_SIZE 4096 33 34 #define DV_LOOPS 3 35 #define DV_TIMEOUT (10*HZ) 36 #define DV_RETRIES 3 /* should only need at most 37 * two cc/ua clears */ 38 39 /* Our blacklist flags */ 40 enum { 41 SPI_BLIST_NOIUS = (__force blist_flags_t)0x1, 42 }; 43 44 /* blacklist table, modelled on scsi_devinfo.c */ 45 static struct { 46 char *vendor; 47 char *model; 48 blist_flags_t flags; 49 } spi_static_device_list[] __initdata = { 50 {"HP", "Ultrium 3-SCSI", SPI_BLIST_NOIUS }, 51 {"IBM", "ULTRIUM-TD3", SPI_BLIST_NOIUS }, 52 {NULL, NULL, 0} 53 }; 54 55 /* Private data accessors (keep these out of the header file) */ 56 #define spi_dv_in_progress(x) (((struct spi_transport_attrs *)&(x)->starget_data)->dv_in_progress) 57 #define spi_dv_mutex(x) (((struct spi_transport_attrs *)&(x)->starget_data)->dv_mutex) 58 59 struct spi_internal { 60 struct scsi_transport_template t; 61 struct spi_function_template *f; 62 }; 63 64 #define to_spi_internal(tmpl) container_of(tmpl, struct spi_internal, t) 65 66 static const int ppr_to_ps[] = { 67 /* The PPR values 0-6 are reserved, fill them in when 68 * the committee defines them */ 69 -1, /* 0x00 */ 70 -1, /* 0x01 */ 71 -1, /* 0x02 */ 72 -1, /* 0x03 */ 73 -1, /* 0x04 */ 74 -1, /* 0x05 */ 75 -1, /* 0x06 */ 76 3125, /* 0x07 */ 77 6250, /* 0x08 */ 78 12500, /* 0x09 */ 79 25000, /* 0x0a */ 80 30300, /* 0x0b */ 81 50000, /* 0x0c */ 82 }; 83 /* The PPR values at which you calculate the period in ns by multiplying 84 * by 4 */ 85 #define SPI_STATIC_PPR 0x0c 86 87 static int sprint_frac(char *dest, int value, int denom) 88 { 89 int frac = value % denom; 90 int result = sprintf(dest, "%d", value / denom); 91 92 if (frac == 0) 93 return result; 94 dest[result++] = '.'; 95 96 do { 97 denom /= 10; 98 sprintf(dest + result, "%d", frac / denom); 99 result++; 100 frac %= denom; 101 } while (frac); 102 103 dest[result++] = '\0'; 104 return result; 105 } 106 107 static int spi_execute(struct scsi_device *sdev, const void *cmd, 108 enum req_op op, void *buffer, unsigned int bufflen, 109 struct scsi_sense_hdr *sshdr) 110 { 111 blk_opf_t opf = op | REQ_FAILFAST_DEV | REQ_FAILFAST_TRANSPORT | 112 REQ_FAILFAST_DRIVER; 113 struct scsi_failure failure_defs[] = { 114 { 115 .sense = UNIT_ATTENTION, 116 .asc = SCMD_FAILURE_ASC_ANY, 117 .ascq = SCMD_FAILURE_ASCQ_ANY, 118 .allowed = DV_RETRIES, 119 .result = SAM_STAT_CHECK_CONDITION, 120 }, 121 {} 122 }; 123 struct scsi_failures failures = { 124 .failure_definitions = failure_defs, 125 }; 126 const struct scsi_exec_args exec_args = { 127 /* bypass the SDEV_QUIESCE state with BLK_MQ_REQ_PM */ 128 .req_flags = BLK_MQ_REQ_PM, 129 .sshdr = sshdr, 130 .failures = &failures, 131 }; 132 133 return scsi_execute_cmd(sdev, cmd, opf, buffer, bufflen, DV_TIMEOUT, 1, 134 &exec_args); 135 } 136 137 static struct { 138 enum spi_signal_type value; 139 char *name; 140 } signal_types[] = { 141 { SPI_SIGNAL_UNKNOWN, "unknown" }, 142 { SPI_SIGNAL_SE, "SE" }, 143 { SPI_SIGNAL_LVD, "LVD" }, 144 { SPI_SIGNAL_HVD, "HVD" }, 145 }; 146 147 static inline const char *spi_signal_to_string(enum spi_signal_type type) 148 { 149 int i; 150 151 for (i = 0; i < ARRAY_SIZE(signal_types); i++) { 152 if (type == signal_types[i].value) 153 return signal_types[i].name; 154 } 155 return NULL; 156 } 157 static inline enum spi_signal_type spi_signal_to_value(const char *name) 158 { 159 int i, len; 160 161 for (i = 0; i < ARRAY_SIZE(signal_types); i++) { 162 len = strlen(signal_types[i].name); 163 if (strncmp(name, signal_types[i].name, len) == 0 && 164 (name[len] == '\n' || name[len] == '\0')) 165 return signal_types[i].value; 166 } 167 return SPI_SIGNAL_UNKNOWN; 168 } 169 170 static int spi_host_setup(struct transport_container *tc, struct device *dev, 171 struct device *cdev) 172 { 173 struct Scsi_Host *shost = dev_to_shost(dev); 174 175 spi_signalling(shost) = SPI_SIGNAL_UNKNOWN; 176 177 return 0; 178 } 179 180 static int spi_host_configure(struct transport_container *tc, 181 struct device *dev, 182 struct device *cdev); 183 184 static DECLARE_TRANSPORT_CLASS(spi_host_class, 185 "spi_host", 186 spi_host_setup, 187 NULL, 188 spi_host_configure); 189 190 static int spi_host_match(struct attribute_container *cont, 191 struct device *dev) 192 { 193 struct Scsi_Host *shost; 194 195 if (!scsi_is_host_device(dev)) 196 return 0; 197 198 shost = dev_to_shost(dev); 199 if (!shost->transportt || shost->transportt->host_attrs.ac.class 200 != &spi_host_class.class) 201 return 0; 202 203 return &shost->transportt->host_attrs.ac == cont; 204 } 205 206 static int spi_target_configure(struct transport_container *tc, 207 struct device *dev, 208 struct device *cdev); 209 210 static int spi_device_configure(struct transport_container *tc, 211 struct device *dev, 212 struct device *cdev) 213 { 214 struct scsi_device *sdev = to_scsi_device(dev); 215 struct scsi_target *starget = sdev->sdev_target; 216 blist_flags_t bflags; 217 218 bflags = scsi_get_device_flags_keyed(sdev, &sdev->inquiry[8], 219 &sdev->inquiry[16], 220 SCSI_DEVINFO_SPI); 221 222 /* Populate the target capability fields with the values 223 * gleaned from the device inquiry */ 224 225 spi_support_sync(starget) = scsi_device_sync(sdev); 226 spi_support_wide(starget) = scsi_device_wide(sdev); 227 spi_support_dt(starget) = scsi_device_dt(sdev); 228 spi_support_dt_only(starget) = scsi_device_dt_only(sdev); 229 spi_support_ius(starget) = scsi_device_ius(sdev); 230 if (bflags & SPI_BLIST_NOIUS) { 231 dev_info(dev, "Information Units disabled by blacklist\n"); 232 spi_support_ius(starget) = 0; 233 } 234 spi_support_qas(starget) = scsi_device_qas(sdev); 235 236 return 0; 237 } 238 239 static int spi_setup_transport_attrs(struct transport_container *tc, 240 struct device *dev, 241 struct device *cdev) 242 { 243 struct scsi_target *starget = to_scsi_target(dev); 244 245 spi_period(starget) = -1; /* illegal value */ 246 spi_min_period(starget) = 0; 247 spi_offset(starget) = 0; /* async */ 248 spi_max_offset(starget) = 255; 249 spi_width(starget) = 0; /* narrow */ 250 spi_max_width(starget) = 