xref: /linux/drivers/scsi/scsi_lib.c (revision ef69f8d2ff09518657c3ecaf2db8408c16549829)
1 /*
2  * Copyright (C) 1999 Eric Youngdale
3  * Copyright (C) 2014 Christoph Hellwig
4  *
5  *  SCSI queueing library.
6  *      Initial versions: Eric Youngdale (eric@andante.org).
7  *                        Based upon conversations with large numbers
8  *                        of people at Linux Expo.
9  */
10 
11 #include <linux/bio.h>
12 #include <linux/bitops.h>
13 #include <linux/blkdev.h>
14 #include <linux/completion.h>
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
22 #include <linux/blk-mq.h>
23 #include <linux/ratelimit.h>
24 #include <asm/unaligned.h>
25 
26 #include <scsi/scsi.h>
27 #include <scsi/scsi_cmnd.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_device.h>
30 #include <scsi/scsi_driver.h>
31 #include <scsi/scsi_eh.h>
32 #include <scsi/scsi_host.h>
33 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
34 #include <scsi/scsi_dh.h>
35 
36 #include <trace/events/scsi.h>
37 
38 #include "scsi_debugfs.h"
39 #include "scsi_priv.h"
40 #include "scsi_logging.h"
41 
42 static struct kmem_cache *scsi_sdb_cache;
43 static struct kmem_cache *scsi_sense_cache;
44 static struct kmem_cache *scsi_sense_isadma_cache;
45 static DEFINE_MUTEX(scsi_sense_cache_mutex);
46 
47 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
48 
49 static inline struct kmem_cache *
50 scsi_select_sense_cache(bool unchecked_isa_dma)
51 {
52 	return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache;
53 }
54 
55 static void scsi_free_sense_buffer(bool unchecked_isa_dma,
56 				   unsigned char *sense_buffer)
57 {
58 	kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma),
59 			sense_buffer);
60 }
61 
62 static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma,
63 	gfp_t gfp_mask, int numa_node)
64 {
65 	return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma),
66 				     gfp_mask, numa_node);
67 }
68 
69 int scsi_init_sense_cache(struct Scsi_Host *shost)
70 {
71 	struct kmem_cache *cache;
72 	int ret = 0;
73 
74 	cache = scsi_select_sense_cache(shost->unchecked_isa_dma);
75 	if (cache)
76 		return 0;
77 
78 	mutex_lock(&scsi_sense_cache_mutex);
79 	if (shost->unchecked_isa_dma) {
80 		scsi_sense_isadma_cache =
81 			kmem_cache_create("scsi_sense_cache(DMA)",
82 			SCSI_SENSE_BUFFERSIZE, 0,
83 			SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL);
84 		if (!scsi_sense_isadma_cache)
85 			ret = -ENOMEM;
86 	} else {
87 		scsi_sense_cache =
88 			kmem_cache_create("scsi_sense_cache",
89 			SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN, NULL);
90 		if (!scsi_sense_cache)
91 			ret = -ENOMEM;
92 	}
93 
94 	mutex_unlock(&scsi_sense_cache_mutex);
95 	return ret;
96 }
97 
98 /*
99  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
100  * not change behaviour from the previous unplug mechanism, experimentation
101  * may prove this needs changing.
102  */
103 #define SCSI_QUEUE_DELAY	3
104 
105 static void
106 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
107 {
108 	struct Scsi_Host *host = cmd->device->host;
109 	struct scsi_device *device = cmd->device;
110 	struct scsi_target *starget = scsi_target(device);
111 
112 	/*
113 	 * Set the appropriate busy bit for the device/host.
114 	 *
115 	 * If the host/device isn't busy, assume that something actually
116 	 * completed, and that we should be able to queue a command now.
117 	 *
118 	 * Note that the prior mid-layer assumption that any host could
119 	 * always queue at least one command is now broken.  The mid-layer
120 	 * will implement a user specifiable stall (see
121 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
122 	 * if a command is requeued with no other commands outstanding
123 	 * either for the device or for the host.
124 	 */
125 	switch (reason) {
126 	case SCSI_MLQUEUE_HOST_BUSY:
127 		atomic_set(&host->host_blocked, host->max_host_blocked);
128 		break;
129 	case SCSI_MLQUEUE_DEVICE_BUSY:
130 	case SCSI_MLQUEUE_EH_RETRY:
131 		atomic_set(&device->device_blocked,
132 			   device->max_device_blocked);
133 		break;
134 	case SCSI_MLQUEUE_TARGET_BUSY:
135 		atomic_set(&starget->target_blocked,
136 			   starget->max_target_blocked);
137 		break;
138 	}
139 }
140 
141 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
142 {
143 	struct scsi_device *sdev = cmd->device;
144 
145 	if (cmd->request->rq_flags & RQF_DONTPREP) {
146 		cmd->request->rq_flags &= ~RQF_DONTPREP;
147 		scsi_mq_uninit_cmd(cmd);
148 	} else {
149 		WARN_ON_ONCE(true);
150 	}
151 	blk_mq_requeue_request(cmd->request, true);
152 	put_device(&sdev->sdev_gendev);
153 }
154 
155 /**
156  * __scsi_queue_insert - private queue insertion
157  * @cmd: The SCSI command being requeued
158  * @reason:  The reason for the requeue
159  * @unbusy: Whether the queue should be unbusied
160  *
161  * This is a private queue insertion.  The public interface
162  * scsi_queue_insert() always assumes the queue should be unbusied
163  * because it's always called before the completion.  This function is
164  * for a requeue after completion, which should only occur in this
165  * file.
166  */
167 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
168 {
169 	struct scsi_device *device = cmd->device;
170 	struct request_queue *q = device->request_queue;
171 	unsigned long flags;
172 
173 	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
174 		"Inserting command %p into mlqueue\n", cmd));
175 
176 	scsi_set_blocked(cmd, reason);
177 
178 	/*
179 	 * Decrement the counters, since these commands are no longer
180 	 * active on the host/device.
181 	 */
182 	if (unbusy)
183 		scsi_device_unbusy(device);
184 
185 	/*
186 	 * Requeue this command.  It will go before all other commands
187 	 * that are already in the queue. Schedule requeue work under
188 	 * lock such that the kblockd_schedule_work() call happens
189 	 * before blk_cleanup_queue() finishes.
190 	 */
191 	cmd->result = 0;
192 	if (q->mq_ops) {
193 		scsi_mq_requeue_cmd(cmd);
194 		return;
195 	}
196 	spin_lock_irqsave(q->queue_lock, flags);
197 	blk_requeue_request(q, cmd->request);
198 	kblockd_schedule_work(&device->requeue_work);
199 	spin_unlock_irqrestore(q->queue_lock, flags);
200 }
201 
202 /*
203  * Function:    scsi_queue_insert()
204  *
205  * Purpose:     Insert a command in the midlevel queue.
206  *
207  * Arguments:   cmd    - command that we are adding to queue.
208  *              reason - why we are inserting command to queue.
209  *
210  * Lock status: Assumed that lock is not held upon entry.
211  *
212  * Returns:     Nothing.
213  *
214  * Notes:       We do this for one of two cases.  Either the host is busy
215  *              and it cannot accept any more commands for the time being,
216  *              or the device returned QUEUE_FULL and can accept no more
217  *              commands.
218  * Notes:       This could be called either from an interrupt context or a
219  *              normal process context.
220  */
221 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
222 {
223 	__scsi_queue_insert(cmd, reason, 1);
224 }
225 
226 
227 /**
228  * scsi_execute - insert request and wait for the result
229  * @sdev:	scsi device
230  * @cmd:	scsi command
231  * @data_direction: data direction
232  * @buffer:	data buffer
233  * @bufflen:	len of buffer
234  * @sense:	optional sense buffer
235  * @sshdr:	optional decoded sense header
236  * @timeout:	request timeout in seconds
237  * @retries:	number of times to retry request
238  * @flags:	flags for ->cmd_flags
239  * @rq_flags:	flags for ->rq_flags
240  * @resid:	optional residual length
241  *
242  * Returns the scsi_cmnd result field if a command was executed, or a negative
243  * Linux error code if we didn't get that far.
244  */
245 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
246 		 int data_direction, void *buffer, unsigned bufflen,
247 		 unsigned char *sense, struct scsi_sense_hdr *sshdr,
248 		 int timeout, int retries, u64 flags, req_flags_t rq_flags,
249 		 int *resid)
250 {
251 	struct request *req;
252 	struct scsi_request *rq;
253 	int ret = DRIVER_ERROR << 24;
254 
255 	req = blk_get_request_flags(sdev->request_queue,
256 			data_direction == DMA_TO_DEVICE ?
257 			REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, BLK_MQ_REQ_PREEMPT);
258 	if (IS_ERR(req))
259 		return ret;
260 	rq = scsi_req(req);
261 
262 	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
263 					buffer, bufflen, __GFP_RECLAIM))
264 		goto out;
265 
266 	rq->cmd_len = COMMAND_SIZE(cmd[0]);
267 	memcpy(rq->cmd, cmd, rq->cmd_len);
268 	rq->retries = retries;
269 	req->timeout = timeout;
270 	req->cmd_flags |= flags;
271 	req->rq_flags |= rq_flags | RQF_QUIET;
272 
273 	/*
274 	 * head injection *required* here otherwise quiesce won't work
275 	 */
276 	blk_execute_rq(req->q, NULL, req, 1);
277 
278 	/*
279 	 * Some devices (USB mass-storage in particular) may transfer
280 	 * garbage data together with a residue indicating that the data
281 	 * is invalid.  Prevent the garbage from being misinterpreted
282 	 * and prevent security leaks by zeroing out the excess data.
283 	 */
284 	if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
285 		memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
286 
287 	if (resid)
288 		*resid = rq->resid_len;
289 	if (sense && rq->sense_len)
290 		memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
291 	if (sshdr)
292 		scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
293 	ret = rq->result;
294  out:
295 	blk_put_request(req);
296 
297 	return ret;
298 }
299 EXPORT_SYMBOL(scsi_execute);
300 
301 /*
302  * Function:    scsi_init_cmd_errh()
303  *
304  * Purpose:     Initialize cmd fields related to error handling.
305  *
306  * Arguments:   cmd	- command that is ready to be queued.
307  *
308  * Notes:       This function has the job of initializing a number of
309  *              fields related to error handling.   Typically this will
310  *              be called once for each command, as required.
311  */
312 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
313 {
314 	cmd->serial_number = 0;
315 	scsi_set_resid(cmd, 0);
316 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
317 	if (cmd->cmd_len == 0)
318 		cmd->cmd_len = scsi_command_size(cmd->cmnd);
319 }
320 
321 void scsi_device_unbusy(struct scsi_device *sdev)
322 {
323 	struct Scsi_Host *shost = sdev->host;
324 	struct scsi_target *starget = scsi_target(sdev);
325 	unsigned long flags;
326 
327 	atomic_dec(&shost->host_busy);
328 	if (starget->can_queue > 0)
329 		atomic_dec(&starget->target_busy);
330 
331 	if (unlikely(scsi_host_in_recovery(shost) &&
332 		     (shost->host_failed || shost->host_eh_scheduled))) {
333 		spin_lock_irqsave(shost->host_lock, flags);
334 		scsi_eh_wakeup(shost);
335 		spin_unlock_irqrestore(shost->host_lock, flags);
336 	}
337 
338 	atomic_dec(&sdev->device_busy);
339 }
340 
341 static void scsi_kick_queue(struct request_queue *q)
342 {
343 	if (q->mq_ops)
344 		blk_mq_start_hw_queues(q);
345 	else
346 		blk_run_queue(q);
347 }
348 
349 /*
350  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
351  * and call blk_run_queue for all the scsi_devices on the target -
352  * including current_sdev first.
353  *
354  * Called with *no* scsi locks held.
355  */
356 static void scsi_single_lun_run(struct scsi_device *current_sdev)
357 {
358 	struct Scsi_Host *shost = current_sdev->host;
359 	struct scsi_device *sdev, *tmp;
360 	struct scsi_target *starget = scsi_target(current_sdev);
361 	unsigned long flags;
362 
363 	spin_lock_irqsave(shost->host_lock, flags);
364 	starget->starget_sdev_user = NULL;
365 	spin_unlock_irqrestore(shost->host_lock, flags);
366 
367 	/*
368 	 * Call blk_run_queue for all LUNs on the target, starting with
369 	 * current_sdev. We race with others (to set starget_sdev_user),
370 	 * but in most cases, we will be first. Ideally, each LU on the
371 	 * target would get some limited time or requests on the target.
372 	 */
373 	scsi_kick_queue(current_sdev->request_queue);
374 
375 	spin_lock_irqsave(shost->host_lock, flags);
376 	if (starget->starget_sdev_user)
377 		goto out;
378 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
379 			same_target_siblings) {
380 		if (sdev == current_sdev)
381 			continue;
382 		if (scsi_device_get(sdev))
383 			continue;
384 
385 		spin_unlock_irqrestore(shost->host_lock, flags);
386 		scsi_kick_queue(sdev->request_queue);
387 		spin_lock_irqsave(shost->host_lock, flags);
388 
389 		scsi_device_put(sdev);
390 	}
391  out:
392 	spin_unlock_irqrestore(shost->host_lock, flags);
393 }
394 
395 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
396 {
397 	if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
398 		return true;
399 	if (atomic_read(&sdev->device_blocked) > 0)
400 		return true;
401 	return false;
402 }
403 
404 static inline bool scsi_target_is_busy(struct scsi_target *starget)
405 {
406 	if (starget->can_queue > 0) {
407 		if (atomic_read(&starget->target_busy) >= starget->can_queue)
408 			return true;
409 		if (atomic_read(&starget->target_blocked) > 0)
410 			return true;
411 	}
412 	return false;
413 }
414 
415 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
416 {
417 	if (shost->can_queue > 0 &&
418 	    atomic_read(&shost->host_busy) >= shost->can_queue)
419 		return true;
420 	if (atomic_read(&shost->host_blocked) > 0)
421 		return true;
422 	if (shost->host_self_blocked)
423 		return true;
424 	return false;
425 }
426 
427 static void scsi_starved_list_run(struct Scsi_Host *shost)
428 {
429 	LIST_HEAD(starved_list);
430 	struct scsi_device *sdev;
431 	unsigned long flags;
432 
433 	spin_lock_irqsave(shost->host_lock, flags);
434 	list_splice_init(&shost->starved_list, &starved_list);
435 
436 	while (!list_empty(&starved_list)) {
437 		struct request_queue *slq;
438 
439 		/*
440 		 * As long as shost is accepting commands and we have
441 		 * starved queues, call blk_run_queue. scsi_request_fn
442 		 * drops the queue_lock and can add us back to the
443 		 * starved_list.
444 		 *
445 		 * host_lock protects the starved_list and starved_entry.
446 		 * scsi_request_fn must get the host_lock before checking
447 		 * or modifying starved_list or starved_entry.
