xref: /linux/drivers/scsi/scsi_lib.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 1999 Eric Youngdale
4  * Copyright (C) 2014 Christoph Hellwig
5  *
6  *  SCSI queueing library.
7  *      Initial versions: Eric Youngdale (eric@andante.org).
8  *                        Based upon conversations with large numbers
9  *                        of people at Linux Expo.
10  */
11 
12 #include <linux/bio.h>
13 #include <linux/bitops.h>
14 #include <linux/blkdev.h>
15 #include <linux/completion.h>
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23 #include <linux/blk-mq.h>
24 #include <linux/blk-integrity.h>
25 #include <linux/ratelimit.h>
26 #include <asm/unaligned.h>
27 
28 #include <scsi/scsi.h>
29 #include <scsi/scsi_cmnd.h>
30 #include <scsi/scsi_dbg.h>
31 #include <scsi/scsi_device.h>
32 #include <scsi/scsi_driver.h>
33 #include <scsi/scsi_eh.h>
34 #include <scsi/scsi_host.h>
35 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
36 #include <scsi/scsi_dh.h>
37 
38 #include <trace/events/scsi.h>
39 
40 #include "scsi_debugfs.h"
41 #include "scsi_priv.h"
42 #include "scsi_logging.h"
43 
44 /*
45  * Size of integrity metadata is usually small, 1 inline sg should
46  * cover normal cases.
47  */
48 #ifdef CONFIG_ARCH_NO_SG_CHAIN
49 #define  SCSI_INLINE_PROT_SG_CNT  0
50 #define  SCSI_INLINE_SG_CNT  0
51 #else
52 #define  SCSI_INLINE_PROT_SG_CNT  1
53 #define  SCSI_INLINE_SG_CNT  2
54 #endif
55 
56 static struct kmem_cache *scsi_sense_cache;
57 static DEFINE_MUTEX(scsi_sense_cache_mutex);
58 
59 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
60 
61 int scsi_init_sense_cache(struct Scsi_Host *shost)
62 {
63 	int ret = 0;
64 
65 	mutex_lock(&scsi_sense_cache_mutex);
66 	if (!scsi_sense_cache) {
67 		scsi_sense_cache =
68 			kmem_cache_create_usercopy("scsi_sense_cache",
69 				SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
70 				0, SCSI_SENSE_BUFFERSIZE, NULL);
71 		if (!scsi_sense_cache)
72 			ret = -ENOMEM;
73 	}
74 	mutex_unlock(&scsi_sense_cache_mutex);
75 	return ret;
76 }
77 
78 static void
79 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
80 {
81 	struct Scsi_Host *host = cmd->device->host;
82 	struct scsi_device *device = cmd->device;
83 	struct scsi_target *starget = scsi_target(device);
84 
85 	/*
86 	 * Set the appropriate busy bit for the device/host.
87 	 *
88 	 * If the host/device isn't busy, assume that something actually
89 	 * completed, and that we should be able to queue a command now.
90 	 *
91 	 * Note that the prior mid-layer assumption that any host could
92 	 * always queue at least one command is now broken.  The mid-layer
93 	 * will implement a user specifiable stall (see
94 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
95 	 * if a command is requeued with no other commands outstanding
96 	 * either for the device or for the host.
97 	 */
98 	switch (reason) {
99 	case SCSI_MLQUEUE_HOST_BUSY:
100 		atomic_set(&host->host_blocked, host->max_host_blocked);
101 		break;
102 	case SCSI_MLQUEUE_DEVICE_BUSY:
103 	case SCSI_MLQUEUE_EH_RETRY:
104 		atomic_set(&device->device_blocked,
105 			   device->max_device_blocked);
106 		break;
107 	case SCSI_MLQUEUE_TARGET_BUSY:
108 		atomic_set(&starget->target_blocked,
109 			   starget->max_target_blocked);
110 		break;
111 	}
112 }
113 
114 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd, unsigned long msecs)
115 {
116 	struct request *rq = scsi_cmd_to_rq(cmd);
117 
118 	if (rq->rq_flags & RQF_DONTPREP) {
119 		rq->rq_flags &= ~RQF_DONTPREP;
120 		scsi_mq_uninit_cmd(cmd);
121 	} else {
122 		WARN_ON_ONCE(true);
123 	}
124 
125 	blk_mq_requeue_request(rq, false);
126 	if (!scsi_host_in_recovery(cmd->device->host))
127 		blk_mq_delay_kick_requeue_list(rq->q, msecs);
128 }
129 
130 /**
131  * __scsi_queue_insert - private queue insertion
132  * @cmd: The SCSI command being requeued
133  * @reason:  The reason for the requeue
134  * @unbusy: Whether the queue should be unbusied
135  *
136  * This is a private queue insertion.  The public interface
137  * scsi_queue_insert() always assumes the queue should be unbusied
138  * because it's always called before the completion.  This function is
139  * for a requeue after completion, which should only occur in this
140  * file.
141  */
142 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
143 {
144 	struct scsi_device *device = cmd->device;
145 
146 	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
147 		"Inserting command %p into mlqueue\n", cmd));
148 
149 	scsi_set_blocked(cmd, reason);
150 
151 	/*
152 	 * Decrement the counters, since these commands are no longer
153 	 * active on the host/device.
154 	 */
155 	if (unbusy)
156 		scsi_device_unbusy(device, cmd);
157 
158 	/*
159 	 * Requeue this command.  It will go before all other commands
160 	 * that are already in the queue. Schedule requeue work under
161 	 * lock such that the kblockd_schedule_work() call happens
162 	 * before blk_mq_destroy_queue() finishes.
163 	 */
164 	cmd->result = 0;
165 
166 	blk_mq_requeue_request(scsi_cmd_to_rq(cmd),
167 			       !scsi_host_in_recovery(cmd->device->host));
168 }
169 
170 /**
171  * scsi_queue_insert - Reinsert a command in the queue.
172  * @cmd:    command that we are adding to queue.
173  * @reason: why we are inserting command to queue.
174  *
175  * We do this for one of two cases. Either the host is busy and it cannot accept
176  * any more commands for the time being, or the device returned QUEUE_FULL and
177  * can accept no more commands.
178  *
179  * Context: This could be called either from an interrupt context or a normal
180  * process context.
181  */
182 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
183 {
184 	__scsi_queue_insert(cmd, reason, true);
185 }
186 
187 void scsi_failures_reset_retries(struct scsi_failures *failures)
188 {
189 	struct scsi_failure *failure;
190 
191 	failures->total_retries = 0;
192 
193 	for (failure = failures->failure_definitions; failure->result;
194 	     failure++)
195 		failure->retries = 0;
196 }
197 EXPORT_SYMBOL_GPL(scsi_failures_reset_retries);
198 
199 /**
200  * scsi_check_passthrough - Determine if passthrough scsi_cmnd needs a retry.
201  * @scmd: scsi_cmnd to check.
202  * @failures: scsi_failures struct that lists failures to check for.
203  *
204  * Returns -EAGAIN if the caller should retry else 0.
205  */
206 static int scsi_check_passthrough(struct scsi_cmnd *scmd,
207 				  struct scsi_failures *failures)
208 {
209 	struct scsi_failure *failure;
210 	struct scsi_sense_hdr sshdr;
211 	enum sam_status status;
212 
213 	if (!failures)
214 		return 0;
215 
216 	for (failure = failures->failure_definitions; failure->result;
217 	     failure++) {
218 		if (failure->result == SCMD_FAILURE_RESULT_ANY)
219 			goto maybe_retry;
220 
221 		if (host_byte(scmd->result) &&
222 		    host_byte(scmd->result) == host_byte(failure->result))
223 			goto maybe_retry;
224 
225 		status = status_byte(scmd->result);
226 		if (!status)
227 			continue;
228 
229 		if (failure->result == SCMD_FAILURE_STAT_ANY &&
230 		    !scsi_status_is_good(scmd->result))
231 			goto maybe_retry;
232 
233 		if (status != status_byte(failure->result))
234 			continue;
235 
236 		if (status_byte(failure->result) != SAM_STAT_CHECK_CONDITION ||
237 		    failure->sense == SCMD_FAILURE_SENSE_ANY)
238 			goto maybe_retry;
239 
240 		if (!scsi_command_normalize_sense(scmd, &sshdr))
241 			return 0;
242 
243 		if (failure->sense != sshdr.sense_key)
244 			continue;
245 
246 		if (failure->asc == SCMD_FAILURE_ASC_ANY)
247 			goto maybe_retry;
248 
249 		if (failure->asc != sshdr.asc)
250 			continue;
251 
252 		if (failure->ascq == SCMD_FAILURE_ASCQ_ANY ||
253 		    failure->ascq == sshdr.ascq)
254 			goto maybe_retry;
255 	}
256 
257 	return 0;
258 
259 maybe_retry:
260 	if (failure->allowed) {
261 		if (failure->allowed == SCMD_FAILURE_NO_LIMIT ||
262 		    ++failure->retries <= failure->allowed)
263 			return -EAGAIN;
264 	} else {
265 		if (failures->total_allowed == SCMD_FAILURE_NO_LIMIT ||
266 		    ++failures->total_retries <= failures->total_allowed)
267 			return -EAGAIN;
268 	}
269 
270 	return 0;
271 }
272 
273 /**
274  * scsi_execute_cmd - insert request and wait for the result
275  * @sdev:	scsi_device
276  * @cmd:	scsi command
277  * @opf:	block layer request cmd_flags
278  * @buffer:	data buffer
279  * @bufflen:	len of buffer
280  * @timeout:	request timeout in HZ
281  * @ml_retries:	number of times SCSI midlayer will retry request
282  * @args:	Optional args. See struct definition for field descriptions
283  *
284  * Returns the scsi_cmnd result field if a command was executed, or a negative
285  * Linux error code if we didn't get that far.
286  */
287 int scsi_execute_cmd(struct scsi_device *sdev, const unsigned char *cmd,
288 		     blk_opf_t opf, void *buffer, unsigned int bufflen,
289 		     int timeout, int ml_retries,
290 		     const struct scsi_exec_args *args)
291 {
292 	static const struct scsi_exec_args default_args;
293 	struct request *req;
294 	struct scsi_cmnd *scmd;
295 	int ret;
296 
297 	if (!args)
298 		args = &default_args;
299 	else if (WARN_ON_ONCE(args->sense &&
300 			      args->sense_len != SCSI_SENSE_BUFFERSIZE))
301 		return -EINVAL;
302 
303 retry:
304 	req = scsi_alloc_request(sdev->request_queue, opf, args->req_flags);
305 	if (IS_ERR(req))
306 		return PTR_ERR(req);
307 
308 	if (bufflen) {
309 		ret = blk_rq_map_kern(sdev->request_queue, req,
310 				      buffer, bufflen, GFP_NOIO);
311 		if (ret)
312 			goto out;
313 	}
314 	scmd = blk_mq_rq_to_pdu(req);
315 	scmd->cmd_len = COMMAND_SIZE(cmd[0]);
316 	memcpy(scmd->cmnd, cmd, scmd->cmd_len);
317 	scmd->allowed = ml_retries;
318 	scmd->flags |= args->scmd_flags;
319 	req->timeout = timeout;
320 	req->rq_flags |= RQF_QUIET;
321 
322 	/*
323 	 * head injection *required* here otherwise quiesce won't work
324 	 */
325 	blk_execute_rq(req, true);
326 
327 	if (scsi_check_passthrough(scmd, args->failures) == -EAGAIN) {
328 		blk_mq_free_request(req);
329 		goto retry;
330 	}
331 
332 	/*
333 	 * Some devices (USB mass-storage in particular) may transfer
334 	 * garbage data together with a residue indicating that the data
335 	 * is invalid.  Prevent the garbage from being misinterpreted
336 	 * and prevent security leaks by zeroing out the excess data.
337 	 */
338 	if (unlikely(scmd->resid_len > 0 && scmd->resid_len <= bufflen))
339 		memset(buffer + bufflen - scmd->resid_len, 0, scmd->resid_len);
340 
341 	if (args->resid)
342 		*args->resid = scmd->resid_len;
343 	if (args->sense)
344 		memcpy(args->sense, scmd->sense_buffer, SCSI_SENSE_BUFFERSIZE);
345 	if (args->sshdr)
346 		scsi_normalize_sense(scmd->sense_buffer, scmd->sense_len,
347 				     args->sshdr);
348 
349 	ret = scmd->result;
350  out:
351 	blk_mq_free_request(req);
352 
353 	return ret;
354 }
355 EXPORT_SYMBOL(scsi_execute_cmd);
356 
357 /*
358  * Wake up the error handler if necessary. Avoid as follows that the error
359  * handler is not woken up if host in-flight requests number ==
360  * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
361  * with an RCU read lock in this function to ensure that this function in
362  * its entirety either finishes before scsi_eh_scmd_add() increases the
363  * host_failed counter or that it notices the shost state change made by
364  * scsi_eh_scmd_add().
365  */
366 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
367 {
368 	unsigned long flags;
369 
370 	rcu_read_lock();
371 	__clear_bit(SCMD_STATE_INFLIGHT, &cmd->state);
372 	if (unlikely(scsi_host_in_recovery(shost))) {
373 		unsigned int busy = scsi_host_busy(shost);
374 
375 		spin_lock_irqsave(shost->host_lock, flags);
376 		if (shost->host_failed || shost->host_eh_scheduled)
377 			scsi_eh_wakeup(shost, busy);
378 		spin_unlock_irqrestore(shost->host_lock, flags);
379 	}
380 	rcu_read_unlock();
381 }
382 
383 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd)
384 {
385 	struct Scsi_Host *shost = sdev->host;
386 	struct scsi_target *starget = scsi_target(sdev);
387 
388 	scsi_dec_host_busy(shost, cmd);
389 
390 	if (starget->can_queue > 0)
391 		atomic_dec(&starget->target_busy);
392 
393 	sbitmap_put(&sdev->budget_map, cmd->budget_token);
394 	cmd->budget_token = -1;
395 }
396 
397 /*
398  * Kick the queue of SCSI device @sdev if @sdev != current_sdev. Called with
399  * interrupts disabled.
400  */
401 static void scsi_kick_sdev_queue(struct scsi_device *sdev, void *data)
402 {
403 	struct scsi_device *current_sdev = data;
404 
405 	if (sdev != current_sdev)
406 		blk_mq_run_hw_queues(sdev->request_queue, true);
407 }
408 
409 /*
410  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
411  * and call blk_run_queue for all the scsi_devices on the target -
412  * including current_sdev first.
413  *
414  * Called with *no* scsi locks held.
415  */
416 static void scsi_single_lun_run(struct scsi_device *current_sdev)
417 {
418 	struct Scsi_Host *shost = current_sdev->host;
419 	struct scsi_target *starget = scsi_target(current_sdev);
420 	unsigned long flags;
421 
422 	spin_lock_irqsave(shost->host_lock, flags);
423 	starget->starget_sdev_user = NULL;
424 	spin_unlock_irqrestore(shost->host_lock, flags);
425 
426 	/*
427 	 * Call blk_run_queue for all LUNs on the target, starting with
428 	 * current_sdev. We race with others (to set starget_sdev_user),
429 	 * but in most cases, we will be first. Ideally, each LU on the
430 	 * target would get some limited time or requests on the target.