1; 251 spi_iu(starget) = 0; /* no IU */ 252 spi_max_iu(starget) = 1; 253 spi_dt(starget) = 0; /* ST */ 254 spi_qas(starget) = 0; 255 spi_max_qas(starget) = 1; 256 spi_wr_flow(starget) = 0; 257 spi_rd_strm(starget) = 0; 258 spi_rti(starget) = 0; 259 spi_pcomp_en(starget) = 0; 260 spi_hold_mcs(starget) = 0; 261 spi_dv_pending(starget) = 0; 262 spi_dv_in_progress(starget) = 0; 263 spi_initial_dv(starget) = 0; 264 mutex_init(&spi_dv_mutex(starget)); 265 266 return 0; 267 } 268 269 #define spi_transport_show_simple(field, format_string) \ 270 \ 271 static ssize_t \ 272 show_spi_transport_##field(struct device *dev, \ 273 struct device_attribute *attr, char *buf) \ 274 { \ 275 struct scsi_target *starget = transport_class_to_starget(dev); \ 276 struct spi_transport_attrs *tp; \ 277 \ 278 tp = (struct spi_transport_attrs *)&starget->starget_data; \ 279 return snprintf(buf, 20, format_string, tp->field); \ 280 } 281 282 #define spi_transport_store_simple(field, format_string) \ 283 \ 284 static ssize_t \ 285 store_spi_transport_##field(struct device *dev, \ 286 struct device_attribute *attr, \ 287 const char *buf, size_t count) \ 288 { \ 289 int val; \ 290 struct scsi_target *starget = transport_class_to_starget(dev); \ 291 struct spi_transport_attrs *tp; \ 292 \ 293 tp = (struct spi_transport_attrs *)&starget->starget_data; \ 294 val = simple_strtoul(buf, NULL, 0); \ 295 tp->field = val; \ 296 return count; \ 297 } 298 299 #define spi_transport_show_function(field, format_string) \ 300 \ 301 static ssize_t \ 302 show_spi_transport_##field(struct device *dev, \ 303 struct device_attribute *attr, char *buf) \ 304 { \ 305 struct scsi_target *starget = transport_class_to_starget(dev); \ 306 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); \ 307 struct spi_transport_attrs *tp; \ 308 struct spi_internal *i = to_spi_internal(shost->transportt); \ 309 tp = (struct spi_transport_attrs *)&starget->starget_data; \ 310 if (i->f->get_##field) \ 311 i->f->get_##field(starget); \ 312 return snprintf(buf, 20, format_string, tp->field); \ 313 } 314 315 #define spi_transport_store_function(field, format_string) \ 316 static ssize_t \ 317 store_spi_transport_##field(struct device *dev, \ 318 struct device_attribute *attr, \ 319 const char *buf, size_t count) \ 320 { \ 321 int val; \ 322 struct scsi_target *starget = transport_class_to_starget(dev); \ 323 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); \ 324 struct spi_internal *i = to_spi_internal(shost->transportt); \ 325 \ 326 if (!i->f->set_##field) \ 327 return -EINVAL; \ 328 val = simple_strtoul(buf, NULL, 0); \ 329 i->f->set_##field(starget, val); \ 330 return count; \ 331 } 332 333 #define spi_transport_store_max(field, format_string) \ 334 static ssize_t \ 335 store_spi_transport_##field(struct device *dev, \ 336 struct device_attribute *attr, \ 337 const char *buf, size_t count) \ 338 { \ 339 int val; \ 340 struct scsi_target *starget = transport_class_to_starget(dev); \ 341 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); \ 342 struct spi_internal *i = to_spi_internal(shost->transportt); \ 343 struct spi_transport_attrs *tp \ 344 = (struct spi_transport_attrs *)&starget->starget_data; \ 345 \ 346 if (!i->f->set_##field) \ 347 return -EINVAL; \ 348 val = simple_strtoul(buf, NULL, 0); \ 349 if (val > tp->max_##field) \ 350 val = tp->max_##field; \ 351 i->f->set_##field(starget, val); \ 352 return count; \ 353 } 354 355 #define spi_transport_rd_attr(field, format_string) \ 356 spi_transport_show_function(field, format_string) \ 357 spi_transport_store_function(field, format_string) \ 358 static DEVICE_ATTR(field, S_IRUGO, \ 359 show_spi_transport_##field, \ 360 store_spi_transport_##field); 361 362 #define spi_transport_simple_attr(field, format_string) \ 363 spi_transport_show_simple(field, format_string) \ 364 spi_transport_store_simple(field, format_string) \ 365 static DEVICE_ATTR(field, S_IRUGO, \ 366 show_spi_transport_##field, \ 367 store_spi_transport_##field); 368 369 #define spi_transport_max_attr(field, format_string) \ 370 spi_transport_show_function(field, format_string) \ 371 spi_transport_store_max(field, format_string) \ 372 spi_transport_simple_attr(max_##field, format_string) \ 373 static DEVICE_ATTR(field, S_IRUGO, \ 374 show_spi_transport_##field, \ 375 store_spi_transport_##field); 376 377 /* The Parallel SCSI Tranport Attributes: */ 378 spi_transport_max_attr(offset, "%d\n"); 379 spi_transport_max_attr(width, "%d\n"); 380 spi_transport_max_attr(iu, "%d\n"); 381 spi_transport_rd_attr(dt, "%d\n"); 382 spi_transport_max_attr(qas, "%d\n"); 383 spi_transport_rd_attr(wr_flow, "%d\n"); 384 spi_transport_rd_attr(rd_strm, "%d\n"); 385 spi_transport_rd_attr(rti, "%d\n"); 386 spi_transport_rd_attr(pcomp_en, "%d\n"); 387 spi_transport_rd_attr(hold_mcs, "%d\n"); 388 389 /* we only care about the first child device that's a real SCSI device 390 * so we return 1 to terminate the iteration when we find it */ 391 static int child_iter(struct device *dev, void *data) 392 { 393 if (!scsi_is_sdev_device(dev)) 394 return 0; 395 396 spi_dv_device(to_scsi_device(dev)); 397 return 1; 398 } 399 400 static ssize_t 401 store_spi_revalidate(struct device *dev, struct device_attribute *attr, 402 const char *buf, size_t count) 403 { 404 struct scsi_target *starget = transport_class_to_starget(dev); 405 406 device_for_each_child(&starget->dev, NULL, child_iter); 407 return count; 408 } 409 static DEVICE_ATTR(revalidate, S_IWUSR, NULL, store_spi_revalidate); 410 411 /* Translate the period into ns according to the current spec 412 * for SDTR/PPR messages */ 413 static int period_to_str(char *buf, int period) 414 { 415 int len, picosec; 416 417 if (period < 0 || period > 0xff) { 418 picosec = -1; 419 } else if (period <= SPI_STATIC_PPR) { 420 picosec = ppr_to_ps[period]; 421 } else { 422 picosec = period * 4000; 423 } 424 425 if (picosec == -1) { 426 len = sprintf(buf, "reserved"); 427 } else { 428 len = sprint_frac(buf, picosec, 1000); 429 } 430 431 return len; 432 } 433 