1 /* 2 * Parallel SCSI (SPI) transport specific attributes exported to sysfs. 3 * 4 * Copyright (c) 2003 Silicon Graphics, Inc. All rights reserved. 5 * Copyright (c) 2004, 2005 James Bottomley <James.Bottomley@SteelEye.com> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; if not, write to the Free Software 19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 20 */ 21 #include <linux/ctype.h> 22 #include <linux/init.h> 23 #include <linux/module.h> 24 #include <linux/workqueue.h> 25 #include <linux/blkdev.h> 26 #include <asm/semaphore.h> 27 #include <scsi/scsi.h> 28 #include "scsi_priv.h" 29 #include <scsi/scsi_device.h> 30 #include <scsi/scsi_host.h> 31 #include <scsi/scsi_cmnd.h> 32 #include <scsi/scsi_eh.h> 33 #include <scsi/scsi_transport.h> 34 #include <scsi/scsi_transport_spi.h> 35 36 #define SPI_PRINTK(x, l, f, a...) dev_printk(l, &(x)->dev, f , ##a) 37 38 #define SPI_NUM_ATTRS 14 /* increase this if you add attributes */ 39 #define SPI_OTHER_ATTRS 1 /* Increase this if you add "always 40 * on" attributes */ 41 #define SPI_HOST_ATTRS 1 42 43 #define SPI_MAX_ECHO_BUFFER_SIZE 4096 44 45 #define DV_LOOPS 3 46 #define DV_TIMEOUT (10*HZ) 47 #define DV_RETRIES 3 /* should only need at most 48 * two cc/ua clears */ 49 50 /* Private data accessors (keep these out of the header file) */ 51 #define spi_dv_pending(x) (((struct spi_transport_attrs *)&(x)->starget_data)->dv_pending) 52 #define spi_dv_sem(x) (((struct spi_transport_attrs *)&(x)->starget_data)->dv_sem) 53 54 struct spi_internal { 55 struct scsi_transport_template t; 56 struct spi_function_template *f; 57 /* The actual attributes */ 58 struct class_device_attribute private_attrs[SPI_NUM_ATTRS]; 59 /* The array of null terminated pointers to attributes 60 * needed by scsi_sysfs.c */ 61 struct class_device_attribute *attrs[SPI_NUM_ATTRS + SPI_OTHER_ATTRS + 1]; 62 struct class_device_attribute private_host_attrs[SPI_HOST_ATTRS]; 63 struct class_device_attribute *host_attrs[SPI_HOST_ATTRS + 1]; 64 }; 65 66 #define to_spi_internal(tmpl) container_of(tmpl, struct spi_internal, t) 67 68 static const int ppr_to_ps[] = { 69 /* The PPR values 0-6 are reserved, fill them in when 70 * the committee defines them */ 71 -1, /* 0x00 */ 72 -1, /* 0x01 */ 73 -1, /* 0x02 */ 74 -1, /* 0x03 */ 75 -1, /* 0x04 */ 76 -1, /* 0x05 */ 77 -1, /* 0x06 */ 78 3125, /* 0x07 */ 79 6250, /* 0x08 */ 80 12500, /* 0x09 */ 81 25000, /* 0x0a */ 82 30300, /* 0x0b */ 83 50000, /* 0x0c */ 84 }; 85 /* The PPR values at which you calculate the period in ns by multiplying 86 * by 4 */ 87 #define SPI_STATIC_PPR 0x0c 88 89 static int sprint_frac(char *dest, int value, int denom) 90 { 91 int frac = value % denom; 92 int result = sprintf(dest, "%d", value / denom); 93 94 if (frac == 0) 95 return result; 96 dest[result++] = '.'; 97 98 do { 99 denom /= 10; 100 sprintf(dest + result, "%d", frac / denom); 101 result++; 102 frac %= denom; 103 } while (frac); 104 105 dest[result++] = '\0'; 106 return result; 107 } 108 109 static int spi_execute(struct scsi_device *sdev, const void *cmd, 110 enum dma_data_direction dir, 111 void *buffer, unsigned bufflen, 112 struct scsi_sense_hdr *sshdr) 113 { 114 int i, result; 115 unsigned char sense[SCSI_SENSE_BUFFERSIZE]; 116 117 for(i = 0; i < DV_RETRIES; i++) { 118 result = scsi_execute(sdev, cmd, dir, buffer, bufflen, 119 sense, DV_TIMEOUT, /* retries */ 1, 120 REQ_FAILFAST); 121 if (result & DRIVER_SENSE) { 122 struct scsi_sense_hdr sshdr_tmp; 123 if (!sshdr) 124 sshdr = &sshdr_tmp; 125 126 if (scsi_normalize_sense(sense, sizeof(*sense), 127 sshdr) 128 && sshdr->sense_key == UNIT_ATTENTION) 129 continue; 130 } 131 break; 132 } 133 return result; 134 } 135 136 static struct { 137 enum spi_signal_type value; 138 char *name; 139 } signal_types[] = { 140 { SPI_SIGNAL_UNKNOWN, "unknown" }, 141 { SPI_SIGNAL_SE, "SE" }, 142 { SPI_SIGNAL_LVD, "LVD" }, 143 { SPI_SIGNAL_HVD, "HVD" }, 144 }; 145 146 static inline const char *spi_signal_to_string(enum spi_signal_type type) 147 { 148 int i; 149 150 for (i = 0; i < sizeof(signal_types)/sizeof(signal_types[0]); i++) { 151 if (type == signal_types[i].value) 152 return signal_types[i].name; 153 } 154 return NULL; 155 } 156 static inline enum spi_signal_type spi_signal_to_value(const char *name) 157 { 158 int i, len; 159 160 for (i = 0; i < sizeof(signal_types)/sizeof(signal_types[0]); i++) { 161 len = strlen(signal_types[i].name); 162 if (strncmp(name, signal_types[i].name, len) == 0 && 163 (name[len] == '\n' || name[len] == '\0')) 164 