1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 1999 Eric Youngdale 4 * Copyright (C) 2014 Christoph Hellwig 5 * 6 * SCSI queueing library. 7 * Initial versions: Eric Youngdale (eric@andante.org). 8 * Based upon conversations with large numbers 9 * of people at Linux Expo. 10 */ 11 12 #include <linux/bio.h> 13 #include <linux/bitops.h> 14 #include <linux/blkdev.h> 15 #include <linux/completion.h> 16 #include <linux/kernel.h> 17 #include <linux/export.h> 18 #include <linux/init.h> 19 #include <linux/pci.h> 20 #include <linux/delay.h> 21 #include <linux/hardirq.h> 22 #include <linux/scatterlist.h> 23 #include <linux/blk-mq.h> 24 #include <linux/blk-integrity.h> 25 #include <linux/ratelimit.h> 26 #include <asm/unaligned.h> 27 28 #include <scsi/scsi.h> 29 #include <scsi/scsi_cmnd.h> 30 #include <scsi/scsi_dbg.h> 31 #include <scsi/scsi_device.h> 32 #include <scsi/scsi_driver.h> 33 #include <scsi/scsi_eh.h> 34 #include <scsi/scsi_host.h> 35 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */ 36 #include <scsi/scsi_dh.h> 37 38 #include <trace/events/scsi.h> 39 40 #include "scsi_debugfs.h" 41 #include "scsi_priv.h" 42 #include "scsi_logging.h" 43 44 /* 45 * Size of integrity metadata is usually small, 1 inline sg should 46 * cover normal cases. 47 */ 48 #ifdef CONFIG_ARCH_NO_SG_CHAIN 49 #define SCSI_INLINE_PROT_SG_CNT 0 50 #define SCSI_INLINE_SG_CNT 0 51 #else 52 #define SCSI_INLINE_PROT_SG_CNT 1 53 #define SCSI_INLINE_SG_CNT 2 54 #endif 55 56 static struct kmem_cache *scsi_sense_cache; 57 static DEFINE_MUTEX(scsi_sense_cache_mutex); 58 59 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd); 60 61 int scsi_init_sense_cache(struct Scsi_Host *shost) 62 { 63 int ret = 0; 64 65 mutex_lock(&scsi_sense_cache_mutex); 66 if (!scsi_sense_cache) { 67 scsi_sense_cache = 68 kmem_cache_create_usercopy("scsi_sense_cache", 69 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN, 70 0, SCSI_SENSE_BUFFERSIZE, NULL); 71 if (!scsi_sense_cache) 72 ret = -ENOMEM; 73 } 74 mutex_unlock(&scsi_sense_cache_mutex); 75 return ret; 76 } 77 78 static void 79 scsi_set_blocked(struct scsi_cmnd *cmd, int reason) 80 { 81 struct Scsi_Host *host = cmd->device->host; 82 struct scsi_device *device = cmd->device; 83 struct scsi_target *starget = scsi_target(device); 84 85 /* 86 * Set the appropriate busy bit for the device/host. 87 * 88 * If the host/device isn't busy, assume that something actually 89 * completed, and that we should be able to queue a command now. 90 * 91 * Note that the prior mid-layer assumption that any host could 92 * always queue at least one command is now broken. The mid-layer 93 * will implement a user specifiable stall (see 94 * scsi_host.max_host_blocked and scsi_device.max_device_blocked) 95 * if a command is requeued with no other commands outstanding 96 * either for the device or for the host. 97 */ 98 switch (reason) { 99 case SCSI_MLQUEUE_HOST_BUSY: 100 atomic_set(&host->host_blocked, host->max_host_blocked); 101 break; 102 case SCSI_MLQUEUE_DEVICE_BUSY: 103 case SCSI_MLQUEUE_EH_RETRY: 104 atomic_set(&device->device_blocked, 105 device->max_device_blocked); 106 break; 107 case SCSI_MLQUEUE_TARGET_BUSY: 108 atomic_set(&starget->target_blocked, 109 starget->max_target_blocked); 110 break; 111 } 112 } 113 114 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd, unsigned long msecs) 115 { 116 struct request *rq = scsi_cmd_to_rq(cmd); 117 118 if (rq->rq_flags & RQF_DONTPREP) { 119 rq->rq_flags &= ~RQF_DONTPREP; 120 scsi_mq_uninit_cmd(cmd); 121 } else { 122 WARN_ON_ONCE(true); 123 } 124 125 if (msecs) { 126 blk_mq_requeue_request(rq, false); 127 blk_mq_delay_kick_requeue_list(rq->q, msecs); 128 } else 129 blk_mq_requeue_request(rq, true); 130 } 131 132 /** 133 * __scsi_queue_insert - private queue insertion 134 * @cmd: The SCSI command being requeued 135 * @reason: The reason for the requeue 136 * @unbusy: Whether the queue should be unbusied 137 * 138 * This is a private queue insertion. The public interface 139 * scsi_queue_insert() always assumes the queue should be unbusied 140 * because it's always called before the completion. This function is 141 * for a requeue after completion, which should only occur in this 142 * file. 143 */ 144 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy) 145 { 146 struct scsi_device *device = cmd->device; 147 148 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd, 149 "Inserting command %p into mlqueue\n", cmd)); 150 151 scsi_set_blocked(cmd, reason); 152 153 /* 154 * Decrement the counters, since these commands are no longer 155 * active on the host/device. 156 */ 157 if (unbusy) 158 scsi_device_unbusy(device, cmd); 159 160 /* 161 * Requeue this command. It will go before all other commands 162 * that are already in the queue. Schedule requeue work under 163 * lock such that the kblockd_schedule_work() call happens 164 * before blk_mq_destroy_queue() finishes. 165 */ 166 cmd->result = 0; 167 168 blk_mq_requeue_request(scsi_cmd_to_rq(cmd), true); 169 } 170 171 /** 172 * scsi_queue_insert - Reinsert a command in the queue. 173 * @cmd: command that we are adding to queue. 174 * @reason: why we are inserting command to queue. 175 * 176 * We do this for one of two cases. Either the host is busy and it cannot accept 177 * any more commands for the time being, or the device returned QUEUE_FULL and 178 * can accept no more commands. 179 * 180 * Context: This could be called either from an interrupt context or a normal 181 * process context. 182 */ 183 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason) 184 { 185 __scsi_queue_insert(cmd, reason, true); 186 } 187 188 /** 189 * scsi_execute_cmd - insert request and wait for the result 190 * @sdev: scsi_device 191 * @cmd: scsi command 192 * @opf: block layer request cmd_flags 193 * @buffer: data buffer 194 * @bufflen: len of buffer 195 * @timeout: request timeout in HZ 196 * @retries: number of times to retry request 197 * @args: Optional args. See struct definition for field descriptions 198 * 199 * Returns the scsi_cmnd result field if a command was executed, or a negative 200 * Linux error code if we didn't get that far. 201 */ 202 int scsi_execute_cmd(struct scsi_device *sdev, const unsigned char *cmd, 203 blk_opf_t opf, void *buffer, unsigned int bufflen, 204 int timeout, int retries, 205 const struct scsi_exec_args *args) 206 { 207 static const struct scsi_exec_args default_args; 208 struct request *req; 209 struct scsi_cmnd *scmd; 210 int ret; 211 212 if (!args) 213 args = &default_args; 214 else if (WARN_ON_ONCE(args->sense && 215 args->sense_len != SCSI_SENSE_BUFFERSIZE)) 216 return -EINVAL; 217 218 req = scsi_alloc_request(sdev->request_queue, opf, args->req_flags); 219 if (IS_ERR(req)) 220 return PTR_ERR(req); 221 222 if (bufflen) { 223 ret = blk_rq_map_kern(sdev->request_queue, req, 224 buffer, bufflen, GFP_NOIO); 225 if (ret) 226 goto out; 227 } 228 scmd = blk_mq_rq_to_pdu(req); 229 scmd->cmd_len = COMMAND_SIZE(cmd[0]); 230 memcpy(scmd->cmnd, cmd, scmd->cmd_len); 231 scmd->allowed = retries; 232 scmd->flags |= args->scmd_flags; 233 req->timeout = timeout; 234 req->rq_flags |= RQF_QUIET; 235 236 /* 237 * head injection *required* here otherwise quiesce won't work 238 */ 239 blk_execute_rq(req, true); 240 241 /* 242 * Some devices (USB mass-storage in particular) may transfer 243 * garbage data together with a residue indicating that the data 244 * is invalid. Prevent the garbage from being misinterpreted 245 * and prevent security leaks by zeroing out the excess data. 246 */ 247 if (unlikely(scmd->resid_len > 0 && scmd->resid_len <= bufflen)) 248 memset(buffer + bufflen - scmd->resid_len, 0, scmd->resid_len); 249 250 if (args->resid) 251 *args->resid = scmd->resid_len; 252 if (args->sense) 253 memcpy(args->sense, scmd->sense_buffer, SCSI_SENSE_BUFFERSIZE); 254 if (args->sshdr) 255 scsi_normalize_sense(scmd->sense_buffer, scmd->sense_len, 256 args->sshdr); 257 258 ret = scmd->result; 259 out: 260 blk_mq_free_request(req); 261 262 return ret; 263 } 264 EXPORT_SYMBOL(scsi_execute_cmd); 265 266 /* 267 * Wake up the error handler if necessary. Avoid as follows that the error 268 * handler is not woken up if host in-flight requests number == 269 * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination 270 * with an RCU read lock in this function to ensure that this function in 271 * its entirety either finishes before scsi_eh_scmd_add() increases the 272 * host_failed counter or that it notices the shost state change made by 273 * scsi_eh_scmd_add(). 274 */ 275 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd) 276 { 277 unsigned long flags; 278 279 rcu_read_lock(); 280 __clear_bit(SCMD_STATE_INFLIGHT, &cmd->state); 281 if (unlikely(scsi_host_in_recovery(shost))) { 282 spin_lock_irqsave(shost->host_lock, flags); 283 if (shost->host_failed || shost->host_eh_scheduled) 284 scsi_eh_wakeup(shost); 285 spin_unlock_irqrestore(shost->host_lock, flags); 286 } 287 rcu_read_unlock(); 288 } 289 290 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd) 291 { 292 struct Scsi_Host *shost = sdev->host; 293 struct scsi_target *starget = scsi_target(sdev); 294 295 scsi_dec_host_busy(shost, cmd); 296 297 if (starget->can_queue > 0) 298 atomic_dec(&starget->target_busy); 299 300 sbitmap_put(&sdev->budget_map, cmd->budget_token); 301 cmd->budget_token = -1; 302 } 303 304 static void scsi_kick_queue(struct request_queue *q) 305 { 306 blk_mq_run_hw_queues(q, false); 307 } 308 309 /* 310 * Kick the queue of SCSI device @sdev if @sdev != current_sdev. Called with 311 * interrupts disabled. 312 */ 313 static void scsi_kick_sdev_queue(struct scsi_device *sdev, void *data) 314 { 315 struct scsi_device *current_sdev = data; 316 317 if (sdev != current_sdev) 318 blk_mq_run_hw_queues(sdev->request_queue, true); 319 } 320 321 /* 322 * Called for single_lun devices on IO completion. Clear starget_sdev_user, 323 * and call blk_run_queue for all the scsi_devices on the target - 324 * including current_sdev first. 325 * 326 * Called with *no* scsi locks held. 327 */ 328 static void scsi_single_lun_run(struct scsi_device *current_sdev) 329 { 330 struct Scsi_Host *shost = current_sdev->host; 331 struct scsi_target *starget = scsi_target(current_sdev); 332 unsigned long flags; 333 334 spin_lock_irqsave(shost->host_lock, flags); 335 starget->starget_sdev_user = NULL; 336 spin_unlock_irqrestore(shost->host_lock, flags); 337 338 /* 339 * Call blk_run_queue for all LUNs on the target, starting with 340 * current_sdev. We race with others (to set starget_sdev_user), 341 * but in most cases, we will be first. Ideally, each LU on the 342 * target would get some limited time or requests on the target. 343 */ 344 scsi_kick_queue(current_sdev->request_queue); 345 346 spin_lock_irqsave(shost->host_lock, flags); 347 if (!starget->starget_sdev_user) 348 __starget_for_each_device(starget, current_sdev, 349 scsi_kick_sdev_queue); 350 spin_unlock_irqrestore(shost->host_lock, flags); 351 } 352 353 static inline bool scsi_device_is_busy(struct scsi_device *sdev) 354 { 355 if (scsi_device_busy(sdev) >= sdev->queue_depth) 356 return true; 357 if (atomic_read(&sdev->device_blocked) > 0) 358 return true; 359 return false; 360 } 361 362 static inline bool scsi_target_is_busy(struct scsi_target *starget) 363 { 364 if (starget->can_queue > 0) { 365 if (atomic_read(&starget->target_busy) >= starget->can_queue) 366 return true; 367 if (atomic_read(&starget->target_blocked) > 0) 368 return true; 369 } 370 return false; 371 } 372 373 static inline bool scsi_host_is_busy(struct Scsi_Host *shost) 374 { 375 if (atomic_read(&shost->host_blocked) > 0) 376 return true; 377 if (shost->host_self_blocked) 378 return true; 379 return false; 380 } 381 382 static void scsi_starved_list_run(struct Scsi_Host *shost) 383 { 384 LIST_HEAD(starved_list); 385 struct scsi_device *sdev; 386 unsigned long flags; 387 388 spin_lock_irqsave(shost->host_lock, flags); 389 list_splice_init(&shost->starved_list, &starved_list); 390 391 while (!list_empty(&starved_list)) { 392 struct request_queue *slq; 393 394 /* 395 * As long as shost is accepting commands and we have 396 * starved queues, call blk_run_queue. scsi_request_fn 397 * drops the queue_lock and can add us back to the 398 * starved_list. 399 * 400 * host_lock protects the starved_list and starved_entry. 