1 /* 2 * Parallel SCSI (SPI) transport specific attributes exported to sysfs. 3 * 4 * Copyright (c) 2003 Silicon Graphics, Inc. All rights reserved. 5 * Copyright (c) 2004, 2005 James Bottomley <James.Bottomley@SteelEye.com> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; if not, write to the Free Software 19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 20 */ 21 #include <linux/ctype.h> 22 #include <linux/init.h> 23 #include <linux/module.h> 24 #include <linux/workqueue.h> 25 #include <linux/blkdev.h> 26 #include <linux/mutex.h> 27 #include <scsi/scsi.h> 28 #include "scsi_priv.h" 29 #include <scsi/scsi_device.h> 30 #include <scsi/scsi_host.h> 31 #include <scsi/scsi_cmnd.h> 32 #include <scsi/scsi_eh.h> 33 #include <scsi/scsi_transport.h> 34 #include <scsi/scsi_transport_spi.h> 35 36 #define SPI_NUM_ATTRS 14 /* increase this if you add attributes */ 37 #define SPI_OTHER_ATTRS 1 /* Increase this if you add "always 38 * on" attributes */ 39 #define SPI_HOST_ATTRS 1 40 41 #define SPI_MAX_ECHO_BUFFER_SIZE 4096 42 43 #define DV_LOOPS 3 44 #define DV_TIMEOUT (10*HZ) 45 #define DV_RETRIES 3 /* should only need at most 46 * two cc/ua clears */ 47 48 /* Private data accessors (keep these out of the header file) */ 49 #define spi_dv_in_progress(x) (((struct spi_transport_attrs *)&(x)->starget_data)->dv_in_progress) 50 #define spi_dv_mutex(x) (((struct spi_transport_attrs *)&(x)->starget_data)->dv_mutex) 51 52 struct spi_internal { 53 struct scsi_transport_template t; 54 struct spi_function_template *f; 55 /* The actual attributes */ 56 struct class_device_attribute private_attrs[SPI_NUM_ATTRS]; 57 /* The array of null terminated pointers to attributes 58 * needed by scsi_sysfs.c */ 59 struct class_device_attribute *attrs[SPI_NUM_ATTRS + SPI_OTHER_ATTRS + 1]; 60 struct class_device_attribute private_host_attrs[SPI_HOST_ATTRS]; 61 struct class_device_attribute *host_attrs[SPI_HOST_ATTRS + 1]; 62 }; 63 64 #define to_spi_internal(tmpl) container_of(tmpl, struct spi_internal, t) 65 66 static const int ppr_to_ps[] = { 67 /* The PPR values 0-6 are reserved, fill them in when 68 * the committee defines them */ 69 -1, /* 0x00 */ 70 -1, /* 0x01 */ 71 -1, /* 0x02 */ 72 -1, /* 0x03 */ 73 -1, /* 0x04 */ 74 -1, /* 0x05 */ 75 -1, /* 0x06 */ 76 3125, /* 0x07 */ 77 6250, /* 0x08 */ 78 12500, /* 0x09 */ 79 25000, /* 0x0a */ 80 30300, /* 0x0b */ 81 50000, /* 0x0c */ 82 }; 83 /* The PPR values at which you calculate the period in ns by multiplying 84 * by 4 */ 85 #define SPI_STATIC_PPR 0x0c 86 87 static int sprint_frac(char *dest, int value, int denom) 88 { 89 int frac = value % denom; 90 int result = sprintf(dest, "%d", value / denom); 91 92 if (frac == 0) 93 return result; 94 dest[result++] = '.'; 95 96 do { 97 denom /= 10; 98 sprintf(dest + result, "%d", frac / denom); 99 result++; 100 frac %= denom; 101 } while (frac); 102 103 dest[result++] = '\0'; 104 return result; 105 } 106 107 static int spi_execute(struct scsi_device *sdev, const void *cmd, 108 enum dma_data_direction dir, 109 void *buffer, unsigned bufflen, 110 struct scsi_sense_hdr *sshdr) 111 { 112 int i, result; 113 unsigned char sense[SCSI_SENSE_BUFFERSIZE]; 114 115 for(i = 0; i < DV_RETRIES; i++) { 116 result = scsi_execute(sdev, cmd, dir, buffer, bufflen, 117 sense, DV_TIMEOUT, /* retries */ 1, 118 REQ_FAILFAST); 119 if (result & DRIVER_SENSE) { 120 struct scsi_sense_hdr sshdr_tmp; 121 if (!sshdr) 122 sshdr = &sshdr_tmp; 123 124 if (scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, 125 sshdr) 126 && sshdr->sense_key == UNIT_ATTENTION) 127 continue; 128 } 129 break; 130 } 131 return result; 132 } 133 134 static struct { 135 enum spi_signal_type value; 136 char *name; 137 } signal_types[] = { 138 { SPI_SIGNAL_UNKNOWN, "unknown" }, 139 { SPI_SIGNAL_SE, "SE" }, 140 { SPI_SIGNAL_LVD, "LVD" }, 141 { SPI_SIGNAL_HVD, "HVD" }, 142 }; 143 144 static inline const char *spi_signal_to_string(enum spi_signal_type type) 145 { 146 int i; 147 148 for (i = 0; i < ARRAY_SIZE(signal_types); i++) { 149 if (type == signal_types[i].value) 150 return signal_types[i].name; 151 } 152 return NULL; 153 } 154 static inline enum spi_signal_type spi_signal_to_value(const char *name) 155 { 156 int i, len; 157 158 for (i = 0; i < ARRAY_SIZE(signal_types); i++) { 159 len = strlen(signal_types[i].name); 160 if (strncmp(name, signal_types[i].name, len) == 0 && 161 (name[len] == '\n' || name[len] == '\0')) 162 return signal_types[i].value; 163 } 164 return SPI_SIGNAL_UNKNOWN; 165 } 166 167 static int spi_host_setup(struct transport_container *tc, struct device *dev, 168 struct class_device *cdev) 169 { 170 struct Scsi_Host *shost = dev_to_shost(dev); 171 172 spi_signalling(shost) = SPI_SIGNAL_UNKNOWN; 173 174 return 0; 175 } 176 177 static DECLARE_TRANSPORT_CLASS(spi_host_class, 178 "spi_host", 179 spi_host_setup, 180 NULL, 181 NULL); 182 183 static int spi_host_match(struct attribute_container *cont, 184 struct device *dev) 185 { 186 struct Scsi_Host *shost; 187 struct spi_internal *i; 188 189 if (!scsi_is_host_device(dev)) 190 return 0; 191 192 shost = dev_to_shost(dev); 193 if (!shost->transportt || shost->transportt->host_attrs.ac.class 194 != &spi_host_class.class) 195 return 0; 196 197 i = to_spi_internal(shost->transportt); 198 199 return &i->t.host_attrs.ac == cont; 200 } 201 202 static int spi_device_configure(struct transport_container *tc, 203 struct device *dev, 204 struct class_device *cdev) 205 { 206 struct scsi_device *sdev = to_scsi_device(dev); 207 struct scsi_target *starget = sdev->sdev_target; 208 209 /* Populate the target capability fields with the values 210 * gleaned from the device inquiry */ 211 212 spi_support_sync(starget) = scsi_device_sync(sdev); 213 spi_support_wide(starget) = scsi_device_wide(sdev); 214 spi_support_dt(starget) = scsi_device_dt(sdev); 215 spi_support_dt_only(starget) = scsi_device_dt_only(sdev); 216 spi_support_ius(starget) = scsi_device_ius(sdev); 217 spi_support_qas(starget) = scsi_device_qas(sdev); 218 219 return 0; 220 } 221 222 static int spi_setup_transport_attrs(struct transport_container *tc, 223 struct device *dev, 224 struct class_device *cdev) 225 { 226 struct scsi_target *starget = to_scsi_target(dev); 227 228 spi_period(starget) = -1; /* illegal value */ 229 spi_min_period(starget) = 0; 230 spi_offset(starget) = 0; /* async */ 231 spi_max_offset(starget) = 255; 232 spi_width(starget) = 0; /* narrow */ 233 spi_max_width(starget) = 1; 234 spi_iu(starget) = 0; /* no IU */ 235 spi_dt(starget) = 0; /* ST */ 236 spi_qas(starget) = 0; 237 spi_wr_flow(starget) = 0; 238 spi_rd_strm(starget) = 0; 239 spi_rti(starget) = 0; 240 spi_pcomp_en(starget) = 0; 241 spi_hold_mcs(starget) = 0; 242 spi_dv_pending(starget) = 0; 243 spi_dv_in_progress(starget) = 0; 244 spi_initial_dv(starget) = 0; 245 mutex_init(&spi_dv_mutex(starget)); 246 247 return 0; 248 } 249 250 #define spi_transport_show_simple(field, format_string) \ 251 \ 252 static ssize_t \ 253 show_spi_transport_##field(struct class_device *cdev, char *buf) \ 254 { \ 255 struct scsi_target *starget = transport_class_to_starget(cdev); \ 256 struct spi_transport_attrs *tp; \ 257 \ 258 tp = (struct spi_transport_attrs *)&starget->starget_data; \ 259 return snprintf(buf, 20, format_string, tp->field); \ 260 } 261 262 #define spi_transport_store_simple(field, format_string) \ 263 \ 264 static ssize_t \ 265 store_spi_transport_##field(struct class_device *cdev, const char *buf, \ 266 size_t count) \ 267 { \ 268 int val; \ 269 struct scsi_target *starget = transport_class_to_starget(cdev); \ 270 struct spi_transport_attrs *tp; \ 271 \ 272 tp = (struct spi_transport_attrs *)&starget->starget_data; \ 273 val = simple_strtoul(buf, NULL, 0); \ 274 tp->field = val; \ 275 return count; \ 276 } 277 278 #define spi_transport_show_function(field, format_string) \ 279 \ 280 static ssize_t \ 281 show_spi_transport_##field(struct class_device *cdev, char *buf) \ 282 { \ 283 struct scsi_target *starget = transport_class_to_starget(cdev); \ 284 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); \ 285 struct spi_transport_attrs *tp; \ 286 struct spi_internal *i = to_spi_internal(shost->transportt); \ 287 tp = (struct spi_transport_attrs *)&starget->starget_data; \ 288 if (i->f->get_##field) \ 289 i->f->get_##field(starget); \ 290 return snprintf(buf, 20, format_string, tp->field); \ 291 } 292 293 #define spi_transport_store_function(field, format_string) \ 294 static ssize_t \ 295 store_spi_transport_##field(struct class_device *cdev, const char *buf, \ 296 size_t count) \ 297 { \ 298 int val; \ 299 struct scsi_target *starget = transport_class_to_starget(cdev); \ 300 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); \ 301 struct spi_internal *i = to_spi_internal(shost->transportt); \ 302 \ 303 val = simple_strtoul(buf, NULL, 0); \ 304 i->f->set_##field(starget, val); \ 305 return count; \ 306 } 307 308 #define spi_transport_store_max(field, format_string) \ 309 static ssize_t \ 310 store_spi_transport_##field(struct class_device *cdev, const char *buf, \ 311 size_t count) \ 312 { \ 313 int val; \ 314 struct scsi_target *starget = transport_class_to_starget(cdev); \ 315 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); \ 316 struct spi_internal *i = to_spi_internal(shost->transportt); \ 317 struct spi_transport_attrs *tp \ 318 = (struct spi_transport_attrs *)&starget->starget_data; \ 319 \ 320 val = simple_strtoul(buf, NULL, 0); \ 321 if (val > tp->max_##field) \ 322 val = tp->max_##field; \ 323 i->f->set_##field(starget, val); \ 324 return count; \ 325 } 326 327 #define spi_transport_rd_attr(field, format_string) \ 328 spi_transport_show_function(field, format_string) \ 329 spi_transport_store_function(field, format_string) \ 330 static CLASS_DEVICE_ATTR(field, S_IRUGO | S_IWUSR, \ 331 show_spi_transport_##field, \ 332 store_spi_transport_##field); 333 334 #define spi_transport_simple_attr(field, format_string) \ 335 spi_transport_show_simple(field, format_string) \ 336 spi_transport_store_simple(field, format_string) \ 337 static CLASS_DEVICE_ATTR(field, S_IRUGO | S_IWUSR, \ 338 show_spi_transport_##field, \ 339 store_spi_transport_##field); 340 341 #define spi_transport_max_attr(field, format_string) \ 342 spi_transport_show_function(field, format_string) \ 343 spi_transport_store_max(field, format_string) \ 344 spi_transport_simple_attr(max_##field, format_string) \ 345 static CLASS_DEVICE_ATTR(field, S_IRUGO | S_IWUSR, \ 346 show_spi_transport_##field, \ 347 store_spi_transport_##field); 348 349 /* The Parallel SCSI Tranport Attributes: */ 350 