return signal_types[i].value; 165 } 166 return SPI_SIGNAL_UNKNOWN; 167 } 168 169 static int spi_host_setup(struct transport_container *tc, struct device *dev, 170 struct class_device *cdev) 171 { 172 struct Scsi_Host *shost = dev_to_shost(dev); 173 174 spi_signalling(shost) = SPI_SIGNAL_UNKNOWN; 175 176 return 0; 177 } 178 179 static DECLARE_TRANSPORT_CLASS(spi_host_class, 180 "spi_host", 181 spi_host_setup, 182 NULL, 183 NULL); 184 185 static int spi_host_match(struct attribute_container *cont, 186 struct device *dev) 187 { 188 struct Scsi_Host *shost; 189 struct spi_internal *i; 190 191 if (!scsi_is_host_device(dev)) 192 return 0; 193 194 shost = dev_to_shost(dev); 195 if (!shost->transportt || shost->transportt->host_attrs.ac.class 196 != &spi_host_class.class) 197 return 0; 198 199 i = to_spi_internal(shost->transportt); 200 201 return &i->t.host_attrs.ac == cont; 202 } 203 204 static int spi_device_configure(struct transport_container *tc, 205 struct device *dev, 206 struct class_device *cdev) 207 { 208 struct scsi_device *sdev = to_scsi_device(dev); 209 struct scsi_target *starget = sdev->sdev_target; 210 211 /* Populate the target capability fields with the values 212 * gleaned from the device inquiry */ 213 214 spi_support_sync(starget) = scsi_device_sync(sdev); 215 spi_support_wide(starget) = scsi_device_wide(sdev); 216 spi_support_dt(starget) = scsi_device_dt(sdev); 217 spi_support_dt_only(starget) = scsi_device_dt_only(sdev); 218 spi_support_ius(starget) = scsi_device_ius(sdev); 219 spi_support_qas(starget) = scsi_device_qas(sdev); 220 221 return 0; 222 } 223 224 static int spi_setup_transport_attrs(struct transport_container *tc, 225 struct device *dev, 226 struct class_device *cdev) 227 { 228 struct scsi_target *starget = to_scsi_target(dev); 229 230 spi_period(starget) = -1; /* illegal value */ 231 spi_min_period(starget) = 0; 232 spi_offset(starget) = 0; /* async */ 233 spi_max_offset(starget) = 255; 234 spi_width(starget) = 0; /* narrow */ 235 spi_max_width(starget) = 1; 236 spi_iu(starget) = 0; /* no IU */ 237 spi_dt(starget) = 0; /* ST */ 238 spi_qas(starget) = 0; 239 spi_wr_flow(starget) = 0; 240 spi_rd_strm(starget) = 0; 241 spi_rti(starget) = 0; 242 spi_pcomp_en(starget) = 0; 243 spi_hold_mcs(starget) = 0; 244 spi_dv_pending(starget) = 0; 245 spi_initial_dv(starget) = 0; 246 init_MUTEX(&spi_dv_sem(starget)); 247 248 return 0; 249 } 250 251 #define spi_transport_show_simple(field, format_string) \ 252 \ 253 static ssize_t \ 254 show_spi_transport_##field(struct class_device *cdev, char *buf) \ 255 { \ 256 struct scsi_target *starget = transport_class_to_starget(cdev); \ 257 struct spi_transport_attrs *tp; \ 258 \ 259 tp = (struct spi_transport_attrs *)&starget->starget_data; \ 260 return snprintf(buf, 20, format_string, tp->field); \ 261 } 262 263 #define spi_transport_store_simple(field, format_string) \ 264 \ 265 static ssize_t \ 266 store_spi_transport_##field(struct class_device *cdev, const char *buf, \ 267 size_t count) \ 268 { \ 269 int val; \ 270 struct scsi_target *starget = transport_class_to_starget(cdev); \ 271 struct spi_transport_attrs *tp; \ 272 \ 273 tp = (struct spi_transport_attrs *)&starget->starget_data; \ 274 val = simple_strtoul(buf, NULL, 0); \ 275 tp->field = val; \ 276 return count; \ 277 } 278 279 #define spi_transport_show_function(field, format_string) \ 280 \ 281 static ssize_t \ 282 show_spi_transport_##field(struct class_device *cdev, char *buf) \ 283 { \ 284 struct scsi_target *starget = transport_class_to_starget(cdev); \ 285 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); \ 286 struct spi_transport_attrs *tp; \ 287 struct spi_internal *i = to_spi_internal(shost->transportt); \ 288 tp = (struct spi_transport_attrs *)&starget->starget_data; \ 289 if (i->f->get_##field) \ 290 i->f->get_##field(starget); \ 291 return snprintf(buf, 20, format_string, tp->field); \ 292 } 293 294 #define spi_transport_store_function(field, format_string) \ 295 static ssize_t \ 296 store_spi_transport_##field(struct class_device *cdev, const char *buf, \ 297 size_t count) \ 298 { \ 299 int val; \ 300 struct scsi_target *starget = transport_class_to_starget(cdev); \ 301 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); \ 302 struct spi_internal *i = to_spi_internal(shost->transportt); \ 303 \ 304 val = simple_strtoul(buf, NULL, 0); \ 305 i->f->set_##field(starget, val); \ 306 return count; \ 307 } 308 309 #define spi_transport_store_max(field, format_string) \ 310 static ssize_t \ 311 store_spi_transport_##field(struct class_device *cdev, const char *buf, \ 312 size_t count) \ 313 { \ 314 int val; \ 315 struct scsi_target *starget = transport_class_to_starget(cdev); \ 316 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); \ 317 struct spi_internal *i = to_spi_internal(shost->transportt); \ 318 struct spi_transport_attrs *tp \ 319 = (struct spi_transport_attrs *)&starget->starget_data; \ 320 \ 321 val = simple_strtoul(buf, NULL, 0); \ 322 if (val > tp->max_##field) \ 323 val = tp->max_##field; \ 324 i->f->set_##field(starget, val); \ 325 return count; \ 326 } 327 328 #define spi_transport_rd_attr(field, format_string) \ 329 spi_transport_show_function(field, format_string) \ 330 spi_transport_store_function(field, format_string) \ 331 static CLASS_DEVICE_ATTR(field, S_IRUGO | S_IWUSR, \ 332 show_spi_transport_##field, \ 333 store_spi_transport_##field); 334 335 #define spi_transport_simple_attr(field, format_string) \ 336 spi_transport_show_simple(field, format_string) \ 337 spi_transport_store_simple(field, format_string) \ 338 static CLASS_DEVICE_ATTR(field, S_IRUGO | S_IWUSR, \ 339 show_spi_transport_##field, \ 340 store_spi_transport_##field); 341 342 #define spi_transport_max_attr(field, format_string) \ 343 spi_transport_show_function(field, format_string) \ 344 spi_transport_store_max(field, format_string) \ 345 spi_transport_simple_attr(max_##field, format_string) \ 346 static CLASS_DEVICE_ATTR(field, S_IRUGO | S_IWUSR, \ 347 show_spi_transport_##field, \ 348 store_spi_transport_##field); 349 350 /* The Parallel SCSI Tranport Attributes: */ 351 spi_transport_max_attr(offset, "%d\n"); 352 spi_transport_max_attr(width, "%d\n"); 353 spi_transport_rd_attr(iu, "%d\n"); 354 spi_transport_rd_attr(dt, "%d\n"); 355 spi_transport_rd_attr(qas, "%d\n"); 356 spi_transport_rd_attr(wr_flow, "%d\n"); 357 spi_transport_rd_attr(rd_strm, "%d\n"); 358 spi_transport_rd_attr(rti, "%d\n"); 359 spi_transport_rd_attr(pcomp_en, "%d\n"); 360 spi_transport_rd_attr(hold_mcs, "%d\n"); 361 362 /* we only care about the first child device so we return 1 */ 363 static int child_iter(struct device *dev, void *data) 364 { 365 struct scsi_device *sdev = to_scsi_device(dev); 366 367 spi_dv_device(sdev); 368 return 1; 369 } 370 371 static ssize_t 372 store_spi_revalidate(struct class_device *cdev, const char *buf, size_t count) 373 { 374 struct scsi_target *starget = transport_class_to_starget(cdev); 375 376 device_for_each_child(&starget->dev, NULL, child_iter); 377 return count; 378 } 379 static CLASS_DEVICE_ATTR(revalidate, S_IWUSR, NULL, store_spi_revalidate); 380 381 /* Translate the period into ns according to the current spec 382 * for SDTR/PPR messages */ 383 static ssize_t 384 show_spi_transport_period_helper(struct class_device *cdev, char *buf, 385 int period) 386 { 387 int len, picosec; 388 389 if (period < 0 || period > 0xff) { 390 picosec = -1; 391 } else if (period <= SPI_STATIC_PPR) { 392 picosec = ppr_to_ps[period]; 393 } else { 394 picosec = period * 4000; 395 } 396 397 if (picosec == -1) { 398 len = sprintf(buf, "reserved"); 399 } else { 400 len = sprint_frac(buf, picosec, 1000); 401 } 402 403 buf[len++] = '\n'; 404 buf[len] = '\0'; 405 return len; 406 } 407 408 static ssize_t 409 store_spi_transport_period_helper(struct class_device *cdev, const char *buf, 410 size_t count, int *periodp) 411 { 412 int j, picosec, period = -1; 413 char *endp; 414 415 picosec = simple_strtoul(buf, &endp, 10) * 1000; 416 if (*endp == '.') { 417 int mult = 100; 418 do { 419 endp++; 420 if (!isdigit(*endp)) 421 break; 422 picosec += (*endp - '0') * mult; 423 mult /= 10; 424 } while (mult > 0); 425 } 426 427 for (j = 0; j <= SPI_STATIC_PPR; j++) { 428 if (ppr_to_ps[j] < picosec) 429 continue; 430 period = j; 431 break; 432 } 433 434 if (period == -1) 435 period = picosec / 4000; 436 437 if (period > 0xff) 438 period = 0xff; 439 440 *periodp = period; 441 442 return count; 443 } 444 445 static ssize_t 446 show_spi_transport_period(struct class_device *cdev, char *buf) 447 { 448 struct scsi_target *starget = transport_class_to_starget(cdev); 449 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); 450 struct spi_internal *i = to_spi_internal(shost->transportt); 451 struct spi_transport_attrs *tp = 452 (struct spi_transport_attrs *)&starget->starget_data; 453 454 if (i->f->get_period) 455 i->f->get_period(starget); 456 457 return show_spi_transport_period_helper(cdev, buf, tp->period); 458 } 459 460 static ssize_t 461 