xref: /linux/drivers/scsi/scsi_lib.c (revision f2ee442115c9b6219083c019939a9cc0c9abb2f8)
1 /*
2  *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3  *
4  *  SCSI queueing library.
5  *      Initial versions: Eric Youngdale (eric@andante.org).
6  *                        Based upon conversations with large numbers
7  *                        of people at Linux Expo.
8  */
9 
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/mempool.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23 
24 #include <scsi/scsi.h>
25 #include <scsi/scsi_cmnd.h>
26 #include <scsi/scsi_dbg.h>
27 #include <scsi/scsi_device.h>
28 #include <scsi/scsi_driver.h>
29 #include <scsi/scsi_eh.h>
30 #include <scsi/scsi_host.h>
31 
32 #include "scsi_priv.h"
33 #include "scsi_logging.h"
34 
35 
36 #define SG_MEMPOOL_NR		ARRAY_SIZE(scsi_sg_pools)
37 #define SG_MEMPOOL_SIZE		2
38 
39 struct scsi_host_sg_pool {
40 	size_t		size;
41 	char		*name;
42 	struct kmem_cache	*slab;
43 	mempool_t	*pool;
44 };
45 
46 #define SP(x) { x, "sgpool-" __stringify(x) }
47 #if (SCSI_MAX_SG_SEGMENTS < 32)
48 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
49 #endif
50 static struct scsi_host_sg_pool scsi_sg_pools[] = {
51 	SP(8),
52 	SP(16),
53 #if (SCSI_MAX_SG_SEGMENTS > 32)
54 	SP(32),
55 #if (SCSI_MAX_SG_SEGMENTS > 64)
56 	SP(64),
57 #if (SCSI_MAX_SG_SEGMENTS > 128)
58 	SP(128),
59 #if (SCSI_MAX_SG_SEGMENTS > 256)
60 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
61 #endif
62 #endif
63 #endif
64 #endif
65 	SP(SCSI_MAX_SG_SEGMENTS)
66 };
67 #undef SP
68 
69 struct kmem_cache *scsi_sdb_cache;
70 
71 /*
72  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
73  * not change behaviour from the previous unplug mechanism, experimentation
74  * may prove this needs changing.
75  */
76 #define SCSI_QUEUE_DELAY	3
77 
78 /*
79  * Function:	scsi_unprep_request()
80  *
81  * Purpose:	Remove all preparation done for a request, including its
82  *		associated scsi_cmnd, so that it can be requeued.
83  *
84  * Arguments:	req	- request to unprepare
85  *
86  * Lock status:	Assumed that no locks are held upon entry.
87  *
88  * Returns:	Nothing.
89  */
90 static void scsi_unprep_request(struct request *req)
91 {
92 	struct scsi_cmnd *cmd = req->special;
93 
94 	blk_unprep_request(req);
95 	req->special = NULL;
96 
97 	scsi_put_command(cmd);
98 }
99 
100 /**
101  * __scsi_queue_insert - private queue insertion
102  * @cmd: The SCSI command being requeued
103  * @reason:  The reason for the requeue
104  * @unbusy: Whether the queue should be unbusied
105  *
106  * This is a private queue insertion.  The public interface
107  * scsi_queue_insert() always assumes the queue should be unbusied
108  * because it's always called before the completion.  This function is
109  * for a requeue after completion, which should only occur in this
110  * file.
111  */
112 static int __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
113 {
114 	struct Scsi_Host *host = cmd->device->host;
115 	struct scsi_device *device = cmd->device;
116 	struct scsi_target *starget = scsi_target(device);
117 	struct request_queue *q = device->request_queue;
118 	unsigned long flags;
119 
120 	SCSI_LOG_MLQUEUE(1,
121 		 printk("Inserting command %p into mlqueue\n", cmd));
122 
123 	/*
124 	 * Set the appropriate busy bit for the device/host.
125 	 *
126 	 * If the host/device isn't busy, assume that something actually
127 	 * completed, and that we should be able to queue a command now.
128 	 *
129 	 * Note that the prior mid-layer assumption that any host could
130 	 * always queue at least one command is now broken.  The mid-layer
131 	 * will implement a user specifiable stall (see
132 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
133 	 * if a command is requeued with no other commands outstanding
134 	 * either for the device or for the host.
135 	 */
136 	switch (reason) {
137 	case SCSI_MLQUEUE_HOST_BUSY:
138 		host->host_blocked = host->max_host_blocked;
139 		break;
140 	case SCSI_MLQUEUE_DEVICE_BUSY:
141 	case SCSI_MLQUEUE_EH_RETRY:
142 		device->device_blocked = device->max_device_blocked;
143 		break;
144 	case SCSI_MLQUEUE_TARGET_BUSY:
145 		starget->target_blocked = starget->max_target_blocked;
146 		break;
147 	}
148 
149 	/*
150 	 * Decrement the counters, since these commands are no longer
151 	 * active on the host/device.
152 	 */
153 	if (unbusy)
154 		scsi_device_unbusy(device);
155 
156 	/*
157 	 * Requeue this command.  It will go before all other commands
158 	 * that are already in the queue.
159 	 */
160 	spin_lock_irqsave(q->queue_lock, flags);
161 	blk_requeue_request(q, cmd->request);
162 	spin_unlock_irqrestore(q->queue_lock, flags);
163 
164 	kblockd_schedule_work(q, &device->requeue_work);
165 
166 	return 0;
167 }
168 
169 /*
170  * Function:    scsi_queue_insert()
171  *
172  * Purpose:     Insert a command in the midlevel queue.
173  *
174  * Arguments:   cmd    - command that we are adding to queue.
175  *              reason - why we are inserting command to queue.
176  *
177  * Lock status: Assumed that lock is not held upon entry.
178  *
179  * Returns:     Nothing.
180  *
181  * Notes:       We do this for one of two cases.  Either the host is busy
182  *              and it cannot accept any more commands for the time being,
183  *              or the device returned QUEUE_FULL and can accept no more
184  *              commands.
185  * Notes:       This could be called either from an interrupt context or a
186  *              normal process context.
187  */
188 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
189 {
190 	return __scsi_queue_insert(cmd, reason, 1);
191 }
192 /**
193  * scsi_execute - insert request and wait for the result
194  * @sdev:	scsi device
195  * @cmd:	scsi command
196  * @data_direction: data direction
197  * @buffer:	data buffer
198  * @bufflen:	len of buffer
199  * @sense:	optional sense buffer
200  * @timeout:	request timeout in seconds
201  * @retries:	number of times to retry request
202  * @flags:	or into request flags;
203  * @resid:	optional residual length
204  *
205  * returns the req->errors value which is the scsi_cmnd result
206  * field.
207  */
208 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
209 		 int data_direction, void *buffer, unsigned bufflen,
210 		 unsigned char *sense, int timeout, int retries, int flags,
211 		 int *resid)
212 {
213 	struct request *req;
214 	int write = (data_direction == DMA_TO_DEVICE);
215 	int ret = DRIVER_ERROR << 24;
216 
217 	req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
218 	if (!req)
219 		return ret;
220 
221 	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
222 					buffer, bufflen, __GFP_WAIT))
223 		goto out;
224 
225 	req->cmd_len = COMMAND_SIZE(cmd[0]);
226 	memcpy(req->cmd, cmd, req->cmd_len);
227 	req->sense = sense;
228 	req->sense_len = 0;
229 	req->retries = retries;
230 	req->timeout = timeout;
231 	req->cmd_type = REQ_TYPE_BLOCK_PC;
232 	req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
233 
234 	/*
235 	 * head injection *required* here otherwise quiesce won't work
236 	 */
237 	blk_execute_rq(req->q, NULL, req, 1);
238 
239 	/*
240 	 * Some devices (USB mass-storage in particular) may transfer
241 	 * garbage data together with a residue indicating that the data
242 	 * is invalid.  Prevent the garbage from being misinterpreted
243 	 * and prevent security leaks by zeroing out the excess data.
244 	 */
245 	if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
246 		memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
247 
248 	if (resid)
249 		*resid = req->resid_len;
250 	ret = req->errors;
251  out:
252 	blk_put_request(req);
253 
254 	return ret;
255 }
256 EXPORT_SYMBOL(scsi_execute);
257 
258 
259 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
260 		     int data_direction, void *buffer, unsigned bufflen,
261 		     struct scsi_sense_hdr *sshdr, int timeout, int retries,
262 		     int *resid)
263 {
264 	char *sense = NULL;
265 	int result;
266 
267 	if (sshdr) {
268 		sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
269 		if (!sense)
270 			return DRIVER_ERROR << 24;
271 	}
272 	result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
273 			      sense, timeout, retries, 0, resid);
274 	if (sshdr)
275 		scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
276 
277 	kfree(sense);
278 	return result;
279 }
280 EXPORT_SYMBOL(scsi_execute_req);
281 
282 /*
283  * Function:    scsi_init_cmd_errh()
284  *
285  * Purpose:     Initialize cmd fields related to error handling.
286  *
287  * Arguments:   cmd	- command that is ready to be queued.
288  *
289  * Notes:       This function has the job of initializing a number of
290  *              fields related to error handling.   Typically this will
291  *              be called once for each command, as required.
292  */
293 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
294 {
295 	cmd->serial_number = 0;
296 	scsi_set_resid(cmd, 0);
297 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
298 	if (cmd->cmd_len == 0)
299 		cmd->cmd_len = scsi_command_size(cmd->cmnd);
300 }
301 
302 void scsi_device_unbusy(struct scsi_device *sdev)
303 {
304 	struct Scsi_Host *shost = sdev->host;
305 	struct scsi_target *starget = scsi_target(sdev);
306 	unsigned long flags;
307 
308 	spin_lock_irqsave(shost->host_lock, flags);
309 	shost->host_busy--;
310 	starget->target_busy--;
311 	if (unlikely(scsi_host_in_recovery(shost) &&
312 		     (shost->host_failed || shost->host_eh_scheduled)))
313 		scsi_eh_wakeup(shost);
314 	spin_unlock(shost->host_lock);
315 	spin_lock(sdev->request_queue->queue_lock);
316 	sdev->device_busy--;
317 	spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
318 }
319 
320 /*
321  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
322  * and call blk_run_queue for all the scsi_devices on the target -
323  * including current_sdev first.
324  *
325  * Called with *no* scsi locks held.
