1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 1999 Eric Youngdale 4 * Copyright (C) 2014 Christoph Hellwig 5 * 6 * SCSI queueing library. 7 * Initial versions: Eric Youngdale (eric@andante.org). 8 * Based upon conversations with large numbers 9 * of people at Linux Expo. 10 */ 11 12 #include <linux/bio.h> 13 #include <linux/bitops.h> 14 #include <linux/blkdev.h> 15 #include <linux/completion.h> 16 #include <linux/kernel.h> 17 #include <linux/export.h> 18 #include <linux/init.h> 19 #include <linux/pci.h> 20 #include <linux/delay.h> 21 #include <linux/hardirq.h> 22 #include <linux/scatterlist.h> 23 #include <linux/blk-mq.h> 24 #include <linux/blk-integrity.h> 25 #include <linux/ratelimit.h> 26 #include <asm/unaligned.h> 27 28 #include <scsi/scsi.h> 29 #include <scsi/scsi_cmnd.h> 30 #include <scsi/scsi_dbg.h> 31 #include <scsi/scsi_device.h> 32 #include <scsi/scsi_driver.h> 33 #include <scsi/scsi_eh.h> 34 #include <scsi/scsi_host.h> 35 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */ 36 #include <scsi/scsi_dh.h> 37 38 #include <trace/events/scsi.h> 39 40 #include "scsi_debugfs.h" 41 #include "scsi_priv.h" 42 #include "scsi_logging.h" 43 44 /* 45 * Size of integrity metadata is usually small, 1 inline sg should 46 * cover normal cases. 47 */ 48 #ifdef CONFIG_ARCH_NO_SG_CHAIN 49 #define SCSI_INLINE_PROT_SG_CNT 0 50 #define SCSI_INLINE_SG_CNT 0 51 #else 52 #define SCSI_INLINE_PROT_SG_CNT 1 53 #define SCSI_INLINE_SG_CNT 2 54 #endif 55 56 static struct kmem_cache *scsi_sense_cache; 57 static DEFINE_MUTEX(scsi_sense_cache_mutex); 58 59 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd); 60 61 int scsi_init_sense_cache(struct Scsi_Host *shost) 62 { 63 int ret = 0; 64 65 mutex_lock(&scsi_sense_cache_mutex); 66 if (!scsi_sense_cache) { 67 scsi_sense_cache = 68 kmem_cache_create_usercopy("scsi_sense_cache", 69 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN, 70 0, SCSI_SENSE_BUFFERSIZE, NULL); 71 if (!scsi_sense_cache) 72 ret = -ENOMEM; 73 } 74 mutex_unlock(&scsi_sense_cache_mutex); 75 return ret; 76 } 77 78 static void 79 scsi_set_blocked(struct scsi_cmnd *cmd, int reason) 80 { 81 struct Scsi_Host *host = cmd->device->host; 82 struct scsi_device *device = cmd->device; 83 struct scsi_target *starget = scsi_target(device); 84 85 /* 86 * Set the appropriate busy bit for the device/host. 87 * 88 * If the host/device isn't busy, assume that something actually 89 * completed, and that we should be able to queue a command now. 90 * 91 * Note that the prior mid-layer assumption that any host could 92 * always queue at least one command is now broken. The mid-layer 93 * will implement a user specifiable stall (see 94 * scsi_host.max_host_blocked and scsi_device.max_device_blocked) 95 * if a command is requeued with no other commands outstanding 96 * either for the device or for the host. 97 */ 98 switch (reason) { 99 case SCSI_MLQUEUE_HOST_BUSY: 100 atomic_set(&host->host_blocked, host->max_host_blocked); 101 break; 102 case SCSI_MLQUEUE_DEVICE_BUSY: 103 case SCSI_MLQUEUE_EH_RETRY: 104 atomic_set(&device->device_blocked, 105 device->max_device_blocked); 106 break; 107 case SCSI_MLQUEUE_TARGET_BUSY: 108 atomic_set(&starget->target_blocked, 109 starget->max_target_blocked); 110 break; 111 } 112 } 113 114 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd, unsigned long msecs) 115 { 116 struct request *rq = scsi_cmd_to_rq(cmd); 117 118 if (rq->rq_flags & RQF_DONTPREP) { 119 rq->rq_flags &= ~RQF_DONTPREP; 120 scsi_mq_uninit_cmd(cmd); 121 } else { 122 WARN_ON_ONCE(true); 123 } 124 125 blk_mq_requeue_request(rq, false); 126 if (!scsi_host_in_recovery(cmd->device->host)) 127 blk_mq_delay_kick_requeue_list(rq->q, msecs); 128 } 129 130 /** 131 * __scsi_queue_insert - private queue insertion 132 * @cmd: The SCSI command being requeued 133 * @reason: The reason for the requeue 134 * @unbusy: Whether the queue should be unbusied 135 * 136 * This is a private queue insertion. The public interface 137 * scsi_queue_insert() always assumes the queue should be unbusied 138 * because it's always called before the completion. This function is 139 * for a requeue after completion, which should only occur in this 140 * file. 141 */ 142 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy) 143 { 144 struct scsi_device *device = cmd->device; 145 146 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd, 147 "Inserting command %p into mlqueue\n", cmd)); 148 149 scsi_set_blocked(cmd, reason); 150 151 /* 152 * Decrement the counters, since these commands are no longer 153 * active on the host/device. 154 */ 155 if (unbusy) 156 scsi_device_unbusy(device, cmd); 157 158 /* 159 * Requeue this command. It will go before all other commands 160 * that are already in the queue. Schedule requeue work under 161 * lock such that the kblockd_schedule_work() call happens 162 * before blk_mq_destroy_queue() finishes. 163 */ 164 cmd->result = 0; 165 166 blk_mq_requeue_request(scsi_cmd_to_rq(cmd), 167 !scsi_host_in_recovery(cmd->device->host)); 168 } 169 170 /** 171 * scsi_queue_insert - Reinsert a command in the queue. 172 * @cmd: command that we are adding to queue. 173 * @reason: why we are inserting command to queue. 174 * 175 * We do this for one of two cases. Either the host is busy and it cannot accept 176 * any more commands for the time being, or the device returned QUEUE_FULL and 177 * can accept no more commands. 178 * 179 * Context: This could be called either from an interrupt context or a normal 180 * process context. 181 */ 182 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason) 183 { 184 __scsi_queue_insert(cmd, reason, true); 185 } 186 187 void scsi_failures_reset_retries(struct scsi_failures *failures) 188 { 189 struct scsi_failure *failure; 190 191 failures->total_retries = 0; 192 193 for (failure = failures->failure_definitions; failure->result; 194 failure++) 195 failure->retries = 0; 196 } 197 EXPORT_SYMBOL_GPL(scsi_failures_reset_retries); 198 199 /** 200 * scsi_check_passthrough - Determine if passthrough scsi_cmnd needs a retry. 201 * @scmd: scsi_cmnd to check. 202 * @failures: scsi_failures struct that lists failures to check for. 203 * 204 * Returns -EAGAIN if the caller should retry else 0. 205 */ 206 static int scsi_check_passthrough(struct scsi_cmnd *scmd, 207 struct scsi_failures *failures) 208 { 209 struct scsi_failure *failure; 210 struct scsi_sense_hdr sshdr; 211 enum sam_status status; 212 213 if (!failures) 214 return 0; 215 216 for (failure = failures->failure_definitions; failure->result; 217 failure++) { 218 if (failure->result == SCMD_FAILURE_RESULT_ANY) 219 goto maybe_retry; 220 221 if (host_byte(scmd->result) && 222 host_byte(scmd->result) == host_byte(failure->result)) 223 goto maybe_retry; 224 225 status = status_byte(scmd->result); 226 if (!status) 227 continue; 228 229 if (failure->result == SCMD_FAILURE_STAT_ANY && 230 !scsi_status_is_good(scmd->result)) 231 goto maybe_retry; 232 233 if (status != status_byte(failure->result)) 234 continue; 235 236 if (status_byte(failure->result) != SAM_STAT_CHECK_CONDITION || 237 failure->sense == SCMD_FAILURE_SENSE_ANY) 238 goto maybe_retry; 239 240 if (!scsi_command_normalize_sense(scmd, &sshdr)) 241 return 0; 242 243 if (failure->sense != sshdr.sense_key) 244 continue; 245 246 if (failure->asc == SCMD_FAILURE_ASC_ANY) 247 goto maybe_retry; 248 249 if (failure->asc != sshdr.asc) 250 continue; 251 252 if (failure->ascq == SCMD_FAILURE_ASCQ_ANY || 253 failure->ascq == sshdr.ascq) 254 goto maybe_retry; 255 } 256 257 return 0; 258 259 maybe_retry: 260 if (failure->allowed) { 261 if (failure->allowed == SCMD_FAILURE_NO_LIMIT || 262 ++failure->retries <= failure->allowed) 263 return -EAGAIN; 264 } else { 265 if (failures->total_allowed == SCMD_FAILURE_NO_LIMIT || 266 ++failures->total_retries <= failures->total_allowed) 267 return -EAGAIN; 268 } 269 270 return 0; 271 } 272 273 /** 274 * scsi_execute_cmd - insert request and wait for the result 275 * @sdev: scsi_device 276 * @cmd: scsi command 277 * @opf: block layer request cmd_flags 278 * @buffer: data buffer 279 * @bufflen: len of buffer 280 * @timeout: request timeout in HZ 281 * @ml_retries: number of times SCSI midlayer will retry request 282 * @args: Optional args. See struct definition for field descriptions 283 * 284 * Returns the scsi_cmnd result field if a command was executed, or a negative 285 * Linux error code if we didn't get that far. 286 */ 287 int scsi_execute_cmd(struct scsi_device *sdev, const unsigned char *cmd, 288 blk_opf_t opf, void *buffer, unsigned int bufflen, 289 int timeout, int ml_retries, 290 const struct scsi_exec_args *args) 291 { 292 static const struct scsi_exec_args default_args; 293 struct request *req; 294 struct scsi_cmnd *scmd; 295 int ret; 296 297 if (!args) 298 args = &default_args; 299 else if (WARN_ON_ONCE(args->sense && 300 args->sense_len != SCSI_SENSE_BUFFERSIZE)) 301 return -EINVAL; 302 303 retry: 304 req = scsi_alloc_request(sdev->request_queue, opf, args->req_flags); 305 if (IS_ERR(req)) 306 return PTR_ERR(req); 307 308 if (bufflen) { 309 ret = blk_rq_map_kern(sdev->request_queue, req, 310 buffer, bufflen, GFP_NOIO); 311 if (ret) 312 goto out; 313 } 314 scmd = blk_mq_rq_to_pdu(req); 315 scmd->cmd_len = COMMAND_SIZE(cmd[0]); 316 memcpy(scmd->cmnd, cmd, scmd->cmd_len); 317 scmd->allowed = ml_retries; 318 scmd->flags |= args->scmd_flags; 319 req->timeout = timeout; 320 req->rq_flags |= RQF_QUIET; 321 322 /* 323 * head injection *required* here otherwise quiesce won't work 324 */ 325 blk_execute_rq(req, true); 326 327 if (scsi_check_passthrough(scmd, args->failures) == -EAGAIN) { 328 blk_mq_free_request(req); 329 goto retry; 330 } 331 332 /* 333 * Some devices (USB mass-storage in particular) may transfer 334 * garbage data together with a residue indicating that the data 335 * is invalid. Prevent the garbage from being misinterpreted 336 * and prevent security leaks by zeroing out the excess data. 337 */ 338 if (unlikely(scmd->resid_len > 0 && scmd->resid_len <= bufflen)) 339 memset(buffer + bufflen - scmd->resid_len, 0, scmd->resid_len); 340 341 if (args->resid) 342 *args->resid = scmd->resid_len; 343 if (args->sense) 344 memcpy(args->sense, scmd->sense_buffer, SCSI_SENSE_BUFFERSIZE); 345 if (args->sshdr) 346 scsi_normalize_sense(scmd->sense_buffer, scmd->sense_len, 347 args->sshdr); 348 349 ret = scmd->result; 350 out: 351 blk_mq_free_request(req); 352 353 return ret; 354 } 355 EXPORT_SYMBOL(scsi_execute_cmd); 356 357 /* 358 * Wake up the error handler if necessary. Avoid as follows that the error 359 * handler is not woken up if host in-flight requests number == 360 * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination 361 * with an RCU read lock in this function to ensure that this function in 362 * its entirety either finishes before scsi_eh_scmd_add() increases the 363 * host_failed counter or that it notices the shost state change made by 364 * scsi_eh_scmd_add(). 365 */ 366 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd) 367 { 368 unsigned long flags; 369 370 rcu_read_lock(); 371 __clear_bit(SCMD_STATE_INFLIGHT, &cmd->state); 372 if (unlikely(scsi_host_in_recovery(shost))) { 373 unsigned int busy = scsi_host_busy(shost); 374 375 spin_lock_irqsave(shost->host_lock, flags); 376 if (shost->host_failed || shost->host_eh_scheduled) 377 scsi_eh_wakeup(shost, busy); 378 spin_unlock_irqrestore(shost->host_lock, flags); 379 } 380 rcu_read_unlock(); 381 } 382 383 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd) 384 { 385 struct Scsi_Host *shost = sdev->host; 386 struct scsi_target *starget = scsi_target(sdev); 387 388 scsi_dec_host_busy(shost, cmd); 389 390 if (starget->can_queue > 0) 391 atomic_dec(&starget->target_busy); 392 393 sbitmap_put(&sdev->budget_map, cmd->budget_token); 394 cmd->budget_token = -1; 395 } 396 397 /* 398 * Kick the queue of SCSI device @sdev if @sdev != current_sdev. Called with 399 * interrupts disabled. 400 */ 401 static void scsi_kick_sdev_queue(struct scsi_device *sdev, void *data) 402 { 403 struct scsi_device *current_sdev = data; 404 405 if (sdev != current_sdev) 406 blk_mq_run_hw_queues(sdev->request_queue, true); 407 } 408 409 /* 410 * Called for single_lun devices on IO completion. Clear starget_sdev_user, 411 * and call blk_run_queue for all the scsi_devices on the target - 412 * including current_sdev first. 413 * 414 * Called with *no* scsi locks held. 415 */ 416 static void scsi_single_lun_run(struct scsi_device *current_sdev) 417 { 418 struct Scsi_Host *shost = current_sdev->host; 419 struct scsi_target *starget = scsi_target(current_sdev); 420 unsigned long flags; 421 422 spin_lock_irqsave(shost->host_lock, flags); 423 starget->starget_sdev_user = NULL; 424 spin_unlock_irqrestore(shost->host_lock, flags); 425 426 /* 427 * Call blk_run_queue for all LUNs on the target, starting with 428 * current_sdev. We race with others (to set starget_sdev_user), 429 * but in most cases, we will be first. Ideally, each LU on the 430 * target would get some limited time or requests on the target. 