xref: /linux/drivers/scsi/scsi_lib.c (revision f49f4ab95c301dbccad0efe85296d908b8ae7ad4)
1 /*
2  *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3  *
4  *  SCSI queueing library.
5  *      Initial versions: Eric Youngdale (eric@andante.org).
6  *                        Based upon conversations with large numbers
7  *                        of people at Linux Expo.
8  */
9 
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/mempool.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23 
24 #include <scsi/scsi.h>
25 #include <scsi/scsi_cmnd.h>
26 #include <scsi/scsi_dbg.h>
27 #include <scsi/scsi_device.h>
28 #include <scsi/scsi_driver.h>
29 #include <scsi/scsi_eh.h>
30 #include <scsi/scsi_host.h>
31 
32 #include "scsi_priv.h"
33 #include "scsi_logging.h"
34 
35 
36 #define SG_MEMPOOL_NR		ARRAY_SIZE(scsi_sg_pools)
37 #define SG_MEMPOOL_SIZE		2
38 
39 struct scsi_host_sg_pool {
40 	size_t		size;
41 	char		*name;
42 	struct kmem_cache	*slab;
43 	mempool_t	*pool;
44 };
45 
46 #define SP(x) { x, "sgpool-" __stringify(x) }
47 #if (SCSI_MAX_SG_SEGMENTS < 32)
48 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
49 #endif
50 static struct scsi_host_sg_pool scsi_sg_pools[] = {
51 	SP(8),
52 	SP(16),
53 #if (SCSI_MAX_SG_SEGMENTS > 32)
54 	SP(32),
55 #if (SCSI_MAX_SG_SEGMENTS > 64)
56 	SP(64),
57 #if (SCSI_MAX_SG_SEGMENTS > 128)
58 	SP(128),
59 #if (SCSI_MAX_SG_SEGMENTS > 256)
60 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
61 #endif
62 #endif
63 #endif
64 #endif
65 	SP(SCSI_MAX_SG_SEGMENTS)
66 };
67 #undef SP
68 
69 struct kmem_cache *scsi_sdb_cache;
70 
71 #ifdef CONFIG_ACPI
72 #include <acpi/acpi_bus.h>
73 
74 int scsi_register_acpi_bus_type(struct acpi_bus_type *bus)
75 {
76         bus->bus = &scsi_bus_type;
77         return register_acpi_bus_type(bus);
78 }
79 EXPORT_SYMBOL_GPL(scsi_register_acpi_bus_type);
80 
81 void scsi_unregister_acpi_bus_type(struct acpi_bus_type *bus)
82 {
83 	unregister_acpi_bus_type(bus);
84 }
85 EXPORT_SYMBOL_GPL(scsi_unregister_acpi_bus_type);
86 #endif
87 
88 /*
89  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
90  * not change behaviour from the previous unplug mechanism, experimentation
91  * may prove this needs changing.
92  */
93 #define SCSI_QUEUE_DELAY	3
94 
95 /*
96  * Function:	scsi_unprep_request()
97  *
98  * Purpose:	Remove all preparation done for a request, including its
99  *		associated scsi_cmnd, so that it can be requeued.
100  *
101  * Arguments:	req	- request to unprepare
102  *
103  * Lock status:	Assumed that no locks are held upon entry.
104  *
105  * Returns:	Nothing.
106  */
107 static void scsi_unprep_request(struct request *req)
108 {
109 	struct scsi_cmnd *cmd = req->special;
110 
111 	blk_unprep_request(req);
112 	req->special = NULL;
113 
114 	scsi_put_command(cmd);
115 }
116 
117 /**
118  * __scsi_queue_insert - private queue insertion
119  * @cmd: The SCSI command being requeued
120  * @reason:  The reason for the requeue
121  * @unbusy: Whether the queue should be unbusied
122  *
123  * This is a private queue insertion.  The public interface
124  * scsi_queue_insert() always assumes the queue should be unbusied
125  * because it's always called before the completion.  This function is
126  * for a requeue after completion, which should only occur in this
127  * file.
128  */
129 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
130 {
131 	struct Scsi_Host *host = cmd->device->host;
132 	struct scsi_device *device = cmd->device;
133 	struct scsi_target *starget = scsi_target(device);
134 	struct request_queue *q = device->request_queue;
135 	unsigned long flags;
136 
137 	SCSI_LOG_MLQUEUE(1,
138 		 printk("Inserting command %p into mlqueue\n", cmd));
139 
140 	/*
141 	 * Set the appropriate busy bit for the device/host.
142 	 *
143 	 * If the host/device isn't busy, assume that something actually
144 	 * completed, and that we should be able to queue a command now.
145 	 *
146 	 * Note that the prior mid-layer assumption that any host could
147 	 * always queue at least one command is now broken.  The mid-layer
148 	 * will implement a user specifiable stall (see
149 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
150 	 * if a command is requeued with no other commands outstanding
151 	 * either for the device or for the host.
152 	 */
153 	switch (reason) {
154 	case SCSI_MLQUEUE_HOST_BUSY:
155 		host->host_blocked = host->max_host_blocked;
156 		break;
157 	case SCSI_MLQUEUE_DEVICE_BUSY:
158 	case SCSI_MLQUEUE_EH_RETRY:
159 		device->device_blocked = device->max_device_blocked;
160 		break;
161 	case SCSI_MLQUEUE_TARGET_BUSY:
162 		starget->target_blocked = starget->max_target_blocked;
163 		break;
164 	}
165 
166 	/*
167 	 * Decrement the counters, since these commands are no longer
168 	 * active on the host/device.
169 	 */
170 	if (unbusy)
171 		scsi_device_unbusy(device);
172 
173 	/*
174 	 * Requeue this command.  It will go before all other commands
175 	 * that are already in the queue. Schedule requeue work under
176 	 * lock such that the kblockd_schedule_work() call happens
177 	 * before blk_cleanup_queue() finishes.
178 	 */
179 	spin_lock_irqsave(q->queue_lock, flags);
180 	blk_requeue_request(q, cmd->request);
181 	kblockd_schedule_work(q, &device->requeue_work);
182 	spin_unlock_irqrestore(q->queue_lock, flags);
183 }
184 
185 /*
186  * Function:    scsi_queue_insert()
187  *
188  * Purpose:     Insert a command in the midlevel queue.
189  *
190  * Arguments:   cmd    - command that we are adding to queue.
191  *              reason - why we are inserting command to queue.
192  *
193  * Lock status: Assumed that lock is not held upon entry.
194  *
195  * Returns:     Nothing.
196  *
197  * Notes:       We do this for one of two cases.  Either the host is busy
198  *              and it cannot accept any more commands for the time being,
199  *              or the device returned QUEUE_FULL and can accept no more
200  *              commands.
201  * Notes:       This could be called either from an interrupt context or a
202  *              normal process context.
203  */
204 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
205 {
206 	__scsi_queue_insert(cmd, reason, 1);
207 }
208 /**
209  * scsi_execute - insert request and wait for the result
210  * @sdev:	scsi device
211  * @cmd:	scsi command
212  * @data_direction: data direction
213  * @buffer:	data buffer
214  * @bufflen:	len of buffer
215  * @sense:	optional sense buffer
216  * @timeout:	request timeout in seconds
217  * @retries:	number of times to retry request
218  * @flags:	or into request flags;
219  * @resid:	optional residual length
220  *
221  * returns the req->errors value which is the scsi_cmnd result
222  * field.
223  */
224 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
225 		 int data_direction, void *buffer, unsigned bufflen,
226 		 unsigned char *sense, int timeout, int retries, int flags,
227 		 int *resid)
228 {
229 	struct request *req;
230 	int write = (data_direction == DMA_TO_DEVICE);
231 	int ret = DRIVER_ERROR << 24;
232 
233 	req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
234 	if (!req)
235 		return ret;
236 
237 	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
238 					buffer, bufflen, __GFP_WAIT))
239 		goto out;
240 
241 	req->cmd_len = COMMAND_SIZE(cmd[0]);
242 	memcpy(req->cmd, cmd, req->cmd_len);
243 	req->sense = sense;
244 	req->sense_len = 0;
245 	req->retries = retries;
246 	req->timeout = timeout;
247 	req->cmd_type = REQ_TYPE_BLOCK_PC;
248 	req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
249 
250 	/*
251 	 * head injection *required* here otherwise quiesce won't work
252 	 */
253 	blk_execute_rq(req->q, NULL, req, 1);
254 
255 	/*
256 	 * Some devices (USB mass-storage in particular) may transfer
257 	 * garbage data together with a residue indicating that the data
258 	 * is invalid.  Prevent the garbage from being misinterpreted
259 	 * and prevent security leaks by zeroing out the excess data.
260 	 */
261 	if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
262 		memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
263 
264 	if (resid)
265 		*resid = req->resid_len;
266 	ret = req->errors;
267  out:
268 	blk_put_request(req);
269 
270 	return ret;
271 }
272 EXPORT_SYMBOL(scsi_execute);
273 
274 
275 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
276 		     int data_direction, void *buffer, unsigned bufflen,
277 		     struct scsi_sense_hdr *sshdr, int timeout, int retries,
278 		     int *resid)
279 {
280 	char *sense = NULL;
281 	int result;
282 
283 	if (sshdr) {
284 		sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
285 		if (!sense)
286 			return DRIVER_ERROR << 24;
287 	}
288 	result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
289 			      sense, timeout, retries, 0, resid);
290 	if (sshdr)
291 		scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
292 
293 	kfree(sense);
294 	return result;
295 }
296 EXPORT_SYMBOL(scsi_execute_req);
297 
298 /*
299  * Function:    scsi_init_cmd_errh()
300  *
301  * Purpose:     Initialize cmd fields related to error handling.
302  *
303  * Arguments:   cmd	- command that is ready to be queued.
304  *
305  * Notes:       This function has the job of initializing a number of
306  *              fields related to error handling.   Typically this will
307  *              be called once for each command, as required.
308  */
309 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
310 {
311 	cmd->serial_number = 0;
312 	scsi_set_resid(cmd, 0);
313 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
314 	if (cmd->cmd_len == 0)
315 		cmd->cmd_len = scsi_command_size(cmd->cmnd);
316 }
317 
318 void scsi_device_unbusy(struct scsi_device *sdev)
319 {
320 	struct Scsi_Host *shost = sdev->host;
321 	struct scsi_target *starget = scsi_target(sdev);
322 	unsigned long flags;
323 
324 	spin_lock_irqsave(shost->host_lock, flags);
325 	shost->host_busy--;
326 	starget->target_busy--;
327 	if (unlikely(scsi_host_in_recovery(shost) &&
328 		     (shost->host_failed || shost->host_eh_scheduled)))
329 		scsi_eh_wakeup(shost);
330 	spin_unlock(shost->host_lock);
331 	spin_lock(sdev->request_queue->queue_lock);
332 	sdev->device_busy--;
333 	spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
334 }
335 
336 /*
337  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
338  * and call blk_run_queue for all the scsi_devices on the target -
339  * including current_sdev first.