326  */
327 static void scsi_single_lun_run(struct scsi_device *current_sdev)
328 {
329 	struct Scsi_Host *shost = current_sdev->host;
330 	struct scsi_device *sdev, *tmp;
331 	struct scsi_target *starget = scsi_target(current_sdev);
332 	unsigned long flags;
333 
334 	spin_lock_irqsave(shost->host_lock, flags);
335 	starget->starget_sdev_user = NULL;
336 	spin_unlock_irqrestore(shost->host_lock, flags);
337 
338 	/*
339 	 * Call blk_run_queue for all LUNs on the target, starting with
340 	 * current_sdev. We race with others (to set starget_sdev_user),
341 	 * but in most cases, we will be first. Ideally, each LU on the
342 	 * target would get some limited time or requests on the target.
343 	 */
344 	blk_run_queue(current_sdev->request_queue);
345 
346 	spin_lock_irqsave(shost->host_lock, flags);
347 	if (starget->starget_sdev_user)
348 		goto out;
349 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
350 			same_target_siblings) {
351 		if (sdev == current_sdev)
352 			continue;
353 		if (scsi_device_get(sdev))
354 			continue;
355 
356 		spin_unlock_irqrestore(shost->host_lock, flags);
357 		blk_run_queue(sdev->request_queue);
358 		spin_lock_irqsave(shost->host_lock, flags);
359 
360 		scsi_device_put(sdev);
361 	}
362  out:
363 	spin_unlock_irqrestore(shost->host_lock, flags);
364 }
365 
366 static inline int scsi_device_is_busy(struct scsi_device *sdev)
367 {
368 	if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
369 		return 1;
370 
371 	return 0;
372 }
373 
374 static inline int scsi_target_is_busy(struct scsi_target *starget)
375 {
376 	return ((starget->can_queue > 0 &&
377 		 starget->target_busy >= starget->can_queue) ||
378 		 starget->target_blocked);
379 }
380 
381 static inline int scsi_host_is_busy(struct Scsi_Host *shost)
382 {
383 	if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
384 	    shost->host_blocked || shost->host_self_blocked)
385 		return 1;
386 
387 	return 0;
388 }
389 
390 /*
391  * Function:	scsi_run_queue()
392  *
393  * Purpose:	Select a proper request queue to serve next
394  *
395  * Arguments:	q	- last request's queue
396  *
397  * Returns:     Nothing
398  *
399  * Notes:	The previous command was completely finished, start
400  *		a new one if possible.
401  */
402 static void scsi_run_queue(struct request_queue *q)
403 {
404 	struct scsi_device *sdev = q->queuedata;
405 	struct Scsi_Host *shost;
406 	LIST_HEAD(starved_list);
407 	unsigned long flags;
408 
409 	/* if the device is dead, sdev will be NULL, so no queue to run */
410 	if (!sdev)
411 		return;
412 
413 	shost = sdev->host;
414 	if (scsi_target(sdev)->single_lun)
415 		scsi_single_lun_run(sdev);
416 
417 	spin_lock_irqsave(shost->host_lock, flags);
418 	list_splice_init(&shost->starved_list, &starved_list);
419 
420 	while (!list_empty(&starved_list)) {
421 		/*
422 		 * As long as shost is accepting commands and we have
423 		 * starved queues, call blk_run_queue. scsi_request_fn
424 		 * drops the queue_lock and can add us back to the
425 		 * starved_list.
426 		 *
427 		 * host_lock protects the starved_list and starved_entry.
428 		 * scsi_request_fn must get the host_lock before checking
429 		 * or modifying starved_list or starved_entry.
430 		 */
431 		if (scsi_host_is_busy(shost))
432 			break;
433 
434 		sdev = list_entry(starved_list.next,
435 				  struct scsi_device, starved_entry);
436 		list_del_init(&sdev->starved_entry);
437 		if (scsi_target_is_busy(scsi_target(sdev))) {
438 			list_move_tail(&sdev->starved_entry,
439 				       &shost->starved_list);
440 			continue;
441 		}
442 
443 		spin_unlock(shost->host_lock);
444 		spin_lock(sdev->request_queue->queue_lock);
445 		__blk_run_queue(sdev->request_queue);
446 		spin_unlock(sdev->request_queue->queue_lock);
447 		spin_lock(shost->host_lock);
448 	}
449 	/* put any unprocessed entries back */
450 	list_splice(&starved_list, &shost->starved_list);
451 	spin_unlock_irqrestore(shost->host_lock, flags);
452 
453 	blk_run_queue(q);
454 }
455 
456 void scsi_requeue_run_queue(struct work_struct *work)
457 {
458 	struct scsi_device *sdev;
459 	struct request_queue *q;
460 
461 	sdev = container_of(work, struct scsi_device, requeue_work);
462 	q = sdev->request_queue;
463 	scsi_run_queue(q);
464 }
465 
466 /*
467  * Function:	scsi_requeue_command()
468  *
469  * Purpose:	Handle post-processing of completed commands.
470  *
471  * Arguments:	q	- queue to operate on
472  *		cmd	- command that may need to be requeued.
473  *
474  * Returns:	Nothing
475  *
476  * Notes:	After command completion, there may be blocks left
477  *		over which weren't finished by the previous command
478  *		this can be for a number of reasons - the main one is
479  *		I/O errors in the middle of the request, in which case
480  *		we need to request the blocks that come after the bad
481  *		sector.
482  * Notes:	Upon return, cmd is a stale pointer.
483  */
484 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
485 {
486 	struct request *req = cmd->request;
487 	unsigned long flags;
488 
489 	spin_lock_irqsave(q->queue_lock, flags);
490 	scsi_unprep_request(req);
491 	blk_requeue_request(q, req);
492 	spin_unlock_irqrestore(q->queue_lock, flags);
493 
494 	scsi_run_queue(q);
495 }
496 
497 void scsi_next_command(struct scsi_cmnd *cmd)
498 {
499 	struct scsi_device *sdev = cmd->device;
500 	struct request_queue *q = sdev->request_queue;
501 
502 	/* need to hold a reference on the device before we let go of the cmd */
503 	get_device(&sdev->sdev_gendev);
504 
505 	scsi_put_command(cmd);
506 	scsi_run_queue(q);
507 
508 	/* ok to remove device now */
509 	put_device(&sdev->sdev_gendev);
510 }
511 
512 void scsi_run_host_queues(struct Scsi_Host *shost)
513 {
514 	struct scsi_device *sdev;
515 
516 	shost_for_each_device(sdev, shost)
517 		scsi_run_queue(sdev->request_queue);
518 }
519 
520 static void __scsi_release_buffers(struct scsi_cmnd *, int);
521 
522 /*
523  * Function:    scsi_end_request()
524  *
525  * Purpose:     Post-processing of completed commands (usually invoked at end
526  *		of upper level post-processing and scsi_io_completion).
527  *
528  * Arguments:   cmd	 - command that is complete.
529  *              error    - 0 if I/O indicates success, < 0 for I/O error.
530  *              bytes    - number of bytes of completed I/O
531  *		requeue  - indicates whether we should requeue leftovers.
532  *
533  * Lock status: Assumed that lock is not held upon entry.
534  *
535  * Returns:     cmd if requeue required, NULL otherwise.
536  *
537  * Notes:       This is called for block device requests in order to
538  *              mark some number of sectors as complete.
539  *
540  *		We are guaranteeing that the request queue will be goosed
541  *		at some point during this call.
542  * Notes:	If cmd was requeued, upon return it will be a stale pointer.
543  */
544 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
545 					  int bytes, int requeue)
546 {
547 	struct request_queue *q = cmd->device->request_queue;
548 	struct request *req = cmd->request;
549 
550 	/*
551 	 * If there are blocks left over at the end, set up the command
552 	 * to queue the remainder of them.
553 	 */
554 	if (blk_end_request(req, error, bytes)) {
555 		/* kill remainder if no retrys */
556 		if (error && scsi_noretry_cmd(cmd))
557 			blk_end_request_all(req, error);
558 		else {
559 			if (requeue) {
560 				/*
561 				 * Bleah.  Leftovers again.  Stick the
562 				 * leftovers in the front of the
563 				 * queue, and goose the queue again.
564 				 */
565 				scsi_release_buffers(cmd);
566 				scsi_requeue_command(q, cmd);
567 				cmd = NULL;
568 			}
569 			return cmd;
570 		}
571 	}
572 
573 	/*
574 	 * This will goose the queue request function at the end, so we don't
575 	 * need to worry about launching another command.
576 	 */
577 	__scsi_release_buffers(cmd, 0);
578 	scsi_next_command(cmd);
579 	return NULL;
580 }
581 
582 static inline unsigned int scsi_sgtable_index(unsigned short nents)
583 {
584 	unsigned int index;
585 
586 	BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
587 
588 	if (nents <= 8)
589 		index = 0;
590 	else
591 		index = get_count_order(nents) - 3;
592 
593 	return index;
594 }
595 
596 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
597 {
598 	struct scsi_host_sg_pool *sgp;
599 
600 	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
601 	mempool_free(sgl, sgp->pool);
602 }
603 
604 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
605 {
606 	struct scsi_host_sg_pool *sgp;
607 
608 	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
609 	return mempool_alloc(sgp->pool, gfp_mask);
610 }
611 
612 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
613 			      gfp_t gfp_mask)
614 {
615 	int ret;
616 
617 	BUG_ON(!nents);
618 
619 	ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
620 			       gfp_mask, scsi_sg_alloc);
621 	if (unlikely(ret))
622 		__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
623 				scsi_sg_free);
624 
625 	return ret;
626 }
627 
628 static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
629 {
630 	__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
631 }
632 
633 static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check)
634 {
635 
636 	if (cmd->sdb.table.nents)
637 		scsi_free_sgtable(&cmd->sdb);
638 
639 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
640 
641 	if (do_bidi_check && scsi_bidi_cmnd(cmd)) {
642 		struct scsi_data_buffer *bidi_sdb =
643 			cmd->request->next_rq->special;
644 		scsi_free_sgtable(bidi_sdb);
645 		kmem_cache_free(scsi_sdb_cache, bidi_sdb);
646 		cmd->request->next_rq->special = NULL;
647 	}
648 
649 	if (scsi_prot_sg_count(cmd))
650 		scsi_free_sgtable(cmd->prot_sdb);
651 }
652 
653 /*
654  * Function:    scsi_release_buffers()
655  *
656  * Purpose:     Completion processing for block device I/O requests.
657  *
658  * Arguments:   cmd	- command that we are bailing.
659  *
660  * Lock status: Assumed that no lock is held upon entry.
661  *
662  * Returns:     Nothing
663  *
664  * Notes:       In the event that an upper level driver rejects a
665  *		command, we must release resources allocated during
666  *		the __init_io() function.  Primarily this would involve
667  *		the scatter-gather table, and potentially any bounce
668  *		buffers.
