1 /* 2 * Parallel SCSI (SPI) transport specific attributes exported to sysfs. 3 * 4 * Copyright (c) 2003 Silicon Graphics, Inc. All rights reserved. 5 * Copyright (c) 2004, 2005 James Bottomley <James.Bottomley@SteelEye.com> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; if not, write to the Free Software 19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 20 */ 21 #include <linux/config.h> 22 #include <linux/ctype.h> 23 #include <linux/init.h> 24 #include <linux/module.h> 25 #include <linux/workqueue.h> 26 #include <linux/blkdev.h> 27 #include <linux/mutex.h> 28 #include <scsi/scsi.h> 29 #include "scsi_priv.h" 30 #include <scsi/scsi_device.h> 31 #include <scsi/scsi_host.h> 32 #include <scsi/scsi_cmnd.h> 33 #include <scsi/scsi_eh.h> 34 #include <scsi/scsi_transport.h> 35 #include <scsi/scsi_transport_spi.h> 36 37 #define SPI_NUM_ATTRS 14 /* increase this if you add attributes */ 38 #define SPI_OTHER_ATTRS 1 /* Increase this if you add "always 39 * on" attributes */ 40 #define SPI_HOST_ATTRS 1 41 42 #define SPI_MAX_ECHO_BUFFER_SIZE 4096 43 44 #define DV_LOOPS 3 45 #define DV_TIMEOUT (10*HZ) 46 #define DV_RETRIES 3 /* should only need at most 47 * two cc/ua clears */ 48 49 /* Private data accessors (keep these out of the header file) */ 50 #define spi_dv_pending(x) (((struct spi_transport_attrs *)&(x)->starget_data)->dv_pending) 51 #define spi_dv_mutex(x) (((struct spi_transport_attrs *)&(x)->starget_data)->dv_mutex) 52 53 struct spi_internal { 54 struct scsi_transport_template t; 55 struct spi_function_template *f; 56 /* The actual attributes */ 57 struct class_device_attribute private_attrs[SPI_NUM_ATTRS]; 58 /* The array of null terminated pointers to attributes 59 * needed by scsi_sysfs.c */ 60 struct class_device_attribute *attrs[SPI_NUM_ATTRS + SPI_OTHER_ATTRS + 1]; 61 struct class_device_attribute private_host_attrs[SPI_HOST_ATTRS]; 62 struct class_device_attribute *host_attrs[SPI_HOST_ATTRS + 1]; 63 }; 64 65 #define to_spi_internal(tmpl) container_of(tmpl, struct spi_internal, t) 66 67 static const int ppr_to_ps[] = { 68 /* The PPR values 0-6 are reserved, fill them in when 69 * the committee defines them */ 70 -1, /* 0x00 */ 71 -1, /* 0x01 */ 72 -1, /* 0x02 */ 73 -1, /* 0x03 */ 74 -1, /* 0x04 */ 75 -1, /* 0x05 */ 76 -1, /* 0x06 */ 77 3125, /* 0x07 */ 78 6250, /* 0x08 */ 79 12500, /* 0x09 */ 80 25000, /* 0x0a */ 81 30300, /* 0x0b */ 82 50000, /* 0x0c */ 83 }; 84 /* The PPR values at which you calculate the period in ns by multiplying 85 * by 4 */ 86 #define SPI_STATIC_PPR 0x0c 87 88 static int sprint_frac(char *dest, int value, int denom) 89 { 90 int frac = value % denom; 91 int result = sprintf(dest, "%d", value / denom); 92 93 if (frac == 0) 94 return result; 95 dest[result++] = '.'; 96 97 do { 98 denom /= 10; 99 sprintf(dest + result, "%d", frac / denom); 100 result++; 101 frac %= denom; 102 } while (frac); 103 104 dest[result++] = '\0'; 105 return result; 106 } 107 108 static int spi_execute(struct scsi_device *sdev, const void *cmd, 109 enum dma_data_direction dir, 110 void *buffer, unsigned bufflen, 111 struct scsi_sense_hdr *sshdr) 112 { 113 int i, result; 114 unsigned char sense[SCSI_SENSE_BUFFERSIZE]; 115 116 for(i = 0; i < DV_RETRIES; i++) { 117 result = scsi_execute(sdev, cmd, dir, buffer, bufflen, 118 sense, DV_TIMEOUT, /* retries */ 1, 119 REQ_FAILFAST); 120 if (result & DRIVER_SENSE) { 121 struct scsi_sense_hdr sshdr_tmp; 122 if (!sshdr) 123 sshdr = &sshdr_tmp; 124 125 if (scsi_normalize_sense(sense, sizeof(*sense), 126 sshdr) 127 && sshdr->sense_key == UNIT_ATTENTION) 128 continue; 129 } 130 break; 131 } 132 return result; 133 } 134 135 static struct { 136 enum spi_signal_type value; 137 char *name; 138 } signal_types[] = { 139 { SPI_SIGNAL_UNKNOWN, "unknown" }, 140 { SPI_SIGNAL_SE, "SE" }, 141 { SPI_SIGNAL_LVD, "LVD" }, 142 { SPI_SIGNAL_HVD, "HVD" }, 143 }; 144 145 static inline const char *spi_signal_to_string(enum spi_signal_type type) 146 { 147 int i; 148 149 for (i = 0; i < ARRAY_SIZE(signal_types); i++) { 150 if (type == signal_types[i].value) 151 return signal_types[i].name; 152 } 153 return NULL; 154 } 155 static inline enum spi_signal_type spi_signal_to_value(const char *name) 156 { 157 int i, len; 158 159 for (i = 0; i < ARRAY_SIZE(signal_types); i++) { 160 len = strlen(signal_types[i].name); 161 if (strncmp(name, signal_types[i].name, len) == 0 && 162 (name[len] == '\n' || name[len] == '\0')) 163 return signal_types[i].value; 164 } 165 return SPI_SIGNAL_UNKNOWN; 166 } 167 168 static int spi_host_setup(struct transport_container *tc, struct device *dev, 169 struct class_device *cdev) 170 { 171 struct Scsi_Host *shost = dev_to_shost(dev); 172 173 spi_signalling(shost) = SPI_SIGNAL_UNKNOWN; 174 175 return 0; 176 } 177 178 static DECLARE_TRANSPORT_CLASS(spi_host_class, 179 "spi_host", 180 spi_host_setup, 181 NULL, 182 NULL); 183 184 static int spi_host_match(struct attribute_container *cont, 185 struct device *dev) 186 { 187 struct Scsi_Host *shost; 188 struct spi_internal *i; 189 190 if (!scsi_is_host_device(dev)) 191 return 0; 192 193 shost = dev_to_shost(dev); 194 if (!shost->transportt || shost->transportt->host_attrs.ac.class 195 != &spi_host_class.class) 196 return 0; 197 198 i = to_spi_internal(shost->transportt); 