spi_transport_max_attr(offset, "%d\n"); 351 spi_transport_max_attr(width, "%d\n"); 352 spi_transport_rd_attr(iu, "%d\n"); 353 spi_transport_rd_attr(dt, "%d\n"); 354 spi_transport_rd_attr(qas, "%d\n"); 355 spi_transport_rd_attr(wr_flow, "%d\n"); 356 spi_transport_rd_attr(rd_strm, "%d\n"); 357 spi_transport_rd_attr(rti, "%d\n"); 358 spi_transport_rd_attr(pcomp_en, "%d\n"); 359 spi_transport_rd_attr(hold_mcs, "%d\n"); 360 361 /* we only care about the first child device so we return 1 */ 362 static int child_iter(struct device *dev, void *data) 363 { 364 struct scsi_device *sdev = to_scsi_device(dev); 365 366 spi_dv_device(sdev); 367 return 1; 368 } 369 370 static ssize_t 371 store_spi_revalidate(struct class_device *cdev, const char *buf, size_t count) 372 { 373 struct scsi_target *starget = transport_class_to_starget(cdev); 374 375 device_for_each_child(&starget->dev, NULL, child_iter); 376 return count; 377 } 378 static CLASS_DEVICE_ATTR(revalidate, S_IWUSR, NULL, store_spi_revalidate); 379 380 /* Translate the period into ns according to the current spec 381 * for SDTR/PPR messages */ 382 static int period_to_str(char *buf, int period) 383 { 384 int len, picosec; 385 386 if (period < 0 || period > 0xff) { 387 picosec = -1; 388 } else if (period <= SPI_STATIC_PPR) { 389 picosec = ppr_to_ps[period]; 390 } else { 391 picosec = period * 4000; 392 } 393 394 if (picosec == -1) { 395 len = sprintf(buf, "reserved"); 396 } else { 397 len = sprint_frac(buf, picosec, 1000); 398 } 399 400 return len; 401 } 402 403 static ssize_t 404 show_spi_transport_period_helper(char *buf, int period) 405 { 406 int len = period_to_str(buf, period); 407 buf[len++] = '\n'; 408 buf[len] = '\0'; 409 return len; 410 } 411 412 static ssize_t 413 store_spi_transport_period_helper(struct class_device *cdev, const char *buf, 414 size_t count, int *periodp) 415 { 416 int j, picosec, period = -1; 417 char *endp; 418 419 picosec = simple_strtoul(buf, &endp, 10) * 1000; 420 if (*endp == '.') { 421 int mult = 100; 422 do { 423 endp++; 424 if (!isdigit(*endp)) 425 break; 426 picosec += (*endp - '0') * mult; 427 mult /= 10; 428 } while (mult > 0); 429 } 430 431 for (j = 0; j <= SPI_STATIC_PPR; j++) { 432 if (ppr_to_ps[j] < picosec) 433 continue; 434 period = j; 435 break; 436 } 437 438 if (period == -1) 439 period = picosec / 4000; 440 441 if (period > 0xff) 442 period = 0xff; 443 444 *periodp = period; 445 446 return count; 447 } 448 449 static ssize_t 450 show_spi_transport_period(struct class_device *cdev, char *buf) 451 { 452 struct scsi_target *starget = transport_class_to_starget(cdev); 453 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); 454 struct spi_internal *i = to_spi_internal(shost->transportt); 455 struct spi_transport_attrs *tp = 456 (struct spi_transport_attrs *)&starget->starget_data; 457 458 if (i->f->get_period) 459 i->f->get_period(starget); 460 461 return show_spi_transport_period_helper(buf, tp->period); 462 } 463 464 static ssize_t 465 store_spi_transport_period(struct class_device *cdev, const char *buf, 466 size_t count) 467 { 468 struct scsi_target *starget = transport_class_to_starget(cdev); 469 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); 470 struct spi_internal *i = to_spi_internal(shost->transportt); 471 struct spi_transport_attrs *tp = 472 (struct spi_transport_attrs *)&starget->starget_data; 473 int period, retval; 474 475 retval = store_spi_transport_period_helper(cdev, buf, count, &period); 476 477 if (period < tp->min_period) 478 period = tp->min_period; 479 480 i->f->set_period(starget, period); 481 482 return retval; 483 } 484 485 static CLASS_DEVICE_ATTR(period, S_IRUGO | S_IWUSR, 486 show_spi_transport_period, 487 store_spi_transport_period); 488 489 static ssize_t 490 show_spi_transport_min_period(struct class_device *cdev, char *buf) 491 { 492 struct scsi_target *starget = transport_class_to_starget(cdev); 493 struct spi_transport_attrs *tp = 494 (struct spi_transport_attrs *)&starget->starget_data; 495 496 return show_spi_transport_period_helper(buf, tp->min_period); 497 } 498 499 static ssize_t 500 store_spi_transport_min_period(struct class_device *cdev, const char *buf, 501 size_t count) 502 { 503 struct scsi_target *starget = transport_class_to_starget(cdev); 504 struct spi_transport_attrs *tp = 505 (struct spi_transport_attrs *)&starget->starget_data; 506 507 return store_spi_transport_period_helper(cdev, buf, count, 508 &tp->min_period); 509 } 510 511 512 static CLASS_DEVICE_ATTR(min_period, S_IRUGO | S_IWUSR, 513 show_spi_transport_min_period, 514 store_spi_transport_min_period); 515 516 517 static ssize_t show_spi_host_signalling(struct class_device *cdev, char *buf) 518 { 519 struct Scsi_Host *shost = transport_class_to_shost(cdev); 520 struct spi_internal *i = to_spi_internal(shost->transportt); 521 522 if (i->f->get_signalling) 523 i->f->get_signalling(shost); 524 525 return sprintf(buf, "%s\n", spi_signal_to_string(spi_signalling(shost))); 526 } 527 static ssize_t store_spi_host_signalling(struct class_device *cdev, 528 const char *buf, size_t count) 529 { 530 struct Scsi_Host *shost = transport_class_to_shost(cdev); 531 struct spi_internal *i = to_spi_internal(shost->transportt); 532 enum spi_signal_type type = spi_signal_to_value(buf); 533 534 if (type != SPI_SIGNAL_UNKNOWN) 535 i->f->set_signalling(shost, type); 536 537 return count; 538 } 539 static CLASS_DEVICE_ATTR(signalling, S_IRUGO | S_IWUSR, 540 show_spi_host_signalling, 541 store_spi_host_signalling); 542 543 #define DV_SET(x, y) \ 544 if(i->f->set_##x) \ 545 i->f->set_##x(sdev->sdev_target, y) 546 547 enum spi_compare_returns { 548 SPI_COMPARE_SUCCESS, 549 SPI_COMPARE_FAILURE, 550 SPI_COMPARE_SKIP_TEST, 551 }; 552 553 554 /* This is for read/write Domain Validation: If the device supports 555 * an echo buffer, we do read/write tests to it */ 556 static enum spi_compare_returns 557 spi_dv_device_echo_buffer(struct scsi_device *sdev, u8 *buffer, 558 u8 *ptr, const int retries) 559 { 560 int len = ptr - buffer; 561 int j, k, r, result; 562 unsigned int pattern = 0x0000ffff; 563 struct scsi_sense_hdr sshdr; 564 565 const char spi_write_buffer[] = { 566 WRITE_BUFFER, 0x0a, 0, 0, 0, 0, 0, len >> 8, len & 0xff, 0 567 }; 568 const char spi_read_buffer[] = { 569 READ_BUFFER, 0x0a, 0, 0, 0, 0, 0, len >> 8, len & 0xff, 0 570 }; 571 572 /* set up the pattern buffer. Doesn't matter if we spill 573 * slightly beyond since that's where the read buffer is */ 574 for (j = 0; j < len; ) { 575 576 /* fill the buffer with counting (test a) */ 577 for ( ; j < min(len, 32); j++) 578 buffer[j] = j; 579 k = j; 580 /* fill the buffer with alternating words of 0x0 and 581 * 0xffff (test b) */ 582 for ( ; j < min(len, k + 32); j += 2) { 583 u16 *word = (u16 *)&buffer[j]; 584 585 *word = (j & 0x02) ? 0x0000 : 0xffff; 586 } 587 k = j; 588 /* fill with crosstalk (alternating 0x5555 0xaaa) 589 * (test c) */ 590 for ( ; j < min(len, k + 32); j += 2) { 591 u16 *word = (u16 *)&buffer[j]; 592 593 *word = (j & 0x02) ? 0x5555 : 0xaaaa; 594 } 595 k = j; 596 /* fill with shifting bits (test d) */ 597 for ( ; j < min(len, k + 32); j += 4) { 598 u32 *word = (unsigned int *)&buffer[j]; 599 u32 roll = (pattern & 0x80000000) ? 1 : 0; 600 601 *word = pattern; 602 pattern = (pattern << 1) | roll; 603 } 604 /* don't bother with random data (test e) */ 605 } 606 607 for (r = 0; r < retries; r++) { 608 result = spi_execute(sdev, spi_write_buffer, DMA_TO_DEVICE, 609 buffer, len, &sshdr); 610 if(result || !scsi_device_online(sdev)) { 611 612 scsi_device_set_state(sdev, SDEV_QUIESCE); 613 if (scsi_sense_valid(&sshdr) 614 && sshdr.sense_key == ILLEGAL_REQUEST 615 /* INVALID FIELD IN CDB */ 616 && sshdr.asc == 0x24 && sshdr.ascq == 0x00) 617 /* This would mean that the drive lied 618 * to us about supporting an echo 619 * buffer (unfortunately some Western 620 * Digital drives do precisely this) 621 */ 622 return SPI_COMPARE_SKIP_TEST; 623 624 625 sdev_printk(KERN_ERR, sdev, "Write Buffer failure %x\n", result); 626 return SPI_COMPARE_FAILURE; 627 } 628 629 memset(ptr, 0, len); 630 spi_execute(sdev, spi_read_buffer, DMA_FROM_DEVICE, 631 ptr, len, NULL); 632 scsi_device_set_state(sdev, SDEV_QUIESCE); 633 634 if (memcmp(buffer, ptr, len) != 0) 635 return SPI_COMPARE_FAILURE; 636 } 637 return SPI_COMPARE_SUCCESS; 638 } 639 640 /* This is for the simplest form of Domain Validation: a read test 641 * on the inquiry data from the device */ 642 static enum spi_compare_returns 643 spi_dv_device_compare_inquiry(struct scsi_device *sdev, u8 *buffer, 644 u8 *ptr, const int retries) 645 { 646 int r, result; 647 const int len = sdev->inquiry_len; 648 const char spi_inquiry[] = { 649 INQUIRY, 0, 0, 0, len, 0 650 }; 651 652 for (r = 0; r < retries; r++) { 653 memset(ptr, 0, len); 654 655 result = spi_execute(sdev, spi_inquiry, DMA_FROM_DEVICE, 656 ptr, len, NULL); 657 658 if(result || !scsi_device_online(sdev)) { 659 scsi_device_set_state(sdev, SDEV_QUIESCE); 660 return SPI_COMPARE_FAILURE; 661 } 662 663 /* If we don't have the inquiry data already, the 664 * first read gets it */ 665 if (ptr == buffer) { 666 ptr += len; 667 --r; 668 continue; 669 } 670 671 if (memcmp(buffer, ptr, len) != 0) 672 /* failure */ 673 return SPI_COMPARE_FAILURE; 674 } 675 return SPI_COMPARE_SUCCESS; 676 } 677 678 static enum spi_compare_returns 679 spi_dv_retrain(struct scsi_device *sdev, u8 *buffer, u8 *ptr, 680 enum spi_compare_returns 681 (*compare_fn)(struct scsi_device *, u8 *, u8 *, int)) 682 { 683 struct spi_internal *i = to_spi_internal(sdev->host->transportt); 684 struct scsi_target *starget = sdev->sdev_target; 685 int period = 0, prevperiod = 0; 686 enum spi_compare_returns retval; 687 688 689 for (;;) { 690 int newperiod; 691 retval = compare_fn(sdev, buffer, ptr, DV_LOOPS); 692 693 if (retval == SPI_COMPARE_SUCCESS 694 || retval == SPI_COMPARE_SKIP_TEST) 695 break; 696 697 /* OK, retrain, fallback */ 698 if (i->f->get_iu) 699 i->f->get_iu(starget); 700 if (i->f->get_qas) 701 i->f->get_qas(starget); 702 if (i->f->get_period) 703 i->f->get_period(sdev->sdev_target); 704 705 /* Here's the fallback sequence; first try turning off 706 * IU, then QAS (if we can control them), then finally 707 * fall down the periods */ 708 if (i->f->set_iu && spi_iu(starget)) { 709 starget_printk(KERN_ERR, starget, "Domain Validation Disabing Information Units\n"); 710 DV_SET(iu, 0); 711 } else if (i->f->set_qas && spi_qas(starget)) { 712 starget_printk(KERN_ERR, starget, "Domain Validation Disabing Quick Arbitration and Selection\n"); 713 DV_SET(qas, 0); 714 } else { 