431 */ 432 blk_mq_run_hw_queues(current_sdev->request_queue, 433 shost->queuecommand_may_block); 434 435 spin_lock_irqsave(shost->host_lock, flags); 436 if (!starget->starget_sdev_user) 437 __starget_for_each_device(starget, current_sdev, 438 scsi_kick_sdev_queue); 439 spin_unlock_irqrestore(shost->host_lock, flags); 440 } 441 442 static inline bool scsi_device_is_busy(struct scsi_device *sdev) 443 { 444 if (scsi_device_busy(sdev) >= sdev->queue_depth) 445 return true; 446 if (atomic_read(&sdev->device_blocked) > 0) 447 return true; 448 return false; 449 } 450 451 static inline bool scsi_target_is_busy(struct scsi_target *starget) 452 { 453 if (starget->can_queue > 0) { 454 if (atomic_read(&starget->target_busy) >= starget->can_queue) 455 return true; 456 if (atomic_read(&starget->target_blocked) > 0) 457 return true; 458 } 459 return false; 460 } 461 462 static inline bool scsi_host_is_busy(struct Scsi_Host *shost) 463 { 464 if (atomic_read(&shost->host_blocked) > 0) 465 return true; 466 if (shost->host_self_blocked) 467 return true; 468 return false; 469 } 470 471 static void scsi_starved_list_run(struct Scsi_Host *shost) 472 { 473 LIST_HEAD(starved_list); 474 struct scsi_device *sdev; 475 unsigned long flags; 476 477 spin_lock_irqsave(shost->host_lock, flags); 478 list_splice_init(&shost->starved_list, &starved_list); 479 480 while (!list_empty(&starved_list)) { 481 struct request_queue *slq; 482 483 /* 484 * As long as shost is accepting commands and we have 485 * starved queues, call blk_run_queue. scsi_request_fn 486 * drops the queue_lock and can add us back to the 487 * starved_list. 488 * 489 * host_lock protects the starved_list and starved_entry. 490 * scsi_request_fn must get the host_lock before checking 491 * or modifying starved_list or starved_entry. 492 */ 493 if (scsi_host_is_busy(shost)) 494 break; 495 496 sdev = list_entry(starved_list.next, 497 struct scsi_device, starved_entry); 498 list_del_init(&sdev->starved_entry); 499 if (scsi_target_is_busy(scsi_target(sdev))) { 500 list_move_tail(&sdev->starved_entry, 501 &shost->starved_list); 502 continue; 503 } 504 505 /* 506 * Once we drop the host lock, a racing scsi_remove_device() 507 * call may remove the sdev from the starved list and destroy 508 * it and the queue. Mitigate by taking a reference to the 509 * queue and never touching the sdev again after we drop the 510 * host lock. Note: if __scsi_remove_device() invokes 511 * blk_mq_destroy_queue() before the queue is run from this 512 * function then blk_run_queue() will return immediately since 513 * blk_mq_destroy_queue() marks the queue with QUEUE_FLAG_DYING. 514 */ 515 slq = sdev->request_queue; 516 if (!blk_get_queue(slq)) 517 continue; 518 spin_unlock_irqrestore(shost->host_lock, flags); 519 520 blk_mq_run_hw_queues(slq, false); 521 blk_put_queue(slq); 522 523 spin_lock_irqsave(shost->host_lock, flags); 524 } 525 /* put any unprocessed entries back */ 526 list_splice(&starved_list, &shost->starved_list); 527 spin_unlock_irqrestore(shost->host_lock, flags); 528 } 529 530 /** 531 * scsi_run_queue - Select a proper request queue to serve next. 532 * @q: last request's queue 533 * 534 * The previous command was completely finished, start a new one if possible. 535 */ 536 static void scsi_run_queue(struct request_queue *q) 537 { 538 struct scsi_device *sdev = q->queuedata; 539 540 if (scsi_target(sdev)->single_lun) 541 scsi_single_lun_run(sdev); 542 if (!list_empty(&sdev->host->starved_list)) 543 scsi_starved_list_run(sdev->host); 544 545 /* Note: blk_mq_kick_requeue_list() runs the queue asynchronously. */ 546 blk_mq_kick_requeue_list(q); 547 } 548 549 void scsi_requeue_run_queue(struct work_struct *work) 550 { 551 struct scsi_device *sdev; 552 struct request_queue *q; 553 554 sdev = container_of(work, struct scsi_device, requeue_work); 555 q = sdev->request_queue; 556 scsi_run_queue(q); 557 } 558 559 void scsi_run_host_queues(struct Scsi_Host *shost) 560 { 561 struct scsi_device *sdev; 562 563 shost_for_each_device(sdev, shost) 564 scsi_run_queue(sdev->request_queue); 565 } 566 567 static void scsi_uninit_cmd(struct scsi_cmnd *cmd) 568 { 569 if (!blk_rq_is_passthrough(scsi_cmd_to_rq(cmd))) { 570 struct scsi_driver *drv = scsi_cmd_to_driver(cmd); 571 572 if (drv->uninit_command) 573 drv->uninit_command(cmd); 574 } 575 } 576 577 void scsi_free_sgtables(struct scsi_cmnd *cmd) 578 { 579 if (cmd->sdb.table.nents) 580 sg_free_table_chained(&cmd->sdb.table, 581 SCSI_INLINE_SG_CNT); 582 if (scsi_prot_sg_count(cmd)) 583 sg_free_table_chained(&cmd->prot_sdb->table, 584 SCSI_INLINE_PROT_SG_CNT); 585 } 586 EXPORT_SYMBOL_GPL(scsi_free_sgtables); 587 588 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd) 589 { 590 scsi_free_sgtables(cmd); 591 scsi_uninit_cmd(cmd); 592 } 593 594 static void scsi_run_queue_async(struct scsi_device *sdev) 595 { 596 if (scsi_host_in_recovery(sdev->host)) 597 return; 598 599 if (scsi_target(sdev)->single_lun || 600 !list_empty(&sdev->host->starved_list)) { 601 kblockd_schedule_work(&sdev->requeue_work); 602 } else { 603 /* 604 * smp_mb() present in sbitmap_queue_clear() or implied in 605 * .end_io is for ordering writing .device_busy in 606 * scsi_device_unbusy() and reading sdev->restarts. 607 */ 608 int old = atomic_read(&sdev->restarts); 609 610 /* 611 * ->restarts has to be kept as non-zero if new budget 612 * contention occurs. 613 * 614 * No need to run queue when either another re-run 615 * queue wins in updating ->restarts or a new budget 616 * contention occurs. 617 */ 618 if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old) 619 blk_mq_run_hw_queues(sdev->request_queue, true); 620 } 621 } 622 623 /* Returns false when no more bytes to process, true if there are more */ 624 static bool scsi_end_request(struct request *req, blk_status_t error, 625 unsigned int bytes) 626 { 627 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 628 struct scsi_device *sdev = cmd->device; 629 struct request_queue *q = sdev->request_queue; 630 631 if (blk_update_request(req, error, bytes)) 632 return true; 633 634 // XXX: 635 if (blk_queue_add_random(q)) 636 add_disk_randomness(req->q->disk); 637 638 if (!blk_rq_is_passthrough(req)) { 639 WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED)); 640 cmd->flags &= ~SCMD_INITIALIZED; 641 } 642 643 /* 644 * Calling rcu_barrier() is not necessary here because the 645 * SCSI error handler guarantees that the function called by 646 * call_rcu() has been called before scsi_end_request() is 647 * called. 648 */ 649 destroy_rcu_head(&cmd->rcu); 650 651 /* 652 * In the MQ case the command gets freed by __blk_mq_end_request, 653 * so we have to do all cleanup that depends on it earlier. 654 * 655 * We also can't kick the queues from irq context, so we 656 * will have to defer it to a workqueue. 657 */ 658 scsi_mq_uninit_cmd(cmd); 659 660 /* 661 * queue is still alive, so grab the ref for preventing it 662 * from being cleaned up during running queue. 663 */ 664 percpu_ref_get(&q->q_usage_counter); 665 666 __blk_mq_end_request(req, error); 667 668 scsi_run_queue_async(sdev); 669 670 percpu_ref_put(&q->q_usage_counter); 671 return false; 672 } 673 674 /** 675 * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t 676 * @result: scsi error code 677 * 678 * Translate a SCSI result code into a blk_status_t value. 679 */ 680 static blk_status_t scsi_result_to_blk_status(int result) 681 { 682 /* 683 * Check the scsi-ml byte first in case we converted a host or status 684 * byte. 685 */ 686 switch (scsi_ml_byte(result)) { 687 case SCSIML_STAT_OK: 688 break; 689 case SCSIML_STAT_RESV_CONFLICT: 690 return BLK_STS_RESV_CONFLICT; 691 case SCSIML_STAT_NOSPC: 692 return BLK_STS_NOSPC; 693 case SCSIML_STAT_MED_ERROR: 694 return BLK_STS_MEDIUM; 695 case SCSIML_STAT_TGT_FAILURE: 696 return BLK_STS_TARGET; 697 case SCSIML_STAT_DL_TIMEOUT: 698 return BLK_STS_DURATION_LIMIT; 699 } 700 701 switch (host_byte(result)) { 702 case DID_OK: 703 if (scsi_status_is_good(result)) 704 return BLK_STS_OK; 705 return BLK_STS_IOERR; 706 case DID_TRANSPORT_FAILFAST: 707 case DID_TRANSPORT_MARGINAL: 708 return BLK_STS_TRANSPORT; 709 default: 710 return BLK_STS_IOERR; 711 } 712 } 713 714 /** 715 * scsi_rq_err_bytes - determine number of bytes till the next failure boundary 716 * @rq: request to examine 717 * 718 * Description: 719 * A request could be merge of IOs which require different failure 720 * handling. This function determines the number of bytes which 721 * can be failed from the beginning of the request without 722 * crossing into area which need to be retried further. 723 * 724 * Return: 725 * The number of bytes to fail. 726 */ 727 static unsigned int scsi_rq_err_bytes(const struct request *rq) 728 { 729 blk_opf_t ff = rq->cmd_flags & REQ_FAILFAST_MASK; 730 unsigned int bytes = 0; 731 struct bio *bio; 732 733 if (!(rq->rq_flags & RQF_MIXED_MERGE)) 734 return blk_rq_bytes(rq); 735 736 /* 737 * Currently the only 'mixing' which can happen is between 738 * different fastfail types. We can safely fail portions 739 * which have all the failfast bits that the first one has - 740 * the ones which are at least as eager to fail as the first 741 * one. 742 */ 743 for (bio = rq->bio; bio; bio = bio->bi_next) { 744 if ((bio->bi_opf & ff) != ff) 745 break; 746 bytes += bio->bi_iter.bi_size; 747 } 748 749 /* this could lead to infinite loop */ 750 BUG_ON(blk_rq_bytes(rq) && !bytes); 751 return bytes; 752 } 753 754 static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd) 755 { 756 struct request *req = scsi_cmd_to_rq(cmd); 757 unsigned long wait_for; 758 759 if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT) 760 return false; 761 762 wait_for = (cmd->allowed + 1) * req->timeout; 763 if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) { 764 scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n", 765 wait_for/HZ); 766 return true; 767 } 768 return false; 769 } 770 771 /* 772 * When ALUA transition state is returned, reprep the cmd to 773 * use the ALUA handler's transition timeout. Delay the reprep 774 * 1 sec to avoid aggressive retries of the target in that 775 * state. 776 */ 777 #define ALUA_TRANSITION_REPREP_DELAY 1000 778 779 /* Helper for scsi_io_completion() when special action required. */ 780 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result) 781 { 782 struct request *req = scsi_cmd_to_rq(cmd); 783 int level = 0; 784 enum {ACTION_FAIL, ACTION_REPREP, ACTION_DELAYED_REPREP, 785 ACTION_RETRY, ACTION_DELAYED_RETRY} action; 786 struct scsi_sense_hdr sshdr; 787 bool sense_valid; 788 bool sense_current = true; /* false implies "deferred sense" */ 789 blk_status_t blk_stat; 790 791 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 792 if (sense_valid) 793 sense_current = !scsi_sense_is_deferred(&sshdr); 794 795 blk_stat = scsi_result_to_blk_status(result); 796 797 if (host_byte(result) == DID_RESET) { 798 /* Third party bus reset or reset for error recovery 799 * reasons. Just retry the command and see what 800 * happens. 801 */ 802 action = ACTION_RETRY; 803 } else if (sense_valid && sense_current) { 804 switch (sshdr.sense_key) { 805 case UNIT_ATTENTION: 806 if (cmd->device->removable) { 807 /* Detected disc change. Set a bit 808 * and quietly refuse further access. 809 */ 810 cmd->device->changed = 1; 811 action = ACTION_FAIL; 812 } else { 813 /* Must have been a power glitch, or a 814 * bus reset. Could not have been a 815 * media change, so we just retry the 816 * command and see what happens. 817 */ 818 action = ACTION_RETRY; 819 } 820 break; 821 case ILLEGAL_REQUEST: 822 /* If we had an ILLEGAL REQUEST returned, then 823 * we may have performed an unsupported 824 * command. The only thing this should be 825 * would be a ten byte read where only a six 826 * byte read was supported. Also, on a system 827 * where READ CAPACITY failed, we may have 828 * read past the end of the disk. 829 */ 830 if ((cmd->device->use_10_for_rw && 831 sshdr.asc == 0x20 && sshdr.ascq == 0x00) && 832 (cmd->cmnd[0] == READ_10 || 833 cmd->cmnd[0] == WRITE_10)) { 834 /* This will issue a new 6-byte command. */ 835 cmd->device->use_10_for_rw = 0; 836 action = ACTION_REPREP; 837 } else if (sshdr.asc == 0x10) /* DIX */ { 838 action = ACTION_FAIL; 839 blk_stat = BLK_STS_PROTECTION; 840 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */ 841 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) { 842 action = ACTION_FAIL; 843 blk_stat = BLK_STS_TARGET; 844 } else 845 action = ACTION_FAIL; 846 break; 847 case ABORTED_COMMAND: 848 action = ACTION_FAIL; 849 if (sshdr.asc == 0x10) /* DIF */ 850 blk_stat = BLK_STS_PROTECTION; 851 break; 852 case NOT_READY: 853 /* If the device is in the process of becoming 854 * ready, or has a temporary blockage, retry. 