199 200 return &i->t.host_attrs.ac == cont; 201 } 202 203 static int spi_device_configure(struct transport_container *tc, 204 struct device *dev, 205 struct class_device *cdev) 206 { 207 struct scsi_device *sdev = to_scsi_device(dev); 208 struct scsi_target *starget = sdev->sdev_target; 209 210 /* Populate the target capability fields with the values 211 * gleaned from the device inquiry */ 212 213 spi_support_sync(starget) = scsi_device_sync(sdev); 214 spi_support_wide(starget) = scsi_device_wide(sdev); 215 spi_support_dt(starget) = scsi_device_dt(sdev); 216 spi_support_dt_only(starget) = scsi_device_dt_only(sdev); 217 spi_support_ius(starget) = scsi_device_ius(sdev); 218 spi_support_qas(starget) = scsi_device_qas(sdev); 219 220 return 0; 221 } 222 223 static int spi_setup_transport_attrs(struct transport_container *tc, 224 struct device *dev, 225 struct class_device *cdev) 226 { 227 struct scsi_target *starget = to_scsi_target(dev); 228 229 spi_period(starget) = -1; /* illegal value */ 230 spi_min_period(starget) = 0; 231 spi_offset(starget) = 0; /* async */ 232 spi_max_offset(starget) = 255; 233 spi_width(starget) = 0; /* narrow */ 234 spi_max_width(starget) = 1; 235 spi_iu(starget) = 0; /* no IU */ 236 spi_dt(starget) = 0; /* ST */ 237 spi_qas(starget) = 0; 238 spi_wr_flow(starget) = 0; 239 spi_rd_strm(starget) = 0; 240 spi_rti(starget) = 0; 241 spi_pcomp_en(starget) = 0; 242 spi_hold_mcs(starget) = 0; 243 spi_dv_pending(starget) = 0; 244 spi_initial_dv(starget) = 0; 245 mutex_init(&spi_dv_mutex(starget)); 246 247 return 0; 248 } 249 250 #define spi_transport_show_simple(field, format_string) \ 251 \ 252 static ssize_t \ 253 show_spi_transport_##field(struct class_device *cdev, char *buf) \ 254 { \ 255 struct scsi_target *starget = transport_class_to_starget(cdev); \ 256 struct spi_transport_attrs *tp; \ 257 \ 258 tp = (struct spi_transport_attrs *)&starget->starget_data; \ 259 return snprintf(buf, 20, format_string, tp->field); \ 260 } 261 262 #define spi_transport_store_simple(field, format_string) \ 263 \ 264 static ssize_t \ 265 store_spi_transport_##field(struct class_device *cdev, const char *buf, \ 266 size_t count) \ 267 { \ 268 int val; \ 269 struct scsi_target *starget = transport_class_to_starget(cdev); \ 270 struct spi_transport_attrs *tp; \ 271 \ 272 tp = (struct spi_transport_attrs *)&starget->starget_data; \ 273 val = simple_strtoul(buf, NULL, 0); \ 274 tp->field = val; \ 275 return count; \ 276 } 277 278 #define spi_transport_show_function(field, format_string) \ 279 \ 280 static ssize_t \ 281 show_spi_transport_##field(struct class_device *cdev, char *buf) \ 282 { \ 283 struct scsi_target *starget = transport_class_to_starget(cdev); \ 284 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); \ 285 struct spi_transport_attrs *tp; \ 286 struct spi_internal *i = to_spi_internal(shost->transportt); \ 287 tp = (struct spi_transport_attrs *)&starget->starget_data; \ 288 if (i->f->get_##field) \ 289 i->f->get_##field(starget); \ 290 return snprintf(buf, 20, format_string, tp->field); \ 291 } 292 293 #define spi_transport_store_function(field, format_string) \ 294 static ssize_t \ 295 store_spi_transport_##field(struct class_device *cdev, const char *buf, \ 296 size_t count) \ 297 { \ 298 int val; \ 299 struct scsi_target *starget = transport_class_to_starget(cdev); \ 300 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); \ 301 struct spi_internal *i = to_spi_internal(shost->transportt); \ 302 \ 303 val = simple_strtoul(buf, NULL, 0); \ 304 i->f->set_##field(starget, val); \ 305 return count; \ 306 } 307 308 #define spi_transport_store_max(field, format_string) \ 309 static ssize_t \ 310 store_spi_transport_##field(struct class_device *cdev, const char *buf, \ 311 size_t count) \ 312 { \ 313 int val; \ 314 struct scsi_target *starget = transport_class_to_starget(cdev); \ 315 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); \ 316 struct spi_internal *i = to_spi_internal(shost->transportt); \ 317 struct spi_transport_attrs *tp \ 318 = (struct spi_transport_attrs *)&starget->starget_data; \ 319 \ 320 val = simple_strtoul(buf, NULL, 0); \ 321 if (val > tp->max_##field) \ 322 val = tp->max_##field; \ 323 i->f->set_##field(starget, val); \ 324 return count; \ 325 } 326 327 #define spi_transport_rd_attr(field, format_string) \ 328 spi_transport_show_function(field, format_string) \ 329 spi_transport_store_function(field, format_string) \ 330 static CLASS_DEVICE_ATTR(field, S_IRUGO | S_IWUSR, \ 331 show_spi_transport_##field, \ 332 store_spi_transport_##field); 333 334 #define spi_transport_simple_attr(field, format_string) \ 335 spi_transport_show_simple(field, format_string) \ 336 spi_transport_store_simple(field, format_string) \ 337 static CLASS_DEVICE_ATTR(field, S_IRUGO | S_IWUSR, \ 338 show_spi_transport_##field, \ 339 store_spi_transport_##field); 340 341 #define spi_transport_max_attr(field, format_string) \ 342 spi_transport_show_function(field, format_string) \ 343 spi_transport_store_max(field, format_string) \ 344 spi_transport_simple_attr(max_##field, format_string) \ 345 static CLASS_DEVICE_ATTR(field, S_IRUGO | S_IWUSR, \ 346 show_spi_transport_##field, \ 347 store_spi_transport_##field); 348 349 /* The Parallel SCSI Tranport Attributes: */ 350 spi_transport_max_attr(offset, "%d\n"); 351 spi_transport_max_attr(width, "%d\n"); 352 spi_transport_rd_attr(iu, "%d\n"); 353 spi_transport_rd_attr(dt, "%d\n"); 354 spi_transport_rd_attr(qas, "%d\n"); 355 spi_transport_rd_attr(wr_flow, "%d\n"); 356 spi_transport_rd_attr(rd_strm, "%d\n"); 357 spi_transport_rd_attr(rti, "%d\n"); 358 spi_transport_rd_attr(pcomp_en, "%d\n"); 359 spi_transport_rd_attr(hold_mcs, "%d\n"); 360 361 /* we only care about the first child device so we return 1 */ 362 static int child_iter(struct device *dev, void *data) 363 { 364 struct scsi_device *sdev = to_scsi_device(dev); 365 366 spi_dv_device(sdev); 367 return 1; 368 } 369 370 static ssize_t 371 store_spi_revalidate(struct class_device *cdev, const char *buf, size_t count) 372 { 373 struct scsi_target *starget = transport_class_to_starget(cdev); 374 375 device_for_each_child(&starget->dev, NULL, child_iter); 376 return count; 377 } 378 static CLASS_DEVICE_ATTR(revalidate, S_IWUSR, NULL, store_spi_revalidate); 379 380 /* Translate the period into ns according to the current spec 381 * for SDTR/PPR messages */ 382 static int period_to_str(char *buf, int period) 383 { 384 int len, picosec; 385 386 if (period < 0 || period > 0xff) { 387 picosec = -1; 388 } else if (period <= SPI_STATIC_PPR) { 389 picosec = ppr_to_ps[period]; 390 } else { 391 picosec = period * 4000; 392 } 393 394 if (picosec == -1) { 395 len = sprintf(buf, "reserved"); 396 } else { 397 len = sprint_frac(buf, picosec, 1000); 398 } 399 400 return len; 401 } 402 403 static ssize_t 404 show_spi_transport_period_helper(char *buf, int period) 405 { 406 int len = period_to_str(buf, period); 407 buf[len++] = '\n'; 408 buf[len] = '\0'; 409 return len; 410 } 411 412 static ssize_t 413 store_spi_transport_period_helper(struct class_device *cdev, const char *buf, 414 size_t count, int *periodp) 415 { 416 int j, picosec, period = -1; 417 char *endp; 418 419 picosec = simple_strtoul(buf, &endp, 10) * 1000; 420 if (*endp == '.') { 421 int mult = 100; 422 do { 423 endp++; 424 if (!isdigit(*endp)) 425 break; 426 picosec += (*endp - '0') * mult; 427 mult /= 10; 428 } while (mult > 0); 429 } 430 431 for (j = 0; j <= SPI_STATIC_PPR; j++) { 432 if (ppr_to_ps[j] < picosec) 433 continue; 434 period = j; 435 break; 436 } 437 438 if (period == -1) 439 period = picosec / 4000; 440 441 if (period > 0xff) 442 period = 0xff; 443 444 *periodp = period; 445 446 return count; 447 } 448 449 static ssize_t 450 show_spi_transport_period(struct class_device *cdev, char *buf) 451 { 452 struct scsi_target *starget = transport_class_to_starget(cdev); 453 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); 454 struct spi_internal *i = to_spi_internal(shost->transportt); 455 struct spi_transport_attrs *tp = 456 (struct spi_transport_attrs *)&starget->starget_data; 457 458 if (i->f->get_period) 459 i->f->get_period(starget); 460 461 return show_spi_transport_period_helper(buf, tp->period); 462 } 463 464 static ssize_t 465 store_spi_transport_period(struct class_device *cdev, const char *buf, 466 size_t count) 467 { 468 struct scsi_target *starget = transport_class_to_starget(cdev); 469 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); 470 struct spi_internal *i = to_spi_internal(shost->transportt); 471 struct spi_transport_attrs *tp = 472 (struct spi_transport_attrs *)&starget->starget_data; 473 int period, retval; 474 475 retval = store_spi_transport_period_helper(cdev, buf, count, &period); 476 477 if (period < tp->min_period) 478 period = tp->min_period; 479 480 i->f->set_period(starget, period); 481 482 return retval; 483 } 484 485 static CLASS_DEVICE_ATTR(period, S_IRUGO | S_IWUSR, 486 show_spi_transport_period, 487 store_spi_transport_period); 488 489 static ssize_t 490 show_spi_transport_min_period(struct class_device *cdev, char *buf) 491 { 492 struct scsi_target *starget = transport_class_to_starget(cdev); 493 struct spi_transport_attrs *tp = 494 (struct spi_transport_attrs *)&starget->starget_data; 495 496 return show_spi_transport_period_helper(buf, tp->min_period); 497 } 498 499 static ssize_t 500 store_spi_transport_min_period(struct class_device *cdev, const char *buf, 501 size_t count) 502 { 503 struct scsi_target *starget = transport_class_to_starget(cdev); 504 struct spi_transport_attrs *tp = 505 (struct spi_transport_attrs *)&starget->starget_data; 506 507 return store_spi_transport_period_helper(cdev, buf, count, 508 &tp->min_period); 509 } 510 511 512 static CLASS_DEVICE_ATTR(min_period, S_IRUGO | S_IWUSR, 513 show_spi_transport_min_period, 514 store_spi_transport_min_period); 515 516 517 static ssize_t show_spi_host_signalling(struct class_device *cdev, char *buf) 518 { 519 struct Scsi_Host *shost = transport_class_to_shost(cdev); 520 struct spi_internal *i = to_spi_internal(shost->transportt); 521 522 if (i->f->get_signalling) 523 i->f->get_signalling(shost); 524 525 return sprintf(buf, "%s\n", spi_signal_to_string(spi_signalling(shost))); 526 } 527 static ssize_t store_spi_host_signalling(struct class_device *cdev, 528 const char *buf, size_t count) 529 { 530 struct Scsi_Host *shost = transport_class_to_shost(cdev); 531 struct spi_internal *i = to_spi_internal(shost->transportt); 