431 	 */
432 	blk_mq_run_hw_queues(current_sdev->request_queue,
433 			     shost->queuecommand_may_block);
434 
435 	spin_lock_irqsave(shost->host_lock, flags);
436 	if (!starget->starget_sdev_user)
437 		__starget_for_each_device(starget, current_sdev,
438 					  scsi_kick_sdev_queue);
439 	spin_unlock_irqrestore(shost->host_lock, flags);
440 }
441 
442 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
443 {
444 	if (scsi_device_busy(sdev) >= sdev->queue_depth)
445 		return true;
446 	if (atomic_read(&sdev->device_blocked) > 0)
447 		return true;
448 	return false;
449 }
450 
451 static inline bool scsi_target_is_busy(struct scsi_target *starget)
452 {
453 	if (starget->can_queue > 0) {
454 		if (atomic_read(&starget->target_busy) >= starget->can_queue)
455 			return true;
456 		if (atomic_read(&starget->target_blocked) > 0)
457 			return true;
458 	}
459 	return false;
460 }
461 
462 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
463 {
464 	if (atomic_read(&shost->host_blocked) > 0)
465 		return true;
466 	if (shost->host_self_blocked)
467 		return true;
468 	return false;
469 }
470 
471 static void scsi_starved_list_run(struct Scsi_Host *shost)
472 {
473 	LIST_HEAD(starved_list);
474 	struct scsi_device *sdev;
475 	unsigned long flags;
476 
477 	spin_lock_irqsave(shost->host_lock, flags);
478 	list_splice_init(&shost->starved_list, &starved_list);
479 
480 	while (!list_empty(&starved_list)) {
481 		struct request_queue *slq;
482 
483 		/*
484 		 * As long as shost is accepting commands and we have
485 		 * starved queues, call blk_run_queue. scsi_request_fn
486 		 * drops the queue_lock and can add us back to the
487 		 * starved_list.
488 		 *
489 		 * host_lock protects the starved_list and starved_entry.
490 		 * scsi_request_fn must get the host_lock before checking
491 		 * or modifying starved_list or starved_entry.
492 		 */
493 		if (scsi_host_is_busy(shost))
494 			break;
495 
496 		sdev = list_entry(starved_list.next,
497 				  struct scsi_device, starved_entry);
498 		list_del_init(&sdev->starved_entry);
499 		if (scsi_target_is_busy(scsi_target(sdev))) {
500 			list_move_tail(&sdev->starved_entry,
501 				       &shost->starved_list);
502 			continue;
503 		}
504 
505 		/*
506 		 * Once we drop the host lock, a racing scsi_remove_device()
507 		 * call may remove the sdev from the starved list and destroy
508 		 * it and the queue.  Mitigate by taking a reference to the
509 		 * queue and never touching the sdev again after we drop the
510 		 * host lock.  Note: if __scsi_remove_device() invokes
511 		 * blk_mq_destroy_queue() before the queue is run from this
512 		 * function then blk_run_queue() will return immediately since
513 		 * blk_mq_destroy_queue() marks the queue with QUEUE_FLAG_DYING.
514 		 */
515 		slq = sdev->request_queue;
516 		if (!blk_get_queue(slq))
517 			continue;
518 		spin_unlock_irqrestore(shost->host_lock, flags);
519 
520 		blk_mq_run_hw_queues(slq, false);
521 		blk_put_queue(slq);
522 
523 		spin_lock_irqsave(shost->host_lock, flags);
524 	}
525 	/* put any unprocessed entries back */
526 	list_splice(&starved_list, &shost->starved_list);
527 	spin_unlock_irqrestore(shost->host_lock, flags);
528 }
529 
530 /**
531  * scsi_run_queue - Select a proper request queue to serve next.
532  * @q:  last request's queue
533  *
534  * The previous command was completely finished, start a new one if possible.
535  */
536 static void scsi_run_queue(struct request_queue *q)
537 {
538 	struct scsi_device *sdev = q->queuedata;
539 
540 	if (scsi_target(sdev)->single_lun)
541 		scsi_single_lun_run(sdev);
542 	if (!list_empty(&sdev->host->starved_list))
543 		scsi_starved_list_run(sdev->host);
544 
545 	/* Note: blk_mq_kick_requeue_list() runs the queue asynchronously. */
546 	blk_mq_kick_requeue_list(q);
547 }
548 
549 void scsi_requeue_run_queue(struct work_struct *work)
550 {
551 	struct scsi_device *sdev;
552 	struct request_queue *q;
553 
554 	sdev = container_of(work, struct scsi_device, requeue_work);
555 	q = sdev->request_queue;
556 	scsi_run_queue(q);
557 }
558 
559 void scsi_run_host_queues(struct Scsi_Host *shost)
560 {
561 	struct scsi_device *sdev;
562 
563 	shost_for_each_device(sdev, shost)
564 		scsi_run_queue(sdev->request_queue);
565 }
566 
567 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
568 {
569 	if (!blk_rq_is_passthrough(scsi_cmd_to_rq(cmd))) {
570 		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
571 
572 		if (drv->uninit_command)
573 			drv->uninit_command(cmd);
574 	}
575 }
576 
577 void scsi_free_sgtables(struct scsi_cmnd *cmd)
578 {
579 	if (cmd->sdb.table.nents)
580 		sg_free_table_chained(&cmd->sdb.table,
581 				SCSI_INLINE_SG_CNT);
582 	if (scsi_prot_sg_count(cmd))
583 		sg_free_table_chained(&cmd->prot_sdb->table,
584 				SCSI_INLINE_PROT_SG_CNT);
585 }
586 EXPORT_SYMBOL_GPL(scsi_free_sgtables);
587 
588 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
589 {
590 	scsi_free_sgtables(cmd);
591 	scsi_uninit_cmd(cmd);
592 }
593 
594 static void scsi_run_queue_async(struct scsi_device *sdev)
595 {
596 	if (scsi_host_in_recovery(sdev->host))
597 		return;
598 
599 	if (scsi_target(sdev)->single_lun ||
600 	    !list_empty(&sdev->host->starved_list)) {
601 		kblockd_schedule_work(&sdev->requeue_work);
602 	} else {
603 		/*
604 		 * smp_mb() present in sbitmap_queue_clear() or implied in
605 		 * .end_io is for ordering writing .device_busy in
606 		 * scsi_device_unbusy() and reading sdev->restarts.
607 		 */
608 		int old = atomic_read(&sdev->restarts);
609 
610 		/*
611 		 * ->restarts has to be kept as non-zero if new budget
612 		 *  contention occurs.
613 		 *
614 		 *  No need to run queue when either another re-run
615 		 *  queue wins in updating ->restarts or a new budget
616 		 *  contention occurs.
617 		 */
618 		if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old)
619 			blk_mq_run_hw_queues(sdev->request_queue, true);
620 	}
621 }
622 
623 /* Returns false when no more bytes to process, true if there are more */
624 static bool scsi_end_request(struct request *req, blk_status_t error,
625 		unsigned int bytes)
626 {
627 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
628 	struct scsi_device *sdev = cmd->device;
629 	struct request_queue *q = sdev->request_queue;
630 
631 	if (blk_update_request(req, error, bytes))
632 		return true;
633 
634 	// XXX:
635 	if (blk_queue_add_random(q))
636 		add_disk_randomness(req->q->disk);
637 
638 	if (!blk_rq_is_passthrough(req)) {
639 		WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
640 		cmd->flags &= ~SCMD_INITIALIZED;
641 	}
642 
643 	/*
644 	 * Calling rcu_barrier() is not necessary here because the
645 	 * SCSI error handler guarantees that the function called by
646 	 * call_rcu() has been called before scsi_end_request() is
647 	 * called.
648 	 */
649 	destroy_rcu_head(&cmd->rcu);
650 
651 	/*
652 	 * In the MQ case the command gets freed by __blk_mq_end_request,
653 	 * so we have to do all cleanup that depends on it earlier.
654 	 *
655 	 * We also can't kick the queues from irq context, so we
656 	 * will have to defer it to a workqueue.
657 	 */
658 	scsi_mq_uninit_cmd(cmd);
659 
660 	/*
661 	 * queue is still alive, so grab the ref for preventing it
662 	 * from being cleaned up during running queue.
663 	 */
664 	percpu_ref_get(&q->q_usage_counter);
665 
666 	__blk_mq_end_request(req, error);
667 
668 	scsi_run_queue_async(sdev);
669 
670 	percpu_ref_put(&q->q_usage_counter);
671 	return false;
672 }
673 
674 /**
675  * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
676  * @result:	scsi error code
677  *
678  * Translate a SCSI result code into a blk_status_t value.
679  */
680 static blk_status_t scsi_result_to_blk_status(int result)
681 {
682 	/*
683 	 * Check the scsi-ml byte first in case we converted a host or status
684 	 * byte.
685 	 */
686 	switch (scsi_ml_byte(result)) {
687 	case SCSIML_STAT_OK:
688 		break;
689 	case SCSIML_STAT_RESV_CONFLICT:
690 		return BLK_STS_RESV_CONFLICT;
691 	case SCSIML_STAT_NOSPC:
692 		return BLK_STS_NOSPC;
693 	case SCSIML_STAT_MED_ERROR:
694 		return BLK_STS_MEDIUM;
695 	case SCSIML_STAT_TGT_FAILURE:
696 		return BLK_STS_TARGET;
697 	case SCSIML_STAT_DL_TIMEOUT:
698 		return BLK_STS_DURATION_LIMIT;
699 	}
700 
701 	switch (host_byte(result)) {
702 	case DID_OK:
703 		if (scsi_status_is_good(result))
704 			return BLK_STS_OK;
705 		return BLK_STS_IOERR;
706 	case DID_TRANSPORT_FAILFAST:
707 	case DID_TRANSPORT_MARGINAL:
708 		return BLK_STS_TRANSPORT;
709 	default:
710 		return BLK_STS_IOERR;
711 	}
712 }
713 
714 /**
715  * scsi_rq_err_bytes - determine number of bytes till the next failure boundary
716  * @rq: request to examine
717  *
718  * Description:
719  *     A request could be merge of IOs which require different failure
720  *     handling.  This function determines the number of bytes which
721  *     can be failed from the beginning of the request without
722  *     crossing into area which need to be retried further.
723  *
724  * Return:
725  *     The number of bytes to fail.
726  */
727 static unsigned int scsi_rq_err_bytes(const struct request *rq)
728 {
729 	blk_opf_t ff = rq->cmd_flags & REQ_FAILFAST_MASK;
730 	unsigned int bytes = 0;
731 	struct bio *bio;
732 
733 	if (!(rq->rq_flags & RQF_MIXED_MERGE))
734 		return blk_rq_bytes(rq);
735 
736 	/*
737 	 * Currently the only 'mixing' which can happen is between
738 	 * different fastfail types.  We can safely fail portions
739 	 * which have all the failfast bits that the first one has -
740 	 * the ones which are at least as eager to fail as the first
741 	 * one.
742 	 */
743 	for (bio = rq->bio; bio; bio = bio->bi_next) {
744 		if ((bio->bi_opf & ff) != ff)
745 			break;
746 		bytes += bio->bi_iter.bi_size;
747 	}
748 
749 	/* this could lead to infinite loop */
750 	BUG_ON(blk_rq_bytes(rq) && !bytes);
751 	return bytes;
752 }
753 
754 static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd)
755 {
756 	struct request *req = scsi_cmd_to_rq(cmd);
757 	unsigned long wait_for;
758 
759 	if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT)
760 		return false;
761 
762 	wait_for = (cmd->allowed + 1) * req->timeout;
763 	if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
764 		scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n",
765 			    wait_for/HZ);
766 		return true;
767 	}
768 	return false;
769 }
770 
771 /*
772  * When ALUA transition state is returned, reprep the cmd to
773  * use the ALUA handler's transition timeout. Delay the reprep
774  * 1 sec to avoid aggressive retries of the target in that
775  * state.
776  */
777 #define ALUA_TRANSITION_REPREP_DELAY	1000
778 
779 /* Helper for scsi_io_completion() when special action required. */
780 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
781 {
782 	struct request *req = scsi_cmd_to_rq(cmd);
783 	int level = 0;
784 	enum {ACTION_FAIL, ACTION_REPREP, ACTION_DELAYED_REPREP,
785 	      ACTION_RETRY, ACTION_DELAYED_RETRY} action;
786 	struct scsi_sense_hdr sshdr;
787 	bool sense_valid;
788 	bool sense_current = true;      /* false implies "deferred sense" */
789 	blk_status_t blk_stat;
790 
791 	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
792 	if (sense_valid)
793 		sense_current = !scsi_sense_is_deferred(&sshdr);
794 
795 	blk_stat = scsi_result_to_blk_status(result);
796 
797 	if (host_byte(result) == DID_RESET) {
798 		/* Third party bus reset or reset for error recovery
799 		 * reasons.  Just retry the command and see what
800 		 * happens.
801 		 */
802 		action = ACTION_RETRY;
803 	} else if (sense_valid && sense_current) {
804 		switch (sshdr.sense_key) {
805 		case UNIT_ATTENTION:
806 			if (cmd->device->removable) {
807 				/* Detected disc change.  Set a bit
808 				 * and quietly refuse further access.
809 				 */
810 				cmd->device->changed = 1;
811 				action = ACTION_FAIL;
812 			} else {
813 				/* Must have been a power glitch, or a
814 				 * bus reset.  Could not have been a
815 				 * media change, so we just retry the
816 				 * command and see what happens.
817 				 */
818 				action = ACTION_RETRY;
819 			}
820 			break;
821 		case ILLEGAL_REQUEST:
822 			/* If we had an ILLEGAL REQUEST returned, then
823 			 * we may have performed an unsupported
824 			 * command.  The only thing this should be
825 			 * would be a ten byte read where only a six
826 			 * byte read was supported.  Also, on a system
827 			 * where READ CAPACITY failed, we may have
828 			 * read past the end of the disk.
829 			 */
830 			if ((cmd->device->use_10_for_rw &&
831 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
832 			    (cmd->cmnd[0] == READ_10 ||
833 			     cmd->cmnd[0] == WRITE_10)) {
834 				/* This will issue a new 6-byte command. */
835 				cmd->device->use_10_for_rw = 0;
836 				action = ACTION_REPREP;
837 			} else if (sshdr.asc == 0x10) /* DIX */ {
838 				action = ACTION_FAIL;
839 				blk_stat = BLK_STS_PROTECTION;
840 			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
841 			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
842 				action = ACTION_FAIL;
843 				blk_stat = BLK_STS_TARGET;
844 			} else
845 				action = ACTION_FAIL;
846 			break;
847 		case ABORTED_COMMAND:
848 			action = ACTION_FAIL;
849 			if (sshdr.asc == 0x10) /* DIF */
850 				blk_stat = BLK_STS_PROTECTION;
851 			break;
852 		case NOT_READY:
853 			/* If the device is in the process of becoming
854 			 * ready, or has a temporary blockage, retry.
