xref: /linux/drivers/scsi/scsi_lib.c (revision e3b9f1e81de2083f359bacd2a94bf1c024f2ede0)
1 /*
2  * Copyright (C) 1999 Eric Youngdale
3  * Copyright (C) 2014 Christoph Hellwig
4  *
5  *  SCSI queueing library.
6  *      Initial versions: Eric Youngdale (eric@andante.org).
7  *                        Based upon conversations with large numbers
8  *                        of people at Linux Expo.
9  */
10 
11 #include <linux/bio.h>
12 #include <linux/bitops.h>
13 #include <linux/blkdev.h>
14 #include <linux/completion.h>
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
22 #include <linux/blk-mq.h>
23 #include <linux/ratelimit.h>
24 #include <asm/unaligned.h>
25 
26 #include <scsi/scsi.h>
27 #include <scsi/scsi_cmnd.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_device.h>
30 #include <scsi/scsi_driver.h>
31 #include <scsi/scsi_eh.h>
32 #include <scsi/scsi_host.h>
33 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
34 #include <scsi/scsi_dh.h>
35 
36 #include <trace/events/scsi.h>
37 
38 #include "scsi_debugfs.h"
39 #include "scsi_priv.h"
40 #include "scsi_logging.h"
41 
42 static struct kmem_cache *scsi_sdb_cache;
43 static struct kmem_cache *scsi_sense_cache;
44 static struct kmem_cache *scsi_sense_isadma_cache;
45 static DEFINE_MUTEX(scsi_sense_cache_mutex);
46 
47 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
48 
49 static inline struct kmem_cache *
50 scsi_select_sense_cache(bool unchecked_isa_dma)
51 {
52 	return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache;
53 }
54 
55 static void scsi_free_sense_buffer(bool unchecked_isa_dma,
56 				   unsigned char *sense_buffer)
57 {
58 	kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma),
59 			sense_buffer);
60 }
61 
62 static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma,
63 	gfp_t gfp_mask, int numa_node)
64 {
65 	return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma),
66 				     gfp_mask, numa_node);
67 }
68 
69 int scsi_init_sense_cache(struct Scsi_Host *shost)
70 {
71 	struct kmem_cache *cache;
72 	int ret = 0;
73 
74 	cache = scsi_select_sense_cache(shost->unchecked_isa_dma);
75 	if (cache)
76 		return 0;
77 
78 	mutex_lock(&scsi_sense_cache_mutex);
79 	if (shost->unchecked_isa_dma) {
80 		scsi_sense_isadma_cache =
81 			kmem_cache_create("scsi_sense_cache(DMA)",
82 				SCSI_SENSE_BUFFERSIZE, 0,
83 				SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL);
84 		if (!scsi_sense_isadma_cache)
85 			ret = -ENOMEM;
86 	} else {
87 		scsi_sense_cache =
88 			kmem_cache_create_usercopy("scsi_sense_cache",
89 				SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
90 				0, SCSI_SENSE_BUFFERSIZE, NULL);
91 		if (!scsi_sense_cache)
92 			ret = -ENOMEM;
93 	}
94 
95 	mutex_unlock(&scsi_sense_cache_mutex);
96 	return ret;
97 }
98 
99 /*
100  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
101  * not change behaviour from the previous unplug mechanism, experimentation
102  * may prove this needs changing.
103  */
104 #define SCSI_QUEUE_DELAY	3
105 
106 static void
107 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
108 {
109 	struct Scsi_Host *host = cmd->device->host;
110 	struct scsi_device *device = cmd->device;
111 	struct scsi_target *starget = scsi_target(device);
112 
113 	/*
114 	 * Set the appropriate busy bit for the device/host.
115 	 *
116 	 * If the host/device isn't busy, assume that something actually
117 	 * completed, and that we should be able to queue a command now.
118 	 *
119 	 * Note that the prior mid-layer assumption that any host could
120 	 * always queue at least one command is now broken.  The mid-layer
121 	 * will implement a user specifiable stall (see
122 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
123 	 * if a command is requeued with no other commands outstanding
124 	 * either for the device or for the host.
125 	 */
126 	switch (reason) {
127 	case SCSI_MLQUEUE_HOST_BUSY:
128 		atomic_set(&host->host_blocked, host->max_host_blocked);
129 		break;
130 	case SCSI_MLQUEUE_DEVICE_BUSY:
131 	case SCSI_MLQUEUE_EH_RETRY:
132 		atomic_set(&device->device_blocked,
133 			   device->max_device_blocked);
134 		break;
135 	case SCSI_MLQUEUE_TARGET_BUSY:
136 		atomic_set(&starget->target_blocked,
137 			   starget->max_target_blocked);
138 		break;
139 	}
140 }
141 
142 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
143 {
144 	struct scsi_device *sdev = cmd->device;
145 
146 	if (cmd->request->rq_flags & RQF_DONTPREP) {
147 		cmd->request->rq_flags &= ~RQF_DONTPREP;
148 		scsi_mq_uninit_cmd(cmd);
149 	} else {
150 		WARN_ON_ONCE(true);
151 	}
152 	blk_mq_requeue_request(cmd->request, true);
153 	put_device(&sdev->sdev_gendev);
154 }
155 
156 /**
157  * __scsi_queue_insert - private queue insertion
158  * @cmd: The SCSI command being requeued
159  * @reason:  The reason for the requeue
160  * @unbusy: Whether the queue should be unbusied
161  *
162  * This is a private queue insertion.  The public interface
163  * scsi_queue_insert() always assumes the queue should be unbusied
164  * because it's always called before the completion.  This function is
165  * for a requeue after completion, which should only occur in this
166  * file.
167  */
168 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
169 {
170 	struct scsi_device *device = cmd->device;
171 	struct request_queue *q = device->request_queue;
172 	unsigned long flags;
173 
174 	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
175 		"Inserting command %p into mlqueue\n", cmd));
176 
177 	scsi_set_blocked(cmd, reason);
178 
179 	/*
180 	 * Decrement the counters, since these commands are no longer
181 	 * active on the host/device.
182 	 */
183 	if (unbusy)
184 		scsi_device_unbusy(device);
185 
186 	/*
187 	 * Requeue this command.  It will go before all other commands
188 	 * that are already in the queue. Schedule requeue work under
189 	 * lock such that the kblockd_schedule_work() call happens
190 	 * before blk_cleanup_queue() finishes.
191 	 */
192 	cmd->result = 0;
193 	if (q->mq_ops) {
194 		scsi_mq_requeue_cmd(cmd);
195 		return;
196 	}
197 	spin_lock_irqsave(q->queue_lock, flags);
198 	blk_requeue_request(q, cmd->request);
199 	kblockd_schedule_work(&device->requeue_work);
200 	spin_unlock_irqrestore(q->queue_lock, flags);
201 }
202 
203 /*
204  * Function:    scsi_queue_insert()
205  *
206  * Purpose:     Insert a command in the midlevel queue.
207  *
208  * Arguments:   cmd    - command that we are adding to queue.
209  *              reason - why we are inserting command to queue.
210  *
211  * Lock status: Assumed that lock is not held upon entry.
212  *
213  * Returns:     Nothing.
214  *
215  * Notes:       We do this for one of two cases.  Either the host is busy
216  *              and it cannot accept any more commands for the time being,
217  *              or the device returned QUEUE_FULL and can accept no more
218  *              commands.
219  * Notes:       This could be called either from an interrupt context or a
220  *              normal process context.
221  */
222 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
223 {
224 	__scsi_queue_insert(cmd, reason, true);
225 }
226 
227 
228 /**
229  * scsi_execute - insert request and wait for the result
230  * @sdev:	scsi device
231  * @cmd:	scsi command
232  * @data_direction: data direction
233  * @buffer:	data buffer
234  * @bufflen:	len of buffer
235  * @sense:	optional sense buffer
236  * @sshdr:	optional decoded sense header
237  * @timeout:	request timeout in seconds
238  * @retries:	number of times to retry request
239  * @flags:	flags for ->cmd_flags
240  * @rq_flags:	flags for ->rq_flags
241  * @resid:	optional residual length
242  *
243  * Returns the scsi_cmnd result field if a command was executed, or a negative
244  * Linux error code if we didn't get that far.
245  */
246 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
247 		 int data_direction, void *buffer, unsigned bufflen,
248 		 unsigned char *sense, struct scsi_sense_hdr *sshdr,
249 		 int timeout, int retries, u64 flags, req_flags_t rq_flags,
250 		 int *resid)
251 {
252 	struct request *req;
253 	struct scsi_request *rq;
254 	int ret = DRIVER_ERROR << 24;
255 
256 	req = blk_get_request_flags(sdev->request_queue,
257 			data_direction == DMA_TO_DEVICE ?
258 			REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, BLK_MQ_REQ_PREEMPT);
259 	if (IS_ERR(req))
260 		return ret;
261 	rq = scsi_req(req);
262 
263 	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
264 					buffer, bufflen, __GFP_RECLAIM))
265 		goto out;
266 
267 	rq->cmd_len = COMMAND_SIZE(cmd[0]);
268 	memcpy(rq->cmd, cmd, rq->cmd_len);
269 	rq->retries = retries;
270 	req->timeout = timeout;
271 	req->cmd_flags |= flags;
272 	req->rq_flags |= rq_flags | RQF_QUIET;
273 
274 	/*
275 	 * head injection *required* here otherwise quiesce won't work
276 	 */
277 	blk_execute_rq(req->q, NULL, req, 1);
278 
279 	/*
280 	 * Some devices (USB mass-storage in particular) may transfer
281 	 * garbage data together with a residue indicating that the data
282 	 * is invalid.  Prevent the garbage from being misinterpreted
283 	 * and prevent security leaks by zeroing out the excess data.
284 	 */
285 	if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
286 		memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
287 
288 	if (resid)
289 		*resid = rq->resid_len;
290 	if (sense && rq->sense_len)
291 		memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
292 	if (sshdr)
293 		scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
294 	ret = rq->result;
295  out:
296 	blk_put_request(req);
297 
298 	return ret;
299 }
300 EXPORT_SYMBOL(scsi_execute);
301 
302 /*
303  * Function:    scsi_init_cmd_errh()
304  *
305  * Purpose:     Initialize cmd fields related to error handling.
306  *
307  * Arguments:   cmd	- command that is ready to be queued.
308  *
309  * Notes:       This function has the job of initializing a number of
310  *              fields related to error handling.   Typically this will
311  *              be called once for each command, as required.
312  */
313 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
314 {
315 	cmd->serial_number = 0;
316 	scsi_set_resid(cmd, 0);
317 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
318 	if (cmd->cmd_len == 0)
319 		cmd->cmd_len = scsi_command_size(cmd->cmnd);
320 }
321 
322 /*
323  * Decrement the host_busy counter and wake up the error handler if necessary.
324  * Avoid as follows that the error handler is not woken up if shost->host_busy
325  * == shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
326  * with an RCU read lock in this function to ensure that this function in its
327  * entirety either finishes before scsi_eh_scmd_add() increases the
328  * host_failed counter or that it notices the shost state change made by
329  * scsi_eh_scmd_add().
330  */
331 static void scsi_dec_host_busy(struct Scsi_Host *shost)
332 {
333 	unsigned long flags;
334 
335 	rcu_read_lock();
336 	atomic_dec(&shost->host_busy);
337 	if (unlikely(scsi_host_in_recovery(shost))) {
338 		spin_lock_irqsave(shost->host_lock, flags);
339 		if (shost->host_failed || shost->host_eh_scheduled)
340 			scsi_eh_wakeup(shost);
341 		spin_unlock_irqrestore(shost->host_lock, flags);
342 	}
343 	rcu_read_unlock();
344 }
345 
346 void scsi_device_unbusy(struct scsi_device *sdev)
347 {
348 	struct Scsi_Host *shost = sdev->host;
349 	struct scsi_target *starget = scsi_target(sdev);
350 
351 	scsi_dec_host_busy(shost);
352 
353 	if (starget->can_queue > 0)
354 		atomic_dec(&starget->target_busy);
355 
356 	atomic_dec(&sdev->device_busy);
357 }
358 
359 static void scsi_kick_queue(struct request_queue *q)
360 {
361 	if (q->mq_ops)
362 		blk_mq_start_hw_queues(q);
363 	else
364 		blk_run_queue(q);
365 }
366 
367 /*
368  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
369  * and call blk_run_queue for all the scsi_devices on the target -
370  * including current_sdev first.
371  *
372  * Called with *no* scsi locks held.
373  */
374 static void scsi_single_lun_run(struct scsi_device *current_sdev)
375 {
376 	struct Scsi_Host *shost = current_sdev->host;
377 	struct scsi_device *sdev, *tmp;
378 	struct scsi_target *starget = scsi_target(current_sdev);
379 	unsigned long flags;
380 
381 	spin_lock_irqsave(shost->host_lock, flags);
382 	starget->starget_sdev_user = NULL;
383 	spin_unlock_irqrestore(shost->host_lock, flags);
384 
385 	/*
386 	 * Call blk_run_queue for all LUNs on the target, starting with
387 	 * current_sdev. We race with others (to set starget_sdev_user),
388 	 * but in most cases, we will be first. Ideally, each LU on the
389 	 * target would get some limited time or requests on the target.
390 	 */
391 	scsi_kick_queue(current_sdev->request_queue);
392 
393 	spin_lock_irqsave(shost->host_lock, flags);
394 	if (starget->starget_sdev_user)
395 		goto out;
396 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
397 			same_target_siblings) {
398 		if (sdev == current_sdev)
399 			continue;
400 		if (scsi_device_get(sdev))
401 			continue;
402 
403 		spin_unlock_irqrestore(shost->host_lock, flags);
404 		scsi_kick_queue(sdev->request_queue);
405 		spin_lock_irqsave(shost->host_lock, flags);
406 
407 		scsi_device_put(sdev);
408 	}
409  out:
410 	spin_unlock_irqrestore(shost->host_lock, flags);
411 }
412 
413 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
414 {
415 	if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
416 		return true;
417 	if (atomic_read(&sdev->device_blocked) > 0)
418 		return true;
419 	return false;
420 }
421 
422 static inline bool scsi_target_is_busy(struct scsi_target *starget)
423 {
424 	if (starget->can_queue > 0) {
425 		if (atomic_read(&starget->target_busy) >= starget->can_queue)
426 			return true;
427 		if (atomic_read(&starget->target_blocked) > 0)
428 			return true;
429 	}
430 	return false;
431 }
432 
433 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
434 {
435 	if (shost->can_queue > 0 &&
436 	    atomic_read(&shost->host_busy) >= shost->can_queue)
437 		return true;
438 	if (atomic_read(&shost->host_blocked) > 0)
439 		return true;
440 	if (shost->host_self_blocked)
441 		return true;
442 	return false;
443 }
444 
445 static void scsi_starved_list_run(struct Scsi_Host *shost)
446 {
447 	LIST_HEAD(starved_list);
448 	struct scsi_device *sdev;
449 	unsigned long flags;
450 
451 	spin_lock_irqsave(shost->host_lock, flags);
452 	list_splice_init(&shost->starved_list, &starved_list);
453 
454 	while (!list_empty(&starved_list)) {
455 		struct request_queue *slq;
456 
457 		/*
458 		 * As long as shost is accepting commands and we have
459 		 * starved queues, call blk_run_queue. scsi_request_fn
460 		 * drops the queue_lock and can add us back to the
461 		 * starved_list.