store_spi_transport_period(struct class_device *cdev, const char *buf, 462 size_t count) 463 { 464 struct scsi_target *starget = transport_class_to_starget(cdev); 465 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); 466 struct spi_internal *i = to_spi_internal(shost->transportt); 467 struct spi_transport_attrs *tp = 468 (struct spi_transport_attrs *)&starget->starget_data; 469 int period, retval; 470 471 retval = store_spi_transport_period_helper(cdev, buf, count, &period); 472 473 if (period < tp->min_period) 474 period = tp->min_period; 475 476 i->f->set_period(starget, period); 477 478 return retval; 479 } 480 481 static CLASS_DEVICE_ATTR(period, S_IRUGO | S_IWUSR, 482 show_spi_transport_period, 483 store_spi_transport_period); 484 485 static ssize_t 486 show_spi_transport_min_period(struct class_device *cdev, char *buf) 487 { 488 struct scsi_target *starget = transport_class_to_starget(cdev); 489 struct spi_transport_attrs *tp = 490 (struct spi_transport_attrs *)&starget->starget_data; 491 492 return show_spi_transport_period_helper(cdev, buf, tp->min_period); 493 } 494 495 static ssize_t 496 store_spi_transport_min_period(struct class_device *cdev, const char *buf, 497 size_t count) 498 { 499 struct scsi_target *starget = transport_class_to_starget(cdev); 500 struct spi_transport_attrs *tp = 501 (struct spi_transport_attrs *)&starget->starget_data; 502 503 return store_spi_transport_period_helper(cdev, buf, count, 504 &tp->min_period); 505 } 506 507 508 static CLASS_DEVICE_ATTR(min_period, S_IRUGO | S_IWUSR, 509 show_spi_transport_min_period, 510 store_spi_transport_min_period); 511 512 513 static ssize_t show_spi_host_signalling(struct class_device *cdev, char *buf) 514 { 515 struct Scsi_Host *shost = transport_class_to_shost(cdev); 516 struct spi_internal *i = to_spi_internal(shost->transportt); 517 518 if (i->f->get_signalling) 519 i->f->get_signalling(shost); 520 521 return sprintf(buf, "%s\n", spi_signal_to_string(spi_signalling(shost))); 522 } 523 static ssize_t store_spi_host_signalling(struct class_device *cdev, 524 const char *buf, size_t count) 525 { 526 struct Scsi_Host *shost = transport_class_to_shost(cdev); 527 struct spi_internal *i = to_spi_internal(shost->transportt); 528 enum spi_signal_type type = spi_signal_to_value(buf); 529 530 if (type != SPI_SIGNAL_UNKNOWN) 531 i->f->set_signalling(shost, type); 532 533 return count; 534 } 535 static CLASS_DEVICE_ATTR(signalling, S_IRUGO | S_IWUSR, 536 show_spi_host_signalling, 537 store_spi_host_signalling); 538 539 #define DV_SET(x, y) \ 540 if(i->f->set_##x) \ 541 i->f->set_##x(sdev->sdev_target, y) 542 543 enum spi_compare_returns { 544 SPI_COMPARE_SUCCESS, 545 SPI_COMPARE_FAILURE, 546 SPI_COMPARE_SKIP_TEST, 547 }; 548 549 550 /* This is for read/write Domain Validation: If the device supports 551 * an echo buffer, we do read/write tests to it */ 552 static enum spi_compare_returns 553 spi_dv_device_echo_buffer(struct scsi_device *sdev, u8 *buffer, 554 u8 *ptr, const int retries) 555 { 556 int len = ptr - buffer; 557 int j, k, r, result; 558 unsigned int pattern = 0x0000ffff; 559 struct scsi_sense_hdr sshdr; 560 561 const char spi_write_buffer[] = { 562 WRITE_BUFFER, 0x0a, 0, 0, 0, 0, 0, len >> 8, len & 0xff, 0 563 }; 564 const char spi_read_buffer[] = { 565 READ_BUFFER, 0x0a, 0, 0, 0, 0, 0, len >> 8, len & 0xff, 0 566 }; 567 568 /* set up the pattern buffer. Doesn't matter if we spill 569 * slightly beyond since that's where the read buffer is */ 570 for (j = 0; j < len; ) { 571 572 /* fill the buffer with counting (test a) */ 573 for ( ; j < min(len, 32); j++) 574 buffer[j] = j; 575 k = j; 576 /* fill the buffer with alternating words of 0x0 and 577 * 0xffff (test b) */ 578 for ( ; j < min(len, k + 32); j += 2) { 579 u16 *word = (u16 *)&buffer[j]; 580 581 *word = (j & 0x02) ? 0x0000 : 0xffff; 582 } 583 k = j; 584 /* fill with crosstalk (alternating 0x5555 0xaaa) 585 * (test c) */ 586 for ( ; j < min(len, k + 32); j += 2) { 587 u16 *word = (u16 *)&buffer[j]; 588 589 *word = (j & 0x02) ? 0x5555 : 0xaaaa; 590 } 591 k = j; 592 /* fill with shifting bits (test d) */ 593 for ( ; j < min(len, k + 32); j += 4) { 594 u32 *word = (unsigned int *)&buffer[j]; 595 u32 roll = (pattern & 0x80000000) ? 