855 			 */
856 			if (sshdr.asc == 0x04) {
857 				switch (sshdr.ascq) {
858 				case 0x01: /* becoming ready */
859 				case 0x04: /* format in progress */
860 				case 0x05: /* rebuild in progress */
861 				case 0x06: /* recalculation in progress */
862 				case 0x07: /* operation in progress */
863 				case 0x08: /* Long write in progress */
864 				case 0x09: /* self test in progress */
865 				case 0x11: /* notify (enable spinup) required */
866 				case 0x14: /* space allocation in progress */
867 				case 0x1a: /* start stop unit in progress */
868 				case 0x1b: /* sanitize in progress */
869 				case 0x1d: /* configuration in progress */
870 				case 0x24: /* depopulation in progress */
871 				case 0x25: /* depopulation restore in progress */
872 					action = ACTION_DELAYED_RETRY;
873 					break;
874 				case 0x0a: /* ALUA state transition */
875 					action = ACTION_DELAYED_REPREP;
876 					break;
877 				default:
878 					action = ACTION_FAIL;
879 					break;
880 				}
881 			} else
882 				action = ACTION_FAIL;
883 			break;
884 		case VOLUME_OVERFLOW:
885 			/* See SSC3rXX or current. */
886 			action = ACTION_FAIL;
887 			break;
888 		case DATA_PROTECT:
889 			action = ACTION_FAIL;
890 			if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) ||
891 			    (sshdr.asc == 0x55 &&
892 			     (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) {
893 				/* Insufficient zone resources */
894 				blk_stat = BLK_STS_ZONE_OPEN_RESOURCE;
895 			}
896 			break;
897 		case COMPLETED:
898 			fallthrough;
899 		default:
900 			action = ACTION_FAIL;
901 			break;
902 		}
903 	} else
904 		action = ACTION_FAIL;
905 
906 	if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd))
907 		action = ACTION_FAIL;
908 
909 	switch (action) {
910 	case ACTION_FAIL:
911 		/* Give up and fail the remainder of the request */
912 		if (!(req->rq_flags & RQF_QUIET)) {
913 			static DEFINE_RATELIMIT_STATE(_rs,
914 					DEFAULT_RATELIMIT_INTERVAL,
915 					DEFAULT_RATELIMIT_BURST);
916 
917 			if (unlikely(scsi_logging_level))
918 				level =
919 				     SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
920 						    SCSI_LOG_MLCOMPLETE_BITS);
921 
922 			/*
923 			 * if logging is enabled the failure will be printed
924 			 * in scsi_log_completion(), so avoid duplicate messages
925 			 */
926 			if (!level && __ratelimit(&_rs)) {
927 				scsi_print_result(cmd, NULL, FAILED);
928 				if (sense_valid)
929 					scsi_print_sense(cmd);
930 				scsi_print_command(cmd);
931 			}
932 		}
933 		if (!scsi_end_request(req, blk_stat, scsi_rq_err_bytes(req)))
934 			return;
935 		fallthrough;
936 	case ACTION_REPREP:
937 		scsi_mq_requeue_cmd(cmd, 0);
938 		break;
939 	case ACTION_DELAYED_REPREP:
940 		scsi_mq_requeue_cmd(cmd, ALUA_TRANSITION_REPREP_DELAY);
941 		break;
942 	case ACTION_RETRY:
943 		/* Retry the same command immediately */
944 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
945 		break;
946 	case ACTION_DELAYED_RETRY:
947 		/* Retry the same command after a delay */
948 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
949 		break;
950 	}
951 }
952 
953 /*
954  * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
955  * new result that may suppress further error checking. Also modifies
956  * *blk_statp in some cases.
957  */
958 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
959 					blk_status_t *blk_statp)
960 {
961 	bool sense_valid;
962 	bool sense_current = true;	/* false implies "deferred sense" */
963 	struct request *req = scsi_cmd_to_rq(cmd);
964 	struct scsi_sense_hdr sshdr;
965 
966 	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
967 	if (sense_valid)
968 		sense_current = !scsi_sense_is_deferred(&sshdr);
969 
970 	if (blk_rq_is_passthrough(req)) {
971 		if (sense_valid) {
972 			/*
973 			 * SG_IO wants current and deferred errors
974 			 */
975 			cmd->sense_len = min(8 + cmd->sense_buffer[7],
976 					     SCSI_SENSE_BUFFERSIZE);
977 		}
978 		if (sense_current)
979 			*blk_statp = scsi_result_to_blk_status(result);
980 	} else if (blk_rq_bytes(req) == 0 && sense_current) {
981 		/*
982 		 * Flush commands do not transfers any data, and thus cannot use
983 		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
984 		 * This sets *blk_statp explicitly for the problem case.
985 		 */
986 		*blk_statp = scsi_result_to_blk_status(result);
987 	}
988 	/*
989 	 * Recovered errors need reporting, but they're always treated as
990 	 * success, so fiddle the result code here.  For passthrough requests
991 	 * we already took a copy of the original into sreq->result which
992 	 * is what gets returned to the user
993 	 */
994 	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
995 		bool do_print = true;
996 		/*
997 		 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
998 		 * skip print since caller wants ATA registers. Only occurs
999 		 * on SCSI ATA PASS_THROUGH commands when CK_COND=1
1000 		 */
1001 		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
1002 			do_print = false;
1003 		else if (req->rq_flags & RQF_QUIET)
1004 			do_print = false;
1005 		if (do_print)
1006 			scsi_print_sense(cmd);
1007 		result = 0;
1008 		/* for passthrough, *blk_statp may be set */
1009 		*blk_statp = BLK_STS_OK;
1010 	}
1011 	/*
1012 	 * Another corner case: the SCSI status byte is non-zero but 'good'.
1013 	 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
1014 	 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
1015 	 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
1016 	 * intermediate statuses (both obsolete in SAM-4) as good.
1017 	 */
1018 	if ((result & 0xff) && scsi_status_is_good(result)) {
1019 		result = 0;
1020 		*blk_statp = BLK_STS_OK;
1021 	}
1022 	return result;
1023 }
1024 
1025 /**
1026  * scsi_io_completion - Completion processing for SCSI commands.
1027  * @cmd:	command that is finished.
1028  * @good_bytes:	number of processed bytes.
1029  *
1030  * We will finish off the specified number of sectors. If we are done, the
1031  * command block will be released and the queue function will be goosed. If we
1032  * are not done then we have to figure out what to do next:
1033  *
1034  *   a) We can call scsi_mq_requeue_cmd().  The request will be
1035  *	unprepared and put back on the queue.  Then a new command will
1036  *	be created for it.  This should be used if we made forward
1037  *	progress, or if we want to switch from READ(10) to READ(6) for
1038  *	example.
1039  *
1040  *   b) We can call scsi_io_completion_action().  The request will be
1041  *	put back on the queue and retried using the same command as
1042  *	before, possibly after a delay.
1043  *
1044  *   c) We can call scsi_end_request() with blk_stat other than
1045  *	BLK_STS_OK, to fail the remainder of the request.
1046  */
1047 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
1048 {
1049 	int result = cmd->result;
1050 	struct request *req = scsi_cmd_to_rq(cmd);
1051 	blk_status_t blk_stat = BLK_STS_OK;
1052 
1053 	if (unlikely(result))	/* a nz result may or may not be an error */
1054 		result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
1055 
1056 	/*
1057 	 * Next deal with any sectors which we were able to correctly
1058 	 * handle.
1059 	 */
1060 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
1061 		"%u sectors total, %d bytes done.\n",
1062 		blk_rq_sectors(req), good_bytes));
1063 
1064 	/*
1065 	 * Failed, zero length commands always need to drop down
1066 	 * to retry code. Fast path should return in this block.
1067 	 */
1068 	if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
1069 		if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
1070 			return; /* no bytes remaining */
1071 	}
1072 
1073 	/* Kill remainder if no retries. */
1074 	if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
1075 		if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
1076 			WARN_ONCE(true,
1077 			    "Bytes remaining after failed, no-retry command");
1078 		return;
1079 	}
1080 
1081 	/*
1082 	 * If there had been no error, but we have leftover bytes in the
1083 	 * request just queue the command up again.
1084 	 */
1085 	if (likely(result == 0))
1086 		scsi_mq_requeue_cmd(cmd, 0);
1087 	else
1088 		scsi_io_completion_action(cmd, result);
1089 }
1090 
1091 static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev,
1092 		struct request *rq)
1093 {
1094 	return sdev->dma_drain_len && blk_rq_is_passthrough(rq) &&
1095 	       !op_is_write(req_op(rq)) &&
1096 	       sdev->host->hostt->dma_need_drain(rq);
1097 }
1098 
1099 /**
1100  * scsi_alloc_sgtables - Allocate and initialize data and integrity scatterlists
1101  * @cmd: SCSI command data structure to initialize.
1102  *
1103  * Initializes @cmd->sdb and also @cmd->prot_sdb if data integrity is enabled
1104  * for @cmd.
1105  *
1106  * Returns:
1107  * * BLK_STS_OK       - on success
1108  * * BLK_STS_RESOURCE - if the failure is retryable
1109  * * BLK_STS_IOERR    - if the failure is fatal
1110  */
1111 blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd)
1112 {
1113 	struct scsi_device *sdev = cmd->device;
1114 	struct request *rq = scsi_cmd_to_rq(cmd);
1115 	unsigned short nr_segs = blk_rq_nr_phys_segments(rq);
1116 	struct scatterlist *last_sg = NULL;
1117 	blk_status_t ret;
1118 	bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq);
1119 	int count;
1120 
1121 	if (WARN_ON_ONCE(!nr_segs))
1122 		return BLK_STS_IOERR;
1123 
1124 	/*
1125 	 * Make sure there is space for the drain.  The driver must adjust
1126 	 * max_hw_segments to be prepared for this.
1127 	 */
1128 	if (need_drain)
1129 		nr_segs++;
1130 
1131 	/*
1132 	 * If sg table allocation fails, requeue request later.
1133 	 */
1134 	if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs,
1135 			cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT)))
1136 		return BLK_STS_RESOURCE;
1137 
1138 	/*
1139 	 * Next, walk the list, and fill in the addresses and sizes of
1140 	 * each segment.
1141 	 */
1142 	count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg);
1143 
1144 	if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) {
1145 		unsigned int pad_len =
1146 			(rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
1147 
1148 		last_sg->length += pad_len;
1149 		cmd->extra_len += pad_len;
1150 	}
1151 
1152 	if (need_drain) {
1153 		sg_unmark_end(last_sg);
1154 		last_sg = sg_next(last_sg);
1155 		sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len);
1156 		sg_mark_end(last_sg);
1157 
1158 		cmd->extra_len += sdev->dma_drain_len;
1159 		count++;
1160 	}
1161 
1162 	BUG_ON(count > cmd->sdb.table.nents);
1163 	cmd->sdb.table.nents = count;
1164 	cmd->sdb.length = blk_rq_payload_bytes(rq);
1165 
1166 	if (blk_integrity_rq(rq)) {
1167 		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1168 		int ivecs;
1169 
1170 		if (WARN_ON_ONCE(!prot_sdb)) {
1171 			/*
1172 			 * This can happen if someone (e.g. multipath)
1173 			 * queues a command to a device on an adapter
1174 			 * that does not support DIX.
1175 			 */
1176 			ret = BLK_STS_IOERR;
1177 			goto out_free_sgtables;
1178 		}
1179 
1180 		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1181 
1182 		if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1183 				prot_sdb->table.sgl,
1184 				SCSI_INLINE_PROT_SG_CNT)) {
1185 			ret = BLK_STS_RESOURCE;
1186 			goto out_free_sgtables;
1187 		}
1188 
1189 		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1190 						prot_sdb->table.sgl);
1191 		BUG_ON(count > ivecs);
1192 		BUG_ON(count > queue_max_integrity_segments(rq->q));
1193 
1194 		cmd->prot_sdb = prot_sdb;
1195 		cmd->prot_sdb->table.nents = count;
1196 	}
1197 
1198 	return BLK_STS_OK;
1199 out_free_sgtables:
1200 	scsi_free_sgtables(cmd);
1201 	return ret;
1202 }
1203 EXPORT_SYMBOL(scsi_alloc_sgtables);
1204 
1205 /**
1206  * scsi_initialize_rq - initialize struct scsi_cmnd partially
1207  * @rq: Request associated with the SCSI command to be initialized.
1208  *
1209  * This function initializes the members of struct scsi_cmnd that must be
1210  * initialized before request processing starts and that won't be
1211  * reinitialized if a SCSI command is requeued.
1212  */
1213 static void scsi_initialize_rq(struct request *rq)
1214 {
1215 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1216 
1217 	memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1218 	cmd->cmd_len = MAX_COMMAND_SIZE;
1219 	cmd->sense_len = 0;
1220 	init_rcu_head(&cmd->rcu);
1221 	cmd->jiffies_at_alloc = jiffies;
1222 	cmd->retries = 0;
1223 }
1224 
1225 struct request *scsi_alloc_request(struct request_queue *q, blk_opf_t opf,
1226 				   blk_mq_req_flags_t flags)
1227 {
1228 	struct request *rq;
1229 
1230 	rq = blk_mq_alloc_request(q, opf, flags);
1231 	if (!IS_ERR(rq))
1232 		scsi_initialize_rq(rq);
1233 	return rq;
1234 }
1235 EXPORT_SYMBOL_GPL(scsi_alloc_request);
1236 
1237 /*
1238  * Only called when the request isn't completed by SCSI, and not freed by
1239  * SCSI
1240  */
1241 static void scsi_cleanup_rq(struct request *rq)
1242 {
1243 	if (rq->rq_flags & RQF_DONTPREP) {
1244 		scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq));
1245 		rq->rq_flags &= ~RQF_DONTPREP;
1246 	}
1247 }
1248 
1249 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */
1250 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1251 {
1252 	struct request *rq = scsi_cmd_to_rq(cmd);
1253 
1254 	if (!blk_rq_is_passthrough(rq) && !(cmd->flags & SCMD_INITIALIZED)) {
1255 		cmd->flags |= SCMD_INITIALIZED;
1256 		scsi_initialize_rq(rq);
1257 	}
1258 
1259 	cmd->device = dev;
1260 	INIT_LIST_HEAD(&cmd->eh_entry);
1261 	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1262 }
1263 
1264 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1265 		struct request *req)
1266 {
1267 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1268 
1269 	/*
1270 	 * Passthrough requests may transfer data, in which case they must
1271 	 * a bio attached to them.  Or they might contain a SCSI command
1272 	 * that does not transfer data, in which case they may optionally
1273 	 * submit a request without an attached bio.