401 * scsi_request_fn must get the host_lock before checking 402 * or modifying starved_list or starved_entry. 403 */ 404 if (scsi_host_is_busy(shost)) 405 break; 406 407 sdev = list_entry(starved_list.next, 408 struct scsi_device, starved_entry); 409 list_del_init(&sdev->starved_entry); 410 if (scsi_target_is_busy(scsi_target(sdev))) { 411 list_move_tail(&sdev->starved_entry, 412 &shost->starved_list); 413 continue; 414 } 415 416 /* 417 * Once we drop the host lock, a racing scsi_remove_device() 418 * call may remove the sdev from the starved list and destroy 419 * it and the queue. Mitigate by taking a reference to the 420 * queue and never touching the sdev again after we drop the 421 * host lock. Note: if __scsi_remove_device() invokes 422 * blk_mq_destroy_queue() before the queue is run from this 423 * function then blk_run_queue() will return immediately since 424 * blk_mq_destroy_queue() marks the queue with QUEUE_FLAG_DYING. 425 */ 426 slq = sdev->request_queue; 427 if (!blk_get_queue(slq)) 428 continue; 429 spin_unlock_irqrestore(shost->host_lock, flags); 430 431 scsi_kick_queue(slq); 432 blk_put_queue(slq); 433 434 spin_lock_irqsave(shost->host_lock, flags); 435 } 436 /* put any unprocessed entries back */ 437 list_splice(&starved_list, &shost->starved_list); 438 spin_unlock_irqrestore(shost->host_lock, flags); 439 } 440 441 /** 442 * scsi_run_queue - Select a proper request queue to serve next. 443 * @q: last request's queue 444 * 445 * The previous command was completely finished, start a new one if possible. 446 */ 447 static void scsi_run_queue(struct request_queue *q) 448 { 449 struct scsi_device *sdev = q->queuedata; 450 451 if (scsi_target(sdev)->single_lun) 452 scsi_single_lun_run(sdev); 453 if (!list_empty(&sdev->host->starved_list)) 454 scsi_starved_list_run(sdev->host); 455 456 blk_mq_run_hw_queues(q, false); 457 } 458 459 void scsi_requeue_run_queue(struct work_struct *work) 460 { 461 struct scsi_device *sdev; 462 struct request_queue *q; 463 464 sdev = container_of(work, struct scsi_device, requeue_work); 465 q = sdev->request_queue; 466 scsi_run_queue(q); 467 } 468 469 void scsi_run_host_queues(struct Scsi_Host *shost) 470 { 471 struct scsi_device *sdev; 472 473 shost_for_each_device(sdev, shost) 474 scsi_run_queue(sdev->request_queue); 475 } 476 477 static void scsi_uninit_cmd(struct scsi_cmnd *cmd) 478 { 479 if (!blk_rq_is_passthrough(scsi_cmd_to_rq(cmd))) { 480 struct scsi_driver *drv = scsi_cmd_to_driver(cmd); 481 482 if (drv->uninit_command) 483 drv->uninit_command(cmd); 484 } 485 } 486 487 void scsi_free_sgtables(struct scsi_cmnd *cmd) 488 { 489 if (cmd->sdb.table.nents) 490 sg_free_table_chained(&cmd->sdb.table, 491 SCSI_INLINE_SG_CNT); 492 if (scsi_prot_sg_count(cmd)) 493 sg_free_table_chained(&cmd->prot_sdb->table, 494 SCSI_INLINE_PROT_SG_CNT); 495 } 496 EXPORT_SYMBOL_GPL(scsi_free_sgtables); 497 498 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd) 499 { 500 scsi_free_sgtables(cmd); 501 scsi_uninit_cmd(cmd); 502 } 503 504 static void scsi_run_queue_async(struct scsi_device *sdev) 505 { 506 if (scsi_target(sdev)->single_lun || 507 !list_empty(&sdev->host->starved_list)) { 508 kblockd_schedule_work(&sdev->requeue_work); 509 } else { 510 /* 511 * smp_mb() present in sbitmap_queue_clear() or implied in 512 * .end_io is for ordering writing .device_busy in 513 * scsi_device_unbusy() and reading sdev->restarts. 514 */ 515 int old = atomic_read(&sdev->restarts); 516 517 /* 518 * ->restarts has to be kept as non-zero if new budget 519 * contention occurs. 520 * 521 * No need to run queue when either another re-run 522 * queue wins in updating ->restarts or a new budget 523 * contention occurs. 524 */ 525 if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old) 526 blk_mq_run_hw_queues(sdev->request_queue, true); 527 } 528 } 529 530 /* Returns false when no more bytes to process, true if there are more */ 531 static bool scsi_end_request(struct request *req, blk_status_t error, 532 unsigned int bytes) 533 { 534 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 535 struct scsi_device *sdev = cmd->device; 536 struct request_queue *q = sdev->request_queue; 537 538 if (blk_update_request(req, error, bytes)) 539 return true; 540 541 // XXX: 542 if (blk_queue_add_random(q)) 543 add_disk_randomness(req->q->disk); 544 545 if (!blk_rq_is_passthrough(req)) { 546 WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED)); 547 cmd->flags &= ~SCMD_INITIALIZED; 548 } 549 550 /* 551 * Calling rcu_barrier() is not necessary here because the 552 * SCSI error handler guarantees that the function called by 553 * call_rcu() has been called before scsi_end_request() is 554 * called. 555 */ 556 destroy_rcu_head(&cmd->rcu); 557 558 /* 559 * In the MQ case the command gets freed by __blk_mq_end_request, 560 * so we have to do all cleanup that depends on it earlier. 561 * 562 * We also can't kick the queues from irq context, so we 563 * will have to defer it to a workqueue. 564 */ 565 scsi_mq_uninit_cmd(cmd); 566 567 /* 568 * queue is still alive, so grab the ref for preventing it 569 * from being cleaned up during running queue. 570 */ 571 percpu_ref_get(&q->q_usage_counter); 572 573 __blk_mq_end_request(req, error); 574 575 scsi_run_queue_async(sdev); 576 577 percpu_ref_put(&q->q_usage_counter); 578 return false; 579 } 580 581 static inline u8 get_scsi_ml_byte(int result) 582 { 583 return (result >> 8) & 0xff; 584 } 585 586 /** 587 * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t 588 * @result: scsi error code 589 * 590 * Translate a SCSI result code into a blk_status_t value. 591 */ 592 static blk_status_t scsi_result_to_blk_status(int result) 593 { 594 /* 595 * Check the scsi-ml byte first in case we converted a host or status 596 * byte. 597 */ 598 switch (get_scsi_ml_byte(result)) { 599 case SCSIML_STAT_OK: 600 break; 601 case SCSIML_STAT_RESV_CONFLICT: 602 return BLK_STS_NEXUS; 603 case SCSIML_STAT_NOSPC: 604 return BLK_STS_NOSPC; 605 case SCSIML_STAT_MED_ERROR: 606 return BLK_STS_MEDIUM; 607 case SCSIML_STAT_TGT_FAILURE: 608 return BLK_STS_TARGET; 609 } 610 611 switch (host_byte(result)) { 612 case DID_OK: 613 if (scsi_status_is_good(result)) 614 return BLK_STS_OK; 615 return BLK_STS_IOERR; 616 case DID_TRANSPORT_FAILFAST: 617 case DID_TRANSPORT_MARGINAL: 618 return BLK_STS_TRANSPORT; 619 default: 620 return BLK_STS_IOERR; 621 } 622 } 623 624 /** 625 * scsi_rq_err_bytes - determine number of bytes till the next failure boundary 626 * @rq: request to examine 627 * 628 * Description: 629 * A request could be merge of IOs which require different failure 630 * handling. This function determines the number of bytes which 631 * can be failed from the beginning of the request without 632 * crossing into area which need to be retried further. 633 * 634 * Return: 635 * The number of bytes to fail. 636 */ 637 static unsigned int scsi_rq_err_bytes(const struct request *rq) 638 { 639 blk_opf_t ff = rq->cmd_flags & REQ_FAILFAST_MASK; 640 unsigned int bytes = 0; 641 struct bio *bio; 642 643 if (!(rq->rq_flags & RQF_MIXED_MERGE)) 644 return blk_rq_bytes(rq); 645 646 /* 647 * Currently the only 'mixing' which can happen is between 648 * different fastfail types. We can safely fail portions 649 * which have all the failfast bits that the first one has - 650 * the ones which are at least as eager to fail as the first 651 * one. 652 */ 653 for (bio = rq->bio; bio; bio = bio->bi_next) { 654 if ((bio->bi_opf & ff) != ff) 655 break; 656 bytes += bio->bi_iter.bi_size; 657 } 658 659 /* this could lead to infinite loop */ 660 BUG_ON(blk_rq_bytes(rq) && !bytes); 661 return bytes; 662 } 663 664 static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd) 665 { 666 struct request *req = scsi_cmd_to_rq(cmd); 667 unsigned long wait_for; 668 669 if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT) 670 return false; 671 672 wait_for = (cmd->allowed + 1) * req->timeout; 673 if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) { 674 scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n", 675 wait_for/HZ); 676 return true; 677 } 678 return false; 679 } 680 681 /* 682 * When ALUA transition state is returned, reprep the cmd to 683 * use the ALUA handler's transition timeout. Delay the reprep 684 * 1 sec to avoid aggressive retries of the target in that 685 * state. 686 */ 687 #define ALUA_TRANSITION_REPREP_DELAY 1000 688 689 /* Helper for scsi_io_completion() when special action required. */ 690 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result) 691 { 692 struct request *req = scsi_cmd_to_rq(cmd); 693 int level = 0; 694 enum {ACTION_FAIL, ACTION_REPREP, ACTION_DELAYED_REPREP, 695 ACTION_RETRY, ACTION_DELAYED_RETRY} action; 696 struct scsi_sense_hdr sshdr; 697 bool sense_valid; 698 bool sense_current = true; /* false implies "deferred sense" */ 699 blk_status_t blk_stat; 700 701 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 702 if (sense_valid) 703 sense_current = !scsi_sense_is_deferred(&sshdr); 704 705 blk_stat = scsi_result_to_blk_status(result); 706 707 if (host_byte(result) == DID_RESET) { 708 /* Third party bus reset or reset for error recovery 709 * reasons. Just retry the command and see what 710 * happens. 711 */ 712 action = ACTION_RETRY; 713 } else if (sense_valid && sense_current) { 714 switch (sshdr.sense_key) { 715 case UNIT_ATTENTION: 716 if (cmd->device->removable) { 717 /* Detected disc change. Set a bit 718 * and quietly refuse further access. 719 */ 720 cmd->device->changed = 1; 721 action = ACTION_FAIL; 722 } else { 723 /* Must have been a power glitch, or a 724 * bus reset. Could not have been a 725 * media change, so we just retry the 726 * command and see what happens. 727 */ 728 action = ACTION_RETRY; 729 } 730 break; 731 case ILLEGAL_REQUEST: 732 /* If we had an ILLEGAL REQUEST returned, then 733 * we may have performed an unsupported 734 * command. The only thing this should be 735 * would be a ten byte read where only a six 736 * byte read was supported. Also, on a system 737 * where READ CAPACITY failed, we may have 738 * read past the end of the disk. 739 */ 740 if ((cmd->device->use_10_for_rw && 741 sshdr.asc == 0x20 && sshdr.ascq == 0x00) && 742 (cmd->cmnd[0] == READ_10 || 743 cmd->cmnd[0] == WRITE_10)) { 744 /* This will issue a new 6-byte command. */ 745 cmd->device->use_10_for_rw = 0; 746 action = ACTION_REPREP; 747 } else if (sshdr.asc == 0x10) /* DIX */ { 748 action = ACTION_FAIL; 749 blk_stat = BLK_STS_PROTECTION; 750 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */ 751 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) { 752 action = ACTION_FAIL; 753 blk_stat = BLK_STS_TARGET; 754 } else 755 action = ACTION_FAIL; 756 break; 757 case ABORTED_COMMAND: 758 action = ACTION_FAIL; 759 if (sshdr.asc == 0x10) /* DIF */ 760 blk_stat = BLK_STS_PROTECTION; 761 break; 762 case NOT_READY: 763 /* If the device is in the process of becoming 764 * ready, or has a temporary blockage, retry. 765 */ 766 if (sshdr.asc == 0x04) { 767 switch (sshdr.ascq) { 768 case 0x01: /* becoming ready */ 769 case 0x04: /* format in progress */ 770 case 0x05: /* rebuild in progress */ 771 case 0x06: /* recalculation in progress */ 772 case 0x07: /* operation in progress */ 773 case 0x08: /* Long write in progress */ 774 case 0x09: /* self test in progress */ 775 case 0x11: /* notify (enable spinup) required */ 776 case 0x14: /* space allocation in progress */ 777 case 0x1a: /* start stop unit in progress */ 778 case 0x1b: /* sanitize in progress */ 779 case 0x1d: /* configuration in progress */ 780 case 0x24: /* depopulation in progress */ 781 action = ACTION_DELAYED_RETRY; 782 break; 783 case 0x0a: /* ALUA state transition */ 784 action = ACTION_DELAYED_REPREP; 785 break; 786 default: 787 action = ACTION_FAIL; 788 break; 789 } 790 } else 791 action = ACTION_FAIL; 792 break; 793 case VOLUME_OVERFLOW: 794 /* See SSC3rXX or current. */ 795 action = ACTION_FAIL; 796 break; 797 case DATA_PROTECT: 798 action = ACTION_FAIL; 799 if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) || 800 (sshdr.asc == 0x55 && 801 (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) { 802 /* Insufficient zone resources */ 803 blk_stat = BLK_STS_ZONE_OPEN_RESOURCE; 804 } 805 break; 806 default: 807 action = ACTION_FAIL; 808 break; 809 } 810 } else 811 action = ACTION_FAIL; 812 813 if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd)) 814 action = ACTION_FAIL; 815 816 switch (action) { 817 case ACTION_FAIL: 818 /* Give up and fail the remainder of the request */ 819 if (!