1 /* 2 * scsi_lib.c Copyright (C) 1999 Eric Youngdale 3 * 4 * SCSI queueing library. 5 * Initial versions: Eric Youngdale (eric@andante.org). 6 * Based upon conversations with large numbers 7 * of people at Linux Expo. 8 */ 9 10 #include <linux/bio.h> 11 #include <linux/bitops.h> 12 #include <linux/blkdev.h> 13 #include <linux/completion.h> 14 #include <linux/kernel.h> 15 #include <linux/export.h> 16 #include <linux/mempool.h> 17 #include <linux/slab.h> 18 #include <linux/init.h> 19 #include <linux/pci.h> 20 #include <linux/delay.h> 21 #include <linux/hardirq.h> 22 #include <linux/scatterlist.h> 23 24 #include <scsi/scsi.h> 25 #include <scsi/scsi_cmnd.h> 26 #include <scsi/scsi_dbg.h> 27 #include <scsi/scsi_device.h> 28 #include <scsi/scsi_driver.h> 29 #include <scsi/scsi_eh.h> 30 #include <scsi/scsi_host.h> 31 32 #include "scsi_priv.h" 33 #include "scsi_logging.h" 34 35 36 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools) 37 #define SG_MEMPOOL_SIZE 2 38 39 struct scsi_host_sg_pool { 40 size_t size; 41 char *name; 42 struct kmem_cache *slab; 43 mempool_t *pool; 44 }; 45 46 #define SP(x) { x, "sgpool-" __stringify(x) } 47 #if (SCSI_MAX_SG_SEGMENTS < 32) 48 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater) 49 #endif 50 static struct scsi_host_sg_pool scsi_sg_pools[] = { 51 SP(8), 52 SP(16), 53 #if (SCSI_MAX_SG_SEGMENTS > 32) 54 SP(32), 55 #if (SCSI_MAX_SG_SEGMENTS > 64) 56 SP(64), 57 #if (SCSI_MAX_SG_SEGMENTS > 128) 58 SP(128), 59 #if (SCSI_MAX_SG_SEGMENTS > 256) 60 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX) 61 #endif 62 #endif 63 #endif 64 #endif 65 SP(SCSI_MAX_SG_SEGMENTS) 66 }; 67 #undef SP 68 69 struct kmem_cache *scsi_sdb_cache; 70 71 #ifdef CONFIG_ACPI 72 #include <acpi/acpi_bus.h> 73 74 int scsi_register_acpi_bus_type(struct acpi_bus_type *bus) 75 { 76 bus->bus = &scsi_bus_type; 77 return register_acpi_bus_type(bus); 78 } 79 EXPORT_SYMBOL_GPL(scsi_register_acpi_bus_type); 80 81 void scsi_unregister_acpi_bus_type(struct acpi_bus_type *bus) 82 { 83 unregister_acpi_bus_type(bus); 84 } 85 EXPORT_SYMBOL_GPL(scsi_unregister_acpi_bus_type); 86 #endif 87 88 /* 89 * When to reinvoke queueing after a resource shortage. It's 3 msecs to 90 * not change behaviour from the previous unplug mechanism, experimentation 91 * may prove this needs changing. 92 */ 93 #define SCSI_QUEUE_DELAY 3 94 95 /* 96 * Function: scsi_unprep_request() 97 * 98 * Purpose: Remove all preparation done for a request, including its 99 * associated scsi_cmnd, so that it can be requeued. 100 * 101 * Arguments: req - request to unprepare 102 * 103 * Lock status: Assumed that no locks are held upon entry. 104 * 105 * Returns: Nothing. 106 */ 107 static void scsi_unprep_request(struct request *req) 108 { 109 struct scsi_cmnd *cmd = req->special; 110 111 blk_unprep_request(req); 112 req->special = NULL; 113 114 scsi_put_command(cmd); 115 } 116 117 /** 118 * __scsi_queue_insert - private queue insertion 119 * @cmd: The SCSI command being requeued 120 * @reason: The reason for the requeue 121 * @unbusy: Whether the queue should be unbusied 122 * 123 * This is a private queue insertion. The public interface 124 * scsi_queue_insert() always assumes the queue should be unbusied 125 * because it's always called before the completion. This function is 126 * for a requeue after completion, which should only occur in this 127 * file. 128 */ 129 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy) 130 { 131 struct Scsi_Host *host = cmd->device->host; 132 struct scsi_device *device = cmd->device; 133 struct scsi_target *starget = scsi_target(device); 134 struct request_queue *q = device->request_queue; 135 unsigned long flags; 136 137 SCSI_LOG_MLQUEUE(1, 138 printk("Inserting command %p into mlqueue\n", cmd)); 139 140 /* 141 * Set the appropriate busy bit for the device/host. 142 * 143 * If the host/device isn't busy, assume that something actually 144 * completed, and that we should be able to queue a command now. 145 * 146 * Note that the prior mid-layer assumption that any host could 147 * always queue at least one command is now broken. The mid-layer 148 * will implement a user specifiable stall (see 149 * scsi_host.max_host_blocked and scsi_device.max_device_blocked) 150 * if a command is requeued with no other commands outstanding 151 * either for the device or for the host. 152 */ 153 switch (reason) { 154 case SCSI_MLQUEUE_HOST_BUSY: 155 host->host_blocked = host->max_host_blocked; 156 break; 157 case SCSI_MLQUEUE_DEVICE_BUSY: 158 case SCSI_MLQUEUE_EH_RETRY: 159 device->device_blocked = device->max_device_blocked; 160 break; 161 case SCSI_MLQUEUE_TARGET_BUSY: 162 starget->target_blocked = starget->max_target_blocked; 163 break; 164 } 165 166 /* 167 * Decrement the counters, since these commands are no longer 168 * active on the host/device. 169 */ 170 if (unbusy) 171 scsi_device_unbusy(device); 172 173 /* 174 * Requeue this command. It will go before all other commands 175 * that are already in the queue. Schedule requeue work under 176 * lock such that the kblockd_schedule_work() call happens 177 * before blk_cleanup_queue() finishes. 178 */ 179 spin_lock_irqsave(q->queue_lock, flags); 180 blk_requeue_request(q, cmd->request); 181 kblockd_schedule_work(q, &device->requeue_work); 182 spin_unlock_irqrestore(q->queue_lock, flags); 183 } 184 185 /* 186 * Function: scsi_queue_insert() 187 * 188 * Purpose: Insert a command in the midlevel queue. 189 * 190 * Arguments: cmd - command that we are adding to queue. 191 * reason - why we are inserting command to queue. 192 * 193 * Lock status: Assumed that lock is not held upon entry. 194 * 195 * Returns: Nothing. 196 * 197 * Notes: We do this for one of two cases. Either the host is busy 198 * and it cannot accept any more commands for the time being, 199 * or the device returned QUEUE_FULL and can accept no more 200 * commands. 201 * Notes: This could be called either from an interrupt context or a 202 * normal process context. 203 */ 204 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason) 205 { 206 __scsi_queue_insert(cmd, reason, 1); 207 } 208 /** 209 * scsi_execute - insert request and wait for the result 210 * @sdev: scsi device 211 * @cmd: scsi command 212 * @data_direction: data direction 213 * @buffer: data buffer 214 * @bufflen: len of buffer 215 * @sense: optional sense buffer 216 * @timeout: request timeout in seconds 217 * @retries: number of times to retry request 218 * @flags: or into request flags; 219 * @resid: optional residual length 220 * 221 * returns the req->errors value which is the scsi_cmnd result 222 * field. 223 */ 224 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd, 225 int data_direction, void *buffer, unsigned bufflen, 226 unsigned char *sense, int timeout, int retries, int flags, 227 int *resid) 228 { 229 struct request *req; 230 int write = (data_direction == DMA_TO_DEVICE); 231 int ret = DRIVER_ERROR << 24; 232 233 req = blk_get_request(sdev->request_queue, write, __GFP_WAIT); 234 if (!req) 235 return ret; 236 237 if (bufflen && blk_rq_map_kern(sdev->request_queue, req, 238 buffer, bufflen, __GFP_WAIT)) 239 goto out; 240 241 req->cmd_len = COMMAND_SIZE(cmd[0]); 242 memcpy(req->cmd, cmd, req->cmd_len); 243 req->sense = sense; 244 req->sense_len = 0; 245 req->retries = retries; 246 req->timeout = timeout; 247 req->cmd_type = REQ_TYPE_BLOCK_PC; 248 req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT; 249 250 /* 251 * head injection *required* here otherwise quiesce won't work 252 */ 253 blk_execute_rq(req->q, NULL, req, 1); 254 255 /* 256 * Some devices (USB mass-storage in particular) may transfer 257 * garbage data together with a residue indicating that the data 258 * is invalid. Prevent the garbage from being misinterpreted 259 * and prevent security leaks by zeroing out the excess data. 260 */ 261 if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen)) 262 memset(buffer + (bufflen - req->resid_len), 0, req->resid_len); 263 264 if (resid) 265 *resid = req->resid_len; 266 ret = req->errors; 267 out: 268 blk_put_request(req); 269 270 return ret; 271 } 272 EXPORT_SYMBOL(scsi_execute); 273 274 275 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd, 276 int data_direction, void *buffer, unsigned bufflen, 277 struct scsi_sense_hdr *sshdr, int timeout, int retries, 278 int *resid) 279 { 280 char *sense = NULL; 281 int result; 282 283 if (sshdr) { 284 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO); 285 if (!sense) 286 return DRIVER_ERROR << 24; 287 } 288 result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen, 289 sense, timeout, retries, 0, resid); 290 if (sshdr) 291 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr); 292 293 kfree(sense); 294 return result; 295 } 296 EXPORT_SYMBOL(scsi_execute_req); 297 298 /* 299 * Function: scsi_init_cmd_errh() 300 * 301 * Purpose: Initialize cmd fields related to error handling. 302 * 303 * Arguments: cmd - command that is ready to be queued. 304 * 305 * Notes: This function has the job of initializing a number of 306 * fields related to error handling. Typically this will 307 * be called once for each command, as required. 