1274 	 */
1275 	if (req->bio) {
1276 		blk_status_t ret = scsi_alloc_sgtables(cmd);
1277 		if (unlikely(ret != BLK_STS_OK))
1278 			return ret;
1279 	} else {
1280 		BUG_ON(blk_rq_bytes(req));
1281 
1282 		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1283 	}
1284 
1285 	cmd->transfersize = blk_rq_bytes(req);
1286 	return BLK_STS_OK;
1287 }
1288 
1289 static blk_status_t
1290 scsi_device_state_check(struct scsi_device *sdev, struct request *req)
1291 {
1292 	switch (sdev->sdev_state) {
1293 	case SDEV_CREATED:
1294 		return BLK_STS_OK;
1295 	case SDEV_OFFLINE:
1296 	case SDEV_TRANSPORT_OFFLINE:
1297 		/*
1298 		 * If the device is offline we refuse to process any
1299 		 * commands.  The device must be brought online
1300 		 * before trying any recovery commands.
1301 		 */
1302 		if (!sdev->offline_already) {
1303 			sdev->offline_already = true;
1304 			sdev_printk(KERN_ERR, sdev,
1305 				    "rejecting I/O to offline device\n");
1306 		}
1307 		return BLK_STS_IOERR;
1308 	case SDEV_DEL:
1309 		/*
1310 		 * If the device is fully deleted, we refuse to
1311 		 * process any commands as well.
1312 		 */
1313 		sdev_printk(KERN_ERR, sdev,
1314 			    "rejecting I/O to dead device\n");
1315 		return BLK_STS_IOERR;
1316 	case SDEV_BLOCK:
1317 	case SDEV_CREATED_BLOCK:
1318 		return BLK_STS_RESOURCE;
1319 	case SDEV_QUIESCE:
1320 		/*
1321 		 * If the device is blocked we only accept power management
1322 		 * commands.
1323 		 */
1324 		if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM)))
1325 			return BLK_STS_RESOURCE;
1326 		return BLK_STS_OK;
1327 	default:
1328 		/*
1329 		 * For any other not fully online state we only allow
1330 		 * power management commands.
1331 		 */
1332 		if (req && !(req->rq_flags & RQF_PM))
1333 			return BLK_STS_OFFLINE;
1334 		return BLK_STS_OK;
1335 	}
1336 }
1337 
1338 /*
1339  * scsi_dev_queue_ready: if we can send requests to sdev, assign one token
1340  * and return the token else return -1.
1341  */
1342 static inline int scsi_dev_queue_ready(struct request_queue *q,
1343 				  struct scsi_device *sdev)
1344 {
1345 	int token;
1346 
1347 	token = sbitmap_get(&sdev->budget_map);
1348 	if (token < 0)
1349 		return -1;
1350 
1351 	if (!atomic_read(&sdev->device_blocked))
1352 		return token;
1353 
1354 	/*
1355 	 * Only unblock if no other commands are pending and
1356 	 * if device_blocked has decreased to zero
1357 	 */
1358 	if (scsi_device_busy(sdev) > 1 ||
1359 	    atomic_dec_return(&sdev->device_blocked) > 0) {
1360 		sbitmap_put(&sdev->budget_map, token);
1361 		return -1;
1362 	}
1363 
1364 	SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1365 			 "unblocking device at zero depth\n"));
1366 
1367 	return token;
1368 }
1369 
1370 /*
1371  * scsi_target_queue_ready: checks if there we can send commands to target
1372  * @sdev: scsi device on starget to check.
1373  */
1374 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1375 					   struct scsi_device *sdev)
1376 {
1377 	struct scsi_target *starget = scsi_target(sdev);
1378 	unsigned int busy;
1379 
1380 	if (starget->single_lun) {
1381 		spin_lock_irq(shost->host_lock);
1382 		if (starget->starget_sdev_user &&
1383 		    starget->starget_sdev_user != sdev) {
1384 			spin_unlock_irq(shost->host_lock);
1385 			return 0;
1386 		}
1387 		starget->starget_sdev_user = sdev;
1388 		spin_unlock_irq(shost->host_lock);
1389 	}
1390 
1391 	if (starget->can_queue <= 0)
1392 		return 1;
1393 
1394 	busy = atomic_inc_return(&starget->target_busy) - 1;
1395 	if (atomic_read(&starget->target_blocked) > 0) {
1396 		if (busy)
1397 			goto starved;
1398 
1399 		/*
1400 		 * unblock after target_blocked iterates to zero
1401 		 */
1402 		if (atomic_dec_return(&starget->target_blocked) > 0)
1403 			goto out_dec;
1404 
1405 		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1406 				 "unblocking target at zero depth\n"));
1407 	}
1408 
1409 	if (busy >= starget->can_queue)
1410 		goto starved;
1411 
1412 	return 1;
1413 
1414 starved:
1415 	spin_lock_irq(shost->host_lock);
1416 	list_move_tail(&sdev->starved_entry, &shost->starved_list);
1417 	spin_unlock_irq(shost->host_lock);
1418 out_dec:
1419 	if (starget->can_queue > 0)
1420 		atomic_dec(&starget->target_busy);
1421 	return 0;
1422 }
1423 
1424 /*
1425  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1426  * return 0. We must end up running the queue again whenever 0 is
1427  * returned, else IO can hang.
1428  */
1429 static inline int scsi_host_queue_ready(struct request_queue *q,
1430 				   struct Scsi_Host *shost,
1431 				   struct scsi_device *sdev,
1432 				   struct scsi_cmnd *cmd)
1433 {
1434 	if (atomic_read(&shost->host_blocked) > 0) {
1435 		if (scsi_host_busy(shost) > 0)
1436 			goto starved;
1437 
1438 		/*
1439 		 * unblock after host_blocked iterates to zero
1440 		 */
1441 		if (atomic_dec_return(&shost->host_blocked) > 0)
1442 			goto out_dec;
1443 
1444 		SCSI_LOG_MLQUEUE(3,
1445 			shost_printk(KERN_INFO, shost,
1446 				     "unblocking host at zero depth\n"));
1447 	}
1448 
1449 	if (shost->host_self_blocked)
1450 		goto starved;
1451 
1452 	/* We're OK to process the command, so we can't be starved */
1453 	if (!list_empty(&sdev->starved_entry)) {
1454 		spin_lock_irq(shost->host_lock);
1455 		if (!list_empty(&sdev->starved_entry))
1456 			list_del_init(&sdev->starved_entry);
1457 		spin_unlock_irq(shost->host_lock);
1458 	}
1459 
1460 	__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1461 
1462 	return 1;
1463 
1464 starved:
1465 	spin_lock_irq(shost->host_lock);
1466 	if (list_empty(&sdev->starved_entry))
1467 		list_add_tail(&sdev->starved_entry, &shost->starved_list);
1468 	spin_unlock_irq(shost->host_lock);
1469 out_dec:
1470 	scsi_dec_host_busy(shost, cmd);
1471 	return 0;
1472 }
1473 
1474 /*
1475  * Busy state exporting function for request stacking drivers.
1476  *
1477  * For efficiency, no lock is taken to check the busy state of
1478  * shost/starget/sdev, since the returned value is not guaranteed and
1479  * may be changed after request stacking drivers call the function,
1480  * regardless of taking lock or not.
1481  *
1482  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1483  * needs to return 'not busy'. Otherwise, request stacking drivers
1484  * may hold requests forever.
1485  */
1486 static bool scsi_mq_lld_busy(struct request_queue *q)
1487 {
1488 	struct scsi_device *sdev = q->queuedata;
1489 	struct Scsi_Host *shost;
1490 
1491 	if (blk_queue_dying(q))
1492 		return false;
1493 
1494 	shost = sdev->host;
1495 
1496 	/*
1497 	 * Ignore host/starget busy state.
1498 	 * Since block layer does not have a concept of fairness across
1499 	 * multiple queues, congestion of host/starget needs to be handled
1500 	 * in SCSI layer.
1501 	 */
1502 	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1503 		return true;
1504 
1505 	return false;
1506 }
1507 
1508 /*
1509  * Block layer request completion callback. May be called from interrupt
1510  * context.
1511  */
1512 static void scsi_complete(struct request *rq)
1513 {
1514 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1515 	enum scsi_disposition disposition;
1516 
1517 	INIT_LIST_HEAD(&cmd->eh_entry);
1518 
1519 	atomic_inc(&cmd->device->iodone_cnt);
1520 	if (cmd->result)
1521 		atomic_inc(&cmd->device->ioerr_cnt);
1522 
1523 	disposition = scsi_decide_disposition(cmd);
1524 	if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd))
1525 		disposition = SUCCESS;
1526 
1527 	scsi_log_completion(cmd, disposition);
1528 
1529 	switch (disposition) {
1530 	case SUCCESS:
1531 		scsi_finish_command(cmd);
1532 		break;
1533 	case NEEDS_RETRY:
1534 		scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1535 		break;
1536 	case ADD_TO_MLQUEUE:
1537 		scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1538 		break;
1539 	default:
1540 		scsi_eh_scmd_add(cmd);
1541 		break;
1542 	}
1543 }
1544 
1545 /**
1546  * scsi_dispatch_cmd - Dispatch a command to the low-level driver.
1547  * @cmd: command block we are dispatching.
1548  *
1549  * Return: nonzero return request was rejected and device's queue needs to be
1550  * plugged.
1551  */
1552 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1553 {
1554 	struct Scsi_Host *host = cmd->device->host;
1555 	int rtn = 0;
1556 
1557 	atomic_inc(&cmd->device->iorequest_cnt);
1558 
1559 	/* check if the device is still usable */
1560 	if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1561 		/* in SDEV_DEL we error all commands. DID_NO_CONNECT
1562 		 * returns an immediate error upwards, and signals
1563 		 * that the device is no longer present */
1564 		cmd->result = DID_NO_CONNECT << 16;
1565 		goto done;
1566 	}
1567 
1568 	/* Check to see if the scsi lld made this device blocked. */
1569 	if (unlikely(scsi_device_blocked(cmd->device))) {
1570 		/*
1571 		 * in blocked state, the command is just put back on
1572 		 * the device queue.  The suspend state has already
1573 		 * blocked the queue so future requests should not
1574 		 * occur until the device transitions out of the
1575 		 * suspend state.
1576 		 */
1577 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1578 			"queuecommand : device blocked\n"));
1579 		atomic_dec(&cmd->device->iorequest_cnt);
1580 		return SCSI_MLQUEUE_DEVICE_BUSY;
1581 	}
1582 
1583 	/* Store the LUN value in cmnd, if needed. */
1584 	if (cmd->device->lun_in_cdb)
1585 		cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1586 			       (cmd->device->lun << 5 & 0xe0);
1587 
1588 	scsi_log_send(cmd);
1589 
1590 	/*
1591 	 * Before we queue this command, check if the command
1592 	 * length exceeds what the host adapter can handle.
1593 	 */
1594 	if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1595 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1596 			       "queuecommand : command too long. "
1597 			       "cdb_size=%d host->max_cmd_len=%d\n",
1598 			       cmd->cmd_len, cmd->device->host->max_cmd_len));
1599 		cmd->result = (DID_ABORT << 16);
1600 		goto done;
1601 	}
1602 
1603 	if (unlikely(host->shost_state == SHOST_DEL)) {
1604 		cmd->result = (DID_NO_CONNECT << 16);
1605 		goto done;
1606 
1607 	}
1608 
1609 	trace_scsi_dispatch_cmd_start(cmd);
1610 	rtn = host->hostt->queuecommand(host, cmd);
1611 	if (rtn) {
1612 		atomic_dec(&cmd->device->iorequest_cnt);
1613 		trace_scsi_dispatch_cmd_error(cmd, rtn);
1614 		if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1615 		    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1616 			rtn = SCSI_MLQUEUE_HOST_BUSY;
1617 
1618 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1619 			"queuecommand : request rejected\n"));
1620 	}
1621 
1622 	return rtn;
1623  done:
1624 	scsi_done(cmd);
1625 	return 0;
1626 }
1627 
1628 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1629 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
1630 {
1631 	return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1632 		sizeof(struct scatterlist);
1633 }
1634 
1635 static blk_status_t scsi_prepare_cmd(struct request *req)
1636 {
1637 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1638 	struct scsi_device *sdev = req->q->queuedata;
1639 	struct Scsi_Host *shost = sdev->host;
1640 	bool in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1641 	struct scatterlist *sg;
1642 
1643 	scsi_init_command(sdev, cmd);
1644 
1645 	cmd->eh_eflags = 0;
1646 	cmd->prot_type = 0;
1647 	cmd->prot_flags = 0;
1648 	cmd->submitter = 0;
1649 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1650 	cmd->underflow = 0;
1651 	cmd->transfersize = 0;
1652 	cmd->host_scribble = NULL;
1653 	cmd->result = 0;
1654 	cmd->extra_len = 0;
1655 	cmd->state = 0;
1656 	if (in_flight)
1657 		__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1658 
1659 	/*
1660 	 * Only clear the driver-private command data if the LLD does not supply
1661 	 * a function to initialize that data.
1662 	 */
1663 	if (!shost->hostt->init_cmd_priv)
1664 		memset(cmd + 1, 0, shost->hostt->cmd_size);
1665 
1666 	cmd->prot_op = SCSI_PROT_NORMAL;
1667 	if (blk_rq_bytes(req))
1668 		cmd->sc_data_direction = rq_dma_dir(req);
1669 	else
1670 		cmd->sc_data_direction = DMA_NONE;
1671 
1672 	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1673 	cmd->sdb.table.sgl = sg;
1674 
1675 	if (scsi_host_get_prot(shost)) {
1676 		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1677 
1678 		cmd->prot_sdb->table.sgl =
1679 			(struct scatterlist *)(cmd->prot_sdb + 1);
1680 	}
1681 
1682 	/*
1683 	 * Special handling for passthrough commands, which don't go to the ULP
1684 	 * at all:
1685 	 */
1686 	if (blk_rq_is_passthrough(req))
1687 		return scsi_setup_scsi_cmnd(sdev, req);
1688 
1689 	if (sdev->handler && sdev->handler->prep_fn) {
1690 		blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1691 
1692 		if (ret != BLK_STS_OK)
1693 			return ret;
1694 	}
1695 
1696 	/* Usually overridden by the ULP */
1697 	cmd->allowed = 0;
1698 	memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1699 	return scsi_cmd_to_driver(cmd)->init_command(cmd);
1700 }
1701 
1702 static void scsi_done_internal(struct scsi_cmnd *cmd, bool complete_directly)
1703 {
1704 	struct request *req = scsi_cmd_to_rq(cmd);
1705 
1706 	switch (cmd->submitter) {
1707 	case SUBMITTED_BY_BLOCK_LAYER:
1708 		break;
1709 	case SUBMITTED_BY_SCSI_ERROR_HANDLER:
1710 		return scsi_eh_done(cmd);
1711 	case SUBMITTED_BY_SCSI_RESET_IOCTL:
1712 		return;
1713 	}
1714 
1715 	if (unlikely(blk_should_fake_timeout(scsi_cmd_to_rq(cmd)->q)))
1716 		return;
1717 	if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1718 		return;
1719 	trace_scsi_dispatch_cmd_done(cmd);
1720 
1721 	if (complete_directly)
1722 		blk_mq_complete_request_direct(req, scsi_complete);
1723 	else
1724 		blk_mq_complete_request(req);
1725 }
1726 
1727 void scsi_done(struct scsi_cmnd *cmd)
1728 {
1729 	scsi_done_internal(cmd, false);
1730 }
1731 EXPORT_SYMBOL(scsi_done);
1732 
1733 void scsi_done_direct(struct scsi_cmnd *cmd)
1734 {
1735 	scsi_done_internal(cmd, true);
1736 }
1737 EXPORT_SYMBOL(scsi_done_direct);
1738 
1739 static void scsi_mq_put_budget(struct request_queue *q, int budget_token)
1740 {
1741 	struct scsi_device *sdev = q->queuedata;
1742 
1743 	sbitmap_put(&sdev->budget_map, budget_token);
1744 }
1745 
1746 /*
1747  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
1748  * not change behaviour from the previous unplug mechanism, experimentation
1749  * may prove this needs changing.