434 static ssize_t 435 show_spi_transport_period_helper(char *buf, int period) 436 { 437 int len = period_to_str(buf, period); 438 buf[len++] = '\n'; 439 buf[len] = '\0'; 440 return len; 441 } 442 443 static ssize_t 444 store_spi_transport_period_helper(struct device *dev, const char *buf, 445 size_t count, int *periodp) 446 { 447 int j, picosec, period = -1; 448 char *endp; 449 450 picosec = simple_strtoul(buf, &endp, 10) * 1000; 451 if (*endp == '.') { 452 int mult = 100; 453 do { 454 endp++; 455 if (!isdigit(*endp)) 456 break; 457 picosec += (*endp - '0') * mult; 458 mult /= 10; 459 } while (mult > 0); 460 } 461 462 for (j = 0; j <= SPI_STATIC_PPR; j++) { 463 if (ppr_to_ps[j] < picosec) 464 continue; 465 period = j; 466 break; 467 } 468 469 if (period == -1) 470 period = picosec / 4000; 471 472 if (period > 0xff) 473 period = 0xff; 474 475 *periodp = period; 476 477 return count; 478 } 479 480 static ssize_t 481 show_spi_transport_period(struct device *dev, 482 struct device_attribute *attr, char *buf) 483 { 484 struct scsi_target *starget = transport_class_to_starget(dev); 485 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); 486 struct spi_internal *i = to_spi_internal(shost->transportt); 487 struct spi_transport_attrs *tp = 488 (struct spi_transport_attrs *)&starget->starget_data; 489 490 if (i->f->get_period) 491 i->f->get_period(starget); 492 493 return show_spi_transport_period_helper(buf, tp->period); 494 } 495 496 static ssize_t 497 store_spi_transport_period(struct device *cdev, struct device_attribute *attr, 498 const char *buf, size_t count) 499 { 500 struct scsi_target *starget = transport_class_to_starget(cdev); 501 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); 502 struct spi_internal *i = to_spi_internal(shost->transportt); 503 struct spi_transport_attrs *tp = 504 (struct spi_transport_attrs *)&starget->starget_data; 505 int period, retval; 506 507 if (!i->f->set_period) 508 return -EINVAL; 509 510 retval = store_spi_transport_period_helper(cdev, buf, count, &period); 511 512 if (period < tp->min_period) 513 period = tp->min_period; 514 515 i->f->set_period(starget, period); 516 517 return retval; 518 } 519 520 static DEVICE_ATTR(period, S_IRUGO, 521 show_spi_transport_period, 522 store_spi_transport_period); 523 524 static ssize_t 525 show_spi_transport_min_period(struct device *cdev, 526 struct device_attribute *attr, char *buf) 527 { 528 struct scsi_target *starget = transport_class_to_starget(cdev); 529 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); 530 struct spi_internal *i = to_spi_internal(shost->transportt); 531 struct spi_transport_attrs *tp = 532 (struct spi_transport_attrs *)&starget->starget_data; 533 534 if (!i->f->set_period) 535 return -EINVAL; 536 537 return show_spi_transport_period_helper(buf, tp->min_period); 538 } 539 540 static ssize_t 541 store_spi_transport_min_period(struct device *cdev, 542 struct device_attribute *attr, 543 const char *buf, size_t count) 544 { 545 struct scsi_target *starget = transport_class_to_starget(cdev); 546 struct spi_transport_attrs *tp = 547 (struct spi_transport_attrs *)&starget->starget_data; 548 549 return store_spi_transport_period_helper(cdev, buf, count, 550 &tp->min_period); 551 } 552 553 554 static DEVICE_ATTR(min_period, S_IRUGO, 555 show_spi_transport_min_period, 556 store_spi_transport_min_period); 557 558 559 static ssize_t show_spi_host_signalling(struct device *cdev, 560 struct device_attribute *attr, 561 char *buf) 562 { 563 struct Scsi_Host *shost = transport_class_to_shost(cdev); 564 struct spi_internal *i = to_spi_internal(shost->transportt); 565 566 if (i->f->get_signalling) 567 i->f->get_signalling(shost); 568 569 return sprintf(buf, "%s\n", spi_signal_to_string(spi_signalling(shost))); 570 } 571 static ssize_t store_spi_host_signalling(struct device *dev, 572 struct device_attribute *attr, 573 const char *buf, size_t count) 574 { 575 struct Scsi_Host *shost = transport_class_to_shost(dev); 576 struct spi_internal *i = to_spi_internal(shost->transportt); 577 enum spi_signal_type type = spi_signal_to_value(buf); 578 579 if (!i->f->set_signalling) 580 return -EINVAL; 581 582 if (type != SPI_SIGNAL_UNKNOWN) 583 i->f->set_signalling(shost, type); 584 585 return count; 586 } 587 static DEVICE_ATTR(signalling, S_IRUGO, 588 show_spi_host_signalling, 589 store_spi_host_signalling); 590 591 static ssize_t show_spi_host_width(struct device *cdev, 592 struct device_attribute *attr, 593 char *buf) 594 { 595 struct Scsi_Host *shost = transport_class_to_shost(cdev); 596 597 return sprintf(buf, "%s\n", shost->max_id == 16 ? "wide" : "narrow"); 598 } 599 static DEVICE_ATTR(host_width, S_IRUGO, 600 show_spi_host_width, NULL); 601 602 static ssize_t show_spi_host_hba_id(struct device *cdev, 603 struct device_attribute *attr, 604 char *buf) 605 { 606 struct Scsi_Host *shost = transport_class_to_shost(cdev); 607 608 return sprintf(buf, "%d\n", shost->this_id); 609 } 610 static DEVICE_ATTR(hba_id, S_IRUGO, 611 show_spi_host_hba_id, NULL); 612 613 #define DV_SET(x, y) \ 614 if(i->f->set_##x) \ 615 i->f->set_##x(sdev->sdev_target, y) 616 617 enum spi_compare_returns { 618 SPI_COMPARE_SUCCESS, 619 SPI_COMPARE_FAILURE, 620 SPI_COMPARE_SKIP_TEST, 621 }; 622 623 624 /* This is for read/write Domain Validation: If the device supports 625 * an echo buffer, we do read/write tests to it */ 626 static enum spi_compare_returns 627 spi_dv_device_echo_buffer(struct scsi_device *sdev, u8 *buffer, 628 u8 *ptr, const int retries) 629 { 630 int len = ptr - buffer; 631 int j, k, r, result; 632 unsigned int pattern = 0x0000ffff; 633 struct scsi_sense_hdr sshdr; 634 635 const char spi_write_buffer[] = { 636 WRITE_BUFFER, 0x0a, 0, 0, 0, 0, 0, len >> 8, len & 0xff, 0 637 }; 638 const char spi_read_buffer[] = { 639 READ_BUFFER, 0x0a, 0, 0, 0, 0, 0, len >> 8, len & 0xff, 0 640 }; 641 642 /* set up the pattern buffer. Doesn't matter if we spill 643 * slightly beyond since that's where the read buffer is */ 644 for (j = 0; j < len; ) { 645 646 /* fill the buffer with counting (test a) */ 647 for ( ; j < min(len, 32); j++) 648 buffer[j] = j; 649 k = j; 650 /* fill the buffer with alternating words of 0x0 and 651 * 0xffff (test b) */ 652 for ( ; j < min(len, k + 32); j += 2) { 653 u16 *word = (u16 *)&buffer[j]; 654 655 *word = (j & 0x02) ? 