532 enum spi_signal_type type = spi_signal_to_value(buf); 533 534 if (type != SPI_SIGNAL_UNKNOWN) 535 i->f->set_signalling(shost, type); 536 537 return count; 538 } 539 static CLASS_DEVICE_ATTR(signalling, S_IRUGO | S_IWUSR, 540 show_spi_host_signalling, 541 store_spi_host_signalling); 542 543 #define DV_SET(x, y) \ 544 if(i->f->set_##x) \ 545 i->f->set_##x(sdev->sdev_target, y) 546 547 enum spi_compare_returns { 548 SPI_COMPARE_SUCCESS, 549 SPI_COMPARE_FAILURE, 550 SPI_COMPARE_SKIP_TEST, 551 }; 552 553 554 /* This is for read/write Domain Validation: If the device supports 555 * an echo buffer, we do read/write tests to it */ 556 static enum spi_compare_returns 557 spi_dv_device_echo_buffer(struct scsi_device *sdev, u8 *buffer, 558 u8 *ptr, const int retries) 559 { 560 int len = ptr - buffer; 561 int j, k, r, result; 562 unsigned int pattern = 0x0000ffff; 563 struct scsi_sense_hdr sshdr; 564 565 const char spi_write_buffer[] = { 566 WRITE_BUFFER, 0x0a, 0, 0, 0, 0, 0, len >> 8, len & 0xff, 0 567 }; 568 const char spi_read_buffer[] = { 569 READ_BUFFER, 0x0a, 0, 0, 0, 0, 0, len >> 8, len & 0xff, 0 570 }; 571 572 /* set up the pattern buffer. Doesn't matter if we spill 573 * slightly beyond since that's where the read buffer is */ 574 for (j = 0; j < len; ) { 575 576 /* fill the buffer with counting (test a) */ 577 for ( ; j < min(len, 32); j++) 578 buffer[j] = j; 579 k = j; 580 /* fill the buffer with alternating words of 0x0 and 581 * 0xffff (test b) */ 582 for ( ; j < min(len, k + 32); j += 2) { 583 u16 *word = (u16 *)&buffer[j]; 584 585 *word = (j & 0x02) ? 0x0000 : 0xffff; 586 } 587 k = j; 588 /* fill with crosstalk (alternating 0x5555 0xaaa) 589 * (test c) */ 590 for ( ; j < min(len, k + 32); j += 2) { 591 u16 *word = (u16 *)&buffer[j]; 592 593 *word = (j & 0x02) ? 0x5555 : 0xaaaa; 594 } 595 k = j; 596 /* fill with shifting bits (test d) */ 597 for ( ; j < min(len, k + 32); j += 4) { 598 u32 *word = (unsigned int *)&buffer[j]; 599 u32 roll = (pattern & 0x80000000) ? 1 : 0; 600 601 *word = pattern; 602 pattern = (pattern << 1) | roll; 603 } 604 /* don't bother with random data (test e) */ 605 } 606 607 for (r = 0; r < retries; r++) { 608 result = spi_execute(sdev, spi_write_buffer, DMA_TO_DEVICE, 609 buffer, len, &sshdr); 610 if(result || !scsi_device_online(sdev)) { 611 612 scsi_device_set_state(sdev, SDEV_QUIESCE); 613 if (scsi_sense_valid(&sshdr) 614 && sshdr.sense_key == ILLEGAL_REQUEST 615 /* INVALID FIELD IN CDB */ 616 && sshdr.asc == 0x24 && sshdr.ascq == 0x00) 617 /* This would mean that the drive lied 618 * to us about supporting an echo 619 * buffer (unfortunately some Western 620 * Digital drives do precisely this) 621 */ 622 return SPI_COMPARE_SKIP_TEST; 623 624 625 sdev_printk(KERN_ERR, sdev, "Write Buffer failure %x\n", result); 626 return SPI_COMPARE_FAILURE; 627 } 628 629 memset(ptr, 0, len); 630 spi_execute(sdev, spi_read_buffer, DMA_FROM_DEVICE, 631 ptr, len, NULL); 632 scsi_device_set_state(sdev, SDEV_QUIESCE); 633 634 if (memcmp(buffer, ptr, len) != 0) 635 return SPI_COMPARE_FAILURE; 636 } 637 return SPI_COMPARE_SUCCESS; 638 } 639 640 /* This is for the simplest form of Domain Validation: a read test 641 * on the inquiry data from the device */ 642 static enum spi_compare_returns 643 spi_dv_device_compare_inquiry(struct scsi_device *sdev, u8 *buffer, 644 u8 *ptr, const int retries) 645 { 646 int r, result; 647 const int len = sdev->inquiry_len; 648 const char spi_inquiry[] = { 649 INQUIRY, 0, 0, 0, len, 0 650 }; 651 652 for (r = 0; r < retries; r++) { 653 memset(ptr, 0, len); 654 655 result = spi_execute(sdev, spi_inquiry, DMA_FROM_DEVICE, 656 ptr, len, NULL); 657 658 if(result || !scsi_device_online(sdev)) { 659 scsi_device_set_state(sdev, SDEV_QUIESCE); 660 return SPI_COMPARE_FAILURE; 661 } 662 663 /* If we don't have the inquiry data already, the 664 * first read gets it */ 665 if (ptr == buffer) { 666 ptr += len; 667 --r; 668 continue; 669 } 670 671 if (memcmp(buffer, ptr, len) != 0) 672 /* failure */ 673 return SPI_COMPARE_FAILURE; 674 } 675 return SPI_COMPARE_SUCCESS; 676 } 677 678 static enum spi_compare_returns 679 spi_dv_retrain(struct scsi_device *sdev, u8 *buffer, u8 *ptr, 680 enum spi_compare_returns 681 (*compare_fn)(struct scsi_device *, u8 *, u8 *, int)) 682 { 683 struct spi_internal *i = to_spi_internal(sdev->host->transportt); 684 struct scsi_target *starget = sdev->sdev_target; 685 int period = 0, prevperiod = 0; 686 enum spi_compare_returns retval; 687 688 689 for (;;) { 690 int newperiod; 691 retval = compare_fn(sdev, buffer, ptr, DV_LOOPS); 692 693 if (retval == SPI_COMPARE_SUCCESS 694 || retval == SPI_COMPARE_SKIP_TEST) 695 break; 696 697 /* OK, retrain, fallback */ 698 if (i->f->get_iu) 699 i->f->get_iu(starget); 700 if (i->f->get_qas) 701 i->f->get_qas(starget); 702 if (i->f->get_period) 703 i->f->get_period(sdev->sdev_target); 704 705 /* Here's the fallback sequence; first try turning off 706 * IU, then QAS (if we can control them), then finally 707 * fall down the periods */ 708 if (i->f->set_iu && spi_iu(starget)) { 709 starget_printk(KERN_ERR, starget, "Domain Validation Disabing Information Units\n"); 710 DV_SET(iu, 0); 711 } else if (i->f->set_qas && spi_qas(starget)) { 712 