(req->rq_flags & RQF_QUIET)) { 820 static DEFINE_RATELIMIT_STATE(_rs, 821 DEFAULT_RATELIMIT_INTERVAL, 822 DEFAULT_RATELIMIT_BURST); 823 824 if (unlikely(scsi_logging_level)) 825 level = 826 SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT, 827 SCSI_LOG_MLCOMPLETE_BITS); 828 829 /* 830 * if logging is enabled the failure will be printed 831 * in scsi_log_completion(), so avoid duplicate messages 832 */ 833 if (!level && __ratelimit(&_rs)) { 834 scsi_print_result(cmd, NULL, FAILED); 835 if (sense_valid) 836 scsi_print_sense(cmd); 837 scsi_print_command(cmd); 838 } 839 } 840 if (!scsi_end_request(req, blk_stat, scsi_rq_err_bytes(req))) 841 return; 842 fallthrough; 843 case ACTION_REPREP: 844 scsi_mq_requeue_cmd(cmd, 0); 845 break; 846 case ACTION_DELAYED_REPREP: 847 scsi_mq_requeue_cmd(cmd, ALUA_TRANSITION_REPREP_DELAY); 848 break; 849 case ACTION_RETRY: 850 /* Retry the same command immediately */ 851 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false); 852 break; 853 case ACTION_DELAYED_RETRY: 854 /* Retry the same command after a delay */ 855 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false); 856 break; 857 } 858 } 859 860 /* 861 * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a 862 * new result that may suppress further error checking. Also modifies 863 * *blk_statp in some cases. 864 */ 865 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result, 866 blk_status_t *blk_statp) 867 { 868 bool sense_valid; 869 bool sense_current = true; /* false implies "deferred sense" */ 870 struct request *req = scsi_cmd_to_rq(cmd); 871 struct scsi_sense_hdr sshdr; 872 873 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 874 if (sense_valid) 875 sense_current = !scsi_sense_is_deferred(&sshdr); 876 877 if (blk_rq_is_passthrough(req)) { 878 if (sense_valid) { 879 /* 880 * SG_IO wants current and deferred errors 881 */ 882 cmd->sense_len = min(8 + cmd->sense_buffer[7], 883 SCSI_SENSE_BUFFERSIZE); 884 } 885 if (sense_current) 886 *blk_statp = scsi_result_to_blk_status(result); 887 } else if (blk_rq_bytes(req) == 0 && sense_current) { 888 /* 889 * Flush commands do not transfers any data, and thus cannot use 890 * good_bytes != blk_rq_bytes(req) as the signal for an error. 891 * This sets *blk_statp explicitly for the problem case. 892 */ 893 *blk_statp = scsi_result_to_blk_status(result); 894 } 895 /* 896 * Recovered errors need reporting, but they're always treated as 897 * success, so fiddle the result code here. For passthrough requests 898 * we already took a copy of the original into sreq->result which 899 * is what gets returned to the user 900 */ 901 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) { 902 bool do_print = true; 903 /* 904 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d] 905 * skip print since caller wants ATA registers. Only occurs 906 * on SCSI ATA PASS_THROUGH commands when CK_COND=1 907 */ 908 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d)) 909 do_print = false; 910 else if (req->rq_flags & RQF_QUIET) 911 do_print = false; 912 if (do_print) 913 scsi_print_sense(cmd); 914 result = 0; 915 /* for passthrough, *blk_statp may be set */ 916 *blk_statp = BLK_STS_OK; 917 } 918 /* 919 * Another corner case: the SCSI status byte is non-zero but 'good'. 920 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when 921 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD 922 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related 923 * intermediate statuses (both obsolete in SAM-4) as good. 924 */ 925 if ((result & 0xff) && scsi_status_is_good(result)) { 926 result = 0; 927 *blk_statp = BLK_STS_OK; 928 } 929 return result; 930 } 931 932 /** 933 * scsi_io_completion - Completion processing for SCSI commands. 934 * @cmd: command that is finished. 935 * @good_bytes: number of processed bytes. 936 * 937 * We will finish off the specified number of sectors. If we are done, the 938 * command block will be released and the queue function will be goosed. If we 939 * are not done then we have to figure out what to do next: 940 * 941 * a) We can call scsi_mq_requeue_cmd(). The request will be 942 * unprepared and put back on the queue. Then a new command will 943 * be created for it. This should be used if we made forward 944 * progress, or if we want to switch from READ(10) to READ(6) for 945 * example. 946 * 947 * b) We can call scsi_io_completion_action(). The request will be 948 * put back on the queue and retried using the same command as 949 * before, possibly after a delay. 950 * 951 * c) We can call scsi_end_request() with blk_stat other than 952 * BLK_STS_OK, to fail the remainder of the request. 953 */ 954 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes) 955 { 956 int result = cmd->result; 957 struct request *req = scsi_cmd_to_rq(cmd); 958 blk_status_t blk_stat = BLK_STS_OK; 959 960 if (unlikely(result)) /* a nz result may or may not be an error */ 961 result = scsi_io_completion_nz_result(cmd, result, &blk_stat); 962 963 /* 964 * Next deal with any sectors which we were able to correctly 965 * handle. 966 */ 967 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd, 968 "%u sectors total, %d bytes done.\n", 969 blk_rq_sectors(req), good_bytes)); 970 971 /* 972 * Failed, zero length commands always need to drop down 973 * to retry code. Fast path should return in this block. 974 */ 975 if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) { 976 if (likely(!scsi_end_request(req, blk_stat, good_bytes))) 977 return; /* no bytes remaining */ 978 } 979 980 /* Kill remainder if no retries. */ 981 if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) { 982 if (scsi_end_request(req, blk_stat, blk_rq_bytes(req))) 983 WARN_ONCE(true, 984 "Bytes remaining after failed, no-retry command"); 985 return; 986 } 987 988 /* 989 * If there had been no error, but we have leftover bytes in the 990 * request just queue the command up again. 991 */ 992 if (likely(result == 0)) 993 scsi_mq_requeue_cmd(cmd, 0); 994 else 995 scsi_io_completion_action(cmd, result); 996 } 997 998 static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev, 999 struct request *rq) 1000 { 1001 return sdev->dma_drain_len && blk_rq_is_passthrough(rq) && 1002 !op_is_write(req_op(rq)) && 1003 sdev->host->hostt->dma_need_drain(rq); 1004 } 1005 1006 /** 1007 * scsi_alloc_sgtables - Allocate and initialize data and integrity scatterlists 1008 * @cmd: SCSI command data structure to initialize. 1009 * 1010 * Initializes @cmd->sdb and also @cmd->prot_sdb if data integrity is enabled 1011 * for @cmd. 1012 * 1013 * Returns: 1014 * * BLK_STS_OK - on success 1015 * * BLK_STS_RESOURCE - if the failure is retryable 1016 * * BLK_STS_IOERR - if the failure is fatal 1017 */ 1018 blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd) 1019 { 1020 struct scsi_device *sdev = cmd->device; 1021 struct request *rq = scsi_cmd_to_rq(cmd); 1022 unsigned short nr_segs = blk_rq_nr_phys_segments(rq); 1023 struct scatterlist *last_sg = NULL; 1024 blk_status_t ret; 1025 bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq); 1026 int count; 1027 1028 if (WARN_ON_ONCE(!nr_segs)) 1029 return BLK_STS_IOERR; 1030 1031 /* 1032 * Make sure there is space for the drain. The driver must adjust 1033 * max_hw_segments to be prepared for this. 1034 */ 1035 if (need_drain) 1036 nr_segs++; 1037 1038 /* 1039 * If sg table allocation fails, requeue request later. 1040 */ 1041 if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs, 1042 cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT))) 1043 return BLK_STS_RESOURCE; 1044 1045 /* 1046 * Next, walk the list, and fill in the addresses and sizes of 1047 * each segment. 1048 */ 1049 count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg); 1050 1051 if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) { 1052 unsigned int pad_len = 1053 (rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1; 1054 1055 last_sg->length += pad_len; 1056 cmd->extra_len += pad_len; 1057 } 1058 1059 if (need_drain) { 1060 sg_unmark_end(last_sg); 1061 last_sg = sg_next(last_sg); 1062 sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len); 1063 sg_mark_end(last_sg); 1064 1065 cmd->extra_len += sdev->dma_drain_len; 1066 count++; 1067 } 1068 1069 BUG_ON(count > cmd->sdb.table.nents); 1070 cmd->sdb.table.nents = count; 1071 cmd->sdb.length = blk_rq_payload_bytes(rq); 1072 1073 if (blk_integrity_rq(rq)) { 1074 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb; 1075 int ivecs; 1076 1077 if (WARN_ON_ONCE(!prot_sdb)) { 1078 /* 1079 * This can happen if someone (e.g. multipath) 1080 * queues a command to a device on an adapter 1081 * that does not support DIX. 1082 */ 1083 ret = BLK_STS_IOERR; 1084 goto out_free_sgtables; 1085 } 1086 1087 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio); 1088 1089 if (sg_alloc_table_chained(&prot_sdb->table, ivecs, 1090 prot_sdb->table.sgl, 1091 SCSI_INLINE_PROT_SG_CNT)) { 1092 ret = BLK_STS_RESOURCE; 1093 goto out_free_sgtables; 1094 } 1095 1096 count = blk_rq_map_integrity_sg(rq->q, rq->bio, 1097 prot_sdb->table.sgl); 1098 BUG_ON(count > ivecs); 1099 BUG_ON(count > queue_max_integrity_segments(rq->q)); 1100 1101 cmd->prot_sdb = prot_sdb; 1102 cmd->prot_sdb->table.nents = count; 1103 } 1104 1105 return BLK_STS_OK; 1106 out_free_sgtables: 1107 scsi_free_sgtables(cmd); 1108 return ret; 1109 } 1110 EXPORT_SYMBOL(scsi_alloc_sgtables); 1111 1112 /** 1113 * scsi_initialize_rq - initialize struct scsi_cmnd partially 1114 * @rq: Request associated with the SCSI command to be initialized. 1115 * 1116 * This function initializes the members of struct scsi_cmnd that must be 1117 * initialized before request processing starts and that won't be 1118 * reinitialized if a SCSI command is requeued. 1119 */ 1120 static void scsi_initialize_rq(struct request *rq) 1121 { 1122 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1123 1124 memset(cmd->cmnd, 0, sizeof(cmd->cmnd)); 1125 cmd->cmd_len = MAX_COMMAND_SIZE; 1126 cmd->sense_len = 0; 1127 init_rcu_head(&cmd->rcu); 1128 cmd->jiffies_at_alloc = jiffies; 1129 cmd->retries = 0; 1130 } 1131 1132 struct request *scsi_alloc_request(struct request_queue *q, blk_opf_t opf, 1133 blk_mq_req_flags_t flags) 1134 { 1135 struct request *rq; 1136 1137 rq = blk_mq_alloc_request(q, opf, flags); 1138 if (!IS_ERR(rq)) 1139 scsi_initialize_rq(rq); 1140 return rq; 1141 } 1142 EXPORT_SYMBOL_GPL(scsi_alloc_request); 1143 1144 /* 1145 * Only called when the request isn't completed by SCSI, and not freed by 1146 * SCSI 1147 */ 1148 static void scsi_cleanup_rq(struct request *rq) 1149 { 1150 if (rq->rq_flags & RQF_DONTPREP) { 1151 scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq)); 1152 rq->rq_flags &= ~RQF_DONTPREP; 1153 } 1154 } 1155 1156 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */ 1157 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd) 1158 { 1159 struct request *rq = scsi_cmd_to_rq(cmd); 1160 1161 if (!blk_rq_is_passthrough(rq) && !(cmd->flags & SCMD_INITIALIZED)) { 1162 cmd->flags |= SCMD_INITIALIZED; 1163 scsi_initialize_rq(rq); 1164 } 1165 1166 cmd->device = dev; 1167 INIT_LIST_HEAD(&cmd->eh_entry); 1168 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler); 1169 } 1170 1171 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev, 1172 struct request *req) 1173 { 1174 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1175 1176 /* 1177 * Passthrough requests may transfer data, in which case they must 1178 * a bio attached to them. Or they might contain a SCSI command 1179 * that does not transfer data, in which case they may optionally 1180 * submit a request without an attached bio. 1181 */ 1182 if (req->bio) { 1183 blk_status_t ret = scsi_alloc_sgtables(cmd); 1184 if (unlikely(ret != BLK_STS_OK)) 1185 return ret; 1186 } else { 1187 BUG_ON(blk_rq_bytes(req)); 1188 1189 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1190 } 1191 1192 cmd->transfersize = blk_rq_bytes(req); 1193 return BLK_STS_OK; 1194 } 1195 1196 static blk_status_t 1197 scsi_device_state_check(struct scsi_device *sdev, struct request *req) 1198 { 1199 switch (sdev->sdev_state) { 1200 case SDEV_CREATED: 1201 return BLK_STS_OK; 1202 case SDEV_OFFLINE: 1203 case SDEV_TRANSPORT_OFFLINE: 1204 /* 1205 * If the device is offline we refuse to process any 1206 * commands. The device must be brought online 1207 * before trying any recovery commands. 