340  *
341  * Called with *no* scsi locks held.
342  */
343 static void scsi_single_lun_run(struct scsi_device *current_sdev)
344 {
345 	struct Scsi_Host *shost = current_sdev->host;
346 	struct scsi_device *sdev, *tmp;
347 	struct scsi_target *starget = scsi_target(current_sdev);
348 	unsigned long flags;
349 
350 	spin_lock_irqsave(shost->host_lock, flags);
351 	starget->starget_sdev_user = NULL;
352 	spin_unlock_irqrestore(shost->host_lock, flags);
353 
354 	/*
355 	 * Call blk_run_queue for all LUNs on the target, starting with
356 	 * current_sdev. We race with others (to set starget_sdev_user),
357 	 * but in most cases, we will be first. Ideally, each LU on the
358 	 * target would get some limited time or requests on the target.
359 	 */
360 	blk_run_queue(current_sdev->request_queue);
361 
362 	spin_lock_irqsave(shost->host_lock, flags);
363 	if (starget->starget_sdev_user)
364 		goto out;
365 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
366 			same_target_siblings) {
367 		if (sdev == current_sdev)
368 			continue;
369 		if (scsi_device_get(sdev))
370 			continue;
371 
372 		spin_unlock_irqrestore(shost->host_lock, flags);
373 		blk_run_queue(sdev->request_queue);
374 		spin_lock_irqsave(shost->host_lock, flags);
375 
376 		scsi_device_put(sdev);
377 	}
378  out:
379 	spin_unlock_irqrestore(shost->host_lock, flags);
380 }
381 
382 static inline int scsi_device_is_busy(struct scsi_device *sdev)
383 {
384 	if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
385 		return 1;
386 
387 	return 0;
388 }
389 
390 static inline int scsi_target_is_busy(struct scsi_target *starget)
391 {
392 	return ((starget->can_queue > 0 &&
393 		 starget->target_busy >= starget->can_queue) ||
394 		 starget->target_blocked);
395 }
396 
397 static inline int scsi_host_is_busy(struct Scsi_Host *shost)
398 {
399 	if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
400 	    shost->host_blocked || shost->host_self_blocked)
401 		return 1;
402 
403 	return 0;
404 }
405 
406 /*
407  * Function:	scsi_run_queue()
408  *
409  * Purpose:	Select a proper request queue to serve next
410  *
411  * Arguments:	q	- last request's queue
412  *
413  * Returns:     Nothing
414  *
415  * Notes:	The previous command was completely finished, start
416  *		a new one if possible.
417  */
418 static void scsi_run_queue(struct request_queue *q)
419 {
420 	struct scsi_device *sdev = q->queuedata;
421 	struct Scsi_Host *shost;
422 	LIST_HEAD(starved_list);
423 	unsigned long flags;
424 
425 	shost = sdev->host;
426 	if (scsi_target(sdev)->single_lun)
427 		scsi_single_lun_run(sdev);
428 
429 	spin_lock_irqsave(shost->host_lock, flags);
430 	list_splice_init(&shost->starved_list, &starved_list);
431 
432 	while (!list_empty(&starved_list)) {
433 		/*
434 		 * As long as shost is accepting commands and we have
435 		 * starved queues, call blk_run_queue. scsi_request_fn
436 		 * drops the queue_lock and can add us back to the
437 		 * starved_list.
438 		 *
439 		 * host_lock protects the starved_list and starved_entry.
440 		 * scsi_request_fn must get the host_lock before checking
441 		 * or modifying starved_list or starved_entry.
442 		 */
443 		if (scsi_host_is_busy(shost))
444 			break;
445 
446 		sdev = list_entry(starved_list.next,
447 				  struct scsi_device, starved_entry);
448 		list_del_init(&sdev->starved_entry);
449 		if (scsi_target_is_busy(scsi_target(sdev))) {
450 			list_move_tail(&sdev->starved_entry,
451 				       &shost->starved_list);
452 			continue;
453 		}
454 
455 		spin_unlock(shost->host_lock);
456 		spin_lock(sdev->request_queue->queue_lock);
457 		__blk_run_queue(sdev->request_queue);
458 		spin_unlock(sdev->request_queue->queue_lock);
459 		spin_lock(shost->host_lock);
460 	}
461 	/* put any unprocessed entries back */
462 	list_splice(&starved_list, &shost->starved_list);
463 	spin_unlock_irqrestore(shost->host_lock, flags);
464 
465 	blk_run_queue(q);
466 }
467 
468 void scsi_requeue_run_queue(struct work_struct *work)
469 {
470 	struct scsi_device *sdev;
471 	struct request_queue *q;
472 
473 	sdev = container_of(work, struct scsi_device, requeue_work);
474 	q = sdev->request_queue;
475 	scsi_run_queue(q);
476 }
477 
478 /*
479  * Function:	scsi_requeue_command()
480  *
481  * Purpose:	Handle post-processing of completed commands.
482  *
483  * Arguments:	q	- queue to operate on
484  *		cmd	- command that may need to be requeued.
485  *
486  * Returns:	Nothing
487  *
488  * Notes:	After command completion, there may be blocks left
489  *		over which weren't finished by the previous command
490  *		this can be for a number of reasons - the main one is
491  *		I/O errors in the middle of the request, in which case
492  *		we need to request the blocks that come after the bad
493  *		sector.
494  * Notes:	Upon return, cmd is a stale pointer.
495  */
496 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
497 {
498 	struct scsi_device *sdev = cmd->device;
499 	struct request *req = cmd->request;
500 	unsigned long flags;
501 
502 	/*
503 	 * We need to hold a reference on the device to avoid the queue being
504 	 * killed after the unlock and before scsi_run_queue is invoked which
505 	 * may happen because scsi_unprep_request() puts the command which
506 	 * releases its reference on the device.
507 	 */
508 	get_device(&sdev->sdev_gendev);
509 
510 	spin_lock_irqsave(q->queue_lock, flags);
511 	scsi_unprep_request(req);
512 	blk_requeue_request(q, req);
513 	spin_unlock_irqrestore(q->queue_lock, flags);
514 
515 	scsi_run_queue(q);
516 
517 	put_device(&sdev->sdev_gendev);
518 }
519 
520 void scsi_next_command(struct scsi_cmnd *cmd)
521 {
522 	struct scsi_device *sdev = cmd->device;
523 	struct request_queue *q = sdev->request_queue;
524 
525 	/* need to hold a reference on the device before we let go of the cmd */
526 	get_device(&sdev->sdev_gendev);
527 
528 	scsi_put_command(cmd);
529 	scsi_run_queue(q);
530 
531 	/* ok to remove device now */
532 	put_device(&sdev->sdev_gendev);
533 }
534 
535 void scsi_run_host_queues(struct Scsi_Host *shost)
536 {
537 	struct scsi_device *sdev;
538 
539 	shost_for_each_device(sdev, shost)
540 		scsi_run_queue(sdev->request_queue);
541 }
542 
543 static void __scsi_release_buffers(struct scsi_cmnd *, int);
544 
545 /*
546  * Function:    scsi_end_request()
547  *
548  * Purpose:     Post-processing of completed commands (usually invoked at end
549  *		of upper level post-processing and scsi_io_completion).
550  *
551  * Arguments:   cmd	 - command that is complete.
552  *              error    - 0 if I/O indicates success, < 0 for I/O error.
553  *              bytes    - number of bytes of completed I/O
554  *		requeue  - indicates whether we should requeue leftovers.
555  *
556  * Lock status: Assumed that lock is not held upon entry.
557  *
558  * Returns:     cmd if requeue required, NULL otherwise.
559  *
560  * Notes:       This is called for block device requests in order to
561  *              mark some number of sectors as complete.
562  *
563  *		We are guaranteeing that the request queue will be goosed
564  *		at some point during this call.
565  * Notes:	If cmd was requeued, upon return it will be a stale pointer.
566  */
567 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
568 					  int bytes, int requeue)
569 {
570 	struct request_queue *q = cmd->device->request_queue;
571 	struct request *req = cmd->request;
572 
573 	/*
574 	 * If there are blocks left over at the end, set up the command
575 	 * to queue the remainder of them.
576 	 */
577 	if (blk_end_request(req, error, bytes)) {
578 		/* kill remainder if no retrys */
579 		if (error && scsi_noretry_cmd(cmd))
580 			blk_end_request_all(req, error);
581 		else {
582 			if (requeue) {
583 				/*
584 				 * Bleah.  Leftovers again.  Stick the
585 				 * leftovers in the front of the
586 				 * queue, and goose the queue again.
587 				 */
588 				scsi_release_buffers(cmd);
589 				scsi_requeue_command(q, cmd);
590 				cmd = NULL;
591 			}
592 			return cmd;
593 		}
594 	}
595 
596 	/*
597 	 * This will goose the queue request function at the end, so we don't
598 	 * need to worry about launching another command.
599 	 */
600 	__scsi_release_buffers(cmd, 0);
601 	scsi_next_command(cmd);
602 	return NULL;
603 }
604 
605 static inline unsigned int scsi_sgtable_index(unsigned short nents)
606 {
607 	unsigned int index;
608 
609 	BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
610 
611 	if (nents <= 8)
612 		index = 0;
613 	else
614 		index = get_count_order(nents) - 3;
615 
616 	return index;
617 }
618 
619 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
620 {
621 	struct scsi_host_sg_pool *sgp;
622 
623 	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
624 	mempool_free(sgl, sgp->pool);
625 }
626 
627 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
628 {
629 	struct scsi_host_sg_pool *sgp;
630 
631 	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
632 	return mempool_alloc(sgp->pool, gfp_mask);
633 }
634 
635 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
636 			      gfp_t gfp_mask)
637 {
638 	int ret;
639 
640 	BUG_ON(!nents);
641 
642 	ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
643 			       gfp_mask, scsi_sg_alloc);
644 	if (unlikely(ret))
645 		__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
646 				scsi_sg_free);
647 
648 	return ret;
649 }
650 
651 static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
652 {
653 	__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
654 }
655 
656 static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check)
657 {
658 
659 	if (cmd->sdb.table.nents)
660 		scsi_free_sgtable(&cmd->sdb);
661 
662 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
663 
664 	if (do_bidi_check && scsi_bidi_cmnd(cmd)) {
665 		struct scsi_data_buffer *bidi_sdb =
666 			cmd->request->next_rq->special;
667 		scsi_free_sgtable(bidi_sdb);
668 		kmem_cache_free(scsi_sdb_cache, bidi_sdb);
669 		cmd->request->next_rq->special = NULL;
670 	}
671 
672 	if (scsi_prot_sg_count(cmd))
673 		scsi_free_sgtable(cmd->prot_sdb);
674 }
675 
676 /*
677  * Function:    scsi_release_buffers()
678  *
679  * Purpose:     Completion processing for block device I/O requests.