starget_printk(KERN_ERR, starget, "Domain Validation Disabing Quick Arbitration and Selection\n"); 713 DV_SET(qas, 0); 714 } else { 715 newperiod = spi_period(starget); 716 period = newperiod > period ? newperiod : period; 717 if (period < 0x0d) 718 period++; 719 else 720 period += period >> 1; 721 722 if (unlikely(period > 0xff || period == prevperiod)) { 723 /* Total failure; set to async and return */ 724 starget_printk(KERN_ERR, starget, "Domain Validation Failure, dropping back to Asynchronous\n"); 725 DV_SET(offset, 0); 726 return SPI_COMPARE_FAILURE; 727 } 728 starget_printk(KERN_ERR, starget, "Domain Validation detected failure, dropping back\n"); 729 DV_SET(period, period); 730 prevperiod = period; 731 } 732 } 733 return retval; 734 } 735 736 static int 737 spi_dv_device_get_echo_buffer(struct scsi_device *sdev, u8 *buffer) 738 { 739 int l, result; 740 741 /* first off do a test unit ready. This can error out 742 * because of reservations or some other reason. If it 743 * fails, the device won't let us write to the echo buffer 744 * so just return failure */ 745 746 const char spi_test_unit_ready[] = { 747 TEST_UNIT_READY, 0, 0, 0, 0, 0 748 }; 749 750 const char spi_read_buffer_descriptor[] = { 751 READ_BUFFER, 0x0b, 0, 0, 0, 0, 0, 0, 4, 0 752 }; 753 754 755 /* We send a set of three TURs to clear any outstanding 756 * unit attention conditions if they exist (Otherwise the 757 * buffer tests won't be happy). If the TUR still fails 758 * (reservation conflict, device not ready, etc) just 759 * skip the write tests */ 760 for (l = 0; ; l++) { 761 result = spi_execute(sdev, spi_test_unit_ready, DMA_NONE, 762 NULL, 0, NULL); 763 764 if(result) { 765 if(l >= 3) 766 return 0; 767 } else { 768 /* TUR succeeded */ 769 break; 770 } 771 } 772 773 result = spi_execute(sdev, spi_read_buffer_descriptor, 774 DMA_FROM_DEVICE, buffer, 4, NULL); 775 776 if (result) 777 /* Device has no echo buffer */ 778 return 0; 779 780 return buffer[3] + ((buffer[2] & 0x1f) << 8); 781 } 782 783 static void 784 spi_dv_device_internal(struct scsi_device *sdev, u8 *buffer) 785 { 786 struct spi_internal *i = to_spi_internal(sdev->host->transportt); 787 struct scsi_target *starget = sdev->sdev_target; 788 struct Scsi_Host *shost = sdev->host; 789 int len = sdev->inquiry_len; 790 /* first set us up for narrow async */ 791 DV_SET(offset, 0); 792 DV_SET(width, 0); 793 794 if (spi_dv_device_compare_inquiry(sdev, buffer, buffer, DV_LOOPS) 795 != SPI_COMPARE_SUCCESS) { 796 starget_printk(KERN_ERR, starget, "Domain Validation Initial Inquiry Failed\n"); 797 /* FIXME: should probably offline the device here? */ 798 return; 799 } 800 801 /* test width */ 802 if (i->f->set_width && spi_max_width(starget) && 803 scsi_device_wide(sdev)) { 804 i->f->set_width(starget, 1); 805 806 if (spi_dv_device_compare_inquiry(sdev, buffer, 807 buffer + len, 808 DV_LOOPS) 809 != SPI_COMPARE_SUCCESS) { 810 starget_printk(KERN_ERR, starget, "Wide Transfers Fail\n"); 811 i->f->set_width(starget, 0); 812 } 813 } 814 815 if (!i->f->set_period) 816 return; 817 818 /* device can't handle synchronous */ 819 if (!scsi_device_sync(sdev) && !scsi_device_dt(sdev)) 820 return; 821 822 /* len == -1 is the signal that we need to ascertain the 823 * presence of an echo buffer before trying to use it. len == 824 * 0 means we don't have an echo buffer */ 825 len = -1; 826 827 retry: 828 829 /* now set up to the maximum */ 830 DV_SET(offset, spi_max_offset(starget)); 831 DV_SET(period, spi_min_period(starget)); 832 /* try QAS requests; this should be harmless to set if the 833 * target supports it */ 834 if (scsi_device_qas(sdev)) 835 DV_SET(qas, 1); 836 /* Also try IU transfers */ 837 if (scsi_device_ius(sdev)) 838 DV_SET(iu, 1); 839 if (spi_min_period(starget) < 9) { 840 /* This u320 (or u640). Ignore the coupled parameters 841 * like DT and IU, but set the optional ones */ 842 DV_SET(rd_strm, 1); 843 DV_SET(wr_flow, 1); 844 DV_SET(rti, 1); 845 if (spi_min_period(starget) == 8) 846 DV_SET(pcomp_en, 1); 847 } 848 /* now that we've done all this, actually check the bus 849 * signal type (if known). Some devices are stupid on 850 * a SE bus and still claim they can try LVD only settings */ 851 if (i->f->get_signalling) 852 i->f->get_signalling(shost); 853 if (spi_signalling(shost) == SPI_SIGNAL_SE || 854 spi_signalling(shost) == SPI_SIGNAL_HVD) 855 DV_SET(dt, 0); 856 /* Do the read only INQUIRY tests */ 857 spi_dv_retrain(sdev, buffer, buffer + sdev->inquiry_len, 858 spi_dv_device_compare_inquiry); 859 /* See if we actually managed to negotiate and sustain DT */ 860 if (i->f->get_dt) 861 i->f->get_dt(starget); 862 863 /* see if the device has an echo buffer. If it does we can do 864 * the SPI pattern write tests. Because of some broken 865 * devices, we *only* try this on a device that has actually 866 * negotiated DT */ 867 868 if (len == -1 && spi_dt(starget)) 869 len = spi_dv_device_get_echo_buffer(sdev, buffer); 870 871 if (len <= 0) { 872 starget_printk(KERN_INFO, starget, "Domain Validation skipping write tests\n"); 873 return; 874 } 875 876 if (len > SPI_MAX_ECHO_BUFFER_SIZE) { 877 starget_printk(KERN_WARNING, starget, "Echo buffer size %d is too big, trimming to %d\n", len, SPI_MAX_ECHO_BUFFER_SIZE); 878 len = SPI_MAX_ECHO_BUFFER_SIZE; 879 } 880 881 if (spi_dv_retrain(sdev, buffer, buffer + len, 882 spi_dv_device_echo_buffer) 883 == SPI_COMPARE_SKIP_TEST) { 884 /* OK, the stupid drive can't do a write echo buffer 885 * test after all, fall back to the read tests */ 886 len = 0; 887 goto retry; 888 } 889 } 890 891 892 /** spi_dv_device - Do Domain Validation on the device 893 * @sdev: scsi device to validate 894 * 895 * Performs the domain validation on the given device in the 896 * current execution thread. Since DV operations may sleep, 897 * the current thread must have user context. Also no SCSI 898 * related locks that would deadlock I/O issued by the DV may 899 * be held. 900 */ 901 void 902 spi_dv_device(struct scsi_device *sdev) 903 { 904 struct scsi_target *starget = sdev->sdev_target; 905 u8 *buffer; 906 const int len = SPI_MAX_ECHO_BUFFER_SIZE*2; 907 908 if (unlikely(scsi_device_get(sdev))) 909 return; 910 911 buffer = kzalloc(len, GFP_KERNEL); 912 913 if (unlikely(!buffer)) 914 goto out_put; 915 916 /* We need to verify that the actual device will quiesce; the 917 * later target quiesce is just a nice to have */ 918 if (unlikely(scsi_device_quiesce(sdev))) 919 goto out_free; 920 921 scsi_target_quiesce(starget); 922 923 spi_dv_pending(starget) = 1; 924 mutex_lock(&spi_dv_mutex(starget)); 925 926 starget_printk(KERN_INFO, starget, "Beginning Domain Validation\n"); 927 928 spi_dv_device_internal(sdev, buffer); 929 930 starget_printk(KERN_INFO, starget, "Ending Domain Validation\n"); 931 932 mutex_unlock(&spi_dv_mutex(starget)); 933 spi_dv_pending(starget) = 0; 934 935 scsi_target_resume(starget); 936 937 spi_initial_dv(starget) = 1; 938 939 out_free: 940 kfree(buffer); 941 out_put: 942 scsi_device_put(sdev); 943 } 944 EXPORT_SYMBOL(spi_dv_device); 945 946 struct work_queue_wrapper { 947 struct work_struct work; 948 struct scsi_device *sdev; 949 }; 950 951 static void 952 spi_dv_device_work_wrapper(void *data) 953 { 954 struct work_queue_wrapper *wqw = (struct work_queue_wrapper *)data; 955 struct scsi_device *sdev = wqw->sdev; 956 957 kfree(wqw); 958 spi_dv_device(sdev); 959 spi_dv_pending(sdev->sdev_target) = 0; 960 scsi_device_put(sdev); 961 } 962 963 964 /** 965 * spi_schedule_dv_device - schedule domain validation to occur on the device 966 * @sdev: The device to validate 967 * 968 * Identical to spi_dv_device() above, except that the DV will be 969 * scheduled to occur in a workqueue later. All memory allocations 970 * are atomic, so may be called from any context including those holding 971 * SCSI locks. 972 */ 973 void 974 spi_schedule_dv_device(struct scsi_device *sdev) 975 { 976 struct work_queue_wrapper *wqw = 977 kmalloc(sizeof(struct work_queue_wrapper), GFP_ATOMIC); 978 979 if (unlikely(!wqw)) 980 return; 981 982 if (unlikely(spi_dv_pending(sdev->sdev_target))) { 983 kfree(wqw); 984 return; 985 } 986 /* Set pending early (dv_device doesn't check it, only sets it) */ 987 spi_dv_pending(sdev->sdev_target) = 1; 988 if (unlikely(scsi_device_get(sdev))) { 989 kfree(wqw); 990 spi_dv_pending(sdev->sdev_target) = 0; 991 return; 992 } 993 994 INIT_WORK(&wqw->work, spi_dv_device_work_wrapper, wqw); 995 wqw->sdev = sdev; 996 997 schedule_work(&wqw->work); 998 } 999 EXPORT_SYMBOL(spi_schedule_dv_device); 1000 1001 /** 1002 * spi_display_xfer_agreement - Print the current target transfer agreement 1003 * @starget: The target for which to display the agreement 1004 * 1005 * Each SPI port is required to maintain a transfer agreement for each 1006 * other port on the bus. This function prints a one-line summary of 1007 * the current agreement; more detailed information is available in sysfs. 1008 */ 1009 void spi_display_xfer_agreement(struct scsi_target *starget) 1010 { 1011 struct spi_transport_attrs *tp; 1012 tp = (struct spi_transport_attrs *)&starget->starget_data; 1013 1014 if (tp->offset > 0 && tp->period > 0) { 1015 unsigned int picosec, kb100; 1016 char *scsi = "FAST-?"; 1017 char tmp[8]; 1018 1019 if (tp->period <= SPI_STATIC_PPR) { 1020 picosec = ppr_to_ps[tp->period]; 1021 switch (tp->period) { 1022 case 7: scsi = "FAST-320"; break; 1023 case 8: scsi = "FAST-160"; break; 1024 case 9: scsi = "FAST-80"; break; 1025 case 10: 1026 case 11: scsi = "FAST-40"; break; 1027 case 12: scsi = "FAST-20"; break; 1028 } 1029 } else { 1030 picosec = tp->period * 4000; 1031 if (tp->period < 25) 1032 scsi = "FAST-20"; 1033 else if (tp->period < 50) 1034 scsi = "FAST-10"; 1035 else 1036 scsi = "FAST-5"; 1037 } 1038 1039 kb100 = (10000000 + picosec / 2) / picosec; 1040 if (tp->width) 1041 kb100 *= 2; 1042 sprint_frac(tmp, picosec, 1000); 1043 1044 dev_info(&starget->dev, 1045 "%s %sSCSI %d.