1750  */
1751 #define SCSI_QUEUE_DELAY 3
1752 
1753 static int scsi_mq_get_budget(struct request_queue *q)
1754 {
1755 	struct scsi_device *sdev = q->queuedata;
1756 	int token = scsi_dev_queue_ready(q, sdev);
1757 
1758 	if (token >= 0)
1759 		return token;
1760 
1761 	atomic_inc(&sdev->restarts);
1762 
1763 	/*
1764 	 * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy).
1765 	 * .restarts must be incremented before .device_busy is read because the
1766 	 * code in scsi_run_queue_async() depends on the order of these operations.
1767 	 */
1768 	smp_mb__after_atomic();
1769 
1770 	/*
1771 	 * If all in-flight requests originated from this LUN are completed
1772 	 * before reading .device_busy, sdev->device_busy will be observed as
1773 	 * zero, then blk_mq_delay_run_hw_queues() will dispatch this request
1774 	 * soon. Otherwise, completion of one of these requests will observe
1775 	 * the .restarts flag, and the request queue will be run for handling
1776 	 * this request, see scsi_end_request().
1777 	 */
1778 	if (unlikely(scsi_device_busy(sdev) == 0 &&
1779 				!scsi_device_blocked(sdev)))
1780 		blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY);
1781 	return -1;
1782 }
1783 
1784 static void scsi_mq_set_rq_budget_token(struct request *req, int token)
1785 {
1786 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1787 
1788 	cmd->budget_token = token;
1789 }
1790 
1791 static int scsi_mq_get_rq_budget_token(struct request *req)
1792 {
1793 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1794 
1795 	return cmd->budget_token;
1796 }
1797 
1798 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1799 			 const struct blk_mq_queue_data *bd)
1800 {
1801 	struct request *req = bd->rq;
1802 	struct request_queue *q = req->q;
1803 	struct scsi_device *sdev = q->queuedata;
1804 	struct Scsi_Host *shost = sdev->host;
1805 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1806 	blk_status_t ret;
1807 	int reason;
1808 
1809 	WARN_ON_ONCE(cmd->budget_token < 0);
1810 
1811 	/*
1812 	 * If the device is not in running state we will reject some or all
1813 	 * commands.
1814 	 */
1815 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1816 		ret = scsi_device_state_check(sdev, req);
1817 		if (ret != BLK_STS_OK)
1818 			goto out_put_budget;
1819 	}
1820 
1821 	ret = BLK_STS_RESOURCE;
1822 	if (!scsi_target_queue_ready(shost, sdev))
1823 		goto out_put_budget;
1824 	if (unlikely(scsi_host_in_recovery(shost))) {
1825 		if (cmd->flags & SCMD_FAIL_IF_RECOVERING)
1826 			ret = BLK_STS_OFFLINE;
1827 		goto out_dec_target_busy;
1828 	}
1829 	if (!scsi_host_queue_ready(q, shost, sdev, cmd))
1830 		goto out_dec_target_busy;
1831 
1832 	if (!(req->rq_flags & RQF_DONTPREP)) {
1833 		ret = scsi_prepare_cmd(req);
1834 		if (ret != BLK_STS_OK)
1835 			goto out_dec_host_busy;
1836 		req->rq_flags |= RQF_DONTPREP;
1837 	} else {
1838 		clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1839 	}
1840 
1841 	cmd->flags &= SCMD_PRESERVED_FLAGS;
1842 	if (sdev->simple_tags)
1843 		cmd->flags |= SCMD_TAGGED;
1844 	if (bd->last)
1845 		cmd->flags |= SCMD_LAST;
1846 
1847 	scsi_set_resid(cmd, 0);
1848 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1849 	cmd->submitter = SUBMITTED_BY_BLOCK_LAYER;
1850 
1851 	blk_mq_start_request(req);
1852 	reason = scsi_dispatch_cmd(cmd);
1853 	if (reason) {
1854 		scsi_set_blocked(cmd, reason);
1855 		ret = BLK_STS_RESOURCE;
1856 		goto out_dec_host_busy;
1857 	}
1858 
1859 	return BLK_STS_OK;
1860 
1861 out_dec_host_busy:
1862 	scsi_dec_host_busy(shost, cmd);
1863 out_dec_target_busy:
1864 	if (scsi_target(sdev)->can_queue > 0)
1865 		atomic_dec(&scsi_target(sdev)->target_busy);
1866 out_put_budget:
1867 	scsi_mq_put_budget(q, cmd->budget_token);
1868 	cmd->budget_token = -1;
1869 	switch (ret) {
1870 	case BLK_STS_OK:
1871 		break;
1872 	case BLK_STS_RESOURCE:
1873 	case BLK_STS_ZONE_RESOURCE:
1874 		if (scsi_device_blocked(sdev))
1875 			ret = BLK_STS_DEV_RESOURCE;
1876 		break;
1877 	case BLK_STS_AGAIN:
1878 		cmd->result = DID_BUS_BUSY << 16;
1879 		if (req->rq_flags & RQF_DONTPREP)
1880 			scsi_mq_uninit_cmd(cmd);
1881 		break;
1882 	default:
1883 		if (unlikely(!scsi_device_online(sdev)))
1884 			cmd->result = DID_NO_CONNECT << 16;
1885 		else
1886 			cmd->result = DID_ERROR << 16;
1887 		/*
1888 		 * Make sure to release all allocated resources when
1889 		 * we hit an error, as we will never see this command
1890 		 * again.
1891 		 */
1892 		if (req->rq_flags & RQF_DONTPREP)
1893 			scsi_mq_uninit_cmd(cmd);
1894 		scsi_run_queue_async(sdev);
1895 		break;
1896 	}
1897 	return ret;
1898 }
1899 
1900 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1901 				unsigned int hctx_idx, unsigned int numa_node)
1902 {
1903 	struct Scsi_Host *shost = set->driver_data;
1904 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1905 	struct scatterlist *sg;
1906 	int ret = 0;
1907 
1908 	cmd->sense_buffer =
1909 		kmem_cache_alloc_node(scsi_sense_cache, GFP_KERNEL, numa_node);
1910 	if (!cmd->sense_buffer)
1911 		return -ENOMEM;
1912 
1913 	if (scsi_host_get_prot(shost)) {
1914 		sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1915 			shost->hostt->cmd_size;
1916 		cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1917 	}
1918 
1919 	if (shost->hostt->init_cmd_priv) {
1920 		ret = shost->hostt->init_cmd_priv(shost, cmd);
1921 		if (ret < 0)
1922 			kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1923 	}
1924 
1925 	return ret;
1926 }
1927 
1928 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1929 				 unsigned int hctx_idx)
1930 {
1931 	struct Scsi_Host *shost = set->driver_data;
1932 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1933 
1934 	if (shost->hostt->exit_cmd_priv)
1935 		shost->hostt->exit_cmd_priv(shost, cmd);
1936 	kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1937 }
1938 
1939 
1940 static int scsi_mq_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1941 {
1942 	struct Scsi_Host *shost = hctx->driver_data;
1943 
1944 	if (shost->hostt->mq_poll)
1945 		return shost->hostt->mq_poll(shost, hctx->queue_num);
1946 
1947 	return 0;
1948 }
1949 
1950 static int scsi_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1951 			  unsigned int hctx_idx)
1952 {
1953 	struct Scsi_Host *shost = data;
1954 
1955 	hctx->driver_data = shost;
1956 	return 0;
1957 }
1958 
1959 static void scsi_map_queues(struct blk_mq_tag_set *set)
1960 {
1961 	struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1962 
1963 	if (shost->hostt->map_queues)
1964 		return shost->hostt->map_queues(shost);
1965 	blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
1966 }
1967 
1968 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1969 {
1970 	struct device *dev = shost->dma_dev;
1971 
1972 	/*
1973 	 * this limit is imposed by hardware restrictions
1974 	 */
1975 	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1976 					SG_MAX_SEGMENTS));
1977 
1978 	if (scsi_host_prot_dma(shost)) {
1979 		shost->sg_prot_tablesize =
1980 			min_not_zero(shost->sg_prot_tablesize,
1981 				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1982 		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1983 		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1984 	}
1985 
1986 	blk_queue_max_hw_sectors(q, shost->max_sectors);
1987 	blk_queue_segment_boundary(q, shost->dma_boundary);
1988 	dma_set_seg_boundary(dev, shost->dma_boundary);
1989 
1990 	blk_queue_max_segment_size(q, shost->max_segment_size);
1991 	blk_queue_virt_boundary(q, shost->virt_boundary_mask);
1992 	dma_set_max_seg_size(dev, queue_max_segment_size(q));
1993 
1994 	/*
1995 	 * Set a reasonable default alignment:  The larger of 32-byte (dword),
1996 	 * which is a common minimum for HBAs, and the minimum DMA alignment,
1997 	 * which is set by the platform.
1998 	 *
1999 	 * Devices that require a bigger alignment can increase it later.
2000 	 */
2001 	blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
2002 }
2003 EXPORT_SYMBOL_GPL(__scsi_init_queue);
2004 
2005 static const struct blk_mq_ops scsi_mq_ops_no_commit = {
2006 	.get_budget	= scsi_mq_get_budget,
2007 	.put_budget	= scsi_mq_put_budget,
2008 	.queue_rq	= scsi_queue_rq,
2009 	.complete	= scsi_complete,
2010 	.timeout	= scsi_timeout,
2011 #ifdef CONFIG_BLK_DEBUG_FS
2012 	.show_rq	= scsi_show_rq,
2013 #endif
2014 	.init_request	= scsi_mq_init_request,
2015 	.exit_request	= scsi_mq_exit_request,
2016 	.cleanup_rq	= scsi_cleanup_rq,
2017 	.busy		= scsi_mq_lld_busy,
2018 	.map_queues	= scsi_map_queues,
2019 	.init_hctx	= scsi_init_hctx,
2020 	.poll		= scsi_mq_poll,
2021 	.set_rq_budget_token = scsi_mq_set_rq_budget_token,
2022 	.get_rq_budget_token = scsi_mq_get_rq_budget_token,
2023 };
2024 
2025 
2026 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
2027 {
2028 	struct Scsi_Host *shost = hctx->driver_data;
2029 
2030 	shost->hostt->commit_rqs(shost, hctx->queue_num);
2031 }
2032 
2033 static const struct blk_mq_ops scsi_mq_ops = {
2034 	.get_budget	= scsi_mq_get_budget,
2035 	.put_budget	= scsi_mq_put_budget,
2036 	.queue_rq	= scsi_queue_rq,
2037 	.commit_rqs	= scsi_commit_rqs,
2038 	.complete	= scsi_complete,
2039 	.timeout	= scsi_timeout,
2040 #ifdef CONFIG_BLK_DEBUG_FS
2041 	.show_rq	= scsi_show_rq,
2042 #endif
2043 	.init_request	= scsi_mq_init_request,
2044 	.exit_request	= scsi_mq_exit_request,
2045 	.cleanup_rq	= scsi_cleanup_rq,
2046 	.busy		= scsi_mq_lld_busy,
2047 	.map_queues	= scsi_map_queues,
2048 	.init_hctx	= scsi_init_hctx,
2049 	.poll		= scsi_mq_poll,
2050 	.set_rq_budget_token = scsi_mq_set_rq_budget_token,
2051 	.get_rq_budget_token = scsi_mq_get_rq_budget_token,
2052 };
2053 
2054 int scsi_mq_setup_tags(struct Scsi_Host *shost)
2055 {
2056 	unsigned int cmd_size, sgl_size;
2057 	struct blk_mq_tag_set *tag_set = &shost->tag_set;
2058 
2059 	sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
2060 				scsi_mq_inline_sgl_size(shost));
2061 	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2062 	if (scsi_host_get_prot(shost))
2063 		cmd_size += sizeof(struct scsi_data_buffer) +
2064 			sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
2065 
2066 	memset(tag_set, 0, sizeof(*tag_set));
2067 	if (shost->hostt->commit_rqs)
2068 		tag_set->ops = &scsi_mq_ops;
2069 	else
2070 		tag_set->ops = &scsi_mq_ops_no_commit;
2071 	tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1;
2072 	tag_set->nr_maps = shost->nr_maps ? : 1;
2073 	tag_set->queue_depth = shost->can_queue;
2074 	tag_set->cmd_size = cmd_size;
2075 	tag_set->numa_node = dev_to_node(shost->dma_dev);
2076 	tag_set->flags = BLK_MQ_F_SHOULD_MERGE;
2077 	tag_set->flags |=
2078 		BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
2079 	if (shost->queuecommand_may_block)
2080 		tag_set->flags |= BLK_MQ_F_BLOCKING;
2081 	tag_set->driver_data = shost;
2082 	if (shost->host_tagset)
2083 		tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
2084 
2085 	return blk_mq_alloc_tag_set(tag_set);
2086 }
2087 
2088 void scsi_mq_free_tags(struct kref *kref)
2089 {
2090 	struct Scsi_Host *shost = container_of(kref, typeof(*shost),
2091 					       tagset_refcnt);
2092 
2093 	blk_mq_free_tag_set(&shost->tag_set);
2094 	complete(&shost->tagset_freed);
2095 }
2096 
2097 /**
2098  * scsi_device_from_queue - return sdev associated with a request_queue
2099  * @q: The request queue to return the sdev from
2100  *
2101  * Return the sdev associated with a request queue or NULL if the
2102  * request_queue does not reference a SCSI device.