462 		 *
463 		 * host_lock protects the starved_list and starved_entry.
464 		 * scsi_request_fn must get the host_lock before checking
465 		 * or modifying starved_list or starved_entry.
466 		 */
467 		if (scsi_host_is_busy(shost))
468 			break;
469 
470 		sdev = list_entry(starved_list.next,
471 				  struct scsi_device, starved_entry);
472 		list_del_init(&sdev->starved_entry);
473 		if (scsi_target_is_busy(scsi_target(sdev))) {
474 			list_move_tail(&sdev->starved_entry,
475 				       &shost->starved_list);
476 			continue;
477 		}
478 
479 		/*
480 		 * Once we drop the host lock, a racing scsi_remove_device()
481 		 * call may remove the sdev from the starved list and destroy
482 		 * it and the queue.  Mitigate by taking a reference to the
483 		 * queue and never touching the sdev again after we drop the
484 		 * host lock.  Note: if __scsi_remove_device() invokes
485 		 * blk_cleanup_queue() before the queue is run from this
486 		 * function then blk_run_queue() will return immediately since
487 		 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
488 		 */
489 		slq = sdev->request_queue;
490 		if (!blk_get_queue(slq))
491 			continue;
492 		spin_unlock_irqrestore(shost->host_lock, flags);
493 
494 		scsi_kick_queue(slq);
495 		blk_put_queue(slq);
496 
497 		spin_lock_irqsave(shost->host_lock, flags);
498 	}
499 	/* put any unprocessed entries back */
500 	list_splice(&starved_list, &shost->starved_list);
501 	spin_unlock_irqrestore(shost->host_lock, flags);
502 }
503 
504 /*
505  * Function:   scsi_run_queue()
506  *
507  * Purpose:    Select a proper request queue to serve next
508  *
509  * Arguments:  q       - last request's queue
510  *
511  * Returns:     Nothing
512  *
513  * Notes:      The previous command was completely finished, start
514  *             a new one if possible.
515  */
516 static void scsi_run_queue(struct request_queue *q)
517 {
518 	struct scsi_device *sdev = q->queuedata;
519 
520 	if (scsi_target(sdev)->single_lun)
521 		scsi_single_lun_run(sdev);
522 	if (!list_empty(&sdev->host->starved_list))
523 		scsi_starved_list_run(sdev->host);
524 
525 	if (q->mq_ops)
526 		blk_mq_run_hw_queues(q, false);
527 	else
528 		blk_run_queue(q);
529 }
530 
531 void scsi_requeue_run_queue(struct work_struct *work)
532 {
533 	struct scsi_device *sdev;
534 	struct request_queue *q;
535 
536 	sdev = container_of(work, struct scsi_device, requeue_work);
537 	q = sdev->request_queue;
538 	scsi_run_queue(q);
539 }
540 
541 /*
542  * Function:	scsi_requeue_command()
543  *
544  * Purpose:	Handle post-processing of completed commands.
545  *
546  * Arguments:	q	- queue to operate on
547  *		cmd	- command that may need to be requeued.
548  *
549  * Returns:	Nothing
550  *
551  * Notes:	After command completion, there may be blocks left
552  *		over which weren't finished by the previous command
553  *		this can be for a number of reasons - the main one is
554  *		I/O errors in the middle of the request, in which case
555  *		we need to request the blocks that come after the bad
556  *		sector.
557  * Notes:	Upon return, cmd is a stale pointer.
558  */
559 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
560 {
561 	struct scsi_device *sdev = cmd->device;
562 	struct request *req = cmd->request;
563 	unsigned long flags;
564 
565 	spin_lock_irqsave(q->queue_lock, flags);
566 	blk_unprep_request(req);
567 	req->special = NULL;
568 	scsi_put_command(cmd);
569 	blk_requeue_request(q, req);
570 	spin_unlock_irqrestore(q->queue_lock, flags);
571 
572 	scsi_run_queue(q);
573 
574 	put_device(&sdev->sdev_gendev);
575 }
576 
577 void scsi_run_host_queues(struct Scsi_Host *shost)
578 {
579 	struct scsi_device *sdev;
580 
581 	shost_for_each_device(sdev, shost)
582 		scsi_run_queue(sdev->request_queue);
583 }
584 
585 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
586 {
587 	if (!blk_rq_is_passthrough(cmd->request)) {
588 		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
589 
590 		if (drv->uninit_command)
591 			drv->uninit_command(cmd);
592 	}
593 }
594 
595 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
596 {
597 	struct scsi_data_buffer *sdb;
598 
599 	if (cmd->sdb.table.nents)
600 		sg_free_table_chained(&cmd->sdb.table, true);
601 	if (cmd->request->next_rq) {
602 		sdb = cmd->request->next_rq->special;
603 		if (sdb)
604 			sg_free_table_chained(&sdb->table, true);
605 	}
606 	if (scsi_prot_sg_count(cmd))
607 		sg_free_table_chained(&cmd->prot_sdb->table, true);
608 }
609 
610 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
611 {
612 	scsi_mq_free_sgtables(cmd);
613 	scsi_uninit_cmd(cmd);
614 	scsi_del_cmd_from_list(cmd);
615 }
616 
617 /*
618  * Function:    scsi_release_buffers()
619  *
620  * Purpose:     Free resources allocate for a scsi_command.
621  *
622  * Arguments:   cmd	- command that we are bailing.
623  *
624  * Lock status: Assumed that no lock is held upon entry.
625  *
626  * Returns:     Nothing
627  *
628  * Notes:       In the event that an upper level driver rejects a
629  *		command, we must release resources allocated during
630  *		the __init_io() function.  Primarily this would involve
631  *		the scatter-gather table.
632  */
633 static void scsi_release_buffers(struct scsi_cmnd *cmd)
634 {
635 	if (cmd->sdb.table.nents)
636 		sg_free_table_chained(&cmd->sdb.table, false);
637 
638 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
639 
640 	if (scsi_prot_sg_count(cmd))
641 		sg_free_table_chained(&cmd->prot_sdb->table, false);
642 }
643 
644 static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd)
645 {
646 	struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special;
647 
648 	sg_free_table_chained(&bidi_sdb->table, false);
649 	kmem_cache_free(scsi_sdb_cache, bidi_sdb);
650 	cmd->request->next_rq->special = NULL;
651 }
652 
653 static bool scsi_end_request(struct request *req, blk_status_t error,
654 		unsigned int bytes, unsigned int bidi_bytes)
655 {
656 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
657 	struct scsi_device *sdev = cmd->device;
658 	struct request_queue *q = sdev->request_queue;
659 
660 	if (blk_update_request(req, error, bytes))
661 		return true;
662 
663 	/* Bidi request must be completed as a whole */
664 	if (unlikely(bidi_bytes) &&
665 	    blk_update_request(req->next_rq, error, bidi_bytes))
666 		return true;
667 
668 	if (blk_queue_add_random(q))
669 		add_disk_randomness(req->rq_disk);
670 
671 	if (!blk_rq_is_scsi(req)) {
672 		WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
673 		cmd->flags &= ~SCMD_INITIALIZED;
674 	}
675 
676 	if (req->mq_ctx) {
677 		/*
678 		 * In the MQ case the command gets freed by __blk_mq_end_request,
679 		 * so we have to do all cleanup that depends on it earlier.
680 		 *
681 		 * We also can't kick the queues from irq context, so we
682 		 * will have to defer it to a workqueue.
683 		 */
684 		scsi_mq_uninit_cmd(cmd);
685 
686 		__blk_mq_end_request(req, error);
687 
688 		if (scsi_target(sdev)->single_lun ||
689 		    !list_empty(&sdev->host->starved_list))
690 			kblockd_schedule_work(&sdev->requeue_work);
691 		else
692 			blk_mq_run_hw_queues(q, true);
693 	} else {
694 		unsigned long flags;
695 
696 		if (bidi_bytes)
697 			scsi_release_bidi_buffers(cmd);
698 		scsi_release_buffers(cmd);
699 		scsi_put_command(cmd);
700 
701 		spin_lock_irqsave(q->queue_lock, flags);
702 		blk_finish_request(req, error);
703 		spin_unlock_irqrestore(q->queue_lock, flags);
704 
705 		scsi_run_queue(q);
706 	}
707 
708 	put_device(&sdev->sdev_gendev);
709 	return false;
710 }
711 
712 /**
713  * __scsi_error_from_host_byte - translate SCSI error code into errno
714  * @cmd:	SCSI command (unused)
715  * @result:	scsi error code
716  *
717  * Translate SCSI error code into block errors.
718  */
719 static blk_status_t __scsi_error_from_host_byte(struct scsi_cmnd *cmd,
720 		int result)
721 {
722 	switch (host_byte(result)) {
723 	case DID_TRANSPORT_FAILFAST:
724 		return BLK_STS_TRANSPORT;
725 	case DID_TARGET_FAILURE:
726 		set_host_byte(cmd, DID_OK);
727 		return BLK_STS_TARGET;
728 	case DID_NEXUS_FAILURE:
729 		return BLK_STS_NEXUS;
730 	case DID_ALLOC_FAILURE:
731 		set_host_byte(cmd, DID_OK);
732 		return BLK_STS_NOSPC;
733 	case DID_MEDIUM_ERROR:
734 		set_host_byte(cmd, DID_OK);
735 		return BLK_STS_MEDIUM;
736 	default:
737 		return BLK_STS_IOERR;
738 	}
739 }
740 
741 /*
742  * Function:    scsi_io_completion()
743  *
744  * Purpose:     Completion processing for block device I/O requests.
745  *
746  * Arguments:   cmd   - command that is finished.
747  *
748  * Lock status: Assumed that no lock is held upon entry.
749  *
750  * Returns:     Nothing
751  *
752  * Notes:       We will finish off the specified number of sectors.  If we
753  *		are done, the command block will be released and the queue
754  *		function will be goosed.  If we are not done then we have to
755  *		figure out what to do next:
756  *
757  *		a) We can call scsi_requeue_command().  The request
758  *		   will be unprepared and put back on the queue.  Then
759  *		   a new command will be created for it.  This should
760  *		   be used if we made forward progress, or if we want
761  *		   to switch from READ(10) to READ(6) for example.
762  *
763  *		b) We can call __scsi_queue_insert().  The request will
764  *		   be put back on the queue and retried using the same
765  *		   command as before, possibly after a delay.
766  *
767  *		c) We can call scsi_end_request() with -EIO to fail
768  *		   the remainder of the request.
769  */
770 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
771 {
772 	int result = cmd->result;
773 	struct request_queue *q = cmd->device->request_queue;
774 	struct request *req = cmd->request;
775 	blk_status_t error = BLK_STS_OK;
776 	struct scsi_sense_hdr sshdr;
777 	bool sense_valid = false;
778 	int sense_deferred = 0, level = 0;
779 	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
780 	      ACTION_DELAYED_RETRY} action;
781 	unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
782 
783 	if (result) {
784 		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
785 		if (sense_valid)
786 			sense_deferred = scsi_sense_is_deferred(&sshdr);
787 	}
788 
789 	if (blk_rq_is_passthrough(req)) {
790 		if (result) {
791 			if (sense_valid) {
792 				/*
793 				 * SG_IO wants current and deferred errors
794 				 */
795 				scsi_req(req)->sense_len =
796 					min(8 + cmd->sense_buffer[7],
797 					    SCSI_SENSE_BUFFERSIZE);
798 			}
799 			if (!sense_deferred)
800 				error = __scsi_error_from_host_byte(cmd, result);
801 		}
802 		/*
803 		 * __scsi_error_from_host_byte may have reset the host_byte
804 		 */
805 		scsi_req(req)->result = cmd->result;
806 		scsi_req(req)->resid_len = scsi_get_resid(cmd);
807 
808 		if (scsi_bidi_cmnd(cmd)) {
809 			/*
810 			 * Bidi commands Must be complete as a whole,
811 			 * both sides at once.
812 			 */
813 			scsi_req(req->next_rq)->resid_len = scsi_in(cmd)->resid;
814 			if (scsi_end_request(req, BLK_STS_OK, blk_rq_bytes(req),
815 					blk_rq_bytes(req->next_rq)))
816 				BUG();
817 			return;
818 		}
819 	} else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) {
820 		/*
821 		 * Flush commands do not transfers any data, and thus cannot use
822 		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
823 		 * This sets the error explicitly for the problem case.
824 		 */
825 		error = __scsi_error_from_host_byte(cmd, result);
826 	}
827 
828 	/* no bidi support for !blk_rq_is_passthrough yet */
829 	BUG_ON(blk_bidi_rq(req));
830 
831 	/*
832 	 * Next deal with any sectors which we were able to correctly
833 	 * handle.
834 	 */
835 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
836 		"%u sectors total, %d bytes done.\n",
837 		blk_rq_sectors(req), good_bytes));
838 
839 	/*
840 	 * Recovered errors need reporting, but they're always treated as
841 	 * success, so fiddle the result code here.  For passthrough requests
842 	 * we already took a copy of the original into sreq->result which
843 	 * is what gets returned to the user
844 	 */
845 	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
846 		/* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
847 		 * print since caller wants ATA registers. Only occurs on
848 		 * SCSI ATA PASS_THROUGH commands when CK_COND=1
849 		 */
850 		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
851 			;
852 		else if (!(req->rq_flags & RQF_QUIET))
853 			scsi_print_sense(cmd);
854 		result = 0;
855 		/* for passthrough error may be set */
856 		error = BLK_STS_OK;
857 	}
858 
859 	/*
860 	 * special case: failed zero length commands always need to
861 	 * drop down into the retry code. Otherwise, if we finished
862 	 * all bytes in the request we are done now.
863 	 */
864 	if (!(blk_rq_bytes(req) == 0 && error) &&
865 	    !scsi_end_request(req, error, good_bytes, 0))
866 		return;
867 
868 	/*
869 	 * Kill remainder if no retrys.
870 	 */
871 	if (error && scsi_noretry_cmd(cmd)) {
872 		if (scsi_end_request(req, error, blk_rq_bytes(req), 0))
873 			BUG();
874 		return;
875 	}
876 
877 	/*
878 	 * If there had been no error, but we have leftover bytes in the
879 	 * requeues just queue the command up again.