669  */
670 void scsi_release_buffers(struct scsi_cmnd *cmd)
671 {
672 	__scsi_release_buffers(cmd, 1);
673 }
674 EXPORT_SYMBOL(scsi_release_buffers);
675 
676 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
677 {
678 	int error = 0;
679 
680 	switch(host_byte(result)) {
681 	case DID_TRANSPORT_FAILFAST:
682 		error = -ENOLINK;
683 		break;
684 	case DID_TARGET_FAILURE:
685 		cmd->result |= (DID_OK << 16);
686 		error = -EREMOTEIO;
687 		break;
688 	case DID_NEXUS_FAILURE:
689 		cmd->result |= (DID_OK << 16);
690 		error = -EBADE;
691 		break;
692 	default:
693 		error = -EIO;
694 		break;
695 	}
696 
697 	return error;
698 }
699 
700 /*
701  * Function:    scsi_io_completion()
702  *
703  * Purpose:     Completion processing for block device I/O requests.
704  *
705  * Arguments:   cmd   - command that is finished.
706  *
707  * Lock status: Assumed that no lock is held upon entry.
708  *
709  * Returns:     Nothing
710  *
711  * Notes:       This function is matched in terms of capabilities to
712  *              the function that created the scatter-gather list.
713  *              In other words, if there are no bounce buffers
714  *              (the normal case for most drivers), we don't need
715  *              the logic to deal with cleaning up afterwards.
716  *
717  *		We must call scsi_end_request().  This will finish off
718  *		the specified number of sectors.  If we are done, the
719  *		command block will be released and the queue function
720  *		will be goosed.  If we are not done then we have to
721  *		figure out what to do next:
722  *
723  *		a) We can call scsi_requeue_command().  The request
724  *		   will be unprepared and put back on the queue.  Then
725  *		   a new command will be created for it.  This should
726  *		   be used if we made forward progress, or if we want
727  *		   to switch from READ(10) to READ(6) for example.
728  *
729  *		b) We can call scsi_queue_insert().  The request will
730  *		   be put back on the queue and retried using the same
731  *		   command as before, possibly after a delay.
732  *
733  *		c) We can call blk_end_request() with -EIO to fail
734  *		   the remainder of the request.
735  */
736 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
737 {
738 	int result = cmd->result;
739 	struct request_queue *q = cmd->device->request_queue;
740 	struct request *req = cmd->request;
741 	int error = 0;
742 	struct scsi_sense_hdr sshdr;
743 	int sense_valid = 0;
744 	int sense_deferred = 0;
745 	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
746 	      ACTION_DELAYED_RETRY} action;
747 	char *description = NULL;
748 
749 	if (result) {
750 		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
751 		if (sense_valid)
752 			sense_deferred = scsi_sense_is_deferred(&sshdr);
753 	}
754 
755 	if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
756 		req->errors = result;
757 		if (result) {
758 			if (sense_valid && req->sense) {
759 				/*
760 				 * SG_IO wants current and deferred errors
761 				 */
762 				int len = 8 + cmd->sense_buffer[7];
763 
764 				if (len > SCSI_SENSE_BUFFERSIZE)
765 					len = SCSI_SENSE_BUFFERSIZE;
766 				memcpy(req->sense, cmd->sense_buffer,  len);
767 				req->sense_len = len;
768 			}
769 			if (!sense_deferred)
770 				error = __scsi_error_from_host_byte(cmd, result);
771 		}
772 
773 		req->resid_len = scsi_get_resid(cmd);
774 
775 		if (scsi_bidi_cmnd(cmd)) {
776 			/*
777 			 * Bidi commands Must be complete as a whole,
778 			 * both sides at once.
779 			 */
780 			req->next_rq->resid_len = scsi_in(cmd)->resid;
781 
782 			scsi_release_buffers(cmd);
783 			blk_end_request_all(req, 0);
784 
785 			scsi_next_command(cmd);
786 			return;
787 		}
788 	}
789 
790 	/* no bidi support for !REQ_TYPE_BLOCK_PC yet */
791 	BUG_ON(blk_bidi_rq(req));
792 
793 	/*
794 	 * Next deal with any sectors which we were able to correctly
795 	 * handle.
796 	 */
797 	SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, "
798 				      "%d bytes done.\n",
799 				      blk_rq_sectors(req), good_bytes));
800 
801 	/*
802 	 * Recovered errors need reporting, but they're always treated
803 	 * as success, so fiddle the result code here.  For BLOCK_PC
804 	 * we already took a copy of the original into rq->errors which
805 	 * is what gets returned to the user
806 	 */
807 	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
808 		/* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
809 		 * print since caller wants ATA registers. Only occurs on
810 		 * SCSI ATA PASS_THROUGH commands when CK_COND=1
811 		 */
812 		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
813 			;
814 		else if (!(req->cmd_flags & REQ_QUIET))
815 			scsi_print_sense("", cmd);
816 		result = 0;
817 		/* BLOCK_PC may have set error */
818 		error = 0;
819 	}
820 
821 	/*
822 	 * A number of bytes were successfully read.  If there
823 	 * are leftovers and there is some kind of error
824 	 * (result != 0), retry the rest.
825 	 */
826 	if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
827 		return;
828 
829 	error = __scsi_error_from_host_byte(cmd, result);
830 
831 	if (host_byte(result) == DID_RESET) {
832 		/* Third party bus reset or reset for error recovery
833 		 * reasons.  Just retry the command and see what
834 		 * happens.
835 		 */
836 		action = ACTION_RETRY;
837 	} else if (sense_valid && !sense_deferred) {
838 		switch (sshdr.sense_key) {
839 		case UNIT_ATTENTION:
840 			if (cmd->device->removable) {
841 				/* Detected disc change.  Set a bit
842 				 * and quietly refuse further access.
843 				 */
844 				cmd->device->changed = 1;
845 				description = "Media Changed";
846 				action = ACTION_FAIL;
847 			} else {
848 				/* Must have been a power glitch, or a
849 				 * bus reset.  Could not have been a
850 				 * media change, so we just retry the
851 				 * command and see what happens.
852 				 */
853 				action = ACTION_RETRY;
854 			}
855 			break;
856 		case ILLEGAL_REQUEST:
857 			/* If we had an ILLEGAL REQUEST returned, then
858 			 * we may have performed an unsupported
859 			 * command.  The only thing this should be
860 			 * would be a ten byte read where only a six
861 			 * byte read was supported.  Also, on a system
862 			 * where READ CAPACITY failed, we may have
863 			 * read past the end of the disk.
864 			 */
865 			if ((cmd->device->use_10_for_rw &&
866 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
867 			    (cmd->cmnd[0] == READ_10 ||
868 			     cmd->cmnd[0] == WRITE_10)) {
869 				/* This will issue a new 6-byte command. */
870 				cmd->device->use_10_for_rw = 0;
871 				action = ACTION_REPREP;
872 			} else if (sshdr.asc == 0x10) /* DIX */ {
873 				description = "Host Data Integrity Failure";
874 				action = ACTION_FAIL;
875 				error = -EILSEQ;
876 			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
877 			} else if ((sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
878 				   (cmd->cmnd[0] == UNMAP ||
879 				    cmd->cmnd[0] == WRITE_SAME_16 ||
880 				    cmd->cmnd[0] == WRITE_SAME)) {
881 				description = "Discard failure";
882 				action = ACTION_FAIL;
883 			} else
884 				action = ACTION_FAIL;
885 			break;
886 		case ABORTED_COMMAND:
887 			action = ACTION_FAIL;
888 			if (sshdr.asc == 0x10) { /* DIF */
889 				description = "Target Data Integrity Failure";
890 				error = -EILSEQ;
891 			}
892 			break;
893 		case NOT_READY:
894 			/* If the device is in the process of becoming
895 			 * ready, or has a temporary blockage, retry.
896 			 */
897 			if (sshdr.asc == 0x04) {
898 				switch (sshdr.ascq) {
899 				case 0x01: /* becoming ready */
900 				case 0x04: /* format in progress */
901 				case 0x05: /* rebuild in progress */
902 				case 0x06: /* recalculation in progress */
903 				case 0x07: /* operation in progress */
904 				case 0x08: /* Long write in progress */
905 				case 0x09: /* self test in progress */
906 				case 0x14: /* space allocation in progress */
907 					action = ACTION_DELAYED_RETRY;
908 					break;
909 				default:
910 					description = "Device not ready";
911 					action = ACTION_FAIL;
912 					break;
913 				}
914 			} else {
915 				description = "Device not ready";
916 				action = ACTION_FAIL;
917 			}
918 			break;
919 		case VOLUME_OVERFLOW:
920 			/* See SSC3rXX or current. */
921 			action = ACTION_FAIL;
922 			break;
923 		default:
924 			description = "Unhandled sense code";
925 			action = ACTION_FAIL;
926 			break;
927 		}
928 	} else {
929 		description = "Unhandled error code";
930 		action = ACTION_FAIL;
931 	}
932 
933 	switch (action) {
934 	case ACTION_FAIL:
935 		/* Give up and fail the remainder of the request */
936 		scsi_release_buffers(cmd);
937 		if (!(req->cmd_flags & REQ_QUIET)) {
938 			if (description)
939 				scmd_printk(KERN_INFO, cmd, "%s\n",
940 					    description);
941 			scsi_print_result(cmd);
942 			if (driver_byte(result) & DRIVER_SENSE)
943 				scsi_print_sense("", cmd);
944 			scsi_print_command(cmd);
945 		}
946 		if (blk_end_request_err(req, error))
947 			scsi_requeue_command(q, cmd);
948 		else
949 			scsi_next_command(cmd);
950 		break;
951 	case ACTION_REPREP:
952 		/* Unprep the request and put it back at the head of the queue.
953 		 * A new command will be prepared and issued.
954 		 */
955 		scsi_release_buffers(cmd);
956 		scsi_requeue_command(q, cmd);
957 		break;
958 	case ACTION_RETRY:
959 		/* Retry the same command immediately */
960 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
961 		break;
962 	case ACTION_DELAYED_RETRY:
963 		/* Retry the same command after a delay */
964 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
965 		break;
966 	}
967 }
968 
969 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
970 			     gfp_t gfp_mask)
971 {
972 	int count;
973 
974 	/*
975 	 * If sg table allocation fails, requeue request later.
976 	 */
977 	if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
978 					gfp_mask))) {
979 		return BLKPREP_DEFER;
980 	}
981 
982 	req->buffer = NULL;
983 
984 	/*
985 	 * Next, walk the list, and fill in the addresses and sizes of
986 	 * each segment.