2103  */
2104 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2105 {
2106 	struct scsi_device *sdev = NULL;
2107 
2108 	if (q->mq_ops == &scsi_mq_ops_no_commit ||
2109 	    q->mq_ops == &scsi_mq_ops)
2110 		sdev = q->queuedata;
2111 	if (!sdev || !get_device(&sdev->sdev_gendev))
2112 		sdev = NULL;
2113 
2114 	return sdev;
2115 }
2116 /*
2117  * pktcdvd should have been integrated into the SCSI layers, but for historical
2118  * reasons like the old IDE driver it isn't.  This export allows it to safely
2119  * probe if a given device is a SCSI one and only attach to that.
2120  */
2121 #ifdef CONFIG_CDROM_PKTCDVD_MODULE
2122 EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2123 #endif
2124 
2125 /**
2126  * scsi_block_requests - Utility function used by low-level drivers to prevent
2127  * further commands from being queued to the device.
2128  * @shost:  host in question
2129  *
2130  * There is no timer nor any other means by which the requests get unblocked
2131  * other than the low-level driver calling scsi_unblock_requests().
2132  */
2133 void scsi_block_requests(struct Scsi_Host *shost)
2134 {
2135 	shost->host_self_blocked = 1;
2136 }
2137 EXPORT_SYMBOL(scsi_block_requests);
2138 
2139 /**
2140  * scsi_unblock_requests - Utility function used by low-level drivers to allow
2141  * further commands to be queued to the device.
2142  * @shost:  host in question
2143  *
2144  * There is no timer nor any other means by which the requests get unblocked
2145  * other than the low-level driver calling scsi_unblock_requests(). This is done
2146  * as an API function so that changes to the internals of the scsi mid-layer
2147  * won't require wholesale changes to drivers that use this feature.
2148  */
2149 void scsi_unblock_requests(struct Scsi_Host *shost)
2150 {
2151 	shost->host_self_blocked = 0;
2152 	scsi_run_host_queues(shost);
2153 }
2154 EXPORT_SYMBOL(scsi_unblock_requests);
2155 
2156 void scsi_exit_queue(void)
2157 {
2158 	kmem_cache_destroy(scsi_sense_cache);
2159 }
2160 
2161 /**
2162  *	scsi_mode_select - issue a mode select
2163  *	@sdev:	SCSI device to be queried
2164  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
2165  *	@sp:	Save page bit (0 == don't save, 1 == save)
2166  *	@buffer: request buffer (may not be smaller than eight bytes)
2167  *	@len:	length of request buffer.
2168  *	@timeout: command timeout
2169  *	@retries: number of retries before failing
2170  *	@data: returns a structure abstracting the mode header data
2171  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2172  *		must be SCSI_SENSE_BUFFERSIZE big.
2173  *
2174  *	Returns zero if successful; negative error number or scsi
2175  *	status on error
2176  *
2177  */
2178 int scsi_mode_select(struct scsi_device *sdev, int pf, int sp,
2179 		     unsigned char *buffer, int len, int timeout, int retries,
2180 		     struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2181 {
2182 	unsigned char cmd[10];
2183 	unsigned char *real_buffer;
2184 	const struct scsi_exec_args exec_args = {
2185 		.sshdr = sshdr,
2186 	};
2187 	int ret;
2188 
2189 	memset(cmd, 0, sizeof(cmd));
2190 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2191 
2192 	/*
2193 	 * Use MODE SELECT(10) if the device asked for it or if the mode page
2194 	 * and the mode select header cannot fit within the maximumm 255 bytes
2195 	 * of the MODE SELECT(6) command.
2196 	 */
2197 	if (sdev->use_10_for_ms ||
2198 	    len + 4 > 255 ||
2199 	    data->block_descriptor_length > 255) {
2200 		if (len > 65535 - 8)
2201 			return -EINVAL;
2202 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
2203 		if (!real_buffer)
2204 			return -ENOMEM;
2205 		memcpy(real_buffer + 8, buffer, len);
2206 		len += 8;
2207 		real_buffer[0] = 0;
2208 		real_buffer[1] = 0;
2209 		real_buffer[2] = data->medium_type;
2210 		real_buffer[3] = data->device_specific;
2211 		real_buffer[4] = data->longlba ? 0x01 : 0;
2212 		real_buffer[5] = 0;
2213 		put_unaligned_be16(data->block_descriptor_length,
2214 				   &real_buffer[6]);
2215 
2216 		cmd[0] = MODE_SELECT_10;
2217 		put_unaligned_be16(len, &cmd[7]);
2218 	} else {
2219 		if (data->longlba)
2220 			return -EINVAL;
2221 
2222 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2223 		if (!real_buffer)
2224 			return -ENOMEM;
2225 		memcpy(real_buffer + 4, buffer, len);
2226 		len += 4;
2227 		real_buffer[0] = 0;
2228 		real_buffer[1] = data->medium_type;
2229 		real_buffer[2] = data->device_specific;
2230 		real_buffer[3] = data->block_descriptor_length;
2231 
2232 		cmd[0] = MODE_SELECT;
2233 		cmd[4] = len;
2234 	}
2235 
2236 	ret = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, real_buffer, len,
2237 			       timeout, retries, &exec_args);
2238 	kfree(real_buffer);
2239 	return ret;
2240 }
2241 EXPORT_SYMBOL_GPL(scsi_mode_select);
2242 
2243 /**
2244  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2245  *	@sdev:	SCSI device to be queried
2246  *	@dbd:	set to prevent mode sense from returning block descriptors
2247  *	@modepage: mode page being requested
2248  *	@subpage: sub-page of the mode page being requested
2249  *	@buffer: request buffer (may not be smaller than eight bytes)
2250  *	@len:	length of request buffer.
2251  *	@timeout: command timeout
2252  *	@retries: number of retries before failing
2253  *	@data: returns a structure abstracting the mode header data
2254  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2255  *		must be SCSI_SENSE_BUFFERSIZE big.
2256  *
2257  *	Returns zero if successful, or a negative error number on failure
2258  */
2259 int
2260 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, int subpage,
2261 		  unsigned char *buffer, int len, int timeout, int retries,
2262 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2263 {
2264 	unsigned char cmd[12];
2265 	int use_10_for_ms;
2266 	int header_length;
2267 	int result;
2268 	struct scsi_sense_hdr my_sshdr;
2269 	struct scsi_failure failure_defs[] = {
2270 		{
2271 			.sense = UNIT_ATTENTION,
2272 			.asc = SCMD_FAILURE_ASC_ANY,
2273 			.ascq = SCMD_FAILURE_ASCQ_ANY,
2274 			.allowed = retries,
2275 			.result = SAM_STAT_CHECK_CONDITION,
2276 		},
2277 		{}
2278 	};
2279 	struct scsi_failures failures = {
2280 		.failure_definitions = failure_defs,
2281 	};
2282 	const struct scsi_exec_args exec_args = {
2283 		/* caller might not be interested in sense, but we need it */
2284 		.sshdr = sshdr ? : &my_sshdr,
2285 		.failures = &failures,
2286 	};
2287 
2288 	memset(data, 0, sizeof(*data));
2289 	memset(&cmd[0], 0, 12);
2290 
2291 	dbd = sdev->set_dbd_for_ms ? 8 : dbd;
2292 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2293 	cmd[2] = modepage;
2294 	cmd[3] = subpage;
2295 
2296 	sshdr = exec_args.sshdr;
2297 
2298  retry:
2299 	use_10_for_ms = sdev->use_10_for_ms || len > 255;
2300 
2301 	if (use_10_for_ms) {
2302 		if (len < 8 || len > 65535)
2303 			return -EINVAL;
2304 
2305 		cmd[0] = MODE_SENSE_10;
2306 		put_unaligned_be16(len, &cmd[7]);
2307 		header_length = 8;
2308 	} else {
2309 		if (len < 4)
2310 			return -EINVAL;
2311 
2312 		cmd[0] = MODE_SENSE;
2313 		cmd[4] = len;
2314 		header_length = 4;
2315 	}
2316 
2317 	memset(buffer, 0, len);
2318 
2319 	result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, buffer, len,
2320 				  timeout, retries, &exec_args);
2321 	if (result < 0)
2322 		return result;
2323 
2324 	/* This code looks awful: what it's doing is making sure an
2325 	 * ILLEGAL REQUEST sense return identifies the actual command
2326 	 * byte as the problem.  MODE_SENSE commands can return
2327 	 * ILLEGAL REQUEST if the code page isn't supported */
2328 
2329 	if (!scsi_status_is_good(result)) {
2330 		if (scsi_sense_valid(sshdr)) {
2331 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2332 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2333 				/*
2334 				 * Invalid command operation code: retry using
2335 				 * MODE SENSE(6) if this was a MODE SENSE(10)
2336 				 * request, except if the request mode page is
2337 				 * too large for MODE SENSE single byte
2338 				 * allocation length field.
2339 				 */
2340 				if (use_10_for_ms) {
2341 					if (len > 255)
2342 						return -EIO;
2343 					sdev->use_10_for_ms = 0;
2344 					goto retry;
2345 				}
2346 			}
2347 		}
2348 		return -EIO;
2349 	}
2350 	if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2351 		     (modepage == 6 || modepage == 8))) {
2352 		/* Initio breakage? */
2353 		header_length = 0;
2354 		data->length = 13;
2355 		data->medium_type = 0;
2356 		data->device_specific = 0;
2357 		data->longlba = 0;
2358 		data->block_descriptor_length = 0;
2359 	} else if (use_10_for_ms) {
2360 		data->length = get_unaligned_be16(&buffer[0]) + 2;
2361 		data->medium_type = buffer[2];
2362 		data->device_specific = buffer[3];
2363 		data->longlba = buffer[4] & 0x01;
2364 		data->block_descriptor_length = get_unaligned_be16(&buffer[6]);
2365 	} else {
2366 		data->length = buffer[0] + 1;
2367 		data->medium_type = buffer[1];
2368 		data->device_specific = buffer[2];
2369 		data->block_descriptor_length = buffer[3];
2370 	}
2371 	data->header_length = header_length;
2372 
2373 	return 0;
2374 }
2375 EXPORT_SYMBOL(scsi_mode_sense);
2376 
2377 /**
2378  *	scsi_test_unit_ready - test if unit is ready
2379  *	@sdev:	scsi device to change the state of.
2380  *	@timeout: command timeout
2381  *	@retries: number of retries before failing
2382  *	@sshdr: outpout pointer for decoded sense information.
2383  *
2384  *	Returns zero if unsuccessful or an error if TUR failed.  For
2385  *	removable media, UNIT_ATTENTION sets ->changed flag.
2386  **/
2387 int
2388 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2389 		     struct scsi_sense_hdr *sshdr)
2390 {
2391 	char cmd[] = {
2392 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2393 	};
2394 	const struct scsi_exec_args exec_args = {
2395 		.sshdr = sshdr,
2396 	};
2397 	int result;
2398 
2399 	/* try to eat the UNIT_ATTENTION if there are enough retries */
2400 	do {
2401 		result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, NULL, 0,
2402 					  timeout, 1, &exec_args);
2403 		if (sdev->removable && result > 0 && scsi_sense_valid(sshdr) &&
2404 		    sshdr->sense_key == UNIT_ATTENTION)
2405 			sdev->changed = 1;
2406 	} while (result > 0 && scsi_sense_valid(sshdr) &&
2407 		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2408 
2409 	return result;
2410 }
2411 EXPORT_SYMBOL(scsi_test_unit_ready);
2412 
2413 /**
2414  *	scsi_device_set_state - Take the given device through the device state model.
2415  *	@sdev:	scsi device to change the state of.
2416  *	@state:	state to change to.
2417  *
2418  *	Returns zero if successful or an error if the requested
2419  *	transition is illegal.
2420  */
2421 int
2422 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2423 {
2424 	enum scsi_device_state oldstate = sdev->sdev_state;
2425 
2426 	if (state == oldstate)
2427 		return 0;
2428 
2429 	switch (state) {
2430 	case SDEV_CREATED:
2431 		switch (oldstate) {
2432 		case SDEV_CREATED_BLOCK:
2433 			break;
2434 		default:
2435 			goto illegal;
2436 		}
2437 		break;
2438 
2439 	case SDEV_RUNNING:
2440 		switch (oldstate) {
2441 		case SDEV_CREATED:
2442 		case SDEV_OFFLINE:
2443 		case SDEV_TRANSPORT_OFFLINE:
2444 		case SDEV_QUIESCE:
2445 		case SDEV_BLOCK:
2446 			break;
2447 		default:
2448 			goto illegal;
2449 		}
2450 		break;
2451 
2452 	case SDEV_QUIESCE:
2453 		switch (oldstate) {
2454 		case SDEV_RUNNING:
2455 		case SDEV_OFFLINE:
2456 		case SDEV_TRANSPORT_OFFLINE:
2457 			break;
2458 		default:
2459 			goto illegal;
2460 		}
2461 		break;
2462 
2463 	case SDEV_OFFLINE:
2464 	case SDEV_TRANSPORT_OFFLINE:
2465 		switch (oldstate) {
2466 		case SDEV_CREATED:
2467 		case SDEV_RUNNING:
2468 		case SDEV_QUIESCE:
2469 		case SDEV_BLOCK:
2470 			break;
2471 		default:
2472 			goto illegal;
2473 		}
2474 		break;
2475 
2476 	case SDEV_BLOCK:
2477 		switch (oldstate) {
2478 		case SDEV_RUNNING:
2479 		case SDEV_CREATED_BLOCK:
2480 		case SDEV_QUIESCE:
2481 		case SDEV_OFFLINE:
2482 			break;
2483 		default:
2484 			goto illegal;
2485 		}
2486 		break;
2487 
2488 	case SDEV_CREATED_BLOCK:
2489 		switch (oldstate) {
2490 		case SDEV_CREATED:
2491 			break;
2492 		default:
2493 			goto illegal;
2494 		}
2495 		break;
2496 
2497 	case SDEV_CANCEL:
2498 		switch (oldstate) {
2499 		case SDEV_CREATED:
2500 		case SDEV_RUNNING:
2501 		case SDEV_QUIESCE:
2502 		case SDEV_OFFLINE:
2503 		case SDEV_TRANSPORT_OFFLINE:
2504 			break;
2505 		default:
2506 			goto illegal;
2507 		}
2508 		break;
2509 
2510 	case SDEV_DEL:
2511 		switch (oldstate) {
2512 		case SDEV_CREATED:
2513 		case SDEV_RUNNING:
2514 		case SDEV_OFFLINE:
2515 		case SDEV_TRANSPORT_OFFLINE:
2516 		case SDEV_CANCEL:
2517 		case SDEV_BLOCK:
2518 		case SDEV_CREATED_BLOCK:
2519 			break;
2520 		default:
2521 			goto illegal;
2522 		}
2523 		break;
2524 
2525 	}
2526 	sdev->offline_already = false;
2527 	sdev->sdev_state = state;
2528 	return 0;
2529 
2530  illegal:
2531 	SCSI_LOG_ERROR_RECOVERY(1,
2532 				sdev_printk(KERN_ERR, sdev,
2533 					    "Illegal state transition %s->%s",
2534 					    scsi_device_state_name(oldstate),
2535 					    scsi_device_state_name(state))
2536 				);
2537 	return -EINVAL;
2538 }
2539 EXPORT_SYMBOL(scsi_device_set_state);
2540 
2541 /**
2542  *	scsi_evt_emit - emit a single SCSI device uevent
2543  *	@sdev: associated SCSI device
2544  *	@evt: event to emit
2545  *
2546  *	Send a single uevent (scsi_event) to the associated scsi_device.