880 	 */
881 	if (result == 0)
882 		goto requeue;
883 
884 	error = __scsi_error_from_host_byte(cmd, result);
885 
886 	if (host_byte(result) == DID_RESET) {
887 		/* Third party bus reset or reset for error recovery
888 		 * reasons.  Just retry the command and see what
889 		 * happens.
890 		 */
891 		action = ACTION_RETRY;
892 	} else if (sense_valid && !sense_deferred) {
893 		switch (sshdr.sense_key) {
894 		case UNIT_ATTENTION:
895 			if (cmd->device->removable) {
896 				/* Detected disc change.  Set a bit
897 				 * and quietly refuse further access.
898 				 */
899 				cmd->device->changed = 1;
900 				action = ACTION_FAIL;
901 			} else {
902 				/* Must have been a power glitch, or a
903 				 * bus reset.  Could not have been a
904 				 * media change, so we just retry the
905 				 * command and see what happens.
906 				 */
907 				action = ACTION_RETRY;
908 			}
909 			break;
910 		case ILLEGAL_REQUEST:
911 			/* If we had an ILLEGAL REQUEST returned, then
912 			 * we may have performed an unsupported
913 			 * command.  The only thing this should be
914 			 * would be a ten byte read where only a six
915 			 * byte read was supported.  Also, on a system
916 			 * where READ CAPACITY failed, we may have
917 			 * read past the end of the disk.
918 			 */
919 			if ((cmd->device->use_10_for_rw &&
920 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
921 			    (cmd->cmnd[0] == READ_10 ||
922 			     cmd->cmnd[0] == WRITE_10)) {
923 				/* This will issue a new 6-byte command. */
924 				cmd->device->use_10_for_rw = 0;
925 				action = ACTION_REPREP;
926 			} else if (sshdr.asc == 0x10) /* DIX */ {
927 				action = ACTION_FAIL;
928 				error = BLK_STS_PROTECTION;
929 			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
930 			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
931 				action = ACTION_FAIL;
932 				error = BLK_STS_TARGET;
933 			} else
934 				action = ACTION_FAIL;
935 			break;
936 		case ABORTED_COMMAND:
937 			action = ACTION_FAIL;
938 			if (sshdr.asc == 0x10) /* DIF */
939 				error = BLK_STS_PROTECTION;
940 			break;
941 		case NOT_READY:
942 			/* If the device is in the process of becoming
943 			 * ready, or has a temporary blockage, retry.
944 			 */
945 			if (sshdr.asc == 0x04) {
946 				switch (sshdr.ascq) {
947 				case 0x01: /* becoming ready */
948 				case 0x04: /* format in progress */
949 				case 0x05: /* rebuild in progress */
950 				case 0x06: /* recalculation in progress */
951 				case 0x07: /* operation in progress */
952 				case 0x08: /* Long write in progress */
953 				case 0x09: /* self test in progress */
954 				case 0x14: /* space allocation in progress */
955 					action = ACTION_DELAYED_RETRY;
956 					break;
957 				default:
958 					action = ACTION_FAIL;
959 					break;
960 				}
961 			} else
962 				action = ACTION_FAIL;
963 			break;
964 		case VOLUME_OVERFLOW:
965 			/* See SSC3rXX or current. */
966 			action = ACTION_FAIL;
967 			break;
968 		default:
969 			action = ACTION_FAIL;
970 			break;
971 		}
972 	} else
973 		action = ACTION_FAIL;
974 
975 	if (action != ACTION_FAIL &&
976 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
977 		action = ACTION_FAIL;
978 
979 	switch (action) {
980 	case ACTION_FAIL:
981 		/* Give up and fail the remainder of the request */
982 		if (!(req->rq_flags & RQF_QUIET)) {
983 			static DEFINE_RATELIMIT_STATE(_rs,
984 					DEFAULT_RATELIMIT_INTERVAL,
985 					DEFAULT_RATELIMIT_BURST);
986 
987 			if (unlikely(scsi_logging_level))
988 				level = SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
989 						       SCSI_LOG_MLCOMPLETE_BITS);
990 
991 			/*
992 			 * if logging is enabled the failure will be printed
993 			 * in scsi_log_completion(), so avoid duplicate messages
994 			 */
995 			if (!level && __ratelimit(&_rs)) {
996 				scsi_print_result(cmd, NULL, FAILED);
997 				if (driver_byte(result) & DRIVER_SENSE)
998 					scsi_print_sense(cmd);
999 				scsi_print_command(cmd);
1000 			}
1001 		}
1002 		if (!scsi_end_request(req, error, blk_rq_err_bytes(req), 0))
1003 			return;
1004 		/*FALLTHRU*/
1005 	case ACTION_REPREP:
1006 	requeue:
1007 		/* Unprep the request and put it back at the head of the queue.
1008 		 * A new command will be prepared and issued.
1009 		 */
1010 		if (q->mq_ops) {
1011 			scsi_mq_requeue_cmd(cmd);
1012 		} else {
1013 			scsi_release_buffers(cmd);
1014 			scsi_requeue_command(q, cmd);
1015 		}
1016 		break;
1017 	case ACTION_RETRY:
1018 		/* Retry the same command immediately */
1019 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
1020 		break;
1021 	case ACTION_DELAYED_RETRY:
1022 		/* Retry the same command after a delay */
1023 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
1024 		break;
1025 	}
1026 }
1027 
1028 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb)
1029 {
1030 	int count;
1031 
1032 	/*
1033 	 * If sg table allocation fails, requeue request later.
1034 	 */
1035 	if (unlikely(sg_alloc_table_chained(&sdb->table,
1036 			blk_rq_nr_phys_segments(req), sdb->table.sgl)))
1037 		return BLKPREP_DEFER;
1038 
1039 	/*
1040 	 * Next, walk the list, and fill in the addresses and sizes of
1041 	 * each segment.
1042 	 */
1043 	count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1044 	BUG_ON(count > sdb->table.nents);
1045 	sdb->table.nents = count;
1046 	sdb->length = blk_rq_payload_bytes(req);
1047 	return BLKPREP_OK;
1048 }
1049 
1050 /*
1051  * Function:    scsi_init_io()
1052  *
1053  * Purpose:     SCSI I/O initialize function.
1054  *
1055  * Arguments:   cmd   - Command descriptor we wish to initialize
1056  *
1057  * Returns:     0 on success
1058  *		BLKPREP_DEFER if the failure is retryable
1059  *		BLKPREP_KILL if the failure is fatal
1060  */
1061 int scsi_init_io(struct scsi_cmnd *cmd)
1062 {
1063 	struct scsi_device *sdev = cmd->device;
1064 	struct request *rq = cmd->request;
1065 	bool is_mq = (rq->mq_ctx != NULL);
1066 	int error = BLKPREP_KILL;
1067 
1068 	if (WARN_ON_ONCE(!blk_rq_nr_phys_segments(rq)))
1069 		goto err_exit;
1070 
1071 	error = scsi_init_sgtable(rq, &cmd->sdb);
1072 	if (error)
1073 		goto err_exit;
1074 
1075 	if (blk_bidi_rq(rq)) {
1076 		if (!rq->q->mq_ops) {
1077 			struct scsi_data_buffer *bidi_sdb =
1078 				kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC);
1079 			if (!bidi_sdb) {
1080 				error = BLKPREP_DEFER;
1081 				goto err_exit;
1082 			}
1083 
1084 			rq->next_rq->special = bidi_sdb;
1085 		}
1086 
1087 		error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special);
1088 		if (error)
1089 			goto err_exit;
1090 	}
1091 
1092 	if (blk_integrity_rq(rq)) {
1093 		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1094 		int ivecs, count;
1095 
1096 		if (prot_sdb == NULL) {
1097 			/*
1098 			 * This can happen if someone (e.g. multipath)
1099 			 * queues a command to a device on an adapter
1100 			 * that does not support DIX.
1101 			 */
1102 			WARN_ON_ONCE(1);
1103 			error = BLKPREP_KILL;
1104 			goto err_exit;
1105 		}
1106 
1107 		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1108 
1109 		if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1110 				prot_sdb->table.sgl)) {
1111 			error = BLKPREP_DEFER;
1112 			goto err_exit;
1113 		}
1114 
1115 		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1116 						prot_sdb->table.sgl);
1117 		BUG_ON(unlikely(count > ivecs));
1118 		BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1119 
1120 		cmd->prot_sdb = prot_sdb;
1121 		cmd->prot_sdb->table.nents = count;
1122 	}
1123 
1124 	return BLKPREP_OK;
1125 err_exit:
1126 	if (is_mq) {
1127 		scsi_mq_free_sgtables(cmd);
1128 	} else {
1129 		scsi_release_buffers(cmd);
1130 		cmd->request->special = NULL;
1131 		scsi_put_command(cmd);
1132 		put_device(&sdev->sdev_gendev);
1133 	}
1134 	return error;
1135 }
1136 EXPORT_SYMBOL(scsi_init_io);
1137 
1138 /**
1139  * scsi_initialize_rq - initialize struct scsi_cmnd partially
1140  * @rq: Request associated with the SCSI command to be initialized.
1141  *
1142  * This function initializes the members of struct scsi_cmnd that must be
1143  * initialized before request processing starts and that won't be
1144  * reinitialized if a SCSI command is requeued.
1145  *
1146  * Called from inside blk_get_request() for pass-through requests and from
1147  * inside scsi_init_command() for filesystem requests.
1148  */
1149 static void scsi_initialize_rq(struct request *rq)
1150 {
1151 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1152 
1153 	scsi_req_init(&cmd->req);
1154 	cmd->jiffies_at_alloc = jiffies;
1155 	cmd->retries = 0;
1156 }
1157 
1158 /* Add a command to the list used by the aacraid and dpt_i2o drivers */
1159 void scsi_add_cmd_to_list(struct scsi_cmnd *cmd)
1160 {
1161 	struct scsi_device *sdev = cmd->device;
1162 	struct Scsi_Host *shost = sdev->host;
1163 	unsigned long flags;
1164 
1165 	if (shost->use_cmd_list) {
1166 		spin_lock_irqsave(&sdev->list_lock, flags);
1167 		list_add_tail(&cmd->list, &sdev->cmd_list);
1168 		spin_unlock_irqrestore(&sdev->list_lock, flags);
1169 	}
1170 }
1171 
1172 /* Remove a command from the list used by the aacraid and dpt_i2o drivers */
1173 void scsi_del_cmd_from_list(struct scsi_cmnd *cmd)
1174 {
1175 	struct scsi_device *sdev = cmd->device;
1176 	struct Scsi_Host *shost = sdev->host;
1177 	unsigned long flags;
1178 
1179 	if (shost->use_cmd_list) {
1180 		spin_lock_irqsave(&sdev->list_lock, flags);
1181 		BUG_ON(list_empty(&cmd->list));
1182 		list_del_init(&cmd->list);
1183 		spin_unlock_irqrestore(&sdev->list_lock, flags);
1184 	}
1185 }
1186 
1187 /* Called after a request has been started. */
1188 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1189 {
1190 	void *buf = cmd->sense_buffer;
1191 	void *prot = cmd->prot_sdb;
1192 	struct request *rq = blk_mq_rq_from_pdu(cmd);
1193 	unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS;
1194 	unsigned long jiffies_at_alloc;
1195 	int retries;
1196 
1197 	if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) {
1198 		flags |= SCMD_INITIALIZED;
1199 		scsi_initialize_rq(rq);
1200 	}
1201 
1202 	jiffies_at_alloc = cmd->jiffies_at_alloc;
1203 	retries = cmd->retries;
1204 	/* zero out the cmd, except for the embedded scsi_request */
1205 	memset((char *)cmd + sizeof(cmd->req), 0,
1206 		sizeof(*cmd) - sizeof(cmd->req) + dev->host->hostt->cmd_size);
1207 
1208 	cmd->device = dev;
1209 	cmd->sense_buffer = buf;
1210 	cmd->prot_sdb = prot;
1211 	cmd->flags = flags;
1212 	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1213 	cmd->jiffies_at_alloc = jiffies_at_alloc;
1214 	cmd->retries = retries;
1215 
1216 	scsi_add_cmd_to_list(cmd);
1217 }
1218 
1219 static int scsi_setup_scsi_cmnd(struct scsi_device *sdev, struct request *req)
1220 {
1221 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1222 
1223 	/*
1224 	 * Passthrough requests may transfer data, in which case they must
1225 	 * a bio attached to them.  Or they might contain a SCSI command
1226 	 * that does not transfer data, in which case they may optionally
1227 	 * submit a request without an attached bio.
1228 	 */
1229 	if (req->bio) {
1230 		int ret = scsi_init_io(cmd);
1231 		if (unlikely(ret))
1232 			return ret;
1233 	} else {
1234 		BUG_ON(blk_rq_bytes(req));
1235 
1236 		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1237 	}
1238 
1239 	cmd->cmd_len = scsi_req(req)->cmd_len;
1240 	cmd->cmnd = scsi_req(req)->cmd;
1241 	cmd->transfersize = blk_rq_bytes(req);
1242 	cmd->allowed = scsi_req(req)->retries;
1243 	return BLKPREP_OK;
1244 }
1245 
1246 /*
1247  * Setup a normal block command.  These are simple request from filesystems
1248  * that still need to be translated to SCSI CDBs from the ULD.
1249  */
1250 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1251 {
1252 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1253 
1254 	if (unlikely(sdev->handler && sdev->handler->prep_fn)) {
1255 		int ret = sdev->handler->prep_fn(sdev, req);
1256 		if (ret != BLKPREP_OK)
1257 			return ret;
1258 	}
1259 
1260 	cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1261 	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1262 	return scsi_cmd_to_driver(cmd)->init_command(cmd);
1263 }
1264 
1265 static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req)
1266 {
1267 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1268 
1269 	if (!blk_rq_bytes(req))
1270 		cmd->sc_data_direction = DMA_NONE;
1271 	else if (rq_data_dir(req) == WRITE)
1272 		cmd->sc_data_direction = DMA_TO_DEVICE;
1273 	else
1274 		cmd->sc_data_direction = DMA_FROM_DEVICE;
1275 
1276 	if (blk_rq_is_scsi(req))
1277 		return scsi_setup_scsi_cmnd(sdev, req);
1278 	else
1279 		return scsi_setup_fs_cmnd(sdev, req);
1280 }
1281 
1282 static int
1283 scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1284 {
1285 	int ret = BLKPREP_OK;
1286 
1287 	/*
1288 	 * If the device is not in running state we will reject some
1289 	 * or all commands.
1290 	 */
1291 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1292 		switch (sdev->sdev_state) {
1293 		case SDEV_OFFLINE:
1294 		case SDEV_TRANSPORT_OFFLINE:
1295 			/*
1296 			 * If the device is offline we refuse to process any
1297 			 * commands.  The device must be brought online
1298 			 * before trying any recovery commands.