308 */ 309 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd) 310 { 311 cmd->serial_number = 0; 312 scsi_set_resid(cmd, 0); 313 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 314 if (cmd->cmd_len == 0) 315 cmd->cmd_len = scsi_command_size(cmd->cmnd); 316 } 317 318 void scsi_device_unbusy(struct scsi_device *sdev) 319 { 320 struct Scsi_Host *shost = sdev->host; 321 struct scsi_target *starget = scsi_target(sdev); 322 unsigned long flags; 323 324 spin_lock_irqsave(shost->host_lock, flags); 325 shost->host_busy--; 326 starget->target_busy--; 327 if (unlikely(scsi_host_in_recovery(shost) && 328 (shost->host_failed || shost->host_eh_scheduled))) 329 scsi_eh_wakeup(shost); 330 spin_unlock(shost->host_lock); 331 spin_lock(sdev->request_queue->queue_lock); 332 sdev->device_busy--; 333 spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags); 334 } 335 336 /* 337 * Called for single_lun devices on IO completion. Clear starget_sdev_user, 338 * and call blk_run_queue for all the scsi_devices on the target - 339 * including current_sdev first. 340 * 341 * Called with *no* scsi locks held. 342 */ 343 static void scsi_single_lun_run(struct scsi_device *current_sdev) 344 { 345 struct Scsi_Host *shost = current_sdev->host; 346 struct scsi_device *sdev, *tmp; 347 struct scsi_target *starget = scsi_target(current_sdev); 348 unsigned long flags; 349 350 spin_lock_irqsave(shost->host_lock, flags); 351 starget->starget_sdev_user = NULL; 352 spin_unlock_irqrestore(shost->host_lock, flags); 353 354 /* 355 * Call blk_run_queue for all LUNs on the target, starting with 356 * current_sdev. We race with others (to set starget_sdev_user), 357 * but in most cases, we will be first. Ideally, each LU on the 358 * target would get some limited time or requests on the target. 359 */ 360 blk_run_queue(current_sdev->request_queue); 361 362 spin_lock_irqsave(shost->host_lock, flags); 363 if (starget->starget_sdev_user) 364 goto out; 365 list_for_each_entry_safe(sdev, tmp, &starget->devices, 366 same_target_siblings) { 367 if (sdev == current_sdev) 368 continue; 369 if (scsi_device_get(sdev)) 370 continue; 371 372 spin_unlock_irqrestore(shost->host_lock, flags); 373 blk_run_queue(sdev->request_queue); 374 spin_lock_irqsave(shost->host_lock, flags); 375 376 scsi_device_put(sdev); 377 } 378 out: 379 spin_unlock_irqrestore(shost->host_lock, flags); 380 } 381 382 static inline int scsi_device_is_busy(struct scsi_device *sdev) 383 { 384 if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked) 385 return 1; 386 387 return 0; 388 } 389 390 static inline int scsi_target_is_busy(struct scsi_target *starget) 391 { 392 return ((starget->can_queue > 0 && 393 starget->target_busy >= starget->can_queue) || 394 starget->target_blocked); 395 } 396 397 static inline int scsi_host_is_busy(struct Scsi_Host *shost) 398 { 399 if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) || 400 shost->host_blocked || shost->host_self_blocked) 401 return 1; 402 403 return 0; 404 } 405 406 /* 407 * Function: scsi_run_queue() 408 * 409 * Purpose: Select a proper request queue to serve next 410 * 411 * Arguments: q - last request's queue 412 * 413 * Returns: Nothing 414 * 415 * Notes: The previous command was completely finished, start 416 * a new one if possible. 417 */ 418 static void scsi_run_queue(struct request_queue *q) 419 { 420 struct scsi_device *sdev = q->queuedata; 421 struct Scsi_Host *shost; 422 LIST_HEAD(starved_list); 423 unsigned long flags; 424 425 shost = sdev->host; 426 if (scsi_target(sdev)->single_lun) 427 scsi_single_lun_run(sdev); 428 429 spin_lock_irqsave(shost->host_lock, flags); 430 list_splice_init(&shost->starved_list, &starved_list); 431 432 while (!list_empty(&starved_list)) { 433 /* 434 * As long as shost is accepting commands and we have 435 * starved queues, call blk_run_queue. scsi_request_fn 436 * drops the queue_lock and can add us back to the 437 * starved_list. 438 * 439 * host_lock protects the starved_list and starved_entry. 440 * scsi_request_fn must get the host_lock before checking 441 * or modifying starved_list or starved_entry. 442 */ 443 if (scsi_host_is_busy(shost)) 444 break; 445 446 sdev = list_entry(starved_list.next, 447 struct scsi_device, starved_entry); 448 list_del_init(&sdev->starved_entry); 449 if (scsi_target_is_busy(scsi_target(sdev))) { 450 list_move_tail(&sdev->starved_entry, 451 &shost->starved_list); 452 continue; 453 } 454 455 spin_unlock(shost->host_lock); 456 spin_lock(sdev->request_queue->queue_lock); 457 __blk_run_queue(sdev->request_queue); 458 spin_unlock(sdev->request_queue->queue_lock); 459 spin_lock(shost->host_lock); 460 } 461 /* put any unprocessed entries back */ 462 list_splice(&starved_list, &shost->starved_list); 463 spin_unlock_irqrestore(shost->host_lock, flags); 464 465 blk_run_queue(q); 466 } 467 468 void scsi_requeue_run_queue(struct work_struct *work) 469 { 470 struct scsi_device *sdev; 471 struct request_queue *q; 472 473 sdev = container_of(work, struct scsi_device, requeue_work); 474 q = sdev->request_queue; 475 scsi_run_queue(q); 476 } 477 478 /* 479 * Function: scsi_requeue_command() 480 * 481 * Purpose: Handle post-processing of completed commands. 482 * 483 * Arguments: q - queue to operate on 484 * cmd - command that may need to be requeued. 485 * 486 * Returns: Nothing 487 * 488 * Notes: After command completion, there may be blocks left 489 * over which weren't finished by the previous command 490 * this can be for a number of reasons - the main one is 491 * I/O errors in the middle of the request, in which case 492 * we need to request the blocks that come after the bad 493 * sector. 494 * Notes: Upon return, cmd is a stale pointer. 495 */ 496 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd) 497 { 498 struct scsi_device *sdev = cmd->device; 499 struct request *req = cmd->request; 500 unsigned long flags; 501 502 /* 503 * We need to hold a reference on the device to avoid the queue being 504 * killed after the unlock and before scsi_run_queue is invoked which 505 * may happen because scsi_unprep_request() puts the command which 506 * releases its reference on the device. 507 */ 508 get_device(&sdev->sdev_gendev); 509 510 spin_lock_irqsave(q->queue_lock, flags); 511 scsi_unprep_request(req); 512 blk_requeue_request(q, req); 513 spin_unlock_irqrestore(q->queue_lock, flags); 514 515 scsi_run_queue(q); 516 517 put_device(&sdev->sdev_gendev); 518 } 519 520 void scsi_next_command(struct scsi_cmnd *cmd) 521 { 522 struct scsi_device *sdev = cmd->device; 523 struct request_queue *q = sdev->request_queue; 524 525 /* need to hold a reference on the device before we let go of the cmd */ 526 get_device(&sdev->sdev_gendev); 527 528 scsi_put_command(cmd); 529 scsi_run_queue(q); 530 531 /* ok to remove device now */ 532 put_device(&sdev->sdev_gendev); 533 } 534 535 void scsi_run_host_queues(struct Scsi_Host *shost) 536 { 537 struct scsi_device *sdev; 538 539 shost_for_each_device(sdev, shost) 540 scsi_run_queue(sdev->request_queue); 541 } 542 543 static void __scsi_release_buffers(struct scsi_cmnd *, int); 544 545 /* 546 * Function: scsi_end_request() 547 * 548 * Purpose: Post-processing of completed commands (usually invoked at end 549 * of upper level post-processing and scsi_io_completion). 550 * 551 * Arguments: cmd - command that is complete. 552 * error - 0 if I/O indicates success, < 0 for I/O error. 553 * bytes - number of bytes of completed I/O 554 * requeue - indicates whether we should requeue leftovers. 555 * 556 * Lock status: Assumed that lock is not held upon entry. 557 * 558 * Returns: cmd if requeue required, NULL otherwise. 559 * 560 * Notes: This is called for block device requests in order to 561 * mark some number of sectors as complete. 562 * 563 * We are guaranteeing that the request queue will be goosed 564 * at some point during this call. 565 * Notes: If cmd was requeued, upon return it will be a stale pointer. 566 */ 567 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error, 568 int bytes, int requeue) 569 { 570 struct request_queue *q = cmd->device->request_queue; 571 struct request *req = cmd->request; 572 573 /* 574 * If there are blocks left over at the end, set up the command 575 * to queue the remainder of them. 576 */ 577 if (blk_end_request(req, error, bytes)) { 578 /* kill remainder if no retrys */ 579 if (error && scsi_noretry_cmd(cmd)) 580 blk_end_request_all(req, error); 581 else { 582 if (requeue) { 583 /* 584 * Bleah. Leftovers again. Stick the 585 * leftovers in the front of the 586 * queue, and goose the queue again. 587 */ 588 scsi_release_buffers(cmd); 589 scsi_requeue_command(q, cmd); 590 cmd = NULL; 591 } 592 return cmd; 593 } 594 } 595 596 /* 597 * This will goose the queue request function at the end, so we don't 598 * need to worry about launching another command. 