1208 */ 1209 if (!sdev->offline_already) { 1210 sdev->offline_already = true; 1211 sdev_printk(KERN_ERR, sdev, 1212 "rejecting I/O to offline device\n"); 1213 } 1214 return BLK_STS_IOERR; 1215 case SDEV_DEL: 1216 /* 1217 * If the device is fully deleted, we refuse to 1218 * process any commands as well. 1219 */ 1220 sdev_printk(KERN_ERR, sdev, 1221 "rejecting I/O to dead device\n"); 1222 return BLK_STS_IOERR; 1223 case SDEV_BLOCK: 1224 case SDEV_CREATED_BLOCK: 1225 return BLK_STS_RESOURCE; 1226 case SDEV_QUIESCE: 1227 /* 1228 * If the device is blocked we only accept power management 1229 * commands. 1230 */ 1231 if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM))) 1232 return BLK_STS_RESOURCE; 1233 return BLK_STS_OK; 1234 default: 1235 /* 1236 * For any other not fully online state we only allow 1237 * power management commands. 1238 */ 1239 if (req && !(req->rq_flags & RQF_PM)) 1240 return BLK_STS_OFFLINE; 1241 return BLK_STS_OK; 1242 } 1243 } 1244 1245 /* 1246 * scsi_dev_queue_ready: if we can send requests to sdev, assign one token 1247 * and return the token else return -1. 1248 */ 1249 static inline int scsi_dev_queue_ready(struct request_queue *q, 1250 struct scsi_device *sdev) 1251 { 1252 int token; 1253 1254 token = sbitmap_get(&sdev->budget_map); 1255 if (atomic_read(&sdev->device_blocked)) { 1256 if (token < 0) 1257 goto out; 1258 1259 if (scsi_device_busy(sdev) > 1) 1260 goto out_dec; 1261 1262 /* 1263 * unblock after device_blocked iterates to zero 1264 */ 1265 if (atomic_dec_return(&sdev->device_blocked) > 0) 1266 goto out_dec; 1267 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev, 1268 "unblocking device at zero depth\n")); 1269 } 1270 1271 return token; 1272 out_dec: 1273 if (token >= 0) 1274 sbitmap_put(&sdev->budget_map, token); 1275 out: 1276 return -1; 1277 } 1278 1279 /* 1280 * scsi_target_queue_ready: checks if there we can send commands to target 1281 * @sdev: scsi device on starget to check. 1282 */ 1283 static inline int scsi_target_queue_ready(struct Scsi_Host *shost, 1284 struct scsi_device *sdev) 1285 { 1286 struct scsi_target *starget = scsi_target(sdev); 1287 unsigned int busy; 1288 1289 if (starget->single_lun) { 1290 spin_lock_irq(shost->host_lock); 1291 if (starget->starget_sdev_user && 1292 starget->starget_sdev_user != sdev) { 1293 spin_unlock_irq(shost->host_lock); 1294 return 0; 1295 } 1296 starget->starget_sdev_user = sdev; 1297 spin_unlock_irq(shost->host_lock); 1298 } 1299 1300 if (starget->can_queue <= 0) 1301 return 1; 1302 1303 busy = atomic_inc_return(&starget->target_busy) - 1; 1304 if (atomic_read(&starget->target_blocked) > 0) { 1305 if (busy) 1306 goto starved; 1307 1308 /* 1309 * unblock after target_blocked iterates to zero 1310 */ 1311 if (atomic_dec_return(&starget->target_blocked) > 0) 1312 goto out_dec; 1313 1314 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget, 1315 "unblocking target at zero depth\n")); 1316 } 1317 1318 if (busy >= starget->can_queue) 1319 goto starved; 1320 1321 return 1; 1322 1323 starved: 1324 spin_lock_irq(shost->host_lock); 1325 list_move_tail(&sdev->starved_entry, &shost->starved_list); 1326 spin_unlock_irq(shost->host_lock); 1327 out_dec: 1328 if (starget->can_queue > 0) 1329 atomic_dec(&starget->target_busy); 1330 return 0; 1331 } 1332 1333 /* 1334 * scsi_host_queue_ready: if we can send requests to shost, return 1 else 1335 * return 0. We must end up running the queue again whenever 0 is 1336 * returned, else IO can hang. 1337 */ 1338 static inline int scsi_host_queue_ready(struct request_queue *q, 1339 struct Scsi_Host *shost, 1340 struct scsi_device *sdev, 1341 struct scsi_cmnd *cmd) 1342 { 1343 if (atomic_read(&shost->host_blocked) > 0) { 1344 if (scsi_host_busy(shost) > 0) 1345 goto starved; 1346 1347 /* 1348 * unblock after host_blocked iterates to zero 1349 */ 1350 if (atomic_dec_return(&shost->host_blocked) > 0) 1351 goto out_dec; 1352 1353 SCSI_LOG_MLQUEUE(3, 1354 shost_printk(KERN_INFO, shost, 1355 "unblocking host at zero depth\n")); 1356 } 1357 1358 if (shost->host_self_blocked) 1359 goto starved; 1360 1361 /* We're OK to process the command, so we can't be starved */ 1362 if (!list_empty(&sdev->starved_entry)) { 1363 spin_lock_irq(shost->host_lock); 1364 if (!list_empty(&sdev->starved_entry)) 1365 list_del_init(&sdev->starved_entry); 1366 spin_unlock_irq(shost->host_lock); 1367 } 1368 1369 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state); 1370 1371 return 1; 1372 1373 starved: 1374 spin_lock_irq(shost->host_lock); 1375 if (list_empty(&sdev->starved_entry)) 1376 list_add_tail(&sdev->starved_entry, &shost->starved_list); 1377 spin_unlock_irq(shost->host_lock); 1378 out_dec: 1379 scsi_dec_host_busy(shost, cmd); 1380 return 0; 1381 } 1382 1383 /* 1384 * Busy state exporting function for request stacking drivers. 1385 * 1386 * For efficiency, no lock is taken to check the busy state of 1387 * shost/starget/sdev, since the returned value is not guaranteed and 1388 * may be changed after request stacking drivers call the function, 1389 * regardless of taking lock or not. 1390 * 1391 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi 1392 * needs to return 'not busy'. Otherwise, request stacking drivers 1393 * may hold requests forever. 1394 */ 1395 static bool scsi_mq_lld_busy(struct request_queue *q) 1396 { 1397 struct scsi_device *sdev = q->queuedata; 1398 struct Scsi_Host *shost; 1399 1400 if (blk_queue_dying(q)) 1401 return false; 1402 1403 shost = sdev->host; 1404 1405 /* 1406 * Ignore host/starget busy state. 1407 * Since block layer does not have a concept of fairness across 1408 * multiple queues, congestion of host/starget needs to be handled 1409 * in SCSI layer. 1410 */ 1411 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev)) 1412 return true; 1413 1414 return false; 1415 } 1416 1417 /* 1418 * Block layer request completion callback. May be called from interrupt 1419 * context. 1420 */ 1421 static void scsi_complete(struct request *rq) 1422 { 1423 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1424 enum scsi_disposition disposition; 1425 1426 INIT_LIST_HEAD(&cmd->eh_entry); 1427 1428 atomic_inc(&cmd->device->iodone_cnt); 1429 if (cmd->result) 1430 atomic_inc(&cmd->device->ioerr_cnt); 1431 1432 disposition = scsi_decide_disposition(cmd); 1433 if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd)) 1434 disposition = SUCCESS; 1435 1436 scsi_log_completion(cmd, disposition); 1437 1438 switch (disposition) { 1439 case SUCCESS: 1440 scsi_finish_command(cmd); 1441 break; 1442 case NEEDS_RETRY: 1443 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY); 1444 break; 1445 case ADD_TO_MLQUEUE: 1446 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY); 1447 break; 1448 default: 1449 scsi_eh_scmd_add(cmd); 1450 break; 1451 } 1452 } 1453 1454 /** 1455 * scsi_dispatch_cmd - Dispatch a command to the low-level driver. 1456 * @cmd: command block we are dispatching. 1457 * 1458 * Return: nonzero return request was rejected and device's queue needs to be 1459 * plugged. 1460 */ 1461 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd) 1462 { 1463 struct Scsi_Host *host = cmd->device->host; 1464 int rtn = 0; 1465 1466 atomic_inc(&cmd->device->iorequest_cnt); 1467 1468 /* check if the device is still usable */ 1469 if (unlikely(cmd->device->sdev_state == SDEV_DEL)) { 1470 /* in SDEV_DEL we error all commands. DID_NO_CONNECT 1471 * returns an immediate error upwards, and signals 1472 * that the device is no longer present */ 1473 cmd->result = DID_NO_CONNECT << 16; 1474 goto done; 1475 } 1476 1477 /* Check to see if the scsi lld made this device blocked. */ 1478 if (unlikely(scsi_device_blocked(cmd->device))) { 1479 /* 1480 * in blocked state, the command is just put back on 1481 * the device queue. The suspend state has already 1482 * blocked the queue so future requests should not 1483 * occur until the device transitions out of the 1484 * suspend state. 1485 */ 1486 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1487 "queuecommand : device blocked\n")); 1488 atomic_dec(&cmd->device->iorequest_cnt); 1489 return SCSI_MLQUEUE_DEVICE_BUSY; 1490 } 1491 1492 /* Store the LUN value in cmnd, if needed. */ 1493 if (cmd->device->lun_in_cdb) 1494 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) | 1495 (cmd->device->lun << 5 & 0xe0); 1496 1497 scsi_log_send(cmd); 1498 1499 /* 1500 * Before we queue this command, check if the command 1501 * length exceeds what the host adapter can handle. 1502 */ 1503 if (cmd->cmd_len > cmd->device->host->max_cmd_len) { 1504 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1505 "queuecommand : command too long. " 1506 "cdb_size=%d host->max_cmd_len=%d\n", 1507 cmd->cmd_len, cmd->device->host->max_cmd_len)); 1508 cmd->result = (DID_ABORT << 16); 1509 goto done; 1510 } 1511 1512 if (unlikely(host->shost_state == SHOST_DEL)) { 1513 cmd->result = (DID_NO_CONNECT << 16); 1514 goto done; 1515 1516 } 1517 1518 trace_scsi_dispatch_cmd_start(cmd); 1519 rtn = host->hostt->queuecommand(host, cmd); 1520 if (rtn) { 1521 atomic_dec(&cmd->device->iorequest_cnt); 1522 trace_scsi_dispatch_cmd_error(cmd, rtn); 1523 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY && 1524 rtn != SCSI_MLQUEUE_TARGET_BUSY) 1525 rtn = SCSI_MLQUEUE_HOST_BUSY; 1526 1527 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1528 "queuecommand : request rejected\n")); 1529 } 1530 1531 return rtn; 1532 done: 1533 scsi_done(cmd); 1534 return 0; 1535 } 1536 1537 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */ 1538 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost) 1539 { 1540 return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) * 1541 sizeof(struct scatterlist); 1542 } 1543 1544 static blk_status_t scsi_prepare_cmd(struct request *req) 1545 { 1546 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1547 struct scsi_device *sdev = req->q->queuedata; 1548 struct Scsi_Host *shost = sdev->host; 1549 bool in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state); 1550 struct scatterlist *sg; 1551 1552 scsi_init_command(sdev, cmd); 1553 1554 cmd->eh_eflags = 0; 1555 cmd->prot_type = 0; 1556 cmd->prot_flags = 0; 1557 cmd->submitter = 0; 1558 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1559 cmd->underflow = 0; 1560 cmd->transfersize = 0; 1561 cmd->host_scribble = NULL; 1562 cmd->result = 0; 1563 cmd->extra_len = 0; 1564 cmd->state = 0; 1565 if (in_flight) 1566 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state); 1567 1568 /* 1569 * Only clear the driver-private command data if the LLD does not supply 1570 * a function to initialize that data. 1571 */ 1572 if (!shost->hostt->init_cmd_priv) 1573 memset(cmd + 1, 0, shost->hostt->cmd_size); 1574 1575 cmd->prot_op = SCSI_PROT_NORMAL; 1576 if (blk_rq_bytes(req)) 1577 cmd->sc_data_direction = rq_dma_dir(req); 1578 else 1579 cmd->sc_data_direction = DMA_NONE; 1580 1581 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size; 1582 cmd->sdb.table.sgl = sg; 1583 1584 if (scsi_host_get_prot(shost)) { 1585 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer)); 1586 1587 cmd->prot_sdb->table.sgl = 1588 (struct scatterlist *)(cmd->prot_sdb + 1); 1589 } 1590 1591 /* 1592 * Special handling for passthrough commands, which don't go to the ULP 1593 * at all: 1594 */ 1595 if (blk_rq_is_passthrough(req)) 1596 return scsi_setup_scsi_cmnd(sdev, req); 1597 1598 if (sdev->handler && sdev->handler->prep_fn) { 1599 blk_status_t ret = sdev->handler->prep_fn(sdev, req); 1600 1601 if (ret != BLK_STS_OK) 1602 return ret; 1603 } 1604 1605 /* Usually overridden by the ULP */ 1606 cmd->allowed = 0; 1607 memset(cmd->cmnd, 0, sizeof(cmd->cmnd)); 1608 return scsi_cmd_to_driver(cmd)->init_command(cmd); 1609 } 1610 1611 static void scsi_done_internal(struct scsi_cmnd *cmd, bool complete_directly) 1612 { 1613 struct request *req = scsi_cmd_to_rq(cmd); 1614 1615 switch (cmd->submitter) { 1616 case SUBMITTED_BY_BLOCK_LAYER: 1617 break; 1618 case SUBMITTED_BY_SCSI_ERROR_HANDLER: 1619 return scsi_eh_done(cmd); 1620 case SUBMITTED_BY_SCSI_RESET_IOCTL: 1621 return; 1622 } 1623 1624 if (unlikely(blk_should_fake_timeout(scsi_cmd_to_rq(cmd)->q))) 1625 return; 1626 if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state))) 1627 return; 1628 trace_scsi_dispatch_cmd_done(cmd); 1629 1630 if (complete_directly) 1631 blk_mq_complete_request_direct(req, scsi_complete); 1632 else 1633 blk_mq_complete_request(req); 1634 } 1635 1636 void scsi_done(struct scsi_cmnd *cmd) 1637 { 1638 scsi_done_internal(cmd, false); 1639 } 1640 EXPORT_SYMBOL(scsi_done); 1641 1642 void scsi_done_direct(struct scsi_cmnd *cmd) 1643 { 1644 scsi_done_internal(cmd, true); 1645 } 1646 EXPORT_SYMBOL(scsi_done_direct); 1647 1648 static void scsi_mq_put_budget(struct request_queue *q, int budget_token) 1649 { 1650 struct scsi_device *sdev = q->queuedata; 1651 1652 sbitmap_put(&sdev->budget_map, budget_token); 1653 } 1654 1655 /* 1656 * When to reinvoke queueing after a resource shortage. It's 3 msecs to 1657 * not change behaviour from the previous unplug mechanism, experimentation 1658 * may prove this needs changing. 