1299 			 */
1300 			sdev_printk(KERN_ERR, sdev,
1301 				    "rejecting I/O to offline device\n");
1302 			ret = BLKPREP_KILL;
1303 			break;
1304 		case SDEV_DEL:
1305 			/*
1306 			 * If the device is fully deleted, we refuse to
1307 			 * process any commands as well.
1308 			 */
1309 			sdev_printk(KERN_ERR, sdev,
1310 				    "rejecting I/O to dead device\n");
1311 			ret = BLKPREP_KILL;
1312 			break;
1313 		case SDEV_BLOCK:
1314 		case SDEV_CREATED_BLOCK:
1315 			ret = BLKPREP_DEFER;
1316 			break;
1317 		case SDEV_QUIESCE:
1318 			/*
1319 			 * If the devices is blocked we defer normal commands.
1320 			 */
1321 			if (req && !(req->rq_flags & RQF_PREEMPT))
1322 				ret = BLKPREP_DEFER;
1323 			break;
1324 		default:
1325 			/*
1326 			 * For any other not fully online state we only allow
1327 			 * special commands.  In particular any user initiated
1328 			 * command is not allowed.
1329 			 */
1330 			if (req && !(req->rq_flags & RQF_PREEMPT))
1331 				ret = BLKPREP_KILL;
1332 			break;
1333 		}
1334 	}
1335 	return ret;
1336 }
1337 
1338 static int
1339 scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1340 {
1341 	struct scsi_device *sdev = q->queuedata;
1342 
1343 	switch (ret) {
1344 	case BLKPREP_KILL:
1345 	case BLKPREP_INVALID:
1346 		scsi_req(req)->result = DID_NO_CONNECT << 16;
1347 		/* release the command and kill it */
1348 		if (req->special) {
1349 			struct scsi_cmnd *cmd = req->special;
1350 			scsi_release_buffers(cmd);
1351 			scsi_put_command(cmd);
1352 			put_device(&sdev->sdev_gendev);
1353 			req->special = NULL;
1354 		}
1355 		break;
1356 	case BLKPREP_DEFER:
1357 		/*
1358 		 * If we defer, the blk_peek_request() returns NULL, but the
1359 		 * queue must be restarted, so we schedule a callback to happen
1360 		 * shortly.
1361 		 */
1362 		if (atomic_read(&sdev->device_busy) == 0)
1363 			blk_delay_queue(q, SCSI_QUEUE_DELAY);
1364 		break;
1365 	default:
1366 		req->rq_flags |= RQF_DONTPREP;
1367 	}
1368 
1369 	return ret;
1370 }
1371 
1372 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1373 {
1374 	struct scsi_device *sdev = q->queuedata;
1375 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1376 	int ret;
1377 
1378 	ret = scsi_prep_state_check(sdev, req);
1379 	if (ret != BLKPREP_OK)
1380 		goto out;
1381 
1382 	if (!req->special) {
1383 		/* Bail if we can't get a reference to the device */
1384 		if (unlikely(!get_device(&sdev->sdev_gendev))) {
1385 			ret = BLKPREP_DEFER;
1386 			goto out;
1387 		}
1388 
1389 		scsi_init_command(sdev, cmd);
1390 		req->special = cmd;
1391 	}
1392 
1393 	cmd->tag = req->tag;
1394 	cmd->request = req;
1395 	cmd->prot_op = SCSI_PROT_NORMAL;
1396 
1397 	ret = scsi_setup_cmnd(sdev, req);
1398 out:
1399 	return scsi_prep_return(q, req, ret);
1400 }
1401 
1402 static void scsi_unprep_fn(struct request_queue *q, struct request *req)
1403 {
1404 	scsi_uninit_cmd(blk_mq_rq_to_pdu(req));
1405 }
1406 
1407 /*
1408  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1409  * return 0.
1410  *
1411  * Called with the queue_lock held.
1412  */
1413 static inline int scsi_dev_queue_ready(struct request_queue *q,
1414 				  struct scsi_device *sdev)
1415 {
1416 	unsigned int busy;
1417 
1418 	busy = atomic_inc_return(&sdev->device_busy) - 1;
1419 	if (atomic_read(&sdev->device_blocked)) {
1420 		if (busy)
1421 			goto out_dec;
1422 
1423 		/*
1424 		 * unblock after device_blocked iterates to zero
1425 		 */
1426 		if (atomic_dec_return(&sdev->device_blocked) > 0) {
1427 			/*
1428 			 * For the MQ case we take care of this in the caller.
1429 			 */
1430 			if (!q->mq_ops)
1431 				blk_delay_queue(q, SCSI_QUEUE_DELAY);
1432 			goto out_dec;
1433 		}
1434 		SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1435 				   "unblocking device at zero depth\n"));
1436 	}
1437 
1438 	if (busy >= sdev->queue_depth)
1439 		goto out_dec;
1440 
1441 	return 1;
1442 out_dec:
1443 	atomic_dec(&sdev->device_busy);
1444 	return 0;
1445 }
1446 
1447 /*
1448  * scsi_target_queue_ready: checks if there we can send commands to target
1449  * @sdev: scsi device on starget to check.
1450  */
1451 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1452 					   struct scsi_device *sdev)
1453 {
1454 	struct scsi_target *starget = scsi_target(sdev);
1455 	unsigned int busy;
1456 
1457 	if (starget->single_lun) {
1458 		spin_lock_irq(shost->host_lock);
1459 		if (starget->starget_sdev_user &&
1460 		    starget->starget_sdev_user != sdev) {
1461 			spin_unlock_irq(shost->host_lock);
1462 			return 0;
1463 		}
1464 		starget->starget_sdev_user = sdev;
1465 		spin_unlock_irq(shost->host_lock);
1466 	}
1467 
1468 	if (starget->can_queue <= 0)
1469 		return 1;
1470 
1471 	busy = atomic_inc_return(&starget->target_busy) - 1;
1472 	if (atomic_read(&starget->target_blocked) > 0) {
1473 		if (busy)
1474 			goto starved;
1475 
1476 		/*
1477 		 * unblock after target_blocked iterates to zero
1478 		 */
1479 		if (atomic_dec_return(&starget->target_blocked) > 0)
1480 			goto out_dec;
1481 
1482 		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1483 				 "unblocking target at zero depth\n"));
1484 	}
1485 
1486 	if (busy >= starget->can_queue)
1487 		goto starved;
1488 
1489 	return 1;
1490 
1491 starved:
1492 	spin_lock_irq(shost->host_lock);
1493 	list_move_tail(&sdev->starved_entry, &shost->starved_list);
1494 	spin_unlock_irq(shost->host_lock);
1495 out_dec:
1496 	if (starget->can_queue > 0)
1497 		atomic_dec(&starget->target_busy);
1498 	return 0;
1499 }
1500 
1501 /*
1502  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1503  * return 0. We must end up running the queue again whenever 0 is
1504  * returned, else IO can hang.
1505  */
1506 static inline int scsi_host_queue_ready(struct request_queue *q,
1507 				   struct Scsi_Host *shost,
1508 				   struct scsi_device *sdev)
1509 {
1510 	unsigned int busy;
1511 
1512 	if (scsi_host_in_recovery(shost))
1513 		return 0;
1514 
1515 	busy = atomic_inc_return(&shost->host_busy) - 1;
1516 	if (atomic_read(&shost->host_blocked) > 0) {
1517 		if (busy)
1518 			goto starved;
1519 
1520 		/*
1521 		 * unblock after host_blocked iterates to zero
1522 		 */
1523 		if (atomic_dec_return(&shost->host_blocked) > 0)
1524 			goto out_dec;
1525 
1526 		SCSI_LOG_MLQUEUE(3,
1527 			shost_printk(KERN_INFO, shost,
1528 				     "unblocking host at zero depth\n"));
1529 	}
1530 
1531 	if (shost->can_queue > 0 && busy >= shost->can_queue)
1532 		goto starved;
1533 	if (shost->host_self_blocked)
1534 		goto starved;
1535 
1536 	/* We're OK to process the command, so we can't be starved */
1537 	if (!list_empty(&sdev->starved_entry)) {
1538 		spin_lock_irq(shost->host_lock);
1539 		if (!list_empty(&sdev->starved_entry))
1540 			list_del_init(&sdev->starved_entry);
1541 		spin_unlock_irq(shost->host_lock);
1542 	}
1543 
1544 	return 1;
1545 
1546 starved:
1547 	spin_lock_irq(shost->host_lock);
1548 	if (list_empty(&sdev->starved_entry))
1549 		list_add_tail(&sdev->starved_entry, &shost->starved_list);
1550 	spin_unlock_irq(shost->host_lock);
1551 out_dec:
1552 	scsi_dec_host_busy(shost);
1553 	return 0;
1554 }
1555 
1556 /*
1557  * Busy state exporting function for request stacking drivers.
1558  *
1559  * For efficiency, no lock is taken to check the busy state of
1560  * shost/starget/sdev, since the returned value is not guaranteed and
1561  * may be changed after request stacking drivers call the function,
1562  * regardless of taking lock or not.
1563  *
1564  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1565  * needs to return 'not busy'. Otherwise, request stacking drivers
1566  * may hold requests forever.
1567  */
1568 static int scsi_lld_busy(struct request_queue *q)
1569 {
1570 	struct scsi_device *sdev = q->queuedata;
1571 	struct Scsi_Host *shost;
1572 
1573 	if (blk_queue_dying(q))
1574 		return 0;
1575 
1576 	shost = sdev->host;
1577 
1578 	/*
1579 	 * Ignore host/starget busy state.
1580 	 * Since block layer does not have a concept of fairness across
1581 	 * multiple queues, congestion of host/starget needs to be handled
1582 	 * in SCSI layer.
1583 	 */
1584 	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1585 		return 1;
1586 
1587 	return 0;
1588 }
1589 
1590 /*
1591  * Kill a request for a dead device
1592  */
1593 static void scsi_kill_request(struct request *req, struct request_queue *q)
1594 {
1595 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1596 	struct scsi_device *sdev;
1597 	struct scsi_target *starget;
1598 	struct Scsi_Host *shost;
1599 
1600 	blk_start_request(req);
1601 
1602 	scmd_printk(KERN_INFO, cmd, "killing request\n");
1603 
1604 	sdev = cmd->device;
1605 	starget = scsi_target(sdev);
1606 	shost = sdev->host;
1607 	scsi_init_cmd_errh(cmd);
1608 	cmd->result = DID_NO_CONNECT << 16;
1609 	atomic_inc(&cmd->device->iorequest_cnt);
1610 
1611 	/*
1612 	 * SCSI request completion path will do scsi_device_unbusy(),
1613 	 * bump busy counts.  To bump the counters, we need to dance
1614 	 * with the locks as normal issue path does.
1615 	 */
1616 	atomic_inc(&sdev->device_busy);
1617 	atomic_inc(&shost->host_busy);
1618 	if (starget->can_queue > 0)
1619 		atomic_inc(&starget->target_busy);
1620 
1621 	blk_complete_request(req);
1622 }
1623 
1624 static void scsi_softirq_done(struct request *rq)
1625 {
1626 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1627 	unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1628 	int disposition;
1629 
1630 	INIT_LIST_HEAD(&cmd->eh_entry);
1631 
1632 	atomic_inc(&cmd->device->iodone_cnt);
1633 	if (cmd->result)
1634 		atomic_inc(&cmd->device->ioerr_cnt);
1635 
1636 	disposition = scsi_decide_disposition(cmd);
1637 	if (disposition != SUCCESS &&
1638 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1639 		sdev_printk(KERN_ERR, cmd->device,
1640 			    "timing out command, waited %lus\n",
1641 			    wait_for/HZ);
1642 		disposition = SUCCESS;
1643 	}
1644 
1645 	scsi_log_completion(cmd, disposition);
1646 
1647 	switch (disposition) {
1648 		case SUCCESS:
1649 			scsi_finish_command(cmd);
1650 			break;
1651 		case NEEDS_RETRY:
1652 			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1653 			break;
1654 		case ADD_TO_MLQUEUE:
1655 			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1656 			break;
1657 		default:
1658 			scsi_eh_scmd_add(cmd);
1659 			break;
1660 	}
1661 }
1662 
1663 /**
1664  * scsi_dispatch_command - Dispatch a command to the low-level driver.
1665  * @cmd: command block we are dispatching.
1666  *
1667  * Return: nonzero return request was rejected and device's queue needs to be
1668  * plugged.
1669  */
1670 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1671 {
1672 	struct Scsi_Host *host = cmd->device->host;
1673 	int rtn = 0;
1674 
1675 	atomic_inc(&cmd->device->iorequest_cnt);
1676 
1677 	/* check if the device is still usable */
1678 	if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1679 		/* in SDEV_DEL we error all commands. DID_NO_CONNECT
1680 		 * returns an immediate error upwards, and signals
1681 		 * that the device is no longer present */
1682 		cmd->result = DID_NO_CONNECT << 16;
1683 		goto done;
1684 	}
1685 
1686 	/* Check to see if the scsi lld made this device blocked. */
1687 	if (unlikely(scsi_device_blocked(cmd->device))) {
1688 		/*
1689 		 * in blocked state, the command is just put back on
1690 		 * the device queue.  The suspend state has already
1691 		 * blocked the queue so future requests should not
1692 		 * occur until the device transitions out of the
1693 		 * suspend state.
1694 		 */
1695 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1696 			"queuecommand : device blocked\n"));
1697 		return SCSI_MLQUEUE_DEVICE_BUSY;
1698 	}
1699 
1700 	/* Store the LUN value in cmnd, if needed. */
1701 	if (cmd->device->lun_in_cdb)
1702 		cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1703 			       (cmd->device->lun << 5 & 0xe0);
1704 
1705 	scsi_log_send(cmd);
1706 
1707 	/*
1708 	 * Before we queue this command, check if the command
1709 	 * length exceeds what the host adapter can handle.
1710 	 */
1711 	if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1712 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1713 			       "queuecommand : command too long. "
1714 			       "cdb_size=%d host->max_cmd_len=%d\n",
1715 			       cmd->cmd_len, cmd->device->host->max_cmd_len));
1716 		cmd->result = (DID_ABORT << 16);
1717 		goto done;
1718 	}
1719 
1720 	if (unlikely(host->shost_state == SHOST_DEL)) {
1721 		cmd->result = (DID_NO_CONNECT << 16);
1722 		goto done;
1723 
1724 	}
1725 
1726 	trace_scsi_dispatch_cmd_start(cmd);
1727 	rtn = host->hostt->queuecommand(host, cmd);
1728 	if (rtn) {
1729 		trace_scsi_dispatch_cmd_error(cmd, rtn);
1730 		if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1731 		    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1732 			rtn = SCSI_MLQUEUE_HOST_BUSY;
1733 
1734 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1735 			"queuecommand : request rejected\n"));
1736 	}
1737 
1738 	return rtn;
1739  done:
1740 	cmd->scsi_done(cmd);
1741 	return 0;
1742 }
1743 
1744 /**
1745  * scsi_done - Invoke completion on finished SCSI command.