448 		 */
449 		if (scsi_host_is_busy(shost))
450 			break;
451 
452 		sdev = list_entry(starved_list.next,
453 				  struct scsi_device, starved_entry);
454 		list_del_init(&sdev->starved_entry);
455 		if (scsi_target_is_busy(scsi_target(sdev))) {
456 			list_move_tail(&sdev->starved_entry,
457 				       &shost->starved_list);
458 			continue;
459 		}
460 
461 		/*
462 		 * Once we drop the host lock, a racing scsi_remove_device()
463 		 * call may remove the sdev from the starved list and destroy
464 		 * it and the queue.  Mitigate by taking a reference to the
465 		 * queue and never touching the sdev again after we drop the
466 		 * host lock.  Note: if __scsi_remove_device() invokes
467 		 * blk_cleanup_queue() before the queue is run from this
468 		 * function then blk_run_queue() will return immediately since
469 		 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
470 		 */
471 		slq = sdev->request_queue;
472 		if (!blk_get_queue(slq))
473 			continue;
474 		spin_unlock_irqrestore(shost->host_lock, flags);
475 
476 		scsi_kick_queue(slq);
477 		blk_put_queue(slq);
478 
479 		spin_lock_irqsave(shost->host_lock, flags);
480 	}
481 	/* put any unprocessed entries back */
482 	list_splice(&starved_list, &shost->starved_list);
483 	spin_unlock_irqrestore(shost->host_lock, flags);
484 }
485 
486 /*
487  * Function:   scsi_run_queue()
488  *
489  * Purpose:    Select a proper request queue to serve next
490  *
491  * Arguments:  q       - last request's queue
492  *
493  * Returns:     Nothing
494  *
495  * Notes:      The previous command was completely finished, start
496  *             a new one if possible.
497  */
498 static void scsi_run_queue(struct request_queue *q)
499 {
500 	struct scsi_device *sdev = q->queuedata;
501 
502 	if (scsi_target(sdev)->single_lun)
503 		scsi_single_lun_run(sdev);
504 	if (!list_empty(&sdev->host->starved_list))
505 		scsi_starved_list_run(sdev->host);
506 
507 	if (q->mq_ops)
508 		blk_mq_run_hw_queues(q, false);
509 	else
510 		blk_run_queue(q);
511 }
512 
513 void scsi_requeue_run_queue(struct work_struct *work)
514 {
515 	struct scsi_device *sdev;
516 	struct request_queue *q;
517 
518 	sdev = container_of(work, struct scsi_device, requeue_work);
519 	q = sdev->request_queue;
520 	scsi_run_queue(q);
521 }
522 
523 /*
524  * Function:	scsi_requeue_command()
525  *
526  * Purpose:	Handle post-processing of completed commands.
527  *
528  * Arguments:	q	- queue to operate on
529  *		cmd	- command that may need to be requeued.
530  *
531  * Returns:	Nothing
532  *
533  * Notes:	After command completion, there may be blocks left
534  *		over which weren't finished by the previous command
535  *		this can be for a number of reasons - the main one is
536  *		I/O errors in the middle of the request, in which case
537  *		we need to request the blocks that come after the bad
538  *		sector.
539  * Notes:	Upon return, cmd is a stale pointer.
540  */
541 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
542 {
543 	struct scsi_device *sdev = cmd->device;
544 	struct request *req = cmd->request;
545 	unsigned long flags;
546 
547 	spin_lock_irqsave(q->queue_lock, flags);
548 	blk_unprep_request(req);
549 	req->special = NULL;
550 	scsi_put_command(cmd);
551 	blk_requeue_request(q, req);
552 	spin_unlock_irqrestore(q->queue_lock, flags);
553 
554 	scsi_run_queue(q);
555 
556 	put_device(&sdev->sdev_gendev);
557 }
558 
559 void scsi_run_host_queues(struct Scsi_Host *shost)
560 {
561 	struct scsi_device *sdev;
562 
563 	shost_for_each_device(sdev, shost)
564 		scsi_run_queue(sdev->request_queue);
565 }
566 
567 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
568 {
569 	if (!blk_rq_is_passthrough(cmd->request)) {
570 		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
571 
572 		if (drv->uninit_command)
573 			drv->uninit_command(cmd);
574 	}
575 }
576 
577 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
578 {
579 	struct scsi_data_buffer *sdb;
580 
581 	if (cmd->sdb.table.nents)
582 		sg_free_table_chained(&cmd->sdb.table, true);
583 	if (cmd->request->next_rq) {
584 		sdb = cmd->request->next_rq->special;
585 		if (sdb)
586 			sg_free_table_chained(&sdb->table, true);
587 	}
588 	if (scsi_prot_sg_count(cmd))
589 		sg_free_table_chained(&cmd->prot_sdb->table, true);
590 }
591 
592 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
593 {
594 	scsi_mq_free_sgtables(cmd);
595 	scsi_uninit_cmd(cmd);
596 	scsi_del_cmd_from_list(cmd);
597 }
598 
599 /*
600  * Function:    scsi_release_buffers()
601  *
602  * Purpose:     Free resources allocate for a scsi_command.
603  *
604  * Arguments:   cmd	- command that we are bailing.
605  *
606  * Lock status: Assumed that no lock is held upon entry.
607  *
608  * Returns:     Nothing
609  *
610  * Notes:       In the event that an upper level driver rejects a
611  *		command, we must release resources allocated during
612  *		the __init_io() function.  Primarily this would involve
613  *		the scatter-gather table.
614  */
615 static void scsi_release_buffers(struct scsi_cmnd *cmd)
616 {
617 	if (cmd->sdb.table.nents)
618 		sg_free_table_chained(&cmd->sdb.table, false);
619 
620 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
621 
622 	if (scsi_prot_sg_count(cmd))
623 		sg_free_table_chained(&cmd->prot_sdb->table, false);
624 }
625 
626 static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd)
627 {
628 	struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special;
629 
630 	sg_free_table_chained(&bidi_sdb->table, false);
631 	kmem_cache_free(scsi_sdb_cache, bidi_sdb);
632 	cmd->request->next_rq->special = NULL;
633 }
634 
635 static bool scsi_end_request(struct request *req, blk_status_t error,
636 		unsigned int bytes, unsigned int bidi_bytes)
637 {
638 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
639 	struct scsi_device *sdev = cmd->device;
640 	struct request_queue *q = sdev->request_queue;
641 
642 	if (blk_update_request(req, error, bytes))
643 		return true;
644 
645 	/* Bidi request must be completed as a whole */
646 	if (unlikely(bidi_bytes) &&
647 	    blk_update_request(req->next_rq, error, bidi_bytes))
648 		return true;
649 
650 	if (blk_queue_add_random(q))
651 		add_disk_randomness(req->rq_disk);
652 
653 	if (!blk_rq_is_scsi(req)) {
654 		WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
655 		cmd->flags &= ~SCMD_INITIALIZED;
656 	}
657 
658 	if (req->mq_ctx) {
659 		/*
660 		 * In the MQ case the command gets freed by __blk_mq_end_request,
661 		 * so we have to do all cleanup that depends on it earlier.
662 		 *
663 		 * We also can't kick the queues from irq context, so we
664 		 * will have to defer it to a workqueue.
665 		 */
666 		scsi_mq_uninit_cmd(cmd);
667 
668 		__blk_mq_end_request(req, error);
669 
670 		if (scsi_target(sdev)->single_lun ||
671 		    !list_empty(&sdev->host->starved_list))
672 			kblockd_schedule_work(&sdev->requeue_work);
673 		else
674 			blk_mq_run_hw_queues(q, true);
675 	} else {
676 		unsigned long flags;
677 
678 		if (bidi_bytes)
679 			scsi_release_bidi_buffers(cmd);
680 		scsi_release_buffers(cmd);
681 		scsi_put_command(cmd);
682 
683 		spin_lock_irqsave(q->queue_lock, flags);
684 		blk_finish_request(req, error);
685 		spin_unlock_irqrestore(q->queue_lock, flags);
686 
687 		scsi_run_queue(q);
688 	}
689 
690 	put_device(&sdev->sdev_gendev);
691 	return false;
692 }
693 
694 /**
695  * __scsi_error_from_host_byte - translate SCSI error code into errno
696  * @cmd:	SCSI command (unused)
697  * @result:	scsi error code
698  *
699  * Translate SCSI error code into block errors.
700  */
701 static blk_status_t __scsi_error_from_host_byte(struct scsi_cmnd *cmd,
702 		int result)
703 {
704 	switch (host_byte(result)) {
705 	case DID_TRANSPORT_FAILFAST:
706 		return BLK_STS_TRANSPORT;
707 	case DID_TARGET_FAILURE:
708 		set_host_byte(cmd, DID_OK);
709 		return BLK_STS_TARGET;
710 	case DID_NEXUS_FAILURE:
711 		return BLK_STS_NEXUS;
712 	case DID_ALLOC_FAILURE:
713 		set_host_byte(cmd, DID_OK);
714 		return BLK_STS_NOSPC;
715 	case DID_MEDIUM_ERROR:
716 		set_host_byte(cmd, DID_OK);
717 		return BLK_STS_MEDIUM;
718 	default:
719 		return BLK_STS_IOERR;
720 	}
721 }
722 
723 /*
724  * Function:    scsi_io_completion()
725  *
726  * Purpose:     Completion processing for block device I/O requests.
727  *
728  * Arguments:   cmd   - command that is finished.
729  *
730  * Lock status: Assumed that no lock is held upon entry.
731  *
732  * Returns:     Nothing
733  *
734  * Notes:       We will finish off the specified number of sectors.  If we
735  *		are done, the command block will be released and the queue
736  *		function will be goosed.  If we are not done then we have to
737  *		figure out what to do next:
738  *
739  *		a) We can call scsi_requeue_command().  The request
740  *		   will be unprepared and put back on the queue.  Then
741  *		   a new command will be created for it.  This should
742  *		   be used if we made forward progress, or if we want
743  *		   to switch from READ(10) to READ(6) for example.
744  *
745  *		b) We can call __scsi_queue_insert().  The request will
746  *		   be put back on the queue and retried using the same
747  *		   command as before, possibly after a delay.
748  *
749  *		c) We can call scsi_end_request() with -EIO to fail
750  *		   the remainder of the request.
751  */
752 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
753 {
754 	int result = cmd->result;
755 	struct request_queue *q = cmd->device->request_queue;
756 	struct request *req = cmd->request;
757 	blk_status_t error = BLK_STS_OK;
758 	struct scsi_sense_hdr sshdr;
759 	bool sense_valid = false;
760 	int sense_deferred = 0, level = 0;
761 	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
762 	      ACTION_DELAYED_RETRY} action;
763 	unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
764 
765 	if (result) {
766 		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
767 		if (sense_valid)
768 			sense_deferred = scsi_sense_is_deferred(&sshdr);
769 	}
770 
771 	if (blk_rq_is_passthrough(req)) {
772 		if (result) {
773 			if (sense_valid) {
774 				/*
775 				 * SG_IO wants current and deferred errors
776 				 */
777 				scsi_req(req)->sense_len =
778 					min(8 + cmd->sense_buffer[7],
779 					    SCSI_SENSE_BUFFERSIZE);
780 			}
781 			if (!sense_deferred)
782 				error = __scsi_error_from_host_byte(cmd, result);
783 		}
784 		/*
785 		 * __scsi_error_from_host_byte may have reset the host_byte
786 		 */
787 		scsi_req(req)->result = cmd->result;
788 		scsi_req(req)->resid_len = scsi_get_resid(cmd);
789 
790 		if (scsi_bidi_cmnd(cmd)) {
791 			/*
792 			 * Bidi commands Must be complete as a whole,
793 			 * both sides at once.
794 			 */
795 			scsi_req(req->next_rq)->resid_len = scsi_in(cmd)->resid;
796 			if (scsi_end_request(req, BLK_STS_OK, blk_rq_bytes(req),
797 					blk_rq_bytes(req->next_rq)))
798 				BUG();
799 			return;
800 		}
801 	} else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) {
802 		/*
803 		 * Flush commands do not transfers any data, and thus cannot use
804 		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
805 		 * This sets the error explicitly for the problem case.
806 		 */
807 		error = __scsi_error_from_host_byte(cmd, result);
808 	}
809 
810 	/* no bidi support for !blk_rq_is_passthrough yet */
811 	BUG_ON(blk_bidi_rq(req));
812 
813 	/*
814 	 * Next deal with any sectors which we were able to correctly
815 	 * handle.
816 	 */
817 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
818 		"%u sectors total, %d bytes done.\n",
819 		blk_rq_sectors(req), good_bytes));
820 
821 	/*
822 	 * Recovered errors need reporting, but they're always treated as
823 	 * success, so fiddle the result code here.  For passthrough requests
824 	 * we already took a copy of the original into sreq->result which
825 	 * is what gets returned to the user
826 	 */
827 	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
828 		/* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
829 		 * print since caller wants ATA registers. Only occurs on
830 		 * SCSI ATA PASS_THROUGH commands when CK_COND=1
831 		 */
832 		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
833 			;
834 		else if (!(req->rq_flags & RQF_QUIET))
835 			scsi_print_sense(cmd);
836 		result = 0;
837 		/* for passthrough error may be set */
838 		error = BLK_STS_OK;
839 	}
840 
841 	/*
842 	 * special case: failed zero length commands always need to
843 	 * drop down into the retry code. Otherwise, if we finished
844 	 * all bytes in the request we are done now.
845 	 */
846 	if (!(blk_rq_bytes(req) == 0 && error) &&
847 	    !scsi_end_request(req, error, good_bytes, 0))
848 		return;
849 
850 	/*
851 	 * Kill remainder if no retrys.
852 	 */
853 	if (error && scsi_noretry_cmd(cmd)) {
854 		if (scsi_end_request(req, error, blk_rq_bytes(req), 0))
855 			BUG();
856 		return;
857 	}
858 
859 	/*
860 	 * If there had been no error, but we have leftover bytes in the
861 	 * requeues just queue the command up again.
862 	 */
863 	if (result == 0)
864 		goto requeue;
865 
866 	error = __scsi_error_from_host_byte(cmd, result);
867 
868 	if (host_byte(result) == DID_RESET) {
869 		/* Third party bus reset or reset for error recovery
870 		 * reasons.  Just retry the command and see what
871 		 * happens.
872 		 */
873 		action = ACTION_RETRY;
874 	} else if (sense_valid && !sense_deferred) {
875 		switch (sshdr.sense_key) {
876 		case UNIT_ATTENTION:
877 			if (cmd->device->removable) {
878 				/* Detected disc change.  Set a bit
879 				 * and quietly refuse further access.
880 				 */
881 				cmd->device->changed = 1;
882 				action = ACTION_FAIL;
883 			} else {
884 				/* Must have been a power glitch, or a
885 				 * bus reset.  Could not have been a
886 				 * media change, so we just retry the
887 				 * command and see what happens.
888 				 */
889 				action = ACTION_RETRY;
890 			}
891 			break;
892 		case ILLEGAL_REQUEST:
893 			/* If we had an ILLEGAL REQUEST returned, then
894 			 * we may have performed an unsupported
895 			 * command.  The only thing this should be
896 			 * would be a ten byte read where only a six
897 			 * byte read was supported.  Also, on a system
898 			 * where READ CAPACITY failed, we may have
899 			 * read past the end of the disk.