1659 */ 1660 #define SCSI_QUEUE_DELAY 3 1661 1662 static int scsi_mq_get_budget(struct request_queue *q) 1663 { 1664 struct scsi_device *sdev = q->queuedata; 1665 int token = scsi_dev_queue_ready(q, sdev); 1666 1667 if (token >= 0) 1668 return token; 1669 1670 atomic_inc(&sdev->restarts); 1671 1672 /* 1673 * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy). 1674 * .restarts must be incremented before .device_busy is read because the 1675 * code in scsi_run_queue_async() depends on the order of these operations. 1676 */ 1677 smp_mb__after_atomic(); 1678 1679 /* 1680 * If all in-flight requests originated from this LUN are completed 1681 * before reading .device_busy, sdev->device_busy will be observed as 1682 * zero, then blk_mq_delay_run_hw_queues() will dispatch this request 1683 * soon. Otherwise, completion of one of these requests will observe 1684 * the .restarts flag, and the request queue will be run for handling 1685 * this request, see scsi_end_request(). 1686 */ 1687 if (unlikely(scsi_device_busy(sdev) == 0 && 1688 !scsi_device_blocked(sdev))) 1689 blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY); 1690 return -1; 1691 } 1692 1693 static void scsi_mq_set_rq_budget_token(struct request *req, int token) 1694 { 1695 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1696 1697 cmd->budget_token = token; 1698 } 1699 1700 static int scsi_mq_get_rq_budget_token(struct request *req) 1701 { 1702 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1703 1704 return cmd->budget_token; 1705 } 1706 1707 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx, 1708 const struct blk_mq_queue_data *bd) 1709 { 1710 struct request *req = bd->rq; 1711 struct request_queue *q = req->q; 1712 struct scsi_device *sdev = q->queuedata; 1713 struct Scsi_Host *shost = sdev->host; 1714 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1715 blk_status_t ret; 1716 int reason; 1717 1718 WARN_ON_ONCE(cmd->budget_token < 0); 1719 1720 /* 1721 * If the device is not in running state we will reject some or all 1722 * commands. 1723 */ 1724 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) { 1725 ret = scsi_device_state_check(sdev, req); 1726 if (ret != BLK_STS_OK) 1727 goto out_put_budget; 1728 } 1729 1730 ret = BLK_STS_RESOURCE; 1731 if (!scsi_target_queue_ready(shost, sdev)) 1732 goto out_put_budget; 1733 if (unlikely(scsi_host_in_recovery(shost))) { 1734 if (cmd->flags & SCMD_FAIL_IF_RECOVERING) 1735 ret = BLK_STS_OFFLINE; 1736 goto out_dec_target_busy; 1737 } 1738 if (!scsi_host_queue_ready(q, shost, sdev, cmd)) 1739 goto out_dec_target_busy; 1740 1741 if (!(req->rq_flags & RQF_DONTPREP)) { 1742 ret = scsi_prepare_cmd(req); 1743 if (ret != BLK_STS_OK) 1744 goto out_dec_host_busy; 1745 req->rq_flags |= RQF_DONTPREP; 1746 } else { 1747 clear_bit(SCMD_STATE_COMPLETE, &cmd->state); 1748 } 1749 1750 cmd->flags &= SCMD_PRESERVED_FLAGS; 1751 if (sdev->simple_tags) 1752 cmd->flags |= SCMD_TAGGED; 1753 if (bd->last) 1754 cmd->flags |= SCMD_LAST; 1755 1756 scsi_set_resid(cmd, 0); 1757 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 1758 cmd->submitter = SUBMITTED_BY_BLOCK_LAYER; 1759 1760 blk_mq_start_request(req); 1761 reason = scsi_dispatch_cmd(cmd); 1762 if (reason) { 1763 scsi_set_blocked(cmd, reason); 1764 ret = BLK_STS_RESOURCE; 1765 goto out_dec_host_busy; 1766 } 1767 1768 return BLK_STS_OK; 1769 1770 out_dec_host_busy: 1771 scsi_dec_host_busy(shost, cmd); 1772 out_dec_target_busy: 1773 if (scsi_target(sdev)->can_queue > 0) 1774 atomic_dec(&scsi_target(sdev)->target_busy); 1775 out_put_budget: 1776 scsi_mq_put_budget(q, cmd->budget_token); 1777 cmd->budget_token = -1; 1778 switch (ret) { 1779 case BLK_STS_OK: 1780 break; 1781 case BLK_STS_RESOURCE: 1782 case BLK_STS_ZONE_RESOURCE: 1783 if (scsi_device_blocked(sdev)) 1784 ret = BLK_STS_DEV_RESOURCE; 1785 break; 1786 case BLK_STS_AGAIN: 1787 cmd->result = DID_BUS_BUSY << 16; 1788 if (req->rq_flags & RQF_DONTPREP) 1789 scsi_mq_uninit_cmd(cmd); 1790 break; 1791 default: 1792 if (unlikely(!scsi_device_online(sdev))) 1793 cmd->result = DID_NO_CONNECT << 16; 1794 else 1795 cmd->result = DID_ERROR << 16; 1796 /* 1797 * Make sure to release all allocated resources when 1798 * we hit an error, as we will never see this command 1799 * again. 1800 */ 1801 if (req->rq_flags & RQF_DONTPREP) 1802 scsi_mq_uninit_cmd(cmd); 1803 scsi_run_queue_async(sdev); 1804 break; 1805 } 1806 return ret; 1807 } 1808 1809 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 1810 unsigned int hctx_idx, unsigned int numa_node) 1811 { 1812 struct Scsi_Host *shost = set->driver_data; 1813 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1814 struct scatterlist *sg; 1815 int ret = 0; 1816 1817 cmd->sense_buffer = 1818 kmem_cache_alloc_node(scsi_sense_cache, GFP_KERNEL, numa_node); 1819 if (!cmd->sense_buffer) 1820 return -ENOMEM; 1821 1822 if (scsi_host_get_prot(shost)) { 1823 sg = (void *)cmd + sizeof(struct scsi_cmnd) + 1824 shost->hostt->cmd_size; 1825 cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost); 1826 } 1827 1828 if (shost->hostt->init_cmd_priv) { 1829 ret = shost->hostt->init_cmd_priv(shost, cmd); 1830 if (ret < 0) 1831 kmem_cache_free(scsi_sense_cache, cmd->sense_buffer); 1832 } 1833 1834 return ret; 1835 } 1836 1837 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq, 1838 unsigned int hctx_idx) 1839 { 1840 struct Scsi_Host *shost = set->driver_data; 1841 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1842 1843 if (shost->hostt->exit_cmd_priv) 1844 shost->hostt->exit_cmd_priv(shost, cmd); 1845 kmem_cache_free(scsi_sense_cache, cmd->sense_buffer); 1846 } 1847 1848 1849 static int scsi_mq_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob) 1850 { 1851 struct Scsi_Host *shost = hctx->driver_data; 1852 1853 if (shost->hostt->mq_poll) 1854 return shost->hostt->mq_poll(shost, hctx->queue_num); 1855 1856 return 0; 1857 } 1858 1859 static int scsi_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 1860 unsigned int hctx_idx) 1861 { 1862 struct Scsi_Host *shost = data; 1863 1864 hctx->driver_data = shost; 1865 return 0; 1866 } 1867 1868 static void scsi_map_queues(struct blk_mq_tag_set *set) 1869 { 1870 struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set); 1871 1872 if (shost->hostt->map_queues) 1873 return shost->hostt->map_queues(shost); 1874 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 1875 } 1876 1877 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q) 1878 { 1879 struct device *dev = shost->dma_dev; 1880 1881 /* 1882 * this limit is imposed by hardware restrictions 1883 */ 1884 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize, 1885 SG_MAX_SEGMENTS)); 1886 1887 if (scsi_host_prot_dma(shost)) { 1888 shost->sg_prot_tablesize = 1889 min_not_zero(shost->sg_prot_tablesize, 1890 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS); 1891 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize); 1892 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize); 1893 } 1894 1895 blk_queue_max_hw_sectors(q, shost->max_sectors); 1896 blk_queue_segment_boundary(q, shost->dma_boundary); 1897 dma_set_seg_boundary(dev, shost->dma_boundary); 1898 1899 blk_queue_max_segment_size(q, shost->max_segment_size); 1900 blk_queue_virt_boundary(q, shost->virt_boundary_mask); 1901 dma_set_max_seg_size(dev, queue_max_segment_size(q)); 1902 1903 /* 1904 * Set a reasonable default alignment: The larger of 32-byte (dword), 1905 * which is a common minimum for HBAs, and the minimum DMA alignment, 1906 * which is set by the platform. 1907 * 1908 * Devices that require a bigger alignment can increase it later. 1909 */ 1910 blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1); 1911 } 1912 EXPORT_SYMBOL_GPL(__scsi_init_queue); 1913 1914 static const struct blk_mq_ops scsi_mq_ops_no_commit = { 1915 .get_budget = scsi_mq_get_budget, 1916 .put_budget = scsi_mq_put_budget, 1917 .queue_rq = scsi_queue_rq, 1918 .complete = scsi_complete, 1919 .timeout = scsi_timeout, 1920 #ifdef CONFIG_BLK_DEBUG_FS 1921 .show_rq = scsi_show_rq, 1922 #endif 1923 .init_request = scsi_mq_init_request, 1924 .exit_request = scsi_mq_exit_request, 1925 .cleanup_rq = scsi_cleanup_rq, 1926 .busy = scsi_mq_lld_busy, 1927 .map_queues = scsi_map_queues, 1928 .init_hctx = scsi_init_hctx, 1929 .poll = scsi_mq_poll, 1930 .set_rq_budget_token = scsi_mq_set_rq_budget_token, 1931 .get_rq_budget_token = scsi_mq_get_rq_budget_token, 1932 }; 1933 1934 1935 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx) 1936 { 1937 struct Scsi_Host *shost = hctx->driver_data; 1938 1939 shost->hostt->commit_rqs(shost, hctx->queue_num); 1940 } 1941 1942 static const struct blk_mq_ops scsi_mq_ops = { 1943 .get_budget = scsi_mq_get_budget, 1944 .put_budget = scsi_mq_put_budget, 1945 .queue_rq = scsi_queue_rq, 1946 .commit_rqs = scsi_commit_rqs, 1947 .complete = scsi_complete, 1948 .timeout = scsi_timeout, 1949 #ifdef CONFIG_BLK_DEBUG_FS 1950 .show_rq = scsi_show_rq, 1951 #endif 1952 .init_request = scsi_mq_init_request, 1953 .exit_request = scsi_mq_exit_request, 1954 .cleanup_rq = scsi_cleanup_rq, 1955 .busy = scsi_mq_lld_busy, 1956 .map_queues = scsi_map_queues, 1957 .init_hctx = scsi_init_hctx, 1958 .poll = scsi_mq_poll, 1959 .set_rq_budget_token = scsi_mq_set_rq_budget_token, 1960 .get_rq_budget_token = scsi_mq_get_rq_budget_token, 1961 }; 1962 1963 int scsi_mq_setup_tags(struct Scsi_Host *shost) 1964 { 1965 unsigned int cmd_size, sgl_size; 1966 struct blk_mq_tag_set *tag_set = &shost->tag_set; 1967 1968 sgl_size = max_t(unsigned int, sizeof(struct scatterlist), 1969 scsi_mq_inline_sgl_size(shost)); 1970 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size; 1971 if (scsi_host_get_prot(shost)) 1972 cmd_size += sizeof(struct scsi_data_buffer) + 1973 sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT; 1974 1975 memset(tag_set, 0, sizeof(*tag_set)); 1976 if (shost->hostt->commit_rqs) 1977 tag_set->ops = &scsi_mq_ops; 1978 else 1979 tag_set->ops = &scsi_mq_ops_no_commit; 1980 tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1; 1981 tag_set->nr_maps = shost->nr_maps ? : 1; 1982 tag_set->queue_depth = shost->can_queue; 1983 tag_set->cmd_size = cmd_size; 1984 tag_set->numa_node = dev_to_node(shost->dma_dev); 1985 tag_set->flags = BLK_MQ_F_SHOULD_MERGE; 1986 tag_set->flags |= 1987 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy); 1988 tag_set->driver_data = shost; 1989 if (shost->host_tagset) 1990 tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED; 1991 1992 return blk_mq_alloc_tag_set(tag_set); 1993 } 1994 1995 void scsi_mq_free_tags(struct kref *kref) 1996 { 1997 struct Scsi_Host *shost = container_of(kref, typeof(*shost), 1998 tagset_refcnt); 1999 2000 blk_mq_free_tag_set(&shost->tag_set); 2001 complete(&shost->tagset_freed); 2002 } 2003 2004 /** 2005 * scsi_device_from_queue - return sdev associated with a request_queue 2006 * @q: The request queue to return the sdev from 2007 * 2008 * Return the sdev associated with a request queue or NULL if the 2009 * request_queue does not reference a SCSI device. 