1746  * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives
1747  * ownership back to SCSI Core -- i.e. the LLDD has finished with it.
1748  *
1749  * Description: This function is the mid-level's (SCSI Core) interrupt routine,
1750  * which regains ownership of the SCSI command (de facto) from a LLDD, and
1751  * calls blk_complete_request() for further processing.
1752  *
1753  * This function is interrupt context safe.
1754  */
1755 static void scsi_done(struct scsi_cmnd *cmd)
1756 {
1757 	trace_scsi_dispatch_cmd_done(cmd);
1758 	blk_complete_request(cmd->request);
1759 }
1760 
1761 /*
1762  * Function:    scsi_request_fn()
1763  *
1764  * Purpose:     Main strategy routine for SCSI.
1765  *
1766  * Arguments:   q       - Pointer to actual queue.
1767  *
1768  * Returns:     Nothing
1769  *
1770  * Lock status: request queue lock assumed to be held when called.
1771  *
1772  * Note: See sd_zbc.c sd_zbc_write_lock_zone() for write order
1773  * protection for ZBC disks.
1774  */
1775 static void scsi_request_fn(struct request_queue *q)
1776 	__releases(q->queue_lock)
1777 	__acquires(q->queue_lock)
1778 {
1779 	struct scsi_device *sdev = q->queuedata;
1780 	struct Scsi_Host *shost;
1781 	struct scsi_cmnd *cmd;
1782 	struct request *req;
1783 
1784 	/*
1785 	 * To start with, we keep looping until the queue is empty, or until
1786 	 * the host is no longer able to accept any more requests.
1787 	 */
1788 	shost = sdev->host;
1789 	for (;;) {
1790 		int rtn;
1791 		/*
1792 		 * get next queueable request.  We do this early to make sure
1793 		 * that the request is fully prepared even if we cannot
1794 		 * accept it.
1795 		 */
1796 		req = blk_peek_request(q);
1797 		if (!req)
1798 			break;
1799 
1800 		if (unlikely(!scsi_device_online(sdev))) {
1801 			sdev_printk(KERN_ERR, sdev,
1802 				    "rejecting I/O to offline device\n");
1803 			scsi_kill_request(req, q);
1804 			continue;
1805 		}
1806 
1807 		if (!scsi_dev_queue_ready(q, sdev))
1808 			break;
1809 
1810 		/*
1811 		 * Remove the request from the request list.
1812 		 */
1813 		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1814 			blk_start_request(req);
1815 
1816 		spin_unlock_irq(q->queue_lock);
1817 		cmd = blk_mq_rq_to_pdu(req);
1818 		if (cmd != req->special) {
1819 			printk(KERN_CRIT "impossible request in %s.\n"
1820 					 "please mail a stack trace to "
1821 					 "linux-scsi@vger.kernel.org\n",
1822 					 __func__);
1823 			blk_dump_rq_flags(req, "foo");
1824 			BUG();
1825 		}
1826 
1827 		/*
1828 		 * We hit this when the driver is using a host wide
1829 		 * tag map. For device level tag maps the queue_depth check
1830 		 * in the device ready fn would prevent us from trying
1831 		 * to allocate a tag. Since the map is a shared host resource
1832 		 * we add the dev to the starved list so it eventually gets
1833 		 * a run when a tag is freed.
1834 		 */
1835 		if (blk_queue_tagged(q) && !(req->rq_flags & RQF_QUEUED)) {
1836 			spin_lock_irq(shost->host_lock);
1837 			if (list_empty(&sdev->starved_entry))
1838 				list_add_tail(&sdev->starved_entry,
1839 					      &shost->starved_list);
1840 			spin_unlock_irq(shost->host_lock);
1841 			goto not_ready;
1842 		}
1843 
1844 		if (!scsi_target_queue_ready(shost, sdev))
1845 			goto not_ready;
1846 
1847 		if (!scsi_host_queue_ready(q, shost, sdev))
1848 			goto host_not_ready;
1849 
1850 		if (sdev->simple_tags)
1851 			cmd->flags |= SCMD_TAGGED;
1852 		else
1853 			cmd->flags &= ~SCMD_TAGGED;
1854 
1855 		/*
1856 		 * Finally, initialize any error handling parameters, and set up
1857 		 * the timers for timeouts.
1858 		 */
1859 		scsi_init_cmd_errh(cmd);
1860 
1861 		/*
1862 		 * Dispatch the command to the low-level driver.
1863 		 */
1864 		cmd->scsi_done = scsi_done;
1865 		rtn = scsi_dispatch_cmd(cmd);
1866 		if (rtn) {
1867 			scsi_queue_insert(cmd, rtn);
1868 			spin_lock_irq(q->queue_lock);
1869 			goto out_delay;
1870 		}
1871 		spin_lock_irq(q->queue_lock);
1872 	}
1873 
1874 	return;
1875 
1876  host_not_ready:
1877 	if (scsi_target(sdev)->can_queue > 0)
1878 		atomic_dec(&scsi_target(sdev)->target_busy);
1879  not_ready:
1880 	/*
1881 	 * lock q, handle tag, requeue req, and decrement device_busy. We
1882 	 * must return with queue_lock held.
1883 	 *
1884 	 * Decrementing device_busy without checking it is OK, as all such
1885 	 * cases (host limits or settings) should run the queue at some
1886 	 * later time.
1887 	 */
1888 	spin_lock_irq(q->queue_lock);
1889 	blk_requeue_request(q, req);
1890 	atomic_dec(&sdev->device_busy);
1891 out_delay:
1892 	if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev))
1893 		blk_delay_queue(q, SCSI_QUEUE_DELAY);
1894 }
1895 
1896 static inline blk_status_t prep_to_mq(int ret)
1897 {
1898 	switch (ret) {
1899 	case BLKPREP_OK:
1900 		return BLK_STS_OK;
1901 	case BLKPREP_DEFER:
1902 		return BLK_STS_RESOURCE;
1903 	default:
1904 		return BLK_STS_IOERR;
1905 	}
1906 }
1907 
1908 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1909 static unsigned int scsi_mq_sgl_size(struct Scsi_Host *shost)
1910 {
1911 	return min_t(unsigned int, shost->sg_tablesize, SG_CHUNK_SIZE) *
1912 		sizeof(struct scatterlist);
1913 }
1914 
1915 static int scsi_mq_prep_fn(struct request *req)
1916 {
1917 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1918 	struct scsi_device *sdev = req->q->queuedata;
1919 	struct Scsi_Host *shost = sdev->host;
1920 	struct scatterlist *sg;
1921 
1922 	scsi_init_command(sdev, cmd);
1923 
1924 	req->special = cmd;
1925 
1926 	cmd->request = req;
1927 
1928 	cmd->tag = req->tag;
1929 	cmd->prot_op = SCSI_PROT_NORMAL;
1930 
1931 	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1932 	cmd->sdb.table.sgl = sg;
1933 
1934 	if (scsi_host_get_prot(shost)) {
1935 		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1936 
1937 		cmd->prot_sdb->table.sgl =
1938 			(struct scatterlist *)(cmd->prot_sdb + 1);
1939 	}
1940 
1941 	if (blk_bidi_rq(req)) {
1942 		struct request *next_rq = req->next_rq;
1943 		struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq);
1944 
1945 		memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer));
1946 		bidi_sdb->table.sgl =
1947 			(struct scatterlist *)(bidi_sdb + 1);
1948 
1949 		next_rq->special = bidi_sdb;
1950 	}
1951 
1952 	blk_mq_start_request(req);
1953 
1954 	return scsi_setup_cmnd(sdev, req);
1955 }
1956 
1957 static void scsi_mq_done(struct scsi_cmnd *cmd)
1958 {
1959 	trace_scsi_dispatch_cmd_done(cmd);
1960 	blk_mq_complete_request(cmd->request);
1961 }
1962 
1963 static void scsi_mq_put_budget(struct blk_mq_hw_ctx *hctx)
1964 {
1965 	struct request_queue *q = hctx->queue;
1966 	struct scsi_device *sdev = q->queuedata;
1967 
1968 	atomic_dec(&sdev->device_busy);
1969 	put_device(&sdev->sdev_gendev);
1970 }
1971 
1972 static bool scsi_mq_get_budget(struct blk_mq_hw_ctx *hctx)
1973 {
1974 	struct request_queue *q = hctx->queue;
1975 	struct scsi_device *sdev = q->queuedata;
1976 
1977 	if (!get_device(&sdev->sdev_gendev))
1978 		goto out;
1979 	if (!scsi_dev_queue_ready(q, sdev))
1980 		goto out_put_device;
1981 
1982 	return true;
1983 
1984 out_put_device:
1985 	put_device(&sdev->sdev_gendev);
1986 out:
1987 	if (atomic_read(&sdev->device_busy) == 0 && !scsi_device_blocked(sdev))
1988 		blk_mq_delay_run_hw_queue(hctx, SCSI_QUEUE_DELAY);
1989 	return false;
1990 }
1991 
1992 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1993 			 const struct blk_mq_queue_data *bd)
1994 {
1995 	struct request *req = bd->rq;
1996 	struct request_queue *q = req->q;
1997 	struct scsi_device *sdev = q->queuedata;
1998 	struct Scsi_Host *shost = sdev->host;
1999 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
2000 	blk_status_t ret;
2001 	int reason;
2002 
2003 	ret = prep_to_mq(scsi_prep_state_check(sdev, req));
2004 	if (ret != BLK_STS_OK)
2005 		goto out_put_budget;
2006 
2007 	ret = BLK_STS_RESOURCE;
2008 	if (!scsi_target_queue_ready(shost, sdev))
2009 		goto out_put_budget;
2010 	if (!scsi_host_queue_ready(q, shost, sdev))
2011 		goto out_dec_target_busy;
2012 
2013 	if (!(req->rq_flags & RQF_DONTPREP)) {
2014 		ret = prep_to_mq(scsi_mq_prep_fn(req));
2015 		if (ret != BLK_STS_OK)
2016 			goto out_dec_host_busy;
2017 		req->rq_flags |= RQF_DONTPREP;
2018 	} else {
2019 		blk_mq_start_request(req);
2020 	}
2021 
2022 	if (sdev->simple_tags)
2023 		cmd->flags |= SCMD_TAGGED;
2024 	else
2025 		cmd->flags &= ~SCMD_TAGGED;
2026 
2027 	scsi_init_cmd_errh(cmd);
2028 	cmd->scsi_done = scsi_mq_done;
2029 
2030 	reason = scsi_dispatch_cmd(cmd);
2031 	if (reason) {
2032 		scsi_set_blocked(cmd, reason);
2033 		ret = BLK_STS_RESOURCE;
2034 		goto out_dec_host_busy;
2035 	}
2036 
2037 	return BLK_STS_OK;
2038 
2039 out_dec_host_busy:
2040 	scsi_dec_host_busy(shost);
2041 out_dec_target_busy:
2042 	if (scsi_target(sdev)->can_queue > 0)
2043 		atomic_dec(&scsi_target(sdev)->target_busy);
2044 out_put_budget:
2045 	scsi_mq_put_budget(hctx);
2046 	switch (ret) {
2047 	case BLK_STS_OK:
2048 		break;
2049 	case BLK_STS_RESOURCE:
2050 		if (atomic_read(&sdev->device_busy) ||
2051 		    scsi_device_blocked(sdev))
2052 			ret = BLK_STS_DEV_RESOURCE;
2053 		break;
2054 	default:
2055 		/*
2056 		 * Make sure to release all allocated ressources when
2057 		 * we hit an error, as we will never see this command
2058 		 * again.
2059 		 */
2060 		if (req->rq_flags & RQF_DONTPREP)
2061 			scsi_mq_uninit_cmd(cmd);
2062 		break;
2063 	}
2064 	return ret;
2065 }
2066 
2067 static enum blk_eh_timer_return scsi_timeout(struct request *req,
2068 		bool reserved)
2069 {
2070 	if (reserved)
2071 		return BLK_EH_RESET_TIMER;
2072 	return scsi_times_out(req);
2073 }
2074 
2075 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2076 				unsigned int hctx_idx, unsigned int numa_node)
2077 {
2078 	struct Scsi_Host *shost = set->driver_data;
2079 	const bool unchecked_isa_dma = shost->unchecked_isa_dma;
2080 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2081 	struct scatterlist *sg;
2082 
2083 	if (unchecked_isa_dma)
2084 		cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
2085 	cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma,
2086 						    GFP_KERNEL, numa_node);
2087 	if (!cmd->sense_buffer)
2088 		return -ENOMEM;
2089 	cmd->req.sense = cmd->sense_buffer;
2090 
2091 	if (scsi_host_get_prot(shost)) {
2092 		sg = (void *)cmd + sizeof(struct scsi_cmnd) +
2093 			shost->hostt->cmd_size;
2094 		cmd->prot_sdb = (void *)sg + scsi_mq_sgl_size(shost);
2095 	}
2096 
2097 	return 0;
2098 }
2099 
2100 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
2101 				 unsigned int hctx_idx)
2102 {
2103 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2104 
2105 	scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
2106 			       cmd->sense_buffer);
2107 }
2108 
2109 static int scsi_map_queues(struct blk_mq_tag_set *set)
2110 {
2111 	struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
2112 
2113 	if (shost->hostt->map_queues)
2114 		return shost->hostt->map_queues(shost);
2115 	return blk_mq_map_queues(set);
2116 }
2117 
2118 static u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
2119 {
2120 	struct device *host_dev;
2121 	u64 bounce_limit = 0xffffffff;
2122 
2123 	if (shost->unchecked_isa_dma)
2124 		return BLK_BOUNCE_ISA;
2125 	/*
2126 	 * Platforms with virtual-DMA translation
2127 	 * hardware have no practical limit.
2128 	 */
2129 	if (!PCI_DMA_BUS_IS_PHYS)
2130 		return BLK_BOUNCE_ANY;
2131 
2132 	host_dev = scsi_get_device(shost);
2133 	if (host_dev && host_dev->dma_mask)
2134 		bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT;
2135 
2136 	return bounce_limit;
2137 }
2138 
2139 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
2140 {
2141 	struct device *dev = shost->dma_dev;
2142 
2143 	queue_flag_set_unlocked(QUEUE_FLAG_SCSI_PASSTHROUGH, q);
2144 
2145 	/*
2146 	 * this limit is imposed by hardware restrictions
2147 	 */
2148 	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
2149 					SG_MAX_SEGMENTS));
2150 
2151 	if (scsi_host_prot_dma(shost)) {
2152 		shost->sg_prot_tablesize =
2153 			min_not_zero(shost->sg_prot_tablesize,
2154 				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
2155 		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
2156 		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
2157 	}
2158 
2159 	blk_queue_max_hw_sectors(q, shost->max_sectors);
2160 	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
2161 	blk_queue_segment_boundary(q, shost->dma_boundary);
2162 	dma_set_seg_boundary(dev, shost->dma_boundary);
2163 
2164 	blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
2165 
2166 	if (!shost->use_clustering)
2167 		q->limits.cluster = 0;
2168 
2169 	/*
2170 	 * Set a reasonable default alignment:  The larger of 32-byte (dword),
2171 	 * which is a common minimum for HBAs, and the minimum DMA alignment,
2172 	 * which is set by the platform.