599 */ 600 __scsi_release_buffers(cmd, 0); 601 scsi_next_command(cmd); 602 return NULL; 603 } 604 605 static inline unsigned int scsi_sgtable_index(unsigned short nents) 606 { 607 unsigned int index; 608 609 BUG_ON(nents > SCSI_MAX_SG_SEGMENTS); 610 611 if (nents <= 8) 612 index = 0; 613 else 614 index = get_count_order(nents) - 3; 615 616 return index; 617 } 618 619 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents) 620 { 621 struct scsi_host_sg_pool *sgp; 622 623 sgp = scsi_sg_pools + scsi_sgtable_index(nents); 624 mempool_free(sgl, sgp->pool); 625 } 626 627 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask) 628 { 629 struct scsi_host_sg_pool *sgp; 630 631 sgp = scsi_sg_pools + scsi_sgtable_index(nents); 632 return mempool_alloc(sgp->pool, gfp_mask); 633 } 634 635 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents, 636 gfp_t gfp_mask) 637 { 638 int ret; 639 640 BUG_ON(!nents); 641 642 ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS, 643 gfp_mask, scsi_sg_alloc); 644 if (unlikely(ret)) 645 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, 646 scsi_sg_free); 647 648 return ret; 649 } 650 651 static void scsi_free_sgtable(struct scsi_data_buffer *sdb) 652 { 653 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free); 654 } 655 656 static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check) 657 { 658 659 if (cmd->sdb.table.nents) 660 scsi_free_sgtable(&cmd->sdb); 661 662 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 663 664 if (do_bidi_check && scsi_bidi_cmnd(cmd)) { 665 struct scsi_data_buffer *bidi_sdb = 666 cmd->request->next_rq->special; 667 scsi_free_sgtable(bidi_sdb); 668 kmem_cache_free(scsi_sdb_cache, bidi_sdb); 669 cmd->request->next_rq->special = NULL; 670 } 671 672 if (scsi_prot_sg_count(cmd)) 673 scsi_free_sgtable(cmd->prot_sdb); 674 } 675 676 /* 677 * Function: scsi_release_buffers() 678 * 679 * Purpose: Completion processing for block device I/O requests. 680 * 681 * Arguments: cmd - command that we are bailing. 682 * 683 * Lock status: Assumed that no lock is held upon entry. 684 * 685 * Returns: Nothing 686 * 687 * Notes: In the event that an upper level driver rejects a 688 * command, we must release resources allocated during 689 * the __init_io() function. Primarily this would involve 690 * the scatter-gather table, and potentially any bounce 691 * buffers. 692 */ 693 void scsi_release_buffers(struct scsi_cmnd *cmd) 694 { 695 __scsi_release_buffers(cmd, 1); 696 } 697 EXPORT_SYMBOL(scsi_release_buffers); 698 699 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result) 700 { 701 int error = 0; 702 703 switch(host_byte(result)) { 704 case DID_TRANSPORT_FAILFAST: 705 error = -ENOLINK; 706 break; 707 case DID_TARGET_FAILURE: 708 set_host_byte(cmd, DID_OK); 709 error = -EREMOTEIO; 710 break; 711 case DID_NEXUS_FAILURE: 712 set_host_byte(cmd, DID_OK); 713 error = -EBADE; 714 break; 715 default: 716 error = -EIO; 717 break; 718 } 719 720 return error; 721 } 722 723 /* 724 * Function: scsi_io_completion() 725 * 726 * Purpose: Completion processing for block device I/O requests. 727 * 728 * Arguments: cmd - command that is finished. 729 * 730 * Lock status: Assumed that no lock is held upon entry. 731 * 732 * Returns: Nothing 733 * 734 * Notes: This function is matched in terms of capabilities to 735 * the function that created the scatter-gather list. 736 * In other words, if there are no bounce buffers 737 * (the normal case for most drivers), we don't need 738 * the logic to deal with cleaning up afterwards. 739 * 740 * We must call scsi_end_request(). This will finish off 741 * the specified number of sectors. If we are done, the 742 * command block will be released and the queue function 743 * will be goosed. If we are not done then we have to 744 * figure out what to do next: 745 * 746 * a) We can call scsi_requeue_command(). The request 747 * will be unprepared and put back on the queue. Then 748 * a new command will be created for it. This should 749 * be used if we made forward progress, or if we want 750 * to switch from READ(10) to READ(6) for example. 751 * 752 * b) We can call scsi_queue_insert(). The request will 753 * be put back on the queue and retried using the same 754 * command as before, possibly after a delay. 755 * 756 * c) We can call blk_end_request() with -EIO to fail 757 * the remainder of the request. 758 */ 759 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes) 760 { 761 int result = cmd->result; 762 struct request_queue *q = cmd->device->request_queue; 763 struct request *req = cmd->request; 764 int error = 0; 765 struct scsi_sense_hdr sshdr; 766 int sense_valid = 0; 767 int sense_deferred = 0; 768 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY, 769 ACTION_DELAYED_RETRY} action; 770 char *description = NULL; 771 772 if (result) { 773 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 774 if (sense_valid) 775 sense_deferred = scsi_sense_is_deferred(&sshdr); 776 } 777 778 if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */ 779 if (result) { 780 if (sense_valid && req->sense) { 781 /* 782 * SG_IO wants current and deferred errors 783 */ 784 int len = 8 + cmd->sense_buffer[7]; 785 786 if (len > SCSI_SENSE_BUFFERSIZE) 787 len = SCSI_SENSE_BUFFERSIZE; 788 memcpy(req->sense, cmd->sense_buffer, len); 789 req->sense_len = len; 790 } 791 if (!sense_deferred) 792 error = __scsi_error_from_host_byte(cmd, result); 793 } 794 /* 795 * __scsi_error_from_host_byte may have reset the host_byte 796 */ 797 req->errors = cmd->result; 798 799 req->resid_len = scsi_get_resid(cmd); 800 801 if (scsi_bidi_cmnd(cmd)) { 802 /* 803 * Bidi commands Must be complete as a whole, 804 * both sides at once. 805 */ 806 req->next_rq->resid_len = scsi_in(cmd)->resid; 807 808 scsi_release_buffers(cmd); 809 blk_end_request_all(req, 0); 810 811 scsi_next_command(cmd); 812 return; 813 } 814 } 815 816 /* no bidi support for !REQ_TYPE_BLOCK_PC yet */ 817 BUG_ON(blk_bidi_rq(req)); 818 819 /* 820 * Next deal with any sectors which we were able to correctly 821 * handle. 822 */ 823 SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, " 824 "%d bytes done.\n", 825 blk_rq_sectors(req), good_bytes)); 826 827 /* 828 * Recovered errors need reporting, but they're always treated 829 * as success, so fiddle the result code here. For BLOCK_PC 830 * we already took a copy of the original into rq->errors which 831 * is what gets returned to the user 832 */ 833 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) { 834 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip 835 * print since caller wants ATA registers. Only occurs on 836 * SCSI ATA PASS_THROUGH commands when CK_COND=1 837 */ 838 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d)) 839 ; 840 else if (!(req->cmd_flags & REQ_QUIET)) 841 scsi_print_sense("", cmd); 842 result = 0; 843 /* BLOCK_PC may have set error */ 844 error = 0; 845 } 846 847 /* 848 * A number of bytes were successfully read. If there 849 * are leftovers and there is some kind of error 850 * (result != 0), retry the rest. 851 */ 852 if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL) 853 return; 854 855 error = __scsi_error_from_host_byte(cmd, result); 856 857 if (host_byte(result) == DID_RESET) { 858 /* Third party bus reset or reset for error recovery 859 * reasons. Just retry the command and see what 860 * happens. 861 */ 862 action = ACTION_RETRY; 863 } else if (sense_valid && !sense_deferred) { 864 switch (sshdr.sense_key) { 865 case UNIT_ATTENTION: 866 if (cmd->device->removable) { 867 /* Detected disc change. Set a bit 868 * and quietly refuse further access. 869 */ 870 cmd->device->changed = 1; 871 description = "Media Changed"; 872 action = ACTION_FAIL; 873 } else { 874 /* Must have been a power glitch, or a 875 * bus reset. Could not have been a 876 * media change, so we just retry the 877 * command and see what happens. 878 */ 879 action = ACTION_RETRY; 880 } 881 break; 882 case ILLEGAL_REQUEST: 883 /* If we had an ILLEGAL REQUEST returned, then 884 * we may have performed an unsupported 885 * command. The only thing this should be 886 * would be a ten byte read where only a six 887 * byte read was supported. Also, on a system 888 * where READ CAPACITY failed, we may have 889 * read past the end of the disk. 890 */ 891 if ((cmd->device->use_10_for_rw && 892 sshdr.asc == 0x20 && sshdr.ascq == 0x00) && 893 (cmd->cmnd[0] == READ_10 || 894 cmd->cmnd[0] == WRITE_10)) { 895 /* This will issue a new 6-byte command. */ 896 cmd->device->use_10_for_rw = 0; 897 action = ACTION_REPREP; 898 } else if (sshdr.asc == 0x10) /* DIX */ { 899 description = "Host Data Integrity Failure"; 900 action = ACTION_FAIL; 901 error = -EILSEQ; 902 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */ 903 } else if ((sshdr.asc == 0x20 || sshdr.asc == 0x24) && 904 (cmd->cmnd[0] == UNMAP || 905 cmd->cmnd[0] == WRITE_SAME_16 || 906 cmd->cmnd[0] == WRITE_SAME)) { 907 description = "Discard failure"; 908 action = ACTION_FAIL; 909 error = -EREMOTEIO; 910 } else 911 action = ACTION_FAIL; 912 break; 913 case ABORTED_COMMAND: 914 action = ACTION_FAIL; 915 if (sshdr.asc == 0x10) { /* DIF */ 916 description = "Target Data Integrity Failure"; 917 error = -EILSEQ; 918 } 919 break; 920 case NOT_READY: 921 /* If the device is in the process of becoming 922 * ready, or has a temporary blockage, retry. 923 */ 924 if (sshdr.asc == 0x04) { 925 switch (sshdr.ascq) { 926 case 0x01: /* becoming ready */ 927 case 0x04: /* format in progress */ 928 case 0x05: /* rebuild in progress */ 929 case 0x06: /* recalculation in progress */ 930 case 0x07: /* operation in progress */ 931 case 0x08: /* Long write in progress */ 932 case 0x09: /* self test in progress */ 933 case 0x14: /* space allocation in progress */ 934 action = ACTION_DELAYED_RETRY; 935 break; 936 default: 937 description = "Device not ready"; 938 action = ACTION_FAIL; 939 break; 940 } 941 } else { 942 description = "Device not ready"; 943 action = ACTION_FAIL; 944 } 945 break; 946 case VOLUME_OVERFLOW: 947 /* See SSC3rXX or current. */ 948 action = ACTION_FAIL; 949 break; 950 default: 951 description = "Unhandled sense code"; 952 action = ACTION_FAIL; 953 break; 954 } 955 } else { 956 description = "Unhandled error code"; 957 action = ACTION_FAIL; 958 } 959 960 switch (action) { 961 case ACTION_FAIL: 962 /* Give up and fail the remainder of the request */ 963 scsi_release_buffers(cmd); 964 if (!