680  *
681  * Arguments:   cmd	- command that we are bailing.
682  *
683  * Lock status: Assumed that no lock is held upon entry.
684  *
685  * Returns:     Nothing
686  *
687  * Notes:       In the event that an upper level driver rejects a
688  *		command, we must release resources allocated during
689  *		the __init_io() function.  Primarily this would involve
690  *		the scatter-gather table, and potentially any bounce
691  *		buffers.
692  */
693 void scsi_release_buffers(struct scsi_cmnd *cmd)
694 {
695 	__scsi_release_buffers(cmd, 1);
696 }
697 EXPORT_SYMBOL(scsi_release_buffers);
698 
699 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
700 {
701 	int error = 0;
702 
703 	switch(host_byte(result)) {
704 	case DID_TRANSPORT_FAILFAST:
705 		error = -ENOLINK;
706 		break;
707 	case DID_TARGET_FAILURE:
708 		set_host_byte(cmd, DID_OK);
709 		error = -EREMOTEIO;
710 		break;
711 	case DID_NEXUS_FAILURE:
712 		set_host_byte(cmd, DID_OK);
713 		error = -EBADE;
714 		break;
715 	default:
716 		error = -EIO;
717 		break;
718 	}
719 
720 	return error;
721 }
722 
723 /*
724  * Function:    scsi_io_completion()
725  *
726  * Purpose:     Completion processing for block device I/O requests.
727  *
728  * Arguments:   cmd   - command that is finished.
729  *
730  * Lock status: Assumed that no lock is held upon entry.
731  *
732  * Returns:     Nothing
733  *
734  * Notes:       This function is matched in terms of capabilities to
735  *              the function that created the scatter-gather list.
736  *              In other words, if there are no bounce buffers
737  *              (the normal case for most drivers), we don't need
738  *              the logic to deal with cleaning up afterwards.
739  *
740  *		We must call scsi_end_request().  This will finish off
741  *		the specified number of sectors.  If we are done, the
742  *		command block will be released and the queue function
743  *		will be goosed.  If we are not done then we have to
744  *		figure out what to do next:
745  *
746  *		a) We can call scsi_requeue_command().  The request
747  *		   will be unprepared and put back on the queue.  Then
748  *		   a new command will be created for it.  This should
749  *		   be used if we made forward progress, or if we want
750  *		   to switch from READ(10) to READ(6) for example.
751  *
752  *		b) We can call scsi_queue_insert().  The request will
753  *		   be put back on the queue and retried using the same
754  *		   command as before, possibly after a delay.
755  *
756  *		c) We can call blk_end_request() with -EIO to fail
757  *		   the remainder of the request.
758  */
759 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
760 {
761 	int result = cmd->result;
762 	struct request_queue *q = cmd->device->request_queue;
763 	struct request *req = cmd->request;
764 	int error = 0;
765 	struct scsi_sense_hdr sshdr;
766 	int sense_valid = 0;
767 	int sense_deferred = 0;
768 	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
769 	      ACTION_DELAYED_RETRY} action;
770 	char *description = NULL;
771 
772 	if (result) {
773 		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
774 		if (sense_valid)
775 			sense_deferred = scsi_sense_is_deferred(&sshdr);
776 	}
777 
778 	if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
779 		if (result) {
780 			if (sense_valid && req->sense) {
781 				/*
782 				 * SG_IO wants current and deferred errors
783 				 */
784 				int len = 8 + cmd->sense_buffer[7];
785 
786 				if (len > SCSI_SENSE_BUFFERSIZE)
787 					len = SCSI_SENSE_BUFFERSIZE;
788 				memcpy(req->sense, cmd->sense_buffer,  len);
789 				req->sense_len = len;
790 			}
791 			if (!sense_deferred)
792 				error = __scsi_error_from_host_byte(cmd, result);
793 		}
794 		/*
795 		 * __scsi_error_from_host_byte may have reset the host_byte
796 		 */
797 		req->errors = cmd->result;
798 
799 		req->resid_len = scsi_get_resid(cmd);
800 
801 		if (scsi_bidi_cmnd(cmd)) {
802 			/*
803 			 * Bidi commands Must be complete as a whole,
804 			 * both sides at once.
805 			 */
806 			req->next_rq->resid_len = scsi_in(cmd)->resid;
807 
808 			scsi_release_buffers(cmd);
809 			blk_end_request_all(req, 0);
810 
811 			scsi_next_command(cmd);
812 			return;
813 		}
814 	}
815 
816 	/* no bidi support for !REQ_TYPE_BLOCK_PC yet */
817 	BUG_ON(blk_bidi_rq(req));
818 
819 	/*
820 	 * Next deal with any sectors which we were able to correctly
821 	 * handle.
822 	 */
823 	SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, "
824 				      "%d bytes done.\n",
825 				      blk_rq_sectors(req), good_bytes));
826 
827 	/*
828 	 * Recovered errors need reporting, but they're always treated
829 	 * as success, so fiddle the result code here.  For BLOCK_PC
830 	 * we already took a copy of the original into rq->errors which
831 	 * is what gets returned to the user
832 	 */
833 	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
834 		/* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
835 		 * print since caller wants ATA registers. Only occurs on
836 		 * SCSI ATA PASS_THROUGH commands when CK_COND=1
837 		 */
838 		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
839 			;
840 		else if (!(req->cmd_flags & REQ_QUIET))
841 			scsi_print_sense("", cmd);
842 		result = 0;
843 		/* BLOCK_PC may have set error */
844 		error = 0;
845 	}
846 
847 	/*
848 	 * A number of bytes were successfully read.  If there
849 	 * are leftovers and there is some kind of error
850 	 * (result != 0), retry the rest.
851 	 */
852 	if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
853 		return;
854 
855 	error = __scsi_error_from_host_byte(cmd, result);
856 
857 	if (host_byte(result) == DID_RESET) {
858 		/* Third party bus reset or reset for error recovery
859 		 * reasons.  Just retry the command and see what
860 		 * happens.
861 		 */
862 		action = ACTION_RETRY;
863 	} else if (sense_valid && !sense_deferred) {
864 		switch (sshdr.sense_key) {
865 		case UNIT_ATTENTION:
866 			if (cmd->device->removable) {
867 				/* Detected disc change.  Set a bit
868 				 * and quietly refuse further access.
869 				 */
870 				cmd->device->changed = 1;
871 				description = "Media Changed";
872 				action = ACTION_FAIL;
873 			} else {
874 				/* Must have been a power glitch, or a
875 				 * bus reset.  Could not have been a
876 				 * media change, so we just retry the
877 				 * command and see what happens.
878 				 */
879 				action = ACTION_RETRY;
880 			}
881 			break;
882 		case ILLEGAL_REQUEST:
883 			/* If we had an ILLEGAL REQUEST returned, then
884 			 * we may have performed an unsupported
885 			 * command.  The only thing this should be
886 			 * would be a ten byte read where only a six
887 			 * byte read was supported.  Also, on a system
888 			 * where READ CAPACITY failed, we may have
889 			 * read past the end of the disk.
890 			 */
891 			if ((cmd->device->use_10_for_rw &&
892 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
893 			    (cmd->cmnd[0] == READ_10 ||
894 			     cmd->cmnd[0] == WRITE_10)) {
895 				/* This will issue a new 6-byte command. */
896 				cmd->device->use_10_for_rw = 0;
897 				action = ACTION_REPREP;
898 			} else if (sshdr.asc == 0x10) /* DIX */ {
899 				description = "Host Data Integrity Failure";
900 				action = ACTION_FAIL;
901 				error = -EILSEQ;
902 			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
903 			} else if ((sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
904 				   (cmd->cmnd[0] == UNMAP ||
905 				    cmd->cmnd[0] == WRITE_SAME_16 ||
906 				    cmd->cmnd[0] == WRITE_SAME)) {
907 				description = "Discard failure";
908 				action = ACTION_FAIL;
909 				error = -EREMOTEIO;
910 			} else
911 				action = ACTION_FAIL;
912 			break;
913 		case ABORTED_COMMAND:
914 			action = ACTION_FAIL;
915 			if (sshdr.asc == 0x10) { /* DIF */
916 				description = "Target Data Integrity Failure";
917 				error = -EILSEQ;
918 			}
919 			break;
920 		case NOT_READY:
921 			/* If the device is in the process of becoming
922 			 * ready, or has a temporary blockage, retry.
923 			 */
924 			if (sshdr.asc == 0x04) {
925 				switch (sshdr.ascq) {
926 				case 0x01: /* becoming ready */
927 				case 0x04: /* format in progress */
928 				case 0x05: /* rebuild in progress */
929 				case 0x06: /* recalculation in progress */
930 				case 0x07: /* operation in progress */
931 				case 0x08: /* Long write in progress */
932 				case 0x09: /* self test in progress */
933 				case 0x14: /* space allocation in progress */
934 					action = ACTION_DELAYED_RETRY;
935 					break;
936 				default:
937 					description = "Device not ready";
938 					action = ACTION_FAIL;
939 					break;
940 				}
941 			} else {
942 				description = "Device not ready";
943 				action = ACTION_FAIL;
944 			}
945 			break;
946 		case VOLUME_OVERFLOW:
947 			/* See SSC3rXX or current. */
948 			action = ACTION_FAIL;
949 			break;
950 		default:
951 			description = "Unhandled sense code";
952 			action = ACTION_FAIL;
953 			break;
954 		}
955 	} else {
956 		description = "Unhandled error code";
957 		action = ACTION_FAIL;
958 	}
959 
960 	switch (action) {
961 	case ACTION_FAIL:
962 		/* Give up and fail the remainder of the request */
963 		scsi_release_buffers(cmd);
964 		if (!(req->cmd_flags & REQ_QUIET)) {
965 			if (description)
966 				scmd_printk(KERN_INFO, cmd, "%s\n",
967 					    description);
968 			scsi_print_result(cmd);
969 			if (driver_byte(result) & DRIVER_SENSE)
970 				scsi_print_sense("", cmd);
971 			scsi_print_command(cmd);
972 		}
973 		if (blk_end_request_err(req, error))
974 			scsi_requeue_command(q, cmd);
975 		else
976 			scsi_next_command(cmd);
977 		break;
978 	case ACTION_REPREP:
979 		/* Unprep the request and put it back at the head of the queue.