855 */ 856 if (sshdr.asc == 0x04) { 857 switch (sshdr.ascq) { 858 case 0x01: /* becoming ready */ 859 case 0x04: /* format in progress */ 860 case 0x05: /* rebuild in progress */ 861 case 0x06: /* recalculation in progress */ 862 case 0x07: /* operation in progress */ 863 case 0x08: /* Long write in progress */ 864 case 0x09: /* self test in progress */ 865 case 0x11: /* notify (enable spinup) required */ 866 case 0x14: /* space allocation in progress */ 867 case 0x1a: /* start stop unit in progress */ 868 case 0x1b: /* sanitize in progress */ 869 case 0x1d: /* configuration in progress */ 870 case 0x24: /* depopulation in progress */ 871 case 0x25: /* depopulation restore in progress */ 872 action = ACTION_DELAYED_RETRY; 873 break; 874 case 0x0a: /* ALUA state transition */ 875 action = ACTION_DELAYED_REPREP; 876 break; 877 default: 878 action = ACTION_FAIL; 879 break; 880 } 881 } else 882 action = ACTION_FAIL; 883 break; 884 case VOLUME_OVERFLOW: 885 /* See SSC3rXX or current. */ 886 action = ACTION_FAIL; 887 break; 888 case DATA_PROTECT: 889 action = ACTION_FAIL; 890 if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) || 891 (sshdr.asc == 0x55 && 892 (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) { 893 /* Insufficient zone resources */ 894 blk_stat = BLK_STS_ZONE_OPEN_RESOURCE; 895 } 896 break; 897 case COMPLETED: 898 fallthrough; 899 default: 900 action = ACTION_FAIL; 901 break; 902 } 903 } else 904 action = ACTION_FAIL; 905 906 if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd)) 907 action = ACTION_FAIL; 908 909 switch (action) { 910 case ACTION_FAIL: 911 /* Give up and fail the remainder of the request */ 912 if (!(req->rq_flags & RQF_QUIET)) { 913 static DEFINE_RATELIMIT_STATE(_rs, 914 DEFAULT_RATELIMIT_INTERVAL, 915 DEFAULT_RATELIMIT_BURST); 916 917 if (unlikely(scsi_logging_level)) 918 level = 919 SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT, 920 SCSI_LOG_MLCOMPLETE_BITS); 921 922 /* 923 * if logging is enabled the failure will be printed 924 * in scsi_log_completion(), so avoid duplicate messages 925 */ 926 if (!level && __ratelimit(&_rs)) { 927 scsi_print_result(cmd, NULL, FAILED); 928 if (sense_valid) 929 scsi_print_sense(cmd); 930 scsi_print_command(cmd); 931 } 932 } 933 if (!scsi_end_request(req, blk_stat, scsi_rq_err_bytes(req))) 934 return; 935 fallthrough; 936 case ACTION_REPREP: 937 scsi_mq_requeue_cmd(cmd, 0); 938 break; 939 case ACTION_DELAYED_REPREP: 940 scsi_mq_requeue_cmd(cmd, ALUA_TRANSITION_REPREP_DELAY); 941 break; 942 case ACTION_RETRY: 943 /* Retry the same command immediately */ 944 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false); 945 break; 946 case ACTION_DELAYED_RETRY: 947 /* Retry the same command after a delay */ 948 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false); 949 break; 950 } 951 } 952 953 /* 954 * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a 955 * new result that may suppress further error checking. Also modifies 956 * *blk_statp in some cases. 957 */ 958 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result, 959 blk_status_t *blk_statp) 960 { 961 bool sense_valid; 962 bool sense_current = true; /* false implies "deferred sense" */ 963 struct request *req = scsi_cmd_to_rq(cmd); 964 struct scsi_sense_hdr sshdr; 965 966 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 967 if (sense_valid) 968 sense_current = !scsi_sense_is_deferred(&sshdr); 969 970 if (blk_rq_is_passthrough(req)) { 971 if (sense_valid) { 972 /* 973 * SG_IO wants current and deferred errors 974 */ 975 cmd->sense_len = min(8 + cmd->sense_buffer[7], 976 SCSI_SENSE_BUFFERSIZE); 977 } 978 if (sense_current) 979 *blk_statp = scsi_result_to_blk_status(result); 980 } else if (blk_rq_bytes(req) == 0 && sense_current) { 981 /* 982 * Flush commands do not transfers any data, and thus cannot use 983 * good_bytes != blk_rq_bytes(req) as the signal for an error. 984 * This sets *blk_statp explicitly for the problem case. 985 */ 986 *blk_statp = scsi_result_to_blk_status(result); 987 } 988 /* 989 * Recovered errors need reporting, but they're always treated as 990 * success, so fiddle the result code here. For passthrough requests 991 * we already took a copy of the original into sreq->result which 992 * is what gets returned to the user 993 */ 994 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) { 995 bool do_print = true; 996 /* 997 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d] 998 * skip print since caller wants ATA registers. Only occurs 999 * on SCSI ATA PASS_THROUGH commands when CK_COND=1 1000 */ 1001 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d)) 1002 do_print = false; 1003 else if (req->rq_flags & RQF_QUIET) 1004 do_print = false; 1005 if (do_print) 1006 scsi_print_sense(cmd); 1007 result = 0; 1008 /* for passthrough, *blk_statp may be set */ 1009 *blk_statp = BLK_STS_OK; 1010 } 1011 /* 1012 * Another corner case: the SCSI status byte is non-zero but 'good'. 1013 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when 1014 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD 1015 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related 1016 * intermediate statuses (both obsolete in SAM-4) as good. 1017 */ 1018 if ((result & 0xff) && scsi_status_is_good(result)) { 1019 result = 0; 1020 *blk_statp = BLK_STS_OK; 1021 } 1022 return result; 1023 } 1024 1025 /** 1026 * scsi_io_completion - Completion processing for SCSI commands. 1027 * @cmd: command that is finished. 1028 * @good_bytes: number of processed bytes. 1029 * 1030 * We will finish off the specified number of sectors. If we are done, the 1031 * command block will be released and the queue function will be goosed. If we 1032 * are not done then we have to figure out what to do next: 1033 * 1034 * a) We can call scsi_mq_requeue_cmd(). The request will be 1035 * unprepared and put back on the queue. Then a new command will 1036 * be created for it. This should be used if we made forward 1037 * progress, or if we want to switch from READ(10) to READ(6) for 1038 * example. 1039 * 1040 * b) We can call scsi_io_completion_action(). The request will be 1041 * put back on the queue and retried using the same command as 1042 * before, possibly after a delay. 1043 * 1044 * c) We can call scsi_end_request() with blk_stat other than 1045 * BLK_STS_OK, to fail the remainder of the request. 1046 */ 1047 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes) 1048 { 1049 int result = cmd->result; 1050 struct request *req = scsi_cmd_to_rq(cmd); 1051 blk_status_t blk_stat = BLK_STS_OK; 1052 1053 if (unlikely(result)) /* a nz result may or may not be an error */ 1054 result = scsi_io_completion_nz_result(cmd, result, &blk_stat); 1055 1056 /* 1057 * Next deal with any sectors which we were able to correctly 1058 * handle. 1059 */ 1060 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd, 1061 "%u sectors total, %d bytes done.\n", 1062 blk_rq_sectors(req), good_bytes)); 1063 1064 /* 1065 * Failed, zero length commands always need to drop down 1066 * to retry code. Fast path should return in this block. 1067 */ 1068 if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) { 1069 if (likely(!scsi_end_request(req, blk_stat, good_bytes))) 1070 return; /* no bytes remaining */ 1071 } 1072 1073 /* Kill remainder if no retries. */ 1074 if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) { 1075 if (scsi_end_request(req, blk_stat, blk_rq_bytes(req))) 1076 WARN_ONCE(true, 1077 "Bytes remaining after failed, no-retry command"); 1078 return; 1079 } 1080 1081 /* 1082 * If there had been no error, but we have leftover bytes in the 1083 * request just queue the command up again. 1084 */ 1085 if (likely(result == 0)) 1086 scsi_mq_requeue_cmd(cmd, 0); 1087 else 1088 scsi_io_completion_action(cmd, result); 1089 } 1090 1091 static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev, 1092 struct request *rq) 1093 { 1094 return sdev->dma_drain_len && blk_rq_is_passthrough(rq) && 1095 !op_is_write(req_op(rq)) && 1096 sdev->host->hostt->dma_need_drain(rq); 1097 } 1098 1099 /** 1100 * scsi_alloc_sgtables - Allocate and initialize data and integrity scatterlists 1101 * @cmd: SCSI command data structure to initialize. 1102 * 1103 * Initializes @cmd->sdb and also @cmd->prot_sdb if data integrity is enabled 1104 * for @cmd. 1105 * 1106 * Returns: 1107 * * BLK_STS_OK - on success 1108 * * BLK_STS_RESOURCE - if the failure is retryable 1109 * * BLK_STS_IOERR - if the failure is fatal 1110 */ 1111 blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd) 1112 { 1113 struct scsi_device *sdev = cmd->device; 1114 struct request *rq = scsi_cmd_to_rq(cmd); 1115 unsigned short nr_segs = blk_rq_nr_phys_segments(rq); 1116 struct scatterlist *last_sg = NULL; 1117 blk_status_t ret; 1118 bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq); 1119 int count; 1120 1121 if (WARN_ON_ONCE(!nr_segs)) 1122 return BLK_STS_IOERR; 1123 1124 /* 1125 * Make sure there is space for the drain. The driver must adjust 1126 * max_hw_segments to be prepared for this. 1127 */ 1128 if (need_drain) 1129 nr_segs++; 1130 1131 /* 1132 * If sg table allocation fails, requeue request later. 1133 */ 1134 if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs, 1135 cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT))) 1136 return BLK_STS_RESOURCE; 1137 1138 /* 1139 * Next, walk the list, and fill in the addresses and sizes of 1140 * each segment. 1141 */ 1142 count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg); 1143 1144 if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) { 1145 unsigned int pad_len = 1146 (rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1; 1147 1148 last_sg->length += pad_len; 1149 cmd->extra_len += pad_len; 1150 } 1151 1152 if (need_drain) { 1153 sg_unmark_end(last_sg); 1154 last_sg = sg_next(last_sg); 1155 sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len); 1156 sg_mark_end(last_sg); 1157 1158 cmd->extra_len += sdev->dma_drain_len; 1159 count++; 1160 } 1161 1162 BUG_ON(count > cmd->sdb.table.nents); 1163 cmd->sdb.table.nents = count; 1164 cmd->sdb.length = blk_rq_payload_bytes(rq); 1165 1166 if (blk_integrity_rq(rq)) { 1167 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb; 1168 int ivecs; 1169 1170 if (WARN_ON_ONCE(!prot_sdb)) { 1171 /* 1172 * This can happen if someone (e.g. multipath) 1173 * queues a command to a device on an adapter 1174 * that does not support DIX. 1175 */ 1176 ret = BLK_STS_IOERR; 1177 goto out_free_sgtables; 1178 } 1179 1180 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio); 1181 1182 if (sg_alloc_table_chained(&prot_sdb->table, ivecs, 1183 prot_sdb->table.sgl, 1184 SCSI_INLINE_PROT_SG_CNT)) { 1185 ret = BLK_STS_RESOURCE; 1186 goto out_free_sgtables; 1187 } 1188 1189 count = blk_rq_map_integrity_sg(rq->q, rq->bio, 1190 prot_sdb->table.sgl); 1191 BUG_ON(count > ivecs); 1192 BUG_ON(count > queue_max_integrity_segments(rq->q)); 1193 1194 cmd->prot_sdb = prot_sdb; 1195 cmd->prot_sdb->table.nents = count; 1196 } 1197 1198 return BLK_STS_OK; 1199 out_free_sgtables: 1200 scsi_free_sgtables(cmd); 1201 return ret; 1202 } 1203 EXPORT_SYMBOL(scsi_alloc_sgtables); 1204 1205 /** 1206 * scsi_initialize_rq - initialize struct scsi_cmnd partially 1207 * @rq: Request associated with the SCSI command to be initialized. 1208 * 1209 * This function initializes the members of struct scsi_cmnd that must be 1210 * initialized before request processing starts and that won't be 1211 * reinitialized if a SCSI command is requeued. 1212 */ 1213 static void scsi_initialize_rq(struct request *rq) 1214 { 1215 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1216 1217 memset(cmd->cmnd, 0, sizeof(cmd->cmnd)); 1218 cmd->cmd_len = MAX_COMMAND_SIZE; 1219 cmd->sense_len = 0; 1220 init_rcu_head(&cmd->rcu); 1221 cmd->jiffies_at_alloc = jiffies; 1222 cmd->retries = 0; 1223 } 1224 1225 struct request *scsi_alloc_request(struct request_queue *q, blk_opf_t opf, 1226 blk_mq_req_flags_t flags) 1227 { 1228 struct request *rq; 1229 1230 rq = blk_mq_alloc_request(q, opf, flags); 1231 if (!IS_ERR(rq)) 1232 scsi_initialize_rq(rq); 1233 return rq; 1234 } 1235 EXPORT_SYMBOL_GPL(scsi_alloc_request); 1236 1237 /* 1238 * Only called when the request isn't completed by SCSI, and not freed by 1239 * SCSI 1240 */ 1241 static void scsi_cleanup_rq(struct request *rq) 1242 { 1243 if (rq->rq_flags & RQF_DONTPREP) { 1244 scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq)); 1245 rq->rq_flags &= ~RQF_DONTPREP; 1246 } 1247 } 1248 1249 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */ 1250 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd) 1251 { 1252 struct request *rq = scsi_cmd_to_rq(cmd); 1253 1254 if (!blk_rq_is_passthrough(rq) && !