900 			 */
901 			if ((cmd->device->use_10_for_rw &&
902 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
903 			    (cmd->cmnd[0] == READ_10 ||
904 			     cmd->cmnd[0] == WRITE_10)) {
905 				/* This will issue a new 6-byte command. */
906 				cmd->device->use_10_for_rw = 0;
907 				action = ACTION_REPREP;
908 			} else if (sshdr.asc == 0x10) /* DIX */ {
909 				action = ACTION_FAIL;
910 				error = BLK_STS_PROTECTION;
911 			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
912 			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
913 				action = ACTION_FAIL;
914 				error = BLK_STS_TARGET;
915 			} else
916 				action = ACTION_FAIL;
917 			break;
918 		case ABORTED_COMMAND:
919 			action = ACTION_FAIL;
920 			if (sshdr.asc == 0x10) /* DIF */
921 				error = BLK_STS_PROTECTION;
922 			break;
923 		case NOT_READY:
924 			/* If the device is in the process of becoming
925 			 * ready, or has a temporary blockage, retry.
926 			 */
927 			if (sshdr.asc == 0x04) {
928 				switch (sshdr.ascq) {
929 				case 0x01: /* becoming ready */
930 				case 0x04: /* format in progress */
931 				case 0x05: /* rebuild in progress */
932 				case 0x06: /* recalculation in progress */
933 				case 0x07: /* operation in progress */
934 				case 0x08: /* Long write in progress */
935 				case 0x09: /* self test in progress */
936 				case 0x14: /* space allocation in progress */
937 					action = ACTION_DELAYED_RETRY;
938 					break;
939 				default:
940 					action = ACTION_FAIL;
941 					break;
942 				}
943 			} else
944 				action = ACTION_FAIL;
945 			break;
946 		case VOLUME_OVERFLOW:
947 			/* See SSC3rXX or current. */
948 			action = ACTION_FAIL;
949 			break;
950 		default:
951 			action = ACTION_FAIL;
952 			break;
953 		}
954 	} else
955 		action = ACTION_FAIL;
956 
957 	if (action != ACTION_FAIL &&
958 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
959 		action = ACTION_FAIL;
960 
961 	switch (action) {
962 	case ACTION_FAIL:
963 		/* Give up and fail the remainder of the request */
964 		if (!(req->rq_flags & RQF_QUIET)) {
965 			static DEFINE_RATELIMIT_STATE(_rs,
966 					DEFAULT_RATELIMIT_INTERVAL,
967 					DEFAULT_RATELIMIT_BURST);
968 
969 			if (unlikely(scsi_logging_level))
970 				level = SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
971 						       SCSI_LOG_MLCOMPLETE_BITS);
972 
973 			/*
974 			 * if logging is enabled the failure will be printed
975 			 * in scsi_log_completion(), so avoid duplicate messages
976 			 */
977 			if (!level && __ratelimit(&_rs)) {
978 				scsi_print_result(cmd, NULL, FAILED);
979 				if (driver_byte(result) & DRIVER_SENSE)
980 					scsi_print_sense(cmd);
981 				scsi_print_command(cmd);
982 			}
983 		}
984 		if (!scsi_end_request(req, error, blk_rq_err_bytes(req), 0))
985 			return;
986 		/*FALLTHRU*/
987 	case ACTION_REPREP:
988 	requeue:
989 		/* Unprep the request and put it back at the head of the queue.
990 		 * A new command will be prepared and issued.
991 		 */
992 		if (q->mq_ops) {
993 			scsi_mq_requeue_cmd(cmd);
994 		} else {
995 			scsi_release_buffers(cmd);
996 			scsi_requeue_command(q, cmd);
997 		}
998 		break;
999 	case ACTION_RETRY:
1000 		/* Retry the same command immediately */
1001 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
1002 		break;
1003 	case ACTION_DELAYED_RETRY:
1004 		/* Retry the same command after a delay */
1005 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
1006 		break;
1007 	}
1008 }
1009 
1010 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb)
1011 {
1012 	int count;
1013 
1014 	/*
1015 	 * If sg table allocation fails, requeue request later.
1016 	 */
1017 	if (unlikely(sg_alloc_table_chained(&sdb->table,
1018 			blk_rq_nr_phys_segments(req), sdb->table.sgl)))
1019 		return BLKPREP_DEFER;
1020 
1021 	/*
1022 	 * Next, walk the list, and fill in the addresses and sizes of
1023 	 * each segment.
1024 	 */
1025 	count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1026 	BUG_ON(count > sdb->table.nents);
1027 	sdb->table.nents = count;
1028 	sdb->length = blk_rq_payload_bytes(req);
1029 	return BLKPREP_OK;
1030 }
1031 
1032 /*
1033  * Function:    scsi_init_io()
1034  *
1035  * Purpose:     SCSI I/O initialize function.
1036  *
1037  * Arguments:   cmd   - Command descriptor we wish to initialize
1038  *
1039  * Returns:     0 on success
1040  *		BLKPREP_DEFER if the failure is retryable
1041  *		BLKPREP_KILL if the failure is fatal
1042  */
1043 int scsi_init_io(struct scsi_cmnd *cmd)
1044 {
1045 	struct scsi_device *sdev = cmd->device;
1046 	struct request *rq = cmd->request;
1047 	bool is_mq = (rq->mq_ctx != NULL);
1048 	int error = BLKPREP_KILL;
1049 
1050 	if (WARN_ON_ONCE(!blk_rq_nr_phys_segments(rq)))
1051 		goto err_exit;
1052 
1053 	error = scsi_init_sgtable(rq, &cmd->sdb);
1054 	if (error)
1055 		goto err_exit;
1056 
1057 	if (blk_bidi_rq(rq)) {
1058 		if (!rq->q->mq_ops) {
1059 			struct scsi_data_buffer *bidi_sdb =
1060 				kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC);
1061 			if (!bidi_sdb) {
1062 				error = BLKPREP_DEFER;
1063 				goto err_exit;
1064 			}
1065 
1066 			rq->next_rq->special = bidi_sdb;
1067 		}
1068 
1069 		error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special);
1070 		if (error)
1071 			goto err_exit;
1072 	}
1073 
1074 	if (blk_integrity_rq(rq)) {
1075 		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1076 		int ivecs, count;
1077 
1078 		if (prot_sdb == NULL) {
1079 			/*
1080 			 * This can happen if someone (e.g. multipath)
1081 			 * queues a command to a device on an adapter
1082 			 * that does not support DIX.
1083 			 */
1084 			WARN_ON_ONCE(1);
1085 			error = BLKPREP_KILL;
1086 			goto err_exit;
1087 		}
1088 
1089 		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1090 
1091 		if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1092 				prot_sdb->table.sgl)) {
1093 			error = BLKPREP_DEFER;
1094 			goto err_exit;
1095 		}
1096 
1097 		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1098 						prot_sdb->table.sgl);
1099 		BUG_ON(unlikely(count > ivecs));
1100 		BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1101 
1102 		cmd->prot_sdb = prot_sdb;
1103 		cmd->prot_sdb->table.nents = count;
1104 	}
1105 
1106 	return BLKPREP_OK;
1107 err_exit:
1108 	if (is_mq) {
1109 		scsi_mq_free_sgtables(cmd);
1110 	} else {
1111 		scsi_release_buffers(cmd);
1112 		cmd->request->special = NULL;
1113 		scsi_put_command(cmd);
1114 		put_device(&sdev->sdev_gendev);
1115 	}
1116 	return error;
1117 }
1118 EXPORT_SYMBOL(scsi_init_io);
1119 
1120 /**
1121  * scsi_initialize_rq - initialize struct scsi_cmnd partially
1122  * @rq: Request associated with the SCSI command to be initialized.
1123  *
1124  * This function initializes the members of struct scsi_cmnd that must be
1125  * initialized before request processing starts and that won't be
1126  * reinitialized if a SCSI command is requeued.
1127  *
1128  * Called from inside blk_get_request() for pass-through requests and from
1129  * inside scsi_init_command() for filesystem requests.
1130  */
1131 void scsi_initialize_rq(struct request *rq)
1132 {
1133 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1134 
1135 	scsi_req_init(&cmd->req);
1136 	cmd->jiffies_at_alloc = jiffies;
1137 	cmd->retries = 0;
1138 }
1139 EXPORT_SYMBOL(scsi_initialize_rq);
1140 
1141 /* Add a command to the list used by the aacraid and dpt_i2o drivers */
1142 void scsi_add_cmd_to_list(struct scsi_cmnd *cmd)
1143 {
1144 	struct scsi_device *sdev = cmd->device;
1145 	struct Scsi_Host *shost = sdev->host;
1146 	unsigned long flags;
1147 
1148 	if (shost->use_cmd_list) {
1149 		spin_lock_irqsave(&sdev->list_lock, flags);
1150 		list_add_tail(&cmd->list, &sdev->cmd_list);
1151 		spin_unlock_irqrestore(&sdev->list_lock, flags);
1152 	}
1153 }
1154 
1155 /* Remove a command from the list used by the aacraid and dpt_i2o drivers */
1156 void scsi_del_cmd_from_list(struct scsi_cmnd *cmd)
1157 {
1158 	struct scsi_device *sdev = cmd->device;
1159 	struct Scsi_Host *shost = sdev->host;
1160 	unsigned long flags;
1161 
1162 	if (shost->use_cmd_list) {
1163 		spin_lock_irqsave(&sdev->list_lock, flags);
1164 		BUG_ON(list_empty(&cmd->list));
1165 		list_del_init(&cmd->list);
1166 		spin_unlock_irqrestore(&sdev->list_lock, flags);
1167 	}
1168 }
1169 
1170 /* Called after a request has been started. */
1171 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1172 {
1173 	void *buf = cmd->sense_buffer;
1174 	void *prot = cmd->prot_sdb;
1175 	struct request *rq = blk_mq_rq_from_pdu(cmd);
1176 	unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS;
1177 	unsigned long jiffies_at_alloc;
1178 	int retries;
1179 
1180 	if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) {
1181 		flags |= SCMD_INITIALIZED;
1182 		scsi_initialize_rq(rq);
1183 	}
1184 
1185 	jiffies_at_alloc = cmd->jiffies_at_alloc;
1186 	retries = cmd->retries;
1187 	/* zero out the cmd, except for the embedded scsi_request */
1188 	memset((char *)cmd + sizeof(cmd->req), 0,
1189 		sizeof(*cmd) - sizeof(cmd->req) + dev->host->hostt->cmd_size);
1190 
1191 	cmd->device = dev;
1192 	cmd->sense_buffer = buf;
1193 	cmd->prot_sdb = prot;
1194 	cmd->flags = flags;
1195 	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1196 	cmd->jiffies_at_alloc = jiffies_at_alloc;
1197 	cmd->retries = retries;
1198 
1199 	scsi_add_cmd_to_list(cmd);
1200 }
1201 
1202 static int scsi_setup_scsi_cmnd(struct scsi_device *sdev, struct request *req)
1203 {
1204 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1205 
1206 	/*
1207 	 * Passthrough requests may transfer data, in which case they must
1208 	 * a bio attached to them.  Or they might contain a SCSI command
1209 	 * that does not transfer data, in which case they may optionally
1210 	 * submit a request without an attached bio.
1211 	 */
1212 	if (req->bio) {
1213 		int ret = scsi_init_io(cmd);
1214 		if (unlikely(ret))
1215 			return ret;
1216 	} else {
1217 		BUG_ON(blk_rq_bytes(req));
1218 
1219 		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1220 	}
1221 
1222 	cmd->cmd_len = scsi_req(req)->cmd_len;
1223 	cmd->cmnd = scsi_req(req)->cmd;
1224 	cmd->transfersize = blk_rq_bytes(req);
1225 	cmd->allowed = scsi_req(req)->retries;
1226 	return BLKPREP_OK;
1227 }
1228 
1229 /*
1230  * Setup a normal block command.  These are simple request from filesystems
1231  * that still need to be translated to SCSI CDBs from the ULD.
1232  */
1233 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1234 {
1235 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1236 
1237 	if (unlikely(sdev->handler && sdev->handler->prep_fn)) {
1238 		int ret = sdev->handler->prep_fn(sdev, req);
1239 		if (ret != BLKPREP_OK)
1240 			return ret;
1241 	}
1242 
1243 	cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1244 	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1245 	return scsi_cmd_to_driver(cmd)->init_command(cmd);
1246 }
1247 
1248 static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req)
1249 {
1250 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1251 
1252 	if (!blk_rq_bytes(req))
1253 		cmd->sc_data_direction = DMA_NONE;
1254 	else if (rq_data_dir(req) == WRITE)
1255 		cmd->sc_data_direction = DMA_TO_DEVICE;
1256 	else
1257 		cmd->sc_data_direction = DMA_FROM_DEVICE;
1258 
1259 	if (blk_rq_is_scsi(req))
1260 		return scsi_setup_scsi_cmnd(sdev, req);
1261 	else
1262 		return scsi_setup_fs_cmnd(sdev, req);
1263 }
1264 
1265 static int
1266 scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1267 {
1268 	int ret = BLKPREP_OK;
1269 
1270 	/*
1271 	 * If the device is not in running state we will reject some
1272 	 * or all commands.
1273 	 */
1274 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1275 		switch (sdev->sdev_state) {
1276 		case SDEV_OFFLINE:
1277 		case SDEV_TRANSPORT_OFFLINE:
1278 			/*
1279 			 * If the device is offline we refuse to process any
1280 			 * commands.  The device must be brought online
1281 			 * before trying any recovery commands.
1282 			 */
1283 			sdev_printk(KERN_ERR, sdev,
1284 				    "rejecting I/O to offline device\n");
1285 			ret = BLKPREP_KILL;
1286 			break;
1287 		case SDEV_DEL:
1288 			/*
1289 			 * If the device is fully deleted, we refuse to
1290 			 * process any commands as well.
1291 			 */
1292 			sdev_printk(KERN_ERR, sdev,
1293 				    "rejecting I/O to dead device\n");
1294 			ret = BLKPREP_KILL;
1295 			break;
1296 		case SDEV_BLOCK:
1297 		case SDEV_CREATED_BLOCK:
1298 			ret = BLKPREP_DEFER;
1299 			break;
1300 		case SDEV_QUIESCE:
1301 			/*
1302 			 * If the devices is blocked we defer normal commands.
1303 			 */
1304 			if (req && !(req->rq_flags & RQF_PREEMPT))
1305 				ret = BLKPREP_DEFER;
1306 			break;
1307 		default:
1308 			/*
1309 			 * For any other not fully online state we only allow
1310 			 * special commands.  In particular any user initiated
1311 			 * command is not allowed.