(req->cmd_flags & REQ_QUIET)) { 965 if (description) 966 scmd_printk(KERN_INFO, cmd, "%s\n", 967 description); 968 scsi_print_result(cmd); 969 if (driver_byte(result) & DRIVER_SENSE) 970 scsi_print_sense("", cmd); 971 scsi_print_command(cmd); 972 } 973 if (blk_end_request_err(req, error)) 974 scsi_requeue_command(q, cmd); 975 else 976 scsi_next_command(cmd); 977 break; 978 case ACTION_REPREP: 979 /* Unprep the request and put it back at the head of the queue. 980 * A new command will be prepared and issued. 981 */ 982 scsi_release_buffers(cmd); 983 scsi_requeue_command(q, cmd); 984 break; 985 case ACTION_RETRY: 986 /* Retry the same command immediately */ 987 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0); 988 break; 989 case ACTION_DELAYED_RETRY: 990 /* Retry the same command after a delay */ 991 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0); 992 break; 993 } 994 } 995 996 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb, 997 gfp_t gfp_mask) 998 { 999 int count; 1000 1001 /* 1002 * If sg table allocation fails, requeue request later. 1003 */ 1004 if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments, 1005 gfp_mask))) { 1006 return BLKPREP_DEFER; 1007 } 1008 1009 req->buffer = NULL; 1010 1011 /* 1012 * Next, walk the list, and fill in the addresses and sizes of 1013 * each segment. 1014 */ 1015 count = blk_rq_map_sg(req->q, req, sdb->table.sgl); 1016 BUG_ON(count > sdb->table.nents); 1017 sdb->table.nents = count; 1018 sdb->length = blk_rq_bytes(req); 1019 return BLKPREP_OK; 1020 } 1021 1022 /* 1023 * Function: scsi_init_io() 1024 * 1025 * Purpose: SCSI I/O initialize function. 1026 * 1027 * Arguments: cmd - Command descriptor we wish to initialize 1028 * 1029 * Returns: 0 on success 1030 * BLKPREP_DEFER if the failure is retryable 1031 * BLKPREP_KILL if the failure is fatal 1032 */ 1033 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask) 1034 { 1035 struct request *rq = cmd->request; 1036 1037 int error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask); 1038 if (error) 1039 goto err_exit; 1040 1041 if (blk_bidi_rq(rq)) { 1042 struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc( 1043 scsi_sdb_cache, GFP_ATOMIC); 1044 if (!bidi_sdb) { 1045 error = BLKPREP_DEFER; 1046 goto err_exit; 1047 } 1048 1049 rq->next_rq->special = bidi_sdb; 1050 error = scsi_init_sgtable(rq->next_rq, bidi_sdb, GFP_ATOMIC); 1051 if (error) 1052 goto err_exit; 1053 } 1054 1055 if (blk_integrity_rq(rq)) { 1056 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb; 1057 int ivecs, count; 1058 1059 BUG_ON(prot_sdb == NULL); 1060 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio); 1061 1062 if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) { 1063 error = BLKPREP_DEFER; 1064 goto err_exit; 1065 } 1066 1067 count = blk_rq_map_integrity_sg(rq->q, rq->bio, 1068 prot_sdb->table.sgl); 1069 BUG_ON(unlikely(count > ivecs)); 1070 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q))); 1071 1072 cmd->prot_sdb = prot_sdb; 1073 cmd->prot_sdb->table.nents = count; 1074 } 1075 1076 return BLKPREP_OK ; 1077 1078 err_exit: 1079 scsi_release_buffers(cmd); 1080 cmd->request->special = NULL; 1081 scsi_put_command(cmd); 1082 return error; 1083 } 1084 EXPORT_SYMBOL(scsi_init_io); 1085 1086 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev, 1087 struct request *req) 1088 { 1089 struct scsi_cmnd *cmd; 1090 1091 if (!req->special) { 1092 cmd = scsi_get_command(sdev, GFP_ATOMIC); 1093 if (unlikely(!cmd)) 1094 return NULL; 1095 req->special = cmd; 1096 } else { 1097 cmd = req->special; 1098 } 1099 1100 /* pull a tag out of the request if we have one */ 1101 cmd->tag = req->tag; 1102 cmd->request = req; 1103 1104 cmd->cmnd = req->cmd; 1105 cmd->prot_op = SCSI_PROT_NORMAL; 1106 1107 return cmd; 1108 } 1109 1110 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req) 1111 { 1112 struct scsi_cmnd *cmd; 1113 int ret = scsi_prep_state_check(sdev, req); 1114 1115 if (ret != BLKPREP_OK) 1116 return ret; 1117 1118 cmd = scsi_get_cmd_from_req(sdev, req); 1119 if (unlikely(!cmd)) 1120 return BLKPREP_DEFER; 1121 1122 /* 1123 * BLOCK_PC requests may transfer data, in which case they must 1124 * a bio attached to them. Or they might contain a SCSI command 1125 * that does not transfer data, in which case they may optionally 1126 * submit a request without an attached bio. 1127 */ 1128 if (req->bio) { 1129 int ret; 1130 1131 BUG_ON(!req->nr_phys_segments); 1132 1133 ret = scsi_init_io(cmd, GFP_ATOMIC); 1134 if (unlikely(ret)) 1135 return ret; 1136 } else { 1137 BUG_ON(blk_rq_bytes(req)); 1138 1139 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1140 req->buffer = NULL; 1141 } 1142 1143 cmd->cmd_len = req->cmd_len; 1144 if (!blk_rq_bytes(req)) 1145 cmd->sc_data_direction = DMA_NONE; 1146 else if (rq_data_dir(req) == WRITE) 1147 cmd->sc_data_direction = DMA_TO_DEVICE; 1148 else 1149 cmd->sc_data_direction = DMA_FROM_DEVICE; 1150 1151 cmd->transfersize = blk_rq_bytes(req); 1152 cmd->allowed = req->retries; 1153 return BLKPREP_OK; 1154 } 1155 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd); 1156 1157 /* 1158 * Setup a REQ_TYPE_FS command. These are simple read/write request 1159 * from filesystems that still need to be translated to SCSI CDBs from 1160 * the ULD. 1161 */ 1162 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req) 1163 { 1164 struct scsi_cmnd *cmd; 1165 int ret = scsi_prep_state_check(sdev, req); 1166 1167 if (ret != BLKPREP_OK) 1168 return ret; 1169 1170 if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh 1171 && sdev->scsi_dh_data->scsi_dh->prep_fn)) { 1172 ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req); 1173 if (ret != BLKPREP_OK) 1174 return ret; 1175 } 1176 1177 /* 1178 * Filesystem requests must transfer data. 1179 */ 1180 BUG_ON(!req->nr_phys_segments); 1181 1182 cmd = scsi_get_cmd_from_req(sdev, req); 1183 if (unlikely(!cmd)) 1184 return BLKPREP_DEFER; 1185 1186 memset(cmd->cmnd, 0, BLK_MAX_CDB); 1187 return scsi_init_io(cmd, GFP_ATOMIC); 1188 } 1189 EXPORT_SYMBOL(scsi_setup_fs_cmnd); 1190 1191 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req) 1192 { 1193 int ret = BLKPREP_OK; 1194 1195 /* 1196 * If the device is not in running state we will reject some 1197 * or all commands. 1198 */ 1199 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) { 1200 switch (sdev->sdev_state) { 1201 case SDEV_OFFLINE: 1202 case SDEV_TRANSPORT_OFFLINE: 1203 /* 1204 * If the device is offline we refuse to process any 1205 * commands. The device must be brought online 1206 * before trying any recovery commands. 1207 */ 1208 sdev_printk(KERN_ERR, sdev, 1209 "rejecting I/O to offline device\n"); 1210 ret = BLKPREP_KILL; 1211 break; 1212 case SDEV_DEL: 1213 /* 1214 * If the device is fully deleted, we refuse to 1215 * process any commands as well. 1216 */ 1217 sdev_printk(KERN_ERR, sdev, 1218 "rejecting I/O to dead device\n"); 1219 ret = BLKPREP_KILL; 1220 break; 1221 case SDEV_QUIESCE: 1222 case SDEV_BLOCK: 1223 case SDEV_CREATED_BLOCK: 1224 /* 1225 * If the devices is blocked we defer normal commands. 1226 */ 1227 if (!(req->cmd_flags & REQ_PREEMPT)) 1228 ret = BLKPREP_DEFER; 1229 break; 1230 default: 1231 /* 1232 * For any other not fully online state we only allow 1233 * special commands. In particular any user initiated 1234 * command is not allowed. 1235 */ 1236 if (!(req->cmd_flags & REQ_PREEMPT)) 1237 ret = BLKPREP_KILL; 1238 break; 1239 } 1240 } 1241 return ret; 1242 } 1243 EXPORT_SYMBOL(scsi_prep_state_check); 1244 1245 int scsi_prep_return(struct request_queue *q, struct request *req, int ret) 1246 { 1247 struct scsi_device *sdev = q->queuedata; 1248 1249 switch (ret) { 1250 case BLKPREP_KILL: 1251 req->errors = DID_NO_CONNECT << 16; 1252 /* release the command and kill it */ 1253 if (req->special) { 1254 struct scsi_cmnd *cmd = req->special; 1255 scsi_release_buffers(cmd); 1256 scsi_put_command(cmd); 1257 req->special = NULL; 1258 } 1259 break; 1260 case BLKPREP_DEFER: 1261 /* 1262 * If we defer, the blk_peek_request() returns NULL, but the 1263 * queue must be restarted, so we schedule a callback to happen 1264 * shortly. 1265 */ 1266 if (sdev->device_busy == 0) 1267 blk_delay_queue(q, SCSI_QUEUE_DELAY); 1268 break; 1269 default: 1270 req->cmd_flags |= REQ_DONTPREP; 1271 } 1272 1273 return ret; 1274 } 1275 EXPORT_SYMBOL(scsi_prep_return); 1276 1277 int scsi_prep_fn(struct request_queue *q, struct request *req) 1278 { 1279 struct scsi_device *sdev = q->queuedata; 1280 int ret = BLKPREP_KILL; 1281 1282 if (req->cmd_type == REQ_TYPE_BLOCK_PC) 1283 ret = scsi_setup_blk_pc_cmnd(sdev, req); 1284 return scsi_prep_return(q, req, ret); 1285 } 1286 EXPORT_SYMBOL(scsi_prep_fn); 1287 1288 /* 1289 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else 1290 * return 0. 