987 	 */
988 	count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
989 	BUG_ON(count > sdb->table.nents);
990 	sdb->table.nents = count;
991 	sdb->length = blk_rq_bytes(req);
992 	return BLKPREP_OK;
993 }
994 
995 /*
996  * Function:    scsi_init_io()
997  *
998  * Purpose:     SCSI I/O initialize function.
999  *
1000  * Arguments:   cmd   - Command descriptor we wish to initialize
1001  *
1002  * Returns:     0 on success
1003  *		BLKPREP_DEFER if the failure is retryable
1004  *		BLKPREP_KILL if the failure is fatal
1005  */
1006 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1007 {
1008 	struct request *rq = cmd->request;
1009 
1010 	int error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask);
1011 	if (error)
1012 		goto err_exit;
1013 
1014 	if (blk_bidi_rq(rq)) {
1015 		struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
1016 			scsi_sdb_cache, GFP_ATOMIC);
1017 		if (!bidi_sdb) {
1018 			error = BLKPREP_DEFER;
1019 			goto err_exit;
1020 		}
1021 
1022 		rq->next_rq->special = bidi_sdb;
1023 		error = scsi_init_sgtable(rq->next_rq, bidi_sdb, GFP_ATOMIC);
1024 		if (error)
1025 			goto err_exit;
1026 	}
1027 
1028 	if (blk_integrity_rq(rq)) {
1029 		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1030 		int ivecs, count;
1031 
1032 		BUG_ON(prot_sdb == NULL);
1033 		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1034 
1035 		if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
1036 			error = BLKPREP_DEFER;
1037 			goto err_exit;
1038 		}
1039 
1040 		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1041 						prot_sdb->table.sgl);
1042 		BUG_ON(unlikely(count > ivecs));
1043 		BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1044 
1045 		cmd->prot_sdb = prot_sdb;
1046 		cmd->prot_sdb->table.nents = count;
1047 	}
1048 
1049 	return BLKPREP_OK ;
1050 
1051 err_exit:
1052 	scsi_release_buffers(cmd);
1053 	cmd->request->special = NULL;
1054 	scsi_put_command(cmd);
1055 	return error;
1056 }
1057 EXPORT_SYMBOL(scsi_init_io);
1058 
1059 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1060 		struct request *req)
1061 {
1062 	struct scsi_cmnd *cmd;
1063 
1064 	if (!req->special) {
1065 		cmd = scsi_get_command(sdev, GFP_ATOMIC);
1066 		if (unlikely(!cmd))
1067 			return NULL;
1068 		req->special = cmd;
1069 	} else {
1070 		cmd = req->special;
1071 	}
1072 
1073 	/* pull a tag out of the request if we have one */
1074 	cmd->tag = req->tag;
1075 	cmd->request = req;
1076 
1077 	cmd->cmnd = req->cmd;
1078 	cmd->prot_op = SCSI_PROT_NORMAL;
1079 
1080 	return cmd;
1081 }
1082 
1083 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1084 {
1085 	struct scsi_cmnd *cmd;
1086 	int ret = scsi_prep_state_check(sdev, req);
1087 
1088 	if (ret != BLKPREP_OK)
1089 		return ret;
1090 
1091 	cmd = scsi_get_cmd_from_req(sdev, req);
1092 	if (unlikely(!cmd))
1093 		return BLKPREP_DEFER;
1094 
1095 	/*
1096 	 * BLOCK_PC requests may transfer data, in which case they must
1097 	 * a bio attached to them.  Or they might contain a SCSI command
1098 	 * that does not transfer data, in which case they may optionally
1099 	 * submit a request without an attached bio.
1100 	 */
1101 	if (req->bio) {
1102 		int ret;
1103 
1104 		BUG_ON(!req->nr_phys_segments);
1105 
1106 		ret = scsi_init_io(cmd, GFP_ATOMIC);
1107 		if (unlikely(ret))
1108 			return ret;
1109 	} else {
1110 		BUG_ON(blk_rq_bytes(req));
1111 
1112 		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1113 		req->buffer = NULL;
1114 	}
1115 
1116 	cmd->cmd_len = req->cmd_len;
1117 	if (!blk_rq_bytes(req))
1118 		cmd->sc_data_direction = DMA_NONE;
1119 	else if (rq_data_dir(req) == WRITE)
1120 		cmd->sc_data_direction = DMA_TO_DEVICE;
1121 	else
1122 		cmd->sc_data_direction = DMA_FROM_DEVICE;
1123 
1124 	cmd->transfersize = blk_rq_bytes(req);
1125 	cmd->allowed = req->retries;
1126 	return BLKPREP_OK;
1127 }
1128 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1129 
1130 /*
1131  * Setup a REQ_TYPE_FS command.  These are simple read/write request
1132  * from filesystems that still need to be translated to SCSI CDBs from
1133  * the ULD.
1134  */
1135 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1136 {
1137 	struct scsi_cmnd *cmd;
1138 	int ret = scsi_prep_state_check(sdev, req);
1139 
1140 	if (ret != BLKPREP_OK)
1141 		return ret;
1142 
1143 	if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1144 			 && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1145 		ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1146 		if (ret != BLKPREP_OK)
1147 			return ret;
1148 	}
1149 
1150 	/*
1151 	 * Filesystem requests must transfer data.
1152 	 */
1153 	BUG_ON(!req->nr_phys_segments);
1154 
1155 	cmd = scsi_get_cmd_from_req(sdev, req);
1156 	if (unlikely(!cmd))
1157 		return BLKPREP_DEFER;
1158 
1159 	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1160 	return scsi_init_io(cmd, GFP_ATOMIC);
1161 }
1162 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1163 
1164 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1165 {
1166 	int ret = BLKPREP_OK;
1167 
1168 	/*
1169 	 * If the device is not in running state we will reject some
1170 	 * or all commands.
1171 	 */
1172 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1173 		switch (sdev->sdev_state) {
1174 		case SDEV_OFFLINE:
1175 			/*
1176 			 * If the device is offline we refuse to process any
1177 			 * commands.  The device must be brought online
1178 			 * before trying any recovery commands.
1179 			 */
1180 			sdev_printk(KERN_ERR, sdev,
1181 				    "rejecting I/O to offline device\n");
1182 			ret = BLKPREP_KILL;
1183 			break;
1184 		case SDEV_DEL:
1185 			/*
1186 			 * If the device is fully deleted, we refuse to
1187 			 * process any commands as well.
1188 			 */
1189 			sdev_printk(KERN_ERR, sdev,
1190 				    "rejecting I/O to dead device\n");
1191 			ret = BLKPREP_KILL;
1192 			break;
1193 		case SDEV_QUIESCE:
1194 		case SDEV_BLOCK:
1195 		case SDEV_CREATED_BLOCK:
1196 			/*
1197 			 * If the devices is blocked we defer normal commands.
1198 			 */
1199 			if (!(req->cmd_flags & REQ_PREEMPT))
1200 				ret = BLKPREP_DEFER;
1201 			break;
1202 		default:
1203 			/*
1204 			 * For any other not fully online state we only allow
1205 			 * special commands.  In particular any user initiated
1206 			 * command is not allowed.
1207 			 */
1208 			if (!(req->cmd_flags & REQ_PREEMPT))
1209 				ret = BLKPREP_KILL;
1210 			break;
1211 		}
1212 	}
1213 	return ret;
1214 }
1215 EXPORT_SYMBOL(scsi_prep_state_check);
1216 
1217 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1218 {
1219 	struct scsi_device *sdev = q->queuedata;
1220 
1221 	switch (ret) {
1222 	case BLKPREP_KILL:
1223 		req->errors = DID_NO_CONNECT << 16;
1224 		/* release the command and kill it */
1225 		if (req->special) {
1226 			struct scsi_cmnd *cmd = req->special;
1227 			scsi_release_buffers(cmd);
1228 			scsi_put_command(cmd);
1229 			req->special = NULL;
1230 		}
1231 		break;
1232 	case BLKPREP_DEFER:
1233 		/*
1234 		 * If we defer, the blk_peek_request() returns NULL, but the
1235 		 * queue must be restarted, so we schedule a callback to happen
1236 		 * shortly.
1237 		 */
1238 		if (sdev->device_busy == 0)
1239 			blk_delay_queue(q, SCSI_QUEUE_DELAY);
1240 		break;
1241 	default:
1242 		req->cmd_flags |= REQ_DONTPREP;
1243 	}
1244 
1245 	return ret;
1246 }
1247 EXPORT_SYMBOL(scsi_prep_return);
1248 
1249 int scsi_prep_fn(struct request_queue *q, struct request *req)
1250 {
1251 	struct scsi_device *sdev = q->queuedata;
1252 	int ret = BLKPREP_KILL;
1253 
1254 	if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1255 		ret = scsi_setup_blk_pc_cmnd(sdev, req);
1256 	return scsi_prep_return(q, req, ret);
1257 }
1258 EXPORT_SYMBOL(scsi_prep_fn);
1259 
1260 /*
1261  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1262  * return 0.
1263  *
1264  * Called with the queue_lock held.
1265  */
1266 static inline int scsi_dev_queue_ready(struct request_queue *q,
1267 				  struct scsi_device *sdev)
1268 {
1269 	if (sdev->device_busy == 0 && sdev->device_blocked) {
1270 		/*
1271 		 * unblock after device_blocked iterates to zero
1272 		 */
1273 		if (--sdev->device_blocked == 0) {
1274 			SCSI_LOG_MLQUEUE(3,
1275 				   sdev_printk(KERN_INFO, sdev,
1276 				   "unblocking device at zero depth\n"));
1277 		} else {
1278 			blk_delay_queue(q, SCSI_QUEUE_DELAY);
1279 			return 0;
1280 		}
1281 	}
1282 	if (scsi_device_is_busy(sdev))
1283 		return 0;
1284 
1285 	return 1;
1286 }
1287 
1288 
1289 /*
1290  * scsi_target_queue_ready: checks if there we can send commands to target
1291  * @sdev: scsi device on starget to check.
1292  *
1293  * Called with the host lock held.