1 : 0; 596 597 *word = pattern; 598 pattern = (pattern << 1) | roll; 599 } 600 /* don't bother with random data (test e) */ 601 } 602 603 for (r = 0; r < retries; r++) { 604 result = spi_execute(sdev, spi_write_buffer, DMA_TO_DEVICE, 605 buffer, len, &sshdr); 606 if(result || !scsi_device_online(sdev)) { 607 608 scsi_device_set_state(sdev, SDEV_QUIESCE); 609 if (scsi_sense_valid(&sshdr) 610 && sshdr.sense_key == ILLEGAL_REQUEST 611 /* INVALID FIELD IN CDB */ 612 && sshdr.asc == 0x24 && sshdr.ascq == 0x00) 613 /* This would mean that the drive lied 614 * to us about supporting an echo 615 * buffer (unfortunately some Western 616 * Digital drives do precisely this) 617 */ 618 return SPI_COMPARE_SKIP_TEST; 619 620 621 SPI_PRINTK(sdev->sdev_target, KERN_ERR, "Write Buffer failure %x\n", result); 622 return SPI_COMPARE_FAILURE; 623 } 624 625 memset(ptr, 0, len); 626 spi_execute(sdev, spi_read_buffer, DMA_FROM_DEVICE, 627 ptr, len, NULL); 628 scsi_device_set_state(sdev, SDEV_QUIESCE); 629 630 if (memcmp(buffer, ptr, len) != 0) 631 return SPI_COMPARE_FAILURE; 632 } 633 return SPI_COMPARE_SUCCESS; 634 } 635 636 /* This is for the simplest form of Domain Validation: a read test 637 * on the inquiry data from the device */ 638 static enum spi_compare_returns 639 spi_dv_device_compare_inquiry(struct scsi_device *sdev, u8 *buffer, 640 u8 *ptr, const int retries) 641 { 642 int r, result; 643 const int len = sdev->inquiry_len; 644 const char spi_inquiry[] = { 645 INQUIRY, 0, 0, 0, len, 0 646 }; 647 648 for (r = 0; r < retries; r++) { 649 memset(ptr, 0, len); 650 651 result = spi_execute(sdev, spi_inquiry, DMA_FROM_DEVICE, 652 ptr, len, NULL); 653 654 if(result || !scsi_device_online(sdev)) { 655 scsi_device_set_state(sdev, SDEV_QUIESCE); 656 return SPI_COMPARE_FAILURE; 657 } 658 659 /* If we don't have the inquiry data already, the 660 * first read gets it */ 661 if (ptr == buffer) { 662 ptr += len; 663 --r; 664 continue; 665 } 666 667 if (memcmp(buffer, ptr, len) != 0) 668 /* failure */ 669 return SPI_COMPARE_FAILURE; 670 } 671 return SPI_COMPARE_SUCCESS; 672 } 673 674 static enum spi_compare_returns 675 spi_dv_retrain(struct scsi_device *sdev, u8 *buffer, u8 *ptr, 676 enum spi_compare_returns 677 (*compare_fn)(struct scsi_device *, u8 *, u8 *, int)) 678 { 679 struct spi_internal *i = to_spi_internal(sdev->host->transportt); 680 struct scsi_target *starget = sdev->sdev_target; 681 int period = 0, prevperiod = 0; 682 enum spi_compare_returns retval; 683 684 685 for (;;) { 686 int newperiod; 687 retval = compare_fn(sdev, buffer, ptr, DV_LOOPS); 688 689 if (retval == SPI_COMPARE_SUCCESS 690 || retval == SPI_COMPARE_SKIP_TEST) 691 break; 692 693 /* OK, retrain, fallback */ 694 if (i->f->get_iu) 695 i->f->get_iu(starget); 696 if (i->f->get_qas) 697 i->f->get_qas(starget); 698 if (i->f->get_period) 699 i->f->get_period(sdev->sdev_target); 700 701 /* Here's the fallback sequence; first try turning off 702 * IU, then QAS (if we can control them), then finally 703 * fall down the periods */ 704 if (i->f->set_iu && spi_iu(starget)) { 705 SPI_PRINTK(starget, KERN_ERR, "Domain Validation Disabing Information Units\n"); 706 DV_SET(iu, 0); 707 } else if (i->f->set_qas && spi_qas(starget)) { 708 SPI_PRINTK(starget, KERN_ERR, "Domain Validation Disabing Quick Arbitration and Selection\n"); 709 DV_SET(qas, 0); 710 } else { 711 newperiod = spi_period(starget); 712 period = newperiod > period ? newperiod : period; 713 if (period < 0x0d) 714 period++; 715 else 716 period += period >> 1; 717 718 if (unlikely(period > 0xff || period == prevperiod)) { 719 /* Total failure; set to async and return */ 720 SPI_PRINTK(starget, KERN_ERR, "Domain Validation Failure, dropping back to Asynchronous\n"); 721 DV_SET(offset, 0); 722 return SPI_COMPARE_FAILURE; 723 } 724 SPI_PRINTK(starget, KERN_ERR, "Domain Validation detected failure, dropping back\n"); 725 DV_SET(period, period); 726 prevperiod = period; 727 } 728 } 729 return retval; 730 } 731 732 static int 733 spi_dv_device_get_echo_buffer(struct scsi_device *sdev, u8 *buffer) 734 { 735 int l, result; 736 737 /* first off do a test unit ready. This can error out 738 * because of reservations or some other reason. If it 739 * fails, the device won't let us write to the echo buffer 740 * so just return failure */ 741 742 const char spi_test_unit_ready[] = { 743 TEST_UNIT_READY, 0, 0, 0, 0, 0 744 }; 745 746 const char spi_read_buffer_descriptor[] = { 747 READ_BUFFER, 0x0b, 0, 0, 0, 0, 0, 0, 4, 0 748 }; 749 750 751 /* We send a set of three TURs to clear any outstanding 752 * unit attention conditions if they exist (Otherwise the 753 * buffer tests won't be happy). If the TUR still fails 754 * (reservation conflict, device not ready, etc) just 755 * skip the write tests */ 756 for (l = 0; ; l++) { 757 result = spi_execute(sdev, spi_test_unit_ready, DMA_NONE, 758 NULL, 0, NULL); 759 760 if(result) { 761 if(l >= 3) 762 return 0; 763 } else { 764 /* TUR succeeded */ 765 break; 766 } 767 } 768 769 result = spi_execute(sdev, spi_read_buffer_descriptor, 770 DMA_FROM_DEVICE, buffer, 4, NULL); 771 772 if (result) 773 /* Device has no echo buffer */ 774 return 0; 775 776 return buffer[3] + ((buffer[2] & 0x1f) << 8); 777 } 778 779 static void 780 spi_dv_device_internal(struct scsi_device *sdev, u8 *buffer) 781 { 782 struct spi_internal *i = to_spi_internal(sdev->host->transportt); 783 struct scsi_target *starget = sdev->sdev_target; 784 int len = sdev->inquiry_len; 785 /* first set us up for narrow async */ 786 DV_SET(offset, 0); 787 DV_SET(width, 0); 788 789 if (spi_dv_device_compare_inquiry(sdev, buffer, buffer, DV_LOOPS) 790 != SPI_COMPARE_SUCCESS) { 791 SPI_PRINTK(starget, KERN_ERR, "Domain Validation Initial Inquiry Failed\n"); 792 /* FIXME: should probably offline the device here? */ 793 return; 794 } 795 796 /* test width */ 797 if (i->f->set_width && spi_max_width(starget) && 798 scsi_device_wide(sdev)) { 799 i->f->set_width(starget, 1); 800 801 if (spi_dv_device_compare_inquiry(sdev, buffer, 802 buffer + len, 803 DV_LOOPS) 804 != SPI_COMPARE_SUCCESS) { 805 SPI_PRINTK(starget, KERN_ERR, "Wide Transfers Fail\n"); 806 i->f->set_width(starget, 0); 807 } 808 } 809 810 if (!i->f->set_period) 811 return; 812 813 /* device can't handle synchronous */ 814 if (!scsi_device_sync(sdev) && !scsi_device_dt(sdev)) 815 return; 816 817 /* see if the device has an echo buffer. If it does we can 818 * do the SPI pattern write tests */ 819 820 len = 0; 821 if (scsi_device_dt(sdev)) 822 len = spi_dv_device_get_echo_buffer(sdev, buffer); 823 824 retry: 825 826 /* now set up to the maximum */ 827 DV_SET(offset, spi_max_offset(starget)); 828 DV_SET(period, spi_min_period(starget)); 829 /* try QAS requests; this should be harmless to set if the 830 * target supports it */ 831 if (scsi_device_qas(sdev)) 832 DV_SET(qas, 1); 833 /* Also try IU transfers */ 834 if (scsi_device_ius(sdev)) 835 DV_SET(iu, 1); 836 if (spi_min_period(starget) < 9) { 837 /* This u320 (or u640). Ignore the coupled parameters 838 * like DT and IU, but set the optional ones */ 839 DV_SET(rd_strm, 1); 840 DV_SET(wr_flow, 1); 841 DV_SET(rti, 1); 842 if (spi_min_period(starget) == 8) 843 DV_SET(pcomp_en, 1); 844 } 845 846 if (len == 0) { 847 SPI_PRINTK(starget, KERN_INFO, "Domain Validation skipping write tests\n"); 848 spi_dv_retrain(sdev, buffer, buffer + len, 849 spi_dv_device_compare_inquiry); 850 return; 851 } 852 853 if (len > SPI_MAX_ECHO_BUFFER_SIZE) { 854 SPI_PRINTK(starget, KERN_WARNING, "Echo buffer size %d is too big, trimming to %d\n", len, SPI_MAX_ECHO_BUFFER_SIZE); 855 len = SPI_MAX_ECHO_BUFFER_SIZE; 856 } 857 858 if (spi_dv_retrain(sdev, buffer, buffer + len, 859 spi_dv_device_echo_buffer) 860 == SPI_COMPARE_SKIP_TEST) { 861 /* OK, the stupid drive can't do a write echo buffer 862 * test after all, fall back to the read tests */ 863 len = 0; 864 goto retry; 865 } 866 } 867 868 869 /** spi_dv_device - Do Domain Validation on the device 870 * @sdev: scsi device to validate 871 * 872 * Performs the domain validation on the given device in the 873 * current execution thread. Since DV operations may sleep, 874 * the current thread must have user context. Also no SCSI 875 * related locks that would deadlock I/O issued by the DV may 876 * be held. 877 */ 878 void 879 spi_dv_device(struct scsi_device *sdev) 880 { 881 struct scsi_target *starget = sdev->sdev_target; 882 u8 *buffer; 883 const int len = SPI_MAX_ECHO_BUFFER_SIZE*2; 884 885 if (unlikely(scsi_device_get(sdev))) 886 return; 887 888 buffer = kmalloc(len, GFP_KERNEL); 889 890 if (unlikely(!buffer)) 891 goto out_put; 892 893 memset(buffer, 0, len); 894 895 /* We need to verify that the actual device will quiesce; the 896 * later target quiesce is just a nice to have */ 897 if (unlikely(scsi_device_quiesce(sdev))) 898 goto out_free; 899 900 scsi_target_quiesce(starget); 901 902 spi_dv_pending(starget) = 1; 903 down(&spi_dv_sem(starget)); 904 905 SPI_PRINTK(starget, KERN_INFO, "Beginning Domain Validation\n"); 906 907 spi_dv_device_internal(sdev, buffer); 908 909 SPI_PRINTK(starget, KERN_INFO, "Ending Domain Validation\n"); 910 911 up(&spi_dv_sem(starget)); 912 spi_dv_pending(starget) = 0; 913 914 scsi_target_resume(starget); 915 916 spi_initial_dv(starget) = 1; 917 918 out_free: 919 kfree(buffer); 