1291 * 1292 * Called with the queue_lock held. 1293 */ 1294 static inline int scsi_dev_queue_ready(struct request_queue *q, 1295 struct scsi_device *sdev) 1296 { 1297 if (sdev->device_busy == 0 && sdev->device_blocked) { 1298 /* 1299 * unblock after device_blocked iterates to zero 1300 */ 1301 if (--sdev->device_blocked == 0) { 1302 SCSI_LOG_MLQUEUE(3, 1303 sdev_printk(KERN_INFO, sdev, 1304 "unblocking device at zero depth\n")); 1305 } else { 1306 blk_delay_queue(q, SCSI_QUEUE_DELAY); 1307 return 0; 1308 } 1309 } 1310 if (scsi_device_is_busy(sdev)) 1311 return 0; 1312 1313 return 1; 1314 } 1315 1316 1317 /* 1318 * scsi_target_queue_ready: checks if there we can send commands to target 1319 * @sdev: scsi device on starget to check. 1320 * 1321 * Called with the host lock held. 1322 */ 1323 static inline int scsi_target_queue_ready(struct Scsi_Host *shost, 1324 struct scsi_device *sdev) 1325 { 1326 struct scsi_target *starget = scsi_target(sdev); 1327 1328 if (starget->single_lun) { 1329 if (starget->starget_sdev_user && 1330 starget->starget_sdev_user != sdev) 1331 return 0; 1332 starget->starget_sdev_user = sdev; 1333 } 1334 1335 if (starget->target_busy == 0 && starget->target_blocked) { 1336 /* 1337 * unblock after target_blocked iterates to zero 1338 */ 1339 if (--starget->target_blocked == 0) { 1340 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget, 1341 "unblocking target at zero depth\n")); 1342 } else 1343 return 0; 1344 } 1345 1346 if (scsi_target_is_busy(starget)) { 1347 list_move_tail(&sdev->starved_entry, &shost->starved_list); 1348 return 0; 1349 } 1350 1351 return 1; 1352 } 1353 1354 /* 1355 * scsi_host_queue_ready: if we can send requests to shost, return 1 else 1356 * return 0. We must end up running the queue again whenever 0 is 1357 * returned, else IO can hang. 1358 * 1359 * Called with host_lock held. 1360 */ 1361 static inline int scsi_host_queue_ready(struct request_queue *q, 1362 struct Scsi_Host *shost, 1363 struct scsi_device *sdev) 1364 { 1365 if (scsi_host_in_recovery(shost)) 1366 return 0; 1367 if (shost->host_busy == 0 && shost->host_blocked) { 1368 /* 1369 * unblock after host_blocked iterates to zero 1370 */ 1371 if (--shost->host_blocked == 0) { 1372 SCSI_LOG_MLQUEUE(3, 1373 printk("scsi%d unblocking host at zero depth\n", 1374 shost->host_no)); 1375 } else { 1376 return 0; 1377 } 1378 } 1379 if (scsi_host_is_busy(shost)) { 1380 if (list_empty(&sdev->starved_entry)) 1381 list_add_tail(&sdev->starved_entry, &shost->starved_list); 1382 return 0; 1383 } 1384 1385 /* We're OK to process the command, so we can't be starved */ 1386 if (!list_empty(&sdev->starved_entry)) 1387 list_del_init(&sdev->starved_entry); 1388 1389 return 1; 1390 } 1391 1392 /* 1393 * Busy state exporting function for request stacking drivers. 1394 * 1395 * For efficiency, no lock is taken to check the busy state of 1396 * shost/starget/sdev, since the returned value is not guaranteed and 1397 * may be changed after request stacking drivers call the function, 1398 * regardless of taking lock or not. 1399 * 1400 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi 1401 * needs to return 'not busy'. Otherwise, request stacking drivers 1402 * may hold requests forever. 1403 */ 1404 static int scsi_lld_busy(struct request_queue *q) 1405 { 1406 struct scsi_device *sdev = q->queuedata; 1407 struct Scsi_Host *shost; 1408 1409 if (blk_queue_dead(q)) 1410 return 0; 1411 1412 shost = sdev->host; 1413 1414 /* 1415 * Ignore host/starget busy state. 1416 * Since block layer does not have a concept of fairness across 1417 * multiple queues, congestion of host/starget needs to be handled 1418 * in SCSI layer. 1419 */ 1420 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev)) 1421 return 1; 1422 1423 return 0; 1424 } 1425 1426 /* 1427 * Kill a request for a dead device 1428 */ 1429 static void scsi_kill_request(struct request *req, struct request_queue *q) 1430 { 1431 struct scsi_cmnd *cmd = req->special; 1432 struct scsi_device *sdev; 1433 struct scsi_target *starget; 1434 struct Scsi_Host *shost; 1435 1436 blk_start_request(req); 1437 1438 scmd_printk(KERN_INFO, cmd, "killing request\n"); 1439 1440 sdev = cmd->device; 1441 starget = scsi_target(sdev); 1442 shost = sdev->host; 1443 scsi_init_cmd_errh(cmd); 1444 cmd->result = DID_NO_CONNECT << 16; 1445 atomic_inc(&cmd->device->iorequest_cnt); 1446 1447 /* 1448 * SCSI request completion path will do scsi_device_unbusy(), 1449 * bump busy counts. To bump the counters, we need to dance 1450 * with the locks as normal issue path does. 1451 */ 1452 sdev->device_busy++; 1453 spin_unlock(sdev->request_queue->queue_lock); 1454 spin_lock(shost->host_lock); 1455 shost->host_busy++; 1456 starget->target_busy++; 1457 spin_unlock(shost->host_lock); 1458 spin_lock(sdev->request_queue->queue_lock); 1459 1460 blk_complete_request(req); 1461 } 1462 1463 static void scsi_softirq_done(struct request *rq) 1464 { 1465 struct scsi_cmnd *cmd = rq->special; 1466 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout; 1467 int disposition; 1468 1469 INIT_LIST_HEAD(&cmd->eh_entry); 1470 1471 atomic_inc(&cmd->device->iodone_cnt); 1472 if (cmd->result) 1473 atomic_inc(&cmd->device->ioerr_cnt); 1474 1475 disposition = scsi_decide_disposition(cmd); 1476 if (disposition != SUCCESS && 1477 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) { 1478 sdev_printk(KERN_ERR, cmd->device, 1479 "timing out command, waited %lus\n", 1480 wait_for/HZ); 1481 disposition = SUCCESS; 1482 } 1483 1484 scsi_log_completion(cmd, disposition); 1485 1486 switch (disposition) { 1487 case SUCCESS: 1488 scsi_finish_command(cmd); 1489 break; 1490 case NEEDS_RETRY: 1491 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY); 1492 break; 1493 case ADD_TO_MLQUEUE: 1494 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY); 1495 break; 1496 default: 1497 if (!scsi_eh_scmd_add(cmd, 0)) 1498 scsi_finish_command(cmd); 1499 } 1500 } 1501 1502 /* 1503 * Function: scsi_request_fn() 1504 * 1505 * Purpose: Main strategy routine for SCSI. 1506 * 1507 * Arguments: q - Pointer to actual queue. 1508 * 1509 * Returns: Nothing 1510 * 1511 * Lock status: IO request lock assumed to be held when called. 1512 */ 1513 static void scsi_request_fn(struct request_queue *q) 1514 { 1515 struct scsi_device *sdev = q->queuedata; 1516 struct Scsi_Host *shost; 1517 struct scsi_cmnd *cmd; 1518 struct request *req; 1519 1520 if(!get_device(&sdev->sdev_gendev)) 1521 /* We must be tearing the block queue down already */ 1522 return; 1523 1524 /* 1525 * To start with, we keep looping until the queue is empty, or until 1526 * the host is no longer able to accept any more requests. 1527 */ 1528 shost = sdev->host; 1529 for (;;) { 1530 int rtn; 1531 /* 1532 * get next queueable request. We do this early to make sure 1533 * that the request is fully prepared even if we cannot 1534 * accept it. 1535 */ 1536 req = blk_peek_request(q); 1537 if (!req || !scsi_dev_queue_ready(q, sdev)) 1538 break; 1539 1540 if (unlikely(!scsi_device_online(sdev))) { 1541 sdev_printk(KERN_ERR, sdev, 1542 "rejecting I/O to offline device\n"); 1543 scsi_kill_request(req, q); 1544 continue; 1545 } 1546 1547 1548 /* 1549 * Remove the request from the request list. 1550 */ 1551 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req))) 1552 blk_start_request(req); 1553 sdev->device_busy++; 1554 1555 spin_unlock(q->queue_lock); 1556 cmd = req->special; 1557 if (unlikely(cmd == NULL)) { 1558 printk(KERN_CRIT "impossible request in %s.\n" 1559 "please mail a stack trace to " 1560 "linux-scsi@vger.kernel.org\n", 1561 __func__); 1562 blk_dump_rq_flags(req, "foo"); 1563 BUG(); 1564 } 1565 spin_lock(shost->host_lock); 1566 1567 /* 1568 * We hit this when the driver is using a host wide 1569 * tag map. For device level tag maps the queue_depth check 1570 * in the device ready fn would prevent us from trying 1571 * to allocate a tag. Since the map is a shared host resource 1572 * we add the dev to the starved list so it eventually gets 1573 * a run when a tag is freed. 1574 */ 1575 if (blk_queue_tagged(q) && !blk_rq_tagged(req)) { 1576 if (list_empty(&sdev->starved_entry)) 1577 list_add_tail(&sdev->starved_entry, 1578 &shost->starved_list); 1579 goto not_ready; 1580 } 1581 1582 if (!scsi_target_queue_ready(shost, sdev)) 1583 goto not_ready; 1584 1585 if (!scsi_host_queue_ready(q, shost, sdev)) 1586 goto not_ready; 1587 1588 scsi_target(sdev)->target_busy++; 1589 shost->host_busy++; 1590 1591 /* 1592 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will 1593 * take the lock again. 1594 */ 1595 spin_unlock_irq(shost->host_lock); 1596 1597 /* 1598 * Finally, initialize any error handling parameters, and set up 1599 * the timers for timeouts. 1600 */ 1601 scsi_init_cmd_errh(cmd); 1602 1603 /* 1604 * Dispatch the command to the low-level driver. 