1294  */
1295 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1296 					   struct scsi_device *sdev)
1297 {
1298 	struct scsi_target *starget = scsi_target(sdev);
1299 
1300 	if (starget->single_lun) {
1301 		if (starget->starget_sdev_user &&
1302 		    starget->starget_sdev_user != sdev)
1303 			return 0;
1304 		starget->starget_sdev_user = sdev;
1305 	}
1306 
1307 	if (starget->target_busy == 0 && starget->target_blocked) {
1308 		/*
1309 		 * unblock after target_blocked iterates to zero
1310 		 */
1311 		if (--starget->target_blocked == 0) {
1312 			SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1313 					 "unblocking target at zero depth\n"));
1314 		} else
1315 			return 0;
1316 	}
1317 
1318 	if (scsi_target_is_busy(starget)) {
1319 		if (list_empty(&sdev->starved_entry))
1320 			list_add_tail(&sdev->starved_entry,
1321 				      &shost->starved_list);
1322 		return 0;
1323 	}
1324 
1325 	/* We're OK to process the command, so we can't be starved */
1326 	if (!list_empty(&sdev->starved_entry))
1327 		list_del_init(&sdev->starved_entry);
1328 	return 1;
1329 }
1330 
1331 /*
1332  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1333  * return 0. We must end up running the queue again whenever 0 is
1334  * returned, else IO can hang.
1335  *
1336  * Called with host_lock held.
1337  */
1338 static inline int scsi_host_queue_ready(struct request_queue *q,
1339 				   struct Scsi_Host *shost,
1340 				   struct scsi_device *sdev)
1341 {
1342 	if (scsi_host_in_recovery(shost))
1343 		return 0;
1344 	if (shost->host_busy == 0 && shost->host_blocked) {
1345 		/*
1346 		 * unblock after host_blocked iterates to zero
1347 		 */
1348 		if (--shost->host_blocked == 0) {
1349 			SCSI_LOG_MLQUEUE(3,
1350 				printk("scsi%d unblocking host at zero depth\n",
1351 					shost->host_no));
1352 		} else {
1353 			return 0;
1354 		}
1355 	}
1356 	if (scsi_host_is_busy(shost)) {
1357 		if (list_empty(&sdev->starved_entry))
1358 			list_add_tail(&sdev->starved_entry, &shost->starved_list);
1359 		return 0;
1360 	}
1361 
1362 	/* We're OK to process the command, so we can't be starved */
1363 	if (!list_empty(&sdev->starved_entry))
1364 		list_del_init(&sdev->starved_entry);
1365 
1366 	return 1;
1367 }
1368 
1369 /*
1370  * Busy state exporting function for request stacking drivers.
1371  *
1372  * For efficiency, no lock is taken to check the busy state of
1373  * shost/starget/sdev, since the returned value is not guaranteed and
1374  * may be changed after request stacking drivers call the function,
1375  * regardless of taking lock or not.
1376  *
1377  * When scsi can't dispatch I/Os anymore and needs to kill I/Os
1378  * (e.g. !sdev), scsi needs to return 'not busy'.
1379  * Otherwise, request stacking drivers may hold requests forever.
1380  */
1381 static int scsi_lld_busy(struct request_queue *q)
1382 {
1383 	struct scsi_device *sdev = q->queuedata;
1384 	struct Scsi_Host *shost;
1385 	struct scsi_target *starget;
1386 
1387 	if (!sdev)
1388 		return 0;
1389 
1390 	shost = sdev->host;
1391 	starget = scsi_target(sdev);
1392 
1393 	if (scsi_host_in_recovery(shost) || scsi_host_is_busy(shost) ||
1394 	    scsi_target_is_busy(starget) || scsi_device_is_busy(sdev))
1395 		return 1;
1396 
1397 	return 0;
1398 }
1399 
1400 /*
1401  * Kill a request for a dead device
1402  */
1403 static void scsi_kill_request(struct request *req, struct request_queue *q)
1404 {
1405 	struct scsi_cmnd *cmd = req->special;
1406 	struct scsi_device *sdev;
1407 	struct scsi_target *starget;
1408 	struct Scsi_Host *shost;
1409 
1410 	blk_start_request(req);
1411 
1412 	sdev = cmd->device;
1413 	starget = scsi_target(sdev);
1414 	shost = sdev->host;
1415 	scsi_init_cmd_errh(cmd);
1416 	cmd->result = DID_NO_CONNECT << 16;
1417 	atomic_inc(&cmd->device->iorequest_cnt);
1418 
1419 	/*
1420 	 * SCSI request completion path will do scsi_device_unbusy(),
1421 	 * bump busy counts.  To bump the counters, we need to dance
1422 	 * with the locks as normal issue path does.
1423 	 */
1424 	sdev->device_busy++;
1425 	spin_unlock(sdev->request_queue->queue_lock);
1426 	spin_lock(shost->host_lock);
1427 	shost->host_busy++;
1428 	starget->target_busy++;
1429 	spin_unlock(shost->host_lock);
1430 	spin_lock(sdev->request_queue->queue_lock);
1431 
1432 	blk_complete_request(req);
1433 }
1434 
1435 static void scsi_softirq_done(struct request *rq)
1436 {
1437 	struct scsi_cmnd *cmd = rq->special;
1438 	unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1439 	int disposition;
1440 
1441 	INIT_LIST_HEAD(&cmd->eh_entry);
1442 
1443 	atomic_inc(&cmd->device->iodone_cnt);
1444 	if (cmd->result)
1445 		atomic_inc(&cmd->device->ioerr_cnt);
1446 
1447 	disposition = scsi_decide_disposition(cmd);
1448 	if (disposition != SUCCESS &&
1449 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1450 		sdev_printk(KERN_ERR, cmd->device,
1451 			    "timing out command, waited %lus\n",
1452 			    wait_for/HZ);
1453 		disposition = SUCCESS;
1454 	}
1455 
1456 	scsi_log_completion(cmd, disposition);
1457 
1458 	switch (disposition) {
1459 		case SUCCESS:
1460 			scsi_finish_command(cmd);
1461 			break;
1462 		case NEEDS_RETRY:
1463 			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1464 			break;
1465 		case ADD_TO_MLQUEUE:
1466 			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1467 			break;
1468 		default:
1469 			if (!scsi_eh_scmd_add(cmd, 0))
1470 				scsi_finish_command(cmd);
1471 	}
1472 }
1473 
1474 /*
1475  * Function:    scsi_request_fn()
1476  *
1477  * Purpose:     Main strategy routine for SCSI.
1478  *
1479  * Arguments:   q       - Pointer to actual queue.
1480  *
1481  * Returns:     Nothing
1482  *
1483  * Lock status: IO request lock assumed to be held when called.
1484  */
1485 static void scsi_request_fn(struct request_queue *q)
1486 {
1487 	struct scsi_device *sdev = q->queuedata;
1488 	struct Scsi_Host *shost;
1489 	struct scsi_cmnd *cmd;
1490 	struct request *req;
1491 
1492 	if (!sdev) {
1493 		printk("scsi: killing requests for dead queue\n");
1494 		while ((req = blk_peek_request(q)) != NULL)
1495 			scsi_kill_request(req, q);
1496 		return;
1497 	}
1498 
1499 	if(!get_device(&sdev->sdev_gendev))
1500 		/* We must be tearing the block queue down already */
1501 		return;
1502 
1503 	/*
1504 	 * To start with, we keep looping until the queue is empty, or until
1505 	 * the host is no longer able to accept any more requests.
1506 	 */
1507 	shost = sdev->host;
1508 	for (;;) {
1509 		int rtn;
1510 		/*
1511 		 * get next queueable request.  We do this early to make sure
1512 		 * that the request is fully prepared even if we cannot
1513 		 * accept it.
1514 		 */
1515 		req = blk_peek_request(q);
1516 		if (!req || !scsi_dev_queue_ready(q, sdev))
1517 			break;
1518 
1519 		if (unlikely(!scsi_device_online(sdev))) {
1520 			sdev_printk(KERN_ERR, sdev,
1521 				    "rejecting I/O to offline device\n");
1522 			scsi_kill_request(req, q);
1523 			continue;
1524 		}
1525 
1526 
1527 		/*
1528 		 * Remove the request from the request list.
1529 		 */
1530 		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1531 			blk_start_request(req);
1532 		sdev->device_busy++;
1533 
1534 		spin_unlock(q->queue_lock);
1535 		cmd = req->special;
1536 		if (unlikely(cmd == NULL)) {
1537 			printk(KERN_CRIT "impossible request in %s.\n"
1538 					 "please mail a stack trace to "
1539 					 "linux-scsi@vger.kernel.org\n",
1540 					 __func__);
1541 			blk_dump_rq_flags(req, "foo");
1542 			BUG();
1543 		}
1544 		spin_lock(shost->host_lock);
1545 
1546 		/*
1547 		 * We hit this when the driver is using a host wide
1548 		 * tag map. For device level tag maps the queue_depth check
1549 		 * in the device ready fn would prevent us from trying
1550 		 * to allocate a tag. Since the map is a shared host resource
1551 		 * we add the dev to the starved list so it eventually gets
1552 		 * a run when a tag is freed.
1553 		 */
1554 		if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1555 			if (list_empty(&sdev->starved_entry))
1556 				list_add_tail(&sdev->starved_entry,
1557 					      &shost->starved_list);
1558 			goto not_ready;
1559 		}
1560 
1561 		if (!scsi_target_queue_ready(shost, sdev))
1562 			goto not_ready;
1563 
1564 		if (!scsi_host_queue_ready(q, shost, sdev))
1565 			goto not_ready;
1566 
1567 		scsi_target(sdev)->target_busy++;
1568 		shost->host_busy++;
1569 
1570 		/*
1571 		 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1572 		 *		take the lock again.
1573 		 */
1574 		spin_unlock_irq(shost->host_lock);
1575 
1576 		/*
1577 		 * Finally, initialize any error handling parameters, and set up
1578 		 * the timers for timeouts.
1579 		 */
1580 		scsi_init_cmd_errh(cmd);
1581 
1582 		/*
1583 		 * Dispatch the command to the low-level driver.
1584 		 */
1585 		rtn = scsi_dispatch_cmd(cmd);
1586 		spin_lock_irq(q->queue_lock);
1587 		if (rtn)
1588 			goto out_delay;
1589 	}
1590 
1591 	goto out;
1592 
1593  not_ready:
1594 	spin_unlock_irq(shost->host_lock);
1595 
1596 	/*
1597 	 * lock q, handle tag, requeue req, and decrement device_busy. We
1598 	 * must return with queue_lock held.
1599 	 *
1600 	 * Decrementing device_busy without checking it is OK, as all such
1601 	 * cases (host limits or settings) should run the queue at some
1602 	 * later time.