2173 	 *
2174 	 * Devices that require a bigger alignment can increase it later.
2175 	 */
2176 	blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
2177 }
2178 EXPORT_SYMBOL_GPL(__scsi_init_queue);
2179 
2180 static int scsi_old_init_rq(struct request_queue *q, struct request *rq,
2181 			    gfp_t gfp)
2182 {
2183 	struct Scsi_Host *shost = q->rq_alloc_data;
2184 	const bool unchecked_isa_dma = shost->unchecked_isa_dma;
2185 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2186 
2187 	memset(cmd, 0, sizeof(*cmd));
2188 
2189 	if (unchecked_isa_dma)
2190 		cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
2191 	cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma, gfp,
2192 						    NUMA_NO_NODE);
2193 	if (!cmd->sense_buffer)
2194 		goto fail;
2195 	cmd->req.sense = cmd->sense_buffer;
2196 
2197 	if (scsi_host_get_prot(shost) >= SHOST_DIX_TYPE0_PROTECTION) {
2198 		cmd->prot_sdb = kmem_cache_zalloc(scsi_sdb_cache, gfp);
2199 		if (!cmd->prot_sdb)
2200 			goto fail_free_sense;
2201 	}
2202 
2203 	return 0;
2204 
2205 fail_free_sense:
2206 	scsi_free_sense_buffer(unchecked_isa_dma, cmd->sense_buffer);
2207 fail:
2208 	return -ENOMEM;
2209 }
2210 
2211 static void scsi_old_exit_rq(struct request_queue *q, struct request *rq)
2212 {
2213 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2214 
2215 	if (cmd->prot_sdb)
2216 		kmem_cache_free(scsi_sdb_cache, cmd->prot_sdb);
2217 	scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
2218 			       cmd->sense_buffer);
2219 }
2220 
2221 struct request_queue *scsi_old_alloc_queue(struct scsi_device *sdev)
2222 {
2223 	struct Scsi_Host *shost = sdev->host;
2224 	struct request_queue *q;
2225 
2226 	q = blk_alloc_queue_node(GFP_KERNEL, NUMA_NO_NODE);
2227 	if (!q)
2228 		return NULL;
2229 	q->cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
2230 	q->rq_alloc_data = shost;
2231 	q->request_fn = scsi_request_fn;
2232 	q->init_rq_fn = scsi_old_init_rq;
2233 	q->exit_rq_fn = scsi_old_exit_rq;
2234 	q->initialize_rq_fn = scsi_initialize_rq;
2235 
2236 	if (blk_init_allocated_queue(q) < 0) {
2237 		blk_cleanup_queue(q);
2238 		return NULL;
2239 	}
2240 
2241 	__scsi_init_queue(shost, q);
2242 	blk_queue_prep_rq(q, scsi_prep_fn);
2243 	blk_queue_unprep_rq(q, scsi_unprep_fn);
2244 	blk_queue_softirq_done(q, scsi_softirq_done);
2245 	blk_queue_rq_timed_out(q, scsi_times_out);
2246 	blk_queue_lld_busy(q, scsi_lld_busy);
2247 	return q;
2248 }
2249 
2250 static const struct blk_mq_ops scsi_mq_ops = {
2251 	.get_budget	= scsi_mq_get_budget,
2252 	.put_budget	= scsi_mq_put_budget,
2253 	.queue_rq	= scsi_queue_rq,
2254 	.complete	= scsi_softirq_done,
2255 	.timeout	= scsi_timeout,
2256 #ifdef CONFIG_BLK_DEBUG_FS
2257 	.show_rq	= scsi_show_rq,
2258 #endif
2259 	.init_request	= scsi_mq_init_request,
2260 	.exit_request	= scsi_mq_exit_request,
2261 	.initialize_rq_fn = scsi_initialize_rq,
2262 	.map_queues	= scsi_map_queues,
2263 };
2264 
2265 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
2266 {
2267 	sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
2268 	if (IS_ERR(sdev->request_queue))
2269 		return NULL;
2270 
2271 	sdev->request_queue->queuedata = sdev;
2272 	__scsi_init_queue(sdev->host, sdev->request_queue);
2273 	return sdev->request_queue;
2274 }
2275 
2276 int scsi_mq_setup_tags(struct Scsi_Host *shost)
2277 {
2278 	unsigned int cmd_size, sgl_size;
2279 
2280 	sgl_size = scsi_mq_sgl_size(shost);
2281 	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2282 	if (scsi_host_get_prot(shost))
2283 		cmd_size += sizeof(struct scsi_data_buffer) + sgl_size;
2284 
2285 	memset(&shost->tag_set, 0, sizeof(shost->tag_set));
2286 	shost->tag_set.ops = &scsi_mq_ops;
2287 	shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1;
2288 	shost->tag_set.queue_depth = shost->can_queue;
2289 	shost->tag_set.cmd_size = cmd_size;
2290 	shost->tag_set.numa_node = NUMA_NO_NODE;
2291 	shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2292 	shost->tag_set.flags |=
2293 		BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
2294 	shost->tag_set.driver_data = shost;
2295 
2296 	return blk_mq_alloc_tag_set(&shost->tag_set);
2297 }
2298 
2299 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
2300 {
2301 	blk_mq_free_tag_set(&shost->tag_set);
2302 }
2303 
2304 /**
2305  * scsi_device_from_queue - return sdev associated with a request_queue
2306  * @q: The request queue to return the sdev from
2307  *
2308  * Return the sdev associated with a request queue or NULL if the
2309  * request_queue does not reference a SCSI device.
2310  */
2311 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2312 {
2313 	struct scsi_device *sdev = NULL;
2314 
2315 	if (q->mq_ops) {
2316 		if (q->mq_ops == &scsi_mq_ops)
2317 			sdev = q->queuedata;
2318 	} else if (q->request_fn == scsi_request_fn)
2319 		sdev = q->queuedata;
2320 	if (!sdev || !get_device(&sdev->sdev_gendev))
2321 		sdev = NULL;
2322 
2323 	return sdev;
2324 }
2325 EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2326 
2327 /*
2328  * Function:    scsi_block_requests()
2329  *
2330  * Purpose:     Utility function used by low-level drivers to prevent further
2331  *		commands from being queued to the device.
2332  *
2333  * Arguments:   shost       - Host in question
2334  *
2335  * Returns:     Nothing
2336  *
2337  * Lock status: No locks are assumed held.
2338  *
2339  * Notes:       There is no timer nor any other means by which the requests
2340  *		get unblocked other than the low-level driver calling
2341  *		scsi_unblock_requests().
2342  */
2343 void scsi_block_requests(struct Scsi_Host *shost)
2344 {
2345 	shost->host_self_blocked = 1;
2346 }
2347 EXPORT_SYMBOL(scsi_block_requests);
2348 
2349 /*
2350  * Function:    scsi_unblock_requests()
2351  *
2352  * Purpose:     Utility function used by low-level drivers to allow further
2353  *		commands from being queued to the device.
2354  *
2355  * Arguments:   shost       - Host in question
2356  *
2357  * Returns:     Nothing
2358  *
2359  * Lock status: No locks are assumed held.
2360  *
2361  * Notes:       There is no timer nor any other means by which the requests
2362  *		get unblocked other than the low-level driver calling
2363  *		scsi_unblock_requests().
2364  *
2365  *		This is done as an API function so that changes to the
2366  *		internals of the scsi mid-layer won't require wholesale
2367  *		changes to drivers that use this feature.
2368  */
2369 void scsi_unblock_requests(struct Scsi_Host *shost)
2370 {
2371 	shost->host_self_blocked = 0;
2372 	scsi_run_host_queues(shost);
2373 }
2374 EXPORT_SYMBOL(scsi_unblock_requests);
2375 
2376 int __init scsi_init_queue(void)
2377 {
2378 	scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
2379 					   sizeof(struct scsi_data_buffer),
2380 					   0, 0, NULL);
2381 	if (!scsi_sdb_cache) {
2382 		printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
2383 		return -ENOMEM;
2384 	}
2385 
2386 	return 0;
2387 }
2388 
2389 void scsi_exit_queue(void)
2390 {
2391 	kmem_cache_destroy(scsi_sense_cache);
2392 	kmem_cache_destroy(scsi_sense_isadma_cache);
2393 	kmem_cache_destroy(scsi_sdb_cache);
2394 }
2395 
2396 /**
2397  *	scsi_mode_select - issue a mode select
2398  *	@sdev:	SCSI device to be queried
2399  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
2400  *	@sp:	Save page bit (0 == don't save, 1 == save)
2401  *	@modepage: mode page being requested
2402  *	@buffer: request buffer (may not be smaller than eight bytes)
2403  *	@len:	length of request buffer.
2404  *	@timeout: command timeout
2405  *	@retries: number of retries before failing
2406  *	@data: returns a structure abstracting the mode header data
2407  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2408  *		must be SCSI_SENSE_BUFFERSIZE big.
2409  *
2410  *	Returns zero if successful; negative error number or scsi
2411  *	status on error
2412  *
2413  */
2414 int
2415 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2416 		 unsigned char *buffer, int len, int timeout, int retries,
2417 		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2418 {
2419 	unsigned char cmd[10];
2420 	unsigned char *real_buffer;
2421 	int ret;
2422 
2423 	memset(cmd, 0, sizeof(cmd));
2424 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2425 
2426 	if (sdev->use_10_for_ms) {
2427 		if (len > 65535)
2428 			return -EINVAL;
2429 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
2430 		if (!real_buffer)
2431 			return -ENOMEM;
2432 		memcpy(real_buffer + 8, buffer, len);
2433 		len += 8;
2434 		real_buffer[0] = 0;
2435 		real_buffer[1] = 0;
2436 		real_buffer[2] = data->medium_type;
2437 		real_buffer[3] = data->device_specific;
2438 		real_buffer[4] = data->longlba ? 0x01 : 0;
2439 		real_buffer[5] = 0;
2440 		real_buffer[6] = data->block_descriptor_length >> 8;
2441 		real_buffer[7] = data->block_descriptor_length;
2442 
2443 		cmd[0] = MODE_SELECT_10;
2444 		cmd[7] = len >> 8;
2445 		cmd[8] = len;
2446 	} else {
2447 		if (len > 255 || data->block_descriptor_length > 255 ||
2448 		    data->longlba)
2449 			return -EINVAL;
2450 
2451 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2452 		if (!real_buffer)
2453 			return -ENOMEM;
2454 		memcpy(real_buffer + 4, buffer, len);
2455 		len += 4;
2456 		real_buffer[0] = 0;
2457 		real_buffer[1] = data->medium_type;
2458 		real_buffer[2] = data->device_specific;
2459 		real_buffer[3] = data->block_descriptor_length;
2460 
2461 
2462 		cmd[0] = MODE_SELECT;
2463 		cmd[4] = len;
2464 	}
2465 
2466 	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2467 			       sshdr, timeout, retries, NULL);
2468 	kfree(real_buffer);
2469 	return ret;
2470 }
2471 EXPORT_SYMBOL_GPL(scsi_mode_select);
2472 
2473 /**
2474  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2475  *	@sdev:	SCSI device to be queried
2476  *	@dbd:	set if mode sense will allow block descriptors to be returned
2477  *	@modepage: mode page being requested
2478  *	@buffer: request buffer (may not be smaller than eight bytes)
2479  *	@len:	length of request buffer.
2480  *	@timeout: command timeout
2481  *	@retries: number of retries before failing
2482  *	@data: returns a structure abstracting the mode header data
2483  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2484  *		must be SCSI_SENSE_BUFFERSIZE big.
2485  *
2486  *	Returns zero if unsuccessful, or the header offset (either 4
2487  *	or 8 depending on whether a six or ten byte command was
2488  *	issued) if successful.
2489  */
2490 int
2491 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2492 		  unsigned char *buffer, int len, int timeout, int retries,
2493 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2494 {
2495 	unsigned char cmd[12];
2496 	int use_10_for_ms;
2497 	int header_length;
2498 	int result, retry_count = retries;
2499 	struct scsi_sense_hdr my_sshdr;
2500 
2501 	memset(data, 0, sizeof(*data));
2502 	memset(&cmd[0], 0, 12);
2503 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2504 	cmd[2] = modepage;
2505 
2506 	/* caller might not be interested in sense, but we need it */
2507 	if (!sshdr)
2508 		sshdr = &my_sshdr;
2509 
2510  retry:
2511 	use_10_for_ms = sdev->use_10_for_ms;
2512 
2513 	if (use_10_for_ms) {
2514 		if (len < 8)
2515 			len = 8;
2516 
2517 		cmd[0] = MODE_SENSE_10;
2518 		cmd[8] = len;
2519 		header_length = 8;
2520 	} else {
2521 		if (len < 4)
2522 			len = 4;
2523 
2524 		cmd[0] = MODE_SENSE;
2525 		cmd[4] = len;
2526 		header_length = 4;
2527 	}
2528 
2529 	memset(buffer, 0, len);
2530 
2531 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2532 				  sshdr, timeout, retries, NULL);
2533 
2534 	/* This code looks awful: what it's doing is making sure an
2535 	 * ILLEGAL REQUEST sense return identifies the actual command
2536 	 * byte as the problem.  MODE_SENSE commands can return
2537 	 * ILLEGAL REQUEST if the code page isn't supported */
2538 
2539 	if (use_10_for_ms && !scsi_status_is_good(result) &&
2540 	    (driver_byte(result) & DRIVER_SENSE)) {
2541 		if (scsi_sense_valid(sshdr)) {
2542 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2543 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2544 				/*
2545 				 * Invalid command operation code
2546 				 */
2547 				sdev->use_10_for_ms = 0;
2548 				goto retry;
2549 			}
2550 		}
2551 	}
2552 
2553 	if(scsi_status_is_good(result)) {
2554 		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2555 			     (modepage == 6 || modepage == 8))) {
2556 			/* Initio breakage? */
2557 			header_length = 0;
2558 			data->length = 13;
2559 			data->medium_type = 0;
2560 			data->device_specific = 0;
2561 			data->longlba = 0;
2562 			data->block_descriptor_length = 0;
2563 		} else if(use_10_for_ms) {
2564 			data->length = buffer[0]*256 + buffer[1] + 2;
2565 			data->medium_type = buffer[2];
2566 			data->device_specific = buffer[3];
2567 			data->longlba = buffer[4] & 0x01;
2568 			data->block_descriptor_length = buffer[6]*256
2569 				+ buffer[7];
2570 		} else {
2571 			data->length = buffer[0] + 1;
2572 			data->medium_type = buffer[1];
2573 			data->device_specific = buffer[2];
2574 			data->block_descriptor_length = buffer[3];
2575 		}
2576 		data->header_length = header_length;
2577 	} else if ((status_byte(result) == CHECK_CONDITION) &&
2578 		   scsi_sense_valid(sshdr) &&
2579 		   sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2580 		retry_count--;
2581 		goto retry;
2582 	}
2583 
2584 	return result;
2585 }
2586 EXPORT_SYMBOL(scsi_mode_sense);
2587 
2588 /**
2589  *	scsi_test_unit_ready - test if unit is ready
2590  *	@sdev:	scsi device to change the state of.