980 		 * A new command will be prepared and issued.
981 		 */
982 		scsi_release_buffers(cmd);
983 		scsi_requeue_command(q, cmd);
984 		break;
985 	case ACTION_RETRY:
986 		/* Retry the same command immediately */
987 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
988 		break;
989 	case ACTION_DELAYED_RETRY:
990 		/* Retry the same command after a delay */
991 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
992 		break;
993 	}
994 }
995 
996 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
997 			     gfp_t gfp_mask)
998 {
999 	int count;
1000 
1001 	/*
1002 	 * If sg table allocation fails, requeue request later.
1003 	 */
1004 	if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
1005 					gfp_mask))) {
1006 		return BLKPREP_DEFER;
1007 	}
1008 
1009 	req->buffer = NULL;
1010 
1011 	/*
1012 	 * Next, walk the list, and fill in the addresses and sizes of
1013 	 * each segment.
1014 	 */
1015 	count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1016 	BUG_ON(count > sdb->table.nents);
1017 	sdb->table.nents = count;
1018 	sdb->length = blk_rq_bytes(req);
1019 	return BLKPREP_OK;
1020 }
1021 
1022 /*
1023  * Function:    scsi_init_io()
1024  *
1025  * Purpose:     SCSI I/O initialize function.
1026  *
1027  * Arguments:   cmd   - Command descriptor we wish to initialize
1028  *
1029  * Returns:     0 on success
1030  *		BLKPREP_DEFER if the failure is retryable
1031  *		BLKPREP_KILL if the failure is fatal
1032  */
1033 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1034 {
1035 	struct request *rq = cmd->request;
1036 
1037 	int error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask);
1038 	if (error)
1039 		goto err_exit;
1040 
1041 	if (blk_bidi_rq(rq)) {
1042 		struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
1043 			scsi_sdb_cache, GFP_ATOMIC);
1044 		if (!bidi_sdb) {
1045 			error = BLKPREP_DEFER;
1046 			goto err_exit;
1047 		}
1048 
1049 		rq->next_rq->special = bidi_sdb;
1050 		error = scsi_init_sgtable(rq->next_rq, bidi_sdb, GFP_ATOMIC);
1051 		if (error)
1052 			goto err_exit;
1053 	}
1054 
1055 	if (blk_integrity_rq(rq)) {
1056 		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1057 		int ivecs, count;
1058 
1059 		BUG_ON(prot_sdb == NULL);
1060 		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1061 
1062 		if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
1063 			error = BLKPREP_DEFER;
1064 			goto err_exit;
1065 		}
1066 
1067 		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1068 						prot_sdb->table.sgl);
1069 		BUG_ON(unlikely(count > ivecs));
1070 		BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1071 
1072 		cmd->prot_sdb = prot_sdb;
1073 		cmd->prot_sdb->table.nents = count;
1074 	}
1075 
1076 	return BLKPREP_OK ;
1077 
1078 err_exit:
1079 	scsi_release_buffers(cmd);
1080 	cmd->request->special = NULL;
1081 	scsi_put_command(cmd);
1082 	return error;
1083 }
1084 EXPORT_SYMBOL(scsi_init_io);
1085 
1086 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1087 		struct request *req)
1088 {
1089 	struct scsi_cmnd *cmd;
1090 
1091 	if (!req->special) {
1092 		cmd = scsi_get_command(sdev, GFP_ATOMIC);
1093 		if (unlikely(!cmd))
1094 			return NULL;
1095 		req->special = cmd;
1096 	} else {
1097 		cmd = req->special;
1098 	}
1099 
1100 	/* pull a tag out of the request if we have one */
1101 	cmd->tag = req->tag;
1102 	cmd->request = req;
1103 
1104 	cmd->cmnd = req->cmd;
1105 	cmd->prot_op = SCSI_PROT_NORMAL;
1106 
1107 	return cmd;
1108 }
1109 
1110 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1111 {
1112 	struct scsi_cmnd *cmd;
1113 	int ret = scsi_prep_state_check(sdev, req);
1114 
1115 	if (ret != BLKPREP_OK)
1116 		return ret;
1117 
1118 	cmd = scsi_get_cmd_from_req(sdev, req);
1119 	if (unlikely(!cmd))
1120 		return BLKPREP_DEFER;
1121 
1122 	/*
1123 	 * BLOCK_PC requests may transfer data, in which case they must
1124 	 * a bio attached to them.  Or they might contain a SCSI command
1125 	 * that does not transfer data, in which case they may optionally
1126 	 * submit a request without an attached bio.
1127 	 */
1128 	if (req->bio) {
1129 		int ret;
1130 
1131 		BUG_ON(!req->nr_phys_segments);
1132 
1133 		ret = scsi_init_io(cmd, GFP_ATOMIC);
1134 		if (unlikely(ret))
1135 			return ret;
1136 	} else {
1137 		BUG_ON(blk_rq_bytes(req));
1138 
1139 		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1140 		req->buffer = NULL;
1141 	}
1142 
1143 	cmd->cmd_len = req->cmd_len;
1144 	if (!blk_rq_bytes(req))
1145 		cmd->sc_data_direction = DMA_NONE;
1146 	else if (rq_data_dir(req) == WRITE)
1147 		cmd->sc_data_direction = DMA_TO_DEVICE;
1148 	else
1149 		cmd->sc_data_direction = DMA_FROM_DEVICE;
1150 
1151 	cmd->transfersize = blk_rq_bytes(req);
1152 	cmd->allowed = req->retries;
1153 	return BLKPREP_OK;
1154 }
1155 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1156 
1157 /*
1158  * Setup a REQ_TYPE_FS command.  These are simple read/write request
1159  * from filesystems that still need to be translated to SCSI CDBs from
1160  * the ULD.
1161  */
1162 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1163 {
1164 	struct scsi_cmnd *cmd;
1165 	int ret = scsi_prep_state_check(sdev, req);
1166 
1167 	if (ret != BLKPREP_OK)
1168 		return ret;
1169 
1170 	if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1171 			 && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1172 		ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1173 		if (ret != BLKPREP_OK)
1174 			return ret;
1175 	}
1176 
1177 	/*
1178 	 * Filesystem requests must transfer data.
1179 	 */
1180 	BUG_ON(!req->nr_phys_segments);
1181 
1182 	cmd = scsi_get_cmd_from_req(sdev, req);
1183 	if (unlikely(!cmd))
1184 		return BLKPREP_DEFER;
1185 
1186 	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1187 	return scsi_init_io(cmd, GFP_ATOMIC);
1188 }
1189 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1190 
1191 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1192 {
1193 	int ret = BLKPREP_OK;
1194 
1195 	/*
1196 	 * If the device is not in running state we will reject some
1197 	 * or all commands.
1198 	 */
1199 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1200 		switch (sdev->sdev_state) {
1201 		case SDEV_OFFLINE:
1202 		case SDEV_TRANSPORT_OFFLINE:
1203 			/*
1204 			 * If the device is offline we refuse to process any
1205 			 * commands.  The device must be brought online
1206 			 * before trying any recovery commands.
1207 			 */
1208 			sdev_printk(KERN_ERR, sdev,
1209 				    "rejecting I/O to offline device\n");
1210 			ret = BLKPREP_KILL;
1211 			break;
1212 		case SDEV_DEL:
1213 			/*
1214 			 * If the device is fully deleted, we refuse to
1215 			 * process any commands as well.
1216 			 */
1217 			sdev_printk(KERN_ERR, sdev,
1218 				    "rejecting I/O to dead device\n");
1219 			ret = BLKPREP_KILL;
1220 			break;
1221 		case SDEV_QUIESCE:
1222 		case SDEV_BLOCK:
1223 		case SDEV_CREATED_BLOCK:
1224 			/*
1225 			 * If the devices is blocked we defer normal commands.
1226 			 */
1227 			if (!(req->cmd_flags & REQ_PREEMPT))
1228 				ret = BLKPREP_DEFER;
1229 			break;
1230 		default:
1231 			/*
1232 			 * For any other not fully online state we only allow
1233 			 * special commands.  In particular any user initiated
1234 			 * command is not allowed.
1235 			 */
1236 			if (!(req->cmd_flags & REQ_PREEMPT))
1237 				ret = BLKPREP_KILL;
1238 			break;
1239 		}
1240 	}
1241 	return ret;
1242 }
1243 EXPORT_SYMBOL(scsi_prep_state_check);
1244 
1245 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1246 {
1247 	struct scsi_device *sdev = q->queuedata;
1248 
1249 	switch (ret) {
1250 	case BLKPREP_KILL:
1251 		req->errors = DID_NO_CONNECT << 16;
1252 		/* release the command and kill it */
1253 		if (req->special) {
1254 			struct scsi_cmnd *cmd = req->special;
1255 			scsi_release_buffers(cmd);
1256 			scsi_put_command(cmd);
1257 			req->special = NULL;
1258 		}
1259 		break;
1260 	case BLKPREP_DEFER:
1261 		/*
1262 		 * If we defer, the blk_peek_request() returns NULL, but the
1263 		 * queue must be restarted, so we schedule a callback to happen
1264 		 * shortly.
1265 		 */
1266 		if (sdev->device_busy == 0)
1267 			blk_delay_queue(q, SCSI_QUEUE_DELAY);
1268 		break;
1269 	default:
1270 		req->cmd_flags |= REQ_DONTPREP;
1271 	}
1272 
1273 	return ret;
1274 }
1275 EXPORT_SYMBOL(scsi_prep_return);
1276 
1277 int scsi_prep_fn(struct request_queue *q, struct request *req)
1278 {
1279 	struct scsi_device *sdev = q->queuedata;
1280 	int ret = BLKPREP_KILL;
1281 
1282 	if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1283 		ret = scsi_setup_blk_pc_cmnd(sdev, req);
1284 	return scsi_prep_return(q, req, ret);
1285 }
1286 EXPORT_SYMBOL(scsi_prep_fn);
1287 
1288 /*
1289  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1290  * return 0.
1291  *
1292  * Called with the queue_lock held.
1293  */
1294 static inline int scsi_dev_queue_ready(struct request_queue *q,
1295 				  struct scsi_device *sdev)
1296 {
1297 	if (sdev->device_busy == 0 && sdev->device_blocked) {
1298 		/*
1299 		 * unblock after device_blocked iterates to zero
1300 		 */
1301 		if (--sdev->device_blocked == 0) {
1302 			SCSI_LOG_MLQUEUE(3,
1303 				   sdev_printk(KERN_INFO, sdev,
1304 				   "unblocking device at zero depth\n"));
1305 		} else {
1306 			blk_delay_queue(q, SCSI_QUEUE_DELAY);
1307 			return 0;
1308 		}
1309 	}
1310 	if (scsi_device_is_busy(sdev))
1311 		return 0;
1312 
1313 	return 1;
1314 }
1315 
1316 
1317 /*
1318  * scsi_target_queue_ready: checks if there we can send commands to target
1319  * @sdev: scsi device on starget to check.