1312 			 */
1313 			if (req && !(req->rq_flags & RQF_PREEMPT))
1314 				ret = BLKPREP_KILL;
1315 			break;
1316 		}
1317 	}
1318 	return ret;
1319 }
1320 
1321 static int
1322 scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1323 {
1324 	struct scsi_device *sdev = q->queuedata;
1325 
1326 	switch (ret) {
1327 	case BLKPREP_KILL:
1328 	case BLKPREP_INVALID:
1329 		scsi_req(req)->result = DID_NO_CONNECT << 16;
1330 		/* release the command and kill it */
1331 		if (req->special) {
1332 			struct scsi_cmnd *cmd = req->special;
1333 			scsi_release_buffers(cmd);
1334 			scsi_put_command(cmd);
1335 			put_device(&sdev->sdev_gendev);
1336 			req->special = NULL;
1337 		}
1338 		break;
1339 	case BLKPREP_DEFER:
1340 		/*
1341 		 * If we defer, the blk_peek_request() returns NULL, but the
1342 		 * queue must be restarted, so we schedule a callback to happen
1343 		 * shortly.
1344 		 */
1345 		if (atomic_read(&sdev->device_busy) == 0)
1346 			blk_delay_queue(q, SCSI_QUEUE_DELAY);
1347 		break;
1348 	default:
1349 		req->rq_flags |= RQF_DONTPREP;
1350 	}
1351 
1352 	return ret;
1353 }
1354 
1355 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1356 {
1357 	struct scsi_device *sdev = q->queuedata;
1358 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1359 	int ret;
1360 
1361 	ret = scsi_prep_state_check(sdev, req);
1362 	if (ret != BLKPREP_OK)
1363 		goto out;
1364 
1365 	if (!req->special) {
1366 		/* Bail if we can't get a reference to the device */
1367 		if (unlikely(!get_device(&sdev->sdev_gendev))) {
1368 			ret = BLKPREP_DEFER;
1369 			goto out;
1370 		}
1371 
1372 		scsi_init_command(sdev, cmd);
1373 		req->special = cmd;
1374 	}
1375 
1376 	cmd->tag = req->tag;
1377 	cmd->request = req;
1378 	cmd->prot_op = SCSI_PROT_NORMAL;
1379 
1380 	ret = scsi_setup_cmnd(sdev, req);
1381 out:
1382 	return scsi_prep_return(q, req, ret);
1383 }
1384 
1385 static void scsi_unprep_fn(struct request_queue *q, struct request *req)
1386 {
1387 	scsi_uninit_cmd(blk_mq_rq_to_pdu(req));
1388 }
1389 
1390 /*
1391  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1392  * return 0.
1393  *
1394  * Called with the queue_lock held.
1395  */
1396 static inline int scsi_dev_queue_ready(struct request_queue *q,
1397 				  struct scsi_device *sdev)
1398 {
1399 	unsigned int busy;
1400 
1401 	busy = atomic_inc_return(&sdev->device_busy) - 1;
1402 	if (atomic_read(&sdev->device_blocked)) {
1403 		if (busy)
1404 			goto out_dec;
1405 
1406 		/*
1407 		 * unblock after device_blocked iterates to zero
1408 		 */
1409 		if (atomic_dec_return(&sdev->device_blocked) > 0) {
1410 			/*
1411 			 * For the MQ case we take care of this in the caller.
1412 			 */
1413 			if (!q->mq_ops)
1414 				blk_delay_queue(q, SCSI_QUEUE_DELAY);
1415 			goto out_dec;
1416 		}
1417 		SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1418 				   "unblocking device at zero depth\n"));
1419 	}
1420 
1421 	if (busy >= sdev->queue_depth)
1422 		goto out_dec;
1423 
1424 	return 1;
1425 out_dec:
1426 	atomic_dec(&sdev->device_busy);
1427 	return 0;
1428 }
1429 
1430 /*
1431  * scsi_target_queue_ready: checks if there we can send commands to target
1432  * @sdev: scsi device on starget to check.
1433  */
1434 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1435 					   struct scsi_device *sdev)
1436 {
1437 	struct scsi_target *starget = scsi_target(sdev);
1438 	unsigned int busy;
1439 
1440 	if (starget->single_lun) {
1441 		spin_lock_irq(shost->host_lock);
1442 		if (starget->starget_sdev_user &&
1443 		    starget->starget_sdev_user != sdev) {
1444 			spin_unlock_irq(shost->host_lock);
1445 			return 0;
1446 		}
1447 		starget->starget_sdev_user = sdev;
1448 		spin_unlock_irq(shost->host_lock);
1449 	}
1450 
1451 	if (starget->can_queue <= 0)
1452 		return 1;
1453 
1454 	busy = atomic_inc_return(&starget->target_busy) - 1;
1455 	if (atomic_read(&starget->target_blocked) > 0) {
1456 		if (busy)
1457 			goto starved;
1458 
1459 		/*
1460 		 * unblock after target_blocked iterates to zero
1461 		 */
1462 		if (atomic_dec_return(&starget->target_blocked) > 0)
1463 			goto out_dec;
1464 
1465 		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1466 				 "unblocking target at zero depth\n"));
1467 	}
1468 
1469 	if (busy >= starget->can_queue)
1470 		goto starved;
1471 
1472 	return 1;
1473 
1474 starved:
1475 	spin_lock_irq(shost->host_lock);
1476 	list_move_tail(&sdev->starved_entry, &shost->starved_list);
1477 	spin_unlock_irq(shost->host_lock);
1478 out_dec:
1479 	if (starget->can_queue > 0)
1480 		atomic_dec(&starget->target_busy);
1481 	return 0;
1482 }
1483 
1484 /*
1485  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1486  * return 0. We must end up running the queue again whenever 0 is
1487  * returned, else IO can hang.
1488  */
1489 static inline int scsi_host_queue_ready(struct request_queue *q,
1490 				   struct Scsi_Host *shost,
1491 				   struct scsi_device *sdev)
1492 {
1493 	unsigned int busy;
1494 
1495 	if (scsi_host_in_recovery(shost))
1496 		return 0;
1497 
1498 	busy = atomic_inc_return(&shost->host_busy) - 1;
1499 	if (atomic_read(&shost->host_blocked) > 0) {
1500 		if (busy)
1501 			goto starved;
1502 
1503 		/*
1504 		 * unblock after host_blocked iterates to zero
1505 		 */
1506 		if (atomic_dec_return(&shost->host_blocked) > 0)
1507 			goto out_dec;
1508 
1509 		SCSI_LOG_MLQUEUE(3,
1510 			shost_printk(KERN_INFO, shost,
1511 				     "unblocking host at zero depth\n"));
1512 	}
1513 
1514 	if (shost->can_queue > 0 && busy >= shost->can_queue)
1515 		goto starved;
1516 	if (shost->host_self_blocked)
1517 		goto starved;
1518 
1519 	/* We're OK to process the command, so we can't be starved */
1520 	if (!list_empty(&sdev->starved_entry)) {
1521 		spin_lock_irq(shost->host_lock);
1522 		if (!list_empty(&sdev->starved_entry))
1523 			list_del_init(&sdev->starved_entry);
1524 		spin_unlock_irq(shost->host_lock);
1525 	}
1526 
1527 	return 1;
1528 
1529 starved:
1530 	spin_lock_irq(shost->host_lock);
1531 	if (list_empty(&sdev->starved_entry))
1532 		list_add_tail(&sdev->starved_entry, &shost->starved_list);
1533 	spin_unlock_irq(shost->host_lock);
1534 out_dec:
1535 	atomic_dec(&shost->host_busy);
1536 	return 0;
1537 }
1538 
1539 /*
1540  * Busy state exporting function for request stacking drivers.
1541  *
1542  * For efficiency, no lock is taken to check the busy state of
1543  * shost/starget/sdev, since the returned value is not guaranteed and
1544  * may be changed after request stacking drivers call the function,
1545  * regardless of taking lock or not.
1546  *
1547  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1548  * needs to return 'not busy'. Otherwise, request stacking drivers
1549  * may hold requests forever.
1550  */
1551 static int scsi_lld_busy(struct request_queue *q)
1552 {
1553 	struct scsi_device *sdev = q->queuedata;
1554 	struct Scsi_Host *shost;
1555 
1556 	if (blk_queue_dying(q))
1557 		return 0;
1558 
1559 	shost = sdev->host;
1560 
1561 	/*
1562 	 * Ignore host/starget busy state.
1563 	 * Since block layer does not have a concept of fairness across
1564 	 * multiple queues, congestion of host/starget needs to be handled
1565 	 * in SCSI layer.
1566 	 */
1567 	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1568 		return 1;
1569 
1570 	return 0;
1571 }
1572 
1573 /*
1574  * Kill a request for a dead device
1575  */
1576 static void scsi_kill_request(struct request *req, struct request_queue *q)
1577 {
1578 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1579 	struct scsi_device *sdev;
1580 	struct scsi_target *starget;
1581 	struct Scsi_Host *shost;
1582 
1583 	blk_start_request(req);
1584 
1585 	scmd_printk(KERN_INFO, cmd, "killing request\n");
1586 
1587 	sdev = cmd->device;
1588 	starget = scsi_target(sdev);
1589 	shost = sdev->host;
1590 	scsi_init_cmd_errh(cmd);
1591 	cmd->result = DID_NO_CONNECT << 16;
1592 	atomic_inc(&cmd->device->iorequest_cnt);
1593 
1594 	/*
1595 	 * SCSI request completion path will do scsi_device_unbusy(),
1596 	 * bump busy counts.  To bump the counters, we need to dance
1597 	 * with the locks as normal issue path does.
1598 	 */
1599 	atomic_inc(&sdev->device_busy);
1600 	atomic_inc(&shost->host_busy);
1601 	if (starget->can_queue > 0)
1602 		atomic_inc(&starget->target_busy);
1603 
1604 	blk_complete_request(req);
1605 }
1606 
1607 static void scsi_softirq_done(struct request *rq)
1608 {
1609 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1610 	unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1611 	int disposition;
1612 
1613 	INIT_LIST_HEAD(&cmd->eh_entry);
1614 
1615 	atomic_inc(&cmd->device->iodone_cnt);
1616 	if (cmd->result)
1617 		atomic_inc(&cmd->device->ioerr_cnt);
1618 
1619 	disposition = scsi_decide_disposition(cmd);
1620 	if (disposition != SUCCESS &&
1621 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1622 		sdev_printk(KERN_ERR, cmd->device,
1623 			    "timing out command, waited %lus\n",
1624 			    wait_for/HZ);
1625 		disposition = SUCCESS;
1626 	}
1627 
1628 	scsi_log_completion(cmd, disposition);
1629 
1630 	switch (disposition) {
1631 		case SUCCESS:
1632 			scsi_finish_command(cmd);
1633 			break;
1634 		case NEEDS_RETRY:
1635 			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1636 			break;
1637 		case ADD_TO_MLQUEUE:
1638 			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1639 			break;
1640 		default:
1641 			scsi_eh_scmd_add(cmd);
1642 			break;
1643 	}
1644 }
1645 
1646 /**
1647  * scsi_dispatch_command - Dispatch a command to the low-level driver.
1648  * @cmd: command block we are dispatching.
1649  *
1650  * Return: nonzero return request was rejected and device's queue needs to be
1651  * plugged.
1652  */
1653 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1654 {
1655 	struct Scsi_Host *host = cmd->device->host;
1656 	int rtn = 0;
1657 
1658 	atomic_inc(&cmd->device->iorequest_cnt);
1659 
1660 	/* check if the device is still usable */
1661 	if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1662 		/* in SDEV_DEL we error all commands. DID_NO_CONNECT
1663 		 * returns an immediate error upwards, and signals
1664 		 * that the device is no longer present */
1665 		cmd->result = DID_NO_CONNECT << 16;
1666 		goto done;
1667 	}
1668 
1669 	/* Check to see if the scsi lld made this device blocked. */
1670 	if (unlikely(scsi_device_blocked(cmd->device))) {
1671 		/*
1672 		 * in blocked state, the command is just put back on
1673 		 * the device queue.  The suspend state has already
1674 		 * blocked the queue so future requests should not
1675 		 * occur until the device transitions out of the
1676 		 * suspend state.
1677 		 */
1678 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1679 			"queuecommand : device blocked\n"));
1680 		return SCSI_MLQUEUE_DEVICE_BUSY;
1681 	}
1682 
1683 	/* Store the LUN value in cmnd, if needed. */
1684 	if (cmd->device->lun_in_cdb)
1685 		cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1686 			       (cmd->device->lun << 5 & 0xe0);
1687 
1688 	scsi_log_send(cmd);
1689 
1690 	/*
1691 	 * Before we queue this command, check if the command
1692 	 * length exceeds what the host adapter can handle.
1693 	 */
1694 	if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1695 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1696 			       "queuecommand : command too long. "
1697 			       "cdb_size=%d host->max_cmd_len=%d\n",
1698 			       cmd->cmd_len, cmd->device->host->max_cmd_len));
1699 		cmd->result = (DID_ABORT << 16);
1700 		goto done;
1701 	}
1702 
1703 	if (unlikely(host->shost_state == SHOST_DEL)) {
1704 		cmd->result = (DID_NO_CONNECT << 16);
1705 		goto done;
1706 
1707 	}
1708 
1709 	trace_scsi_dispatch_cmd_start(cmd);
1710 	rtn = host->hostt->queuecommand(host, cmd);
1711 	if (rtn) {
1712 		trace_scsi_dispatch_cmd_error(cmd, rtn);
1713 		if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1714 		    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1715 			rtn = SCSI_MLQUEUE_HOST_BUSY;
1716 
1717 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1718 			"queuecommand : request rejected\n"));
1719 	}
1720 
1721 	return rtn;
1722  done:
1723 	cmd->scsi_done(cmd);
1724 	return 0;
1725 }
1726 
1727 /**
1728  * scsi_done - Invoke completion on finished SCSI command.
1729  * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives
1730  * ownership back to SCSI Core -- i.e. the LLDD has finished with it.
1731  *
1732  * Description: This function is the mid-level's (SCSI Core) interrupt routine,
1733  * which regains ownership of the SCSI command (de facto) from a LLDD, and
1734  * calls blk_complete_request() for further processing.
1735  *
1736  * This function is interrupt context safe.
1737  */
1738 static void scsi_done(struct scsi_cmnd *cmd)
1739 {
1740 	trace_scsi_dispatch_cmd_done(cmd);
1741 	blk_complete_request(cmd->request);
1742 }
1743 
1744 /*
1745  * Function:    scsi_request_fn()
1746  *
1747  * Purpose:     Main strategy routine for SCSI.
1748  *
1749  * Arguments:   q       - Pointer to actual queue.
1750  *
1751  * Returns:     Nothing
1752  *
1753  * Lock status: request queue lock assumed to be held when called.
1754  *
1755  * Note: See sd_zbc.c sd_zbc_write_lock_zone() for write order
1756  * protection for ZBC disks.
1757  */
1758 static void scsi_request_fn(struct request_queue *q)
1759 	__releases(q->queue_lock)
1760 	__acquires(q->queue_lock)
1761 {
1762 	struct scsi_device *sdev = q->queuedata;
1763 	struct Scsi_Host *shost;
1764 	struct scsi_cmnd *cmd;
1765 	struct request *req;
1766 
1767 	/*
1768 	 * To start with, we keep looping until the queue is empty, or until
1769 	 * the host is no longer able to accept any more requests.