1603 	 */
1604 	spin_lock_irq(q->queue_lock);
1605 	blk_requeue_request(q, req);
1606 	sdev->device_busy--;
1607 out_delay:
1608 	if (sdev->device_busy == 0)
1609 		blk_delay_queue(q, SCSI_QUEUE_DELAY);
1610 out:
1611 	/* must be careful here...if we trigger the ->remove() function
1612 	 * we cannot be holding the q lock */
1613 	spin_unlock_irq(q->queue_lock);
1614 	put_device(&sdev->sdev_gendev);
1615 	spin_lock_irq(q->queue_lock);
1616 }
1617 
1618 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1619 {
1620 	struct device *host_dev;
1621 	u64 bounce_limit = 0xffffffff;
1622 
1623 	if (shost->unchecked_isa_dma)
1624 		return BLK_BOUNCE_ISA;
1625 	/*
1626 	 * Platforms with virtual-DMA translation
1627 	 * hardware have no practical limit.
1628 	 */
1629 	if (!PCI_DMA_BUS_IS_PHYS)
1630 		return BLK_BOUNCE_ANY;
1631 
1632 	host_dev = scsi_get_device(shost);
1633 	if (host_dev && host_dev->dma_mask)
1634 		bounce_limit = *host_dev->dma_mask;
1635 
1636 	return bounce_limit;
1637 }
1638 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1639 
1640 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1641 					 request_fn_proc *request_fn)
1642 {
1643 	struct request_queue *q;
1644 	struct device *dev = shost->shost_gendev.parent;
1645 
1646 	q = blk_init_queue(request_fn, NULL);
1647 	if (!q)
1648 		return NULL;
1649 
1650 	/*
1651 	 * this limit is imposed by hardware restrictions
1652 	 */
1653 	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1654 					SCSI_MAX_SG_CHAIN_SEGMENTS));
1655 
1656 	if (scsi_host_prot_dma(shost)) {
1657 		shost->sg_prot_tablesize =
1658 			min_not_zero(shost->sg_prot_tablesize,
1659 				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1660 		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1661 		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1662 	}
1663 
1664 	blk_queue_max_hw_sectors(q, shost->max_sectors);
1665 	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1666 	blk_queue_segment_boundary(q, shost->dma_boundary);
1667 	dma_set_seg_boundary(dev, shost->dma_boundary);
1668 
1669 	blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1670 
1671 	if (!shost->use_clustering)
1672 		q->limits.cluster = 0;
1673 
1674 	/*
1675 	 * set a reasonable default alignment on word boundaries: the
1676 	 * host and device may alter it using
1677 	 * blk_queue_update_dma_alignment() later.
1678 	 */
1679 	blk_queue_dma_alignment(q, 0x03);
1680 
1681 	return q;
1682 }
1683 EXPORT_SYMBOL(__scsi_alloc_queue);
1684 
1685 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1686 {
1687 	struct request_queue *q;
1688 
1689 	q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1690 	if (!q)
1691 		return NULL;
1692 
1693 	blk_queue_prep_rq(q, scsi_prep_fn);
1694 	blk_queue_softirq_done(q, scsi_softirq_done);
1695 	blk_queue_rq_timed_out(q, scsi_times_out);
1696 	blk_queue_lld_busy(q, scsi_lld_busy);
1697 	return q;
1698 }
1699 
1700 void scsi_free_queue(struct request_queue *q)
1701 {
1702 	unsigned long flags;
1703 
1704 	WARN_ON(q->queuedata);
1705 
1706 	/* cause scsi_request_fn() to kill all non-finished requests */
1707 	spin_lock_irqsave(q->queue_lock, flags);
1708 	q->request_fn(q);
1709 	spin_unlock_irqrestore(q->queue_lock, flags);
1710 
1711 	blk_cleanup_queue(q);
1712 }
1713 
1714 /*
1715  * Function:    scsi_block_requests()
1716  *
1717  * Purpose:     Utility function used by low-level drivers to prevent further
1718  *		commands from being queued to the device.
1719  *
1720  * Arguments:   shost       - Host in question
1721  *
1722  * Returns:     Nothing
1723  *
1724  * Lock status: No locks are assumed held.
1725  *
1726  * Notes:       There is no timer nor any other means by which the requests
1727  *		get unblocked other than the low-level driver calling
1728  *		scsi_unblock_requests().
1729  */
1730 void scsi_block_requests(struct Scsi_Host *shost)
1731 {
1732 	shost->host_self_blocked = 1;
1733 }
1734 EXPORT_SYMBOL(scsi_block_requests);
1735 
1736 /*
1737  * Function:    scsi_unblock_requests()
1738  *
1739  * Purpose:     Utility function used by low-level drivers to allow further
1740  *		commands from being queued to the device.
1741  *
1742  * Arguments:   shost       - Host in question
1743  *
1744  * Returns:     Nothing
1745  *
1746  * Lock status: No locks are assumed held.
1747  *
1748  * Notes:       There is no timer nor any other means by which the requests
1749  *		get unblocked other than the low-level driver calling
1750  *		scsi_unblock_requests().
1751  *
1752  *		This is done as an API function so that changes to the
1753  *		internals of the scsi mid-layer won't require wholesale
1754  *		changes to drivers that use this feature.
1755  */
1756 void scsi_unblock_requests(struct Scsi_Host *shost)
1757 {
1758 	shost->host_self_blocked = 0;
1759 	scsi_run_host_queues(shost);
1760 }
1761 EXPORT_SYMBOL(scsi_unblock_requests);
1762 
1763 int __init scsi_init_queue(void)
1764 {
1765 	int i;
1766 
1767 	scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1768 					   sizeof(struct scsi_data_buffer),
1769 					   0, 0, NULL);
1770 	if (!scsi_sdb_cache) {
1771 		printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1772 		return -ENOMEM;
1773 	}
1774 
1775 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1776 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1777 		int size = sgp->size * sizeof(struct scatterlist);
1778 
1779 		sgp->slab = kmem_cache_create(sgp->name, size, 0,
1780 				SLAB_HWCACHE_ALIGN, NULL);
1781 		if (!sgp->slab) {
1782 			printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1783 					sgp->name);
1784 			goto cleanup_sdb;
1785 		}
1786 
1787 		sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1788 						     sgp->slab);
1789 		if (!sgp->pool) {
1790 			printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1791 					sgp->name);
1792 			goto cleanup_sdb;
1793 		}
1794 	}
1795 
1796 	return 0;
1797 
1798 cleanup_sdb:
1799 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1800 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1801 		if (sgp->pool)
1802 			mempool_destroy(sgp->pool);
1803 		if (sgp->slab)
1804 			kmem_cache_destroy(sgp->slab);
1805 	}
1806 	kmem_cache_destroy(scsi_sdb_cache);
1807 
1808 	return -ENOMEM;
1809 }
1810 
1811 void scsi_exit_queue(void)
1812 {
1813 	int i;
1814 
1815 	kmem_cache_destroy(scsi_sdb_cache);
1816 
1817 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1818 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1819 		mempool_destroy(sgp->pool);
1820 		kmem_cache_destroy(sgp->slab);
1821 	}
1822 }
1823 
1824 /**
1825  *	scsi_mode_select - issue a mode select
1826  *	@sdev:	SCSI device to be queried
1827  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
1828  *	@sp:	Save page bit (0 == don't save, 1 == save)
1829  *	@modepage: mode page being requested
1830  *	@buffer: request buffer (may not be smaller than eight bytes)
1831  *	@len:	length of request buffer.
1832  *	@timeout: command timeout
1833  *	@retries: number of retries before failing
1834  *	@data: returns a structure abstracting the mode header data
1835  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1836  *		must be SCSI_SENSE_BUFFERSIZE big.
1837  *
1838  *	Returns zero if successful; negative error number or scsi
1839  *	status on error
1840  *
1841  */
1842 int
1843 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1844 		 unsigned char *buffer, int len, int timeout, int retries,
1845 		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1846 {
1847 	unsigned char cmd[10];
1848 	unsigned char *real_buffer;
1849 	int ret;
1850 
1851 	memset(cmd, 0, sizeof(cmd));
1852 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1853 
1854 	if (sdev->use_10_for_ms) {
1855 		if (len > 65535)
1856 			return -EINVAL;
1857 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
1858 		if (!real_buffer)
1859 			return -ENOMEM;
1860 		memcpy(real_buffer + 8, buffer, len);
1861 		len += 8;
1862 		real_buffer[0] = 0;
1863 		real_buffer[1] = 0;
1864 		real_buffer[2] = data->medium_type;
1865 		real_buffer[3] = data->device_specific;
1866 		real_buffer[4] = data->longlba ? 0x01 : 0;
1867 		real_buffer[5] = 0;
1868 		real_buffer[6] = data->block_descriptor_length >> 8;
1869 		real_buffer[7] = data->block_descriptor_length;
1870 
1871 		cmd[0] = MODE_SELECT_10;
1872 		cmd[7] = len >> 8;
1873 		cmd[8] = len;
1874 	} else {
1875 		if (len > 255 || data->block_descriptor_length > 255 ||
1876 		    data->longlba)
1877 			return -EINVAL;
1878 
1879 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
1880 		if (!real_buffer)
1881 			return -ENOMEM;
1882 		memcpy(real_buffer + 4, buffer, len);
1883 		len += 4;
1884 		real_buffer[0] = 0;
1885 		real_buffer[1] = data->medium_type;
1886 		real_buffer[2] = data->device_specific;
1887 		real_buffer[3] = data->block_descriptor_length;
1888 
1889 
1890 		cmd[0] = MODE_SELECT;
1891 		cmd[4] = len;
1892 	}
1893 
1894 	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1895 			       sshdr, timeout, retries, NULL);
1896 	kfree(real_buffer);
1897 	return ret;
1898 }
1899 EXPORT_SYMBOL_GPL(scsi_mode_select);
1900 
1901 /**
1902  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1903  *	@sdev:	SCSI device to be queried
1904  *	@dbd:	set if mode sense will allow block descriptors to be returned
1905  *	@modepage: mode page being requested
1906  *	@buffer: request buffer (may not be smaller than eight bytes)
1907  *	@len:	length of request buffer.
1908  *	@timeout: command timeout
1909  *	@retries: number of retries before failing
1910  *	@data: returns a structure abstracting the mode header data
1911  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1912  *		must be SCSI_SENSE_BUFFERSIZE big.
1913  *
1914  *	Returns zero if unsuccessful, or the header offset (either 4
1915  *	or 8 depending on whether a six or ten byte command was
1916  *	issued) if successful.