2547  */
2548 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2549 {
2550 	int idx = 0;
2551 	char *envp[3];
2552 
2553 	switch (evt->evt_type) {
2554 	case SDEV_EVT_MEDIA_CHANGE:
2555 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2556 		break;
2557 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2558 		scsi_rescan_device(sdev);
2559 		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2560 		break;
2561 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2562 		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2563 		break;
2564 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2565 	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2566 		break;
2567 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2568 		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2569 		break;
2570 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2571 		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2572 		break;
2573 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2574 		envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2575 		break;
2576 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2577 		envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2578 		break;
2579 	default:
2580 		/* do nothing */
2581 		break;
2582 	}
2583 
2584 	envp[idx++] = NULL;
2585 
2586 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2587 }
2588 
2589 /**
2590  *	scsi_evt_thread - send a uevent for each scsi event
2591  *	@work: work struct for scsi_device
2592  *
2593  *	Dispatch queued events to their associated scsi_device kobjects
2594  *	as uevents.
2595  */
2596 void scsi_evt_thread(struct work_struct *work)
2597 {
2598 	struct scsi_device *sdev;
2599 	enum scsi_device_event evt_type;
2600 	LIST_HEAD(event_list);
2601 
2602 	sdev = container_of(work, struct scsi_device, event_work);
2603 
2604 	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2605 		if (test_and_clear_bit(evt_type, sdev->pending_events))
2606 			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2607 
2608 	while (1) {
2609 		struct scsi_event *evt;
2610 		struct list_head *this, *tmp;
2611 		unsigned long flags;
2612 
2613 		spin_lock_irqsave(&sdev->list_lock, flags);
2614 		list_splice_init(&sdev->event_list, &event_list);
2615 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2616 
2617 		if (list_empty(&event_list))
2618 			break;
2619 
2620 		list_for_each_safe(this, tmp, &event_list) {
2621 			evt = list_entry(this, struct scsi_event, node);
2622 			list_del(&evt->node);
2623 			scsi_evt_emit(sdev, evt);
2624 			kfree(evt);
2625 		}
2626 	}
2627 }
2628 
2629 /**
2630  * 	sdev_evt_send - send asserted event to uevent thread
2631  *	@sdev: scsi_device event occurred on
2632  *	@evt: event to send
2633  *
2634  *	Assert scsi device event asynchronously.
2635  */
2636 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2637 {
2638 	unsigned long flags;
2639 
2640 #if 0
2641 	/* FIXME: currently this check eliminates all media change events
2642 	 * for polled devices.  Need to update to discriminate between AN
2643 	 * and polled events */
2644 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2645 		kfree(evt);
2646 		return;
2647 	}
2648 #endif
2649 
2650 	spin_lock_irqsave(&sdev->list_lock, flags);
2651 	list_add_tail(&evt->node, &sdev->event_list);
2652 	schedule_work(&sdev->event_work);
2653 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2654 }
2655 EXPORT_SYMBOL_GPL(sdev_evt_send);
2656 
2657 /**
2658  * 	sdev_evt_alloc - allocate a new scsi event
2659  *	@evt_type: type of event to allocate
2660  *	@gfpflags: GFP flags for allocation
2661  *
2662  *	Allocates and returns a new scsi_event.
2663  */
2664 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2665 				  gfp_t gfpflags)
2666 {
2667 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2668 	if (!evt)
2669 		return NULL;
2670 
2671 	evt->evt_type = evt_type;
2672 	INIT_LIST_HEAD(&evt->node);
2673 
2674 	/* evt_type-specific initialization, if any */
2675 	switch (evt_type) {
2676 	case SDEV_EVT_MEDIA_CHANGE:
2677 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2678 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2679 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2680 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2681 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2682 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2683 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2684 	default:
2685 		/* do nothing */
2686 		break;
2687 	}
2688 
2689 	return evt;
2690 }
2691 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2692 
2693 /**
2694  * 	sdev_evt_send_simple - send asserted event to uevent thread
2695  *	@sdev: scsi_device event occurred on
2696  *	@evt_type: type of event to send
2697  *	@gfpflags: GFP flags for allocation
2698  *
2699  *	Assert scsi device event asynchronously, given an event type.
2700  */
2701 void sdev_evt_send_simple(struct scsi_device *sdev,
2702 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2703 {
2704 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2705 	if (!evt) {
2706 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2707 			    evt_type);
2708 		return;
2709 	}
2710 
2711 	sdev_evt_send(sdev, evt);
2712 }
2713 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2714 
2715 /**
2716  *	scsi_device_quiesce - Block all commands except power management.
2717  *	@sdev:	scsi device to quiesce.
2718  *
2719  *	This works by trying to transition to the SDEV_QUIESCE state
2720  *	(which must be a legal transition).  When the device is in this
2721  *	state, only power management requests will be accepted, all others will
2722  *	be deferred.
2723  *
2724  *	Must be called with user context, may sleep.
2725  *
2726  *	Returns zero if unsuccessful or an error if not.
2727  */
2728 int
2729 scsi_device_quiesce(struct scsi_device *sdev)
2730 {
2731 	struct request_queue *q = sdev->request_queue;
2732 	int err;
2733 
2734 	/*
2735 	 * It is allowed to call scsi_device_quiesce() multiple times from
2736 	 * the same context but concurrent scsi_device_quiesce() calls are
2737 	 * not allowed.
2738 	 */
2739 	WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2740 
2741 	if (sdev->quiesced_by == current)
2742 		return 0;
2743 
2744 	blk_set_pm_only(q);
2745 
2746 	blk_mq_freeze_queue(q);
2747 	/*
2748 	 * Ensure that the effect of blk_set_pm_only() will be visible
2749 	 * for percpu_ref_tryget() callers that occur after the queue
2750 	 * unfreeze even if the queue was already frozen before this function
2751 	 * was called. See also https://lwn.net/Articles/573497/.
2752 	 */
2753 	synchronize_rcu();
2754 	blk_mq_unfreeze_queue(q);
2755 
2756 	mutex_lock(&sdev->state_mutex);
2757 	err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2758 	if (err == 0)
2759 		sdev->quiesced_by = current;
2760 	else
2761 		blk_clear_pm_only(q);
2762 	mutex_unlock(&sdev->state_mutex);
2763 
2764 	return err;
2765 }
2766 EXPORT_SYMBOL(scsi_device_quiesce);
2767 
2768 /**
2769  *	scsi_device_resume - Restart user issued commands to a quiesced device.
2770  *	@sdev:	scsi device to resume.
2771  *
2772  *	Moves the device from quiesced back to running and restarts the
2773  *	queues.
2774  *
2775  *	Must be called with user context, may sleep.
2776  */
2777 void scsi_device_resume(struct scsi_device *sdev)
2778 {
2779 	/* check if the device state was mutated prior to resume, and if
2780 	 * so assume the state is being managed elsewhere (for example
2781 	 * device deleted during suspend)
2782 	 */
2783 	mutex_lock(&sdev->state_mutex);
2784 	if (sdev->sdev_state == SDEV_QUIESCE)
2785 		scsi_device_set_state(sdev, SDEV_RUNNING);
2786 	if (sdev->quiesced_by) {
2787 		sdev->quiesced_by = NULL;
2788 		blk_clear_pm_only(sdev->request_queue);
2789 	}
2790 	mutex_unlock(&sdev->state_mutex);
2791 }
2792 EXPORT_SYMBOL(scsi_device_resume);
2793 
2794 static void
2795 device_quiesce_fn(struct scsi_device *sdev, void *data)
2796 {
2797 	scsi_device_quiesce(sdev);
2798 }
2799 
2800 void
2801 scsi_target_quiesce(struct scsi_target *starget)
2802 {
2803 	starget_for_each_device(starget, NULL, device_quiesce_fn);
2804 }
2805 EXPORT_SYMBOL(scsi_target_quiesce);
2806 
2807 static void
2808 device_resume_fn(struct scsi_device *sdev, void *data)
2809 {
2810 	scsi_device_resume(sdev);
2811 }
2812 
2813 void
2814 scsi_target_resume(struct scsi_target *starget)
2815 {
2816 	starget_for_each_device(starget, NULL, device_resume_fn);
2817 }
2818 EXPORT_SYMBOL(scsi_target_resume);
2819 
2820 static int __scsi_internal_device_block_nowait(struct scsi_device *sdev)
2821 {
2822 	if (scsi_device_set_state(sdev, SDEV_BLOCK))
2823 		return scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2824 
2825 	return 0;
2826 }
2827 
2828 void scsi_start_queue(struct scsi_device *sdev)
2829 {
2830 	if (cmpxchg(&sdev->queue_stopped, 1, 0))
2831 		blk_mq_unquiesce_queue(sdev->request_queue);
2832 }
2833 
2834 static void scsi_stop_queue(struct scsi_device *sdev)
2835 {
2836 	/*
2837 	 * The atomic variable of ->queue_stopped covers that
2838 	 * blk_mq_quiesce_queue* is balanced with blk_mq_unquiesce_queue.
2839 	 *
2840 	 * The caller needs to wait until quiesce is done.
2841 	 */
2842 	if (!cmpxchg(&sdev->queue_stopped, 0, 1))
2843 		blk_mq_quiesce_queue_nowait(sdev->request_queue);
2844 }
2845 
2846 /**
2847  * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2848  * @sdev: device to block
2849  *
2850  * Pause SCSI command processing on the specified device. Does not sleep.
2851  *
2852  * Returns zero if successful or a negative error code upon failure.
2853  *
2854  * Notes:
2855  * This routine transitions the device to the SDEV_BLOCK state (which must be
2856  * a legal transition). When the device is in this state, command processing
2857  * is paused until the device leaves the SDEV_BLOCK state. See also
2858  * scsi_internal_device_unblock_nowait().
2859  */
2860 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2861 {
2862 	int ret = __scsi_internal_device_block_nowait(sdev);
2863 
2864 	/*
2865 	 * The device has transitioned to SDEV_BLOCK.  Stop the
2866 	 * block layer from calling the midlayer with this device's
2867 	 * request queue.
2868 	 */
2869 	if (!ret)
2870 		scsi_stop_queue(sdev);
2871 	return ret;
2872 }
2873 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2874 
2875 /**
2876  * scsi_device_block - try to transition to the SDEV_BLOCK state
2877  * @sdev: device to block
2878  * @data: dummy argument, ignored
2879  *
2880  * Pause SCSI command processing on the specified device. Callers must wait
2881  * until all ongoing scsi_queue_rq() calls have finished after this function
2882  * returns.
2883  *
2884  * Note:
2885  * This routine transitions the device to the SDEV_BLOCK state (which must be
2886  * a legal transition). When the device is in this state, command processing
2887  * is paused until the device leaves the SDEV_BLOCK state. See also
2888  * scsi_internal_device_unblock().
2889  */
2890 static void scsi_device_block(struct scsi_device *sdev, void *data)
2891 {
2892 	int err;
2893 	enum scsi_device_state state;
2894 
2895 	mutex_lock(&sdev->state_mutex);
2896 	err = __scsi_internal_device_block_nowait(sdev);
2897 	state = sdev->sdev_state;
2898 	if (err == 0)
2899 		/*
2900 		 * scsi_stop_queue() must be called with the state_mutex
2901 		 * held. Otherwise a simultaneous scsi_start_queue() call
2902 		 * might unquiesce the queue before we quiesce it.
2903 		 */
2904 		scsi_stop_queue(sdev);
2905 
2906 	mutex_unlock(&sdev->state_mutex);
2907 
2908 	WARN_ONCE(err, "%s: failed to block %s in state %d\n",
2909 		  __func__, dev_name(&sdev->sdev_gendev), state);
2910 }
2911 
2912 /**
2913  * scsi_internal_device_unblock_nowait - resume a device after a block request
2914  * @sdev:	device to resume
2915  * @new_state:	state to set the device to after unblocking
2916  *
2917  * Restart the device queue for a previously suspended SCSI device. Does not
2918  * sleep.
2919  *
2920  * Returns zero if successful or a negative error code upon failure.
2921  *
2922  * Notes:
2923  * This routine transitions the device to the SDEV_RUNNING state or to one of
2924  * the offline states (which must be a legal transition) allowing the midlayer
2925  * to goose the queue for this device.
2926  */
2927 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2928 					enum scsi_device_state new_state)
2929 {
2930 	switch (new_state) {
2931 	case SDEV_RUNNING:
2932 	case SDEV_TRANSPORT_OFFLINE:
2933 		break;
2934 	default:
2935 		return -EINVAL;
2936 	}
2937 
2938 	/*
2939 	 * Try to transition the scsi device to SDEV_RUNNING or one of the
2940 	 * offlined states and goose the device queue if successful.
2941 	 */
2942 	switch (sdev->sdev_state) {
2943 	case SDEV_BLOCK:
2944 	case SDEV_TRANSPORT_OFFLINE:
2945 		sdev->sdev_state = new_state;
2946 		break;
2947 	case SDEV_CREATED_BLOCK:
2948 		if (new_state == SDEV_TRANSPORT_OFFLINE ||
2949 		    new_state == SDEV_OFFLINE)
2950 			sdev->sdev_state = new_state;
2951 		else
2952 			sdev->sdev_state = SDEV_CREATED;
2953 		break;
2954 	case SDEV_CANCEL:
2955 	case SDEV_OFFLINE:
2956 		break;
2957 	default:
2958 		return -EINVAL;
2959 	}
2960 	scsi_start_queue(sdev);
2961 
2962 	return 0;
2963 }
2964 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2965 
2966 /**
2967  * scsi_internal_device_unblock - resume a device after a block request
2968  * @sdev:	device to resume
2969  * @new_state:	state to set the device to after unblocking
2970  *
2971  * Restart the device queue for a previously suspended SCSI device. May sleep.
2972  *
2973  * Returns zero if successful or a negative error code upon failure.
2974  *
2975  * Notes:
2976  * This routine transitions the device to the SDEV_RUNNING state or to one of
2977  * the offline states (which must be a legal transition) allowing the midlayer
2978  * to goose the queue for this device.