920 out_put: 921 scsi_device_put(sdev); 922 } 923 EXPORT_SYMBOL(spi_dv_device); 924 925 struct work_queue_wrapper { 926 struct work_struct work; 927 struct scsi_device *sdev; 928 }; 929 930 static void 931 spi_dv_device_work_wrapper(void *data) 932 { 933 struct work_queue_wrapper *wqw = (struct work_queue_wrapper *)data; 934 struct scsi_device *sdev = wqw->sdev; 935 936 kfree(wqw); 937 spi_dv_device(sdev); 938 spi_dv_pending(sdev->sdev_target) = 0; 939 scsi_device_put(sdev); 940 } 941 942 943 /** 944 * spi_schedule_dv_device - schedule domain validation to occur on the device 945 * @sdev: The device to validate 946 * 947 * Identical to spi_dv_device() above, except that the DV will be 948 * scheduled to occur in a workqueue later. All memory allocations 949 * are atomic, so may be called from any context including those holding 950 * SCSI locks. 951 */ 952 void 953 spi_schedule_dv_device(struct scsi_device *sdev) 954 { 955 struct work_queue_wrapper *wqw = 956 kmalloc(sizeof(struct work_queue_wrapper), GFP_ATOMIC); 957 958 if (unlikely(!wqw)) 959 return; 960 961 if (unlikely(spi_dv_pending(sdev->sdev_target))) { 962 kfree(wqw); 963 return; 964 } 965 /* Set pending early (dv_device doesn't check it, only sets it) */ 966 spi_dv_pending(sdev->sdev_target) = 1; 967 if (unlikely(scsi_device_get(sdev))) { 968 kfree(wqw); 969 spi_dv_pending(sdev->sdev_target) = 0; 970 return; 971 } 972 973 INIT_WORK(&wqw->work, spi_dv_device_work_wrapper, wqw); 974 wqw->sdev = sdev; 975 976 schedule_work(&wqw->work); 977 } 978 EXPORT_SYMBOL(spi_schedule_dv_device); 979 980 /** 981 * spi_display_xfer_agreement - Print the current target transfer agreement 982 * @starget: The target for which to display the agreement 983 * 984 * Each SPI port is required to maintain a transfer agreement for each 985 * other port on the bus. This function prints a one-line summary of 986 * the current agreement; more detailed information is available in sysfs. 987 */ 988 void spi_display_xfer_agreement(struct scsi_target *starget) 989 { 990 struct spi_transport_attrs *tp; 991 tp = (struct spi_transport_attrs *)&starget->starget_data; 992 993 if (tp->offset > 0 && tp->period > 0) { 994 unsigned int picosec, kb100; 995 char *scsi = "FAST-?"; 996 char tmp[8]; 997 998 if (tp->period <= SPI_STATIC_PPR) { 999 picosec = ppr_to_ps[tp->period]; 1000 switch (tp->period) { 1001 case 7: scsi = "FAST-320"; break; 1002 case 8: scsi = "FAST-160"; break; 1003 case 9: scsi = "FAST-80"; break; 1004 case 10: 1005 case 11: scsi = "FAST-40"; break; 1006 case 12: scsi = "FAST-20"; break; 1007 } 1008 } else { 1009 picosec = tp->period * 4000; 1010 if (tp->period < 25) 1011 scsi = "FAST-20"; 1012 else if (tp->period < 50) 1013 scsi = "FAST-10"; 1014 else 1015 scsi = "FAST-5"; 1016 } 1017 1018 kb100 = (10000000 + picosec / 2) / picosec; 1019 if (tp->width) 1020 kb100 *= 2; 1021 sprint_frac(tmp, picosec, 1000); 1022 1023 dev_info(&starget->dev, 1024 "%s %sSCSI %d.%d MB/s %s%s%s%s%s%s%s%s (%s ns, offset %d)\n", 1025 scsi, tp->width ? "WIDE " : "", kb100/10, kb100 % 10, 1026 tp->dt ? "DT" : "ST", 1027 tp->iu ? " IU" : "", 1028 tp->qas ? " QAS" : "", 1029 tp->rd_strm ? " RDSTRM" : "", 1030 tp->rti ? " RTI" : "", 1031 tp->wr_flow ? " WRFLOW" : "", 1032 tp->pcomp_en ? " PCOMP" : "", 1033 tp->hold_mcs ? " HMCS" : "", 1034 tmp, tp->offset); 1035 } else { 1036 dev_info(&starget->dev, "%sasynchronous.\n", 1037 tp->width ? "wide " : ""); 1038 } 1039 } 1040 EXPORT_SYMBOL(spi_display_xfer_agreement); 1041 1042 #define SETUP_ATTRIBUTE(field) \ 1043 i->private_attrs[count] = class_device_attr_##field; \ 1044 if (!i->f->set_##field) { \ 1045 i->private_attrs[count].attr.mode = S_IRUGO; \ 1046 i->private_attrs[count].store = NULL; \ 1047 } \ 1048 i->attrs[count] = &i->private_attrs[count]; \ 1049 if (i->f->show_##field) \ 1050 count++ 1051 1052 #define SETUP_RELATED_ATTRIBUTE(field, rel_field) \ 1053 i->private_attrs[count] = class_device_attr_##field; \ 1054 if (!i->f->set_##rel_field) { \ 1055 i->private_attrs[count].attr.mode = S_IRUGO; \ 1056 i->private_attrs[count].store = NULL; \ 1057 } \ 1058 i->attrs[count] = &i->private_attrs[count]; \ 1059 if (i->f->show_##rel_field) \ 1060 count++ 1061 1062 #define SETUP_HOST_ATTRIBUTE(field) \ 1063 i->private_host_attrs[count] = class_device_attr_##field; \ 1064 if (!i->f->set_##field) { \ 1065 i->private_host_attrs[count].attr.mode = S_IRUGO; \ 1066 i->private_host_attrs[count].store = NULL; \ 1067 } \ 1068 i->host_attrs[count] = &i->private_host_attrs[count]; \ 