715 newperiod = spi_period(starget); 716 period = newperiod > period ? newperiod : period; 717 if (period < 0x0d) 718 period++; 719 else 720 period += period >> 1; 721 722 if (unlikely(period > 0xff || period == prevperiod)) { 723 /* Total failure; set to async and return */ 724 starget_printk(KERN_ERR, starget, "Domain Validation Failure, dropping back to Asynchronous\n"); 725 DV_SET(offset, 0); 726 return SPI_COMPARE_FAILURE; 727 } 728 starget_printk(KERN_ERR, starget, "Domain Validation detected failure, dropping back\n"); 729 DV_SET(period, period); 730 prevperiod = period; 731 } 732 } 733 return retval; 734 } 735 736 static int 737 spi_dv_device_get_echo_buffer(struct scsi_device *sdev, u8 *buffer) 738 { 739 int l, result; 740 741 /* first off do a test unit ready. This can error out 742 * because of reservations or some other reason. If it 743 * fails, the device won't let us write to the echo buffer 744 * so just return failure */ 745 746 const char spi_test_unit_ready[] = { 747 TEST_UNIT_READY, 0, 0, 0, 0, 0 748 }; 749 750 const char spi_read_buffer_descriptor[] = { 751 READ_BUFFER, 0x0b, 0, 0, 0, 0, 0, 0, 4, 0 752 }; 753 754 755 /* We send a set of three TURs to clear any outstanding 756 * unit attention conditions if they exist (Otherwise the 757 * buffer tests won't be happy). If the TUR still fails 758 * (reservation conflict, device not ready, etc) just 759 * skip the write tests */ 760 for (l = 0; ; l++) { 761 result = spi_execute(sdev, spi_test_unit_ready, DMA_NONE, 762 NULL, 0, NULL); 763 764 if(result) { 765 if(l >= 3) 766 return 0; 767 } else { 768 /* TUR succeeded */ 769 break; 770 } 771 } 772 773 result = spi_execute(sdev, spi_read_buffer_descriptor, 774 DMA_FROM_DEVICE, buffer, 4, NULL); 775 776 if (result) 777 /* Device has no echo buffer */ 778 return 0; 779 780 return buffer[3] + ((buffer[2] & 0x1f) << 8); 781 } 782 783 static void 784 spi_dv_device_internal(struct scsi_device *sdev, u8 *buffer) 785 { 786 struct spi_internal *i = to_spi_internal(sdev->host->transportt); 787 struct scsi_target *starget = sdev->sdev_target; 788 struct Scsi_Host *shost = sdev->host; 789 int len = sdev->inquiry_len; 790 /* first set us up for narrow async */ 791 DV_SET(offset, 0); 792 DV_SET(width, 0); 793 794 if (spi_dv_device_compare_inquiry(sdev, buffer, buffer, DV_LOOPS) 795 != SPI_COMPARE_SUCCESS) { 796 starget_printk(KERN_ERR, starget, "Domain Validation Initial Inquiry Failed\n"); 797 /* FIXME: should probably offline the device here? */ 798 return; 799 } 800 801 /* test width */ 802 if (i->f->set_width && spi_max_width(starget) && 803 scsi_device_wide(sdev)) { 804 i->f->set_width(starget, 1); 805 806 if (spi_dv_device_compare_inquiry(sdev, buffer, 807 buffer + len, 808 DV_LOOPS) 809 != SPI_COMPARE_SUCCESS) { 810 starget_printk(KERN_ERR, starget, "Wide Transfers Fail\n"); 811 i->f->set_width(starget, 0); 812 } 813 } 814 815 if (!i->f->set_period) 816 return; 817 818 /* device can't handle synchronous */ 819 if (!scsi_device_sync(sdev) && !scsi_device_dt(sdev)) 820 return; 821 822 /* len == -1 is the signal that we need to ascertain the 823 * presence of an echo buffer before trying to use it. len == 824 * 0 means we don't have an echo buffer */ 825 len = -1; 826 827 retry: 828 829 /* now set up to the maximum */ 830 DV_SET(offset, spi_max_offset(starget)); 831 DV_SET(period, spi_min_period(starget)); 832 /* try QAS requests; this should be harmless to set if the 833 * target supports it */ 834 if (scsi_device_qas(sdev)) { 835 DV_SET(qas, 1); 836 } else { 837 DV_SET(qas, 0); 838 } 839 840 if (scsi_device_ius(sdev) && spi_min_period(starget) < 9) { 841 /* This u320 (or u640). Set IU transfers */ 842 DV_SET(iu, 1); 843 /* Then set the optional parameters */ 844 DV_SET(rd_strm, 1); 845 DV_SET(wr_flow, 1); 846 DV_SET(rti, 1); 847 if (spi_min_period(starget) == 8) 848 DV_SET(pcomp_en, 1); 849 } else { 850 DV_SET(iu, 0); 851 } 852 853 /* now that we've done all this, actually check the bus 854 * signal type (if known). Some devices are stupid on 855 * a SE bus and still claim they can try LVD only settings */ 856 if (i->f->get_signalling) 857 i->f->get_signalling(shost); 858 if (spi_signalling(shost) == SPI_SIGNAL_SE || 859 spi_signalling(shost) == SPI_SIGNAL_HVD || 860 !scsi_device_dt(sdev)) { 861 DV_SET(dt, 0); 862 } else { 863 DV_SET(dt, 1); 864 } 865 /* Do the read only INQUIRY tests */ 866 spi_dv_retrain(sdev, buffer, buffer + sdev->inquiry_len, 867 spi_dv_device_compare_inquiry); 868 /* See if we actually managed to negotiate and sustain DT */ 869 if (i->f->get_dt) 870 i->f->get_dt(starget); 871 872 /* see if the device has an echo buffer. If it does we can do 873 * the SPI pattern write tests. Because of some broken 874 * devices, we *only* try this on a device that has actually 875 * negotiated DT */ 876 877 if (len == -1 && spi_dt(starget)) 878 len = spi_dv_device_get_echo_buffer(sdev, buffer); 879 880 if (len <= 0) { 881 starget_printk(KERN_INFO, starget, "Domain Validation skipping write tests\n"); 882 return; 883 } 884 885 if (len > SPI_MAX_ECHO_BUFFER_SIZE) { 886 starget_printk(KERN_WARNING, starget, "Echo buffer size %d is too big, trimming to %d\n", len, SPI_MAX_ECHO_BUFFER_SIZE); 887 len = SPI_MAX_ECHO_BUFFER_SIZE; 888 } 889 890 if (spi_dv_retrain(sdev, buffer, buffer + len, 891 spi_dv_device_echo_buffer) 892 == SPI_COMPARE_SKIP_TEST) { 893 /* OK, the stupid drive can't do a write echo buffer 894 * test after all, fall back to the read tests */ 895 len = 0; 896 goto retry; 897 } 898 } 899 900 901 /** spi_dv_device - Do Domain Validation on the device 902 * @sdev: scsi device to validate 903 * 904 * Performs the domain validation on the given device in the 905 * current execution thread. Since DV operations may sleep, 906 * the current thread must have user context. Also no SCSI 907 * related locks that would deadlock I/O issued by the DV may 908 * be held. 909 */ 910 void 911 spi_dv_device(struct scsi_device *sdev) 912 { 913 struct scsi_target *starget = sdev->sdev_target; 914 u8 *buffer; 915 const int len = SPI_MAX_ECHO_BUFFER_SIZE*2; 916 917 if (unlikely(scsi_device_get(sdev))) 918 return; 919 920 if (unlikely(spi_dv_in_progress(starget))) 921 return; 922 spi_dv_in_progress(starget) = 1; 923 924 buffer = kzalloc(len, GFP_KERNEL); 925 926 if (unlikely(!buffer)) 927 goto out_put; 928 929 /* We need to verify that the actual device will quiesce; the 930 * later target quiesce is just a nice to have */ 931 if (unlikely(scsi_device_quiesce(sdev))) 932 goto out_free; 933 934 scsi_target_quiesce(starget); 935 936 spi_dv_pending(starget) = 1; 937 mutex_lock(&spi_dv_mutex(starget)); 938 939 starget_printk(KERN_INFO, starget, "Beginning Domain Validation\n"); 940 941 spi_dv_device_internal(sdev, buffer); 942 943 starget_printk(KERN_INFO, starget, "Ending Domain Validation\n"); 944 945 mutex_unlock(&spi_dv_mutex(starget)); 946 spi_dv_pending(starget) = 0; 947 948 scsi_target_resume(starget); 949 950 spi_initial_dv(starget) = 1; 951 952 out_free: 953 kfree(buffer); 954 out_put: 955 spi_dv_in_progress(starget) = 0; 956 scsi_device_put(sdev); 957 } 958 EXPORT_SYMBOL(spi_dv_device); 959 960 struct work_queue_wrapper { 961 struct work_struct work; 962 struct scsi_device *sdev; 963 }; 964 965 static void 966 spi_dv_device_work_wrapper(struct work_struct *work) 967 { 968 struct work_queue_wrapper *wqw = 969 container_of(work, struct work_queue_wrapper, work); 970 struct scsi_device *sdev = wqw->sdev; 971 972 kfree(wqw); 973 spi_dv_device(sdev); 974 spi_dv_pending(sdev->sdev_target) = 0; 975 scsi_device_put(sdev); 976 } 977 978 979 /** 980 * spi_schedule_dv_device - schedule domain validation to occur on the device 981 * @sdev: The device to validate 982 * 983 * Identical to spi_dv_device() above, except that the DV will be 984 * scheduled to occur in a workqueue later. All memory allocations 985 * are atomic, so may be called from any context including those holding 986 * SCSI locks. 987 */ 988 void 989 spi_schedule_dv_device(struct scsi_device *sdev) 990 { 991 struct work_queue_wrapper *wqw = 992 kmalloc(sizeof(struct work_queue_wrapper), GFP_ATOMIC); 993 994 if (unlikely(!wqw)) 995 return; 996 997 if (unlikely(spi_dv_pending(sdev->sdev_target))) { 998 kfree(wqw); 999 return; 1000 } 1001 /* Set pending early (dv_device doesn't check it, only sets it) */ 1002 spi_dv_pending(sdev->sdev_target) = 1; 1003 if (unlikely(scsi_device_get(sdev))) { 1004 kfree(wqw); 1005 spi_dv_pending(sdev->sdev_target) = 0; 1006 return; 1007 } 1008 1009 INIT_WORK(&wqw->work, spi_dv_device_work_wrapper); 1010 wqw->sdev = sdev; 1011 1012 schedule_work(&wqw->work); 1013 } 1014 EXPORT_SYMBOL(spi_schedule_dv_device); 1015 1016 /** 1017 * spi_display_xfer_agreement - Print the current target transfer agreement 1018 * @starget: The target for which to display the agreement 1019 * 1020 * Each SPI port is required to maintain a transfer agreement for each 1021 * other port on the bus. This function prints a one-line summary of 1022 * the current agreement; more detailed information is available in sysfs. 1023 */ 1024 void spi_display_xfer_agreement(struct scsi_target *starget) 1025 { 1026 struct spi_transport_attrs *tp; 1027 tp = (struct spi_transport_attrs *)&starget->starget_data; 1028 1029 if (tp->offset > 0 && tp->period > 0) { 1030 unsigned int picosec, kb100; 1031 char *scsi = "FAST-?"; 1032 char tmp[8]; 1033 1034 if (tp->period <= SPI_STATIC_PPR) { 1035 picosec = ppr_to_ps[tp->period]; 1036 switch (tp->period) { 1037 case 7: scsi = "FAST-320"; break; 1038 case 8: scsi = "FAST-160"; break; 1039 case 9: scsi = "FAST-80"; break; 1040 case 10: 1041 case 11: scsi = "FAST-40"; break; 1042 case 12: scsi = "FAST-20"; break; 1043 } 1044 } else { 1045 picosec = tp->period * 4000; 1046 if (tp->period < 25) 1047 scsi = "FAST-20"; 1048 else if (tp->period < 50) 1049 scsi = "FAST-10"; 1050 else 1051 scsi = "FAST-5"; 1052 } 1053 1054 kb100 = (10000000 + picosec / 2) / picosec; 1055 if (tp->width) 1056 kb100 *= 2; 1057 sprint_frac(tmp, picosec, 1000); 1058 1059 dev_info(&starget->dev, 1060 "%s %sSCSI %d.