1320  *
1321  * Called with the host lock held.
1322  */
1323 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1324 					   struct scsi_device *sdev)
1325 {
1326 	struct scsi_target *starget = scsi_target(sdev);
1327 
1328 	if (starget->single_lun) {
1329 		if (starget->starget_sdev_user &&
1330 		    starget->starget_sdev_user != sdev)
1331 			return 0;
1332 		starget->starget_sdev_user = sdev;
1333 	}
1334 
1335 	if (starget->target_busy == 0 && starget->target_blocked) {
1336 		/*
1337 		 * unblock after target_blocked iterates to zero
1338 		 */
1339 		if (--starget->target_blocked == 0) {
1340 			SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1341 					 "unblocking target at zero depth\n"));
1342 		} else
1343 			return 0;
1344 	}
1345 
1346 	if (scsi_target_is_busy(starget)) {
1347 		list_move_tail(&sdev->starved_entry, &shost->starved_list);
1348 		return 0;
1349 	}
1350 
1351 	return 1;
1352 }
1353 
1354 /*
1355  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1356  * return 0. We must end up running the queue again whenever 0 is
1357  * returned, else IO can hang.
1358  *
1359  * Called with host_lock held.
1360  */
1361 static inline int scsi_host_queue_ready(struct request_queue *q,
1362 				   struct Scsi_Host *shost,
1363 				   struct scsi_device *sdev)
1364 {
1365 	if (scsi_host_in_recovery(shost))
1366 		return 0;
1367 	if (shost->host_busy == 0 && shost->host_blocked) {
1368 		/*
1369 		 * unblock after host_blocked iterates to zero
1370 		 */
1371 		if (--shost->host_blocked == 0) {
1372 			SCSI_LOG_MLQUEUE(3,
1373 				printk("scsi%d unblocking host at zero depth\n",
1374 					shost->host_no));
1375 		} else {
1376 			return 0;
1377 		}
1378 	}
1379 	if (scsi_host_is_busy(shost)) {
1380 		if (list_empty(&sdev->starved_entry))
1381 			list_add_tail(&sdev->starved_entry, &shost->starved_list);
1382 		return 0;
1383 	}
1384 
1385 	/* We're OK to process the command, so we can't be starved */
1386 	if (!list_empty(&sdev->starved_entry))
1387 		list_del_init(&sdev->starved_entry);
1388 
1389 	return 1;
1390 }
1391 
1392 /*
1393  * Busy state exporting function for request stacking drivers.
1394  *
1395  * For efficiency, no lock is taken to check the busy state of
1396  * shost/starget/sdev, since the returned value is not guaranteed and
1397  * may be changed after request stacking drivers call the function,
1398  * regardless of taking lock or not.
1399  *
1400  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1401  * needs to return 'not busy'. Otherwise, request stacking drivers
1402  * may hold requests forever.
1403  */
1404 static int scsi_lld_busy(struct request_queue *q)
1405 {
1406 	struct scsi_device *sdev = q->queuedata;
1407 	struct Scsi_Host *shost;
1408 
1409 	if (blk_queue_dead(q))
1410 		return 0;
1411 
1412 	shost = sdev->host;
1413 
1414 	/*
1415 	 * Ignore host/starget busy state.
1416 	 * Since block layer does not have a concept of fairness across
1417 	 * multiple queues, congestion of host/starget needs to be handled
1418 	 * in SCSI layer.
1419 	 */
1420 	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1421 		return 1;
1422 
1423 	return 0;
1424 }
1425 
1426 /*
1427  * Kill a request for a dead device
1428  */
1429 static void scsi_kill_request(struct request *req, struct request_queue *q)
1430 {
1431 	struct scsi_cmnd *cmd = req->special;
1432 	struct scsi_device *sdev;
1433 	struct scsi_target *starget;
1434 	struct Scsi_Host *shost;
1435 
1436 	blk_start_request(req);
1437 
1438 	scmd_printk(KERN_INFO, cmd, "killing request\n");
1439 
1440 	sdev = cmd->device;
1441 	starget = scsi_target(sdev);
1442 	shost = sdev->host;
1443 	scsi_init_cmd_errh(cmd);
1444 	cmd->result = DID_NO_CONNECT << 16;
1445 	atomic_inc(&cmd->device->iorequest_cnt);
1446 
1447 	/*
1448 	 * SCSI request completion path will do scsi_device_unbusy(),
1449 	 * bump busy counts.  To bump the counters, we need to dance
1450 	 * with the locks as normal issue path does.
1451 	 */
1452 	sdev->device_busy++;
1453 	spin_unlock(sdev->request_queue->queue_lock);
1454 	spin_lock(shost->host_lock);
1455 	shost->host_busy++;
1456 	starget->target_busy++;
1457 	spin_unlock(shost->host_lock);
1458 	spin_lock(sdev->request_queue->queue_lock);
1459 
1460 	blk_complete_request(req);
1461 }
1462 
1463 static void scsi_softirq_done(struct request *rq)
1464 {
1465 	struct scsi_cmnd *cmd = rq->special;
1466 	unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1467 	int disposition;
1468 
1469 	INIT_LIST_HEAD(&cmd->eh_entry);
1470 
1471 	atomic_inc(&cmd->device->iodone_cnt);
1472 	if (cmd->result)
1473 		atomic_inc(&cmd->device->ioerr_cnt);
1474 
1475 	disposition = scsi_decide_disposition(cmd);
1476 	if (disposition != SUCCESS &&
1477 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1478 		sdev_printk(KERN_ERR, cmd->device,
1479 			    "timing out command, waited %lus\n",
1480 			    wait_for/HZ);
1481 		disposition = SUCCESS;
1482 	}
1483 
1484 	scsi_log_completion(cmd, disposition);
1485 
1486 	switch (disposition) {
1487 		case SUCCESS:
1488 			scsi_finish_command(cmd);
1489 			break;
1490 		case NEEDS_RETRY:
1491 			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1492 			break;
1493 		case ADD_TO_MLQUEUE:
1494 			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1495 			break;
1496 		default:
1497 			if (!scsi_eh_scmd_add(cmd, 0))
1498 				scsi_finish_command(cmd);
1499 	}
1500 }
1501 
1502 /*
1503  * Function:    scsi_request_fn()
1504  *
1505  * Purpose:     Main strategy routine for SCSI.
1506  *
1507  * Arguments:   q       - Pointer to actual queue.
1508  *
1509  * Returns:     Nothing
1510  *
1511  * Lock status: IO request lock assumed to be held when called.
1512  */
1513 static void scsi_request_fn(struct request_queue *q)
1514 {
1515 	struct scsi_device *sdev = q->queuedata;
1516 	struct Scsi_Host *shost;
1517 	struct scsi_cmnd *cmd;
1518 	struct request *req;
1519 
1520 	if(!get_device(&sdev->sdev_gendev))
1521 		/* We must be tearing the block queue down already */
1522 		return;
1523 
1524 	/*
1525 	 * To start with, we keep looping until the queue is empty, or until
1526 	 * the host is no longer able to accept any more requests.
1527 	 */
1528 	shost = sdev->host;
1529 	for (;;) {
1530 		int rtn;
1531 		/*
1532 		 * get next queueable request.  We do this early to make sure
1533 		 * that the request is fully prepared even if we cannot
1534 		 * accept it.
1535 		 */
1536 		req = blk_peek_request(q);
1537 		if (!req || !scsi_dev_queue_ready(q, sdev))
1538 			break;
1539 
1540 		if (unlikely(!scsi_device_online(sdev))) {
1541 			sdev_printk(KERN_ERR, sdev,
1542 				    "rejecting I/O to offline device\n");
1543 			scsi_kill_request(req, q);
1544 			continue;
1545 		}
1546 
1547 
1548 		/*
1549 		 * Remove the request from the request list.
1550 		 */
1551 		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1552 			blk_start_request(req);
1553 		sdev->device_busy++;
1554 
1555 		spin_unlock(q->queue_lock);
1556 		cmd = req->special;
1557 		if (unlikely(cmd == NULL)) {
1558 			printk(KERN_CRIT "impossible request in %s.\n"
1559 					 "please mail a stack trace to "
1560 					 "linux-scsi@vger.kernel.org\n",
1561 					 __func__);
1562 			blk_dump_rq_flags(req, "foo");
1563 			BUG();
1564 		}
1565 		spin_lock(shost->host_lock);
1566 
1567 		/*
1568 		 * We hit this when the driver is using a host wide
1569 		 * tag map. For device level tag maps the queue_depth check
1570 		 * in the device ready fn would prevent us from trying
1571 		 * to allocate a tag. Since the map is a shared host resource
1572 		 * we add the dev to the starved list so it eventually gets
1573 		 * a run when a tag is freed.
1574 		 */
1575 		if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1576 			if (list_empty(&sdev->starved_entry))
1577 				list_add_tail(&sdev->starved_entry,
1578 					      &shost->starved_list);
1579 			goto not_ready;
1580 		}
1581 
1582 		if (!scsi_target_queue_ready(shost, sdev))
1583 			goto not_ready;
1584 
1585 		if (!scsi_host_queue_ready(q, shost, sdev))
1586 			goto not_ready;
1587 
1588 		scsi_target(sdev)->target_busy++;
1589 		shost->host_busy++;
1590 
1591 		/*
1592 		 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1593 		 *		take the lock again.
1594 		 */
1595 		spin_unlock_irq(shost->host_lock);
1596 
1597 		/*
1598 		 * Finally, initialize any error handling parameters, and set up
1599 		 * the timers for timeouts.
1600 		 */
1601 		scsi_init_cmd_errh(cmd);
1602 
1603 		/*
1604 		 * Dispatch the command to the low-level driver.
1605 		 */
1606 		rtn = scsi_dispatch_cmd(cmd);
1607 		spin_lock_irq(q->queue_lock);
1608 		if (rtn)
1609 			goto out_delay;
1610 	}
1611 
1612 	goto out;
1613 
1614  not_ready:
1615 	spin_unlock_irq(shost->host_lock);
1616 
1617 	/*
1618 	 * lock q, handle tag, requeue req, and decrement device_busy. We
1619 	 * must return with queue_lock held.
1620 	 *
1621 	 * Decrementing device_busy without checking it is OK, as all such
1622 	 * cases (host limits or settings) should run the queue at some
1623 	 * later time.