1770 	 */
1771 	shost = sdev->host;
1772 	for (;;) {
1773 		int rtn;
1774 		/*
1775 		 * get next queueable request.  We do this early to make sure
1776 		 * that the request is fully prepared even if we cannot
1777 		 * accept it.
1778 		 */
1779 		req = blk_peek_request(q);
1780 		if (!req)
1781 			break;
1782 
1783 		if (unlikely(!scsi_device_online(sdev))) {
1784 			sdev_printk(KERN_ERR, sdev,
1785 				    "rejecting I/O to offline device\n");
1786 			scsi_kill_request(req, q);
1787 			continue;
1788 		}
1789 
1790 		if (!scsi_dev_queue_ready(q, sdev))
1791 			break;
1792 
1793 		/*
1794 		 * Remove the request from the request list.
1795 		 */
1796 		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1797 			blk_start_request(req);
1798 
1799 		spin_unlock_irq(q->queue_lock);
1800 		cmd = blk_mq_rq_to_pdu(req);
1801 		if (cmd != req->special) {
1802 			printk(KERN_CRIT "impossible request in %s.\n"
1803 					 "please mail a stack trace to "
1804 					 "linux-scsi@vger.kernel.org\n",
1805 					 __func__);
1806 			blk_dump_rq_flags(req, "foo");
1807 			BUG();
1808 		}
1809 
1810 		/*
1811 		 * We hit this when the driver is using a host wide
1812 		 * tag map. For device level tag maps the queue_depth check
1813 		 * in the device ready fn would prevent us from trying
1814 		 * to allocate a tag. Since the map is a shared host resource
1815 		 * we add the dev to the starved list so it eventually gets
1816 		 * a run when a tag is freed.
1817 		 */
1818 		if (blk_queue_tagged(q) && !(req->rq_flags & RQF_QUEUED)) {
1819 			spin_lock_irq(shost->host_lock);
1820 			if (list_empty(&sdev->starved_entry))
1821 				list_add_tail(&sdev->starved_entry,
1822 					      &shost->starved_list);
1823 			spin_unlock_irq(shost->host_lock);
1824 			goto not_ready;
1825 		}
1826 
1827 		if (!scsi_target_queue_ready(shost, sdev))
1828 			goto not_ready;
1829 
1830 		if (!scsi_host_queue_ready(q, shost, sdev))
1831 			goto host_not_ready;
1832 
1833 		if (sdev->simple_tags)
1834 			cmd->flags |= SCMD_TAGGED;
1835 		else
1836 			cmd->flags &= ~SCMD_TAGGED;
1837 
1838 		/*
1839 		 * Finally, initialize any error handling parameters, and set up
1840 		 * the timers for timeouts.
1841 		 */
1842 		scsi_init_cmd_errh(cmd);
1843 
1844 		/*
1845 		 * Dispatch the command to the low-level driver.
1846 		 */
1847 		cmd->scsi_done = scsi_done;
1848 		rtn = scsi_dispatch_cmd(cmd);
1849 		if (rtn) {
1850 			scsi_queue_insert(cmd, rtn);
1851 			spin_lock_irq(q->queue_lock);
1852 			goto out_delay;
1853 		}
1854 		spin_lock_irq(q->queue_lock);
1855 	}
1856 
1857 	return;
1858 
1859  host_not_ready:
1860 	if (scsi_target(sdev)->can_queue > 0)
1861 		atomic_dec(&scsi_target(sdev)->target_busy);
1862  not_ready:
1863 	/*
1864 	 * lock q, handle tag, requeue req, and decrement device_busy. We
1865 	 * must return with queue_lock held.
1866 	 *
1867 	 * Decrementing device_busy without checking it is OK, as all such
1868 	 * cases (host limits or settings) should run the queue at some
1869 	 * later time.
1870 	 */
1871 	spin_lock_irq(q->queue_lock);
1872 	blk_requeue_request(q, req);
1873 	atomic_dec(&sdev->device_busy);
1874 out_delay:
1875 	if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev))
1876 		blk_delay_queue(q, SCSI_QUEUE_DELAY);
1877 }
1878 
1879 static inline blk_status_t prep_to_mq(int ret)
1880 {
1881 	switch (ret) {
1882 	case BLKPREP_OK:
1883 		return BLK_STS_OK;
1884 	case BLKPREP_DEFER:
1885 		return BLK_STS_RESOURCE;
1886 	default:
1887 		return BLK_STS_IOERR;
1888 	}
1889 }
1890 
1891 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1892 static unsigned int scsi_mq_sgl_size(struct Scsi_Host *shost)
1893 {
1894 	return min_t(unsigned int, shost->sg_tablesize, SG_CHUNK_SIZE) *
1895 		sizeof(struct scatterlist);
1896 }
1897 
1898 static int scsi_mq_prep_fn(struct request *req)
1899 {
1900 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1901 	struct scsi_device *sdev = req->q->queuedata;
1902 	struct Scsi_Host *shost = sdev->host;
1903 	struct scatterlist *sg;
1904 
1905 	scsi_init_command(sdev, cmd);
1906 
1907 	req->special = cmd;
1908 
1909 	cmd->request = req;
1910 
1911 	cmd->tag = req->tag;
1912 	cmd->prot_op = SCSI_PROT_NORMAL;
1913 
1914 	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1915 	cmd->sdb.table.sgl = sg;
1916 
1917 	if (scsi_host_get_prot(shost)) {
1918 		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1919 
1920 		cmd->prot_sdb->table.sgl =
1921 			(struct scatterlist *)(cmd->prot_sdb + 1);
1922 	}
1923 
1924 	if (blk_bidi_rq(req)) {
1925 		struct request *next_rq = req->next_rq;
1926 		struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq);
1927 
1928 		memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer));
1929 		bidi_sdb->table.sgl =
1930 			(struct scatterlist *)(bidi_sdb + 1);
1931 
1932 		next_rq->special = bidi_sdb;
1933 	}
1934 
1935 	blk_mq_start_request(req);
1936 
1937 	return scsi_setup_cmnd(sdev, req);
1938 }
1939 
1940 static void scsi_mq_done(struct scsi_cmnd *cmd)
1941 {
1942 	trace_scsi_dispatch_cmd_done(cmd);
1943 	blk_mq_complete_request(cmd->request);
1944 }
1945 
1946 static void scsi_mq_put_budget(struct blk_mq_hw_ctx *hctx)
1947 {
1948 	struct request_queue *q = hctx->queue;
1949 	struct scsi_device *sdev = q->queuedata;
1950 
1951 	atomic_dec(&sdev->device_busy);
1952 	put_device(&sdev->sdev_gendev);
1953 }
1954 
1955 static bool scsi_mq_get_budget(struct blk_mq_hw_ctx *hctx)
1956 {
1957 	struct request_queue *q = hctx->queue;
1958 	struct scsi_device *sdev = q->queuedata;
1959 
1960 	if (!get_device(&sdev->sdev_gendev))
1961 		goto out;
1962 	if (!scsi_dev_queue_ready(q, sdev))
1963 		goto out_put_device;
1964 
1965 	return true;
1966 
1967 out_put_device:
1968 	put_device(&sdev->sdev_gendev);
1969 out:
1970 	return false;
1971 }
1972 
1973 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1974 			 const struct blk_mq_queue_data *bd)
1975 {
1976 	struct request *req = bd->rq;
1977 	struct request_queue *q = req->q;
1978 	struct scsi_device *sdev = q->queuedata;
1979 	struct Scsi_Host *shost = sdev->host;
1980 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1981 	blk_status_t ret;
1982 	int reason;
1983 
1984 	ret = prep_to_mq(scsi_prep_state_check(sdev, req));
1985 	if (ret != BLK_STS_OK)
1986 		goto out_put_budget;
1987 
1988 	ret = BLK_STS_RESOURCE;
1989 	if (!scsi_target_queue_ready(shost, sdev))
1990 		goto out_put_budget;
1991 	if (!scsi_host_queue_ready(q, shost, sdev))
1992 		goto out_dec_target_busy;
1993 
1994 	if (!(req->rq_flags & RQF_DONTPREP)) {
1995 		ret = prep_to_mq(scsi_mq_prep_fn(req));
1996 		if (ret != BLK_STS_OK)
1997 			goto out_dec_host_busy;
1998 		req->rq_flags |= RQF_DONTPREP;
1999 	} else {
2000 		blk_mq_start_request(req);
2001 	}
2002 
2003 	if (sdev->simple_tags)
2004 		cmd->flags |= SCMD_TAGGED;
2005 	else
2006 		cmd->flags &= ~SCMD_TAGGED;
2007 
2008 	scsi_init_cmd_errh(cmd);
2009 	cmd->scsi_done = scsi_mq_done;
2010 
2011 	reason = scsi_dispatch_cmd(cmd);
2012 	if (reason) {
2013 		scsi_set_blocked(cmd, reason);
2014 		ret = BLK_STS_RESOURCE;
2015 		goto out_dec_host_busy;
2016 	}
2017 
2018 	return BLK_STS_OK;
2019 
2020 out_dec_host_busy:
2021        atomic_dec(&shost->host_busy);
2022 out_dec_target_busy:
2023 	if (scsi_target(sdev)->can_queue > 0)
2024 		atomic_dec(&scsi_target(sdev)->target_busy);
2025 out_put_budget:
2026 	scsi_mq_put_budget(hctx);
2027 	switch (ret) {
2028 	case BLK_STS_OK:
2029 		break;
2030 	case BLK_STS_RESOURCE:
2031 		if (atomic_read(&sdev->device_busy) == 0 &&
2032 		    !scsi_device_blocked(sdev))
2033 			blk_mq_delay_run_hw_queue(hctx, SCSI_QUEUE_DELAY);
2034 		break;
2035 	default:
2036 		/*
2037 		 * Make sure to release all allocated ressources when
2038 		 * we hit an error, as we will never see this command
2039 		 * again.
2040 		 */
2041 		if (req->rq_flags & RQF_DONTPREP)
2042 			scsi_mq_uninit_cmd(cmd);
2043 		break;
2044 	}
2045 	return ret;
2046 }
2047 
2048 static enum blk_eh_timer_return scsi_timeout(struct request *req,
2049 		bool reserved)
2050 {
2051 	if (reserved)
2052 		return BLK_EH_RESET_TIMER;
2053 	return scsi_times_out(req);
2054 }
2055 
2056 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2057 				unsigned int hctx_idx, unsigned int numa_node)
2058 {
2059 	struct Scsi_Host *shost = set->driver_data;
2060 	const bool unchecked_isa_dma = shost->unchecked_isa_dma;
2061 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2062 	struct scatterlist *sg;
2063 
2064 	if (unchecked_isa_dma)
2065 		cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
2066 	cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma,
2067 						    GFP_KERNEL, numa_node);
2068 	if (!cmd->sense_buffer)
2069 		return -ENOMEM;
2070 	cmd->req.sense = cmd->sense_buffer;
2071 
2072 	if (scsi_host_get_prot(shost)) {
2073 		sg = (void *)cmd + sizeof(struct scsi_cmnd) +
2074 			shost->hostt->cmd_size;
2075 		cmd->prot_sdb = (void *)sg + scsi_mq_sgl_size(shost);
2076 	}
2077 
2078 	return 0;
2079 }
2080 
2081 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
2082 				 unsigned int hctx_idx)
2083 {
2084 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2085 
2086 	scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
2087 			       cmd->sense_buffer);
2088 }
2089 
2090 static int scsi_map_queues(struct blk_mq_tag_set *set)
2091 {
2092 	struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
2093 
2094 	if (shost->hostt->map_queues)
2095 		return shost->hostt->map_queues(shost);
2096 	return blk_mq_map_queues(set);
2097 }
2098 
2099 static u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
2100 {
2101 	struct device *host_dev;
2102 	u64 bounce_limit = 0xffffffff;
2103 
2104 	if (shost->unchecked_isa_dma)
2105 		return BLK_BOUNCE_ISA;
2106 	/*
2107 	 * Platforms with virtual-DMA translation
2108 	 * hardware have no practical limit.
2109 	 */
2110 	if (!PCI_DMA_BUS_IS_PHYS)
2111 		return BLK_BOUNCE_ANY;
2112 
2113 	host_dev = scsi_get_device(shost);
2114 	if (host_dev && host_dev->dma_mask)
2115 		bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT;
2116 
2117 	return bounce_limit;
2118 }
2119 
2120 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
2121 {
2122 	struct device *dev = shost->dma_dev;
2123 
2124 	queue_flag_set_unlocked(QUEUE_FLAG_SCSI_PASSTHROUGH, q);
2125 
2126 	/*
2127 	 * this limit is imposed by hardware restrictions
2128 	 */
2129 	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
2130 					SG_MAX_SEGMENTS));
2131 
2132 	if (scsi_host_prot_dma(shost)) {
2133 		shost->sg_prot_tablesize =
2134 			min_not_zero(shost->sg_prot_tablesize,
2135 				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
2136 		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
2137 		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
2138 	}
2139 
2140 	blk_queue_max_hw_sectors(q, shost->max_sectors);
2141 	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
2142 	blk_queue_segment_boundary(q, shost->dma_boundary);
2143 	dma_set_seg_boundary(dev, shost->dma_boundary);
2144 
2145 	blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
2146 
2147 	if (!shost->use_clustering)
2148 		q->limits.cluster = 0;
2149 
2150 	/*
2151 	 * set a reasonable default alignment on word boundaries: the
2152 	 * host and device may alter it using
2153 	 * blk_queue_update_dma_alignment() later.