%d MB/s %s%s%s%s%s%s%s%s (%s ns, offset %d)\n", 1046 scsi, tp->width ? "WIDE " : "", kb100/10, kb100 % 10, 1047 tp->dt ? "DT" : "ST", 1048 tp->iu ? " IU" : "", 1049 tp->qas ? " QAS" : "", 1050 tp->rd_strm ? " RDSTRM" : "", 1051 tp->rti ? " RTI" : "", 1052 tp->wr_flow ? " WRFLOW" : "", 1053 tp->pcomp_en ? " PCOMP" : "", 1054 tp->hold_mcs ? " HMCS" : "", 1055 tmp, tp->offset); 1056 } else { 1057 dev_info(&starget->dev, "%sasynchronous\n", 1058 tp->width ? "wide " : ""); 1059 } 1060 } 1061 EXPORT_SYMBOL(spi_display_xfer_agreement); 1062 1063 int spi_populate_width_msg(unsigned char *msg, int width) 1064 { 1065 msg[0] = EXTENDED_MESSAGE; 1066 msg[1] = 2; 1067 msg[2] = EXTENDED_WDTR; 1068 msg[3] = width; 1069 return 4; 1070 } 1071 EXPORT_SYMBOL_GPL(spi_populate_width_msg); 1072 1073 int spi_populate_sync_msg(unsigned char *msg, int period, int offset) 1074 { 1075 msg[0] = EXTENDED_MESSAGE; 1076 msg[1] = 3; 1077 msg[2] = EXTENDED_SDTR; 1078 msg[3] = period; 1079 msg[4] = offset; 1080 return 5; 1081 } 1082 EXPORT_SYMBOL_GPL(spi_populate_sync_msg); 1083 1084 int spi_populate_ppr_msg(unsigned char *msg, int period, int offset, 1085 int width, int options) 1086 { 1087 msg[0] = EXTENDED_MESSAGE; 1088 msg[1] = 6; 1089 msg[2] = EXTENDED_PPR; 1090 msg[3] = period; 1091 msg[4] = 0; 1092 msg[5] = offset; 1093 msg[6] = width; 1094 msg[7] = options; 1095 return 8; 1096 } 1097 EXPORT_SYMBOL_GPL(spi_populate_ppr_msg); 1098 1099 #ifdef CONFIG_SCSI_CONSTANTS 1100 static const char * const one_byte_msgs[] = { 1101 /* 0x00 */ "Task Complete", NULL /* Extended Message */, "Save Pointers", 1102 /* 0x03 */ "Restore Pointers", "Disconnect", "Initiator Error", 1103 /* 0x06 */ "Abort Task Set", "Message Reject", "Nop", "Message Parity Error", 1104 /* 0x0a */ "Linked Command Complete", "Linked Command Complete w/flag", 1105 /* 0x0c */ "Target Reset", "Abort Task", "Clear Task Set", 1106 /* 0x0f */ "Initiate Recovery", "Release Recovery", 1107 /* 0x11 */ "Terminate Process", "Continue Task", "Target Transfer Disable", 1108 /* 0x14 */ NULL, NULL, "Clear ACA", "LUN Reset" 1109 }; 1110 1111 static const char * const two_byte_msgs[] = { 1112 /* 0x20 */ "Simple Queue Tag", "Head of Queue Tag", "Ordered Queue Tag", 1113 /* 0x23 */ "Ignore Wide Residue", "ACA" 1114 }; 1115 1116 static const char * const extended_msgs[] = { 1117 /* 0x00 */ "Modify Data Pointer", "Synchronous Data Transfer Request", 1118 /* 0x02 */ "SCSI-I Extended Identify", "Wide Data Transfer Request", 1119 /* 0x04 */ "Parallel Protocol Request", "Modify Bidirectional Data Pointer" 1120 }; 1121 1122 static void print_nego(const unsigned char *msg, int per, int off, int width) 1123 { 1124 if (per) { 1125 char buf[20]; 1126 period_to_str(buf, msg[per]); 1127 printk("period = %s ns ", buf); 1128 } 1129 1130 if (off) 1131 printk("offset = %d ", msg[off]); 1132 if (width) 1133 printk("width = %d ", 8 << msg[width]); 1134 } 1135 1136 static void print_ptr(const unsigned char *msg, int msb, const char *desc) 1137 { 1138 int ptr = (msg[msb] << 24) | (msg[msb+1] << 16) | (msg[msb+2] << 8) | 1139 msg[msb+3]; 1140 printk("%s = %d ", desc, ptr); 1141 } 1142 1143 int spi_print_msg(const unsigned char *msg) 1144 { 1145 int len = 1, i; 1146 if (msg[0] == EXTENDED_MESSAGE) { 1147 len = 2 + msg[1]; 1148 if (len == 2) 1149 len += 256; 1150 if (msg[2] < ARRAY_SIZE(extended_msgs)) 1151 printk ("%s ", extended_msgs[msg[2]]); 1152 else 1153 printk ("Extended Message, reserved code (0x%02x) ", 1154 (int) msg[2]); 1155 switch (msg[2]) { 1156 case EXTENDED_MODIFY_DATA_POINTER: 1157 print_ptr(msg, 3, "pointer"); 1158 break; 1159 case EXTENDED_SDTR: 1160 print_nego(msg, 3, 4, 0); 1161 break; 1162 case EXTENDED_WDTR: 1163 print_nego(msg, 0, 0, 3); 1164 break; 1165 case EXTENDED_PPR: 1166 print_nego(msg, 3, 5, 6); 1167 break; 1168 case EXTENDED_MODIFY_BIDI_DATA_PTR: 1169 print_ptr(msg, 3, "out"); 1170 print_ptr(msg, 7, "in"); 1171 break; 1172 default: 1173 for (i = 2; i < len; ++i) 1174 printk("%02x ", msg[i]); 1175 } 1176 /* Identify */ 1177 } else if (msg[0] & 0x80) { 1178 printk("Identify disconnect %sallowed %s %d ", 1179 (msg[0] & 0x40) ? "" : "not ", 1180 (msg[0] & 0x20) ? "target routine" : "lun", 1181 msg[0] & 0x7); 1182 /* Normal One byte */ 1183 } else if (msg[0] < 0x1f) { 1184 if (msg[0] < ARRAY_SIZE(one_byte_msgs) && one_byte_msgs[msg[0]]) 1185 printk("%s ", one_byte_msgs[msg[0]]); 1186 else 1187 printk("reserved (%02x) ", msg[0]); 1188 } else if (msg[0] == 0x55) { 1189 printk("QAS Request "); 1190 /* Two byte */ 1191 } else if (msg[0] <= 0x2f) { 1192 if ((msg[0] - 0x20) < ARRAY_SIZE(two_byte_msgs)) 1193 printk("%s %02x ", two_byte_msgs[msg[0] - 0x20], 1194 msg[1]); 1195 else 1196 printk("reserved two byte (%02x %02x) ", 1197 msg[0], msg[1]); 1198 len = 2; 1199 } else 1200 printk("reserved "); 1201 return len; 1202 } 1203 EXPORT_SYMBOL(spi_print_msg); 1204 1205 #else /* ifndef CONFIG_SCSI_CONSTANTS */ 1206 1207 int spi_print_msg(const unsigned char *msg) 1208 { 1209 int len = 1, i; 1210 1211 if (msg[0] == EXTENDED_MESSAGE) { 1212 len = 2 + msg[1]; 1213 if (len == 2) 1214 len += 256; 1215 for (i = 0; i < len; ++i) 1216 printk("%02x ", msg[i]); 1217 /* Identify */ 1218 } else if (msg[0] & 0x80) { 1219 printk("%02x ", msg[0]); 1220 /* Normal One byte */ 1221 } else if ((msg[0] < 0x1f) || (msg[0] == 0x55)) { 1222 printk("%02x ", msg[0]); 1223 /* Two byte */ 1224 } else if (msg[0] <= 0x2f) { 1225 printk("%02x %02x", msg[0], msg[1]); 1226 len = 2; 1227 } else 1228 printk("%02x ", msg[0]); 1229 return len; 1230 } 1231 EXPORT_SYMBOL(spi_print_msg); 1232 #endif /* ! CONFIG_SCSI_CONSTANTS */ 1233 1234 #define SETUP_ATTRIBUTE(field) \ 1235 i->private_attrs[count] = class_device_attr_##field; \ 1236 if (!i->f->set_##field) { \ 1237 i->private_attrs[count].attr.mode = S_IRUGO; \ 1238 i->private_attrs[count].store = NULL; \ 1239 } \ 1240 i->attrs[count] = &i->private_attrs[count]; \ 1241 if (i->f->show_##field) \ 1242 count++ 1243 1244 #define SETUP_RELATED_ATTRIBUTE(field, rel_field) \ 1245 i->private_attrs[count] = class_device_attr_##field; \ 1246 if (!i->f->set_##rel_field) { \ 1247 i->private_attrs[count].attr.mode = S_IRUGO; \ 1248 i->private_attrs[count].store = NULL; \ 1249 } \ 1250 i->attrs[count] = &i->private_attrs[count]; \ 1251 if (i->f->show_##rel_field) \ 1252 count++ 1253 1254 #define SETUP_HOST_ATTRIBUTE(field) \ 1255 i->private_host_attrs[count] = class_device_attr_##field; \ 1256 if (!i->f->set_##field) { \ 1257 i->private_host_attrs[count].attr.mode = S_IRUGO; \ 1258 i->private_host_attrs[count].store = NULL; \ 1259 } \ 1260 i->host_attrs[count] = &i->private_host_attrs[count]; \ 1261 count++ 1262 1263 static int spi_device_match(struct attribute_container *cont, 1264 struct device *dev) 1265 { 1266 struct scsi_device *sdev; 1267 struct Scsi_Host *shost; 1268 struct spi_internal *i; 1269 1270 if (!scsi_is_sdev_device(dev)) 1271 return 0; 1272 1273 sdev = to_scsi_device(dev); 1274 shost = sdev->host; 1275 if (!shost->transportt || shost->transportt->host_attrs.ac.class 1276 != &spi_host_class.class) 1277 return 0; 1278 /* Note: this class has no device attributes, so it has 1279 * no per-HBA allocation and thus we don't need to distinguish 1280 * the attribute containers for the device */ 1281 i = to_spi_internal(shost->transportt); 1282 if (i->f->deny_binding && i->f->deny_binding(sdev->sdev_target)) 1283 return 0; 1284 return 1; 1285 } 1286 1287 static int spi_target_match(struct attribute_container *cont, 1288 struct device *dev) 1289 { 1290 struct Scsi_Host *shost; 1291 struct scsi_target *starget; 1292 struct spi_internal *i; 1293 1294 if (!scsi_is_target_device(dev)) 1295 return 0; 1296 1297 shost = dev_to_shost(dev->parent); 1298 if (!shost->transportt || shost->transportt->host_attrs.ac.class 1299 != &spi_host_class.class) 1300 return 0; 1301 1302 i = to_spi_internal(shost->transportt); 1303 starget = to_scsi_target(dev); 1304 1305 if (i->f->deny_binding && i->f->deny_binding(starget)) 1306 return 0; 1307 1308 return &i->t.target_attrs.ac == cont; 1309 } 1310 1311 static DECLARE_TRANSPORT_CLASS(spi_transport_class, 1312 "spi_transport", 1313 spi_setup_transport_attrs, 1314 NULL, 1315 NULL); 1316 1317 static DECLARE_ANON_TRANSPORT_CLASS(spi_device_class, 1318 spi_device_match, 1319 spi_device_configure); 1320 1321 struct scsi_transport_template * 1322 spi_attach_transport(struct spi_function_template *ft) 1323 { 1324 int count = 0; 1325 struct spi_internal *i = kzalloc(sizeof(struct spi_internal), 1326 GFP_KERNEL); 1327 1328 if (unlikely(!i)) 1329 return NULL; 1330 1331 i->t.target_attrs.ac.class = &spi_transport_class.class; 1332 i->t.target_attrs.ac.attrs = &i->attrs[0]; 1333 i->t.target_attrs.ac.match = spi_target_match; 1334 transport_container_register(&i->t.target_attrs); 1335 i->t.target_size = sizeof(struct spi_transport_attrs); 1336 i->t.host_attrs.ac.class = &spi_host_class.class; 1337 i->t.host_attrs.ac.attrs = &i->host_attrs[0]; 1338 i->t.host_attrs.ac.match = spi_host_match; 1339 transport_container_register(&i->t.host_attrs); 1340 i->t.host_size = sizeof(struct spi_host_attrs); 1341 i->f = ft; 1342 1343 SETUP_ATTRIBUTE(period); 1344 SETUP_RELATED_ATTRIBUTE(min_period, period); 1345 SETUP_ATTRIBUTE(offset); 1346 SETUP_RELATED_ATTRIBUTE(max_offset, offset); 1347 SETUP_ATTRIBUTE(width); 1348 SETUP_RELATED_ATTRIBUTE(max_width, width); 1349 SETUP_ATTRIBUTE(iu); 1350 SETUP_ATTRIBUTE(dt); 1351 SETUP_ATTRIBUTE(qas); 1352 SETUP_ATTRIBUTE(wr_flow); 1353 SETUP_ATTRIBUTE(rd_strm); 1354 SETUP_ATTRIBUTE(rti); 1355 SETUP_ATTRIBUTE(pcomp_en); 1356 SETUP_ATTRIBUTE(hold_mcs); 1357 1358 /* if you add an attribute but forget to increase SPI_NUM_ATTRS 1359 * this bug will trigger */ 1360 BUG_ON(count > SPI_NUM_ATTRS); 1361 1362 i->attrs[count++] = &class_device_attr_revalidate; 1363 1364 i->attrs[count] = NULL; 1365 1366 count = 0; 1367 SETUP_HOST_ATTRIBUTE(signalling); 1368 1369 BUG_ON(count > SPI_HOST_ATTRS); 1370 1371 i->host_attrs[count] = NULL; 1372 1373 return &i->t; 1374 } 1375 EXPORT_SYMBOL(spi_attach_transport); 1376 1377 void spi_release_transport(struct scsi_transport_template *t) 1378 { 1379 struct spi_internal *i = to_spi_internal(t); 1380 1381 transport_container_unregister(&i->t.target_attrs); 1382 transport_container_unregister(&i->t.host_attrs); 1383 1384 kfree(i); 1385 } 1386 EXPORT_SYMBOL(spi_release_transport); 1387 1388 static __init int spi_transport_init(void) 1389 { 1390 int error = transport_class_register(&spi_transport_class); 1391 if (error) 1392 return error; 1393 error = anon_transport_class_register(&spi_device_class); 1394 return transport_class_register(&spi_host_class); 1395 } 1396 1397 static void __exit spi_transport_exit(void) 1398 { 1399 transport_class_unregister(&spi_transport_class); 1400 anon_transport_class_unregister(&spi_device_class); 1401 transport_class_unregister(&spi_host_class); 1402 } 1403 1404 MODULE_AUTHOR("Martin Hicks"); 1405 MODULE_DESCRIPTION("SPI Transport Attributes"); 1406 MODULE_LICENSE("GPL"); 1407 1408 module_init(spi_transport_init); 1409 module_exit(spi_transport_exit); 1410