(cmd->flags & SCMD_INITIALIZED)) { 1255 cmd->flags |= SCMD_INITIALIZED; 1256 scsi_initialize_rq(rq); 1257 } 1258 1259 cmd->device = dev; 1260 INIT_LIST_HEAD(&cmd->eh_entry); 1261 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler); 1262 } 1263 1264 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev, 1265 struct request *req) 1266 { 1267 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1268 1269 /* 1270 * Passthrough requests may transfer data, in which case they must 1271 * a bio attached to them. Or they might contain a SCSI command 1272 * that does not transfer data, in which case they may optionally 1273 * submit a request without an attached bio. 1274 */ 1275 if (req->bio) { 1276 blk_status_t ret = scsi_alloc_sgtables(cmd); 1277 if (unlikely(ret != BLK_STS_OK)) 1278 return ret; 1279 } else { 1280 BUG_ON(blk_rq_bytes(req)); 1281 1282 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1283 } 1284 1285 cmd->transfersize = blk_rq_bytes(req); 1286 return BLK_STS_OK; 1287 } 1288 1289 static blk_status_t 1290 scsi_device_state_check(struct scsi_device *sdev, struct request *req) 1291 { 1292 switch (sdev->sdev_state) { 1293 case SDEV_CREATED: 1294 return BLK_STS_OK; 1295 case SDEV_OFFLINE: 1296 case SDEV_TRANSPORT_OFFLINE: 1297 /* 1298 * If the device is offline we refuse to process any 1299 * commands. The device must be brought online 1300 * before trying any recovery commands. 1301 */ 1302 if (!sdev->offline_already) { 1303 sdev->offline_already = true; 1304 sdev_printk(KERN_ERR, sdev, 1305 "rejecting I/O to offline device\n"); 1306 } 1307 return BLK_STS_IOERR; 1308 case SDEV_DEL: 1309 /* 1310 * If the device is fully deleted, we refuse to 1311 * process any commands as well. 1312 */ 1313 sdev_printk(KERN_ERR, sdev, 1314 "rejecting I/O to dead device\n"); 1315 return BLK_STS_IOERR; 1316 case SDEV_BLOCK: 1317 case SDEV_CREATED_BLOCK: 1318 return BLK_STS_RESOURCE; 1319 case SDEV_QUIESCE: 1320 /* 1321 * If the device is blocked we only accept power management 1322 * commands. 1323 */ 1324 if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM))) 1325 return BLK_STS_RESOURCE; 1326 return BLK_STS_OK; 1327 default: 1328 /* 1329 * For any other not fully online state we only allow 1330 * power management commands. 1331 */ 1332 if (req && !(req->rq_flags & RQF_PM)) 1333 return BLK_STS_OFFLINE; 1334 return BLK_STS_OK; 1335 } 1336 } 1337 1338 /* 1339 * scsi_dev_queue_ready: if we can send requests to sdev, assign one token 1340 * and return the token else return -1. 1341 */ 1342 static inline int scsi_dev_queue_ready(struct request_queue *q, 1343 struct scsi_device *sdev) 1344 { 1345 int token; 1346 1347 token = sbitmap_get(&sdev->budget_map); 1348 if (token < 0) 1349 return -1; 1350 1351 if (!atomic_read(&sdev->device_blocked)) 1352 return token; 1353 1354 /* 1355 * Only unblock if no other commands are pending and 1356 * if device_blocked has decreased to zero 1357 */ 1358 if (scsi_device_busy(sdev) > 1 || 1359 atomic_dec_return(&sdev->device_blocked) > 0) { 1360 sbitmap_put(&sdev->budget_map, token); 1361 return -1; 1362 } 1363 1364 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev, 1365 "unblocking device at zero depth\n")); 1366 1367 return token; 1368 } 1369 1370 /* 1371 * scsi_target_queue_ready: checks if there we can send commands to target 1372 * @sdev: scsi device on starget to check. 1373 */ 1374 static inline int scsi_target_queue_ready(struct Scsi_Host *shost, 1375 struct scsi_device *sdev) 1376 { 1377 struct scsi_target *starget = scsi_target(sdev); 1378 unsigned int busy; 1379 1380 if (starget->single_lun) { 1381 spin_lock_irq(shost->host_lock); 1382 if (starget->starget_sdev_user && 1383 starget->starget_sdev_user != sdev) { 1384 spin_unlock_irq(shost->host_lock); 1385 return 0; 1386 } 1387 starget->starget_sdev_user = sdev; 1388 spin_unlock_irq(shost->host_lock); 1389 } 1390 1391 if (starget->can_queue <= 0) 1392 return 1; 1393 1394 busy = atomic_inc_return(&starget->target_busy) - 1; 1395 if (atomic_read(&starget->target_blocked) > 0) { 1396 if (busy) 1397 goto starved; 1398 1399 /* 1400 * unblock after target_blocked iterates to zero 1401 */ 1402 if (atomic_dec_return(&starget->target_blocked) > 0) 1403 goto out_dec; 1404 1405 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget, 1406 "unblocking target at zero depth\n")); 1407 } 1408 1409 if (busy >= starget->can_queue) 1410 goto starved; 1411 1412 return 1; 1413 1414 starved: 1415 spin_lock_irq(shost->host_lock); 1416 list_move_tail(&sdev->starved_entry, &shost->starved_list); 1417 spin_unlock_irq(shost->host_lock); 1418 out_dec: 1419 if (starget->can_queue > 0) 1420 atomic_dec(&starget->target_busy); 1421 return 0; 1422 } 1423 1424 /* 1425 * scsi_host_queue_ready: if we can send requests to shost, return 1 else 1426 * return 0. We must end up running the queue again whenever 0 is 1427 * returned, else IO can hang. 1428 */ 1429 static inline int scsi_host_queue_ready(struct request_queue *q, 1430 struct Scsi_Host *shost, 1431 struct scsi_device *sdev, 1432 struct scsi_cmnd *cmd) 1433 { 1434 if (atomic_read(&shost->host_blocked) > 0) { 1435 if (scsi_host_busy(shost) > 0) 1436 goto starved; 1437 1438 /* 1439 * unblock after host_blocked iterates to zero 1440 */ 1441 if (atomic_dec_return(&shost->host_blocked) > 0) 1442 goto out_dec; 1443 1444 SCSI_LOG_MLQUEUE(3, 1445 shost_printk(KERN_INFO, shost, 1446 "unblocking host at zero depth\n")); 1447 } 1448 1449 if (shost->host_self_blocked) 1450 goto starved; 1451 1452 /* We're OK to process the command, so we can't be starved */ 1453 if (!list_empty(&sdev->starved_entry)) { 1454 spin_lock_irq(shost->host_lock); 1455 if (!list_empty(&sdev->starved_entry)) 1456 list_del_init(&sdev->starved_entry); 1457 spin_unlock_irq(shost->host_lock); 1458 } 1459 1460 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state); 1461 1462 return 1; 1463 1464 starved: 1465 spin_lock_irq(shost->host_lock); 1466 if (list_empty(&sdev->starved_entry)) 1467 list_add_tail(&sdev->starved_entry, &shost->starved_list); 1468 spin_unlock_irq(shost->host_lock); 1469 out_dec: 1470 scsi_dec_host_busy(shost, cmd); 1471 return 0; 1472 } 1473 1474 /* 1475 * Busy state exporting function for request stacking drivers. 1476 * 1477 * For efficiency, no lock is taken to check the busy state of 1478 * shost/starget/sdev, since the returned value is not guaranteed and 1479 * may be changed after request stacking drivers call the function, 1480 * regardless of taking lock or not. 1481 * 1482 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi 1483 * needs to return 'not busy'. Otherwise, request stacking drivers 1484 * may hold requests forever. 1485 */ 1486 static bool scsi_mq_lld_busy(struct request_queue *q) 1487 { 1488 struct scsi_device *sdev = q->queuedata; 1489 struct Scsi_Host *shost; 1490 1491 if (blk_queue_dying(q)) 1492 return false; 1493 1494 shost = sdev->host; 1495 1496 /* 1497 * Ignore host/starget busy state. 1498 * Since block layer does not have a concept of fairness across 1499 * multiple queues, congestion of host/starget needs to be handled 1500 * in SCSI layer. 1501 */ 1502 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev)) 1503 return true; 1504 1505 return false; 1506 } 1507 1508 /* 1509 * Block layer request completion callback. May be called from interrupt 1510 * context. 1511 */ 1512 static void scsi_complete(struct request *rq) 1513 { 1514 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1515 enum scsi_disposition disposition; 1516 1517 INIT_LIST_HEAD(&cmd->eh_entry); 1518 1519 atomic_inc(&cmd->device->iodone_cnt); 1520 if (cmd->result) 1521 atomic_inc(&cmd->device->ioerr_cnt); 1522 1523 disposition = scsi_decide_disposition(cmd); 1524 if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd)) 1525 disposition = SUCCESS; 1526 1527 scsi_log_completion(cmd, disposition); 1528 1529 switch (disposition) { 1530 case SUCCESS: 1531 scsi_finish_command(cmd); 1532 break; 1533 case NEEDS_RETRY: 1534 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY); 1535 break; 1536 case ADD_TO_MLQUEUE: 1537 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY); 1538 break; 1539 default: 1540 scsi_eh_scmd_add(cmd); 1541 break; 1542 } 1543 } 1544 1545 /** 1546 * scsi_dispatch_cmd - Dispatch a command to the low-level driver. 1547 * @cmd: command block we are dispatching. 1548 * 1549 * Return: nonzero return request was rejected and device's queue needs to be 1550 * plugged. 1551 */ 1552 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd) 1553 { 1554 struct Scsi_Host *host = cmd->device->host; 1555 int rtn = 0; 1556 1557 atomic_inc(&cmd->device->iorequest_cnt); 1558 1559 /* check if the device is still usable */ 1560 if (unlikely(cmd->device->sdev_state == SDEV_DEL)) { 1561 /* in SDEV_DEL we error all commands. DID_NO_CONNECT 1562 * returns an immediate error upwards, and signals 1563 * that the device is no longer present */ 1564 cmd->result = DID_NO_CONNECT << 16; 1565 goto done; 1566 } 1567 1568 /* Check to see if the scsi lld made this device blocked. */ 1569 if (unlikely(scsi_device_blocked(cmd->device))) { 1570 /* 1571 * in blocked state, the command is just put back on 1572 * the device queue. The suspend state has already 1573 * blocked the queue so future requests should not 1574 * occur until the device transitions out of the 1575 * suspend state. 1576 */ 1577 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1578 "queuecommand : device blocked\n")); 1579 atomic_dec(&cmd->device->iorequest_cnt); 1580 return SCSI_MLQUEUE_DEVICE_BUSY; 1581 } 1582 1583 /* Store the LUN value in cmnd, if needed. */ 1584 if (cmd->device->lun_in_cdb) 1585 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) | 1586 (cmd->device->lun << 5 & 0xe0); 1587 1588 scsi_log_send(cmd); 1589 1590 /* 1591 * Before we queue this command, check if the command 1592 * length exceeds what the host adapter can handle. 1593 */ 1594 if (cmd->cmd_len > cmd->device->host->max_cmd_len) { 1595 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1596 "queuecommand : command too long. " 1597 "cdb_size=%d host->max_cmd_len=%d\n", 1598 cmd->cmd_len, cmd->device->host->max_cmd_len)); 1599 cmd->result = (DID_ABORT << 16); 1600 goto done; 1601 } 1602 1603 if (unlikely(host->shost_state == SHOST_DEL)) { 1604 cmd->result = (DID_NO_CONNECT << 16); 1605 goto done; 1606 1607 } 1608 1609 trace_scsi_dispatch_cmd_start(cmd); 1610 rtn = host->hostt->queuecommand(host, cmd); 1611 if (rtn) { 1612 atomic_dec(&cmd->device->iorequest_cnt); 1613 trace_scsi_dispatch_cmd_error(cmd, rtn); 1614 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY && 1615 rtn != SCSI_MLQUEUE_TARGET_BUSY) 1616 rtn = SCSI_MLQUEUE_HOST_BUSY; 1617 1618 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1619 "queuecommand : request rejected\n")); 1620 } 1621 1622 return rtn; 1623 done: 1624 scsi_done(cmd); 1625 return 0; 1626 } 1627 1628 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */ 1629 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost) 1630 { 1631 return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) * 1632 sizeof(struct scatterlist); 1633 } 1634 1635 static blk_status_t scsi_prepare_cmd(struct request *req) 1636 { 1637 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1638 struct scsi_device *sdev = req->q->queuedata; 1639 struct Scsi_Host *shost = sdev->host; 1640 bool in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state); 1641 struct scatterlist *sg; 1642 1643 scsi_init_command(sdev, cmd); 1644 1645 cmd->eh_eflags = 0; 1646 cmd->prot_type = 0; 1647 cmd->prot_flags = 0; 1648 cmd->submitter = 0; 1649 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1650 cmd->underflow = 0; 1651 cmd->transfersize = 0; 1652 cmd->host_scribble = NULL; 1653 cmd->result = 0; 1654 cmd->extra_len = 0; 1655 cmd->state = 0; 1656 if (in_flight) 1657 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state); 1658 1659 /* 1660 * Only clear the driver-private command data if the LLD does not supply 1661 * a function to initialize that data. 1662 */ 1663 if (!shost->hostt->init_cmd_priv) 1664 memset(cmd + 1, 0, shost->hostt->cmd_size); 1665 1666 cmd->prot_op = SCSI_PROT_NORMAL; 1667 if (blk_rq_bytes(req)) 1668 cmd->sc_data_direction = rq_dma_dir(req); 1669 else 1670 cmd->sc_data_direction = DMA_NONE; 1671 1672 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size; 1673 cmd->sdb.table.sgl = sg; 1674 1675 if (scsi_host_get_prot(shost)) { 1676 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer)); 1677 1678 cmd->prot_sdb->table.sgl = 1679 (struct scatterlist *)(cmd->prot_sdb + 1); 1680 } 1681 1682 /* 1683 * Special handling for passthrough commands, which don't go to the ULP 1684 * at all: 1685 */ 1686 if (blk_rq_is_passthrough(req)) 1687 return scsi_setup_scsi_cmnd(sdev, req); 1688 1689 if (sdev->handler && sdev->handler->prep_fn) { 1690 blk_status_t ret = sdev->handler->prep_fn(sdev, req); 1691 1692 if (ret != BLK_STS_OK) 1693 return ret; 1694 } 1695 1696 /* Usually overridden by the ULP */ 1697 cmd->allowed = 0; 1698 memset(cmd->cmnd, 0, sizeof(cmd->cmnd)); 1699 return scsi_cmd_to_driver(cmd)->init_command(cmd); 1700 } 1701 1702 static void scsi_done_internal(struct scsi_cmnd *cmd, bool complete_directly) 1703 { 1704 struct request *req = scsi_cmd_to_rq(cmd); 1705 1706 switch (cmd->submitter) { 1707 case SUBMITTED_BY_BLOCK_LAYER: 1708 break; 1709 case SUBMITTED_BY_SCSI_ERROR_HANDLER: 1710 return scsi_eh_done(cmd); 1711 case SUBMITTED_BY_SCSI_RESET_IOCTL: 1712 return; 1713 } 1714 1715 if (unlikely(blk_should_fake_timeout(scsi_cmd_to_rq(cmd)->q))) 1716 return; 1717 if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state))) 1718 return; 1719 trace_scsi_dispatch_cmd_done(cmd); 1720 1721 if (complete_directly) 1722 blk_mq_complete_request_direct(req, scsi_complete); 1723 else 1724 blk_mq_complete_request(req); 1725 } 1726 1727 void scsi_done(struct scsi_cmnd *cmd) 1728 { 1729 scsi_done_internal(cmd, false); 1730 } 1731 EXPORT_SYMBOL(scsi_done); 1732 1733 void scsi_done_direct(struct scsi_cmnd *cmd) 1734 { 1735 scsi_done_internal(cmd, true); 1736 } 1737 EXPORT_SYMBOL(scsi_done_direct); 1738 1739 static void scsi_mq_put_budget(struct request_queue *q, int budget_token) 1740 { 1741 struct scsi_device *sdev = q->queuedata; 1742 1743 sbitmap_put(&sdev->budget_map, budget_token); 1744 } 1745 1746 /* 1747 * When to reinvoke queueing after a resource shortage. It's 3 msecs to 1748 * not change behaviour from the previous unplug mechanism, experimentation 1749 * may prove this needs changing. 