2154 	 */
2155 	blk_queue_dma_alignment(q, 0x03);
2156 }
2157 EXPORT_SYMBOL_GPL(__scsi_init_queue);
2158 
2159 static int scsi_old_init_rq(struct request_queue *q, struct request *rq,
2160 			    gfp_t gfp)
2161 {
2162 	struct Scsi_Host *shost = q->rq_alloc_data;
2163 	const bool unchecked_isa_dma = shost->unchecked_isa_dma;
2164 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2165 
2166 	memset(cmd, 0, sizeof(*cmd));
2167 
2168 	if (unchecked_isa_dma)
2169 		cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
2170 	cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma, gfp,
2171 						    NUMA_NO_NODE);
2172 	if (!cmd->sense_buffer)
2173 		goto fail;
2174 	cmd->req.sense = cmd->sense_buffer;
2175 
2176 	if (scsi_host_get_prot(shost) >= SHOST_DIX_TYPE0_PROTECTION) {
2177 		cmd->prot_sdb = kmem_cache_zalloc(scsi_sdb_cache, gfp);
2178 		if (!cmd->prot_sdb)
2179 			goto fail_free_sense;
2180 	}
2181 
2182 	return 0;
2183 
2184 fail_free_sense:
2185 	scsi_free_sense_buffer(unchecked_isa_dma, cmd->sense_buffer);
2186 fail:
2187 	return -ENOMEM;
2188 }
2189 
2190 static void scsi_old_exit_rq(struct request_queue *q, struct request *rq)
2191 {
2192 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2193 
2194 	if (cmd->prot_sdb)
2195 		kmem_cache_free(scsi_sdb_cache, cmd->prot_sdb);
2196 	scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
2197 			       cmd->sense_buffer);
2198 }
2199 
2200 struct request_queue *scsi_old_alloc_queue(struct scsi_device *sdev)
2201 {
2202 	struct Scsi_Host *shost = sdev->host;
2203 	struct request_queue *q;
2204 
2205 	q = blk_alloc_queue_node(GFP_KERNEL, NUMA_NO_NODE);
2206 	if (!q)
2207 		return NULL;
2208 	q->cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
2209 	q->rq_alloc_data = shost;
2210 	q->request_fn = scsi_request_fn;
2211 	q->init_rq_fn = scsi_old_init_rq;
2212 	q->exit_rq_fn = scsi_old_exit_rq;
2213 	q->initialize_rq_fn = scsi_initialize_rq;
2214 
2215 	if (blk_init_allocated_queue(q) < 0) {
2216 		blk_cleanup_queue(q);
2217 		return NULL;
2218 	}
2219 
2220 	__scsi_init_queue(shost, q);
2221 	blk_queue_prep_rq(q, scsi_prep_fn);
2222 	blk_queue_unprep_rq(q, scsi_unprep_fn);
2223 	blk_queue_softirq_done(q, scsi_softirq_done);
2224 	blk_queue_rq_timed_out(q, scsi_times_out);
2225 	blk_queue_lld_busy(q, scsi_lld_busy);
2226 	return q;
2227 }
2228 
2229 static const struct blk_mq_ops scsi_mq_ops = {
2230 	.get_budget	= scsi_mq_get_budget,
2231 	.put_budget	= scsi_mq_put_budget,
2232 	.queue_rq	= scsi_queue_rq,
2233 	.complete	= scsi_softirq_done,
2234 	.timeout	= scsi_timeout,
2235 #ifdef CONFIG_BLK_DEBUG_FS
2236 	.show_rq	= scsi_show_rq,
2237 #endif
2238 	.init_request	= scsi_mq_init_request,
2239 	.exit_request	= scsi_mq_exit_request,
2240 	.initialize_rq_fn = scsi_initialize_rq,
2241 	.map_queues	= scsi_map_queues,
2242 };
2243 
2244 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
2245 {
2246 	sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
2247 	if (IS_ERR(sdev->request_queue))
2248 		return NULL;
2249 
2250 	sdev->request_queue->queuedata = sdev;
2251 	__scsi_init_queue(sdev->host, sdev->request_queue);
2252 	return sdev->request_queue;
2253 }
2254 
2255 int scsi_mq_setup_tags(struct Scsi_Host *shost)
2256 {
2257 	unsigned int cmd_size, sgl_size;
2258 
2259 	sgl_size = scsi_mq_sgl_size(shost);
2260 	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2261 	if (scsi_host_get_prot(shost))
2262 		cmd_size += sizeof(struct scsi_data_buffer) + sgl_size;
2263 
2264 	memset(&shost->tag_set, 0, sizeof(shost->tag_set));
2265 	shost->tag_set.ops = &scsi_mq_ops;
2266 	shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1;
2267 	shost->tag_set.queue_depth = shost->can_queue;
2268 	shost->tag_set.cmd_size = cmd_size;
2269 	shost->tag_set.numa_node = NUMA_NO_NODE;
2270 	shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2271 	shost->tag_set.flags |=
2272 		BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
2273 	shost->tag_set.driver_data = shost;
2274 
2275 	return blk_mq_alloc_tag_set(&shost->tag_set);
2276 }
2277 
2278 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
2279 {
2280 	blk_mq_free_tag_set(&shost->tag_set);
2281 }
2282 
2283 /**
2284  * scsi_device_from_queue - return sdev associated with a request_queue
2285  * @q: The request queue to return the sdev from
2286  *
2287  * Return the sdev associated with a request queue or NULL if the
2288  * request_queue does not reference a SCSI device.
2289  */
2290 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2291 {
2292 	struct scsi_device *sdev = NULL;
2293 
2294 	if (q->mq_ops) {
2295 		if (q->mq_ops == &scsi_mq_ops)
2296 			sdev = q->queuedata;
2297 	} else if (q->request_fn == scsi_request_fn)
2298 		sdev = q->queuedata;
2299 	if (!sdev || !get_device(&sdev->sdev_gendev))
2300 		sdev = NULL;
2301 
2302 	return sdev;
2303 }
2304 EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2305 
2306 /*
2307  * Function:    scsi_block_requests()
2308  *
2309  * Purpose:     Utility function used by low-level drivers to prevent further
2310  *		commands from being queued to the device.
2311  *
2312  * Arguments:   shost       - Host in question
2313  *
2314  * Returns:     Nothing
2315  *
2316  * Lock status: No locks are assumed held.
2317  *
2318  * Notes:       There is no timer nor any other means by which the requests
2319  *		get unblocked other than the low-level driver calling
2320  *		scsi_unblock_requests().
2321  */
2322 void scsi_block_requests(struct Scsi_Host *shost)
2323 {
2324 	shost->host_self_blocked = 1;
2325 }
2326 EXPORT_SYMBOL(scsi_block_requests);
2327 
2328 /*
2329  * Function:    scsi_unblock_requests()
2330  *
2331  * Purpose:     Utility function used by low-level drivers to allow further
2332  *		commands from being queued to the device.
2333  *
2334  * Arguments:   shost       - Host in question
2335  *
2336  * Returns:     Nothing
2337  *
2338  * Lock status: No locks are assumed held.
2339  *
2340  * Notes:       There is no timer nor any other means by which the requests
2341  *		get unblocked other than the low-level driver calling
2342  *		scsi_unblock_requests().
2343  *
2344  *		This is done as an API function so that changes to the
2345  *		internals of the scsi mid-layer won't require wholesale
2346  *		changes to drivers that use this feature.
2347  */
2348 void scsi_unblock_requests(struct Scsi_Host *shost)
2349 {
2350 	shost->host_self_blocked = 0;
2351 	scsi_run_host_queues(shost);
2352 }
2353 EXPORT_SYMBOL(scsi_unblock_requests);
2354 
2355 int __init scsi_init_queue(void)
2356 {
2357 	scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
2358 					   sizeof(struct scsi_data_buffer),
2359 					   0, 0, NULL);
2360 	if (!scsi_sdb_cache) {
2361 		printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
2362 		return -ENOMEM;
2363 	}
2364 
2365 	return 0;
2366 }
2367 
2368 void scsi_exit_queue(void)
2369 {
2370 	kmem_cache_destroy(scsi_sense_cache);
2371 	kmem_cache_destroy(scsi_sense_isadma_cache);
2372 	kmem_cache_destroy(scsi_sdb_cache);
2373 }
2374 
2375 /**
2376  *	scsi_mode_select - issue a mode select
2377  *	@sdev:	SCSI device to be queried
2378  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
2379  *	@sp:	Save page bit (0 == don't save, 1 == save)
2380  *	@modepage: mode page being requested
2381  *	@buffer: request buffer (may not be smaller than eight bytes)
2382  *	@len:	length of request buffer.
2383  *	@timeout: command timeout
2384  *	@retries: number of retries before failing
2385  *	@data: returns a structure abstracting the mode header data
2386  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2387  *		must be SCSI_SENSE_BUFFERSIZE big.
2388  *
2389  *	Returns zero if successful; negative error number or scsi
2390  *	status on error
2391  *
2392  */
2393 int
2394 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2395 		 unsigned char *buffer, int len, int timeout, int retries,
2396 		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2397 {
2398 	unsigned char cmd[10];
2399 	unsigned char *real_buffer;
2400 	int ret;
2401 
2402 	memset(cmd, 0, sizeof(cmd));
2403 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2404 
2405 	if (sdev->use_10_for_ms) {
2406 		if (len > 65535)
2407 			return -EINVAL;
2408 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
2409 		if (!real_buffer)
2410 			return -ENOMEM;
2411 		memcpy(real_buffer + 8, buffer, len);
2412 		len += 8;
2413 		real_buffer[0] = 0;
2414 		real_buffer[1] = 0;
2415 		real_buffer[2] = data->medium_type;
2416 		real_buffer[3] = data->device_specific;
2417 		real_buffer[4] = data->longlba ? 0x01 : 0;
2418 		real_buffer[5] = 0;
2419 		real_buffer[6] = data->block_descriptor_length >> 8;
2420 		real_buffer[7] = data->block_descriptor_length;
2421 
2422 		cmd[0] = MODE_SELECT_10;
2423 		cmd[7] = len >> 8;
2424 		cmd[8] = len;
2425 	} else {
2426 		if (len > 255 || data->block_descriptor_length > 255 ||
2427 		    data->longlba)
2428 			return -EINVAL;
2429 
2430 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2431 		if (!real_buffer)
2432 			return -ENOMEM;
2433 		memcpy(real_buffer + 4, buffer, len);
2434 		len += 4;
2435 		real_buffer[0] = 0;
2436 		real_buffer[1] = data->medium_type;
2437 		real_buffer[2] = data->device_specific;
2438 		real_buffer[3] = data->block_descriptor_length;
2439 
2440 
2441 		cmd[0] = MODE_SELECT;
2442 		cmd[4] = len;
2443 	}
2444 
2445 	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2446 			       sshdr, timeout, retries, NULL);
2447 	kfree(real_buffer);
2448 	return ret;
2449 }
2450 EXPORT_SYMBOL_GPL(scsi_mode_select);
2451 
2452 /**
2453  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2454  *	@sdev:	SCSI device to be queried
2455  *	@dbd:	set if mode sense will allow block descriptors to be returned
2456  *	@modepage: mode page being requested
2457  *	@buffer: request buffer (may not be smaller than eight bytes)
2458  *	@len:	length of request buffer.
2459  *	@timeout: command timeout
2460  *	@retries: number of retries before failing
2461  *	@data: returns a structure abstracting the mode header data
2462  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2463  *		must be SCSI_SENSE_BUFFERSIZE big.
2464  *
2465  *	Returns zero if unsuccessful, or the header offset (either 4
2466  *	or 8 depending on whether a six or ten byte command was
2467  *	issued) if successful.
2468  */
2469 int
2470 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2471 		  unsigned char *buffer, int len, int timeout, int retries,
2472 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2473 {
2474 	unsigned char cmd[12];
2475 	int use_10_for_ms;
2476 	int header_length;
2477 	int result, retry_count = retries;
2478 	struct scsi_sense_hdr my_sshdr;
2479 
2480 	memset(data, 0, sizeof(*data));
2481 	memset(&cmd[0], 0, 12);
2482 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2483 	cmd[2] = modepage;
2484 
2485 	/* caller might not be interested in sense, but we need it */
2486 	if (!sshdr)
2487 		sshdr = &my_sshdr;
2488 
2489  retry:
2490 	use_10_for_ms = sdev->use_10_for_ms;
2491 
2492 	if (use_10_for_ms) {
2493 		if (len < 8)
2494 			len = 8;
2495 
2496 		cmd[0] = MODE_SENSE_10;
2497 		cmd[8] = len;
2498 		header_length = 8;
2499 	} else {
2500 		if (len < 4)
2501 			len = 4;
2502 
2503 		cmd[0] = MODE_SENSE;
2504 		cmd[4] = len;
2505 		header_length = 4;
2506 	}
2507 
2508 	memset(buffer, 0, len);
2509 
2510 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2511 				  sshdr, timeout, retries, NULL);
2512 
2513 	/* This code looks awful: what it's doing is making sure an
2514 	 * ILLEGAL REQUEST sense return identifies the actual command
2515 	 * byte as the problem.  MODE_SENSE commands can return
2516 	 * ILLEGAL REQUEST if the code page isn't supported */
2517 
2518 	if (use_10_for_ms && !scsi_status_is_good(result) &&
2519 	    (driver_byte(result) & DRIVER_SENSE)) {
2520 		if (scsi_sense_valid(sshdr)) {
2521 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2522 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2523 				/*
2524 				 * Invalid command operation code
2525 				 */
2526 				sdev->use_10_for_ms = 0;
2527 				goto retry;
2528 			}
2529 		}
2530 	}
2531 
2532 	if(scsi_status_is_good(result)) {
2533 		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2534 			     (modepage == 6 || modepage == 8))) {
2535 			/* Initio breakage? */
2536 			header_length = 0;
2537 			data->length = 13;
2538 			data->medium_type = 0;
2539 			data->device_specific = 0;
2540 			data->longlba = 0;
2541 			data->block_descriptor_length = 0;
2542 		} else if(use_10_for_ms) {
2543 			data->length = buffer[0]*256 + buffer[1] + 2;
2544 			data->medium_type = buffer[2];
2545 			data->device_specific = buffer[3];
2546 			data->longlba = buffer[4] & 0x01;
2547 			data->block_descriptor_length = buffer[6]*256
2548 				+ buffer[7];
2549 		} else {
2550 			data->length = buffer[0] + 1;
2551 			data->medium_type = buffer[1];
2552 			data->device_specific = buffer[2];
2553 			data->block_descriptor_length = buffer[3];
2554 		}
2555 		data->header_length = header_length;
2556 	} else if ((status_byte(result) == CHECK_CONDITION) &&
2557 		   scsi_sense_valid(sshdr) &&
2558 		   sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2559 		retry_count--;
2560 		goto retry;
2561 	}
2562 
2563 	return result;
2564 }
2565 EXPORT_SYMBOL(scsi_mode_sense);
2566 
2567 /**
2568  *	scsi_test_unit_ready - test if unit is ready
2569  *	@sdev:	scsi device to change the state of.
2570  *	@timeout: command timeout
2571  *	@retries: number of retries before failing
2572  *	@sshdr: outpout pointer for decoded sense information.
2573  *
2574  *	Returns zero if unsuccessful or an error if TUR failed.  For
2575  *	removable media, UNIT_ATTENTION sets ->changed flag.
2576  **/
2577 int
2578 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2579 		     struct scsi_sense_hdr *sshdr)
2580 {
2581 	char cmd[] = {
2582 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2583 	};
2584 	int result;
2585 
2586 	/* try to eat the UNIT_ATTENTION if there are enough retries */
2587 	do {
2588 		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2589 					  timeout, retries, NULL);
2590 		if (sdev->removable && scsi_sense_valid(sshdr) &&
2591 		    sshdr->sense_key == UNIT_ATTENTION)
2592 			sdev->changed = 1;
2593 	} while (scsi_sense_valid(sshdr) &&
2594 		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2595 
2596 	return result;
2597 }
2598 EXPORT_SYMBOL(scsi_test_unit_ready);
2599 
2600 /**
2601  *	scsi_device_set_state - Take the given device through the device state model.
2602  *	@sdev:	scsi device to change the state of.
2603  *	@state:	state to change to.
2604  *
2605  *	Returns zero if successful or an error if the requested
2606  *	transition is illegal.