1605 */ 1606 rtn = scsi_dispatch_cmd(cmd); 1607 spin_lock_irq(q->queue_lock); 1608 if (rtn) 1609 goto out_delay; 1610 } 1611 1612 goto out; 1613 1614 not_ready: 1615 spin_unlock_irq(shost->host_lock); 1616 1617 /* 1618 * lock q, handle tag, requeue req, and decrement device_busy. We 1619 * must return with queue_lock held. 1620 * 1621 * Decrementing device_busy without checking it is OK, as all such 1622 * cases (host limits or settings) should run the queue at some 1623 * later time. 1624 */ 1625 spin_lock_irq(q->queue_lock); 1626 blk_requeue_request(q, req); 1627 sdev->device_busy--; 1628 out_delay: 1629 if (sdev->device_busy == 0) 1630 blk_delay_queue(q, SCSI_QUEUE_DELAY); 1631 out: 1632 /* must be careful here...if we trigger the ->remove() function 1633 * we cannot be holding the q lock */ 1634 spin_unlock_irq(q->queue_lock); 1635 put_device(&sdev->sdev_gendev); 1636 spin_lock_irq(q->queue_lock); 1637 } 1638 1639 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost) 1640 { 1641 struct device *host_dev; 1642 u64 bounce_limit = 0xffffffff; 1643 1644 if (shost->unchecked_isa_dma) 1645 return BLK_BOUNCE_ISA; 1646 /* 1647 * Platforms with virtual-DMA translation 1648 * hardware have no practical limit. 1649 */ 1650 if (!PCI_DMA_BUS_IS_PHYS) 1651 return BLK_BOUNCE_ANY; 1652 1653 host_dev = scsi_get_device(shost); 1654 if (host_dev && host_dev->dma_mask) 1655 bounce_limit = *host_dev->dma_mask; 1656 1657 return bounce_limit; 1658 } 1659 EXPORT_SYMBOL(scsi_calculate_bounce_limit); 1660 1661 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost, 1662 request_fn_proc *request_fn) 1663 { 1664 struct request_queue *q; 1665 struct device *dev = shost->dma_dev; 1666 1667 q = blk_init_queue(request_fn, NULL); 1668 if (!q) 1669 return NULL; 1670 1671 /* 1672 * this limit is imposed by hardware restrictions 1673 */ 1674 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize, 1675 SCSI_MAX_SG_CHAIN_SEGMENTS)); 1676 1677 if (scsi_host_prot_dma(shost)) { 1678 shost->sg_prot_tablesize = 1679 min_not_zero(shost->sg_prot_tablesize, 1680 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS); 1681 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize); 1682 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize); 1683 } 1684 1685 blk_queue_max_hw_sectors(q, shost->max_sectors); 1686 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost)); 1687 blk_queue_segment_boundary(q, shost->dma_boundary); 1688 dma_set_seg_boundary(dev, shost->dma_boundary); 1689 1690 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev)); 1691 1692 if (!shost->use_clustering) 1693 q->limits.cluster = 0; 1694 1695 /* 1696 * set a reasonable default alignment on word boundaries: the 1697 * host and device may alter it using 1698 * blk_queue_update_dma_alignment() later. 1699 */ 1700 blk_queue_dma_alignment(q, 0x03); 1701 1702 return q; 1703 } 1704 EXPORT_SYMBOL(__scsi_alloc_queue); 1705 1706 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev) 1707 { 1708 struct request_queue *q; 1709 1710 q = __scsi_alloc_queue(sdev->host, scsi_request_fn); 1711 if (!q) 1712 return NULL; 1713 1714 blk_queue_prep_rq(q, scsi_prep_fn); 1715 blk_queue_softirq_done(q, scsi_softirq_done); 1716 blk_queue_rq_timed_out(q, scsi_times_out); 1717 blk_queue_lld_busy(q, scsi_lld_busy); 1718 return q; 1719 } 1720 1721 /* 1722 * Function: scsi_block_requests() 1723 * 1724 * Purpose: Utility function used by low-level drivers to prevent further 1725 * commands from being queued to the device. 1726 * 1727 * Arguments: shost - Host in question 1728 * 1729 * Returns: Nothing 1730 * 1731 * Lock status: No locks are assumed held. 1732 * 1733 * Notes: There is no timer nor any other means by which the requests 1734 * get unblocked other than the low-level driver calling 1735 * scsi_unblock_requests(). 1736 */ 1737 void scsi_block_requests(struct Scsi_Host *shost) 1738 { 1739 shost->host_self_blocked = 1; 1740 } 1741 EXPORT_SYMBOL(scsi_block_requests); 1742 1743 /* 1744 * Function: scsi_unblock_requests() 1745 * 1746 * Purpose: Utility function used by low-level drivers to allow further 1747 * commands from being queued to the device. 1748 * 1749 * Arguments: shost - Host in question 1750 * 1751 * Returns: Nothing 1752 * 1753 * Lock status: No locks are assumed held. 1754 * 1755 * Notes: There is no timer nor any other means by which the requests 1756 * get unblocked other than the low-level driver calling 1757 * scsi_unblock_requests(). 1758 * 1759 * This is done as an API function so that changes to the 1760 * internals of the scsi mid-layer won't require wholesale 1761 * changes to drivers that use this feature. 1762 */ 1763 void scsi_unblock_requests(struct Scsi_Host *shost) 1764 { 1765 shost->host_self_blocked = 0; 1766 scsi_run_host_queues(shost); 1767 } 1768 EXPORT_SYMBOL(scsi_unblock_requests); 1769 1770 int __init scsi_init_queue(void) 1771 { 1772 int i; 1773 1774 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer", 1775 sizeof(struct scsi_data_buffer), 1776 0, 0, NULL); 1777 if (!scsi_sdb_cache) { 1778 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n"); 1779 return -ENOMEM; 1780 } 1781 1782 for (i = 0; i < SG_MEMPOOL_NR; i++) { 1783 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i; 1784 int size = sgp->size * sizeof(struct scatterlist); 1785 1786 sgp->slab = kmem_cache_create(sgp->name, size, 0, 1787 SLAB_HWCACHE_ALIGN, NULL); 1788 if (!sgp->slab) { 1789 printk(KERN_ERR "SCSI: can't init sg slab %s\n", 1790 sgp->name); 1791 goto cleanup_sdb; 1792 } 1793 1794 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE, 1795 sgp->slab); 1796 if (!sgp->pool) { 1797 printk(KERN_ERR "SCSI: can't init sg mempool %s\n", 1798 sgp->name); 1799 goto cleanup_sdb; 1800 } 1801 } 1802 1803 return 0; 1804 1805 cleanup_sdb: 1806 for (i = 0; i < SG_MEMPOOL_NR; i++) { 1807 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i; 1808 if (sgp->pool) 1809 mempool_destroy(sgp->pool); 1810 if (sgp->slab) 1811 kmem_cache_destroy(sgp->slab); 1812 } 1813 kmem_cache_destroy(scsi_sdb_cache); 1814 1815 return -ENOMEM; 1816 } 1817 1818 void scsi_exit_queue(void) 1819 { 1820 int i; 1821 1822 kmem_cache_destroy(scsi_sdb_cache); 1823 1824 for (i = 0; i < SG_MEMPOOL_NR; i++) { 1825 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i; 1826 mempool_destroy(sgp->pool); 1827 kmem_cache_destroy(sgp->slab); 1828 } 1829 } 1830 1831 /** 1832 * scsi_mode_select - issue a mode select 1833 * @sdev: SCSI device to be queried 1834 * @pf: Page format bit (1 == standard, 0 == vendor specific) 1835 * @sp: Save page bit (0 == don't save, 1 == save) 1836 * @modepage: mode page being requested 1837 * @buffer: request buffer (may not be smaller than eight bytes) 1838 * @len: length of request buffer. 1839 * @timeout: command timeout 1840 * @retries: number of retries before failing 1841 * @data: returns a structure abstracting the mode header data 1842 * @sshdr: place to put sense data (or NULL if no sense to be collected). 1843 * must be SCSI_SENSE_BUFFERSIZE big. 1844 * 1845 * Returns zero if successful; negative error number or scsi 1846 * status on error 1847 * 1848 */ 1849 int 1850 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage, 1851 unsigned char *buffer, int len, int timeout, int retries, 1852 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 1853 { 1854 unsigned char cmd[10]; 1855 unsigned char *real_buffer; 1856 int ret; 1857 1858 memset(cmd, 0, sizeof(cmd)); 1859 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0); 1860 1861 if (sdev->use_10_for_ms) { 1862 if (len > 65535) 1863 return -EINVAL; 1864 real_buffer = kmalloc(8 + len, GFP_KERNEL); 1865 if (!real_buffer) 1866 return -ENOMEM; 1867 memcpy(real_buffer + 8, buffer, len); 1868 len += 8; 1869 real_buffer[0] = 0; 1870 real_buffer[1] = 0; 1871 real_buffer[2] = data->medium_type; 1872 real_buffer[3] = data->device_specific; 1873 real_buffer[4] = data->longlba ? 0x01 : 0; 1874 real_buffer[5] = 0; 1875 real_buffer[6] = data->block_descriptor_length >> 8; 1876 real_buffer[7] = data->block_descriptor_length; 1877 1878 cmd[0] = MODE_SELECT_10; 1879 cmd[7] = len >> 8; 1880 cmd[8] = len; 1881 } else { 1882 if (len > 255 || data->block_descriptor_length > 255 || 1883 data->longlba) 1884 return -EINVAL; 1885 1886 real_buffer = kmalloc(4 + len, GFP_KERNEL); 1887 if (!real_buffer) 1888 return -ENOMEM; 1889 memcpy(real_buffer + 4, buffer, len); 1890 len += 4; 1891 real_buffer[0] = 0; 1892 real_buffer[1] = data->medium_type; 1893 real_buffer[2] = data->device_specific; 1894 real_buffer[3] = data->block_descriptor_length; 1895 1896 1897 cmd[0] = MODE_SELECT; 1898 cmd[4] = len; 1899 } 1900 1901 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len, 1902 sshdr, timeout, retries, NULL); 1903 kfree(real_buffer); 1904 return ret; 1905 } 1906 EXPORT_SYMBOL_GPL(scsi_mode_select); 1907 1908 /** 1909 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary. 1910 * @sdev: SCSI device to be queried 1911 * @dbd: set if mode sense will allow block descriptors to be returned 1912 * @modepage: mode page being requested 1913 * @buffer: request buffer (may not be smaller than eight bytes) 1914 * @len: length of request buffer. 1915 * @timeout: command timeout 1916 * @retries: number of retries before failing 1917 * @data: returns a structure abstracting the mode header data 1918 * @sshdr: place to put sense data (or NULL if no sense to be collected). 1919 * must be SCSI_SENSE_BUFFERSIZE big. 1920 * 1921 * Returns zero if unsuccessful, or the header offset (either 4 1922 * or 8 depending on whether a six or ten byte command was 1923 * issued) if successful. 