1750 */ 1751 #define SCSI_QUEUE_DELAY 3 1752 1753 static int scsi_mq_get_budget(struct request_queue *q) 1754 { 1755 struct scsi_device *sdev = q->queuedata; 1756 int token = scsi_dev_queue_ready(q, sdev); 1757 1758 if (token >= 0) 1759 return token; 1760 1761 atomic_inc(&sdev->restarts); 1762 1763 /* 1764 * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy). 1765 * .restarts must be incremented before .device_busy is read because the 1766 * code in scsi_run_queue_async() depends on the order of these operations. 1767 */ 1768 smp_mb__after_atomic(); 1769 1770 /* 1771 * If all in-flight requests originated from this LUN are completed 1772 * before reading .device_busy, sdev->device_busy will be observed as 1773 * zero, then blk_mq_delay_run_hw_queues() will dispatch this request 1774 * soon. Otherwise, completion of one of these requests will observe 1775 * the .restarts flag, and the request queue will be run for handling 1776 * this request, see scsi_end_request(). 1777 */ 1778 if (unlikely(scsi_device_busy(sdev) == 0 && 1779 !scsi_device_blocked(sdev))) 1780 blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY); 1781 return -1; 1782 } 1783 1784 static void scsi_mq_set_rq_budget_token(struct request *req, int token) 1785 { 1786 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1787 1788 cmd->budget_token = token; 1789 } 1790 1791 static int scsi_mq_get_rq_budget_token(struct request *req) 1792 { 1793 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1794 1795 return cmd->budget_token; 1796 } 1797 1798 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx, 1799 const struct blk_mq_queue_data *bd) 1800 { 1801 struct request *req = bd->rq; 1802 struct request_queue *q = req->q; 1803 struct scsi_device *sdev = q->queuedata; 1804 struct Scsi_Host *shost = sdev->host; 1805 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1806 blk_status_t ret; 1807 int reason; 1808 1809 WARN_ON_ONCE(cmd->budget_token < 0); 1810 1811 /* 1812 * If the device is not in running state we will reject some or all 1813 * commands. 1814 */ 1815 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) { 1816 ret = scsi_device_state_check(sdev, req); 1817 if (ret != BLK_STS_OK) 1818 goto out_put_budget; 1819 } 1820 1821 ret = BLK_STS_RESOURCE; 1822 if (!scsi_target_queue_ready(shost, sdev)) 1823 goto out_put_budget; 1824 if (unlikely(scsi_host_in_recovery(shost))) { 1825 if (cmd->flags & SCMD_FAIL_IF_RECOVERING) 1826 ret = BLK_STS_OFFLINE; 1827 goto out_dec_target_busy; 1828 } 1829 if (!scsi_host_queue_ready(q, shost, sdev, cmd)) 1830 goto out_dec_target_busy; 1831 1832 if (!(req->rq_flags & RQF_DONTPREP)) { 1833 ret = scsi_prepare_cmd(req); 1834 if (ret != BLK_STS_OK) 1835 goto out_dec_host_busy; 1836 req->rq_flags |= RQF_DONTPREP; 1837 } else { 1838 clear_bit(SCMD_STATE_COMPLETE, &cmd->state); 1839 } 1840 1841 cmd->flags &= SCMD_PRESERVED_FLAGS; 1842 if (sdev->simple_tags) 1843 cmd->flags |= SCMD_TAGGED; 1844 if (bd->last) 1845 cmd->flags |= SCMD_LAST; 1846 1847 scsi_set_resid(cmd, 0); 1848 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 1849 cmd->submitter = SUBMITTED_BY_BLOCK_LAYER; 1850 1851 blk_mq_start_request(req); 1852 reason = scsi_dispatch_cmd(cmd); 1853 if (reason) { 1854 scsi_set_blocked(cmd, reason); 1855 ret = BLK_STS_RESOURCE; 1856 goto out_dec_host_busy; 1857 } 1858 1859 return BLK_STS_OK; 1860 1861 out_dec_host_busy: 1862 scsi_dec_host_busy(shost, cmd); 1863 out_dec_target_busy: 1864 if (scsi_target(sdev)->can_queue > 0) 1865 atomic_dec(&scsi_target(sdev)->target_busy); 1866 out_put_budget: 1867 scsi_mq_put_budget(q, cmd->budget_token); 1868 cmd->budget_token = -1; 1869 switch (ret) { 1870 case BLK_STS_OK: 1871 break; 1872 case BLK_STS_RESOURCE: 1873 case BLK_STS_ZONE_RESOURCE: 1874 if (scsi_device_blocked(sdev)) 1875 ret = BLK_STS_DEV_RESOURCE; 1876 break; 1877 case BLK_STS_AGAIN: 1878 cmd->result = DID_BUS_BUSY << 16; 1879 if (req->rq_flags & RQF_DONTPREP) 1880 scsi_mq_uninit_cmd(cmd); 1881 break; 1882 default: 1883 if (unlikely(!scsi_device_online(sdev))) 1884 cmd->result = DID_NO_CONNECT << 16; 1885 else 1886 cmd->result = DID_ERROR << 16; 1887 /* 1888 * Make sure to release all allocated resources when 1889 * we hit an error, as we will never see this command 1890 * again. 1891 */ 1892 if (req->rq_flags & RQF_DONTPREP) 1893 scsi_mq_uninit_cmd(cmd); 1894 scsi_run_queue_async(sdev); 1895 break; 1896 } 1897 return ret; 1898 } 1899 1900 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 1901 unsigned int hctx_idx, unsigned int numa_node) 1902 { 1903 struct Scsi_Host *shost = set->driver_data; 1904 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1905 struct scatterlist *sg; 1906 int ret = 0; 1907 1908 cmd->sense_buffer = 1909 kmem_cache_alloc_node(scsi_sense_cache, GFP_KERNEL, numa_node); 1910 if (!cmd->sense_buffer) 1911 return -ENOMEM; 1912 1913 if (scsi_host_get_prot(shost)) { 1914 sg = (void *)cmd + sizeof(struct scsi_cmnd) + 1915 shost->hostt->cmd_size; 1916 cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost); 1917 } 1918 1919 if (shost->hostt->init_cmd_priv) { 1920 ret = shost->hostt->init_cmd_priv(shost, cmd); 1921 if (ret < 0) 1922 kmem_cache_free(scsi_sense_cache, cmd->sense_buffer); 1923 } 1924 1925 return ret; 1926 } 1927 1928 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq, 1929 unsigned int hctx_idx) 1930 { 1931 struct Scsi_Host *shost = set->driver_data; 1932 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1933 1934 if (shost->hostt->exit_cmd_priv) 1935 shost->hostt->exit_cmd_priv(shost, cmd); 1936 kmem_cache_free(scsi_sense_cache, cmd->sense_buffer); 1937 } 1938 1939 1940 static int scsi_mq_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob) 1941 { 1942 struct Scsi_Host *shost = hctx->driver_data; 1943 1944 if (shost->hostt->mq_poll) 1945 return shost->hostt->mq_poll(shost, hctx->queue_num); 1946 1947 return 0; 1948 } 1949 1950 static int scsi_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 1951 unsigned int hctx_idx) 1952 { 1953 struct Scsi_Host *shost = data; 1954 1955 hctx->driver_data = shost; 1956 return 0; 1957 } 1958 1959 static void scsi_map_queues(struct blk_mq_tag_set *set) 1960 { 1961 struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set); 1962 1963 if (shost->hostt->map_queues) 1964 return shost->hostt->map_queues(shost); 1965 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 1966 } 1967 1968 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q) 1969 { 1970 struct device *dev = shost->dma_dev; 1971 1972 /* 1973 * this limit is imposed by hardware restrictions 1974 */ 1975 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize, 1976 SG_MAX_SEGMENTS)); 1977 1978 if (scsi_host_prot_dma(shost)) { 1979 shost->sg_prot_tablesize = 1980 min_not_zero(shost->sg_prot_tablesize, 1981 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS); 1982 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize); 1983 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize); 1984 } 1985 1986 blk_queue_max_hw_sectors(q, shost->max_sectors); 1987 blk_queue_segment_boundary(q, shost->dma_boundary); 1988 dma_set_seg_boundary(dev, shost->dma_boundary); 1989 1990 blk_queue_max_segment_size(q, shost->max_segment_size); 1991 blk_queue_virt_boundary(q, shost->virt_boundary_mask); 1992 dma_set_max_seg_size(dev, queue_max_segment_size(q)); 1993 1994 /* 1995 * Set a reasonable default alignment: The larger of 32-byte (dword), 1996 * which is a common minimum for HBAs, and the minimum DMA alignment, 1997 * which is set by the platform. 1998 * 1999 * Devices that require a bigger alignment can increase it later. 2000 */ 2001 blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1); 2002 } 2003 EXPORT_SYMBOL_GPL(__scsi_init_queue); 2004 2005 static const struct blk_mq_ops scsi_mq_ops_no_commit = { 2006 .get_budget = scsi_mq_get_budget, 2007 .put_budget = scsi_mq_put_budget, 2008 .queue_rq = scsi_queue_rq, 2009 .complete = scsi_complete, 2010 .timeout = scsi_timeout, 2011 #ifdef CONFIG_BLK_DEBUG_FS 2012 .show_rq = scsi_show_rq, 2013 #endif 2014 .init_request = scsi_mq_init_request, 2015 .exit_request = scsi_mq_exit_request, 2016 .cleanup_rq = scsi_cleanup_rq, 2017 .busy = scsi_mq_lld_busy, 2018 .map_queues = scsi_map_queues, 2019 .init_hctx = scsi_init_hctx, 2020 .poll = scsi_mq_poll, 2021 .set_rq_budget_token = scsi_mq_set_rq_budget_token, 2022 .get_rq_budget_token = scsi_mq_get_rq_budget_token, 2023 }; 2024 2025 2026 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx) 2027 { 2028 struct Scsi_Host *shost = hctx->driver_data; 2029 2030 shost->hostt->commit_rqs(shost, hctx->queue_num); 2031 } 2032 2033 static const struct blk_mq_ops scsi_mq_ops = { 2034 .get_budget = scsi_mq_get_budget, 2035 .put_budget = scsi_mq_put_budget, 2036 .queue_rq = scsi_queue_rq, 2037 .commit_rqs = scsi_commit_rqs, 2038 .complete = scsi_complete, 2039 .timeout = scsi_timeout, 2040 #ifdef CONFIG_BLK_DEBUG_FS 2041 .show_rq = scsi_show_rq, 2042 #endif 2043 .init_request = scsi_mq_init_request, 2044 .exit_request = scsi_mq_exit_request, 2045 .cleanup_rq = scsi_cleanup_rq, 2046 .busy = scsi_mq_lld_busy, 2047 .map_queues = scsi_map_queues, 2048 .init_hctx = scsi_init_hctx, 2049 .poll = scsi_mq_poll, 2050 .set_rq_budget_token = scsi_mq_set_rq_budget_token, 2051 .get_rq_budget_token = scsi_mq_get_rq_budget_token, 2052 }; 2053 2054 int scsi_mq_setup_tags(struct Scsi_Host *shost) 2055 { 2056 unsigned int cmd_size, sgl_size; 2057 struct blk_mq_tag_set *tag_set = &shost->tag_set; 2058 2059 sgl_size = max_t(unsigned int, sizeof(struct scatterlist), 2060 scsi_mq_inline_sgl_size(shost)); 2061 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size; 2062 if (scsi_host_get_prot(shost)) 2063 cmd_size += sizeof(struct scsi_data_buffer) + 2064 sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT; 2065 2066 memset(tag_set, 0, sizeof(*tag_set)); 2067 if (shost->hostt->commit_rqs) 2068 tag_set->ops = &scsi_mq_ops; 2069 else 2070 tag_set->ops = &scsi_mq_ops_no_commit; 2071 tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1; 2072 tag_set->nr_maps = shost->nr_maps ? : 1; 2073 tag_set->queue_depth = shost->can_queue; 2074 tag_set->cmd_size = cmd_size; 2075 tag_set->numa_node = dev_to_node(shost->dma_dev); 2076 tag_set->flags = BLK_MQ_F_SHOULD_MERGE; 2077 tag_set->flags |= 2078 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy); 2079 if (shost->queuecommand_may_block) 2080 tag_set->flags |= BLK_MQ_F_BLOCKING; 2081 tag_set->driver_data = shost; 2082 if (shost->host_tagset) 2083 tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED; 2084 2085 return blk_mq_alloc_tag_set(tag_set); 2086 } 2087 2088 void scsi_mq_free_tags(struct kref *kref) 2089 { 2090 struct Scsi_Host *shost = container_of(kref, typeof(*shost), 2091 tagset_refcnt); 2092 2093 blk_mq_free_tag_set(&shost->tag_set); 2094 complete(&shost->tagset_freed); 2095 } 2096 2097 /** 2098 * scsi_device_from_queue - return sdev associated with a request_queue 2099 * @q: The request queue to return the sdev from 2100 * 2101 * Return the sdev associated with a request queue or NULL if the 2102 * request_queue does not reference a SCSI device. 