2591  *	@timeout: command timeout
2592  *	@retries: number of retries before failing
2593  *	@sshdr: outpout pointer for decoded sense information.
2594  *
2595  *	Returns zero if unsuccessful or an error if TUR failed.  For
2596  *	removable media, UNIT_ATTENTION sets ->changed flag.
2597  **/
2598 int
2599 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2600 		     struct scsi_sense_hdr *sshdr)
2601 {
2602 	char cmd[] = {
2603 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2604 	};
2605 	int result;
2606 
2607 	/* try to eat the UNIT_ATTENTION if there are enough retries */
2608 	do {
2609 		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2610 					  timeout, retries, NULL);
2611 		if (sdev->removable && scsi_sense_valid(sshdr) &&
2612 		    sshdr->sense_key == UNIT_ATTENTION)
2613 			sdev->changed = 1;
2614 	} while (scsi_sense_valid(sshdr) &&
2615 		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2616 
2617 	return result;
2618 }
2619 EXPORT_SYMBOL(scsi_test_unit_ready);
2620 
2621 /**
2622  *	scsi_device_set_state - Take the given device through the device state model.
2623  *	@sdev:	scsi device to change the state of.
2624  *	@state:	state to change to.
2625  *
2626  *	Returns zero if successful or an error if the requested
2627  *	transition is illegal.
2628  */
2629 int
2630 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2631 {
2632 	enum scsi_device_state oldstate = sdev->sdev_state;
2633 
2634 	if (state == oldstate)
2635 		return 0;
2636 
2637 	switch (state) {
2638 	case SDEV_CREATED:
2639 		switch (oldstate) {
2640 		case SDEV_CREATED_BLOCK:
2641 			break;
2642 		default:
2643 			goto illegal;
2644 		}
2645 		break;
2646 
2647 	case SDEV_RUNNING:
2648 		switch (oldstate) {
2649 		case SDEV_CREATED:
2650 		case SDEV_OFFLINE:
2651 		case SDEV_TRANSPORT_OFFLINE:
2652 		case SDEV_QUIESCE:
2653 		case SDEV_BLOCK:
2654 			break;
2655 		default:
2656 			goto illegal;
2657 		}
2658 		break;
2659 
2660 	case SDEV_QUIESCE:
2661 		switch (oldstate) {
2662 		case SDEV_RUNNING:
2663 		case SDEV_OFFLINE:
2664 		case SDEV_TRANSPORT_OFFLINE:
2665 			break;
2666 		default:
2667 			goto illegal;
2668 		}
2669 		break;
2670 
2671 	case SDEV_OFFLINE:
2672 	case SDEV_TRANSPORT_OFFLINE:
2673 		switch (oldstate) {
2674 		case SDEV_CREATED:
2675 		case SDEV_RUNNING:
2676 		case SDEV_QUIESCE:
2677 		case SDEV_BLOCK:
2678 			break;
2679 		default:
2680 			goto illegal;
2681 		}
2682 		break;
2683 
2684 	case SDEV_BLOCK:
2685 		switch (oldstate) {
2686 		case SDEV_RUNNING:
2687 		case SDEV_CREATED_BLOCK:
2688 			break;
2689 		default:
2690 			goto illegal;
2691 		}
2692 		break;
2693 
2694 	case SDEV_CREATED_BLOCK:
2695 		switch (oldstate) {
2696 		case SDEV_CREATED:
2697 			break;
2698 		default:
2699 			goto illegal;
2700 		}
2701 		break;
2702 
2703 	case SDEV_CANCEL:
2704 		switch (oldstate) {
2705 		case SDEV_CREATED:
2706 		case SDEV_RUNNING:
2707 		case SDEV_QUIESCE:
2708 		case SDEV_OFFLINE:
2709 		case SDEV_TRANSPORT_OFFLINE:
2710 			break;
2711 		default:
2712 			goto illegal;
2713 		}
2714 		break;
2715 
2716 	case SDEV_DEL:
2717 		switch (oldstate) {
2718 		case SDEV_CREATED:
2719 		case SDEV_RUNNING:
2720 		case SDEV_OFFLINE:
2721 		case SDEV_TRANSPORT_OFFLINE:
2722 		case SDEV_CANCEL:
2723 		case SDEV_BLOCK:
2724 		case SDEV_CREATED_BLOCK:
2725 			break;
2726 		default:
2727 			goto illegal;
2728 		}
2729 		break;
2730 
2731 	}
2732 	sdev->sdev_state = state;
2733 	return 0;
2734 
2735  illegal:
2736 	SCSI_LOG_ERROR_RECOVERY(1,
2737 				sdev_printk(KERN_ERR, sdev,
2738 					    "Illegal state transition %s->%s",
2739 					    scsi_device_state_name(oldstate),
2740 					    scsi_device_state_name(state))
2741 				);
2742 	return -EINVAL;
2743 }
2744 EXPORT_SYMBOL(scsi_device_set_state);
2745 
2746 /**
2747  * 	sdev_evt_emit - emit a single SCSI device uevent
2748  *	@sdev: associated SCSI device
2749  *	@evt: event to emit
2750  *
2751  *	Send a single uevent (scsi_event) to the associated scsi_device.
2752  */
2753 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2754 {
2755 	int idx = 0;
2756 	char *envp[3];
2757 
2758 	switch (evt->evt_type) {
2759 	case SDEV_EVT_MEDIA_CHANGE:
2760 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2761 		break;
2762 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2763 		scsi_rescan_device(&sdev->sdev_gendev);
2764 		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2765 		break;
2766 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2767 		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2768 		break;
2769 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2770 	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2771 		break;
2772 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2773 		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2774 		break;
2775 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2776 		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2777 		break;
2778 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2779 		envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2780 		break;
2781 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2782 		envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2783 		break;
2784 	default:
2785 		/* do nothing */
2786 		break;
2787 	}
2788 
2789 	envp[idx++] = NULL;
2790 
2791 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2792 }
2793 
2794 /**
2795  * 	sdev_evt_thread - send a uevent for each scsi event
2796  *	@work: work struct for scsi_device
2797  *
2798  *	Dispatch queued events to their associated scsi_device kobjects
2799  *	as uevents.
2800  */
2801 void scsi_evt_thread(struct work_struct *work)
2802 {
2803 	struct scsi_device *sdev;
2804 	enum scsi_device_event evt_type;
2805 	LIST_HEAD(event_list);
2806 
2807 	sdev = container_of(work, struct scsi_device, event_work);
2808 
2809 	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2810 		if (test_and_clear_bit(evt_type, sdev->pending_events))
2811 			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2812 
2813 	while (1) {
2814 		struct scsi_event *evt;
2815 		struct list_head *this, *tmp;
2816 		unsigned long flags;
2817 
2818 		spin_lock_irqsave(&sdev->list_lock, flags);
2819 		list_splice_init(&sdev->event_list, &event_list);
2820 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2821 
2822 		if (list_empty(&event_list))
2823 			break;
2824 
2825 		list_for_each_safe(this, tmp, &event_list) {
2826 			evt = list_entry(this, struct scsi_event, node);
2827 			list_del(&evt->node);
2828 			scsi_evt_emit(sdev, evt);
2829 			kfree(evt);
2830 		}
2831 	}
2832 }
2833 
2834 /**
2835  * 	sdev_evt_send - send asserted event to uevent thread
2836  *	@sdev: scsi_device event occurred on
2837  *	@evt: event to send
2838  *
2839  *	Assert scsi device event asynchronously.
2840  */
2841 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2842 {
2843 	unsigned long flags;
2844 
2845 #if 0
2846 	/* FIXME: currently this check eliminates all media change events
2847 	 * for polled devices.  Need to update to discriminate between AN
2848 	 * and polled events */
2849 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2850 		kfree(evt);
2851 		return;
2852 	}
2853 #endif
2854 
2855 	spin_lock_irqsave(&sdev->list_lock, flags);
2856 	list_add_tail(&evt->node, &sdev->event_list);
2857 	schedule_work(&sdev->event_work);
2858 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2859 }
2860 EXPORT_SYMBOL_GPL(sdev_evt_send);
2861 
2862 /**
2863  * 	sdev_evt_alloc - allocate a new scsi event
2864  *	@evt_type: type of event to allocate
2865  *	@gfpflags: GFP flags for allocation
2866  *
2867  *	Allocates and returns a new scsi_event.
2868  */
2869 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2870 				  gfp_t gfpflags)
2871 {
2872 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2873 	if (!evt)
2874 		return NULL;
2875 
2876 	evt->evt_type = evt_type;
2877 	INIT_LIST_HEAD(&evt->node);
2878 
2879 	/* evt_type-specific initialization, if any */
2880 	switch (evt_type) {
2881 	case SDEV_EVT_MEDIA_CHANGE:
2882 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2883 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2884 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2885 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2886 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2887 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2888 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2889 	default:
2890 		/* do nothing */
2891 		break;
2892 	}
2893 
2894 	return evt;
2895 }
2896 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2897 
2898 /**
2899  * 	sdev_evt_send_simple - send asserted event to uevent thread
2900  *	@sdev: scsi_device event occurred on
2901  *	@evt_type: type of event to send
2902  *	@gfpflags: GFP flags for allocation
2903  *
2904  *	Assert scsi device event asynchronously, given an event type.
2905  */
2906 void sdev_evt_send_simple(struct scsi_device *sdev,
2907 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2908 {
2909 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2910 	if (!evt) {
2911 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2912 			    evt_type);
2913 		return;
2914 	}
2915 
2916 	sdev_evt_send(sdev, evt);
2917 }
2918 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2919 
2920 /**
2921  * scsi_request_fn_active() - number of kernel threads inside scsi_request_fn()
2922  * @sdev: SCSI device to count the number of scsi_request_fn() callers for.
2923  */
2924 static int scsi_request_fn_active(struct scsi_device *sdev)
2925 {
2926 	struct request_queue *q = sdev->request_queue;
2927 	int request_fn_active;
2928 
2929 	WARN_ON_ONCE(sdev->host->use_blk_mq);
2930 
2931 	spin_lock_irq(q->queue_lock);
2932 	request_fn_active = q->request_fn_active;
2933 	spin_unlock_irq(q->queue_lock);
2934 
2935 	return request_fn_active;
2936 }
2937 
2938 /**
2939  * scsi_wait_for_queuecommand() - wait for ongoing queuecommand() calls
2940  * @sdev: SCSI device pointer.
2941  *
2942  * Wait until the ongoing shost->hostt->queuecommand() calls that are
2943  * invoked from scsi_request_fn() have finished.
2944  */
2945 static void scsi_wait_for_queuecommand(struct scsi_device *sdev)
2946 {
2947 	WARN_ON_ONCE(sdev->host->use_blk_mq);
2948 
2949 	while (scsi_request_fn_active(sdev))
2950 		msleep(20);
2951 }
2952 
2953 /**
2954  *	scsi_device_quiesce - Block user issued commands.
2955  *	@sdev:	scsi device to quiesce.
2956  *
2957  *	This works by trying to transition to the SDEV_QUIESCE state
2958  *	(which must be a legal transition).  When the device is in this
2959  *	state, only special requests will be accepted, all others will
2960  *	be deferred.  Since special requests may also be requeued requests,
2961  *	a successful return doesn't guarantee the device will be
2962  *	totally quiescent.
2963  *
2964  *	Must be called with user context, may sleep.
2965  *
2966  *	Returns zero if unsuccessful or an error if not.
2967  */
2968 int
2969 scsi_device_quiesce(struct scsi_device *sdev)
2970 {
2971 	struct request_queue *q = sdev->request_queue;
2972 	int err;
2973 
2974 	/*
2975 	 * It is allowed to call scsi_device_quiesce() multiple times from
2976 	 * the same context but concurrent scsi_device_quiesce() calls are
2977 	 * not allowed.
2978 	 */
2979 	WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2980 
2981 	blk_set_preempt_only(q);
2982 
2983 	blk_mq_freeze_queue(q);
2984 	/*
2985 	 * Ensure that the effect of blk_set_preempt_only() will be visible
2986 	 * for percpu_ref_tryget() callers that occur after the queue
2987 	 * unfreeze even if the queue was already frozen before this function
2988 	 * was called. See also https://lwn.net/Articles/573497/.
2989 	 */
2990 	synchronize_rcu();
2991 	blk_mq_unfreeze_queue(q);
2992 
2993 	mutex_lock(&sdev->state_mutex);
2994 	err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2995 	if (err == 0)
2996 		sdev->quiesced_by = current;
2997 	else
2998 		blk_clear_preempt_only(q);
2999 	mutex_unlock(&sdev->state_mutex);
3000 
3001 	return err;
3002 }
3003 EXPORT_SYMBOL(scsi_device_quiesce);
3004 
3005 /**
3006  *	scsi_device_resume - Restart user issued commands to a quiesced device.
3007  *	@sdev:	scsi device to resume.
3008  *
3009  *	Moves the device from quiesced back to running and restarts the
3010  *	queues.
3011  *
3012  *	Must be called with user context, may sleep.
3013  */
3014 void scsi_device_resume(struct scsi_device *sdev)
3015 {
3016 	/* check if the device state was mutated prior to resume, and if
3017 	 * so assume the state is being managed elsewhere (for example
3018 	 * device deleted during suspend)
3019 	 */
3020 	mutex_lock(&sdev->state_mutex);
3021 	WARN_ON_ONCE(!sdev->quiesced_by);
3022 	sdev->quiesced_by = NULL;
3023 	blk_clear_preempt_only(sdev->request_queue);
3024 	if (sdev->sdev_state == SDEV_QUIESCE)
3025 		scsi_device_set_state(sdev, SDEV_RUNNING);
3026 	mutex_unlock(&sdev->state_mutex);
3027 }
3028 EXPORT_SYMBOL(scsi_device_resume);
3029 
3030 static void
3031 device_quiesce_fn(struct scsi_device *sdev, void *data)
3032 {
3033 	scsi_device_quiesce(sdev);
3034 }
3035 
3036 void
3037 scsi_target_quiesce(struct scsi_target *starget)
3038 {
3039 	starget_for_each_device(starget, NULL, device_quiesce_fn);
3040 }
3041 EXPORT_SYMBOL(scsi_target_quiesce);
3042 
3043 static void
3044 device_resume_fn(struct scsi_device *sdev, void *data)
3045 {
3046 	scsi_device_resume(sdev);
3047 }
3048 
3049 void
3050 scsi_target_resume(struct scsi_target *starget)
3051 {
3052 	starget_for_each_device(starget, NULL, device_resume_fn);
3053 }
3054 EXPORT_SYMBOL(scsi_target_resume);
3055 
3056 /**
3057  * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
3058  * @sdev: device to block
3059  *
3060  * Pause SCSI command processing on the specified device. Does not sleep.