%d MB/s %s%s%s%s%s%s%s%s (%s ns, offset %d)\n", 1061 scsi, tp->width ? "WIDE " : "", kb100/10, kb100 % 10, 1062 tp->dt ? "DT" : "ST", 1063 tp->iu ? " IU" : "", 1064 tp->qas ? " QAS" : "", 1065 tp->rd_strm ? " RDSTRM" : "", 1066 tp->rti ? " RTI" : "", 1067 tp->wr_flow ? " WRFLOW" : "", 1068 tp->pcomp_en ? " PCOMP" : "", 1069 tp->hold_mcs ? " HMCS" : "", 1070 tmp, tp->offset); 1071 } else { 1072 dev_info(&starget->dev, "%sasynchronous\n", 1073 tp->width ? "wide " : ""); 1074 } 1075 } 1076 EXPORT_SYMBOL(spi_display_xfer_agreement); 1077 1078 int spi_populate_width_msg(unsigned char *msg, int width) 1079 { 1080 msg[0] = EXTENDED_MESSAGE; 1081 msg[1] = 2; 1082 msg[2] = EXTENDED_WDTR; 1083 msg[3] = width; 1084 return 4; 1085 } 1086 EXPORT_SYMBOL_GPL(spi_populate_width_msg); 1087 1088 int spi_populate_sync_msg(unsigned char *msg, int period, int offset) 1089 { 1090 msg[0] = EXTENDED_MESSAGE; 1091 msg[1] = 3; 1092 msg[2] = EXTENDED_SDTR; 1093 msg[3] = period; 1094 msg[4] = offset; 1095 return 5; 1096 } 1097 EXPORT_SYMBOL_GPL(spi_populate_sync_msg); 1098 1099 int spi_populate_ppr_msg(unsigned char *msg, int period, int offset, 1100 int width, int options) 1101 { 1102 msg[0] = EXTENDED_MESSAGE; 1103 msg[1] = 6; 1104 msg[2] = EXTENDED_PPR; 1105 msg[3] = period; 1106 msg[4] = 0; 1107 msg[5] = offset; 1108 msg[6] = width; 1109 msg[7] = options; 1110 return 8; 1111 } 1112 EXPORT_SYMBOL_GPL(spi_populate_ppr_msg); 1113 1114 #ifdef CONFIG_SCSI_CONSTANTS 1115 static const char * const one_byte_msgs[] = { 1116 /* 0x00 */ "Task Complete", NULL /* Extended Message */, "Save Pointers", 1117 /* 0x03 */ "Restore Pointers", "Disconnect", "Initiator Error", 1118 /* 0x06 */ "Abort Task Set", "Message Reject", "Nop", "Message Parity Error", 1119 /* 0x0a */ "Linked Command Complete", "Linked Command Complete w/flag", 1120 /* 0x0c */ "Target Reset", "Abort Task", "Clear Task Set", 1121 /* 0x0f */ "Initiate Recovery", "Release Recovery", 1122 /* 0x11 */ "Terminate Process", "Continue Task", "Target Transfer Disable", 1123 /* 0x14 */ NULL, NULL, "Clear ACA", "LUN Reset" 1124 }; 1125 1126 static const char * const two_byte_msgs[] = { 1127 /* 0x20 */ "Simple Queue Tag", "Head of Queue Tag", "Ordered Queue Tag", 1128 /* 0x23 */ "Ignore Wide Residue", "ACA" 1129 }; 1130 1131 static const char * const extended_msgs[] = { 1132 /* 0x00 */ "Modify Data Pointer", "Synchronous Data Transfer Request", 1133 /* 0x02 */ "SCSI-I Extended Identify", "Wide Data Transfer Request", 1134 /* 0x04 */ "Parallel Protocol Request", "Modify Bidirectional Data Pointer" 1135 }; 1136 1137 static void print_nego(const unsigned char *msg, int per, int off, int width) 1138 { 1139 if (per) { 1140 char buf[20]; 1141 period_to_str(buf, msg[per]); 1142 printk("period = %s ns ", buf); 1143 } 1144 1145 if (off) 1146 printk("offset = %d ", msg[off]); 1147 if (width) 1148 printk("width = %d ", 8 << msg[width]); 1149 } 1150 1151 static void print_ptr(const unsigned char *msg, int msb, const char *desc) 1152 { 1153 int ptr = (msg[msb] << 24) | (msg[msb+1] << 16) | (msg[msb+2] << 8) | 1154 msg[msb+3]; 1155 printk("%s = %d ", desc, ptr); 1156 } 1157 1158 int spi_print_msg(const unsigned char *msg) 1159 { 1160 int len = 1, i; 1161 if (msg[0] == EXTENDED_MESSAGE) { 1162 len = 2 + msg[1]; 1163 if (len == 2) 1164 len += 256; 1165 if (msg[2] < ARRAY_SIZE(extended_msgs)) 1166 printk ("%s ", extended_msgs[msg[2]]); 1167 else 1168 printk ("Extended Message, reserved code (0x%02x) ", 1169 (int) msg[2]); 1170 switch (msg[2]) { 1171 case EXTENDED_MODIFY_DATA_POINTER: 1172 print_ptr(msg, 3, "pointer"); 1173 break; 1174 case EXTENDED_SDTR: 1175 print_nego(msg, 3, 4, 0); 1176 break; 1177 case EXTENDED_WDTR: 1178 print_nego(msg, 0, 0, 3); 1179 break; 1180 case EXTENDED_PPR: 1181 print_nego(msg, 3, 5, 6); 1182 break; 1183 case EXTENDED_MODIFY_BIDI_DATA_PTR: 1184 print_ptr(msg, 3, "out"); 1185 print_ptr(msg, 7, "in"); 1186 break; 1187 default: 1188 for (i = 2; i < len; ++i) 1189 printk("%02x ", msg[i]); 1190 } 1191 /* Identify */ 1192 } else if (msg[0] & 0x80) { 1193 printk("Identify disconnect %sallowed %s %d ", 1194 (msg[0] & 0x40) ? "" : "not ", 1195 (msg[0] & 0x20) ? "target routine" : "lun", 1196 msg[0] & 0x7); 1197 /* Normal One byte */ 1198 } else if (msg[0] < 0x1f) { 1199 if (msg[0] < ARRAY_SIZE(one_byte_msgs) && one_byte_msgs[msg[0]]) 1200 printk("%s ", one_byte_msgs[msg[0]]); 1201 else 1202 printk("reserved (%02x) ", msg[0]); 1203 } else if (msg[0] == 0x55) { 1204 printk("QAS Request "); 1205 /* Two byte */ 1206 } else if (msg[0] <= 0x2f) { 1207 if ((msg[0] - 0x20) < ARRAY_SIZE(two_byte_msgs)) 1208 printk("%s %02x ", two_byte_msgs[msg[0] - 0x20], 1209 msg[1]); 1210 else 1211 printk("reserved two byte (%02x %02x) ", 1212 msg[0], msg[1]); 1213 len = 2; 1214 } else 1215 printk("reserved "); 1216 return len; 1217 } 1218 EXPORT_SYMBOL(spi_print_msg); 1219 1220 #else /* ifndef CONFIG_SCSI_CONSTANTS */ 1221 1222 int spi_print_msg(const unsigned char *msg) 1223 { 1224 int len = 1, i; 1225 1226 if (msg[0] == EXTENDED_MESSAGE) { 1227 len = 2 + msg[1]; 1228 if (len == 2) 1229 len += 256; 1230 for (i = 0; i < len; ++i) 1231 printk("%02x ", msg[i]); 1232 /* Identify */ 1233 } else if (msg[0] & 0x80) { 1234 printk("%02x ", msg[0]); 1235 /* Normal One byte */ 1236 } else if ((msg[0] < 0x1f) || (msg[0] == 0x55)) { 1237 printk("%02x ", msg[0]); 1238 /* Two byte */ 1239 } else if (msg[0] <= 0x2f) { 1240 printk("%02x %02x", msg[0], msg[1]); 1241 len = 2; 1242 } else 1243 printk("%02x ", msg[0]); 1244 return len; 1245 } 1246 EXPORT_SYMBOL(spi_print_msg); 1247 #endif /* ! CONFIG_SCSI_CONSTANTS */ 1248 1249 #define SETUP_ATTRIBUTE(field) \ 1250 i->private_attrs[count] = class_device_attr_##field; \ 1251 if (!i->f->set_##field) { \ 1252 i->private_attrs[count].attr.mode = S_IRUGO; \ 