0x0000 : 0xffff; 656 } 657 k = j; 658 /* fill with crosstalk (alternating 0x5555 0xaaa) 659 * (test c) */ 660 for ( ; j < min(len, k + 32); j += 2) { 661 u16 *word = (u16 *)&buffer[j]; 662 663 *word = (j & 0x02) ? 0x5555 : 0xaaaa; 664 } 665 k = j; 666 /* fill with shifting bits (test d) */ 667 for ( ; j < min(len, k + 32); j += 4) { 668 u32 *word = (unsigned int *)&buffer[j]; 669 u32 roll = (pattern & 0x80000000) ? 1 : 0; 670 671 *word = pattern; 672 pattern = (pattern << 1) | roll; 673 } 674 /* don't bother with random data (test e) */ 675 } 676 677 for (r = 0; r < retries; r++) { 678 result = spi_execute(sdev, spi_write_buffer, REQ_OP_DRV_OUT, 679 buffer, len, &sshdr); 680 if (result || !scsi_device_online(sdev)) { 681 682 scsi_device_set_state(sdev, SDEV_QUIESCE); 683 if (result > 0 && scsi_sense_valid(&sshdr) 684 && sshdr.sense_key == ILLEGAL_REQUEST 685 /* INVALID FIELD IN CDB */ 686 && sshdr.asc == 0x24 && sshdr.ascq == 0x00) 687 /* This would mean that the drive lied 688 * to us about supporting an echo 689 * buffer (unfortunately some Western 690 * Digital drives do precisely this) 691 */ 692 return SPI_COMPARE_SKIP_TEST; 693 694 695 sdev_printk(KERN_ERR, sdev, "Write Buffer failure %x\n", result); 696 return SPI_COMPARE_FAILURE; 697 } 698 699 memset(ptr, 0, len); 700 spi_execute(sdev, spi_read_buffer, REQ_OP_DRV_IN, 701 ptr, len, NULL); 702 scsi_device_set_state(sdev, SDEV_QUIESCE); 703 704 if (memcmp(buffer, ptr, len) != 0) 705 return SPI_COMPARE_FAILURE; 706 } 707 return SPI_COMPARE_SUCCESS; 708 } 709 710 /* This is for the simplest form of Domain Validation: a read test 711 * on the inquiry data from the device */ 712 static enum spi_compare_returns 713 spi_dv_device_compare_inquiry(struct scsi_device *sdev, u8 *buffer, 714 u8 *ptr, const int retries) 715 { 716 int r, result; 717 const int len = sdev->inquiry_len; 718 const char spi_inquiry[] = { 719 INQUIRY, 0, 0, 0, len, 0 720 }; 721 722 for (r = 0; r < retries; r++) { 723 memset(ptr, 0, len); 724 725 result = spi_execute(sdev, spi_inquiry, REQ_OP_DRV_IN, 726 ptr, len, NULL); 727 728 if(result || !scsi_device_online(sdev)) { 729 scsi_device_set_state(sdev, SDEV_QUIESCE); 730 return SPI_COMPARE_FAILURE; 731 } 732 733 /* If we don't have the inquiry data already, the 734 * first read gets it */ 735 if (ptr == buffer) { 736 ptr += len; 737 --r; 738 continue; 739 } 740 741 if (memcmp(buffer, ptr, len) != 0) 742 /* failure */ 743 return SPI_COMPARE_FAILURE; 744 } 745 return SPI_COMPARE_SUCCESS; 746 } 747 748 static enum spi_compare_returns 749 spi_dv_retrain(struct scsi_device *sdev, u8 *buffer, u8 *ptr, 750 enum spi_compare_returns 751 (*compare_fn)(struct scsi_device *, u8 *, u8 *, int)) 752 { 753 struct spi_internal *i = to_spi_internal(sdev->host->transportt); 754 struct scsi_target *starget = sdev->sdev_target; 755 int period = 0, prevperiod = 0; 756 enum spi_compare_returns retval; 757 758 759 for (;;) { 760 int newperiod; 761 retval = compare_fn(sdev, buffer, ptr, DV_LOOPS); 762 763 if (retval == SPI_COMPARE_SUCCESS 764 || retval == SPI_COMPARE_SKIP_TEST) 765 break; 766 767 /* OK, retrain, fallback */ 768 if (i->f->get_iu) 769 i->f->get_iu(starget); 770 if (i->f->get_qas) 771 i->f->get_qas(starget); 772 if (i->f->get_period) 773 i->f->get_period(sdev->sdev_target); 774 775 /* Here's the fallback sequence; first try turning off 776 * IU, then QAS (if we can control them), then finally 777 * fall down the periods */ 778 if (i->f->set_iu && spi_iu(starget)) { 779 starget_printk(KERN_ERR, starget, "Domain Validation Disabling Information Units\n"); 780 DV_SET(iu, 0); 781 } else if (i->f->set_qas && spi_qas(starget)) { 782 starget_printk(KERN_ERR, starget, "Domain Validation Disabling Quick Arbitration and Selection\n"); 783 DV_SET(qas, 0); 784 } else { 785 newperiod = spi_period(starget); 786 period = newperiod > period ? newperiod : period; 787 if (period < 0x0d) 788 period++; 789 else 790 period += period >> 1; 791 792 if (unlikely(period > 0xff || period == prevperiod)) { 793 /* Total failure; set to async and return */ 794 starget_printk(KERN_ERR, starget, "Domain Validation Failure, dropping back to Asynchronous\n"); 795 DV_SET(offset, 0); 796 return SPI_COMPARE_FAILURE; 797 } 798 starget_printk(KERN_ERR, starget, "Domain Validation detected failure, dropping back\n"); 799 DV_SET(period, period); 800 prevperiod = period; 801 } 802 } 803 return retval; 804 } 805 806 static int 807 spi_dv_device_get_echo_buffer(struct scsi_device *sdev, u8 *buffer) 808 { 809 int l, result; 810 811 /* first off do a test unit ready. This can error out 812 * because of reservations or some other reason. If it 813 * fails, the device won't let us write to the echo buffer 814 * so just return failure */ 815 816 static const char spi_test_unit_ready[] = { 817 TEST_UNIT_READY, 0, 0, 0, 0, 0 818 }; 819 820 static const char spi_read_buffer_descriptor[] = { 821 READ_BUFFER, 0x0b, 0, 0, 0, 0, 0, 0, 4, 0 822 }; 823 824 825 /* We send a set of three TURs to clear any outstanding 826 * unit attention conditions if they exist (Otherwise the 827 * buffer tests won't be happy). If the TUR still fails 828 * (reservation conflict, device not ready, etc) just 829 * skip the write tests */ 830 for (l = 0; ; l++) { 831 result = spi_execute(sdev, spi_test_unit_ready, REQ_OP_DRV_IN, 832 NULL, 0, NULL); 833 834 if(result) { 835 if(l >= 3) 836 return 0; 837 } else { 838 /* TUR succeeded */ 839 break; 840 } 841 } 842 843 result = spi_execute(sdev, spi_read_buffer_descriptor, 844 REQ_OP_DRV_IN, buffer, 4, NULL); 845 846 if (result) 847 /* Device has no echo buffer */ 848 return 0; 849 850 return buffer[3] + ((buffer[2] & 0x1f) << 8); 851 } 852 853 static void 854 spi_dv_device_internal(struct scsi_device *sdev, u8 *buffer) 855 { 856 struct spi_internal *i = to_spi_internal(sdev->host->transportt); 857 struct scsi_target *starget = sdev->sdev_target; 858 struct Scsi_Host *shost = sdev->host; 859 int len = sdev->inquiry_len; 860 int min_period = spi_min_period(starget); 861 int max_width = spi_max_width(starget); 862 /* first set us up for narrow async */ 863 DV_SET(offset, 0); 864 DV_SET(width, 0); 865 866 if (spi_dv_device_compare_inquiry(sdev, buffer, buffer, DV_LOOPS) 867 != SPI_COMPARE_SUCCESS) { 868 starget_printk(KERN_ERR, starget, "Domain Validation Initial Inquiry Failed\n"); 869 /* FIXME: should probably offline the device here? */ 870 return; 871 } 872 873 if (!spi_support_wide(starget)) { 874 spi_max_width(starget) = 0; 875 max_width = 0; 876 } 877 878 /* test width */ 879 if (i->f->set_width && max_width) { 880 i->f->set_width(starget, 1); 881 882 if (spi_dv_device_compare_inquiry(sdev, buffer, 883 buffer + len, 884 DV_LOOPS) 885 != SPI_COMPARE_SUCCESS) { 886 starget_printk(KERN_ERR, starget, "Wide Transfers Fail\n"); 887 i->f->set_width(starget, 0); 888 /* Make sure we don't force wide back on by asking 889 * for a transfer period that requires it */ 890 max_width = 0; 891 if (min_period < 10) 892 min_period = 10; 893 } 894 } 895 896 if (!i->f->set_period) 897 return; 898 899 /* device can't handle synchronous */ 900 if (!spi_support_sync(starget) && !spi_support_dt(starget)) 901 return; 902 903 /* len == -1 is the signal that we need to ascertain the 904 * presence of an echo buffer before trying to use it. len == 905 * 0 means we don't have an echo buffer */ 906 len = -1; 907 908 retry: 909 910 /* now set up to the maximum */ 911 DV_SET(offset, spi_max_offset(starget)); 912 DV_SET(period, min_period); 913 914 /* try QAS requests; this should be harmless to set if the 915 * target supports it */ 916 if (spi_support_qas(starget) && spi_max_qas(starget)) { 917 DV_SET(qas, 1); 918 } else { 919 DV_SET(qas, 0); 920 } 921 922 if (spi_support_ius(starget) && spi_max_iu(starget) && 923 min_period < 9) { 924 /* This u320 (or u640). Set IU transfers */ 925 DV_SET(iu, 1); 926 /* Then set the optional parameters */ 927 DV_SET(rd_strm, 1); 928 DV_SET(wr_flow, 1); 929 DV_SET(rti, 1); 930 if (min_period == 8) 931 DV_SET(pcomp_en, 1); 932 } else { 933 DV_SET(iu, 0); 934 } 935 936 /* now that we've done all this, actually check the bus 937 * signal type (if known). Some devices are stupid on 938 * a SE bus and still claim they can try LVD only settings */ 939 if (i->f->get_signalling) 940 i->f->get_signalling(shost); 941 if (spi_signalling(shost) == SPI_SIGNAL_SE || 942 spi_signalling(shost) == SPI_SIGNAL_HVD || 943 !spi_support_dt(starget)) { 944 DV_SET(dt, 0); 945 } else { 946 DV_SET(dt, 1); 947 } 948 /* set width last because it will pull all the other 949 * parameters down to required values */ 950 DV_SET(width, max_width); 951 952 /* Do the read only INQUIRY tests */ 953 spi_dv_retrain(sdev, buffer, buffer + sdev->inquiry_len, 954 spi_dv_device_compare_inquiry); 955 /* See if we actually managed to negotiate and sustain DT */ 956 if (i->f->get_dt) 957 i->f->get_dt(starget); 958 959 /* see if the device has an echo buffer. If it does we can do 960 * the SPI pattern write tests. Because of some broken 961 * devices, we *only* try this on a device that has actually 962 * negotiated DT */ 963 964 if (len == -1 && spi_dt(starget)) 965 len = spi_dv_device_get_echo_buffer(sdev, buffer); 966 967 if (len <= 0) { 968 starget_printk(KERN_INFO, starget, "Domain Validation skipping write tests\n"); 969 return; 970 } 971 972 if (len > SPI_MAX_ECHO_BUFFER_SIZE) { 973 starget_printk(KERN_WARNING, starget, "Echo buffer size %d is too big, trimming to %d\n", len, SPI_MAX_ECHO_BUFFER_SIZE); 974 len = SPI_MAX_ECHO_BUFFER_SIZE; 975 } 976 977 if (spi_dv_retrain(sdev, buffer, buffer + len, 978 spi_dv_device_echo_buffer) 979 == SPI_COMPARE_SKIP_TEST) { 980 /* OK, the stupid drive can't do a write echo buffer 981 * test after all, fall back to the read tests */ 982 len = 0; 983 goto retry; 984 } 985 } 986 987 988 /** 989 * spi_dv_device - Do Domain Validation on the device 990 * @sdev: scsi device to validate 991 * 992 * Performs the domain validation on the given device in the 993 * current execution thread. Since DV operations may sleep, 994 * the current thread must have user context. Also no SCSI 995 * related locks that would deadlock I/O issued by the DV may 996 * be held. 997 */ 998 void 999 spi_dv_device(struct scsi_device *sdev) 1000 { 1001 struct scsi_target *starget = sdev->sdev_target; 1002 const int len = SPI_MAX_ECHO_BUFFER_SIZE*2; 1003 unsigned int sleep_flags; 1004 u8 *buffer; 1005 1006 /* 1007 * Because this function and the power management code both call 1008 * scsi_device_quiesce(), it is not safe to perform domain validation 1009 * while suspend or resume is in progress. Hence the 1010 * lock/unlock_system_sleep() calls. 1011 */ 1012 sleep_flags = lock_system_sleep(); 1013 1014 if (scsi_autopm_get_device(sdev)) 1015 goto unlock_system_sleep; 1016 1017 if (unlikely(spi_dv_in_progress(starget))) 1018 goto put_autopm; 1019 1020 if (unlikely(scsi_device_get(sdev))) 1021 goto put_autopm; 1022 1023 spi_dv_in_progress(starget) = 1; 1024 1025 buffer = kzalloc(len, GFP_KERNEL); 1026 1027 if (unlikely(!buffer)) 1028 goto put_sdev; 1029 1030 /* We need to verify that the actual device will quiesce; the 1031 * later target quiesce is just a nice to have */ 1032 if (unlikely(scsi_device_quiesce(sdev))) 1033 goto free_buffer; 1034 1035 scsi_target_quiesce(starget); 1036 1037 spi_dv_pending(starget) = 1; 1038 mutex_lock(&spi_dv_mutex(starget)); 1039 1040 starget_printk(KERN_INFO, starget, "Beginning Domain Validation\n"); 1041 1042 spi_dv_device_internal(sdev, buffer); 1043 1044 starget_printk(KERN_INFO, starget, "Ending Domain Validation\n"); 1045 1046 mutex_unlock(&spi_dv_mutex(starget)); 1047 spi_dv_pending(starget) = 0; 1048 1049 scsi_target_resume(starget); 1050 1051 spi_initial_dv(starget) = 1; 1052 1053 free_buffer: 1054 kfree(buffer); 