1624 	 */
1625 	spin_lock_irq(q->queue_lock);
1626 	blk_requeue_request(q, req);
1627 	sdev->device_busy--;
1628 out_delay:
1629 	if (sdev->device_busy == 0)
1630 		blk_delay_queue(q, SCSI_QUEUE_DELAY);
1631 out:
1632 	/* must be careful here...if we trigger the ->remove() function
1633 	 * we cannot be holding the q lock */
1634 	spin_unlock_irq(q->queue_lock);
1635 	put_device(&sdev->sdev_gendev);
1636 	spin_lock_irq(q->queue_lock);
1637 }
1638 
1639 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1640 {
1641 	struct device *host_dev;
1642 	u64 bounce_limit = 0xffffffff;
1643 
1644 	if (shost->unchecked_isa_dma)
1645 		return BLK_BOUNCE_ISA;
1646 	/*
1647 	 * Platforms with virtual-DMA translation
1648 	 * hardware have no practical limit.
1649 	 */
1650 	if (!PCI_DMA_BUS_IS_PHYS)
1651 		return BLK_BOUNCE_ANY;
1652 
1653 	host_dev = scsi_get_device(shost);
1654 	if (host_dev && host_dev->dma_mask)
1655 		bounce_limit = *host_dev->dma_mask;
1656 
1657 	return bounce_limit;
1658 }
1659 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1660 
1661 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1662 					 request_fn_proc *request_fn)
1663 {
1664 	struct request_queue *q;
1665 	struct device *dev = shost->dma_dev;
1666 
1667 	q = blk_init_queue(request_fn, NULL);
1668 	if (!q)
1669 		return NULL;
1670 
1671 	/*
1672 	 * this limit is imposed by hardware restrictions
1673 	 */
1674 	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1675 					SCSI_MAX_SG_CHAIN_SEGMENTS));
1676 
1677 	if (scsi_host_prot_dma(shost)) {
1678 		shost->sg_prot_tablesize =
1679 			min_not_zero(shost->sg_prot_tablesize,
1680 				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1681 		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1682 		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1683 	}
1684 
1685 	blk_queue_max_hw_sectors(q, shost->max_sectors);
1686 	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1687 	blk_queue_segment_boundary(q, shost->dma_boundary);
1688 	dma_set_seg_boundary(dev, shost->dma_boundary);
1689 
1690 	blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1691 
1692 	if (!shost->use_clustering)
1693 		q->limits.cluster = 0;
1694 
1695 	/*
1696 	 * set a reasonable default alignment on word boundaries: the
1697 	 * host and device may alter it using
1698 	 * blk_queue_update_dma_alignment() later.
1699 	 */
1700 	blk_queue_dma_alignment(q, 0x03);
1701 
1702 	return q;
1703 }
1704 EXPORT_SYMBOL(__scsi_alloc_queue);
1705 
1706 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1707 {
1708 	struct request_queue *q;
1709 
1710 	q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1711 	if (!q)
1712 		return NULL;
1713 
1714 	blk_queue_prep_rq(q, scsi_prep_fn);
1715 	blk_queue_softirq_done(q, scsi_softirq_done);
1716 	blk_queue_rq_timed_out(q, scsi_times_out);
1717 	blk_queue_lld_busy(q, scsi_lld_busy);
1718 	return q;
1719 }
1720 
1721 /*
1722  * Function:    scsi_block_requests()
1723  *
1724  * Purpose:     Utility function used by low-level drivers to prevent further
1725  *		commands from being queued to the device.
1726  *
1727  * Arguments:   shost       - Host in question
1728  *
1729  * Returns:     Nothing
1730  *
1731  * Lock status: No locks are assumed held.
1732  *
1733  * Notes:       There is no timer nor any other means by which the requests
1734  *		get unblocked other than the low-level driver calling
1735  *		scsi_unblock_requests().
1736  */
1737 void scsi_block_requests(struct Scsi_Host *shost)
1738 {
1739 	shost->host_self_blocked = 1;
1740 }
1741 EXPORT_SYMBOL(scsi_block_requests);
1742 
1743 /*
1744  * Function:    scsi_unblock_requests()
1745  *
1746  * Purpose:     Utility function used by low-level drivers to allow further
1747  *		commands from being queued to the device.
1748  *
1749  * Arguments:   shost       - Host in question
1750  *
1751  * Returns:     Nothing
1752  *
1753  * Lock status: No locks are assumed held.
1754  *
1755  * Notes:       There is no timer nor any other means by which the requests
1756  *		get unblocked other than the low-level driver calling
1757  *		scsi_unblock_requests().
1758  *
1759  *		This is done as an API function so that changes to the
1760  *		internals of the scsi mid-layer won't require wholesale
1761  *		changes to drivers that use this feature.
1762  */
1763 void scsi_unblock_requests(struct Scsi_Host *shost)
1764 {
1765 	shost->host_self_blocked = 0;
1766 	scsi_run_host_queues(shost);
1767 }
1768 EXPORT_SYMBOL(scsi_unblock_requests);
1769 
1770 int __init scsi_init_queue(void)
1771 {
1772 	int i;
1773 
1774 	scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1775 					   sizeof(struct scsi_data_buffer),
1776 					   0, 0, NULL);
1777 	if (!scsi_sdb_cache) {
1778 		printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1779 		return -ENOMEM;
1780 	}
1781 
1782 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1783 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1784 		int size = sgp->size * sizeof(struct scatterlist);
1785 
1786 		sgp->slab = kmem_cache_create(sgp->name, size, 0,
1787 				SLAB_HWCACHE_ALIGN, NULL);
1788 		if (!sgp->slab) {
1789 			printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1790 					sgp->name);
1791 			goto cleanup_sdb;
1792 		}
1793 
1794 		sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1795 						     sgp->slab);
1796 		if (!sgp->pool) {
1797 			printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1798 					sgp->name);
1799 			goto cleanup_sdb;
1800 		}
1801 	}
1802 
1803 	return 0;
1804 
1805 cleanup_sdb:
1806 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1807 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1808 		if (sgp->pool)
1809 			mempool_destroy(sgp->pool);
1810 		if (sgp->slab)
1811 			kmem_cache_destroy(sgp->slab);
1812 	}
1813 	kmem_cache_destroy(scsi_sdb_cache);
1814 
1815 	return -ENOMEM;
1816 }
1817 
1818 void scsi_exit_queue(void)
1819 {
1820 	int i;
1821 
1822 	kmem_cache_destroy(scsi_sdb_cache);
1823 
1824 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1825 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1826 		mempool_destroy(sgp->pool);
1827 		kmem_cache_destroy(sgp->slab);
1828 	}
1829 }
1830 
1831 /**
1832  *	scsi_mode_select - issue a mode select
1833  *	@sdev:	SCSI device to be queried
1834  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
1835  *	@sp:	Save page bit (0 == don't save, 1 == save)
1836  *	@modepage: mode page being requested
1837  *	@buffer: request buffer (may not be smaller than eight bytes)
1838  *	@len:	length of request buffer.
1839  *	@timeout: command timeout
1840  *	@retries: number of retries before failing
1841  *	@data: returns a structure abstracting the mode header data
1842  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1843  *		must be SCSI_SENSE_BUFFERSIZE big.
1844  *
1845  *	Returns zero if successful; negative error number or scsi
1846  *	status on error
1847  *
1848  */
1849 int
1850 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1851 		 unsigned char *buffer, int len, int timeout, int retries,
1852 		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1853 {
1854 	unsigned char cmd[10];
1855 	unsigned char *real_buffer;
1856 	int ret;
1857 
1858 	memset(cmd, 0, sizeof(cmd));
1859 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1860 
1861 	if (sdev->use_10_for_ms) {
1862 		if (len > 65535)
1863 			return -EINVAL;
1864 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
1865 		if (!real_buffer)
1866 			return -ENOMEM;
1867 		memcpy(real_buffer + 8, buffer, len);
1868 		len += 8;
1869 		real_buffer[0] = 0;
1870 		real_buffer[1] = 0;
1871 		real_buffer[2] = data->medium_type;
1872 		real_buffer[3] = data->device_specific;
1873 		real_buffer[4] = data->longlba ? 0x01 : 0;
1874 		real_buffer[5] = 0;
1875 		real_buffer[6] = data->block_descriptor_length >> 8;
1876 		real_buffer[7] = data->block_descriptor_length;
1877 
1878 		cmd[0] = MODE_SELECT_10;
1879 		cmd[7] = len >> 8;
1880 		cmd[8] = len;
1881 	} else {
1882 		if (len > 255 || data->block_descriptor_length > 255 ||
1883 		    data->longlba)
1884 			return -EINVAL;
1885 
1886 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
1887 		if (!real_buffer)
1888 			return -ENOMEM;
1889 		memcpy(real_buffer + 4, buffer, len);
1890 		len += 4;
1891 		real_buffer[0] = 0;
1892 		real_buffer[1] = data->medium_type;
1893 		real_buffer[2] = data->device_specific;
1894 		real_buffer[3] = data->block_descriptor_length;
1895 
1896 
1897 		cmd[0] = MODE_SELECT;
1898 		cmd[4] = len;
1899 	}
1900 
1901 	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1902 			       sshdr, timeout, retries, NULL);
1903 	kfree(real_buffer);
1904 	return ret;
1905 }
1906 EXPORT_SYMBOL_GPL(scsi_mode_select);
1907 
1908 /**
1909  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1910  *	@sdev:	SCSI device to be queried
1911  *	@dbd:	set if mode sense will allow block descriptors to be returned
1912  *	@modepage: mode page being requested
1913  *	@buffer: request buffer (may not be smaller than eight bytes)
1914  *	@len:	length of request buffer.
1915  *	@timeout: command timeout
1916  *	@retries: number of retries before failing
1917  *	@data: returns a structure abstracting the mode header data
1918  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1919  *		must be SCSI_SENSE_BUFFERSIZE big.
1920  *
1921  *	Returns zero if unsuccessful, or the header offset (either 4
1922  *	or 8 depending on whether a six or ten byte command was
1923  *	issued) if successful.