2103 */ 2104 struct scsi_device *scsi_device_from_queue(struct request_queue *q) 2105 { 2106 struct scsi_device *sdev = NULL; 2107 2108 if (q->mq_ops == &scsi_mq_ops_no_commit || 2109 q->mq_ops == &scsi_mq_ops) 2110 sdev = q->queuedata; 2111 if (!sdev || !get_device(&sdev->sdev_gendev)) 2112 sdev = NULL; 2113 2114 return sdev; 2115 } 2116 /* 2117 * pktcdvd should have been integrated into the SCSI layers, but for historical 2118 * reasons like the old IDE driver it isn't. This export allows it to safely 2119 * probe if a given device is a SCSI one and only attach to that. 2120 */ 2121 #ifdef CONFIG_CDROM_PKTCDVD_MODULE 2122 EXPORT_SYMBOL_GPL(scsi_device_from_queue); 2123 #endif 2124 2125 /** 2126 * scsi_block_requests - Utility function used by low-level drivers to prevent 2127 * further commands from being queued to the device. 2128 * @shost: host in question 2129 * 2130 * There is no timer nor any other means by which the requests get unblocked 2131 * other than the low-level driver calling scsi_unblock_requests(). 2132 */ 2133 void scsi_block_requests(struct Scsi_Host *shost) 2134 { 2135 shost->host_self_blocked = 1; 2136 } 2137 EXPORT_SYMBOL(scsi_block_requests); 2138 2139 /** 2140 * scsi_unblock_requests - Utility function used by low-level drivers to allow 2141 * further commands to be queued to the device. 2142 * @shost: host in question 2143 * 2144 * There is no timer nor any other means by which the requests get unblocked 2145 * other than the low-level driver calling scsi_unblock_requests(). This is done 2146 * as an API function so that changes to the internals of the scsi mid-layer 2147 * won't require wholesale changes to drivers that use this feature. 2148 */ 2149 void scsi_unblock_requests(struct Scsi_Host *shost) 2150 { 2151 shost->host_self_blocked = 0; 2152 scsi_run_host_queues(shost); 2153 } 2154 EXPORT_SYMBOL(scsi_unblock_requests); 2155 2156 void scsi_exit_queue(void) 2157 { 2158 kmem_cache_destroy(scsi_sense_cache); 2159 } 2160 2161 /** 2162 * scsi_mode_select - issue a mode select 2163 * @sdev: SCSI device to be queried 2164 * @pf: Page format bit (1 == standard, 0 == vendor specific) 2165 * @sp: Save page bit (0 == don't save, 1 == save) 2166 * @buffer: request buffer (may not be smaller than eight bytes) 2167 * @len: length of request buffer. 2168 * @timeout: command timeout 2169 * @retries: number of retries before failing 2170 * @data: returns a structure abstracting the mode header data 2171 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2172 * must be SCSI_SENSE_BUFFERSIZE big. 2173 * 2174 * Returns zero if successful; negative error number or scsi 2175 * status on error 2176 * 2177 */ 2178 int scsi_mode_select(struct scsi_device *sdev, int pf, int sp, 2179 unsigned char *buffer, int len, int timeout, int retries, 2180 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2181 { 2182 unsigned char cmd[10]; 2183 unsigned char *real_buffer; 2184 const struct scsi_exec_args exec_args = { 2185 .sshdr = sshdr, 2186 }; 2187 int ret; 2188 2189 memset(cmd, 0, sizeof(cmd)); 2190 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0); 2191 2192 /* 2193 * Use MODE SELECT(10) if the device asked for it or if the mode page 2194 * and the mode select header cannot fit within the maximumm 255 bytes 2195 * of the MODE SELECT(6) command. 2196 */ 2197 if (sdev->use_10_for_ms || 2198 len + 4 > 255 || 2199 data->block_descriptor_length > 255) { 2200 if (len > 65535 - 8) 2201 return -EINVAL; 2202 real_buffer = kmalloc(8 + len, GFP_KERNEL); 2203 if (!real_buffer) 2204 return -ENOMEM; 2205 memcpy(real_buffer + 8, buffer, len); 2206 len += 8; 2207 real_buffer[0] = 0; 2208 real_buffer[1] = 0; 2209 real_buffer[2] = data->medium_type; 2210 real_buffer[3] = data->device_specific; 2211 real_buffer[4] = data->longlba ? 0x01 : 0; 2212 real_buffer[5] = 0; 2213 put_unaligned_be16(data->block_descriptor_length, 2214 &real_buffer[6]); 2215 2216 cmd[0] = MODE_SELECT_10; 2217 put_unaligned_be16(len, &cmd[7]); 2218 } else { 2219 if (data->longlba) 2220 return -EINVAL; 2221 2222 real_buffer = kmalloc(4 + len, GFP_KERNEL); 2223 if (!real_buffer) 2224 return -ENOMEM; 2225 memcpy(real_buffer + 4, buffer, len); 2226 len += 4; 2227 real_buffer[0] = 0; 2228 real_buffer[1] = data->medium_type; 2229 real_buffer[2] = data->device_specific; 2230 real_buffer[3] = data->block_descriptor_length; 2231 2232 cmd[0] = MODE_SELECT; 2233 cmd[4] = len; 2234 } 2235 2236 ret = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, real_buffer, len, 2237 timeout, retries, &exec_args); 2238 kfree(real_buffer); 2239 return ret; 2240 } 2241 EXPORT_SYMBOL_GPL(scsi_mode_select); 2242 2243 /** 2244 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary. 2245 * @sdev: SCSI device to be queried 2246 * @dbd: set to prevent mode sense from returning block descriptors 2247 * @modepage: mode page being requested 2248 * @subpage: sub-page of the mode page being requested 2249 * @buffer: request buffer (may not be smaller than eight bytes) 2250 * @len: length of request buffer. 2251 * @timeout: command timeout 2252 * @retries: number of retries before failing 2253 * @data: returns a structure abstracting the mode header data 2254 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2255 * must be SCSI_SENSE_BUFFERSIZE big. 2256 * 2257 * Returns zero if successful, or a negative error number on failure 2258 */ 2259 int 2260 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, int subpage, 2261 unsigned char *buffer, int len, int timeout, int retries, 2262 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2263 { 2264 unsigned char cmd[12]; 2265 int use_10_for_ms; 2266 int header_length; 2267 int result; 2268 struct scsi_sense_hdr my_sshdr; 2269 struct scsi_failure failure_defs[] = { 2270 { 2271 .sense = UNIT_ATTENTION, 2272 .asc = SCMD_FAILURE_ASC_ANY, 2273 .ascq = SCMD_FAILURE_ASCQ_ANY, 2274 .allowed = retries, 2275 .result = SAM_STAT_CHECK_CONDITION, 2276 }, 2277 {} 2278 }; 2279 struct scsi_failures failures = { 2280 .failure_definitions = failure_defs, 2281 }; 2282 const struct scsi_exec_args exec_args = { 2283 /* caller might not be interested in sense, but we need it */ 2284 .sshdr = sshdr ? : &my_sshdr, 2285 .failures = &failures, 2286 }; 2287 2288 memset(data, 0, sizeof(*data)); 2289 memset(&cmd[0], 0, 12); 2290 2291 dbd = sdev->set_dbd_for_ms ? 8 : dbd; 2292 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */ 2293 cmd[2] = modepage; 2294 cmd[3] = subpage; 2295 2296 sshdr = exec_args.sshdr; 2297 2298 retry: 2299 use_10_for_ms = sdev->use_10_for_ms || len > 255; 2300 2301 if (use_10_for_ms) { 2302 if (len < 8 || len > 65535) 2303 return -EINVAL; 2304 2305 cmd[0] = MODE_SENSE_10; 2306 put_unaligned_be16(len, &cmd[7]); 2307 header_length = 8; 2308 } else { 2309 if (len < 4) 2310 return -EINVAL; 2311 2312 cmd[0] = MODE_SENSE; 2313 cmd[4] = len; 2314 header_length = 4; 2315 } 2316 2317 memset(buffer, 0, len); 2318 2319 result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, buffer, len, 2320 timeout, retries, &exec_args); 2321 if (result < 0) 2322 return result; 2323 2324 /* This code looks awful: what it's doing is making sure an 2325 * ILLEGAL REQUEST sense return identifies the actual command 2326 * byte as the problem. MODE_SENSE commands can return 2327 * ILLEGAL REQUEST if the code page isn't supported */ 2328 2329 if (!scsi_status_is_good(result)) { 2330 if (scsi_sense_valid(sshdr)) { 2331 if ((sshdr->sense_key == ILLEGAL_REQUEST) && 2332 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) { 2333 /* 2334 * Invalid command operation code: retry using 2335 * MODE SENSE(6) if this was a MODE SENSE(10) 2336 * request, except if the request mode page is 2337 * too large for MODE SENSE single byte 2338 * allocation length field. 2339 */ 2340 if (use_10_for_ms) { 2341 if (len > 255) 2342 return -EIO; 2343 sdev->use_10_for_ms = 0; 2344 goto retry; 2345 } 2346 } 2347 } 2348 return -EIO; 2349 } 2350 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b && 2351 (modepage == 6 || modepage == 8))) { 2352 /* Initio breakage? */ 2353 header_length = 0; 2354 data->length = 13; 2355 data->medium_type = 0; 2356 data->device_specific = 0; 2357 data->longlba = 0; 2358 data->block_descriptor_length = 0; 2359 } else if (use_10_for_ms) { 2360 data->length = get_unaligned_be16(&buffer[0]) + 2; 2361 data->medium_type = buffer[2]; 2362 data->device_specific = buffer[3]; 2363 data->longlba = buffer[4] & 0x01; 2364 data->block_descriptor_length = get_unaligned_be16(&buffer[6]); 2365 } else { 2366 data->length = buffer[0] + 1; 2367 data->medium_type = buffer[1]; 2368 data->device_specific = buffer[2]; 2369 data->block_descriptor_length = buffer[3]; 2370 } 2371 data->header_length = header_length; 2372 2373 return 0; 2374 } 2375 EXPORT_SYMBOL(scsi_mode_sense); 2376 2377 /** 2378 * scsi_test_unit_ready - test if unit is ready 2379 * @sdev: scsi device to change the state of. 2380 * @timeout: command timeout 2381 * @retries: number of retries before failing 2382 * @sshdr: outpout pointer for decoded sense information. 2383 * 2384 * Returns zero if unsuccessful or an error if TUR failed. For 2385 * removable media, UNIT_ATTENTION sets ->changed flag. 2386 **/ 2387 int 2388 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries, 2389 struct scsi_sense_hdr *sshdr) 2390 { 2391 char cmd[] = { 2392 TEST_UNIT_READY, 0, 0, 0, 0, 0, 2393 }; 2394 const struct scsi_exec_args exec_args = { 2395 .sshdr = sshdr, 2396 }; 2397 int result; 2398 2399 /* try to eat the UNIT_ATTENTION if there are enough retries */ 2400 do { 2401 result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, NULL, 0, 2402 timeout, 1, &exec_args); 2403 if (sdev->removable && result > 0 && scsi_sense_valid(sshdr) && 2404 sshdr->sense_key == UNIT_ATTENTION) 2405 sdev->changed = 1; 2406 } while (result > 0 && scsi_sense_valid(sshdr) && 2407 sshdr->sense_key == UNIT_ATTENTION && --retries); 2408 2409 return result; 2410 } 2411 EXPORT_SYMBOL(scsi_test_unit_ready); 2412 2413 /** 2414 * scsi_device_set_state - Take the given device through the device state model. 2415 * @sdev: scsi device to change the state of. 2416 * @state: state to change to. 2417 * 2418 * Returns zero if successful or an error if the requested 2419 * transition is illegal. 2420 */ 2421 int 2422 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state) 2423 { 2424 enum scsi_device_state oldstate = sdev->sdev_state; 2425 2426 if (state == oldstate) 2427 return 0; 2428 2429 switch (state) { 2430 case SDEV_CREATED: 2431 switch (oldstate) { 2432 case SDEV_CREATED_BLOCK: 2433 break; 2434 default: 2435 goto illegal; 2436 } 2437 break; 2438 2439 case SDEV_RUNNING: 2440 switch (oldstate) { 2441 case SDEV_CREATED: 2442 case SDEV_OFFLINE: 2443 case SDEV_TRANSPORT_OFFLINE: 2444 case SDEV_QUIESCE: 2445 case SDEV_BLOCK: 2446 break; 2447 default: 2448 goto illegal; 2449 } 2450 break; 2451 2452 case SDEV_QUIESCE: 2453 switch (oldstate) { 2454 case SDEV_RUNNING: 2455 case SDEV_OFFLINE: 2456 case SDEV_TRANSPORT_OFFLINE: 2457 break; 2458 default: 2459 goto illegal; 2460 } 2461 break; 2462 2463 case SDEV_OFFLINE: 2464 case SDEV_TRANSPORT_OFFLINE: 2465 switch (oldstate) { 2466 case SDEV_CREATED: 2467 case SDEV_RUNNING: 2468 case SDEV_QUIESCE: 2469 case SDEV_BLOCK: 2470 break; 2471 default: 2472 goto illegal; 2473 } 2474 break; 2475 2476 case SDEV_BLOCK: 2477 switch (oldstate) { 2478 case SDEV_RUNNING: 2479 case SDEV_CREATED_BLOCK: 2480 case SDEV_QUIESCE: 2481 case SDEV_OFFLINE: 2482 break; 2483 default: 2484 goto illegal; 2485 } 2486 break; 2487 2488 case SDEV_CREATED_BLOCK: 2489 switch (oldstate) { 2490 case SDEV_CREATED: 2491 break; 2492 default: 2493 goto illegal; 2494 } 2495 break; 2496 2497 case SDEV_CANCEL: 2498 switch (oldstate) { 2499 case SDEV_CREATED: 2500 case SDEV_RUNNING: 2501 case SDEV_QUIESCE: 2502 case SDEV_OFFLINE: 2503 case SDEV_TRANSPORT_OFFLINE: 2504 break; 2505 default: 2506 goto illegal; 2507 } 2508 break; 2509 2510 case SDEV_DEL: 2511 switch (oldstate) { 2512 case SDEV_CREATED: 2513 case SDEV_RUNNING: 2514 case SDEV_OFFLINE: 2515 case SDEV_TRANSPORT_OFFLINE: 2516 case SDEV_CANCEL: 2517 case SDEV_BLOCK: 2518 case SDEV_CREATED_BLOCK: 2519 break; 2520 default: 2521 goto illegal; 2522 } 2523 break; 2524 2525 } 2526 sdev->offline_already = false; 2527 sdev->sdev_state = state; 2528 return 0; 2529 2530 illegal: 2531 SCSI_LOG_ERROR_RECOVERY(1, 2532 sdev_printk(KERN_ERR, sdev, 2533 "Illegal state transition %s->%s", 2534 scsi_device_state_name(oldstate), 2535 scsi_device_state_name(state)) 2536 ); 2537 return -EINVAL; 2538 } 2539 EXPORT_SYMBOL(scsi_device_set_state); 2540 2541 /** 2542 * scsi_evt_emit - emit a single SCSI device uevent 2543 * @sdev: associated SCSI device 2544 * @evt: event to emit 2545 * 2546 * Send a single uevent (scsi_event) to the associated scsi_device. 