1253 i->private_attrs[count].store = NULL; \ 1254 } \ 1255 i->attrs[count] = &i->private_attrs[count]; \ 1256 if (i->f->show_##field) \ 1257 count++ 1258 1259 #define SETUP_RELATED_ATTRIBUTE(field, rel_field) \ 1260 i->private_attrs[count] = class_device_attr_##field; \ 1261 if (!i->f->set_##rel_field) { \ 1262 i->private_attrs[count].attr.mode = S_IRUGO; \ 1263 i->private_attrs[count].store = NULL; \ 1264 } \ 1265 i->attrs[count] = &i->private_attrs[count]; \ 1266 if (i->f->show_##rel_field) \ 1267 count++ 1268 1269 #define SETUP_HOST_ATTRIBUTE(field) \ 1270 i->private_host_attrs[count] = class_device_attr_##field; \ 1271 if (!i->f->set_##field) { \ 1272 i->private_host_attrs[count].attr.mode = S_IRUGO; \ 1273 i->private_host_attrs[count].store = NULL; \ 1274 } \ 1275 i->host_attrs[count] = &i->private_host_attrs[count]; \ 1276 count++ 1277 1278 static int spi_device_match(struct attribute_container *cont, 1279 struct device *dev) 1280 { 1281 struct scsi_device *sdev; 1282 struct Scsi_Host *shost; 1283 struct spi_internal *i; 1284 1285 if (!scsi_is_sdev_device(dev)) 1286 return 0; 1287 1288 sdev = to_scsi_device(dev); 1289 shost = sdev->host; 1290 if (!shost->transportt || shost->transportt->host_attrs.ac.class 1291 != &spi_host_class.class) 1292 return 0; 1293 /* Note: this class has no device attributes, so it has 1294 * no per-HBA allocation and thus we don't need to distinguish 1295 * the attribute containers for the device */ 1296 i = to_spi_internal(shost->transportt); 1297 if (i->f->deny_binding && i->f->deny_binding(sdev->sdev_target)) 1298 return 0; 1299 return 1; 1300 } 1301 1302 static int spi_target_match(struct attribute_container *cont, 1303 struct device *dev) 1304 { 1305 struct Scsi_Host *shost; 1306 struct scsi_target *starget; 1307 struct spi_internal *i; 1308 1309 if (!scsi_is_target_device(dev)) 1310 return 0; 1311 1312 shost = dev_to_shost(dev->parent); 1313 if (!shost->transportt || shost->transportt->host_attrs.ac.class 1314 != &spi_host_class.class) 1315 return 0; 1316 1317 i = to_spi_internal(shost->transportt); 1318 starget = to_scsi_target(dev); 1319 1320 if (i->f->deny_binding && i->f->deny_binding(starget)) 1321 return 0; 1322 1323 return &i->t.target_attrs.ac == cont; 1324 } 1325 1326 static DECLARE_TRANSPORT_CLASS(spi_transport_class, 1327 "spi_transport", 1328 spi_setup_transport_attrs, 1329 NULL, 1330 NULL); 1331 1332 static DECLARE_ANON_TRANSPORT_CLASS(spi_device_class, 1333 spi_device_match, 1334 spi_device_configure); 1335 1336 struct scsi_transport_template * 1337 spi_attach_transport(struct spi_function_template *ft) 1338 { 1339 int count = 0; 1340 struct spi_internal *i = kzalloc(sizeof(struct spi_internal), 1341 GFP_KERNEL); 1342 1343 if (unlikely(!i)) 1344 return NULL; 1345 1346 i->t.target_attrs.ac.class = &spi_transport_class.class; 1347 i->t.target_attrs.ac.attrs = &i->attrs[0]; 1348 i->t.target_attrs.ac.match = spi_target_match; 1349 transport_container_register(&i->t.target_attrs); 1350 i->t.target_size = sizeof(struct spi_transport_attrs); 1351 i->t.host_attrs.ac.class = &spi_host_class.class; 1352 i->t.host_attrs.ac.attrs = &i->host_attrs[0]; 1353 i->t.host_attrs.ac.match = spi_host_match; 1354 transport_container_register(&i->t.host_attrs); 1355 i->t.host_size = sizeof(struct spi_host_attrs); 1356 i->f = ft; 1357 1358 SETUP_ATTRIBUTE(period); 1359 SETUP_RELATED_ATTRIBUTE(min_period, period); 1360 SETUP_ATTRIBUTE(offset); 1361 SETUP_RELATED_ATTRIBUTE(max_offset, offset); 1362 SETUP_ATTRIBUTE(width); 1363 SETUP_RELATED_ATTRIBUTE(max_width, width); 1364 SETUP_ATTRIBUTE(iu); 1365 SETUP_ATTRIBUTE(dt); 1366 SETUP_ATTRIBUTE(qas); 1367 SETUP_ATTRIBUTE(wr_flow); 1368 SETUP_ATTRIBUTE(rd_strm); 1369 SETUP_ATTRIBUTE(rti); 1370 SETUP_ATTRIBUTE(pcomp_en); 1371 SETUP_ATTRIBUTE(hold_mcs); 1372 1373 /* if you add an attribute but forget to increase SPI_NUM_ATTRS 1374 * this bug will trigger */ 1375 BUG_ON(count > SPI_NUM_ATTRS); 1376 1377 i->attrs[count++] = &class_device_attr_revalidate; 1378 1379 i->attrs[count] = NULL; 1380 1381 count = 0; 1382 SETUP_HOST_ATTRIBUTE(signalling); 1383 1384 BUG_ON(count > SPI_HOST_ATTRS); 1385 1386 i->host_attrs[count] = NULL; 1387 1388 return &i->t; 1389 } 1390 EXPORT_SYMBOL(spi_attach_transport); 1391 1392 void spi_release_transport(struct scsi_transport_template *t) 1393 { 1394 struct spi_internal *i = to_spi_internal(t); 1395 1396 transport_container_unregister(&i->t.target_attrs); 1397 transport_container_unregister(&i->t.host_attrs); 1398 1399 kfree(i); 1400 } 1401 EXPORT_SYMBOL(spi_release_transport); 1402 1403 static __init int spi_transport_init(void) 1404 { 1405 int error = transport_class_register(&spi_transport_class); 1406 if (error) 1407 return error; 1408 error = anon_transport_class_register(&spi_device_class); 1409 return transport_class_register(&spi_host_class); 1410 } 1411 1412 static void __exit spi_transport_exit(void) 1413 { 1414 transport_class_unregister(&spi_transport_class); 1415 anon_transport_class_unregister(&spi_device_class); 1416 transport_class_unregister(&spi_host_class); 1417 } 1418 1419 MODULE_AUTHOR("Martin Hicks"); 1420 MODULE_DESCRIPTION("SPI Transport Attributes"); 1421 MODULE_LICENSE("GPL"); 1422 1423 module_init(spi_transport_init); 1424 module_exit(spi_transport_exit); 1425