1069 count++ 1070 1071 static int spi_device_match(struct attribute_container *cont, 1072 struct device *dev) 1073 { 1074 struct scsi_device *sdev; 1075 struct Scsi_Host *shost; 1076 struct spi_internal *i; 1077 1078 if (!scsi_is_sdev_device(dev)) 1079 return 0; 1080 1081 sdev = to_scsi_device(dev); 1082 shost = sdev->host; 1083 if (!shost->transportt || shost->transportt->host_attrs.ac.class 1084 != &spi_host_class.class) 1085 return 0; 1086 /* Note: this class has no device attributes, so it has 1087 * no per-HBA allocation and thus we don't need to distinguish 1088 * the attribute containers for the device */ 1089 i = to_spi_internal(shost->transportt); 1090 if (i->f->deny_binding && i->f->deny_binding(sdev->sdev_target)) 1091 return 0; 1092 return 1; 1093 } 1094 1095 static int spi_target_match(struct attribute_container *cont, 1096 struct device *dev) 1097 { 1098 struct Scsi_Host *shost; 1099 struct scsi_target *starget; 1100 struct spi_internal *i; 1101 1102 if (!scsi_is_target_device(dev)) 1103 return 0; 1104 1105 shost = dev_to_shost(dev->parent); 1106 if (!shost->transportt || shost->transportt->host_attrs.ac.class 1107 != &spi_host_class.class) 1108 return 0; 1109 1110 i = to_spi_internal(shost->transportt); 1111 starget = to_scsi_target(dev); 1112 1113 if (i->f->deny_binding && i->f->deny_binding(starget)) 1114 return 0; 1115 1116 return &i->t.target_attrs.ac == cont; 1117 } 1118 1119 static DECLARE_TRANSPORT_CLASS(spi_transport_class, 1120 "spi_transport", 1121 spi_setup_transport_attrs, 1122 NULL, 1123 NULL); 1124 1125 static DECLARE_ANON_TRANSPORT_CLASS(spi_device_class, 1126 spi_device_match, 1127 spi_device_configure); 1128 1129 struct scsi_transport_template * 1130 spi_attach_transport(struct spi_function_template *ft) 1131 { 1132 struct spi_internal *i = kmalloc(sizeof(struct spi_internal), 1133 GFP_KERNEL); 1134 int count = 0; 1135 if (unlikely(!i)) 1136 return NULL; 1137 1138 memset(i, 0, sizeof(struct spi_internal)); 1139 1140 1141 i->t.target_attrs.ac.class = &spi_transport_class.class; 1142 i->t.target_attrs.ac.attrs = &i->attrs[0]; 1143 i->t.target_attrs.ac.match = spi_target_match; 1144 transport_container_register(&i->t.target_attrs); 1145 i->t.target_size = sizeof(struct spi_transport_attrs); 1146 i->t.host_attrs.ac.class = &spi_host_class.class; 1147 i->t.host_attrs.ac.attrs = &i->host_attrs[0]; 1148 i->t.host_attrs.ac.match = spi_host_match; 1149 transport_container_register(&i->t.host_attrs); 1150 i->t.host_size = sizeof(struct spi_host_attrs); 1151 i->f = ft; 1152 1153 SETUP_ATTRIBUTE(period); 1154 SETUP_RELATED_ATTRIBUTE(min_period, period); 1155 SETUP_ATTRIBUTE(offset); 1156 SETUP_RELATED_ATTRIBUTE(max_offset, offset); 1157 SETUP_ATTRIBUTE(width); 1158 SETUP_RELATED_ATTRIBUTE(max_width, width); 1159 SETUP_ATTRIBUTE(iu); 1160 SETUP_ATTRIBUTE(dt); 1161 SETUP_ATTRIBUTE(qas); 1162 SETUP_ATTRIBUTE(wr_flow); 1163 SETUP_ATTRIBUTE(rd_strm); 1164 SETUP_ATTRIBUTE(rti); 1165 SETUP_ATTRIBUTE(pcomp_en); 1166 SETUP_ATTRIBUTE(hold_mcs); 1167 1168 /* if you add an attribute but forget to increase SPI_NUM_ATTRS 1169 * this bug will trigger */ 1170 BUG_ON(count > SPI_NUM_ATTRS); 1171 1172 i->attrs[count++] = &class_device_attr_revalidate; 1173 1174 i->attrs[count] = NULL; 1175 1176 count = 0; 1177 SETUP_HOST_ATTRIBUTE(signalling); 1178 1179 BUG_ON(count > SPI_HOST_ATTRS); 1180 1181 i->host_attrs[count] = NULL; 1182 1183 return &i->t; 1184 } 1185 EXPORT_SYMBOL(spi_attach_transport); 1186 1187 void spi_release_transport(struct scsi_transport_template *t) 1188 { 1189 struct spi_internal *i = to_spi_internal(t); 1190 1191 transport_container_unregister(&i->t.target_attrs); 1192 transport_container_unregister(&i->t.host_attrs); 1193 1194 kfree(i); 1195 } 1196 EXPORT_SYMBOL(spi_release_transport); 1197 1198 static __init int spi_transport_init(void) 1199 { 1200 int error = transport_class_register(&spi_transport_class); 1201 if (error) 1202 return error; 1203 error = anon_transport_class_register(&spi_device_class); 1204 return transport_class_register(&spi_host_class); 1205 } 1206 1207 static void __exit spi_transport_exit(void) 1208 { 1209 transport_class_unregister(&spi_transport_class); 1210 anon_transport_class_unregister(&spi_device_class); 1211 transport_class_unregister(&spi_host_class); 1212 } 1213 1214 MODULE_AUTHOR("Martin Hicks"); 1215 MODULE_DESCRIPTION("SPI Transport Attributes"); 1216 MODULE_LICENSE("GPL"); 1217 1218 module_init(spi_transport_init); 1219 module_exit(spi_transport_exit); 1220