1055 1056 put_sdev: 1057 spi_dv_in_progress(starget) = 0; 1058 scsi_device_put(sdev); 1059 put_autopm: 1060 scsi_autopm_put_device(sdev); 1061 1062 unlock_system_sleep: 1063 unlock_system_sleep(sleep_flags); 1064 } 1065 EXPORT_SYMBOL(spi_dv_device); 1066 1067 struct work_queue_wrapper { 1068 struct work_struct work; 1069 struct scsi_device *sdev; 1070 }; 1071 1072 static void 1073 spi_dv_device_work_wrapper(struct work_struct *work) 1074 { 1075 struct work_queue_wrapper *wqw = 1076 container_of(work, struct work_queue_wrapper, work); 1077 struct scsi_device *sdev = wqw->sdev; 1078 1079 kfree(wqw); 1080 spi_dv_device(sdev); 1081 spi_dv_pending(sdev->sdev_target) = 0; 1082 scsi_device_put(sdev); 1083 } 1084 1085 1086 /** 1087 * spi_schedule_dv_device - schedule domain validation to occur on the device 1088 * @sdev: The device to validate 1089 * 1090 * Identical to spi_dv_device() above, except that the DV will be 1091 * scheduled to occur in a workqueue later. All memory allocations 1092 * are atomic, so may be called from any context including those holding 1093 * SCSI locks. 1094 */ 1095 void 1096 spi_schedule_dv_device(struct scsi_device *sdev) 1097 { 1098 struct work_queue_wrapper *wqw = 1099 kmalloc(sizeof(struct work_queue_wrapper), GFP_ATOMIC); 1100 1101 if (unlikely(!wqw)) 1102 return; 1103 1104 if (unlikely(spi_dv_pending(sdev->sdev_target))) { 1105 kfree(wqw); 1106 return; 1107 } 1108 /* Set pending early (dv_device doesn't check it, only sets it) */ 1109 spi_dv_pending(sdev->sdev_target) = 1; 1110 if (unlikely(scsi_device_get(sdev))) { 1111 kfree(wqw); 1112 spi_dv_pending(sdev->sdev_target) = 0; 1113 return; 1114 } 1115 1116 INIT_WORK(&wqw->work, spi_dv_device_work_wrapper); 1117 wqw->sdev = sdev; 1118 1119 schedule_work(&wqw->work); 1120 } 1121 EXPORT_SYMBOL(spi_schedule_dv_device); 1122 1123 /** 1124 * spi_display_xfer_agreement - Print the current target transfer agreement 1125 * @starget: The target for which to display the agreement 1126 * 1127 * Each SPI port is required to maintain a transfer agreement for each 1128 * other port on the bus. This function prints a one-line summary of 1129 * the current agreement; more detailed information is available in sysfs. 1130 */ 1131 void spi_display_xfer_agreement(struct scsi_target *starget) 1132 { 1133 struct spi_transport_attrs *tp; 1134 tp = (struct spi_transport_attrs *)&starget->starget_data; 1135 1136 if (tp->offset > 0 && tp->period > 0) { 1137 unsigned int picosec, kb100; 1138 char *scsi = "FAST-?"; 1139 char tmp[8]; 1140 1141 if (tp->period <= SPI_STATIC_PPR) { 1142 picosec = ppr_to_ps[tp->period]; 1143 switch (tp->period) { 1144 case 7: scsi = "FAST-320"; break; 1145 case 8: scsi = "FAST-160"; break; 1146 case 9: scsi = "FAST-80"; break; 1147 case 10: 1148 case 11: scsi = "FAST-40"; break; 1149 case 12: scsi = "FAST-20"; break; 1150 } 1151 } else { 1152 picosec = tp->period * 4000; 1153 if (tp->period < 25) 1154 scsi = "FAST-20"; 1155 else if (tp->period < 50) 1156 scsi = "FAST-10"; 1157 else 1158 scsi = "FAST-5"; 1159 } 1160 1161 kb100 = (10000000 + picosec / 2) / picosec; 1162 if (tp->width) 1163 kb100 *= 2; 1164 sprint_frac(tmp, picosec, 1000); 1165 1166 dev_info(&starget->dev, 1167 "%s %sSCSI %d.%d MB/s %s%s%s%s%s%s%s%s (%s ns, offset %d)\n", 1168 scsi, tp->width ? "WIDE " : "", kb100/10, kb100 % 10, 1169 tp->dt ? "DT" : "ST", 1170 tp->iu ? " IU" : "", 1171 tp->qas ? " QAS" : "", 1172 tp->rd_strm ? " RDSTRM" : "", 1173 tp->rti ? " RTI" : "", 1174 tp->wr_flow ? " WRFLOW" : "", 1175 tp->pcomp_en ? " PCOMP" : "", 1176 tp->hold_mcs ? " HMCS" : "", 1177 tmp, tp->offset); 1178 } else { 1179 dev_info(&starget->dev, "%sasynchronous\n", 1180 tp->width ? "wide " : ""); 1181 } 1182 } 1183 EXPORT_SYMBOL(spi_display_xfer_agreement); 1184 1185 int spi_populate_width_msg(unsigned char *msg, int width) 1186 { 1187 msg[0] = EXTENDED_MESSAGE; 1188 msg[1] = 2; 1189 msg[2] = EXTENDED_WDTR; 1190 msg[3] = width; 1191 return 4; 1192 } 1193 EXPORT_SYMBOL_GPL(spi_populate_width_msg); 1194 1195 int spi_populate_sync_msg(unsigned char *msg, int period, int offset) 1196 { 1197 msg[0] = EXTENDED_MESSAGE; 1198 msg[1] = 3; 1199 msg[2] = EXTENDED_SDTR; 1200 msg[3] = period; 1201 msg[4] = offset; 1202 return 5; 1203 } 1204 EXPORT_SYMBOL_GPL(spi_populate_sync_msg); 1205 1206 int spi_populate_ppr_msg(unsigned char *msg, int period, int offset, 1207 int width, int options) 1208 { 1209 msg[0] = EXTENDED_MESSAGE; 1210 msg[1] = 6; 1211 msg[2] = EXTENDED_PPR; 1212 msg[3] = period; 1213 msg[4] = 0; 1214 msg[5] = offset; 1215 msg[6] = width; 1216 msg[7] = options; 1217 return 8; 1218 } 1219 EXPORT_SYMBOL_GPL(spi_populate_ppr_msg); 1220 1221 /** 1222 * spi_populate_tag_msg - place a tag message in a buffer 1223 * @msg: pointer to the area to place the tag 1224 * @cmd: pointer to the scsi command for the tag 1225 * 1226 * Notes: 1227 * designed to create the correct type of tag message for the 1228 * particular request. Returns the size of the tag message. 1229 * May return 0 if TCQ is disabled for this device. 1230 **/ 1231 int spi_populate_tag_msg(unsigned char *msg, struct scsi_cmnd *cmd) 1232 { 1233 if (cmd->flags & SCMD_TAGGED) { 1234 *msg++ = SIMPLE_QUEUE_TAG; 1235 *msg++ = scsi_cmd_to_rq(cmd)->tag; 1236 return 2; 1237 } 1238 1239 return 0; 1240 } 1241 EXPORT_SYMBOL_GPL(spi_populate_tag_msg); 1242 1243 #ifdef CONFIG_SCSI_CONSTANTS 1244 static const char * const one_byte_msgs[] = { 1245 /* 0x00 */ "Task Complete", NULL /* Extended Message */, "Save Pointers", 1246 /* 0x03 */ "Restore Pointers", "Disconnect", "Initiator Error", 1247 /* 0x06 */ "Abort Task Set", "Message Reject", "Nop", "Message Parity Error", 1248 /* 0x0a */ "Linked Command Complete", "Linked Command Complete w/flag", 1249 /* 0x0c */ "Target Reset", "Abort Task", "Clear Task Set", 1250 /* 0x0f */ "Initiate Recovery", "Release Recovery", 1251 /* 0x11 */ "Terminate Process", "Continue Task", "Target Transfer Disable", 1252 /* 0x14 */ NULL, NULL, "Clear ACA", "LUN Reset" 1253 }; 1254 1255 static const char * const