1924  */
1925 int
1926 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1927 		  unsigned char *buffer, int len, int timeout, int retries,
1928 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1929 {
1930 	unsigned char cmd[12];
1931 	int use_10_for_ms;
1932 	int header_length;
1933 	int result;
1934 	struct scsi_sense_hdr my_sshdr;
1935 
1936 	memset(data, 0, sizeof(*data));
1937 	memset(&cmd[0], 0, 12);
1938 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
1939 	cmd[2] = modepage;
1940 
1941 	/* caller might not be interested in sense, but we need it */
1942 	if (!sshdr)
1943 		sshdr = &my_sshdr;
1944 
1945  retry:
1946 	use_10_for_ms = sdev->use_10_for_ms;
1947 
1948 	if (use_10_for_ms) {
1949 		if (len < 8)
1950 			len = 8;
1951 
1952 		cmd[0] = MODE_SENSE_10;
1953 		cmd[8] = len;
1954 		header_length = 8;
1955 	} else {
1956 		if (len < 4)
1957 			len = 4;
1958 
1959 		cmd[0] = MODE_SENSE;
1960 		cmd[4] = len;
1961 		header_length = 4;
1962 	}
1963 
1964 	memset(buffer, 0, len);
1965 
1966 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1967 				  sshdr, timeout, retries, NULL);
1968 
1969 	/* This code looks awful: what it's doing is making sure an
1970 	 * ILLEGAL REQUEST sense return identifies the actual command
1971 	 * byte as the problem.  MODE_SENSE commands can return
1972 	 * ILLEGAL REQUEST if the code page isn't supported */
1973 
1974 	if (use_10_for_ms && !scsi_status_is_good(result) &&
1975 	    (driver_byte(result) & DRIVER_SENSE)) {
1976 		if (scsi_sense_valid(sshdr)) {
1977 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1978 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1979 				/*
1980 				 * Invalid command operation code
1981 				 */
1982 				sdev->use_10_for_ms = 0;
1983 				goto retry;
1984 			}
1985 		}
1986 	}
1987 
1988 	if(scsi_status_is_good(result)) {
1989 		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1990 			     (modepage == 6 || modepage == 8))) {
1991 			/* Initio breakage? */
1992 			header_length = 0;
1993 			data->length = 13;
1994 			data->medium_type = 0;
1995 			data->device_specific = 0;
1996 			data->longlba = 0;
1997 			data->block_descriptor_length = 0;
1998 		} else if(use_10_for_ms) {
1999 			data->length = buffer[0]*256 + buffer[1] + 2;
2000 			data->medium_type = buffer[2];
2001 			data->device_specific = buffer[3];
2002 			data->longlba = buffer[4] & 0x01;
2003 			data->block_descriptor_length = buffer[6]*256
2004 				+ buffer[7];
2005 		} else {
2006 			data->length = buffer[0] + 1;
2007 			data->medium_type = buffer[1];
2008 			data->device_specific = buffer[2];
2009 			data->block_descriptor_length = buffer[3];
2010 		}
2011 		data->header_length = header_length;
2012 	}
2013 
2014 	return result;
2015 }
2016 EXPORT_SYMBOL(scsi_mode_sense);
2017 
2018 /**
2019  *	scsi_test_unit_ready - test if unit is ready
2020  *	@sdev:	scsi device to change the state of.
2021  *	@timeout: command timeout
2022  *	@retries: number of retries before failing
2023  *	@sshdr_external: Optional pointer to struct scsi_sense_hdr for
2024  *		returning sense. Make sure that this is cleared before passing
2025  *		in.
2026  *
2027  *	Returns zero if unsuccessful or an error if TUR failed.  For
2028  *	removable media, UNIT_ATTENTION sets ->changed flag.
2029  **/
2030 int
2031 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2032 		     struct scsi_sense_hdr *sshdr_external)
2033 {
2034 	char cmd[] = {
2035 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2036 	};
2037 	struct scsi_sense_hdr *sshdr;
2038 	int result;
2039 
2040 	if (!sshdr_external)
2041 		sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2042 	else
2043 		sshdr = sshdr_external;
2044 
2045 	/* try to eat the UNIT_ATTENTION if there are enough retries */
2046 	do {
2047 		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2048 					  timeout, retries, NULL);
2049 		if (sdev->removable && scsi_sense_valid(sshdr) &&
2050 		    sshdr->sense_key == UNIT_ATTENTION)
2051 			sdev->changed = 1;
2052 	} while (scsi_sense_valid(sshdr) &&
2053 		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2054 
2055 	if (!sshdr_external)
2056 		kfree(sshdr);
2057 	return result;
2058 }
2059 EXPORT_SYMBOL(scsi_test_unit_ready);
2060 
2061 /**
2062  *	scsi_device_set_state - Take the given device through the device state model.
2063  *	@sdev:	scsi device to change the state of.
2064  *	@state:	state to change to.
2065  *
2066  *	Returns zero if unsuccessful or an error if the requested
2067  *	transition is illegal.
2068  */
2069 int
2070 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2071 {
2072 	enum scsi_device_state oldstate = sdev->sdev_state;
2073 
2074 	if (state == oldstate)
2075 		return 0;
2076 
2077 	switch (state) {
2078 	case SDEV_CREATED:
2079 		switch (oldstate) {
2080 		case SDEV_CREATED_BLOCK:
2081 			break;
2082 		default:
2083 			goto illegal;
2084 		}
2085 		break;
2086 
2087 	case SDEV_RUNNING:
2088 		switch (oldstate) {
2089 		case SDEV_CREATED:
2090 		case SDEV_OFFLINE:
2091 		case SDEV_TRANSPORT_OFFLINE:
2092 		case SDEV_QUIESCE:
2093 		case SDEV_BLOCK:
2094 			break;
2095 		default:
2096 			goto illegal;
2097 		}
2098 		break;
2099 
2100 	case SDEV_QUIESCE:
2101 		switch (oldstate) {
2102 		case SDEV_RUNNING:
2103 		case SDEV_OFFLINE:
2104 		case SDEV_TRANSPORT_OFFLINE:
2105 			break;
2106 		default:
2107 			goto illegal;
2108 		}
2109 		break;
2110 
2111 	case SDEV_OFFLINE:
2112 	case SDEV_TRANSPORT_OFFLINE:
2113 		switch (oldstate) {
2114 		case SDEV_CREATED:
2115 		case SDEV_RUNNING:
2116 		case SDEV_QUIESCE:
2117 		case SDEV_BLOCK:
2118 			break;
2119 		default:
2120 			goto illegal;
2121 		}
2122 		break;
2123 
2124 	case SDEV_BLOCK:
2125 		switch (oldstate) {
2126 		case SDEV_RUNNING:
2127 		case SDEV_CREATED_BLOCK:
2128 			break;
2129 		default:
2130 			goto illegal;
2131 		}
2132 		break;
2133 
2134 	case SDEV_CREATED_BLOCK:
2135 		switch (oldstate) {
2136 		case SDEV_CREATED:
2137 			break;
2138 		default:
2139 			goto illegal;
2140 		}
2141 		break;
2142 
2143 	case SDEV_CANCEL:
2144 		switch (oldstate) {
2145 		case SDEV_CREATED:
2146 		case SDEV_RUNNING:
2147 		case SDEV_QUIESCE:
2148 		case SDEV_OFFLINE:
2149 		case SDEV_TRANSPORT_OFFLINE:
2150 		case SDEV_BLOCK:
2151 			break;
2152 		default:
2153 			goto illegal;
2154 		}
2155 		break;
2156 
2157 	case SDEV_DEL:
2158 		switch (oldstate) {
2159 		case SDEV_CREATED:
2160 		case SDEV_RUNNING:
2161 		case SDEV_OFFLINE:
2162 		case SDEV_TRANSPORT_OFFLINE:
2163 		case SDEV_CANCEL:
2164 			break;
2165 		default:
2166 			goto illegal;
2167 		}
2168 		break;
2169 
2170 	}
2171 	sdev->sdev_state = state;
2172 	return 0;
2173 
2174  illegal:
2175 	SCSI_LOG_ERROR_RECOVERY(1,
2176 				sdev_printk(KERN_ERR, sdev,
2177 					    "Illegal state transition %s->%s\n",
2178 					    scsi_device_state_name(oldstate),
2179 					    scsi_device_state_name(state))
2180 				);
2181 	return -EINVAL;
2182 }
2183 EXPORT_SYMBOL(scsi_device_set_state);
2184 
2185 /**
2186  * 	sdev_evt_emit - emit a single SCSI device uevent
2187  *	@sdev: associated SCSI device
2188  *	@evt: event to emit
2189  *
2190  *	Send a single uevent (scsi_event) to the associated scsi_device.
2191  */
2192 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2193 {
2194 	int idx = 0;
2195 	char *envp[3];
2196 
2197 	switch (evt->evt_type) {
2198 	case SDEV_EVT_MEDIA_CHANGE:
2199 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2200 		break;
2201 
2202 	default:
2203 		/* do nothing */
2204 		break;
2205 	}
2206 
2207 	envp[idx++] = NULL;
2208 
2209 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2210 }
2211 
2212 /**
2213  * 	sdev_evt_thread - send a uevent for each scsi event
2214  *	@work: work struct for scsi_device
2215  *
2216  *	Dispatch queued events to their associated scsi_device kobjects
2217  *	as uevents.
2218  */
2219 void scsi_evt_thread(struct work_struct *work)
2220 {
2221 	struct scsi_device *sdev;
2222 	LIST_HEAD(event_list);
2223 
2224 	sdev = container_of(work, struct scsi_device, event_work);
2225 
2226 	while (1) {
2227 		struct scsi_event *evt;
2228 		struct list_head *this, *tmp;
2229 		unsigned long flags;
2230 
2231 		spin_lock_irqsave(&sdev->list_lock, flags);
2232 		list_splice_init(&sdev->event_list, &event_list);
2233 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2234 
2235 		if (list_empty(&event_list))
2236 			break;
2237 
2238 		list_for_each_safe(this, tmp, &event_list) {
2239 			evt = list_entry(this, struct scsi_event, node);
2240 			list_del(&evt->node);
2241 			scsi_evt_emit(sdev, evt);
2242 			kfree(evt);
2243 		}
2244 	}
2245 }
2246 
2247 /**
2248  * 	sdev_evt_send - send asserted event to uevent thread
2249  *	@sdev: scsi_device event occurred on
2250  *	@evt: event to send
2251  *
2252  *	Assert scsi device event asynchronously.
2253  */
2254 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2255 {
2256 	unsigned long flags;
2257 
2258 #if 0
2259 	/* FIXME: currently this check eliminates all media change events
2260 	 * for polled devices.  Need to update to discriminate between AN
2261 	 * and polled events */
2262 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2263 		kfree(evt);
2264 		return;
2265 	}
2266 #endif
2267 
2268 	spin_lock_irqsave(&sdev->list_lock, flags);
2269 	list_add_tail(&evt->node, &sdev->event_list);
2270 	schedule_work(&sdev->event_work);
2271 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2272 }
2273 EXPORT_SYMBOL_GPL(sdev_evt_send);
2274 
2275 /**
2276  * 	sdev_evt_alloc - allocate a new scsi event
2277  *	@evt_type: type of event to allocate
2278  *	@gfpflags: GFP flags for allocation
2279  *
2280  *	Allocates and returns a new scsi_event.