1924 */ 1925 int 1926 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, 1927 unsigned char *buffer, int len, int timeout, int retries, 1928 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 1929 { 1930 unsigned char cmd[12]; 1931 int use_10_for_ms; 1932 int header_length; 1933 int result; 1934 struct scsi_sense_hdr my_sshdr; 1935 1936 memset(data, 0, sizeof(*data)); 1937 memset(&cmd[0], 0, 12); 1938 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */ 1939 cmd[2] = modepage; 1940 1941 /* caller might not be interested in sense, but we need it */ 1942 if (!sshdr) 1943 sshdr = &my_sshdr; 1944 1945 retry: 1946 use_10_for_ms = sdev->use_10_for_ms; 1947 1948 if (use_10_for_ms) { 1949 if (len < 8) 1950 len = 8; 1951 1952 cmd[0] = MODE_SENSE_10; 1953 cmd[8] = len; 1954 header_length = 8; 1955 } else { 1956 if (len < 4) 1957 len = 4; 1958 1959 cmd[0] = MODE_SENSE; 1960 cmd[4] = len; 1961 header_length = 4; 1962 } 1963 1964 memset(buffer, 0, len); 1965 1966 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len, 1967 sshdr, timeout, retries, NULL); 1968 1969 /* This code looks awful: what it's doing is making sure an 1970 * ILLEGAL REQUEST sense return identifies the actual command 1971 * byte as the problem. MODE_SENSE commands can return 1972 * ILLEGAL REQUEST if the code page isn't supported */ 1973 1974 if (use_10_for_ms && !scsi_status_is_good(result) && 1975 (driver_byte(result) & DRIVER_SENSE)) { 1976 if (scsi_sense_valid(sshdr)) { 1977 if ((sshdr->sense_key == ILLEGAL_REQUEST) && 1978 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) { 1979 /* 1980 * Invalid command operation code 1981 */ 1982 sdev->use_10_for_ms = 0; 1983 goto retry; 1984 } 1985 } 1986 } 1987 1988 if(scsi_status_is_good(result)) { 1989 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b && 1990 (modepage == 6 || modepage == 8))) { 1991 /* Initio breakage? */ 1992 header_length = 0; 1993 data->length = 13; 1994 data->medium_type = 0; 1995 data->device_specific = 0; 1996 data->longlba = 0; 1997 data->block_descriptor_length = 0; 1998 } else if(use_10_for_ms) { 1999 data->length = buffer[0]*256 + buffer[1] + 2; 2000 data->medium_type = buffer[2]; 2001 data->device_specific = buffer[3]; 2002 data->longlba = buffer[4] & 0x01; 2003 data->block_descriptor_length = buffer[6]*256 2004 + buffer[7]; 2005 } else { 2006 data->length = buffer[0] + 1; 2007 data->medium_type = buffer[1]; 2008 data->device_specific = buffer[2]; 2009 data->block_descriptor_length = buffer[3]; 2010 } 2011 data->header_length = header_length; 2012 } 2013 2014 return result; 2015 } 2016 EXPORT_SYMBOL(scsi_mode_sense); 2017 2018 /** 2019 * scsi_test_unit_ready - test if unit is ready 2020 * @sdev: scsi device to change the state of. 2021 * @timeout: command timeout 2022 * @retries: number of retries before failing 2023 * @sshdr_external: Optional pointer to struct scsi_sense_hdr for 2024 * returning sense. Make sure that this is cleared before passing 2025 * in. 2026 * 2027 * Returns zero if unsuccessful or an error if TUR failed. For 2028 * removable media, UNIT_ATTENTION sets ->changed flag. 2029 **/ 2030 int 2031 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries, 2032 struct scsi_sense_hdr *sshdr_external) 2033 { 2034 char cmd[] = { 2035 TEST_UNIT_READY, 0, 0, 0, 0, 0, 2036 }; 2037 struct scsi_sense_hdr *sshdr; 2038 int result; 2039 2040 if (!sshdr_external) 2041 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL); 2042 else 2043 sshdr = sshdr_external; 2044 2045 /* try to eat the UNIT_ATTENTION if there are enough retries */ 2046 do { 2047 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr, 2048 timeout, retries, NULL); 2049 if (sdev->removable && scsi_sense_valid(sshdr) && 2050 sshdr->sense_key == UNIT_ATTENTION) 2051 sdev->changed = 1; 2052 } while (scsi_sense_valid(sshdr) && 2053 sshdr->sense_key == UNIT_ATTENTION && --retries); 2054 2055 if (!sshdr_external) 2056 kfree(sshdr); 2057 return result; 2058 } 2059 EXPORT_SYMBOL(scsi_test_unit_ready); 2060 2061 /** 2062 * scsi_device_set_state - Take the given device through the device state model. 2063 * @sdev: scsi device to change the state of. 2064 * @state: state to change to. 2065 * 2066 * Returns zero if unsuccessful or an error if the requested 2067 * transition is illegal. 2068 */ 2069 int 2070 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state) 2071 { 2072 enum scsi_device_state oldstate = sdev->sdev_state; 2073 2074 if (state == oldstate) 2075 return 0; 2076 2077 switch (state) { 2078 case SDEV_CREATED: 2079 switch (oldstate) { 2080 case SDEV_CREATED_BLOCK: 2081 break; 2082 default: 2083 goto illegal; 2084 } 2085 break; 2086 2087 case SDEV_RUNNING: 2088 switch (oldstate) { 2089 case SDEV_CREATED: 2090 case SDEV_OFFLINE: 2091 case SDEV_TRANSPORT_OFFLINE: 2092 case SDEV_QUIESCE: 2093 case SDEV_BLOCK: 2094 break; 2095 default: 2096 goto illegal; 2097 } 2098 break; 2099 2100 case SDEV_QUIESCE: 2101 switch (oldstate) { 2102 case SDEV_RUNNING: 2103 case SDEV_OFFLINE: 2104 case SDEV_TRANSPORT_OFFLINE: 2105 break; 2106 default: 2107 goto illegal; 2108 } 2109 break; 2110 2111 case SDEV_OFFLINE: 2112 case SDEV_TRANSPORT_OFFLINE: 2113 switch (oldstate) { 2114 case SDEV_CREATED: 2115 case SDEV_RUNNING: 2116 case SDEV_QUIESCE: 2117 case SDEV_BLOCK: 2118 break; 2119 default: 2120 goto illegal; 2121 } 2122 break; 2123 2124 case SDEV_BLOCK: 2125 switch (oldstate) { 2126 case SDEV_RUNNING: 2127 case SDEV_CREATED_BLOCK: 2128 break; 2129 default: 2130 goto illegal; 2131 } 2132 break; 2133 2134 case SDEV_CREATED_BLOCK: 2135 switch (oldstate) { 2136 case SDEV_CREATED: 2137 break; 2138 default: 2139 goto illegal; 2140 } 2141 break; 2142 2143 case SDEV_CANCEL: 2144 switch (oldstate) { 2145 case SDEV_CREATED: 2146 case SDEV_RUNNING: 2147 case SDEV_QUIESCE: 2148 case SDEV_OFFLINE: 2149 case SDEV_TRANSPORT_OFFLINE: 2150 case SDEV_BLOCK: 2151 break; 2152 default: 2153 goto illegal; 2154 } 2155 break; 2156 2157 case SDEV_DEL: 2158 switch (oldstate) { 2159 case SDEV_CREATED: 2160 case SDEV_RUNNING: 2161 case SDEV_OFFLINE: 2162 case SDEV_TRANSPORT_OFFLINE: 2163 case SDEV_CANCEL: 2164 break; 2165 default: 2166 goto illegal; 2167 } 2168 break; 2169 2170 } 2171 sdev->sdev_state = state; 2172 return 0; 2173 2174 illegal: 2175 SCSI_LOG_ERROR_RECOVERY(1, 2176 sdev_printk(KERN_ERR, sdev, 2177 "Illegal state transition %s->%s\n", 2178 scsi_device_state_name(oldstate), 2179 scsi_device_state_name(state)) 2180 ); 2181 return -EINVAL; 2182 } 2183 EXPORT_SYMBOL(scsi_device_set_state); 2184 2185 /** 2186 * sdev_evt_emit - emit a single SCSI device uevent 2187 * @sdev: associated SCSI device 2188 * @evt: event to emit 2189 * 2190 * Send a single uevent (scsi_event) to the associated scsi_device. 2191 */ 2192 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt) 2193 { 2194 int idx = 0; 2195 char *envp[3]; 2196 2197 switch (evt->evt_type) { 2198 case SDEV_EVT_MEDIA_CHANGE: 2199 envp[idx++] = "SDEV_MEDIA_CHANGE=1"; 2200 break; 2201 2202 default: 2203 /* do nothing */ 2204 break; 2205 } 2206 2207 envp[idx++] = NULL; 2208 2209 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp); 2210 } 2211 2212 /** 2213 * sdev_evt_thread - send a uevent for each scsi event 2214 * @work: work struct for scsi_device 2215 * 2216 * Dispatch queued events to their associated scsi_device kobjects 2217 * as uevents. 2218 */ 2219 void scsi_evt_thread(struct work_struct *work) 2220 { 2221 struct scsi_device *sdev; 2222 LIST_HEAD(event_list); 2223 2224 sdev = container_of(work, struct scsi_device, event_work); 2225 2226 while (1) { 2227 struct scsi_event *evt; 2228 struct list_head *this, *tmp; 2229 unsigned long flags; 2230 2231 spin_lock_irqsave(&sdev->list_lock, flags); 2232 list_splice_init(&sdev->event_list, &event_list); 2233 spin_unlock_irqrestore(&sdev->list_lock, flags); 2234 2235 if (list_empty(&event_list)) 2236 break; 2237 2238 list_for_each_safe(this, tmp, &event_list) { 2239 evt = list_entry(this, struct scsi_event, node); 2240 list_del(&evt->node); 2241 scsi_evt_emit(sdev, evt); 2242 kfree(evt); 2243 } 2244 } 2245 } 2246 2247 /** 2248 * sdev_evt_send - send asserted event to uevent thread 2249 * @sdev: scsi_device event occurred on 2250 * @evt: event to send 2251 * 2252 * Assert scsi device event asynchronously. 2253 */ 2254 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt) 2255 { 2256 unsigned long flags; 2257 2258 #if 0 2259 /* FIXME: currently this check eliminates all media change events 2260 * for polled devices. Need to update to discriminate between AN 2261 * and polled events */ 2262 if (!test_bit(evt->evt_type, sdev->supported_events)) { 2263 kfree(evt); 2264 return; 2265 } 2266 #endif 2267 2268 spin_lock_irqsave(&sdev->list_lock, flags); 2269 list_add_tail(&evt->node, &sdev->event_list); 2270 schedule_work(&sdev->event_work); 2271 spin_unlock_irqrestore(&sdev->list_lock, flags); 2272 } 2273 EXPORT_SYMBOL_GPL(sdev_evt_send); 2274 2275 /** 2276 * sdev_evt_alloc - allocate a new scsi event 2277 * @evt_type: type of event to allocate 2278 * @gfpflags: GFP flags for allocation 2279 * 2280 * Allocates and returns a new scsi_event. 