2547 */ 2548 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt) 2549 { 2550 int idx = 0; 2551 char *envp[3]; 2552 2553 switch (evt->evt_type) { 2554 case SDEV_EVT_MEDIA_CHANGE: 2555 envp[idx++] = "SDEV_MEDIA_CHANGE=1"; 2556 break; 2557 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2558 scsi_rescan_device(sdev); 2559 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED"; 2560 break; 2561 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2562 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED"; 2563 break; 2564 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2565 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED"; 2566 break; 2567 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2568 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED"; 2569 break; 2570 case SDEV_EVT_LUN_CHANGE_REPORTED: 2571 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED"; 2572 break; 2573 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2574 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED"; 2575 break; 2576 case SDEV_EVT_POWER_ON_RESET_OCCURRED: 2577 envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED"; 2578 break; 2579 default: 2580 /* do nothing */ 2581 break; 2582 } 2583 2584 envp[idx++] = NULL; 2585 2586 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp); 2587 } 2588 2589 /** 2590 * scsi_evt_thread - send a uevent for each scsi event 2591 * @work: work struct for scsi_device 2592 * 2593 * Dispatch queued events to their associated scsi_device kobjects 2594 * as uevents. 2595 */ 2596 void scsi_evt_thread(struct work_struct *work) 2597 { 2598 struct scsi_device *sdev; 2599 enum scsi_device_event evt_type; 2600 LIST_HEAD(event_list); 2601 2602 sdev = container_of(work, struct scsi_device, event_work); 2603 2604 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++) 2605 if (test_and_clear_bit(evt_type, sdev->pending_events)) 2606 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL); 2607 2608 while (1) { 2609 struct scsi_event *evt; 2610 struct list_head *this, *tmp; 2611 unsigned long flags; 2612 2613 spin_lock_irqsave(&sdev->list_lock, flags); 2614 list_splice_init(&sdev->event_list, &event_list); 2615 spin_unlock_irqrestore(&sdev->list_lock, flags); 2616 2617 if (list_empty(&event_list)) 2618 break; 2619 2620 list_for_each_safe(this, tmp, &event_list) { 2621 evt = list_entry(this, struct scsi_event, node); 2622 list_del(&evt->node); 2623 scsi_evt_emit(sdev, evt); 2624 kfree(evt); 2625 } 2626 } 2627 } 2628 2629 /** 2630 * sdev_evt_send - send asserted event to uevent thread 2631 * @sdev: scsi_device event occurred on 2632 * @evt: event to send 2633 * 2634 * Assert scsi device event asynchronously. 2635 */ 2636 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt) 2637 { 2638 unsigned long flags; 2639 2640 #if 0 2641 /* FIXME: currently this check eliminates all media change events 2642 * for polled devices. Need to update to discriminate between AN 2643 * and polled events */ 2644 if (!test_bit(evt->evt_type, sdev->supported_events)) { 2645 kfree(evt); 2646 return; 2647 } 2648 #endif 2649 2650 spin_lock_irqsave(&sdev->list_lock, flags); 2651 list_add_tail(&evt->node, &sdev->event_list); 2652 schedule_work(&sdev->event_work); 2653 spin_unlock_irqrestore(&sdev->list_lock, flags); 2654 } 2655 EXPORT_SYMBOL_GPL(sdev_evt_send); 2656 2657 /** 2658 * sdev_evt_alloc - allocate a new scsi event 2659 * @evt_type: type of event to allocate 2660 * @gfpflags: GFP flags for allocation 2661 * 2662 * Allocates and returns a new scsi_event. 2663 */ 2664 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type, 2665 gfp_t gfpflags) 2666 { 2667 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags); 2668 if (!evt) 2669 return NULL; 2670 2671 evt->evt_type = evt_type; 2672 INIT_LIST_HEAD(&evt->node); 2673 2674 /* evt_type-specific initialization, if any */ 2675 switch (evt_type) { 2676 case SDEV_EVT_MEDIA_CHANGE: 2677 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2678 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2679 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2680 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2681 case SDEV_EVT_LUN_CHANGE_REPORTED: 2682 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2683 case SDEV_EVT_POWER_ON_RESET_OCCURRED: 2684 default: 2685 /* do nothing */ 2686 break; 2687 } 2688 2689 return evt; 2690 } 2691 EXPORT_SYMBOL_GPL(sdev_evt_alloc); 2692 2693 /** 2694 * sdev_evt_send_simple - send asserted event to uevent thread 2695 * @sdev: scsi_device event occurred on 2696 * @evt_type: type of event to send 2697 * @gfpflags: GFP flags for allocation 2698 * 2699 * Assert scsi device event asynchronously, given an event type. 2700 */ 2701 void sdev_evt_send_simple(struct scsi_device *sdev, 2702 enum scsi_device_event evt_type, gfp_t gfpflags) 2703 { 2704 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags); 2705 if (!evt) { 2706 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n", 2707 evt_type); 2708 return; 2709 } 2710 2711 sdev_evt_send(sdev, evt); 2712 } 2713 EXPORT_SYMBOL_GPL(sdev_evt_send_simple); 2714 2715 /** 2716 * scsi_device_quiesce - Block all commands except power management. 2717 * @sdev: scsi device to quiesce. 2718 * 2719 * This works by trying to transition to the SDEV_QUIESCE state 2720 * (which must be a legal transition). When the device is in this 2721 * state, only power management requests will be accepted, all others will 2722 * be deferred. 2723 * 2724 * Must be called with user context, may sleep. 2725 * 2726 * Returns zero if unsuccessful or an error if not. 2727 */ 2728 int 2729 scsi_device_quiesce(struct scsi_device *sdev) 2730 { 2731 struct request_queue *q = sdev->request_queue; 2732 int err; 2733 2734 /* 2735 * It is allowed to call scsi_device_quiesce() multiple times from 2736 * the same context but concurrent scsi_device_quiesce() calls are 2737 * not allowed. 2738 */ 2739 WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current); 2740 2741 if (sdev->quiesced_by == current) 2742 return 0; 2743 2744 blk_set_pm_only(q); 2745 2746 blk_mq_freeze_queue(q); 2747 /* 2748 * Ensure that the effect of blk_set_pm_only() will be visible 2749 * for percpu_ref_tryget() callers that occur after the queue 2750 * unfreeze even if the queue was already frozen before this function 2751 * was called. See also https://lwn.net/Articles/573497/. 2752 */ 2753 synchronize_rcu(); 2754 blk_mq_unfreeze_queue(q); 2755 2756 mutex_lock(&sdev->state_mutex); 2757 err = scsi_device_set_state(sdev, SDEV_QUIESCE); 2758 if (err == 0) 2759 sdev->quiesced_by = current; 2760 else 2761 blk_clear_pm_only(q); 2762 mutex_unlock(&sdev->state_mutex); 2763 2764 return err; 2765 } 2766 EXPORT_SYMBOL(scsi_device_quiesce); 2767 2768 /** 2769 * scsi_device_resume - Restart user issued commands to a quiesced device. 2770 * @sdev: scsi device to resume. 2771 * 2772 * Moves the device from quiesced back to running and restarts the 2773 * queues. 2774 * 2775 * Must be called with user context, may sleep. 2776 */ 2777 void scsi_device_resume(struct scsi_device *sdev) 2778 { 2779 /* check if the device state was mutated prior to resume, and if 2780 * so assume the state is being managed elsewhere (for example 2781 * device deleted during suspend) 2782 */ 2783 mutex_lock(&sdev->state_mutex); 2784 if (sdev->sdev_state == SDEV_QUIESCE) 2785 scsi_device_set_state(sdev, SDEV_RUNNING); 2786 if (sdev->quiesced_by) { 2787 sdev->quiesced_by = NULL; 2788 blk_clear_pm_only(sdev->request_queue); 2789 } 2790 mutex_unlock(&sdev->state_mutex); 2791 } 2792 EXPORT_SYMBOL(scsi_device_resume); 2793 2794 static void 2795 device_quiesce_fn(struct scsi_device *sdev, void *data) 2796 { 2797 scsi_device_quiesce(sdev); 2798 } 2799 2800 void 2801 scsi_target_quiesce(struct scsi_target *starget) 2802 { 2803 starget_for_each_device(starget, NULL, device_quiesce_fn); 2804 } 2805 EXPORT_SYMBOL(scsi_target_quiesce); 2806 2807 static void 2808 device_resume_fn(struct scsi_device *sdev, void *data) 2809 { 2810 scsi_device_resume(sdev); 2811 } 2812 2813 void 2814 scsi_target_resume(struct scsi_target *starget) 2815 { 2816 starget_for_each_device(starget, NULL, device_resume_fn); 2817 } 2818 EXPORT_SYMBOL(scsi_target_resume); 2819 2820 static int __scsi_internal_device_block_nowait(struct scsi_device *sdev) 2821 { 2822 if (scsi_device_set_state(sdev, SDEV_BLOCK)) 2823 return scsi_device_set_state(sdev, SDEV_CREATED_BLOCK); 2824 2825 return 0; 2826 } 2827 2828 void scsi_start_queue(struct scsi_device *sdev) 2829 { 2830 if (cmpxchg(&sdev->queue_stopped, 1, 0)) 2831 blk_mq_unquiesce_queue(sdev->request_queue); 2832 } 2833 2834 static void scsi_stop_queue(struct scsi_device *sdev) 2835 { 2836 /* 2837 * The atomic variable of ->queue_stopped covers that 2838 * blk_mq_quiesce_queue* is balanced with blk_mq_unquiesce_queue. 2839 * 2840 * The caller needs to wait until quiesce is done. 2841 */ 2842 if (!cmpxchg(&sdev->queue_stopped, 0, 1)) 2843 blk_mq_quiesce_queue_nowait(sdev->request_queue); 2844 } 2845 2846 /** 2847 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state 2848 * @sdev: device to block 2849 * 2850 * Pause SCSI command processing on the specified device. Does not sleep. 2851 * 2852 * Returns zero if successful or a negative error code upon failure. 2853 * 2854 * Notes: 2855 * This routine transitions the device to the SDEV_BLOCK state (which must be 2856 * a legal transition). When the device is in this state, command processing 2857 * is paused until the device leaves the SDEV_BLOCK state. See also 2858 * scsi_internal_device_unblock_nowait(). 2859 */ 2860 int scsi_internal_device_block_nowait(struct scsi_device *sdev) 2861 { 2862 int ret = __scsi_internal_device_block_nowait(sdev); 2863 2864 /* 2865 * The device has transitioned to SDEV_BLOCK. Stop the 2866 * block layer from calling the midlayer with this device's 2867 * request queue. 2868 */ 2869 if (!ret) 2870 scsi_stop_queue(sdev); 2871 return ret; 2872 } 2873 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait); 2874 2875 /** 2876 * scsi_device_block - try to transition to the SDEV_BLOCK state 2877 * @sdev: device to block 2878 * @data: dummy argument, ignored 2879 * 2880 * Pause SCSI command processing on the specified device. Callers must wait 2881 * until all ongoing scsi_queue_rq() calls have finished after this function 2882 * returns. 2883 * 2884 * Note: 2885 * This routine transitions the device to the SDEV_BLOCK state (which must be 2886 * a legal transition). When the device is in this state, command processing 2887 * is paused until the device leaves the SDEV_BLOCK state. See also 2888 * scsi_internal_device_unblock(). 2889 */ 2890 static void scsi_device_block(struct scsi_device *sdev, void *data) 2891 { 2892 int err; 2893 enum scsi_device_state state; 2894 2895 mutex_lock(&sdev->state_mutex); 2896 err = __scsi_internal_device_block_nowait(sdev); 2897 state = sdev->sdev_state; 2898 if (err == 0) 2899 /* 2900 * scsi_stop_queue() must be called with the state_mutex 2901 * held. Otherwise a simultaneous scsi_start_queue() call 2902 * might unquiesce the queue before we quiesce it. 2903 */ 2904 scsi_stop_queue(sdev); 2905 2906 mutex_unlock(&sdev->state_mutex); 2907 2908 WARN_ONCE(err, "%s: failed to block %s in state %d\n", 2909 __func__, dev_name(&sdev->sdev_gendev), state); 2910 } 2911 2912 /** 2913 * scsi_internal_device_unblock_nowait - resume a device after a block request 2914 * @sdev: device to resume 2915 * @new_state: state to set the device to after unblocking 2916 * 2917 * Restart the device queue for a previously suspended SCSI device. Does not 2918 * sleep. 2919 * 2920 * Returns zero if successful or a negative error code upon failure. 2921 * 2922 * Notes: 2923 * This routine transitions the device to the SDEV_RUNNING state or to one of 2924 * the offline states (which must be a legal transition) allowing the midlayer 2925 * to goose the queue for this device. 2926 */ 2927 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev, 2928 enum scsi_device_state new_state) 2929 { 2930 switch (new_state) { 2931 case SDEV_RUNNING: 2932 case SDEV_TRANSPORT_OFFLINE: 2933 break; 2934 default: 2935 return -EINVAL; 2936 } 2937 2938 /* 2939 * Try to transition the scsi device to SDEV_RUNNING or one of the 2940 * offlined states and goose the device queue if successful. 2941 */ 2942 switch (sdev->sdev_state) { 2943 case SDEV_BLOCK: 2944 case SDEV_TRANSPORT_OFFLINE: 2945 sdev->sdev_state = new_state; 2946 break; 2947 case SDEV_CREATED_BLOCK: 2948 if (new_state == SDEV_TRANSPORT_OFFLINE || 2949 new_state == SDEV_OFFLINE) 2950 sdev->sdev_state = new_state; 2951 else 2952 sdev->sdev_state = SDEV_CREATED; 2953 break; 2954 case SDEV_CANCEL: 2955 case SDEV_OFFLINE: 2956 break; 2957 default: 2958 return -EINVAL; 2959 } 2960 scsi_start_queue(sdev); 2961 2962 return 0; 2963 } 2964 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait); 2965 2966 /** 2967 * scsi_internal_device_unblock - resume a device after a block request 2968 * @sdev: device to resume 2969 * @new_state: state to set the device to after unblocking 2970 * 2971 * Restart the device queue for a previously suspended SCSI device. May sleep. 