2281  */
2282 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2283 				  gfp_t gfpflags)
2284 {
2285 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2286 	if (!evt)
2287 		return NULL;
2288 
2289 	evt->evt_type = evt_type;
2290 	INIT_LIST_HEAD(&evt->node);
2291 
2292 	/* evt_type-specific initialization, if any */
2293 	switch (evt_type) {
2294 	case SDEV_EVT_MEDIA_CHANGE:
2295 	default:
2296 		/* do nothing */
2297 		break;
2298 	}
2299 
2300 	return evt;
2301 }
2302 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2303 
2304 /**
2305  * 	sdev_evt_send_simple - send asserted event to uevent thread
2306  *	@sdev: scsi_device event occurred on
2307  *	@evt_type: type of event to send
2308  *	@gfpflags: GFP flags for allocation
2309  *
2310  *	Assert scsi device event asynchronously, given an event type.
2311  */
2312 void sdev_evt_send_simple(struct scsi_device *sdev,
2313 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2314 {
2315 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2316 	if (!evt) {
2317 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2318 			    evt_type);
2319 		return;
2320 	}
2321 
2322 	sdev_evt_send(sdev, evt);
2323 }
2324 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2325 
2326 /**
2327  *	scsi_device_quiesce - Block user issued commands.
2328  *	@sdev:	scsi device to quiesce.
2329  *
2330  *	This works by trying to transition to the SDEV_QUIESCE state
2331  *	(which must be a legal transition).  When the device is in this
2332  *	state, only special requests will be accepted, all others will
2333  *	be deferred.  Since special requests may also be requeued requests,
2334  *	a successful return doesn't guarantee the device will be
2335  *	totally quiescent.
2336  *
2337  *	Must be called with user context, may sleep.
2338  *
2339  *	Returns zero if unsuccessful or an error if not.
2340  */
2341 int
2342 scsi_device_quiesce(struct scsi_device *sdev)
2343 {
2344 	int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2345 	if (err)
2346 		return err;
2347 
2348 	scsi_run_queue(sdev->request_queue);
2349 	while (sdev->device_busy) {
2350 		msleep_interruptible(200);
2351 		scsi_run_queue(sdev->request_queue);
2352 	}
2353 	return 0;
2354 }
2355 EXPORT_SYMBOL(scsi_device_quiesce);
2356 
2357 /**
2358  *	scsi_device_resume - Restart user issued commands to a quiesced device.
2359  *	@sdev:	scsi device to resume.
2360  *
2361  *	Moves the device from quiesced back to running and restarts the
2362  *	queues.
2363  *
2364  *	Must be called with user context, may sleep.
2365  */
2366 void scsi_device_resume(struct scsi_device *sdev)
2367 {
2368 	/* check if the device state was mutated prior to resume, and if
2369 	 * so assume the state is being managed elsewhere (for example
2370 	 * device deleted during suspend)
2371 	 */
2372 	if (sdev->sdev_state != SDEV_QUIESCE ||
2373 	    scsi_device_set_state(sdev, SDEV_RUNNING))
2374 		return;
2375 	scsi_run_queue(sdev->request_queue);
2376 }
2377 EXPORT_SYMBOL(scsi_device_resume);
2378 
2379 static void
2380 device_quiesce_fn(struct scsi_device *sdev, void *data)
2381 {
2382 	scsi_device_quiesce(sdev);
2383 }
2384 
2385 void
2386 scsi_target_quiesce(struct scsi_target *starget)
2387 {
2388 	starget_for_each_device(starget, NULL, device_quiesce_fn);
2389 }
2390 EXPORT_SYMBOL(scsi_target_quiesce);
2391 
2392 static void
2393 device_resume_fn(struct scsi_device *sdev, void *data)
2394 {
2395 	scsi_device_resume(sdev);
2396 }
2397 
2398 void
2399 scsi_target_resume(struct scsi_target *starget)
2400 {
2401 	starget_for_each_device(starget, NULL, device_resume_fn);
2402 }
2403 EXPORT_SYMBOL(scsi_target_resume);
2404 
2405 /**
2406  * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2407  * @sdev:	device to block
2408  *
2409  * Block request made by scsi lld's to temporarily stop all
2410  * scsi commands on the specified device.  Called from interrupt
2411  * or normal process context.
2412  *
2413  * Returns zero if successful or error if not
2414  *
2415  * Notes:
2416  *	This routine transitions the device to the SDEV_BLOCK state
2417  *	(which must be a legal transition).  When the device is in this
2418  *	state, all commands are deferred until the scsi lld reenables
2419  *	the device with scsi_device_unblock or device_block_tmo fires.
2420  */
2421 int
2422 scsi_internal_device_block(struct scsi_device *sdev)
2423 {
2424 	struct request_queue *q = sdev->request_queue;
2425 	unsigned long flags;
2426 	int err = 0;
2427 
2428 	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2429 	if (err) {
2430 		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2431 
2432 		if (err)
2433 			return err;
2434 	}
2435 
2436 	/*
2437 	 * The device has transitioned to SDEV_BLOCK.  Stop the
2438 	 * block layer from calling the midlayer with this device's
2439 	 * request queue.
2440 	 */
2441 	spin_lock_irqsave(q->queue_lock, flags);
2442 	blk_stop_queue(q);
2443 	spin_unlock_irqrestore(q->queue_lock, flags);
2444 
2445 	return 0;
2446 }
2447 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2448 
2449 /**
2450  * scsi_internal_device_unblock - resume a device after a block request
2451  * @sdev:	device to resume
2452  * @new_state:	state to set devices to after unblocking
2453  *
2454  * Called by scsi lld's or the midlayer to restart the device queue
2455  * for the previously suspended scsi device.  Called from interrupt or
2456  * normal process context.
2457  *
2458  * Returns zero if successful or error if not.
2459  *
2460  * Notes:
2461  *	This routine transitions the device to the SDEV_RUNNING state
2462  *	or to one of the offline states (which must be a legal transition)
2463  *	allowing the midlayer to goose the queue for this device.
2464  */
2465 int
2466 scsi_internal_device_unblock(struct scsi_device *sdev,
2467 			     enum scsi_device_state new_state)
2468 {
2469 	struct request_queue *q = sdev->request_queue;
2470 	unsigned long flags;
2471 
2472 	/*
2473 	 * Try to transition the scsi device to SDEV_RUNNING or one of the
2474 	 * offlined states and goose the device queue if successful.
2475 	 */
2476 	if ((sdev->sdev_state == SDEV_BLOCK) ||
2477 	    (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE))
2478 		sdev->sdev_state = new_state;
2479 	else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
2480 		if (new_state == SDEV_TRANSPORT_OFFLINE ||
2481 		    new_state == SDEV_OFFLINE)
2482 			sdev->sdev_state = new_state;
2483 		else
2484 			sdev->sdev_state = SDEV_CREATED;
2485 	} else if (sdev->sdev_state != SDEV_CANCEL &&
2486 		 sdev->sdev_state != SDEV_OFFLINE)
2487 		return -EINVAL;
2488 
2489 	spin_lock_irqsave(q->queue_lock, flags);
2490 	blk_start_queue(q);
2491 	spin_unlock_irqrestore(q->queue_lock, flags);
2492 
2493 	return 0;
2494 }
2495 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2496 
2497 static void
2498 device_block(struct scsi_device *sdev, void *data)
2499 {
2500 	scsi_internal_device_block(sdev);
2501 }
2502 
2503 static int
2504 target_block(struct device *dev, void *data)
2505 {
2506 	if (scsi_is_target_device(dev))
2507 		starget_for_each_device(to_scsi_target(dev), NULL,
2508 					device_block);
2509 	return 0;
2510 }
2511 
2512 void
2513 scsi_target_block(struct device *dev)
2514 {
2515 	if (scsi_is_target_device(dev))
2516 		starget_for_each_device(to_scsi_target(dev), NULL,
2517 					device_block);
2518 	else
2519 		device_for_each_child(dev, NULL, target_block);
2520 }
2521 EXPORT_SYMBOL_GPL(scsi_target_block);
2522 
2523 static void
2524 device_unblock(struct scsi_device *sdev, void *data)
2525 {
2526 	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2527 }
2528 
2529 static int
2530 target_unblock(struct device *dev, void *data)
2531 {
2532 	if (scsi_is_target_device(dev))
2533 		starget_for_each_device(to_scsi_target(dev), data,
2534 					device_unblock);
2535 	return 0;
2536 }
2537 
2538 void
2539 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2540 {
2541 	if (scsi_is_target_device(dev))
2542 		starget_for_each_device(to_scsi_target(dev), &new_state,
2543 					device_unblock);
2544 	else
2545 		device_for_each_child(dev, &new_state, target_unblock);
2546 }
2547 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2548 
2549 /**
2550  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2551  * @sgl:	scatter-gather list
2552  * @sg_count:	number of segments in sg
2553  * @offset:	offset in bytes into sg, on return offset into the mapped area
2554  * @len:	bytes to map, on return number of bytes mapped
2555  *
2556  * Returns virtual address of the start of the mapped page
2557  */
2558 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2559 			  size_t *offset, size_t *len)
2560 {
2561 	int i;
2562 	size_t sg_len = 0, len_complete = 0;
2563 	struct scatterlist *sg;
2564 	struct page *page;
2565 
2566 	WARN_ON(!irqs_disabled());
2567 
2568 	for_each_sg(sgl, sg, sg_count, i) {
2569 		len_complete = sg_len; /* Complete sg-entries */
2570 		sg_len += sg->length;
2571 		if (sg_len > *offset)
2572 			break;
2573 	}
2574 
2575 	if (unlikely(i == sg_count)) {
2576 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2577 			"elements %d\n",
2578 		       __func__, sg_len, *offset, sg_count);
2579 		WARN_ON(1);
2580 		return NULL;
2581 	}
2582 
2583 	/* Offset starting from the beginning of first page in this sg-entry */
2584 	*offset = *offset - len_complete + sg->offset;
2585 
2586 	/* Assumption: contiguous pages can be accessed as "page + i" */
2587 	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2588 	*offset &= ~PAGE_MASK;
2589 
2590 	/* Bytes in this sg-entry from *offset to the end of the page */
2591 	sg_len = PAGE_SIZE - *offset;
2592 	if (*len > sg_len)
2593 		*len = sg_len;
2594 
2595 	return kmap_atomic(page);
2596 }
2597 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2598 
2599 /**
2600  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2601  * @virt:	virtual address to be unmapped
2602  */
2603 void scsi_kunmap_atomic_sg(void *virt)
2604 {
2605 	kunmap_atomic(virt);
2606 }
2607 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2608