2281 */ 2282 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type, 2283 gfp_t gfpflags) 2284 { 2285 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags); 2286 if (!evt) 2287 return NULL; 2288 2289 evt->evt_type = evt_type; 2290 INIT_LIST_HEAD(&evt->node); 2291 2292 /* evt_type-specific initialization, if any */ 2293 switch (evt_type) { 2294 case SDEV_EVT_MEDIA_CHANGE: 2295 default: 2296 /* do nothing */ 2297 break; 2298 } 2299 2300 return evt; 2301 } 2302 EXPORT_SYMBOL_GPL(sdev_evt_alloc); 2303 2304 /** 2305 * sdev_evt_send_simple - send asserted event to uevent thread 2306 * @sdev: scsi_device event occurred on 2307 * @evt_type: type of event to send 2308 * @gfpflags: GFP flags for allocation 2309 * 2310 * Assert scsi device event asynchronously, given an event type. 2311 */ 2312 void sdev_evt_send_simple(struct scsi_device *sdev, 2313 enum scsi_device_event evt_type, gfp_t gfpflags) 2314 { 2315 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags); 2316 if (!evt) { 2317 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n", 2318 evt_type); 2319 return; 2320 } 2321 2322 sdev_evt_send(sdev, evt); 2323 } 2324 EXPORT_SYMBOL_GPL(sdev_evt_send_simple); 2325 2326 /** 2327 * scsi_device_quiesce - Block user issued commands. 2328 * @sdev: scsi device to quiesce. 2329 * 2330 * This works by trying to transition to the SDEV_QUIESCE state 2331 * (which must be a legal transition). When the device is in this 2332 * state, only special requests will be accepted, all others will 2333 * be deferred. Since special requests may also be requeued requests, 2334 * a successful return doesn't guarantee the device will be 2335 * totally quiescent. 2336 * 2337 * Must be called with user context, may sleep. 2338 * 2339 * Returns zero if unsuccessful or an error if not. 2340 */ 2341 int 2342 scsi_device_quiesce(struct scsi_device *sdev) 2343 { 2344 int err = scsi_device_set_state(sdev, SDEV_QUIESCE); 2345 if (err) 2346 return err; 2347 2348 scsi_run_queue(sdev->request_queue); 2349 while (sdev->device_busy) { 2350 msleep_interruptible(200); 2351 scsi_run_queue(sdev->request_queue); 2352 } 2353 return 0; 2354 } 2355 EXPORT_SYMBOL(scsi_device_quiesce); 2356 2357 /** 2358 * scsi_device_resume - Restart user issued commands to a quiesced device. 2359 * @sdev: scsi device to resume. 2360 * 2361 * Moves the device from quiesced back to running and restarts the 2362 * queues. 2363 * 2364 * Must be called with user context, may sleep. 2365 */ 2366 void scsi_device_resume(struct scsi_device *sdev) 2367 { 2368 /* check if the device state was mutated prior to resume, and if 2369 * so assume the state is being managed elsewhere (for example 2370 * device deleted during suspend) 2371 */ 2372 if (sdev->sdev_state != SDEV_QUIESCE || 2373 scsi_device_set_state(sdev, SDEV_RUNNING)) 2374 return; 2375 scsi_run_queue(sdev->request_queue); 2376 } 2377 EXPORT_SYMBOL(scsi_device_resume); 2378 2379 static void 2380 device_quiesce_fn(struct scsi_device *sdev, void *data) 2381 { 2382 scsi_device_quiesce(sdev); 2383 } 2384 2385 void 2386 scsi_target_quiesce(struct scsi_target *starget) 2387 { 2388 starget_for_each_device(starget, NULL, device_quiesce_fn); 2389 } 2390 EXPORT_SYMBOL(scsi_target_quiesce); 2391 2392 static void 2393 device_resume_fn(struct scsi_device *sdev, void *data) 2394 { 2395 scsi_device_resume(sdev); 2396 } 2397 2398 void 2399 scsi_target_resume(struct scsi_target *starget) 2400 { 2401 starget_for_each_device(starget, NULL, device_resume_fn); 2402 } 2403 EXPORT_SYMBOL(scsi_target_resume); 2404 2405 /** 2406 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state 2407 * @sdev: device to block 2408 * 2409 * Block request made by scsi lld's to temporarily stop all 2410 * scsi commands on the specified device. Called from interrupt 2411 * or normal process context. 2412 * 2413 * Returns zero if successful or error if not 2414 * 2415 * Notes: 2416 * This routine transitions the device to the SDEV_BLOCK state 2417 * (which must be a legal transition). When the device is in this 2418 * state, all commands are deferred until the scsi lld reenables 2419 * the device with scsi_device_unblock or device_block_tmo fires. 2420 */ 2421 int 2422 scsi_internal_device_block(struct scsi_device *sdev) 2423 { 2424 struct request_queue *q = sdev->request_queue; 2425 unsigned long flags; 2426 int err = 0; 2427 2428 err = scsi_device_set_state(sdev, SDEV_BLOCK); 2429 if (err) { 2430 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK); 2431 2432 if (err) 2433 return err; 2434 } 2435 2436 /* 2437 * The device has transitioned to SDEV_BLOCK. Stop the 2438 * block layer from calling the midlayer with this device's 2439 * request queue. 2440 */ 2441 spin_lock_irqsave(q->queue_lock, flags); 2442 blk_stop_queue(q); 2443 spin_unlock_irqrestore(q->queue_lock, flags); 2444 2445 return 0; 2446 } 2447 EXPORT_SYMBOL_GPL(scsi_internal_device_block); 2448 2449 /** 2450 * scsi_internal_device_unblock - resume a device after a block request 2451 * @sdev: device to resume 2452 * @new_state: state to set devices to after unblocking 2453 * 2454 * Called by scsi lld's or the midlayer to restart the device queue 2455 * for the previously suspended scsi device. Called from interrupt or 2456 * normal process context. 2457 * 2458 * Returns zero if successful or error if not. 2459 * 2460 * Notes: 2461 * This routine transitions the device to the SDEV_RUNNING state 2462 * or to one of the offline states (which must be a legal transition) 2463 * allowing the midlayer to goose the queue for this device. 2464 */ 2465 int 2466 scsi_internal_device_unblock(struct scsi_device *sdev, 2467 enum scsi_device_state new_state) 2468 { 2469 struct request_queue *q = sdev->request_queue; 2470 unsigned long flags; 2471 2472 /* 2473 * Try to transition the scsi device to SDEV_RUNNING or one of the 2474 * offlined states and goose the device queue if successful. 2475 */ 2476 if ((sdev->sdev_state == SDEV_BLOCK) || 2477 (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE)) 2478 sdev->sdev_state = new_state; 2479 else if (sdev->sdev_state == SDEV_CREATED_BLOCK) { 2480 if (new_state == SDEV_TRANSPORT_OFFLINE || 2481 new_state == SDEV_OFFLINE) 2482 sdev->sdev_state = new_state; 2483 else 2484 sdev->sdev_state = SDEV_CREATED; 2485 } else if (sdev->sdev_state != SDEV_CANCEL && 2486 sdev->sdev_state != SDEV_OFFLINE) 2487 return -EINVAL; 2488 2489 spin_lock_irqsave(q->queue_lock, flags); 2490 blk_start_queue(q); 2491 spin_unlock_irqrestore(q->queue_lock, flags); 2492 2493 return 0; 2494 } 2495 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock); 2496 2497 static void 2498 device_block(struct scsi_device *sdev, void *data) 2499 { 2500 scsi_internal_device_block(sdev); 2501 } 2502 2503 static int 2504 target_block(struct device *dev, void *data) 2505 { 2506 if (scsi_is_target_device(dev)) 2507 starget_for_each_device(to_scsi_target(dev), NULL, 2508 device_block); 2509 return 0; 2510 } 2511 2512 void 2513 scsi_target_block(struct device *dev) 2514 { 2515 if (scsi_is_target_device(dev)) 2516 starget_for_each_device(to_scsi_target(dev), NULL, 2517 device_block); 2518 else 2519 device_for_each_child(dev, NULL, target_block); 2520 } 2521 EXPORT_SYMBOL_GPL(scsi_target_block); 2522 2523 static void 2524 device_unblock(struct scsi_device *sdev, void *data) 2525 { 2526 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data); 2527 } 2528 2529 static int 2530 target_unblock(struct device *dev, void *data) 2531 { 2532 if (scsi_is_target_device(dev)) 2533 starget_for_each_device(to_scsi_target(dev), data, 2534 device_unblock); 2535 return 0; 2536 } 2537 2538 void 2539 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state) 2540 { 2541 if (scsi_is_target_device(dev)) 2542 starget_for_each_device(to_scsi_target(dev), &new_state, 2543 device_unblock); 2544 else 2545 device_for_each_child(dev, &new_state, target_unblock); 2546 } 2547 EXPORT_SYMBOL_GPL(scsi_target_unblock); 2548 2549 /** 2550 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt 2551 * @sgl: scatter-gather list 2552 * @sg_count: number of segments in sg 2553 * @offset: offset in bytes into sg, on return offset into the mapped area 2554 * @len: bytes to map, on return number of bytes mapped 2555 * 2556 * Returns virtual address of the start of the mapped page 2557 */ 2558 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count, 2559 size_t *offset, size_t *len) 2560 { 2561 int i; 2562 size_t sg_len = 0, len_complete = 0; 2563 struct scatterlist *sg; 2564 struct page *page; 2565 2566 WARN_ON(!irqs_disabled()); 2567 2568 for_each_sg(sgl, sg, sg_count, i) { 2569 len_complete = sg_len; /* Complete sg-entries */ 2570 sg_len += sg->length; 2571 if (sg_len > *offset) 2572 break; 2573 } 2574 2575 if (unlikely(i == sg_count)) { 2576 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, " 2577 "elements %d\n", 2578 __func__, sg_len, *offset, sg_count); 2579 WARN_ON(1); 2580 return NULL; 2581 } 2582 2583 /* Offset starting from the beginning of first page in this sg-entry */ 2584 *offset = *offset - len_complete + sg->offset; 2585 2586 /* Assumption: contiguous pages can be accessed as "page + i" */ 2587 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT)); 2588 *offset &= ~PAGE_MASK; 2589 2590 /* Bytes in this sg-entry from *offset to the end of the page */ 2591 sg_len = PAGE_SIZE - *offset; 2592 if (*len > sg_len) 2593 *len = sg_len; 2594 2595 return kmap_atomic(page); 2596 } 2597 EXPORT_SYMBOL(scsi_kmap_atomic_sg); 2598 2599 /** 2600 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg 2601 * @virt: virtual address to be unmapped 2602 */ 2603 void scsi_kunmap_atomic_sg(void *virt) 2604 { 2605 kunmap_atomic(virt); 2606 } 2607 EXPORT_SYMBOL(scsi_kunmap_atomic_sg); 2608