2010 */ 2011 struct scsi_device *scsi_device_from_queue(struct request_queue *q) 2012 { 2013 struct scsi_device *sdev = NULL; 2014 2015 if (q->mq_ops == &scsi_mq_ops_no_commit || 2016 q->mq_ops == &scsi_mq_ops) 2017 sdev = q->queuedata; 2018 if (!sdev || !get_device(&sdev->sdev_gendev)) 2019 sdev = NULL; 2020 2021 return sdev; 2022 } 2023 /* 2024 * pktcdvd should have been integrated into the SCSI layers, but for historical 2025 * reasons like the old IDE driver it isn't. This export allows it to safely 2026 * probe if a given device is a SCSI one and only attach to that. 2027 */ 2028 #ifdef CONFIG_CDROM_PKTCDVD_MODULE 2029 EXPORT_SYMBOL_GPL(scsi_device_from_queue); 2030 #endif 2031 2032 /** 2033 * scsi_block_requests - Utility function used by low-level drivers to prevent 2034 * further commands from being queued to the device. 2035 * @shost: host in question 2036 * 2037 * There is no timer nor any other means by which the requests get unblocked 2038 * other than the low-level driver calling scsi_unblock_requests(). 2039 */ 2040 void scsi_block_requests(struct Scsi_Host *shost) 2041 { 2042 shost->host_self_blocked = 1; 2043 } 2044 EXPORT_SYMBOL(scsi_block_requests); 2045 2046 /** 2047 * scsi_unblock_requests - Utility function used by low-level drivers to allow 2048 * further commands to be queued to the device. 2049 * @shost: host in question 2050 * 2051 * There is no timer nor any other means by which the requests get unblocked 2052 * other than the low-level driver calling scsi_unblock_requests(). This is done 2053 * as an API function so that changes to the internals of the scsi mid-layer 2054 * won't require wholesale changes to drivers that use this feature. 2055 */ 2056 void scsi_unblock_requests(struct Scsi_Host *shost) 2057 { 2058 shost->host_self_blocked = 0; 2059 scsi_run_host_queues(shost); 2060 } 2061 EXPORT_SYMBOL(scsi_unblock_requests); 2062 2063 void scsi_exit_queue(void) 2064 { 2065 kmem_cache_destroy(scsi_sense_cache); 2066 } 2067 2068 /** 2069 * scsi_mode_select - issue a mode select 2070 * @sdev: SCSI device to be queried 2071 * @pf: Page format bit (1 == standard, 0 == vendor specific) 2072 * @sp: Save page bit (0 == don't save, 1 == save) 2073 * @buffer: request buffer (may not be smaller than eight bytes) 2074 * @len: length of request buffer. 2075 * @timeout: command timeout 2076 * @retries: number of retries before failing 2077 * @data: returns a structure abstracting the mode header data 2078 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2079 * must be SCSI_SENSE_BUFFERSIZE big. 2080 * 2081 * Returns zero if successful; negative error number or scsi 2082 * status on error 2083 * 2084 */ 2085 int scsi_mode_select(struct scsi_device *sdev, int pf, int sp, 2086 unsigned char *buffer, int len, int timeout, int retries, 2087 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2088 { 2089 unsigned char cmd[10]; 2090 unsigned char *real_buffer; 2091 const struct scsi_exec_args exec_args = { 2092 .sshdr = sshdr, 2093 }; 2094 int ret; 2095 2096 memset(cmd, 0, sizeof(cmd)); 2097 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0); 2098 2099 /* 2100 * Use MODE SELECT(10) if the device asked for it or if the mode page 2101 * and the mode select header cannot fit within the maximumm 255 bytes 2102 * of the MODE SELECT(6) command. 2103 */ 2104 if (sdev->use_10_for_ms || 2105 len + 4 > 255 || 2106 data->block_descriptor_length > 255) { 2107 if (len > 65535 - 8) 2108 return -EINVAL; 2109 real_buffer = kmalloc(8 + len, GFP_KERNEL); 2110 if (!real_buffer) 2111 return -ENOMEM; 2112 memcpy(real_buffer + 8, buffer, len); 2113 len += 8; 2114 real_buffer[0] = 0; 2115 real_buffer[1] = 0; 2116 real_buffer[2] = data->medium_type; 2117 real_buffer[3] = data->device_specific; 2118 real_buffer[4] = data->longlba ? 0x01 : 0; 2119 real_buffer[5] = 0; 2120 put_unaligned_be16(data->block_descriptor_length, 2121 &real_buffer[6]); 2122 2123 cmd[0] = MODE_SELECT_10; 2124 put_unaligned_be16(len, &cmd[7]); 2125 } else { 2126 if (data->longlba) 2127 return -EINVAL; 2128 2129 real_buffer = kmalloc(4 + len, GFP_KERNEL); 2130 if (!real_buffer) 2131 return -ENOMEM; 2132 memcpy(real_buffer + 4, buffer, len); 2133 len += 4; 2134 real_buffer[0] = 0; 2135 real_buffer[1] = data->medium_type; 2136 real_buffer[2] = data->device_specific; 2137 real_buffer[3] = data->block_descriptor_length; 2138 2139 cmd[0] = MODE_SELECT; 2140 cmd[4] = len; 2141 } 2142 2143 ret = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, real_buffer, len, 2144 timeout, retries, &exec_args); 2145 kfree(real_buffer); 2146 return ret; 2147 } 2148 EXPORT_SYMBOL_GPL(scsi_mode_select); 2149 2150 /** 2151 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary. 2152 * @sdev: SCSI device to be queried 2153 * @dbd: set to prevent mode sense from returning block descriptors 2154 * @modepage: mode page being requested 2155 * @buffer: request buffer (may not be smaller than eight bytes) 2156 * @len: length of request buffer. 2157 * @timeout: command timeout 2158 * @retries: number of retries before failing 2159 * @data: returns a structure abstracting the mode header data 2160 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2161 * must be SCSI_SENSE_BUFFERSIZE big. 2162 * 2163 * Returns zero if successful, or a negative error number on failure 2164 */ 2165 int 2166 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, 2167 unsigned char *buffer, int len, int timeout, int retries, 2168 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2169 { 2170 unsigned char cmd[12]; 2171 int use_10_for_ms; 2172 int header_length; 2173 int result, retry_count = retries; 2174 struct scsi_sense_hdr my_sshdr; 2175 const struct scsi_exec_args exec_args = { 2176 /* caller might not be interested in sense, but we need it */ 2177 .sshdr = sshdr ? : &my_sshdr, 2178 }; 2179 2180 memset(data, 0, sizeof(*data)); 2181 memset(&cmd[0], 0, 12); 2182 2183 dbd = sdev->set_dbd_for_ms ? 8 : dbd; 2184 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */ 2185 cmd[2] = modepage; 2186 2187 sshdr = exec_args.sshdr; 2188 2189 retry: 2190 use_10_for_ms = sdev->use_10_for_ms || len > 255; 2191 2192 if (use_10_for_ms) { 2193 if (len < 8 || len > 65535) 2194 return -EINVAL; 2195 2196 cmd[0] = MODE_SENSE_10; 2197 put_unaligned_be16(len, &cmd[7]); 2198 header_length = 8; 2199 } else { 2200 if (len < 4) 2201 return -EINVAL; 2202 2203 cmd[0] = MODE_SENSE; 2204 cmd[4] = len; 2205 header_length = 4; 2206 } 2207 2208 memset(buffer, 0, len); 2209 2210 result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, buffer, len, 2211 timeout, retries, &exec_args); 2212 if (result < 0) 2213 return result; 2214 2215 /* This code looks awful: what it's doing is making sure an 2216 * ILLEGAL REQUEST sense return identifies the actual command 2217 * byte as the problem. MODE_SENSE commands can return 2218 * ILLEGAL REQUEST if the code page isn't supported */ 2219 2220 if (!scsi_status_is_good(result)) { 2221 if (scsi_sense_valid(sshdr)) { 2222 if ((sshdr->sense_key == ILLEGAL_REQUEST) && 2223 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) { 2224 /* 2225 * Invalid command operation code: retry using 2226 * MODE SENSE(6) if this was a MODE SENSE(10) 2227 * request, except if the request mode page is 2228 * too large for MODE SENSE single byte 2229 * allocation length field. 2230 */ 2231 if (use_10_for_ms) { 2232 if (len > 255) 2233 return -EIO; 2234 sdev->use_10_for_ms = 0; 2235 goto retry; 2236 } 2237 } 2238 if (scsi_status_is_check_condition(result) && 2239 sshdr->sense_key == UNIT_ATTENTION && 2240 retry_count) { 2241 retry_count--; 2242 goto retry; 2243 } 2244 } 2245 return -EIO; 2246 } 2247 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b && 2248 (modepage == 6 || modepage == 8))) { 2249 /* Initio breakage? */ 2250 header_length = 0; 2251 data->length = 13; 2252 data->medium_type = 0; 2253 data->device_specific = 0; 2254 data->longlba = 0; 2255 data->block_descriptor_length = 0; 2256 } else if (use_10_for_ms) { 2257 data->length = get_unaligned_be16(&buffer[0]) + 2; 2258 data->medium_type = buffer[2]; 2259 data->device_specific = buffer[3]; 2260 data->longlba = buffer[4] & 0x01; 2261 data->block_descriptor_length = get_unaligned_be16(&buffer[6]); 2262 } else { 2263 data->length = buffer[0] + 1; 2264 data->medium_type = buffer[1]; 2265 data->device_specific = buffer[2]; 2266 data->block_descriptor_length = buffer[3]; 2267 } 2268 data->header_length = header_length; 2269 2270 return 0; 2271 } 2272 EXPORT_SYMBOL(scsi_mode_sense); 2273 2274 /** 2275 * scsi_test_unit_ready - test if unit is ready 2276 * @sdev: scsi device to change the state of. 2277 * @timeout: command timeout 2278 * @retries: number of retries before failing 2279 * @sshdr: outpout pointer for decoded sense information. 2280 * 2281 * Returns zero if unsuccessful or an error if TUR failed. For 2282 * removable media, UNIT_ATTENTION sets ->changed flag. 2283 **/ 2284 int 2285 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries, 2286 struct scsi_sense_hdr *sshdr) 2287 { 2288 char cmd[] = { 2289 TEST_UNIT_READY, 0, 0, 0, 0, 0, 2290 }; 2291 const struct scsi_exec_args exec_args = { 2292 .sshdr = sshdr, 2293 }; 2294 int result; 2295 2296 /* try to eat the UNIT_ATTENTION if there are enough retries */ 2297 do { 2298 result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, NULL, 0, 2299 timeout, 1, &exec_args); 2300 if (sdev->removable && scsi_sense_valid(sshdr) && 2301 sshdr->sense_key == UNIT_ATTENTION) 2302 sdev->changed = 1; 2303 } while (scsi_sense_valid(sshdr) && 2304 sshdr->sense_key == UNIT_ATTENTION && --retries); 2305 2306 return result; 2307 } 2308 EXPORT_SYMBOL(scsi_test_unit_ready); 2309 2310 /** 2311 * scsi_device_set_state - Take the given device through the device state model. 2312 * @sdev: scsi device to change the state of. 2313 * @state: state to change to. 2314 * 2315 * Returns zero if successful or an error if the requested 2316 * transition is illegal. 2317 */ 2318 int 2319 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state) 2320 { 2321 enum scsi_device_state oldstate = sdev->sdev_state; 2322 2323 if (state == oldstate) 2324 return 0; 2325 2326 switch (state) { 2327 case SDEV_CREATED: 2328 switch (oldstate) { 2329 case SDEV_CREATED_BLOCK: 2330 break; 2331 default: 2332 goto illegal; 2333 } 2334 break; 2335 2336 case SDEV_RUNNING: 2337 switch (oldstate) { 2338 case SDEV_CREATED: 2339 case SDEV_OFFLINE: 2340 case SDEV_TRANSPORT_OFFLINE: 2341 case SDEV_QUIESCE: 2342 case SDEV_BLOCK: 2343 break; 2344 default: 2345 goto illegal; 2346 } 2347 break; 2348 2349 case SDEV_QUIESCE: 2350 switch (oldstate) { 2351 case SDEV_RUNNING: 2352 case SDEV_OFFLINE: 2353 case SDEV_TRANSPORT_OFFLINE: 2354 break; 2355 default: 2356 goto illegal; 2357 } 2358 break; 2359 2360 case SDEV_OFFLINE: 2361 case SDEV_TRANSPORT_OFFLINE: 2362 switch (oldstate) { 2363 case SDEV_CREATED: 2364 case SDEV_RUNNING: 2365 case SDEV_QUIESCE: 2366 case SDEV_BLOCK: 2367 break; 2368 default: 2369 goto illegal; 2370 } 2371 break; 2372 2373 case SDEV_BLOCK: 2374 switch (oldstate) { 2375 case SDEV_RUNNING: 2376 case SDEV_CREATED_BLOCK: 2377 case SDEV_QUIESCE: 2378 case SDEV_OFFLINE: 2379 break; 2380 default: 2381 goto illegal; 2382 } 2383 break; 2384 2385 case SDEV_CREATED_BLOCK: 2386 switch (oldstate) { 2387 case SDEV_CREATED: 2388 break; 2389 default: 2390 goto illegal; 2391 } 2392 break; 2393 2394 case SDEV_CANCEL: 2395 switch (oldstate) { 2396 case SDEV_CREATED: 2397 case SDEV_RUNNING: 2398 case SDEV_QUIESCE: 2399 case SDEV_OFFLINE: 2400 case SDEV_TRANSPORT_OFFLINE: 2401 break; 2402 default: 2403 goto illegal; 2404 } 2405 break; 2406 2407 case SDEV_DEL: 2408 switch (oldstate) { 2409 case SDEV_CREATED: 2410 case SDEV_RUNNING: 2411 case SDEV_OFFLINE: 2412 case SDEV_TRANSPORT_OFFLINE: 2413 case SDEV_CANCEL: 2414 case SDEV_BLOCK: 2415 case SDEV_CREATED_BLOCK: 2416 break; 2417 default: 2418 goto illegal; 2419 } 2420 break; 2421 2422 } 2423 sdev->offline_already = false; 2424 sdev->sdev_state = state; 2425 return 0; 2426 2427 illegal: 2428 SCSI_LOG_ERROR_RECOVERY(1, 2429 sdev_printk(KERN_ERR, sdev, 2430 "Illegal state transition %s->%s", 2431 scsi_device_state_name(oldstate), 2432 scsi_device_state_name(state)) 2433 ); 2434 return -EINVAL; 2435 } 2436 EXPORT_SYMBOL(scsi_device_set_state); 2437 2438 /** 2439 * scsi_evt_emit - emit a single SCSI device uevent 2440 * @sdev: associated SCSI device 2441 * @evt: event to emit 2442 * 2443 * Send a single uevent (scsi_event) to the associated scsi_device. 