2979  */
2980 static int scsi_internal_device_unblock(struct scsi_device *sdev,
2981 					enum scsi_device_state new_state)
2982 {
2983 	int ret;
2984 
2985 	mutex_lock(&sdev->state_mutex);
2986 	ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2987 	mutex_unlock(&sdev->state_mutex);
2988 
2989 	return ret;
2990 }
2991 
2992 static int
2993 target_block(struct device *dev, void *data)
2994 {
2995 	if (scsi_is_target_device(dev))
2996 		starget_for_each_device(to_scsi_target(dev), NULL,
2997 					scsi_device_block);
2998 	return 0;
2999 }
3000 
3001 /**
3002  * scsi_block_targets - transition all SCSI child devices to SDEV_BLOCK state
3003  * @dev: a parent device of one or more scsi_target devices
3004  * @shost: the Scsi_Host to which this device belongs
3005  *
3006  * Iterate over all children of @dev, which should be scsi_target devices,
3007  * and switch all subordinate scsi devices to SDEV_BLOCK state. Wait for
3008  * ongoing scsi_queue_rq() calls to finish. May sleep.
3009  *
3010  * Note:
3011  * @dev must not itself be a scsi_target device.
3012  */
3013 void
3014 scsi_block_targets(struct Scsi_Host *shost, struct device *dev)
3015 {
3016 	WARN_ON_ONCE(scsi_is_target_device(dev));
3017 	device_for_each_child(dev, NULL, target_block);
3018 	blk_mq_wait_quiesce_done(&shost->tag_set);
3019 }
3020 EXPORT_SYMBOL_GPL(scsi_block_targets);
3021 
3022 static void
3023 device_unblock(struct scsi_device *sdev, void *data)
3024 {
3025 	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
3026 }
3027 
3028 static int
3029 target_unblock(struct device *dev, void *data)
3030 {
3031 	if (scsi_is_target_device(dev))
3032 		starget_for_each_device(to_scsi_target(dev), data,
3033 					device_unblock);
3034 	return 0;
3035 }
3036 
3037 void
3038 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
3039 {
3040 	if (scsi_is_target_device(dev))
3041 		starget_for_each_device(to_scsi_target(dev), &new_state,
3042 					device_unblock);
3043 	else
3044 		device_for_each_child(dev, &new_state, target_unblock);
3045 }
3046 EXPORT_SYMBOL_GPL(scsi_target_unblock);
3047 
3048 /**
3049  * scsi_host_block - Try to transition all logical units to the SDEV_BLOCK state
3050  * @shost: device to block
3051  *
3052  * Pause SCSI command processing for all logical units associated with the SCSI
3053  * host and wait until pending scsi_queue_rq() calls have finished.
3054  *
3055  * Returns zero if successful or a negative error code upon failure.
3056  */
3057 int
3058 scsi_host_block(struct Scsi_Host *shost)
3059 {
3060 	struct scsi_device *sdev;
3061 	int ret;
3062 
3063 	/*
3064 	 * Call scsi_internal_device_block_nowait so we can avoid
3065 	 * calling synchronize_rcu() for each LUN.
3066 	 */
3067 	shost_for_each_device(sdev, shost) {
3068 		mutex_lock(&sdev->state_mutex);
3069 		ret = scsi_internal_device_block_nowait(sdev);
3070 		mutex_unlock(&sdev->state_mutex);
3071 		if (ret) {
3072 			scsi_device_put(sdev);
3073 			return ret;
3074 		}
3075 	}
3076 
3077 	/* Wait for ongoing scsi_queue_rq() calls to finish. */
3078 	blk_mq_wait_quiesce_done(&shost->tag_set);
3079 
3080 	return 0;
3081 }
3082 EXPORT_SYMBOL_GPL(scsi_host_block);
3083 
3084 int
3085 scsi_host_unblock(struct Scsi_Host *shost, int new_state)
3086 {
3087 	struct scsi_device *sdev;
3088 	int ret = 0;
3089 
3090 	shost_for_each_device(sdev, shost) {
3091 		ret = scsi_internal_device_unblock(sdev, new_state);
3092 		if (ret) {
3093 			scsi_device_put(sdev);
3094 			break;
3095 		}
3096 	}
3097 	return ret;
3098 }
3099 EXPORT_SYMBOL_GPL(scsi_host_unblock);
3100 
3101 /**
3102  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3103  * @sgl:	scatter-gather list
3104  * @sg_count:	number of segments in sg
3105  * @offset:	offset in bytes into sg, on return offset into the mapped area
3106  * @len:	bytes to map, on return number of bytes mapped
3107  *
3108  * Returns virtual address of the start of the mapped page
3109  */
3110 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3111 			  size_t *offset, size_t *len)
3112 {
3113 	int i;
3114 	size_t sg_len = 0, len_complete = 0;
3115 	struct scatterlist *sg;
3116 	struct page *page;
3117 
3118 	WARN_ON(!irqs_disabled());
3119 
3120 	for_each_sg(sgl, sg, sg_count, i) {
3121 		len_complete = sg_len; /* Complete sg-entries */
3122 		sg_len += sg->length;
3123 		if (sg_len > *offset)
3124 			break;
3125 	}
3126 
3127 	if (unlikely(i == sg_count)) {
3128 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3129 			"elements %d\n",
3130 		       __func__, sg_len, *offset, sg_count);
3131 		WARN_ON(1);
3132 		return NULL;
3133 	}
3134 
3135 	/* Offset starting from the beginning of first page in this sg-entry */
3136 	*offset = *offset - len_complete + sg->offset;
3137 
3138 	/* Assumption: contiguous pages can be accessed as "page + i" */
3139 	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3140 	*offset &= ~PAGE_MASK;
3141 
3142 	/* Bytes in this sg-entry from *offset to the end of the page */
3143 	sg_len = PAGE_SIZE - *offset;
3144 	if (*len > sg_len)
3145 		*len = sg_len;
3146 
3147 	return kmap_atomic(page);
3148 }
3149 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3150 
3151 /**
3152  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3153  * @virt:	virtual address to be unmapped
3154  */
3155 void scsi_kunmap_atomic_sg(void *virt)
3156 {
3157 	kunmap_atomic(virt);
3158 }
3159 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3160 
3161 void sdev_disable_disk_events(struct scsi_device *sdev)
3162 {
3163 	atomic_inc(&sdev->disk_events_disable_depth);
3164 }
3165 EXPORT_SYMBOL(sdev_disable_disk_events);
3166 
3167 void sdev_enable_disk_events(struct scsi_device *sdev)
3168 {
3169 	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3170 		return;
3171 	atomic_dec(&sdev->disk_events_disable_depth);
3172 }
3173 EXPORT_SYMBOL(sdev_enable_disk_events);
3174 
3175 static unsigned char designator_prio(const unsigned char *d)
3176 {
3177 	if (d[1] & 0x30)
3178 		/* not associated with LUN */
3179 		return 0;
3180 
3181 	if (d[3] == 0)
3182 		/* invalid length */
3183 		return 0;
3184 
3185 	/*
3186 	 * Order of preference for lun descriptor:
3187 	 * - SCSI name string
3188 	 * - NAA IEEE Registered Extended
3189 	 * - EUI-64 based 16-byte
3190 	 * - EUI-64 based 12-byte
3191 	 * - NAA IEEE Registered
3192 	 * - NAA IEEE Extended
3193 	 * - EUI-64 based 8-byte
3194 	 * - SCSI name string (truncated)
3195 	 * - T10 Vendor ID
3196 	 * as longer descriptors reduce the likelyhood
3197 	 * of identification clashes.
3198 	 */
3199 
3200 	switch (d[1] & 0xf) {
3201 	case 8:
3202 		/* SCSI name string, variable-length UTF-8 */
3203 		return 9;
3204 	case 3:
3205 		switch (d[4] >> 4) {
3206 		case 6:
3207 			/* NAA registered extended */
3208 			return 8;
3209 		case 5:
3210 			/* NAA registered */
3211 			return 5;
3212 		case 4:
3213 			/* NAA extended */
3214 			return 4;
3215 		case 3:
3216 			/* NAA locally assigned */
3217 			return 1;
3218 		default:
3219 			break;
3220 		}
3221 		break;
3222 	case 2:
3223 		switch (d[3]) {
3224 		case 16:
3225 			/* EUI64-based, 16 byte */
3226 			return 7;
3227 		case 12:
3228 			/* EUI64-based, 12 byte */
3229 			return 6;
3230 		case 8:
3231 			/* EUI64-based, 8 byte */
3232 			return 3;
3233 		default:
3234 			break;
3235 		}
3236 		break;
3237 	case 1:
3238 		/* T10 vendor ID */
3239 		return 1;
3240 	default:
3241 		break;
3242 	}
3243 
3244 	return 0;
3245 }
3246 
3247 /**
3248  * scsi_vpd_lun_id - return a unique device identification
3249  * @sdev: SCSI device
3250  * @id:   buffer for the identification
3251  * @id_len:  length of the buffer
3252  *
3253  * Copies a unique device identification into @id based
3254  * on the information in the VPD page 0x83 of the device.
3255  * The string will be formatted as a SCSI name string.
3256  *
3257  * Returns the length of the identification or error on failure.
3258  * If the identifier is longer than the supplied buffer the actual
3259  * identifier length is returned and the buffer is not zero-padded.
3260  */
3261 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3262 {
3263 	u8 cur_id_prio = 0;
3264 	u8 cur_id_size = 0;
3265 	const unsigned char *d, *cur_id_str;
3266 	const struct scsi_vpd *vpd_pg83;
3267 	int id_size = -EINVAL;
3268 
3269 	rcu_read_lock();
3270 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3271 	if (!vpd_pg83) {
3272 		rcu_read_unlock();
3273 		return -ENXIO;
3274 	}
3275 
3276 	/* The id string must be at least 20 bytes + terminating NULL byte */
3277 	if (id_len < 21) {
3278 		rcu_read_unlock();
3279 		return -EINVAL;
3280 	}
3281 
3282 	memset(id, 0, id_len);
3283 	for (d = vpd_pg83->data + 4;
3284 	     d < vpd_pg83->data + vpd_pg83->len;
3285 	     d += d[3] + 4) {
3286 		u8 prio = designator_prio(d);
3287 
3288 		if (prio == 0 || cur_id_prio > prio)
3289 			continue;
3290 
3291 		switch (d[1] & 0xf) {
3292 		case 0x1:
3293 			/* T10 Vendor ID */
3294 			if (cur_id_size > d[3])
3295 				break;
3296 			cur_id_prio = prio;
3297 			cur_id_size = d[3];
3298 			if (cur_id_size + 4 > id_len)
3299 				cur_id_size = id_len - 4;
3300 			cur_id_str = d + 4;
3301 			id_size = snprintf(id, id_len, "t10.%*pE",
3302 					   cur_id_size, cur_id_str);
3303 			break;
3304 		case 0x2:
3305 			/* EUI-64 */
3306 			cur_id_prio = prio;
3307 			cur_id_size = d[3];
3308 			cur_id_str = d + 4;
3309 			switch (cur_id_size) {
3310 			case 8:
3311 				id_size = snprintf(id, id_len,
3312 						   "eui.%8phN",
3313 						   cur_id_str);
3314 				break;
3315 			case 12:
3316 				id_size = snprintf(id, id_len,
3317 						   "eui.%12phN",
3318 						   cur_id_str);
3319 				break;
3320 			case 16:
3321 				id_size = snprintf(id, id_len,
3322 						   "eui.%16phN",
3323 						   cur_id_str);
3324 				break;
3325 			default:
3326 				break;
3327 			}
3328 			break;
3329 		case 0x3:
3330 			/* NAA */
3331 			cur_id_prio = prio;
3332 			cur_id_size = d[3];
3333 			cur_id_str = d + 4;
3334 			switch (cur_id_size) {
3335 			case 8:
3336 				id_size = snprintf(id, id_len,
3337 						   "naa.%8phN",
3338 						   cur_id_str);
3339 				break;
3340 			case 16:
3341 				id_size = snprintf(id, id_len,
3342 						   "naa.%16phN",
3343 						   cur_id_str);
3344 				break;
3345 			default:
3346 				break;
3347 			}
3348 			break;
3349 		case 0x8:
3350 			/* SCSI name string */
3351 			if (cur_id_size > d[3])
3352 				break;
3353 			/* Prefer others for truncated descriptor */
3354 			if (d[3] > id_len) {
3355 				prio = 2;
3356 				if (cur_id_prio > prio)
3357 					break;
3358 			}
3359 			cur_id_prio = prio;
3360 			cur_id_size = id_size = d[3];
3361 			cur_id_str = d + 4;
3362 			if (cur_id_size >= id_len)
3363 				cur_id_size = id_len - 1;
3364 			memcpy(id, cur_id_str, cur_id_size);
3365 			break;
3366 		default:
3367 			break;
3368 		}
3369 	}
3370 	rcu_read_unlock();
3371 
3372 	return id_size;
3373 }
3374 EXPORT_SYMBOL(scsi_vpd_lun_id);
3375 
3376 /*
3377  * scsi_vpd_tpg_id - return a target port group identifier
3378  * @sdev: SCSI device
3379  *
3380  * Returns the Target Port Group identifier from the information
3381  * froom VPD page 0x83 of the device.
3382  *
3383  * Returns the identifier or error on failure.
3384  */
3385 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3386 {
3387 	const unsigned char *d;
3388 	const struct scsi_vpd *vpd_pg83;
3389 	int group_id = -EAGAIN, rel_port = -1;
3390 
3391 	rcu_read_lock();
3392 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3393 	if (!vpd_pg83) {
3394 		rcu_read_unlock();
3395 		return -ENXIO;
3396 	}
3397 
3398 	d = vpd_pg83->data + 4;
3399 	while (d < vpd_pg83->data + vpd_pg83->len) {
3400 		switch (d[1] & 0xf) {
3401 		case 0x4:
3402 			/* Relative target port */
3403 			rel_port = get_unaligned_be16(&d[6]);
3404 			break;
3405 		case 0x5:
3406 			/* Target port group */
3407 			group_id = get_unaligned_be16(&d[6]);
3408 			break;
3409 		default:
3410 			break;
3411 		}
3412 		d += d[3] + 4;
3413 	}
3414 	rcu_read_unlock();
3415 
3416 	if (group_id >= 0 && rel_id && rel_port != -1)
3417 		*rel_id = rel_port;
3418 
3419 	return group_id;
3420 }
3421 EXPORT_SYMBOL(scsi_vpd_tpg_id);
3422 
3423 /**
3424  * scsi_build_sense - build sense data for a command
3425  * @scmd:	scsi command for which the sense should be formatted
3426  * @desc:	Sense format (non-zero == descriptor format,
3427  *              0 == fixed format)
3428  * @key:	Sense key
3429  * @asc:	Additional sense code
3430  * @ascq:	Additional sense code qualifier
3431  *
3432  **/
3433 void scsi_build_sense(struct scsi_cmnd *scmd, int desc, u8 key, u8 asc, u8 ascq)
3434 {
3435 	scsi_build_sense_buffer(desc, scmd->sense_buffer, key, asc, ascq);
3436 	scmd->result = SAM_STAT_CHECK_CONDITION;
3437 }
3438 EXPORT_SYMBOL_GPL(scsi_build_sense);
3439 
3440 #ifdef CONFIG_SCSI_LIB_KUNIT_TEST
3441 #include "scsi_lib_test.c"
3442 #endif
3443