1917  */
1918 int
1919 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1920 		  unsigned char *buffer, int len, int timeout, int retries,
1921 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1922 {
1923 	unsigned char cmd[12];
1924 	int use_10_for_ms;
1925 	int header_length;
1926 	int result;
1927 	struct scsi_sense_hdr my_sshdr;
1928 
1929 	memset(data, 0, sizeof(*data));
1930 	memset(&cmd[0], 0, 12);
1931 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
1932 	cmd[2] = modepage;
1933 
1934 	/* caller might not be interested in sense, but we need it */
1935 	if (!sshdr)
1936 		sshdr = &my_sshdr;
1937 
1938  retry:
1939 	use_10_for_ms = sdev->use_10_for_ms;
1940 
1941 	if (use_10_for_ms) {
1942 		if (len < 8)
1943 			len = 8;
1944 
1945 		cmd[0] = MODE_SENSE_10;
1946 		cmd[8] = len;
1947 		header_length = 8;
1948 	} else {
1949 		if (len < 4)
1950 			len = 4;
1951 
1952 		cmd[0] = MODE_SENSE;
1953 		cmd[4] = len;
1954 		header_length = 4;
1955 	}
1956 
1957 	memset(buffer, 0, len);
1958 
1959 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1960 				  sshdr, timeout, retries, NULL);
1961 
1962 	/* This code looks awful: what it's doing is making sure an
1963 	 * ILLEGAL REQUEST sense return identifies the actual command
1964 	 * byte as the problem.  MODE_SENSE commands can return
1965 	 * ILLEGAL REQUEST if the code page isn't supported */
1966 
1967 	if (use_10_for_ms && !scsi_status_is_good(result) &&
1968 	    (driver_byte(result) & DRIVER_SENSE)) {
1969 		if (scsi_sense_valid(sshdr)) {
1970 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1971 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1972 				/*
1973 				 * Invalid command operation code
1974 				 */
1975 				sdev->use_10_for_ms = 0;
1976 				goto retry;
1977 			}
1978 		}
1979 	}
1980 
1981 	if(scsi_status_is_good(result)) {
1982 		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1983 			     (modepage == 6 || modepage == 8))) {
1984 			/* Initio breakage? */
1985 			header_length = 0;
1986 			data->length = 13;
1987 			data->medium_type = 0;
1988 			data->device_specific = 0;
1989 			data->longlba = 0;
1990 			data->block_descriptor_length = 0;
1991 		} else if(use_10_for_ms) {
1992 			data->length = buffer[0]*256 + buffer[1] + 2;
1993 			data->medium_type = buffer[2];
1994 			data->device_specific = buffer[3];
1995 			data->longlba = buffer[4] & 0x01;
1996 			data->block_descriptor_length = buffer[6]*256
1997 				+ buffer[7];
1998 		} else {
1999 			data->length = buffer[0] + 1;
2000 			data->medium_type = buffer[1];
2001 			data->device_specific = buffer[2];
2002 			data->block_descriptor_length = buffer[3];
2003 		}
2004 		data->header_length = header_length;
2005 	}
2006 
2007 	return result;
2008 }
2009 EXPORT_SYMBOL(scsi_mode_sense);
2010 
2011 /**
2012  *	scsi_test_unit_ready - test if unit is ready
2013  *	@sdev:	scsi device to change the state of.
2014  *	@timeout: command timeout
2015  *	@retries: number of retries before failing
2016  *	@sshdr_external: Optional pointer to struct scsi_sense_hdr for
2017  *		returning sense. Make sure that this is cleared before passing
2018  *		in.
2019  *
2020  *	Returns zero if unsuccessful or an error if TUR failed.  For
2021  *	removable media, UNIT_ATTENTION sets ->changed flag.
2022  **/
2023 int
2024 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2025 		     struct scsi_sense_hdr *sshdr_external)
2026 {
2027 	char cmd[] = {
2028 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2029 	};
2030 	struct scsi_sense_hdr *sshdr;
2031 	int result;
2032 
2033 	if (!sshdr_external)
2034 		sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2035 	else
2036 		sshdr = sshdr_external;
2037 
2038 	/* try to eat the UNIT_ATTENTION if there are enough retries */
2039 	do {
2040 		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2041 					  timeout, retries, NULL);
2042 		if (sdev->removable && scsi_sense_valid(sshdr) &&
2043 		    sshdr->sense_key == UNIT_ATTENTION)
2044 			sdev->changed = 1;
2045 	} while (scsi_sense_valid(sshdr) &&
2046 		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2047 
2048 	if (!sshdr_external)
2049 		kfree(sshdr);
2050 	return result;
2051 }
2052 EXPORT_SYMBOL(scsi_test_unit_ready);
2053 
2054 /**
2055  *	scsi_device_set_state - Take the given device through the device state model.
2056  *	@sdev:	scsi device to change the state of.
2057  *	@state:	state to change to.
2058  *
2059  *	Returns zero if unsuccessful or an error if the requested
2060  *	transition is illegal.
2061  */
2062 int
2063 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2064 {
2065 	enum scsi_device_state oldstate = sdev->sdev_state;
2066 
2067 	if (state == oldstate)
2068 		return 0;
2069 
2070 	switch (state) {
2071 	case SDEV_CREATED:
2072 		switch (oldstate) {
2073 		case SDEV_CREATED_BLOCK:
2074 			break;
2075 		default:
2076 			goto illegal;
2077 		}
2078 		break;
2079 
2080 	case SDEV_RUNNING:
2081 		switch (oldstate) {
2082 		case SDEV_CREATED:
2083 		case SDEV_OFFLINE:
2084 		case SDEV_QUIESCE:
2085 		case SDEV_BLOCK:
2086 			break;
2087 		default:
2088 			goto illegal;
2089 		}
2090 		break;
2091 
2092 	case SDEV_QUIESCE:
2093 		switch (oldstate) {
2094 		case SDEV_RUNNING:
2095 		case SDEV_OFFLINE:
2096 			break;
2097 		default:
2098 			goto illegal;
2099 		}
2100 		break;
2101 
2102 	case SDEV_OFFLINE:
2103 		switch (oldstate) {
2104 		case SDEV_CREATED:
2105 		case SDEV_RUNNING:
2106 		case SDEV_QUIESCE:
2107 		case SDEV_BLOCK:
2108 			break;
2109 		default:
2110 			goto illegal;
2111 		}
2112 		break;
2113 
2114 	case SDEV_BLOCK:
2115 		switch (oldstate) {
2116 		case SDEV_RUNNING:
2117 		case SDEV_CREATED_BLOCK:
2118 			break;
2119 		default:
2120 			goto illegal;
2121 		}
2122 		break;
2123 
2124 	case SDEV_CREATED_BLOCK:
2125 		switch (oldstate) {
2126 		case SDEV_CREATED:
2127 			break;
2128 		default:
2129 			goto illegal;
2130 		}
2131 		break;
2132 
2133 	case SDEV_CANCEL:
2134 		switch (oldstate) {
2135 		case SDEV_CREATED:
2136 		case SDEV_RUNNING:
2137 		case SDEV_QUIESCE:
2138 		case SDEV_OFFLINE:
2139 		case SDEV_BLOCK:
2140 			break;
2141 		default:
2142 			goto illegal;
2143 		}
2144 		break;
2145 
2146 	case SDEV_DEL:
2147 		switch (oldstate) {
2148 		case SDEV_CREATED:
2149 		case SDEV_RUNNING:
2150 		case SDEV_OFFLINE:
2151 		case SDEV_CANCEL:
2152 			break;
2153 		default:
2154 			goto illegal;
2155 		}
2156 		break;
2157 
2158 	}
2159 	sdev->sdev_state = state;
2160 	return 0;
2161 
2162  illegal:
2163 	SCSI_LOG_ERROR_RECOVERY(1,
2164 				sdev_printk(KERN_ERR, sdev,
2165 					    "Illegal state transition %s->%s\n",
2166 					    scsi_device_state_name(oldstate),
2167 					    scsi_device_state_name(state))
2168 				);
2169 	return -EINVAL;
2170 }
2171 EXPORT_SYMBOL(scsi_device_set_state);
2172 
2173 /**
2174  * 	sdev_evt_emit - emit a single SCSI device uevent
2175  *	@sdev: associated SCSI device
2176  *	@evt: event to emit
2177  *
2178  *	Send a single uevent (scsi_event) to the associated scsi_device.
2179  */
2180 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2181 {
2182 	int idx = 0;
2183 	char *envp[3];
2184 
2185 	switch (evt->evt_type) {
2186 	case SDEV_EVT_MEDIA_CHANGE:
2187 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2188 		break;
2189 
2190 	default:
2191 		/* do nothing */
2192 		break;
2193 	}
2194 
2195 	envp[idx++] = NULL;
2196 
2197 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2198 }
2199 
2200 /**
2201  * 	sdev_evt_thread - send a uevent for each scsi event
2202  *	@work: work struct for scsi_device
2203  *
2204  *	Dispatch queued events to their associated scsi_device kobjects
2205  *	as uevents.
2206  */
2207 void scsi_evt_thread(struct work_struct *work)
2208 {
2209 	struct scsi_device *sdev;
2210 	LIST_HEAD(event_list);
2211 
2212 	sdev = container_of(work, struct scsi_device, event_work);
2213 
2214 	while (1) {
2215 		struct scsi_event *evt;
2216 		struct list_head *this, *tmp;
2217 		unsigned long flags;
2218 
2219 		spin_lock_irqsave(&sdev->list_lock, flags);
2220 		list_splice_init(&sdev->event_list, &event_list);
2221 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2222 
2223 		if (list_empty(&event_list))
2224 			break;
2225 
2226 		list_for_each_safe(this, tmp, &event_list) {
2227 			evt = list_entry(this, struct scsi_event, node);
2228 			list_del(&evt->node);
2229 			scsi_evt_emit(sdev, evt);
2230 			kfree(evt);
2231 		}
2232 	}
2233 }
2234 
2235 /**
2236  * 	sdev_evt_send - send asserted event to uevent thread
2237  *	@sdev: scsi_device event occurred on
2238  *	@evt: event to send
2239  *
2240  *	Assert scsi device event asynchronously.
2241  */
2242 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2243 {
2244 	unsigned long flags;
2245 
2246 #if 0
2247 	/* FIXME: currently this check eliminates all media change events
2248 	 * for polled devices.  Need to update to discriminate between AN
2249 	 * and polled events */
2250 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2251 		kfree(evt);
2252 		return;
2253 	}
2254 #endif
2255 
2256 	spin_lock_irqsave(&sdev->list_lock, flags);
2257 	list_add_tail(&evt->node, &sdev->event_list);
2258 	schedule_work(&sdev->event_work);
2259 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2260 }
2261 EXPORT_SYMBOL_GPL(sdev_evt_send);
2262 
2263 /**
2264  * 	sdev_evt_alloc - allocate a new scsi event
2265  *	@evt_type: type of event to allocate
2266  *	@gfpflags: GFP flags for allocation
2267  *
2268  *	Allocates and returns a new scsi_event.