2444 */ 2445 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt) 2446 { 2447 int idx = 0; 2448 char *envp[3]; 2449 2450 switch (evt->evt_type) { 2451 case SDEV_EVT_MEDIA_CHANGE: 2452 envp[idx++] = "SDEV_MEDIA_CHANGE=1"; 2453 break; 2454 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2455 scsi_rescan_device(&sdev->sdev_gendev); 2456 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED"; 2457 break; 2458 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2459 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED"; 2460 break; 2461 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2462 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED"; 2463 break; 2464 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2465 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED"; 2466 break; 2467 case SDEV_EVT_LUN_CHANGE_REPORTED: 2468 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED"; 2469 break; 2470 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2471 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED"; 2472 break; 2473 case SDEV_EVT_POWER_ON_RESET_OCCURRED: 2474 envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED"; 2475 break; 2476 default: 2477 /* do nothing */ 2478 break; 2479 } 2480 2481 envp[idx++] = NULL; 2482 2483 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp); 2484 } 2485 2486 /** 2487 * scsi_evt_thread - send a uevent for each scsi event 2488 * @work: work struct for scsi_device 2489 * 2490 * Dispatch queued events to their associated scsi_device kobjects 2491 * as uevents. 2492 */ 2493 void scsi_evt_thread(struct work_struct *work) 2494 { 2495 struct scsi_device *sdev; 2496 enum scsi_device_event evt_type; 2497 LIST_HEAD(event_list); 2498 2499 sdev = container_of(work, struct scsi_device, event_work); 2500 2501 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++) 2502 if (test_and_clear_bit(evt_type, sdev->pending_events)) 2503 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL); 2504 2505 while (1) { 2506 struct scsi_event *evt; 2507 struct list_head *this, *tmp; 2508 unsigned long flags; 2509 2510 spin_lock_irqsave(&sdev->list_lock, flags); 2511 list_splice_init(&sdev->event_list, &event_list); 2512 spin_unlock_irqrestore(&sdev->list_lock, flags); 2513 2514 if (list_empty(&event_list)) 2515 break; 2516 2517 list_for_each_safe(this, tmp, &event_list) { 2518 evt = list_entry(this, struct scsi_event, node); 2519 list_del(&evt->node); 2520 scsi_evt_emit(sdev, evt); 2521 kfree(evt); 2522 } 2523 } 2524 } 2525 2526 /** 2527 * sdev_evt_send - send asserted event to uevent thread 2528 * @sdev: scsi_device event occurred on 2529 * @evt: event to send 2530 * 2531 * Assert scsi device event asynchronously. 2532 */ 2533 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt) 2534 { 2535 unsigned long flags; 2536 2537 #if 0 2538 /* FIXME: currently this check eliminates all media change events 2539 * for polled devices. Need to update to discriminate between AN 2540 * and polled events */ 2541 if (!test_bit(evt->evt_type, sdev->supported_events)) { 2542 kfree(evt); 2543 return; 2544 } 2545 #endif 2546 2547 spin_lock_irqsave(&sdev->list_lock, flags); 2548 list_add_tail(&evt->node, &sdev->event_list); 2549 schedule_work(&sdev->event_work); 2550 spin_unlock_irqrestore(&sdev->list_lock, flags); 2551 } 2552 EXPORT_SYMBOL_GPL(sdev_evt_send); 2553 2554 /** 2555 * sdev_evt_alloc - allocate a new scsi event 2556 * @evt_type: type of event to allocate 2557 * @gfpflags: GFP flags for allocation 2558 * 2559 * Allocates and returns a new scsi_event. 2560 */ 2561 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type, 2562 gfp_t gfpflags) 2563 { 2564 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags); 2565 if (!evt) 2566 return NULL; 2567 2568 evt->evt_type = evt_type; 2569 INIT_LIST_HEAD(&evt->node); 2570 2571 /* evt_type-specific initialization, if any */ 2572 switch (evt_type) { 2573 case SDEV_EVT_MEDIA_CHANGE: 2574 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2575 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2576 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2577 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2578 case SDEV_EVT_LUN_CHANGE_REPORTED: 2579 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2580 case SDEV_EVT_POWER_ON_RESET_OCCURRED: 2581 default: 2582 /* do nothing */ 2583 break; 2584 } 2585 2586 return evt; 2587 } 2588 EXPORT_SYMBOL_GPL(sdev_evt_alloc); 2589 2590 /** 2591 * sdev_evt_send_simple - send asserted event to uevent thread 2592 * @sdev: scsi_device event occurred on 2593 * @evt_type: type of event to send 2594 * @gfpflags: GFP flags for allocation 2595 * 2596 * Assert scsi device event asynchronously, given an event type. 2597 */ 2598 void sdev_evt_send_simple(struct scsi_device *sdev, 2599 enum scsi_device_event evt_type, gfp_t gfpflags) 2600 { 2601 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags); 2602 if (!evt) { 2603 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n", 2604 evt_type); 2605 return; 2606 } 2607 2608 sdev_evt_send(sdev, evt); 2609 } 2610 EXPORT_SYMBOL_GPL(sdev_evt_send_simple); 2611 2612 /** 2613 * scsi_device_quiesce - Block all commands except power management. 2614 * @sdev: scsi device to quiesce. 2615 * 2616 * This works by trying to transition to the SDEV_QUIESCE state 2617 * (which must be a legal transition). When the device is in this 2618 * state, only power management requests will be accepted, all others will 2619 * be deferred. 2620 * 2621 * Must be called with user context, may sleep. 2622 * 2623 * Returns zero if unsuccessful or an error if not. 2624 */ 2625 int 2626 scsi_device_quiesce(struct scsi_device *sdev) 2627 { 2628 struct request_queue *q = sdev->request_queue; 2629 int err; 2630 2631 /* 2632 * It is allowed to call scsi_device_quiesce() multiple times from 2633 * the same context but concurrent scsi_device_quiesce() calls are 2634 * not allowed. 2635 */ 2636 WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current); 2637 2638 if (sdev->quiesced_by == current) 2639 return 0; 2640 2641 blk_set_pm_only(q); 2642 2643 blk_mq_freeze_queue(q); 2644 /* 2645 * Ensure that the effect of blk_set_pm_only() will be visible 2646 * for percpu_ref_tryget() callers that occur after the queue 2647 * unfreeze even if the queue was already frozen before this function 2648 * was called. See also https://lwn.net/Articles/573497/. 2649 */ 2650 synchronize_rcu(); 2651 blk_mq_unfreeze_queue(q); 2652 2653 mutex_lock(&sdev->state_mutex); 2654 err = scsi_device_set_state(sdev, SDEV_QUIESCE); 2655 if (err == 0) 2656 sdev->quiesced_by = current; 2657 else 2658 blk_clear_pm_only(q); 2659 mutex_unlock(&sdev->state_mutex); 2660 2661 return err; 2662 } 2663 EXPORT_SYMBOL(scsi_device_quiesce); 2664 2665 /** 2666 * scsi_device_resume - Restart user issued commands to a quiesced device. 2667 * @sdev: scsi device to resume. 2668 * 2669 * Moves the device from quiesced back to running and restarts the 2670 * queues. 2671 * 2672 * Must be called with user context, may sleep. 2673 */ 2674 void scsi_device_resume(struct scsi_device *sdev) 2675 { 2676 /* check if the device state was mutated prior to resume, and if 2677 * so assume the state is being managed elsewhere (for example 2678 * device deleted during suspend) 2679 */ 2680 mutex_lock(&sdev->state_mutex); 2681 if (sdev->sdev_state == SDEV_QUIESCE) 2682 scsi_device_set_state(sdev, SDEV_RUNNING); 2683 if (sdev->quiesced_by) { 2684 sdev->quiesced_by = NULL; 2685 blk_clear_pm_only(sdev->request_queue); 2686 } 2687 mutex_unlock(&sdev->state_mutex); 2688 } 2689 EXPORT_SYMBOL(scsi_device_resume); 2690 2691 static void 2692 device_quiesce_fn(struct scsi_device *sdev, void *data) 2693 { 2694 scsi_device_quiesce(sdev); 2695 } 2696 2697 void 2698 scsi_target_quiesce(struct scsi_target *starget) 2699 { 2700 starget_for_each_device(starget, NULL, device_quiesce_fn); 2701 } 2702 EXPORT_SYMBOL(scsi_target_quiesce); 2703 2704 static void 2705 device_resume_fn(struct scsi_device *sdev, void *data) 2706 { 2707 scsi_device_resume(sdev); 2708 } 2709 2710 void 2711 scsi_target_resume(struct scsi_target *starget) 2712 { 2713 starget_for_each_device(starget, NULL, device_resume_fn); 2714 } 2715 EXPORT_SYMBOL(scsi_target_resume); 2716 2717 static int __scsi_internal_device_block_nowait(struct scsi_device *sdev) 2718 { 2719 if (scsi_device_set_state(sdev, SDEV_BLOCK)) 2720 return scsi_device_set_state(sdev, SDEV_CREATED_BLOCK); 2721 2722 return 0; 2723 } 2724 2725 void scsi_start_queue(struct scsi_device *sdev) 2726 { 2727 if (cmpxchg(&sdev->queue_stopped, 1, 0)) 2728 blk_mq_unquiesce_queue(sdev->request_queue); 2729 } 2730 2731 static void scsi_stop_queue(struct scsi_device *sdev, bool nowait) 2732 { 2733 /* 2734 * The atomic variable of ->queue_stopped covers that 2735 * blk_mq_quiesce_queue* is balanced with blk_mq_unquiesce_queue. 2736 * 2737 * However, we still need to wait until quiesce is done 2738 * in case that queue has been stopped. 2739 */ 2740 if (!cmpxchg(&sdev->queue_stopped, 0, 1)) { 2741 if (nowait) 2742 blk_mq_quiesce_queue_nowait(sdev->request_queue); 2743 else 2744 blk_mq_quiesce_queue(sdev->request_queue); 2745 } else { 2746 if (!nowait) 2747 blk_mq_wait_quiesce_done(sdev->request_queue->tag_set); 2748 } 2749 } 2750 2751 /** 2752 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state 2753 * @sdev: device to block 2754 * 2755 * Pause SCSI command processing on the specified device. Does not sleep. 2756 * 2757 * Returns zero if successful or a negative error code upon failure. 2758 * 2759 * Notes: 2760 * This routine transitions the device to the SDEV_BLOCK state (which must be 2761 * a legal transition). When the device is in this state, command processing 2762 * is paused until the device leaves the SDEV_BLOCK state. See also 2763 * scsi_internal_device_unblock_nowait(). 2764 */ 2765 int scsi_internal_device_block_nowait(struct scsi_device *sdev) 2766 { 2767 int ret = __scsi_internal_device_block_nowait(sdev); 2768 2769 /* 2770 * The device has transitioned to SDEV_BLOCK. Stop the 2771 * block layer from calling the midlayer with this device's 2772 * request queue. 2773 */ 2774 if (!ret) 2775 scsi_stop_queue(sdev, true); 2776 return ret; 2777 } 2778 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait); 2779 2780 /** 2781 * scsi_internal_device_block - try to transition to the SDEV_BLOCK state 2782 * @sdev: device to block 2783 * 2784 * Pause SCSI command processing on the specified device and wait until all 2785 * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep. 2786 * 2787 * Returns zero if successful or a negative error code upon failure. 2788 * 2789 * Note: 2790 * This routine transitions the device to the SDEV_BLOCK state (which must be 2791 * a legal transition). When the device is in this state, command processing 2792 * is paused until the device leaves the SDEV_BLOCK state. See also 2793 * scsi_internal_device_unblock(). 2794 */ 2795 static int scsi_internal_device_block(struct scsi_device *sdev) 2796 { 2797 int err; 2798 2799 mutex_lock(&sdev->state_mutex); 2800 err = __scsi_internal_device_block_nowait(sdev); 2801 if (err == 0) 2802 scsi_stop_queue(sdev, false); 2803 mutex_unlock(&sdev->state_mutex); 2804 2805 return err; 2806 } 2807 2808 /** 2809 * scsi_internal_device_unblock_nowait - resume a device after a block request 2810 * @sdev: device to resume 2811 * @new_state: state to set the device to after unblocking 2812 * 2813 * Restart the device queue for a previously suspended SCSI device. Does not 2814 * sleep. 2815 * 2816 * Returns zero if successful or a negative error code upon failure. 2817 * 2818 * Notes: 2819 * This routine transitions the device to the SDEV_RUNNING state or to one of 2820 * the offline states (which must be a legal transition) allowing the midlayer 2821 * to goose the queue for this device. 2822 */ 2823 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev, 2824 enum scsi_device_state new_state) 2825 { 2826 switch (new_state) { 2827 case SDEV_RUNNING: 2828 case SDEV_TRANSPORT_OFFLINE: 2829 break; 2830 default: 2831 return -EINVAL; 2832 } 2833 2834 /* 2835 * Try to transition the scsi device to SDEV_RUNNING or one of the 2836 * offlined states and goose the device queue if successful. 