2607  */
2608 int
2609 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2610 {
2611 	enum scsi_device_state oldstate = sdev->sdev_state;
2612 
2613 	if (state == oldstate)
2614 		return 0;
2615 
2616 	switch (state) {
2617 	case SDEV_CREATED:
2618 		switch (oldstate) {
2619 		case SDEV_CREATED_BLOCK:
2620 			break;
2621 		default:
2622 			goto illegal;
2623 		}
2624 		break;
2625 
2626 	case SDEV_RUNNING:
2627 		switch (oldstate) {
2628 		case SDEV_CREATED:
2629 		case SDEV_OFFLINE:
2630 		case SDEV_TRANSPORT_OFFLINE:
2631 		case SDEV_QUIESCE:
2632 		case SDEV_BLOCK:
2633 			break;
2634 		default:
2635 			goto illegal;
2636 		}
2637 		break;
2638 
2639 	case SDEV_QUIESCE:
2640 		switch (oldstate) {
2641 		case SDEV_RUNNING:
2642 		case SDEV_OFFLINE:
2643 		case SDEV_TRANSPORT_OFFLINE:
2644 			break;
2645 		default:
2646 			goto illegal;
2647 		}
2648 		break;
2649 
2650 	case SDEV_OFFLINE:
2651 	case SDEV_TRANSPORT_OFFLINE:
2652 		switch (oldstate) {
2653 		case SDEV_CREATED:
2654 		case SDEV_RUNNING:
2655 		case SDEV_QUIESCE:
2656 		case SDEV_BLOCK:
2657 			break;
2658 		default:
2659 			goto illegal;
2660 		}
2661 		break;
2662 
2663 	case SDEV_BLOCK:
2664 		switch (oldstate) {
2665 		case SDEV_RUNNING:
2666 		case SDEV_CREATED_BLOCK:
2667 			break;
2668 		default:
2669 			goto illegal;
2670 		}
2671 		break;
2672 
2673 	case SDEV_CREATED_BLOCK:
2674 		switch (oldstate) {
2675 		case SDEV_CREATED:
2676 			break;
2677 		default:
2678 			goto illegal;
2679 		}
2680 		break;
2681 
2682 	case SDEV_CANCEL:
2683 		switch (oldstate) {
2684 		case SDEV_CREATED:
2685 		case SDEV_RUNNING:
2686 		case SDEV_QUIESCE:
2687 		case SDEV_OFFLINE:
2688 		case SDEV_TRANSPORT_OFFLINE:
2689 			break;
2690 		default:
2691 			goto illegal;
2692 		}
2693 		break;
2694 
2695 	case SDEV_DEL:
2696 		switch (oldstate) {
2697 		case SDEV_CREATED:
2698 		case SDEV_RUNNING:
2699 		case SDEV_OFFLINE:
2700 		case SDEV_TRANSPORT_OFFLINE:
2701 		case SDEV_CANCEL:
2702 		case SDEV_BLOCK:
2703 		case SDEV_CREATED_BLOCK:
2704 			break;
2705 		default:
2706 			goto illegal;
2707 		}
2708 		break;
2709 
2710 	}
2711 	sdev->sdev_state = state;
2712 	return 0;
2713 
2714  illegal:
2715 	SCSI_LOG_ERROR_RECOVERY(1,
2716 				sdev_printk(KERN_ERR, sdev,
2717 					    "Illegal state transition %s->%s",
2718 					    scsi_device_state_name(oldstate),
2719 					    scsi_device_state_name(state))
2720 				);
2721 	return -EINVAL;
2722 }
2723 EXPORT_SYMBOL(scsi_device_set_state);
2724 
2725 /**
2726  * 	sdev_evt_emit - emit a single SCSI device uevent
2727  *	@sdev: associated SCSI device
2728  *	@evt: event to emit
2729  *
2730  *	Send a single uevent (scsi_event) to the associated scsi_device.
2731  */
2732 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2733 {
2734 	int idx = 0;
2735 	char *envp[3];
2736 
2737 	switch (evt->evt_type) {
2738 	case SDEV_EVT_MEDIA_CHANGE:
2739 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2740 		break;
2741 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2742 		scsi_rescan_device(&sdev->sdev_gendev);
2743 		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2744 		break;
2745 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2746 		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2747 		break;
2748 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2749 	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2750 		break;
2751 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2752 		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2753 		break;
2754 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2755 		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2756 		break;
2757 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2758 		envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2759 		break;
2760 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2761 		envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2762 		break;
2763 	default:
2764 		/* do nothing */
2765 		break;
2766 	}
2767 
2768 	envp[idx++] = NULL;
2769 
2770 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2771 }
2772 
2773 /**
2774  * 	sdev_evt_thread - send a uevent for each scsi event
2775  *	@work: work struct for scsi_device
2776  *
2777  *	Dispatch queued events to their associated scsi_device kobjects
2778  *	as uevents.
2779  */
2780 void scsi_evt_thread(struct work_struct *work)
2781 {
2782 	struct scsi_device *sdev;
2783 	enum scsi_device_event evt_type;
2784 	LIST_HEAD(event_list);
2785 
2786 	sdev = container_of(work, struct scsi_device, event_work);
2787 
2788 	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2789 		if (test_and_clear_bit(evt_type, sdev->pending_events))
2790 			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2791 
2792 	while (1) {
2793 		struct scsi_event *evt;
2794 		struct list_head *this, *tmp;
2795 		unsigned long flags;
2796 
2797 		spin_lock_irqsave(&sdev->list_lock, flags);
2798 		list_splice_init(&sdev->event_list, &event_list);
2799 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2800 
2801 		if (list_empty(&event_list))
2802 			break;
2803 
2804 		list_for_each_safe(this, tmp, &event_list) {
2805 			evt = list_entry(this, struct scsi_event, node);
2806 			list_del(&evt->node);
2807 			scsi_evt_emit(sdev, evt);
2808 			kfree(evt);
2809 		}
2810 	}
2811 }
2812 
2813 /**
2814  * 	sdev_evt_send - send asserted event to uevent thread
2815  *	@sdev: scsi_device event occurred on
2816  *	@evt: event to send
2817  *
2818  *	Assert scsi device event asynchronously.
2819  */
2820 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2821 {
2822 	unsigned long flags;
2823 
2824 #if 0
2825 	/* FIXME: currently this check eliminates all media change events
2826 	 * for polled devices.  Need to update to discriminate between AN
2827 	 * and polled events */
2828 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2829 		kfree(evt);
2830 		return;
2831 	}
2832 #endif
2833 
2834 	spin_lock_irqsave(&sdev->list_lock, flags);
2835 	list_add_tail(&evt->node, &sdev->event_list);
2836 	schedule_work(&sdev->event_work);
2837 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2838 }
2839 EXPORT_SYMBOL_GPL(sdev_evt_send);
2840 
2841 /**
2842  * 	sdev_evt_alloc - allocate a new scsi event
2843  *	@evt_type: type of event to allocate
2844  *	@gfpflags: GFP flags for allocation
2845  *
2846  *	Allocates and returns a new scsi_event.
2847  */
2848 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2849 				  gfp_t gfpflags)
2850 {
2851 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2852 	if (!evt)
2853 		return NULL;
2854 
2855 	evt->evt_type = evt_type;
2856 	INIT_LIST_HEAD(&evt->node);
2857 
2858 	/* evt_type-specific initialization, if any */
2859 	switch (evt_type) {
2860 	case SDEV_EVT_MEDIA_CHANGE:
2861 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2862 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2863 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2864 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2865 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2866 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2867 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2868 	default:
2869 		/* do nothing */
2870 		break;
2871 	}
2872 
2873 	return evt;
2874 }
2875 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2876 
2877 /**
2878  * 	sdev_evt_send_simple - send asserted event to uevent thread
2879  *	@sdev: scsi_device event occurred on
2880  *	@evt_type: type of event to send
2881  *	@gfpflags: GFP flags for allocation
2882  *
2883  *	Assert scsi device event asynchronously, given an event type.
2884  */
2885 void sdev_evt_send_simple(struct scsi_device *sdev,
2886 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2887 {
2888 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2889 	if (!evt) {
2890 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2891 			    evt_type);
2892 		return;
2893 	}
2894 
2895 	sdev_evt_send(sdev, evt);
2896 }
2897 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2898 
2899 /**
2900  * scsi_request_fn_active() - number of kernel threads inside scsi_request_fn()
2901  * @sdev: SCSI device to count the number of scsi_request_fn() callers for.
2902  */
2903 static int scsi_request_fn_active(struct scsi_device *sdev)
2904 {
2905 	struct request_queue *q = sdev->request_queue;
2906 	int request_fn_active;
2907 
2908 	WARN_ON_ONCE(sdev->host->use_blk_mq);
2909 
2910 	spin_lock_irq(q->queue_lock);
2911 	request_fn_active = q->request_fn_active;
2912 	spin_unlock_irq(q->queue_lock);
2913 
2914 	return request_fn_active;
2915 }
2916 
2917 /**
2918  * scsi_wait_for_queuecommand() - wait for ongoing queuecommand() calls
2919  * @sdev: SCSI device pointer.
2920  *
2921  * Wait until the ongoing shost->hostt->queuecommand() calls that are
2922  * invoked from scsi_request_fn() have finished.
2923  */
2924 static void scsi_wait_for_queuecommand(struct scsi_device *sdev)
2925 {
2926 	WARN_ON_ONCE(sdev->host->use_blk_mq);
2927 
2928 	while (scsi_request_fn_active(sdev))
2929 		msleep(20);
2930 }
2931 
2932 /**
2933  *	scsi_device_quiesce - Block user issued commands.
2934  *	@sdev:	scsi device to quiesce.
2935  *
2936  *	This works by trying to transition to the SDEV_QUIESCE state
2937  *	(which must be a legal transition).  When the device is in this
2938  *	state, only special requests will be accepted, all others will
2939  *	be deferred.  Since special requests may also be requeued requests,
2940  *	a successful return doesn't guarantee the device will be
2941  *	totally quiescent.
2942  *
2943  *	Must be called with user context, may sleep.
2944  *
2945  *	Returns zero if unsuccessful or an error if not.
2946  */
2947 int
2948 scsi_device_quiesce(struct scsi_device *sdev)
2949 {
2950 	struct request_queue *q = sdev->request_queue;
2951 	int err;
2952 
2953 	/*
2954 	 * It is allowed to call scsi_device_quiesce() multiple times from
2955 	 * the same context but concurrent scsi_device_quiesce() calls are
2956 	 * not allowed.
2957 	 */
2958 	WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2959 
2960 	blk_set_preempt_only(q);
2961 
2962 	blk_mq_freeze_queue(q);
2963 	/*
2964 	 * Ensure that the effect of blk_set_preempt_only() will be visible
2965 	 * for percpu_ref_tryget() callers that occur after the queue
2966 	 * unfreeze even if the queue was already frozen before this function
2967 	 * was called. See also https://lwn.net/Articles/573497/.
2968 	 */
2969 	synchronize_rcu();
2970 	blk_mq_unfreeze_queue(q);
2971 
2972 	mutex_lock(&sdev->state_mutex);
2973 	err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2974 	if (err == 0)
2975 		sdev->quiesced_by = current;
2976 	else
2977 		blk_clear_preempt_only(q);
2978 	mutex_unlock(&sdev->state_mutex);
2979 
2980 	return err;
2981 }
2982 EXPORT_SYMBOL(scsi_device_quiesce);
2983 
2984 /**
2985  *	scsi_device_resume - Restart user issued commands to a quiesced device.
2986  *	@sdev:	scsi device to resume.
2987  *
2988  *	Moves the device from quiesced back to running and restarts the
2989  *	queues.
2990  *
2991  *	Must be called with user context, may sleep.
2992  */
2993 void scsi_device_resume(struct scsi_device *sdev)
2994 {
2995 	/* check if the device state was mutated prior to resume, and if
2996 	 * so assume the state is being managed elsewhere (for example
2997 	 * device deleted during suspend)
2998 	 */
2999 	mutex_lock(&sdev->state_mutex);
3000 	WARN_ON_ONCE(!sdev->quiesced_by);
3001 	sdev->quiesced_by = NULL;
3002 	blk_clear_preempt_only(sdev->request_queue);
3003 	if (sdev->sdev_state == SDEV_QUIESCE)
3004 		scsi_device_set_state(sdev, SDEV_RUNNING);
3005 	mutex_unlock(&sdev->state_mutex);
3006 }
3007 EXPORT_SYMBOL(scsi_device_resume);
3008 
3009 static void
3010 device_quiesce_fn(struct scsi_device *sdev, void *data)
3011 {
3012 	scsi_device_quiesce(sdev);
3013 }
3014 
3015 void
3016 scsi_target_quiesce(struct scsi_target *starget)
3017 {
3018 	starget_for_each_device(starget, NULL, device_quiesce_fn);
3019 }
3020 EXPORT_SYMBOL(scsi_target_quiesce);
3021 
3022 static void
3023 device_resume_fn(struct scsi_device *sdev, void *data)
3024 {
3025 	scsi_device_resume(sdev);
3026 }
3027 
3028 void
3029 scsi_target_resume(struct scsi_target *starget)
3030 {
3031 	starget_for_each_device(starget, NULL, device_resume_fn);
3032 }
3033 EXPORT_SYMBOL(scsi_target_resume);
3034 
3035 /**
3036  * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
3037  * @sdev: device to block
3038  *
3039  * Pause SCSI command processing on the specified device. Does not sleep.
3040  *
3041  * Returns zero if successful or a negative error code upon failure.
3042  *
3043  * Notes:
3044  * This routine transitions the device to the SDEV_BLOCK state (which must be
3045  * a legal transition). When the device is in this state, command processing
3046  * is paused until the device leaves the SDEV_BLOCK state. See also
3047  * scsi_internal_device_unblock_nowait().
3048  */
3049 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
3050 {
3051 	struct request_queue *q = sdev->request_queue;
3052 	unsigned long flags;
3053 	int err = 0;
3054 
3055 	err = scsi_device_set_state(sdev, SDEV_BLOCK);
3056 	if (err) {
3057 		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
3058 
3059 		if (err)
3060 			return err;
3061 	}
3062 
3063 	/*
3064 	 * The device has transitioned to SDEV_BLOCK.  Stop the
3065 	 * block layer from calling the midlayer with this device's
3066 	 * request queue.
3067 	 */
3068 	if (q->mq_ops) {
3069 		blk_mq_quiesce_queue_nowait(q);
3070 	} else {
3071 		spin_lock_irqsave(q->queue_lock, flags);
3072 		blk_stop_queue(q);
3073 		spin_unlock_irqrestore(q->queue_lock, flags);
3074 	}
3075 
3076 	return 0;
3077 }
3078 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
3079 
3080 /**
3081  * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
3082  * @sdev: device to block
3083  *
3084  * Pause SCSI command processing on the specified device and wait until all
3085  * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
3086  *
3087  * Returns zero if successful or a negative error code upon failure.
3088  *
3089  * Note:
3090  * This routine transitions the device to the SDEV_BLOCK state (which must be
3091  * a legal transition). When the device is in this state, command processing
3092  * is paused until the device leaves the SDEV_BLOCK state. See also
3093  * scsi_internal_device_unblock().