2269  */
2270 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2271 				  gfp_t gfpflags)
2272 {
2273 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2274 	if (!evt)
2275 		return NULL;
2276 
2277 	evt->evt_type = evt_type;
2278 	INIT_LIST_HEAD(&evt->node);
2279 
2280 	/* evt_type-specific initialization, if any */
2281 	switch (evt_type) {
2282 	case SDEV_EVT_MEDIA_CHANGE:
2283 	default:
2284 		/* do nothing */
2285 		break;
2286 	}
2287 
2288 	return evt;
2289 }
2290 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2291 
2292 /**
2293  * 	sdev_evt_send_simple - send asserted event to uevent thread
2294  *	@sdev: scsi_device event occurred on
2295  *	@evt_type: type of event to send
2296  *	@gfpflags: GFP flags for allocation
2297  *
2298  *	Assert scsi device event asynchronously, given an event type.
2299  */
2300 void sdev_evt_send_simple(struct scsi_device *sdev,
2301 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2302 {
2303 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2304 	if (!evt) {
2305 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2306 			    evt_type);
2307 		return;
2308 	}
2309 
2310 	sdev_evt_send(sdev, evt);
2311 }
2312 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2313 
2314 /**
2315  *	scsi_device_quiesce - Block user issued commands.
2316  *	@sdev:	scsi device to quiesce.
2317  *
2318  *	This works by trying to transition to the SDEV_QUIESCE state
2319  *	(which must be a legal transition).  When the device is in this
2320  *	state, only special requests will be accepted, all others will
2321  *	be deferred.  Since special requests may also be requeued requests,
2322  *	a successful return doesn't guarantee the device will be
2323  *	totally quiescent.
2324  *
2325  *	Must be called with user context, may sleep.
2326  *
2327  *	Returns zero if unsuccessful or an error if not.
2328  */
2329 int
2330 scsi_device_quiesce(struct scsi_device *sdev)
2331 {
2332 	int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2333 	if (err)
2334 		return err;
2335 
2336 	scsi_run_queue(sdev->request_queue);
2337 	while (sdev->device_busy) {
2338 		msleep_interruptible(200);
2339 		scsi_run_queue(sdev->request_queue);
2340 	}
2341 	return 0;
2342 }
2343 EXPORT_SYMBOL(scsi_device_quiesce);
2344 
2345 /**
2346  *	scsi_device_resume - Restart user issued commands to a quiesced device.
2347  *	@sdev:	scsi device to resume.
2348  *
2349  *	Moves the device from quiesced back to running and restarts the
2350  *	queues.
2351  *
2352  *	Must be called with user context, may sleep.
2353  */
2354 void
2355 scsi_device_resume(struct scsi_device *sdev)
2356 {
2357 	if(scsi_device_set_state(sdev, SDEV_RUNNING))
2358 		return;
2359 	scsi_run_queue(sdev->request_queue);
2360 }
2361 EXPORT_SYMBOL(scsi_device_resume);
2362 
2363 static void
2364 device_quiesce_fn(struct scsi_device *sdev, void *data)
2365 {
2366 	scsi_device_quiesce(sdev);
2367 }
2368 
2369 void
2370 scsi_target_quiesce(struct scsi_target *starget)
2371 {
2372 	starget_for_each_device(starget, NULL, device_quiesce_fn);
2373 }
2374 EXPORT_SYMBOL(scsi_target_quiesce);
2375 
2376 static void
2377 device_resume_fn(struct scsi_device *sdev, void *data)
2378 {
2379 	scsi_device_resume(sdev);
2380 }
2381 
2382 void
2383 scsi_target_resume(struct scsi_target *starget)
2384 {
2385 	starget_for_each_device(starget, NULL, device_resume_fn);
2386 }
2387 EXPORT_SYMBOL(scsi_target_resume);
2388 
2389 /**
2390  * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2391  * @sdev:	device to block
2392  *
2393  * Block request made by scsi lld's to temporarily stop all
2394  * scsi commands on the specified device.  Called from interrupt
2395  * or normal process context.
2396  *
2397  * Returns zero if successful or error if not
2398  *
2399  * Notes:
2400  *	This routine transitions the device to the SDEV_BLOCK state
2401  *	(which must be a legal transition).  When the device is in this
2402  *	state, all commands are deferred until the scsi lld reenables
2403  *	the device with scsi_device_unblock or device_block_tmo fires.
2404  *	This routine assumes the host_lock is held on entry.
2405  */
2406 int
2407 scsi_internal_device_block(struct scsi_device *sdev)
2408 {
2409 	struct request_queue *q = sdev->request_queue;
2410 	unsigned long flags;
2411 	int err = 0;
2412 
2413 	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2414 	if (err) {
2415 		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2416 
2417 		if (err)
2418 			return err;
2419 	}
2420 
2421 	/*
2422 	 * The device has transitioned to SDEV_BLOCK.  Stop the
2423 	 * block layer from calling the midlayer with this device's
2424 	 * request queue.
2425 	 */
2426 	spin_lock_irqsave(q->queue_lock, flags);
2427 	blk_stop_queue(q);
2428 	spin_unlock_irqrestore(q->queue_lock, flags);
2429 
2430 	return 0;
2431 }
2432 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2433 
2434 /**
2435  * scsi_internal_device_unblock - resume a device after a block request
2436  * @sdev:	device to resume
2437  *
2438  * Called by scsi lld's or the midlayer to restart the device queue
2439  * for the previously suspended scsi device.  Called from interrupt or
2440  * normal process context.
2441  *
2442  * Returns zero if successful or error if not.
2443  *
2444  * Notes:
2445  *	This routine transitions the device to the SDEV_RUNNING state
2446  *	(which must be a legal transition) allowing the midlayer to
2447  *	goose the queue for this device.  This routine assumes the
2448  *	host_lock is held upon entry.
2449  */
2450 int
2451 scsi_internal_device_unblock(struct scsi_device *sdev)
2452 {
2453 	struct request_queue *q = sdev->request_queue;
2454 	unsigned long flags;
2455 
2456 	/*
2457 	 * Try to transition the scsi device to SDEV_RUNNING
2458 	 * and goose the device queue if successful.
2459 	 */
2460 	if (sdev->sdev_state == SDEV_BLOCK)
2461 		sdev->sdev_state = SDEV_RUNNING;
2462 	else if (sdev->sdev_state == SDEV_CREATED_BLOCK)
2463 		sdev->sdev_state = SDEV_CREATED;
2464 	else if (sdev->sdev_state != SDEV_CANCEL &&
2465 		 sdev->sdev_state != SDEV_OFFLINE)
2466 		return -EINVAL;
2467 
2468 	spin_lock_irqsave(q->queue_lock, flags);
2469 	blk_start_queue(q);
2470 	spin_unlock_irqrestore(q->queue_lock, flags);
2471 
2472 	return 0;
2473 }
2474 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2475 
2476 static void
2477 device_block(struct scsi_device *sdev, void *data)
2478 {
2479 	scsi_internal_device_block(sdev);
2480 }
2481 
2482 static int
2483 target_block(struct device *dev, void *data)
2484 {
2485 	if (scsi_is_target_device(dev))
2486 		starget_for_each_device(to_scsi_target(dev), NULL,
2487 					device_block);
2488 	return 0;
2489 }
2490 
2491 void
2492 scsi_target_block(struct device *dev)
2493 {
2494 	if (scsi_is_target_device(dev))
2495 		starget_for_each_device(to_scsi_target(dev), NULL,
2496 					device_block);
2497 	else
2498 		device_for_each_child(dev, NULL, target_block);
2499 }
2500 EXPORT_SYMBOL_GPL(scsi_target_block);
2501 
2502 static void
2503 device_unblock(struct scsi_device *sdev, void *data)
2504 {
2505 	scsi_internal_device_unblock(sdev);
2506 }
2507 
2508 static int
2509 target_unblock(struct device *dev, void *data)
2510 {
2511 	if (scsi_is_target_device(dev))
2512 		starget_for_each_device(to_scsi_target(dev), NULL,
2513 					device_unblock);
2514 	return 0;
2515 }
2516 
2517 void
2518 scsi_target_unblock(struct device *dev)
2519 {
2520 	if (scsi_is_target_device(dev))
2521 		starget_for_each_device(to_scsi_target(dev), NULL,
2522 					device_unblock);
2523 	else
2524 		device_for_each_child(dev, NULL, target_unblock);
2525 }
2526 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2527 
2528 /**
2529  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2530  * @sgl:	scatter-gather list
2531  * @sg_count:	number of segments in sg
2532  * @offset:	offset in bytes into sg, on return offset into the mapped area
2533  * @len:	bytes to map, on return number of bytes mapped
2534  *
2535  * Returns virtual address of the start of the mapped page
2536  */
2537 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2538 			  size_t *offset, size_t *len)
2539 {
2540 	int i;
2541 	size_t sg_len = 0, len_complete = 0;
2542 	struct scatterlist *sg;
2543 	struct page *page;
2544 
2545 	WARN_ON(!irqs_disabled());
2546 
2547 	for_each_sg(sgl, sg, sg_count, i) {
2548 		len_complete = sg_len; /* Complete sg-entries */
2549 		sg_len += sg->length;
2550 		if (sg_len > *offset)
2551 			break;
2552 	}
2553 
2554 	if (unlikely(i == sg_count)) {
2555 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2556 			"elements %d\n",
2557 		       __func__, sg_len, *offset, sg_count);
2558 		WARN_ON(1);
2559 		return NULL;
2560 	}
2561 
2562 	/* Offset starting from the beginning of first page in this sg-entry */
2563 	*offset = *offset - len_complete + sg->offset;
2564 
2565 	/* Assumption: contiguous pages can be accessed as "page + i" */
2566 	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2567 	*offset &= ~PAGE_MASK;
2568 
2569 	/* Bytes in this sg-entry from *offset to the end of the page */
2570 	sg_len = PAGE_SIZE - *offset;
2571 	if (*len > sg_len)
2572 		*len = sg_len;
2573 
2574 	return kmap_atomic(page, KM_BIO_SRC_IRQ);
2575 }
2576 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2577 
2578 /**
2579  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2580  * @virt:	virtual address to be unmapped
2581  */
2582 void scsi_kunmap_atomic_sg(void *virt)
2583 {
2584 	kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2585 }
2586 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2587