2837 */ 2838 switch (sdev->sdev_state) { 2839 case SDEV_BLOCK: 2840 case SDEV_TRANSPORT_OFFLINE: 2841 sdev->sdev_state = new_state; 2842 break; 2843 case SDEV_CREATED_BLOCK: 2844 if (new_state == SDEV_TRANSPORT_OFFLINE || 2845 new_state == SDEV_OFFLINE) 2846 sdev->sdev_state = new_state; 2847 else 2848 sdev->sdev_state = SDEV_CREATED; 2849 break; 2850 case SDEV_CANCEL: 2851 case SDEV_OFFLINE: 2852 break; 2853 default: 2854 return -EINVAL; 2855 } 2856 scsi_start_queue(sdev); 2857 2858 return 0; 2859 } 2860 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait); 2861 2862 /** 2863 * scsi_internal_device_unblock - resume a device after a block request 2864 * @sdev: device to resume 2865 * @new_state: state to set the device to after unblocking 2866 * 2867 * Restart the device queue for a previously suspended SCSI device. May sleep. 2868 * 2869 * Returns zero if successful or a negative error code upon failure. 2870 * 2871 * Notes: 2872 * This routine transitions the device to the SDEV_RUNNING state or to one of 2873 * the offline states (which must be a legal transition) allowing the midlayer 2874 * to goose the queue for this device. 2875 */ 2876 static int scsi_internal_device_unblock(struct scsi_device *sdev, 2877 enum scsi_device_state new_state) 2878 { 2879 int ret; 2880 2881 mutex_lock(&sdev->state_mutex); 2882 ret = scsi_internal_device_unblock_nowait(sdev, new_state); 2883 mutex_unlock(&sdev->state_mutex); 2884 2885 return ret; 2886 } 2887 2888 static void 2889 device_block(struct scsi_device *sdev, void *data) 2890 { 2891 int ret; 2892 2893 ret = scsi_internal_device_block(sdev); 2894 2895 WARN_ONCE(ret, "scsi_internal_device_block(%s) failed: ret = %d\n", 2896 dev_name(&sdev->sdev_gendev), ret); 2897 } 2898 2899 static int 2900 target_block(struct device *dev, void *data) 2901 { 2902 if (scsi_is_target_device(dev)) 2903 starget_for_each_device(to_scsi_target(dev), NULL, 2904 device_block); 2905 return 0; 2906 } 2907 2908 void 2909 scsi_target_block(struct device *dev) 2910 { 2911 if (scsi_is_target_device(dev)) 2912 starget_for_each_device(to_scsi_target(dev), NULL, 2913 device_block); 2914 else 2915 device_for_each_child(dev, NULL, target_block); 2916 } 2917 EXPORT_SYMBOL_GPL(scsi_target_block); 2918 2919 static void 2920 device_unblock(struct scsi_device *sdev, void *data) 2921 { 2922 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data); 2923 } 2924 2925 static int 2926 target_unblock(struct device *dev, void *data) 2927 { 2928 if (scsi_is_target_device(dev)) 2929 starget_for_each_device(to_scsi_target(dev), data, 2930 device_unblock); 2931 return 0; 2932 } 2933 2934 void 2935 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state) 2936 { 2937 if (scsi_is_target_device(dev)) 2938 starget_for_each_device(to_scsi_target(dev), &new_state, 2939 device_unblock); 2940 else 2941 device_for_each_child(dev, &new_state, target_unblock); 2942 } 2943 EXPORT_SYMBOL_GPL(scsi_target_unblock); 2944 2945 int 2946 scsi_host_block(struct Scsi_Host *shost) 2947 { 2948 struct scsi_device *sdev; 2949 int ret = 0; 2950 2951 /* 2952 * Call scsi_internal_device_block_nowait so we can avoid 2953 * calling synchronize_rcu() for each LUN. 2954 */ 2955 shost_for_each_device(sdev, shost) { 2956 mutex_lock(&sdev->state_mutex); 2957 ret = scsi_internal_device_block_nowait(sdev); 2958 mutex_unlock(&sdev->state_mutex); 2959 if (ret) { 2960 scsi_device_put(sdev); 2961 break; 2962 } 2963 } 2964 2965 /* 2966 * SCSI never enables blk-mq's BLK_MQ_F_BLOCKING flag so 2967 * calling synchronize_rcu() once is enough. 2968 */ 2969 WARN_ON_ONCE(shost->tag_set.flags & BLK_MQ_F_BLOCKING); 2970 2971 if (!ret) 2972 synchronize_rcu(); 2973 2974 return ret; 2975 } 2976 EXPORT_SYMBOL_GPL(scsi_host_block); 2977 2978 int 2979 scsi_host_unblock(struct Scsi_Host *shost, int new_state) 2980 { 2981 struct scsi_device *sdev; 2982 int ret = 0; 2983 2984 shost_for_each_device(sdev, shost) { 2985 ret = scsi_internal_device_unblock(sdev, new_state); 2986 if (ret) { 2987 scsi_device_put(sdev); 2988 break; 2989 } 2990 } 2991 return ret; 2992 } 2993 EXPORT_SYMBOL_GPL(scsi_host_unblock); 2994 2995 /** 2996 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt 2997 * @sgl: scatter-gather list 2998 * @sg_count: number of segments in sg 2999 * @offset: offset in bytes into sg, on return offset into the mapped area 3000 * @len: bytes to map, on return number of bytes mapped 3001 * 3002 * Returns virtual address of the start of the mapped page 3003 */ 3004 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count, 3005 size_t *offset, size_t *len) 3006 { 3007 int i; 3008 size_t sg_len = 0, len_complete = 0; 3009 struct scatterlist *sg; 3010 struct page *page; 3011 3012 WARN_ON(!irqs_disabled()); 3013 3014 for_each_sg(sgl, sg, sg_count, i) { 3015 len_complete = sg_len; /* Complete sg-entries */ 3016 sg_len += sg->length; 3017 if (sg_len > *offset) 3018 break; 3019 } 3020 3021 if (unlikely(i == sg_count)) { 3022 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, " 3023 "elements %d\n", 3024 __func__, sg_len, *offset, sg_count); 3025 WARN_ON(1); 3026 return NULL; 3027 } 3028 3029 /* Offset starting from the beginning of first page in this sg-entry */ 3030 *offset = *offset - len_complete + sg->offset; 3031 3032 /* Assumption: contiguous pages can be accessed as "page + i" */ 3033 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT)); 3034 *offset &= ~PAGE_MASK; 3035 3036 /* Bytes in this sg-entry from *offset to the end of the page */ 3037 sg_len = PAGE_SIZE - *offset; 3038 if (*len > sg_len) 3039 *len = sg_len; 3040 3041 return kmap_atomic(page); 3042 } 3043 EXPORT_SYMBOL(scsi_kmap_atomic_sg); 3044 3045 /** 3046 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg 3047 * @virt: virtual address to be unmapped 3048 */ 3049 void scsi_kunmap_atomic_sg(void *virt) 3050 { 3051 kunmap_atomic(virt); 3052 } 3053 EXPORT_SYMBOL(scsi_kunmap_atomic_sg); 3054 3055 void sdev_disable_disk_events(struct scsi_device *sdev) 3056 { 3057 atomic_inc(&sdev->disk_events_disable_depth); 3058 } 3059 EXPORT_SYMBOL(sdev_disable_disk_events); 3060 3061 void sdev_enable_disk_events(struct scsi_device *sdev) 3062 { 3063 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0)) 3064 return; 3065 atomic_dec(&sdev->disk_events_disable_depth); 3066 } 3067 EXPORT_SYMBOL(sdev_enable_disk_events); 3068 3069 static unsigned char designator_prio(const unsigned char *d) 3070 { 3071 if (d[1] & 0x30) 3072 /* not associated with LUN */ 3073 return 0; 3074 3075 if (d[3] == 0) 3076 /* invalid length */ 3077 return 0; 3078 3079 /* 3080 * Order of preference for lun descriptor: 3081 * - SCSI name string 3082 * - NAA IEEE Registered Extended 3083 * - EUI-64 based 16-byte 3084 * - EUI-64 based 12-byte 3085 * - NAA IEEE Registered 3086 * - NAA IEEE Extended 3087 * - EUI-64 based 8-byte 3088 * - SCSI name string (truncated) 3089 * - T10 Vendor ID 3090 * as longer descriptors reduce the likelyhood 3091 * of identification clashes. 3092 */ 3093 3094 switch (d[1] & 0xf) { 3095 case 8: 3096 /* SCSI name string, variable-length UTF-8 */ 3097 return 9; 3098 case 3: 3099 switch (d[4] >> 4) { 3100 case 6: 3101 /* NAA registered extended */ 3102 return 8; 3103 case 5: 3104 /* NAA registered */ 3105 return 5; 3106 case 4: 3107 /* NAA extended */ 3108 return 4; 3109 case 3: 3110 /* NAA locally assigned */ 3111 return 1; 3112 default: 3113 break; 3114 } 3115 break; 3116 case 2: 3117 switch (d[3]) { 3118 case 16: 3119 /* EUI64-based, 16 byte */ 3120 return 7; 3121 case 12: 3122 /* EUI64-based, 12 byte */ 3123 return 6; 3124 case 8: 3125 /* EUI64-based, 8 byte */ 3126 return 3; 3127 default: 3128 break; 3129 } 3130 break; 3131 case 1: 3132 /* T10 vendor ID */ 3133 return 1; 3134 default: 3135 break; 3136 } 3137 3138 return 0; 3139 } 3140 3141 /** 3142 * scsi_vpd_lun_id - return a unique device identification 3143 * @sdev: SCSI device 3144 * @id: buffer for the identification 3145 * @id_len: length of the buffer 3146 * 3147 * Copies a unique device identification into @id based 3148 * on the information in the VPD page 0x83 of the device. 3149 * The string will be formatted as a SCSI name string. 3150 * 3151 * Returns the length of the identification or error on failure. 3152 * If the identifier is longer than the supplied buffer the actual 3153 * identifier length is returned and the buffer is not zero-padded. 3154 */ 3155 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len) 3156 { 3157 u8 cur_id_prio = 0; 3158 u8 cur_id_size = 0; 3159 const unsigned char *d, *cur_id_str; 3160 const struct scsi_vpd *vpd_pg83; 3161 int id_size = -EINVAL; 3162 3163 rcu_read_lock(); 3164 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 3165 if (!vpd_pg83) { 3166 rcu_read_unlock(); 3167 return -ENXIO; 3168 } 3169 3170 /* The id string must be at least 20 bytes + terminating NULL byte */ 3171 if (id_len < 21) { 3172 rcu_read_unlock(); 3173 return -EINVAL; 3174 } 3175 3176 memset(id, 0, id_len); 3177 for (d = vpd_pg83->data + 4; 3178 d < vpd_pg83->data + vpd_pg83->len; 3179 d += d[3] + 4) { 3180 u8 prio = designator_prio(d); 3181 3182 if (prio == 0 || cur_id_prio > prio) 3183 continue; 3184 3185 switch (d[1] & 0xf) { 3186 case 0x1: 3187 /* T10 Vendor ID */ 3188 if (cur_id_size > d[3]) 3189 break; 3190 cur_id_prio = prio; 3191 cur_id_size = d[3]; 3192 if (cur_id_size + 4 > id_len) 3193 cur_id_size = id_len - 4; 3194 cur_id_str = d + 4; 3195 id_size = snprintf(id, id_len, "t10.%*pE", 3196 cur_id_size, cur_id_str); 3197 break; 3198 case 0x2: 3199 /* EUI-64 */ 3200 cur_id_prio = prio; 3201 cur_id_size = d[3]; 3202 cur_id_str = d + 4; 3203 switch (cur_id_size) { 3204 case 8: 3205 id_size = snprintf(id, id_len, 3206 "eui.%8phN", 3207 cur_id_str); 3208 break; 3209 case 12: 3210 id_size = snprintf(id, id_len, 3211 "eui.%12phN", 3212 cur_id_str); 3213 break; 3214 case 16: 3215 id_size = snprintf(id, id_len, 3216 "eui.%16phN", 3217 cur_id_str); 3218 break; 3219 default: 3220 break; 3221 } 3222 break; 3223 case 0x3: 3224 /* NAA */ 3225 cur_id_prio = prio; 3226 cur_id_size = d[3]; 3227 cur_id_str = d + 4; 3228 switch (cur_id_size) { 3229 case 8: 3230 id_size = snprintf(id, id_len, 3231 "naa.%8phN", 3232 cur_id_str); 3233 break; 3234 case 16: 3235 id_size = snprintf(id, id_len, 3236 "naa.%16phN", 3237 cur_id_str); 3238 break; 3239 default: 3240 break; 3241 } 3242 break; 3243 case 0x8: 3244 /* SCSI name string */ 3245 if (cur_id_size > d[3]) 3246 break; 3247 /* Prefer others for truncated descriptor */ 3248 if (d[3] > id_len) { 3249 prio = 2; 3250 if (cur_id_prio > prio) 3251 break; 3252 } 3253 cur_id_prio = prio; 3254 cur_id_size = id_size = d[3]; 3255 cur_id_str = d + 4; 3256 if (cur_id_size >= id_len) 3257 cur_id_size = id_len - 1; 3258 memcpy(id, cur_id_str, cur_id_size); 3259 break; 3260 default: 3261 break; 3262 } 3263 } 3264 rcu_read_unlock(); 3265 3266 return id_size; 3267 } 3268 EXPORT_SYMBOL(scsi_vpd_lun_id); 3269 3270 /* 3271 * scsi_vpd_tpg_id - return a target port group identifier 3272 * @sdev: SCSI device 3273 * 3274 * Returns the Target Port Group identifier from the information 3275 * froom VPD page 0x83 of the device. 3276 * 3277 * Returns the identifier or error on failure. 3278 */ 3279 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id) 3280 { 3281 const unsigned char *d; 3282 const struct scsi_vpd *vpd_pg83; 3283 int group_id = -EAGAIN, rel_port = -1; 3284 3285 rcu_read_lock(); 3286 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 3287 if (!vpd_pg83) { 3288 rcu_read_unlock(); 3289 return -ENXIO; 3290 } 3291 3292 d = vpd_pg83->data + 4; 3293 while (d < vpd_pg83->data + vpd_pg83->len) { 3294 switch (d[1] & 0xf) { 3295 case 0x4: 3296 /* Relative target port */ 3297 rel_port = get_unaligned_be16(&d[6]); 3298 break; 3299 case 0x5: 3300 /* Target port group */ 3301 group_id = get_unaligned_be16(&d[6]); 3302 break; 3303 default: 3304 break; 3305 } 3306 d += d[3] + 4; 3307 } 3308 rcu_read_unlock(); 3309 3310 if (group_id >= 0 && rel_id && rel_port != -1) 3311 *rel_id = rel_port; 3312 3313 return group_id; 3314 } 3315 EXPORT_SYMBOL(scsi_vpd_tpg_id); 3316 3317 /** 3318 * scsi_build_sense - build sense data for a command 3319 * @scmd: scsi command for which the sense should be formatted 3320 * @desc: Sense format (non-zero == descriptor format, 3321 * 0 == fixed format) 3322 * @key: Sense key 3323 * @asc: Additional sense code 3324 * @ascq: Additional sense code qualifier 3325 * 3326 **/ 3327 void scsi_build_sense(struct scsi_cmnd *scmd, int desc, u8 key, u8 asc, u8 ascq) 3328 { 3329 scsi_build_sense_buffer(desc, scmd->sense_buffer, key, asc, ascq); 3330 scmd->result = SAM_STAT_CHECK_CONDITION; 3331 } 3332 EXPORT_SYMBOL_GPL(scsi_build_sense); 3333