3094  *
3095  * To do: avoid that scsi_send_eh_cmnd() calls queuecommand() after
3096  * scsi_internal_device_block() has blocked a SCSI device and also
3097  * remove the rport mutex lock and unlock calls from srp_queuecommand().
3098  */
3099 static int scsi_internal_device_block(struct scsi_device *sdev)
3100 {
3101 	struct request_queue *q = sdev->request_queue;
3102 	int err;
3103 
3104 	mutex_lock(&sdev->state_mutex);
3105 	err = scsi_internal_device_block_nowait(sdev);
3106 	if (err == 0) {
3107 		if (q->mq_ops)
3108 			blk_mq_quiesce_queue(q);
3109 		else
3110 			scsi_wait_for_queuecommand(sdev);
3111 	}
3112 	mutex_unlock(&sdev->state_mutex);
3113 
3114 	return err;
3115 }
3116 
3117 void scsi_start_queue(struct scsi_device *sdev)
3118 {
3119 	struct request_queue *q = sdev->request_queue;
3120 	unsigned long flags;
3121 
3122 	if (q->mq_ops) {
3123 		blk_mq_unquiesce_queue(q);
3124 	} else {
3125 		spin_lock_irqsave(q->queue_lock, flags);
3126 		blk_start_queue(q);
3127 		spin_unlock_irqrestore(q->queue_lock, flags);
3128 	}
3129 }
3130 
3131 /**
3132  * scsi_internal_device_unblock_nowait - resume a device after a block request
3133  * @sdev:	device to resume
3134  * @new_state:	state to set the device to after unblocking
3135  *
3136  * Restart the device queue for a previously suspended SCSI device. Does not
3137  * sleep.
3138  *
3139  * Returns zero if successful or a negative error code upon failure.
3140  *
3141  * Notes:
3142  * This routine transitions the device to the SDEV_RUNNING state or to one of
3143  * the offline states (which must be a legal transition) allowing the midlayer
3144  * to goose the queue for this device.
3145  */
3146 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
3147 					enum scsi_device_state new_state)
3148 {
3149 	/*
3150 	 * Try to transition the scsi device to SDEV_RUNNING or one of the
3151 	 * offlined states and goose the device queue if successful.
3152 	 */
3153 	switch (sdev->sdev_state) {
3154 	case SDEV_BLOCK:
3155 	case SDEV_TRANSPORT_OFFLINE:
3156 		sdev->sdev_state = new_state;
3157 		break;
3158 	case SDEV_CREATED_BLOCK:
3159 		if (new_state == SDEV_TRANSPORT_OFFLINE ||
3160 		    new_state == SDEV_OFFLINE)
3161 			sdev->sdev_state = new_state;
3162 		else
3163 			sdev->sdev_state = SDEV_CREATED;
3164 		break;
3165 	case SDEV_CANCEL:
3166 	case SDEV_OFFLINE:
3167 		break;
3168 	default:
3169 		return -EINVAL;
3170 	}
3171 	scsi_start_queue(sdev);
3172 
3173 	return 0;
3174 }
3175 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
3176 
3177 /**
3178  * scsi_internal_device_unblock - resume a device after a block request
3179  * @sdev:	device to resume
3180  * @new_state:	state to set the device to after unblocking
3181  *
3182  * Restart the device queue for a previously suspended SCSI device. May sleep.
3183  *
3184  * Returns zero if successful or a negative error code upon failure.
3185  *
3186  * Notes:
3187  * This routine transitions the device to the SDEV_RUNNING state or to one of
3188  * the offline states (which must be a legal transition) allowing the midlayer
3189  * to goose the queue for this device.
3190  */
3191 static int scsi_internal_device_unblock(struct scsi_device *sdev,
3192 					enum scsi_device_state new_state)
3193 {
3194 	int ret;
3195 
3196 	mutex_lock(&sdev->state_mutex);
3197 	ret = scsi_internal_device_unblock_nowait(sdev, new_state);
3198 	mutex_unlock(&sdev->state_mutex);
3199 
3200 	return ret;
3201 }
3202 
3203 static void
3204 device_block(struct scsi_device *sdev, void *data)
3205 {
3206 	scsi_internal_device_block(sdev);
3207 }
3208 
3209 static int
3210 target_block(struct device *dev, void *data)
3211 {
3212 	if (scsi_is_target_device(dev))
3213 		starget_for_each_device(to_scsi_target(dev), NULL,
3214 					device_block);
3215 	return 0;
3216 }
3217 
3218 void
3219 scsi_target_block(struct device *dev)
3220 {
3221 	if (scsi_is_target_device(dev))
3222 		starget_for_each_device(to_scsi_target(dev), NULL,
3223 					device_block);
3224 	else
3225 		device_for_each_child(dev, NULL, target_block);
3226 }
3227 EXPORT_SYMBOL_GPL(scsi_target_block);
3228 
3229 static void
3230 device_unblock(struct scsi_device *sdev, void *data)
3231 {
3232 	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
3233 }
3234 
3235 static int
3236 target_unblock(struct device *dev, void *data)
3237 {
3238 	if (scsi_is_target_device(dev))
3239 		starget_for_each_device(to_scsi_target(dev), data,
3240 					device_unblock);
3241 	return 0;
3242 }
3243 
3244 void
3245 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
3246 {
3247 	if (scsi_is_target_device(dev))
3248 		starget_for_each_device(to_scsi_target(dev), &new_state,
3249 					device_unblock);
3250 	else
3251 		device_for_each_child(dev, &new_state, target_unblock);
3252 }
3253 EXPORT_SYMBOL_GPL(scsi_target_unblock);
3254 
3255 /**
3256  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3257  * @sgl:	scatter-gather list
3258  * @sg_count:	number of segments in sg
3259  * @offset:	offset in bytes into sg, on return offset into the mapped area
3260  * @len:	bytes to map, on return number of bytes mapped
3261  *
3262  * Returns virtual address of the start of the mapped page
3263  */
3264 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3265 			  size_t *offset, size_t *len)
3266 {
3267 	int i;
3268 	size_t sg_len = 0, len_complete = 0;
3269 	struct scatterlist *sg;
3270 	struct page *page;
3271 
3272 	WARN_ON(!irqs_disabled());
3273 
3274 	for_each_sg(sgl, sg, sg_count, i) {
3275 		len_complete = sg_len; /* Complete sg-entries */
3276 		sg_len += sg->length;
3277 		if (sg_len > *offset)
3278 			break;
3279 	}
3280 
3281 	if (unlikely(i == sg_count)) {
3282 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3283 			"elements %d\n",
3284 		       __func__, sg_len, *offset, sg_count);
3285 		WARN_ON(1);
3286 		return NULL;
3287 	}
3288 
3289 	/* Offset starting from the beginning of first page in this sg-entry */
3290 	*offset = *offset - len_complete + sg->offset;
3291 
3292 	/* Assumption: contiguous pages can be accessed as "page + i" */
3293 	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3294 	*offset &= ~PAGE_MASK;
3295 
3296 	/* Bytes in this sg-entry from *offset to the end of the page */
3297 	sg_len = PAGE_SIZE - *offset;
3298 	if (*len > sg_len)
3299 		*len = sg_len;
3300 
3301 	return kmap_atomic(page);
3302 }
3303 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3304 
3305 /**
3306  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3307  * @virt:	virtual address to be unmapped
3308  */
3309 void scsi_kunmap_atomic_sg(void *virt)
3310 {
3311 	kunmap_atomic(virt);
3312 }
3313 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3314 
3315 void sdev_disable_disk_events(struct scsi_device *sdev)
3316 {
3317 	atomic_inc(&sdev->disk_events_disable_depth);
3318 }
3319 EXPORT_SYMBOL(sdev_disable_disk_events);
3320 
3321 void sdev_enable_disk_events(struct scsi_device *sdev)
3322 {
3323 	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3324 		return;
3325 	atomic_dec(&sdev->disk_events_disable_depth);
3326 }
3327 EXPORT_SYMBOL(sdev_enable_disk_events);
3328 
3329 /**
3330  * scsi_vpd_lun_id - return a unique device identification
3331  * @sdev: SCSI device
3332  * @id:   buffer for the identification
3333  * @id_len:  length of the buffer
3334  *
3335  * Copies a unique device identification into @id based
3336  * on the information in the VPD page 0x83 of the device.
3337  * The string will be formatted as a SCSI name string.
3338  *
3339  * Returns the length of the identification or error on failure.
3340  * If the identifier is longer than the supplied buffer the actual
3341  * identifier length is returned and the buffer is not zero-padded.
3342  */
3343 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3344 {
3345 	u8 cur_id_type = 0xff;
3346 	u8 cur_id_size = 0;
3347 	const unsigned char *d, *cur_id_str;
3348 	const struct scsi_vpd *vpd_pg83;
3349 	int id_size = -EINVAL;
3350 
3351 	rcu_read_lock();
3352 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3353 	if (!vpd_pg83) {
3354 		rcu_read_unlock();
3355 		return -ENXIO;
3356 	}
3357 
3358 	/*
3359 	 * Look for the correct descriptor.
3360 	 * Order of preference for lun descriptor:
3361 	 * - SCSI name string
3362 	 * - NAA IEEE Registered Extended
3363 	 * - EUI-64 based 16-byte
3364 	 * - EUI-64 based 12-byte
3365 	 * - NAA IEEE Registered
3366 	 * - NAA IEEE Extended
3367 	 * - T10 Vendor ID
3368 	 * as longer descriptors reduce the likelyhood
3369 	 * of identification clashes.
3370 	 */
3371 
3372 	/* The id string must be at least 20 bytes + terminating NULL byte */
3373 	if (id_len < 21) {
3374 		rcu_read_unlock();
3375 		return -EINVAL;
3376 	}
3377 
3378 	memset(id, 0, id_len);
3379 	d = vpd_pg83->data + 4;
3380 	while (d < vpd_pg83->data + vpd_pg83->len) {
3381 		/* Skip designators not referring to the LUN */
3382 		if ((d[1] & 0x30) != 0x00)
3383 			goto next_desig;
3384 
3385 		switch (d[1] & 0xf) {
3386 		case 0x1:
3387 			/* T10 Vendor ID */
3388 			if (cur_id_size > d[3])
3389 				break;
3390 			/* Prefer anything */
3391 			if (cur_id_type > 0x01 && cur_id_type != 0xff)
3392 				break;
3393 			cur_id_size = d[3];
3394 			if (cur_id_size + 4 > id_len)
3395 				cur_id_size = id_len - 4;
3396 			cur_id_str = d + 4;
3397 			cur_id_type = d[1] & 0xf;
3398 			id_size = snprintf(id, id_len, "t10.%*pE",
3399 					   cur_id_size, cur_id_str);
3400 			break;
3401 		case 0x2:
3402 			/* EUI-64 */
3403 			if (cur_id_size > d[3])
3404 				break;
3405 			/* Prefer NAA IEEE Registered Extended */
3406 			if (cur_id_type == 0x3 &&
3407 			    cur_id_size == d[3])
3408 				break;
3409 			cur_id_size = d[3];
3410 			cur_id_str = d + 4;
3411 			cur_id_type = d[1] & 0xf;
3412 			switch (cur_id_size) {
3413 			case 8:
3414 				id_size = snprintf(id, id_len,
3415 						   "eui.%8phN",
3416 						   cur_id_str);
3417 				break;
3418 			case 12:
3419 				id_size = snprintf(id, id_len,
3420 						   "eui.%12phN",
3421 						   cur_id_str);
3422 				break;
3423 			case 16:
3424 				id_size = snprintf(id, id_len,
3425 						   "eui.%16phN",
3426 						   cur_id_str);
3427 				break;
3428 			default:
3429 				cur_id_size = 0;
3430 				break;
3431 			}
3432 			break;
3433 		case 0x3:
3434 			/* NAA */
3435 			if (cur_id_size > d[3])
3436 				break;
3437 			cur_id_size = d[3];
3438 			cur_id_str = d + 4;
3439 			cur_id_type = d[1] & 0xf;
3440 			switch (cur_id_size) {
3441 			case 8:
3442 				id_size = snprintf(id, id_len,
3443 						   "naa.%8phN",
3444 						   cur_id_str);
3445 				break;
3446 			case 16:
3447 				id_size = snprintf(id, id_len,
3448 						   "naa.%16phN",
3449 						   cur_id_str);
3450 				break;
3451 			default:
3452 				cur_id_size = 0;
3453 				break;
3454 			}
3455 			break;
3456 		case 0x8:
3457 			/* SCSI name string */
3458 			if (cur_id_size + 4 > d[3])
3459 				break;
3460 			/* Prefer others for truncated descriptor */
3461 			if (cur_id_size && d[3] > id_len)
3462 				break;
3463 			cur_id_size = id_size = d[3];
3464 			cur_id_str = d + 4;
3465 			cur_id_type = d[1] & 0xf;
3466 			if (cur_id_size >= id_len)
3467 				cur_id_size = id_len - 1;
3468 			memcpy(id, cur_id_str, cur_id_size);
3469 			/* Decrease priority for truncated descriptor */
3470 			if (cur_id_size != id_size)
3471 				cur_id_size = 6;
3472 			break;
3473 		default:
3474 			break;
3475 		}
3476 next_desig:
3477 		d += d[3] + 4;
3478 	}
3479 	rcu_read_unlock();
3480 
3481 	return id_size;
3482 }
3483 EXPORT_SYMBOL(scsi_vpd_lun_id);
3484 
3485 /*
3486  * scsi_vpd_tpg_id - return a target port group identifier
3487  * @sdev: SCSI device
3488  *
3489  * Returns the Target Port Group identifier from the information
3490  * froom VPD page 0x83 of the device.
3491  *
3492  * Returns the identifier or error on failure.
3493  */
3494 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3495 {
3496 	const unsigned char *d;
3497 	const struct scsi_vpd *vpd_pg83;
3498 	int group_id = -EAGAIN, rel_port = -1;
3499 
3500 	rcu_read_lock();
3501 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3502 	if (!vpd_pg83) {
3503 		rcu_read_unlock();
3504 		return -ENXIO;
3505 	}
3506 
3507 	d = vpd_pg83->data + 4;
3508 	while (d < vpd_pg83->data + vpd_pg83->len) {
3509 		switch (d[1] & 0xf) {
3510 		case 0x4:
3511 			/* Relative target port */
3512 			rel_port = get_unaligned_be16(&d[6]);
3513 			break;
3514 		case 0x5:
3515 			/* Target port group */
3516 			group_id = get_unaligned_be16(&d[6]);
3517 			break;
3518 		default:
3519 			break;
3520 		}
3521 		d += d[3] + 4;
3522 	}
3523 	rcu_read_unlock();
3524 
3525 	if (group_id >= 0 && rel_id && rel_port != -1)
3526 		*rel_id = rel_port;
3527 
3528 	return group_id;
3529 }
3530 EXPORT_SYMBOL(scsi_vpd_tpg_id);
3531