two_byte_msgs[] = { 1256 /* 0x20 */ "Simple Queue Tag", "Head of Queue Tag", "Ordered Queue Tag", 1257 /* 0x23 */ "Ignore Wide Residue", "ACA" 1258 }; 1259 1260 static const char * const extended_msgs[] = { 1261 /* 0x00 */ "Modify Data Pointer", "Synchronous Data Transfer Request", 1262 /* 0x02 */ "SCSI-I Extended Identify", "Wide Data Transfer Request", 1263 /* 0x04 */ "Parallel Protocol Request", "Modify Bidirectional Data Pointer" 1264 }; 1265 1266 static void print_nego(const unsigned char *msg, int per, int off, int width) 1267 { 1268 if (per) { 1269 char buf[20]; 1270 period_to_str(buf, msg[per]); 1271 printk("period = %s ns ", buf); 1272 } 1273 1274 if (off) 1275 printk("offset = %d ", msg[off]); 1276 if (width) 1277 printk("width = %d ", 8 << msg[width]); 1278 } 1279 1280 static void print_ptr(const unsigned char *msg, int msb, const char *desc) 1281 { 1282 int ptr = (msg[msb] << 24) | (msg[msb+1] << 16) | (msg[msb+2] << 8) | 1283 msg[msb+3]; 1284 printk("%s = %d ", desc, ptr); 1285 } 1286 1287 int spi_print_msg(const unsigned char *msg) 1288 { 1289 int len = 1, i; 1290 if (msg[0] == EXTENDED_MESSAGE) { 1291 len = 2 + msg[1]; 1292 if (len == 2) 1293 len += 256; 1294 if (msg[2] < ARRAY_SIZE(extended_msgs)) 1295 printk ("%s ", extended_msgs[msg[2]]); 1296 else 1297 printk ("Extended Message, reserved code (0x%02x) ", 1298 (int) msg[2]); 1299 switch (msg[2]) { 1300 case EXTENDED_MODIFY_DATA_POINTER: 1301 print_ptr(msg, 3, "pointer"); 1302 break; 1303 case EXTENDED_SDTR: 1304 print_nego(msg, 3, 4, 0); 1305 break; 1306 case EXTENDED_WDTR: 1307 print_nego(msg, 0, 0, 3); 1308 break; 1309 case EXTENDED_PPR: 1310 print_nego(msg, 3, 5, 6); 1311 break; 1312 case EXTENDED_MODIFY_BIDI_DATA_PTR: 1313 print_ptr(msg, 3, "out"); 1314 print_ptr(msg, 7, "in"); 1315 break; 1316 default: 1317 for (i = 2; i < len; ++i) 1318 printk("%02x ", msg[i]); 1319 } 1320 /* Identify */ 1321 } else if (msg[0] & 0x80) { 1322 printk("Identify disconnect %sallowed %s %d ", 1323 (msg[0] & 0x40) ? "" : "not ", 1324 (msg[0] & 0x20) ? "target routine" : "lun", 1325 msg[0] & 0x7); 1326 /* Normal One byte */ 1327 } else if (msg[0] < 0x1f) { 1328 if (msg[0] < ARRAY_SIZE(one_byte_msgs) && one_byte_msgs[msg[0]]) 1329 printk("%s ", one_byte_msgs[msg[0]]); 1330 else 1331 printk("reserved (%02x) ", msg[0]); 1332 } else if (msg[0] == 0x55) { 1333 printk("QAS Request "); 1334 /* Two byte */ 1335 } else if (msg[0] <= 0x2f) { 1336 if ((msg[0] - 0x20) < ARRAY_SIZE(two_byte_msgs)) 1337 printk("%s %02x ", two_byte_msgs[msg[0] - 0x20], 1338 msg[1]); 1339 else 1340 printk("reserved two byte (%02x %02x) ", 1341 msg[0], msg[1]); 1342 len = 2; 1343 } else 1344 printk("reserved "); 1345 return len; 1346 } 1347 EXPORT_SYMBOL(spi_print_msg); 1348 1349 #else /* ifndef CONFIG_SCSI_CONSTANTS */ 1350 1351 int spi_print_msg(const unsigned char *msg) 1352 { 1353 int len = 1, i; 1354 1355 if (msg[0] == EXTENDED_MESSAGE) { 1356 len = 2 + msg[1]; 1357 if (len == 2) 1358 len += 256; 1359 for (i = 0; i < len; ++i) 1360 printk("%02x ", msg[i]); 1361 /* Identify */ 1362 } else if (msg[0] & 0x80) { 1363 printk("%02x ", msg[0]); 1364 /* Normal One byte */ 1365 } else if ((msg[0] < 0x1f) || (msg[0] == 0x55)) { 1366 printk("%02x ", msg[0]); 1367 /* Two byte */ 1368 } else if (msg[0] <= 0x2f) { 1369 printk("%02x %02x", msg[0], msg[1]); 1370 len = 2; 1371 } else 1372 printk("%02x ", msg[0]); 1373 return len; 1374 } 1375 EXPORT_SYMBOL(spi_print_msg); 1376 #endif /* ! CONFIG_SCSI_CONSTANTS */ 1377 1378 static int spi_device_match(struct attribute_container *cont, 1379 struct device *dev) 1380 { 1381 struct scsi_device *sdev; 1382 struct Scsi_Host *shost; 1383 struct spi_internal *i; 1384 1385 if (!scsi_is_sdev_device(dev)) 1386 return 0; 1387 1388 sdev = to_scsi_device(dev); 1389 shost = sdev->host; 1390 if (!shost->transportt || shost->transportt->host_attrs.ac.class 1391 != &spi_host_class.class) 1392 return 0; 1393 /* Note: this class has no device attributes, so it has 1394 * no per-HBA allocation and thus we don't need to distinguish 1395 * the attribute containers for the device */ 1396 i = to_spi_internal(shost->transportt); 1397 if (i->f->deny_binding && i->f->deny_binding(sdev->sdev_target)) 1398 return 0; 1399 return 1; 1400 } 1401 1402 static int spi_target_match(struct attribute_container *cont, 1403 struct device *dev) 1404 { 1405 struct Scsi_Host *shost; 1406 struct scsi_target *starget; 1407 struct spi_internal *i; 1408 1409 if (!scsi_is_target_device(dev)) 1410 return 0; 1411 1412 shost = dev_to_shost(dev->parent); 1413 if (!shost->transportt || shost->transportt->host_attrs.ac.class 1414 != &spi_host_class.class) 1415 return 0; 1416 1417 i = to_spi_internal(shost->transportt); 1418 starget = to_scsi_target(dev); 1419 1420 if (i->f->deny_binding && i->f->deny_binding(starget)) 1421 return 0; 1422 1423 return &i->t.target_attrs.ac == cont; 1424 } 1425 1426 static DECLARE_TRANSPORT_CLASS(spi_transport_class, 1427 "spi_transport", 1428 spi_setup_transport_attrs, 1429 NULL, 1430 spi_target_configure); 1431 1432 static DECLARE_ANON_TRANSPORT_CLASS(spi_device_class, 1433 spi_device_match, 1434 spi_device_configure); 1435 1436 static struct attribute *host_attributes[] = { 1437 &dev_attr_signalling.attr, 1438 &dev_attr_host_width.attr, 1439 &dev_attr_hba_id.attr, 1440 NULL 1441 }; 1442 1443 static struct attribute_group host_attribute_group = { 1444 .attrs = host_attributes, 1445 }; 1446 1447 static int spi_host_configure(struct transport_container *tc, 1448 struct device *dev, 1449 struct device *cdev) 1450 { 1451 struct kobject *kobj = &cdev->kobj; 1452 struct Scsi_Host *shost = transport_class_to_shost(cdev); 1453 struct spi_internal *si = to_spi_internal(shost->transportt); 1454 struct attribute *attr = &dev_attr_signalling.attr; 1455 int rc = 0; 1456 1457 if (si->f->set_signalling) 1458 rc = sysfs_chmod_file(kobj, attr, attr->mode | S_IWUSR); 1459 1460 return rc; 1461 } 1462 1463 /* returns true if we should be showing the variable. Also 1464 * overloads the return by setting 1<<1 if