2972 * 2973 * Returns zero if successful or a negative error code upon failure. 2974 * 2975 * Notes: 2976 * This routine transitions the device to the SDEV_RUNNING state or to one of 2977 * the offline states (which must be a legal transition) allowing the midlayer 2978 * to goose the queue for this device. 2979 */ 2980 static int scsi_internal_device_unblock(struct scsi_device *sdev, 2981 enum scsi_device_state new_state) 2982 { 2983 int ret; 2984 2985 mutex_lock(&sdev->state_mutex); 2986 ret = scsi_internal_device_unblock_nowait(sdev, new_state); 2987 mutex_unlock(&sdev->state_mutex); 2988 2989 return ret; 2990 } 2991 2992 static int 2993 target_block(struct device *dev, void *data) 2994 { 2995 if (scsi_is_target_device(dev)) 2996 starget_for_each_device(to_scsi_target(dev), NULL, 2997 scsi_device_block); 2998 return 0; 2999 } 3000 3001 /** 3002 * scsi_block_targets - transition all SCSI child devices to SDEV_BLOCK state 3003 * @dev: a parent device of one or more scsi_target devices 3004 * @shost: the Scsi_Host to which this device belongs 3005 * 3006 * Iterate over all children of @dev, which should be scsi_target devices, 3007 * and switch all subordinate scsi devices to SDEV_BLOCK state. Wait for 3008 * ongoing scsi_queue_rq() calls to finish. May sleep. 3009 * 3010 * Note: 3011 * @dev must not itself be a scsi_target device. 3012 */ 3013 void 3014 scsi_block_targets(struct Scsi_Host *shost, struct device *dev) 3015 { 3016 WARN_ON_ONCE(scsi_is_target_device(dev)); 3017 device_for_each_child(dev, NULL, target_block); 3018 blk_mq_wait_quiesce_done(&shost->tag_set); 3019 } 3020 EXPORT_SYMBOL_GPL(scsi_block_targets); 3021 3022 static void 3023 device_unblock(struct scsi_device *sdev, void *data) 3024 { 3025 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data); 3026 } 3027 3028 static int 3029 target_unblock(struct device *dev, void *data) 3030 { 3031 if (scsi_is_target_device(dev)) 3032 starget_for_each_device(to_scsi_target(dev), data, 3033 device_unblock); 3034 return 0; 3035 } 3036 3037 void 3038 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state) 3039 { 3040 if (scsi_is_target_device(dev)) 3041 starget_for_each_device(to_scsi_target(dev), &new_state, 3042 device_unblock); 3043 else 3044 device_for_each_child(dev, &new_state, target_unblock); 3045 } 3046 EXPORT_SYMBOL_GPL(scsi_target_unblock); 3047 3048 /** 3049 * scsi_host_block - Try to transition all logical units to the SDEV_BLOCK state 3050 * @shost: device to block 3051 * 3052 * Pause SCSI command processing for all logical units associated with the SCSI 3053 * host and wait until pending scsi_queue_rq() calls have finished. 3054 * 3055 * Returns zero if successful or a negative error code upon failure. 3056 */ 3057 int 3058 scsi_host_block(struct Scsi_Host *shost) 3059 { 3060 struct scsi_device *sdev; 3061 int ret; 3062 3063 /* 3064 * Call scsi_internal_device_block_nowait so we can avoid 3065 * calling synchronize_rcu() for each LUN. 3066 */ 3067 shost_for_each_device(sdev, shost) { 3068 mutex_lock(&sdev->state_mutex); 3069 ret = scsi_internal_device_block_nowait(sdev); 3070 mutex_unlock(&sdev->state_mutex); 3071 if (ret) { 3072 scsi_device_put(sdev); 3073 return ret; 3074 } 3075 } 3076 3077 /* Wait for ongoing scsi_queue_rq() calls to finish. */ 3078 blk_mq_wait_quiesce_done(&shost->tag_set); 3079 3080 return 0; 3081 } 3082 EXPORT_SYMBOL_GPL(scsi_host_block); 3083 3084 int 3085 scsi_host_unblock(struct Scsi_Host *shost, int new_state) 3086 { 3087 struct scsi_device *sdev; 3088 int ret = 0; 3089 3090 shost_for_each_device(sdev, shost) { 3091 ret = scsi_internal_device_unblock(sdev, new_state); 3092 if (ret) { 3093 scsi_device_put(sdev); 3094 break; 3095 } 3096 } 3097 return ret; 3098 } 3099 EXPORT_SYMBOL_GPL(scsi_host_unblock); 3100 3101 /** 3102 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt 3103 * @sgl: scatter-gather list 3104 * @sg_count: number of segments in sg 3105 * @offset: offset in bytes into sg, on return offset into the mapped area 3106 * @len: bytes to map, on return number of bytes mapped 3107 * 3108 * Returns virtual address of the start of the mapped page 3109 */ 3110 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count, 3111 size_t *offset, size_t *len) 3112 { 3113 int i; 3114 size_t sg_len = 0, len_complete = 0; 3115 struct scatterlist *sg; 3116 struct page *page; 3117 3118 WARN_ON(!irqs_disabled()); 3119 3120 for_each_sg(sgl, sg, sg_count, i) { 3121 len_complete = sg_len; /* Complete sg-entries */ 3122 sg_len += sg->length; 3123 if (sg_len > *offset) 3124 break; 3125 } 3126 3127 if (unlikely(i == sg_count)) { 3128 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, " 3129 "elements %d\n", 3130 __func__, sg_len, *offset, sg_count); 3131 WARN_ON(1); 3132 return NULL; 3133 } 3134 3135 /* Offset starting from the beginning of first page in this sg-entry */ 3136 *offset = *offset - len_complete + sg->offset; 3137 3138 /* Assumption: contiguous pages can be accessed as "page + i" */ 3139 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT)); 3140 *offset &= ~PAGE_MASK; 3141 3142 /* Bytes in this sg-entry from *offset to the end of the page */ 3143 sg_len = PAGE_SIZE - *offset; 3144 if (*len > sg_len) 3145 *len = sg_len; 3146 3147 return kmap_atomic(page); 3148 } 3149 EXPORT_SYMBOL(scsi_kmap_atomic_sg); 3150 3151 /** 3152 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg 3153 * @virt: virtual address to be unmapped 3154 */ 3155 void scsi_kunmap_atomic_sg(void *virt) 3156 { 3157 kunmap_atomic(virt); 3158 } 3159 EXPORT_SYMBOL(scsi_kunmap_atomic_sg); 3160 3161 void sdev_disable_disk_events(struct scsi_device *sdev) 3162 { 3163 atomic_inc(&sdev->disk_events_disable_depth); 3164 } 3165 EXPORT_SYMBOL(sdev_disable_disk_events); 3166 3167 void sdev_enable_disk_events(struct scsi_device *sdev) 3168 { 3169 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0)) 3170 return; 3171 atomic_dec(&sdev->disk_events_disable_depth); 3172 } 3173 EXPORT_SYMBOL(sdev_enable_disk_events); 3174 3175 static unsigned char designator_prio(const unsigned char *d) 3176 { 3177 if (d[1] & 0x30) 3178 /* not associated with LUN */ 3179 return 0; 3180 3181 if (d[3] == 0) 3182 /* invalid length */ 3183 return 0; 3184 3185 /* 3186 * Order of preference for lun descriptor: 3187 * - SCSI name string 3188 * - NAA IEEE Registered Extended 3189 * - EUI-64 based 16-byte 3190 * - EUI-64 based 12-byte 3191 * - NAA IEEE Registered 3192 * - NAA IEEE Extended 3193 * - EUI-64 based 8-byte 3194 * - SCSI name string (truncated) 3195 * - T10 Vendor ID 3196 * as longer descriptors reduce the likelyhood 3197 * of identification clashes. 3198 */ 3199 3200 switch (d[1] & 0xf) { 3201 case 8: 3202 /* SCSI name string, variable-length UTF-8 */ 3203 return 9; 3204 case 3: 3205 switch (d[4] >> 4) { 3206 case 6: 3207 /* NAA registered extended */ 3208 return 8; 3209 case 5: 3210 /* NAA registered */ 3211 return 5; 3212 case 4: 3213 /* NAA extended */ 3214 return 4; 3215 case 3: 3216 /* NAA locally assigned */ 3217 return 1; 3218 default: 3219 break; 3220 } 3221 break; 3222 case 2: 3223 switch (d[3]) { 3224 case 16: 3225 /* EUI64-based, 16 byte */ 3226 return 7; 3227 case 12: 3228 /* EUI64-based, 12 byte */ 3229 return 6; 3230 case 8: 3231 /* EUI64-based, 8 byte */ 3232 return 3; 3233 default: 3234 break; 3235 } 3236 break; 3237 case 1: 3238 /* T10 vendor ID */ 3239 return 1; 3240 default: 3241 break; 3242 } 3243 3244 return 0; 3245 } 3246 3247 /** 3248 * scsi_vpd_lun_id - return a unique device identification 3249 * @sdev: SCSI device 3250 * @id: buffer for the identification 3251 * @id_len: length of the buffer 3252 * 3253 * Copies a unique device identification into @id based 3254 * on the information in the VPD page 0x83 of the device. 3255 * The string will be formatted as a SCSI name string. 3256 * 3257 * Returns the length of the identification or error on failure. 3258 * If the identifier is longer than the supplied buffer the actual 3259 * identifier length is returned and the buffer is not zero-padded. 3260 */ 3261 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len) 3262 { 3263 u8 cur_id_prio = 0; 3264 u8 cur_id_size = 0; 3265 const unsigned char *d, *cur_id_str; 3266 const struct scsi_vpd *vpd_pg83; 3267 int id_size = -EINVAL; 3268 3269 rcu_read_lock(); 3270 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 3271 if (!vpd_pg83) { 3272 rcu_read_unlock(); 3273 return -ENXIO; 3274 } 3275 3276 /* The id string must be at least 20 bytes + terminating NULL byte */ 3277 if (id_len < 21) { 3278 rcu_read_unlock(); 3279 return -EINVAL; 3280 } 3281 3282 memset(id, 0, id_len); 3283 for (d = vpd_pg83->data + 4; 3284 d < vpd_pg83->data + vpd_pg83->len; 3285 d += d[3] + 4) { 3286 u8 prio = designator_prio(d); 3287 3288 if (prio == 0 || cur_id_prio > prio) 3289 continue; 3290 3291 switch (d[1] & 0xf) { 3292 case 0x1: 3293 /* T10 Vendor ID */ 3294 if (cur_id_size > d[3]) 3295 break; 3296 cur_id_prio = prio; 3297 cur_id_size = d[3]; 3298 if (cur_id_size + 4 > id_len) 3299 cur_id_size = id_len - 4; 3300 cur_id_str = d + 4; 3301 id_size = snprintf(id, id_len, "t10.%*pE", 3302 cur_id_size, cur_id_str); 3303 break; 3304 case 0x2: 3305 /* EUI-64 */ 3306 cur_id_prio = prio; 3307 cur_id_size = d[3]; 3308 cur_id_str = d + 4; 3309 switch (cur_id_size) { 3310 case 8: 3311 id_size = snprintf(id, id_len, 3312 "eui.%8phN", 3313 cur_id_str); 3314 break; 3315 case 12: 3316 id_size = snprintf(id, id_len, 3317 "eui.%12phN", 3318 cur_id_str); 3319 break; 3320 case 16: 3321 id_size = snprintf(id, id_len, 3322 "eui.%16phN", 3323 cur_id_str); 3324 break; 3325 default: 3326 break; 3327 } 3328 break; 3329 case 0x3: 3330 /* NAA */ 3331 cur_id_prio = prio; 3332 cur_id_size = d[3]; 3333 cur_id_str = d + 4; 3334 switch (cur_id_size) { 3335 case 8: 3336 id_size = snprintf(id, id_len, 3337 "naa.%8phN", 3338 cur_id_str); 3339 break; 3340 case 16: 3341 id_size = snprintf(id, id_len, 3342 "naa.%16phN", 3343 cur_id_str); 3344 break; 3345 default: 3346 break; 3347 } 3348 break; 3349 case 0x8: 3350 /* SCSI name string */ 3351 if (cur_id_size > d[3]) 3352 break; 3353 /* Prefer others for truncated descriptor */ 3354 if (d[3] > id_len) { 3355 prio = 2; 3356 if (cur_id_prio > prio) 3357 break; 3358 } 3359 cur_id_prio = prio; 3360 cur_id_size = id_size = d[3]; 3361 cur_id_str = d + 4; 3362 if (cur_id_size >= id_len) 3363 cur_id_size = id_len - 1; 3364 memcpy(id, cur_id_str, cur_id_size); 3365 break; 3366 default: 3367 break; 3368 } 3369 } 3370 rcu_read_unlock(); 3371 3372 return id_size; 3373 } 3374 EXPORT_SYMBOL(scsi_vpd_lun_id); 3375 3376 /* 3377 * scsi_vpd_tpg_id - return a target port group identifier 3378 * @sdev: SCSI device 3379 * 3380 * Returns the Target Port Group identifier from the information 3381 * froom VPD page 0x83 of the device. 3382 * 3383 * Returns the identifier or error on failure. 3384 */ 3385 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id) 3386 { 3387 const unsigned char *d; 3388 const struct scsi_vpd *vpd_pg83; 3389 int group_id = -EAGAIN, rel_port = -1; 3390 3391 rcu_read_lock(); 3392 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 3393 if (!vpd_pg83) { 3394 rcu_read_unlock(); 3395 return -ENXIO; 3396 } 3397 3398 d = vpd_pg83->data + 4; 3399 while (d < vpd_pg83->data + vpd_pg83->len) { 3400 switch (d[1] & 0xf) { 3401 case 0x4: 3402 /* Relative target port */ 3403 rel_port = get_unaligned_be16(&d[6]); 3404 break; 3405 case 0x5: 3406 /* Target port group */ 3407 group_id = get_unaligned_be16(&d[6]); 3408 break; 3409 default: 3410 break; 3411 } 3412 d += d[3] + 4; 3413 } 3414 rcu_read_unlock(); 3415 3416 if (group_id >= 0 && rel_id && rel_port != -1) 3417 *rel_id = rel_port; 3418 3419 return group_id; 3420 } 3421 EXPORT_SYMBOL(scsi_vpd_tpg_id); 3422 3423 /** 3424 * scsi_build_sense - build sense data for a command 3425 * @scmd: scsi command for which the sense should be formatted 3426 * @desc: Sense format (non-zero == descriptor format, 3427 * 0 == fixed format) 3428 * @key: Sense key 3429 * @asc: Additional sense code 3430 * @ascq: Additional sense code qualifier 3431 * 3432 **/ 3433 void scsi_build_sense(struct scsi_cmnd *scmd, int desc, u8 key, u8 asc, u8 ascq) 3434 { 3435 scsi_build_sense_buffer(desc, scmd->sense_buffer, key, asc, ascq); 3436 scmd->result = SAM_STAT_CHECK_CONDITION; 3437 } 3438 EXPORT_SYMBOL_GPL(scsi_build_sense); 3439 3440 #ifdef CONFIG_SCSI_LIB_KUNIT_TEST 3441 #include "scsi_lib_test.c" 3442 #endif 3443