the attribute should 1465 * be writeable */ 1466 #define TARGET_ATTRIBUTE_HELPER(name) \ 1467 (si->f->show_##name ? S_IRUGO : 0) | \ 1468 (si->f->set_##name ? S_IWUSR : 0) 1469 1470 static umode_t target_attribute_is_visible(struct kobject *kobj, 1471 struct attribute *attr, int i) 1472 { 1473 struct device *cdev = container_of(kobj, struct device, kobj); 1474 struct scsi_target *starget = transport_class_to_starget(cdev); 1475 struct Scsi_Host *shost = transport_class_to_shost(cdev); 1476 struct spi_internal *si = to_spi_internal(shost->transportt); 1477 1478 if (attr == &dev_attr_period.attr && 1479 spi_support_sync(starget)) 1480 return TARGET_ATTRIBUTE_HELPER(period); 1481 else if (attr == &dev_attr_min_period.attr && 1482 spi_support_sync(starget)) 1483 return TARGET_ATTRIBUTE_HELPER(period); 1484 else if (attr == &dev_attr_offset.attr && 1485 spi_support_sync(starget)) 1486 return TARGET_ATTRIBUTE_HELPER(offset); 1487 else if (attr == &dev_attr_max_offset.attr && 1488 spi_support_sync(starget)) 1489 return TARGET_ATTRIBUTE_HELPER(offset); 1490 else if (attr == &dev_attr_width.attr && 1491 spi_support_wide(starget)) 1492 return TARGET_ATTRIBUTE_HELPER(width); 1493 else if (attr == &dev_attr_max_width.attr && 1494 spi_support_wide(starget)) 1495 return TARGET_ATTRIBUTE_HELPER(width); 1496 else if (attr == &dev_attr_iu.attr && 1497 spi_support_ius(starget)) 1498 return TARGET_ATTRIBUTE_HELPER(iu); 1499 else if (attr == &dev_attr_max_iu.attr && 1500 spi_support_ius(starget)) 1501 return TARGET_ATTRIBUTE_HELPER(iu); 1502 else if (attr == &dev_attr_dt.attr && 1503 spi_support_dt(starget)) 1504 return TARGET_ATTRIBUTE_HELPER(dt); 1505 else if (attr == &dev_attr_qas.attr && 1506 spi_support_qas(starget)) 1507 return TARGET_ATTRIBUTE_HELPER(qas); 1508 else if (attr == &dev_attr_max_qas.attr && 1509 spi_support_qas(starget)) 1510 return TARGET_ATTRIBUTE_HELPER(qas); 1511 else if (attr == &dev_attr_wr_flow.attr && 1512 spi_support_ius(starget)) 1513 return TARGET_ATTRIBUTE_HELPER(wr_flow); 1514 else if (attr == &dev_attr_rd_strm.attr && 1515 spi_support_ius(starget)) 1516 return TARGET_ATTRIBUTE_HELPER(rd_strm); 1517 else if (attr == &dev_attr_rti.attr && 1518 spi_support_ius(starget)) 1519 return TARGET_ATTRIBUTE_HELPER(rti); 1520 else if (attr == &dev_attr_pcomp_en.attr && 1521 spi_support_ius(starget)) 1522 return TARGET_ATTRIBUTE_HELPER(pcomp_en); 1523 else if (attr == &dev_attr_hold_mcs.attr && 1524 spi_support_ius(starget)) 1525 return TARGET_ATTRIBUTE_HELPER(hold_mcs); 1526 else if (attr == &dev_attr_revalidate.attr) 1527 return S_IWUSR; 1528 1529 return 0; 1530 } 1531 1532 static struct attribute *target_attributes[] = { 1533 &dev_attr_period.attr, 1534 &dev_attr_min_period.attr, 1535 &dev_attr_offset.attr, 1536 &dev_attr_max_offset.attr, 1537 &dev_attr_width.attr, 1538 &dev_attr_max_width.attr, 1539 &dev_attr_iu.attr, 1540 &dev_attr_max_iu.attr, 1541 &dev_attr_dt.attr, 1542 &dev_attr_qas.attr, 1543 &dev_attr_max_qas.attr, 1544 &dev_attr_wr_flow.attr, 1545 &dev_attr_rd_strm.attr, 1546 &dev_attr_rti.attr, 1547 &dev_attr_pcomp_en.attr, 1548 &dev_attr_hold_mcs.attr, 1549 &dev_attr_revalidate.attr, 1550 NULL 1551 }; 1552 1553 static struct attribute_group target_attribute_group = { 1554 .attrs = target_attributes, 1555 .is_visible = target_attribute_is_visible, 1556 }; 1557 1558 static int spi_target_configure(struct transport_container *tc, 1559 struct device *dev, 1560 struct device *cdev) 1561 { 1562 struct kobject *kobj = &cdev->kobj; 1563 1564 /* force an update based on parameters read from the device */ 1565 sysfs_update_group(kobj, &target_attribute_group); 1566 1567 return 0; 1568 } 1569 1570 struct scsi_transport_template * 1571 spi_attach_transport(struct spi_function_template *ft) 1572 { 1573 struct spi_internal *i = kzalloc(sizeof(struct spi_internal), 1574 GFP_KERNEL); 1575 1576 if (unlikely(!i)) 1577 return NULL; 1578 1579 i->t.target_attrs.ac.class = &spi_transport_class.class; 1580 i->t.target_attrs.ac.grp = &target_attribute_group; 1581 i->t.target_attrs.ac.match = spi_target_match; 1582 transport_container_register(&i->t.target_attrs); 1583 i->t.target_size = sizeof(struct spi_transport_attrs); 1584 i->t.host_attrs.ac.class = &spi_host_class.class; 1585 i->t.host_attrs.ac.grp = &host_attribute_group; 1586 i->t.host_attrs.ac.match = spi_host_match; 1587 transport_container_register(&i->t.host_attrs); 1588 i->t.host_size = sizeof(struct spi_host_attrs); 1589 i->f = ft; 1590 1591 return &i->t; 1592 } 1593 EXPORT_SYMBOL(spi_attach_transport); 1594 1595 void spi_release_transport(struct scsi_transport_template *t) 1596 { 1597 struct spi_internal *i = to_spi_internal(t); 1598 1599 transport_container_unregister(&i->t.target_attrs); 1600 transport_container_unregister(&i->t.host_attrs); 1601 1602 kfree(i); 1603 } 1604 EXPORT_SYMBOL(spi_release_transport); 1605 1606 static __init int spi_transport_init(void) 1607 { 1608 int error = scsi_dev_info_add_list(SCSI_DEVINFO_SPI, 1609 "SCSI Parallel Transport Class"); 1610 if (!error) { 1611 int i; 1612 1613 for (i = 0; spi_static_device_list[i].vendor; i++) 1614 scsi_dev_info_list_add_keyed(1, /* compatible */ 1615 spi_static_device_list[i].vendor, 1616 spi_static_device_list[i].model, 1617 NULL, 1618 spi_static_device_list[i].flags, 1619 SCSI_DEVINFO_SPI); 1620 } 1621 1622 error = transport_class_register(&spi_transport_class); 1623 if (error) 1624 return error; 1625 error = anon_transport_class_register(&spi_device_class); 1626 return transport_class_register(&spi_host_class); 1627 } 1628 1629 static void __exit spi_transport_exit(void) 1630 { 1631 transport_class_unregister(&spi_transport_class); 1632 anon_transport_class_unregister(&spi_device_class); 1633 transport_class_unregister(&spi_host_class); 1634 scsi_dev_info_remove_list(SCSI_DEVINFO_SPI); 1635 } 1636 1637 MODULE_AUTHOR("Martin Hicks"); 1638 MODULE_DESCRIPTION("SPI Transport Attributes"); 1639 MODULE_LICENSE("GPL"); 1640 1641 module_init(spi_transport_init); 1642 module_exit(spi_transport_exit); 1643