3061  *
3062  * Returns zero if successful or a negative error code upon failure.
3063  *
3064  * Notes:
3065  * This routine transitions the device to the SDEV_BLOCK state (which must be
3066  * a legal transition). When the device is in this state, command processing
3067  * is paused until the device leaves the SDEV_BLOCK state. See also
3068  * scsi_internal_device_unblock_nowait().
3069  */
3070 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
3071 {
3072 	struct request_queue *q = sdev->request_queue;
3073 	unsigned long flags;
3074 	int err = 0;
3075 
3076 	err = scsi_device_set_state(sdev, SDEV_BLOCK);
3077 	if (err) {
3078 		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
3079 
3080 		if (err)
3081 			return err;
3082 	}
3083 
3084 	/*
3085 	 * The device has transitioned to SDEV_BLOCK.  Stop the
3086 	 * block layer from calling the midlayer with this device's
3087 	 * request queue.
3088 	 */
3089 	if (q->mq_ops) {
3090 		blk_mq_quiesce_queue_nowait(q);
3091 	} else {
3092 		spin_lock_irqsave(q->queue_lock, flags);
3093 		blk_stop_queue(q);
3094 		spin_unlock_irqrestore(q->queue_lock, flags);
3095 	}
3096 
3097 	return 0;
3098 }
3099 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
3100 
3101 /**
3102  * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
3103  * @sdev: device to block
3104  *
3105  * Pause SCSI command processing on the specified device and wait until all
3106  * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
3107  *
3108  * Returns zero if successful or a negative error code upon failure.
3109  *
3110  * Note:
3111  * This routine transitions the device to the SDEV_BLOCK state (which must be
3112  * a legal transition). When the device is in this state, command processing
3113  * is paused until the device leaves the SDEV_BLOCK state. See also
3114  * scsi_internal_device_unblock().
3115  *
3116  * To do: avoid that scsi_send_eh_cmnd() calls queuecommand() after
3117  * scsi_internal_device_block() has blocked a SCSI device and also
3118  * remove the rport mutex lock and unlock calls from srp_queuecommand().
3119  */
3120 static int scsi_internal_device_block(struct scsi_device *sdev)
3121 {
3122 	struct request_queue *q = sdev->request_queue;
3123 	int err;
3124 
3125 	mutex_lock(&sdev->state_mutex);
3126 	err = scsi_internal_device_block_nowait(sdev);
3127 	if (err == 0) {
3128 		if (q->mq_ops)
3129 			blk_mq_quiesce_queue(q);
3130 		else
3131 			scsi_wait_for_queuecommand(sdev);
3132 	}
3133 	mutex_unlock(&sdev->state_mutex);
3134 
3135 	return err;
3136 }
3137 
3138 void scsi_start_queue(struct scsi_device *sdev)
3139 {
3140 	struct request_queue *q = sdev->request_queue;
3141 	unsigned long flags;
3142 
3143 	if (q->mq_ops) {
3144 		blk_mq_unquiesce_queue(q);
3145 	} else {
3146 		spin_lock_irqsave(q->queue_lock, flags);
3147 		blk_start_queue(q);
3148 		spin_unlock_irqrestore(q->queue_lock, flags);
3149 	}
3150 }
3151 
3152 /**
3153  * scsi_internal_device_unblock_nowait - resume a device after a block request
3154  * @sdev:	device to resume
3155  * @new_state:	state to set the device to after unblocking
3156  *
3157  * Restart the device queue for a previously suspended SCSI device. Does not
3158  * sleep.
3159  *
3160  * Returns zero if successful or a negative error code upon failure.
3161  *
3162  * Notes:
3163  * This routine transitions the device to the SDEV_RUNNING state or to one of
3164  * the offline states (which must be a legal transition) allowing the midlayer
3165  * to goose the queue for this device.
3166  */
3167 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
3168 					enum scsi_device_state new_state)
3169 {
3170 	/*
3171 	 * Try to transition the scsi device to SDEV_RUNNING or one of the
3172 	 * offlined states and goose the device queue if successful.
3173 	 */
3174 	switch (sdev->sdev_state) {
3175 	case SDEV_BLOCK:
3176 	case SDEV_TRANSPORT_OFFLINE:
3177 		sdev->sdev_state = new_state;
3178 		break;
3179 	case SDEV_CREATED_BLOCK:
3180 		if (new_state == SDEV_TRANSPORT_OFFLINE ||
3181 		    new_state == SDEV_OFFLINE)
3182 			sdev->sdev_state = new_state;
3183 		else
3184 			sdev->sdev_state = SDEV_CREATED;
3185 		break;
3186 	case SDEV_CANCEL:
3187 	case SDEV_OFFLINE:
3188 		break;
3189 	default:
3190 		return -EINVAL;
3191 	}
3192 	scsi_start_queue(sdev);
3193 
3194 	return 0;
3195 }
3196 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
3197 
3198 /**
3199  * scsi_internal_device_unblock - resume a device after a block request
3200  * @sdev:	device to resume
3201  * @new_state:	state to set the device to after unblocking
3202  *
3203  * Restart the device queue for a previously suspended SCSI device. May sleep.
3204  *
3205  * Returns zero if successful or a negative error code upon failure.
3206  *
3207  * Notes:
3208  * This routine transitions the device to the SDEV_RUNNING state or to one of
3209  * the offline states (which must be a legal transition) allowing the midlayer
3210  * to goose the queue for this device.
3211  */
3212 static int scsi_internal_device_unblock(struct scsi_device *sdev,
3213 					enum scsi_device_state new_state)
3214 {
3215 	int ret;
3216 
3217 	mutex_lock(&sdev->state_mutex);
3218 	ret = scsi_internal_device_unblock_nowait(sdev, new_state);
3219 	mutex_unlock(&sdev->state_mutex);
3220 
3221 	return ret;
3222 }
3223 
3224 static void
3225 device_block(struct scsi_device *sdev, void *data)
3226 {
3227 	scsi_internal_device_block(sdev);
3228 }
3229 
3230 static int
3231 target_block(struct device *dev, void *data)
3232 {
3233 	if (scsi_is_target_device(dev))
3234 		starget_for_each_device(to_scsi_target(dev), NULL,
3235 					device_block);
3236 	return 0;
3237 }
3238 
3239 void
3240 scsi_target_block(struct device *dev)
3241 {
3242 	if (scsi_is_target_device(dev))
3243 		starget_for_each_device(to_scsi_target(dev), NULL,
3244 					device_block);
3245 	else
3246 		device_for_each_child(dev, NULL, target_block);
3247 }
3248 EXPORT_SYMBOL_GPL(scsi_target_block);
3249 
3250 static void
3251 device_unblock(struct scsi_device *sdev, void *data)
3252 {
3253 	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
3254 }
3255 
3256 static int
3257 target_unblock(struct device *dev, void *data)
3258 {
3259 	if (scsi_is_target_device(dev))
3260 		starget_for_each_device(to_scsi_target(dev), data,
3261 					device_unblock);
3262 	return 0;
3263 }
3264 
3265 void
3266 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
3267 {
3268 	if (scsi_is_target_device(dev))
3269 		starget_for_each_device(to_scsi_target(dev), &new_state,
3270 					device_unblock);
3271 	else
3272 		device_for_each_child(dev, &new_state, target_unblock);
3273 }
3274 EXPORT_SYMBOL_GPL(scsi_target_unblock);
3275 
3276 /**
3277  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3278  * @sgl:	scatter-gather list
3279  * @sg_count:	number of segments in sg
3280  * @offset:	offset in bytes into sg, on return offset into the mapped area
3281  * @len:	bytes to map, on return number of bytes mapped
3282  *
3283  * Returns virtual address of the start of the mapped page
3284  */
3285 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3286 			  size_t *offset, size_t *len)
3287 {
3288 	int i;
3289 	size_t sg_len = 0, len_complete = 0;
3290 	struct scatterlist *sg;
3291 	struct page *page;
3292 
3293 	WARN_ON(!irqs_disabled());
3294 
3295 	for_each_sg(sgl, sg, sg_count, i) {
3296 		len_complete = sg_len; /* Complete sg-entries */
3297 		sg_len += sg->length;
3298 		if (sg_len > *offset)
3299 			break;
3300 	}
3301 
3302 	if (unlikely(i == sg_count)) {
3303 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3304 			"elements %d\n",
3305 		       __func__, sg_len, *offset, sg_count);
3306 		WARN_ON(1);
3307 		return NULL;
3308 	}
3309 
3310 	/* Offset starting from the beginning of first page in this sg-entry */
3311 	*offset = *offset - len_complete + sg->offset;
3312 
3313 	/* Assumption: contiguous pages can be accessed as "page + i" */
3314 	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3315 	*offset &= ~PAGE_MASK;
3316 
3317 	/* Bytes in this sg-entry from *offset to the end of the page */
3318 	sg_len = PAGE_SIZE - *offset;
3319 	if (*len > sg_len)
3320 		*len = sg_len;
3321 
3322 	return kmap_atomic(page);
3323 }
3324 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3325 
3326 /**
3327  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3328  * @virt:	virtual address to be unmapped
3329  */
3330 void scsi_kunmap_atomic_sg(void *virt)
3331 {
3332 	kunmap_atomic(virt);
3333 }
3334 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3335 
3336 void sdev_disable_disk_events(struct scsi_device *sdev)
3337 {
3338 	atomic_inc(&sdev->disk_events_disable_depth);
3339 }
3340 EXPORT_SYMBOL(sdev_disable_disk_events);
3341 
3342 void sdev_enable_disk_events(struct scsi_device *sdev)
3343 {
3344 	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3345 		return;
3346 	atomic_dec(&sdev->disk_events_disable_depth);
3347 }
3348 EXPORT_SYMBOL(sdev_enable_disk_events);
3349 
3350 /**
3351  * scsi_vpd_lun_id - return a unique device identification
3352  * @sdev: SCSI device
3353  * @id:   buffer for the identification
3354  * @id_len:  length of the buffer
3355  *
3356  * Copies a unique device identification into @id based
3357  * on the information in the VPD page 0x83 of the device.
3358  * The string will be formatted as a SCSI name string.
3359  *
3360  * Returns the length of the identification or error on failure.
3361  * If the identifier is longer than the supplied buffer the actual
3362  * identifier length is returned and the buffer is not zero-padded.
3363  */
3364 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3365 {
3366 	u8 cur_id_type = 0xff;
3367 	u8 cur_id_size = 0;
3368 	const unsigned char *d, *cur_id_str;
3369 	const struct scsi_vpd *vpd_pg83;
3370 	int id_size = -EINVAL;
3371 
3372 	rcu_read_lock();
3373 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3374 	if (!vpd_pg83) {
3375 		rcu_read_unlock();
3376 		return -ENXIO;
3377 	}
3378 
3379 	/*
3380 	 * Look for the correct descriptor.
3381 	 * Order of preference for lun descriptor:
3382 	 * - SCSI name string
3383 	 * - NAA IEEE Registered Extended
3384 	 * - EUI-64 based 16-byte
3385 	 * - EUI-64 based 12-byte
3386 	 * - NAA IEEE Registered
3387 	 * - NAA IEEE Extended
3388 	 * - T10 Vendor ID
3389 	 * as longer descriptors reduce the likelyhood
3390 	 * of identification clashes.
3391 	 */
3392 
3393 	/* The id string must be at least 20 bytes + terminating NULL byte */
3394 	if (id_len < 21) {
3395 		rcu_read_unlock();
3396 		return -EINVAL;
3397 	}
3398 
3399 	memset(id, 0, id_len);
3400 	d = vpd_pg83->data + 4;
3401 	while (d < vpd_pg83->data + vpd_pg83->len) {
3402 		/* Skip designators not referring to the LUN */
3403 		if ((d[1] & 0x30) != 0x00)
3404 			goto next_desig;
3405 
3406 		switch (d[1] & 0xf) {
3407 		case 0x1:
3408 			/* T10 Vendor ID */
3409 			if (cur_id_size > d[3])
3410 				break;
3411 			/* Prefer anything */
3412 			if (cur_id_type > 0x01 && cur_id_type != 0xff)
3413 				break;
3414 			cur_id_size = d[3];
3415 			if (cur_id_size + 4 > id_len)
3416 				cur_id_size = id_len - 4;
3417 			cur_id_str = d + 4;
3418 			cur_id_type = d[1] & 0xf;
3419 			id_size = snprintf(id, id_len, "t10.%*pE",
3420 					   cur_id_size, cur_id_str);
3421 			break;
3422 		case 0x2:
3423 			/* EUI-64 */
3424 			if (cur_id_size > d[3])
3425 				break;
3426 			/* Prefer NAA IEEE Registered Extended */
3427 			if (cur_id_type == 0x3 &&
3428 			    cur_id_size == d[3])
3429 				break;
3430 			cur_id_size = d[3];
3431 			cur_id_str = d + 4;
3432 			cur_id_type = d[1] & 0xf;
3433 			switch (cur_id_size) {
3434 			case 8:
3435 				id_size = snprintf(id, id_len,
3436 						   "eui.%8phN",
3437 						   cur_id_str);
3438 				break;
3439 			case 12:
3440 				id_size = snprintf(id, id_len,
3441 						   "eui.%12phN",
3442 						   cur_id_str);
3443 				break;
3444 			case 16:
3445 				id_size = snprintf(id, id_len,
3446 						   "eui.%16phN",
3447 						   cur_id_str);
3448 				break;
3449 			default:
3450 				cur_id_size = 0;
3451 				break;
3452 			}
3453 			break;
3454 		case 0x3:
3455 			/* NAA */
3456 			if (cur_id_size > d[3])
3457 				break;
3458 			cur_id_size = d[3];
3459 			cur_id_str = d + 4;
3460 			cur_id_type = d[1] & 0xf;
3461 			switch (cur_id_size) {
3462 			case 8:
3463 				id_size = snprintf(id, id_len,
3464 						   "naa.%8phN",
3465 						   cur_id_str);
3466 				break;
3467 			case 16:
3468 				id_size = snprintf(id, id_len,
3469 						   "naa.%16phN",
3470 						   cur_id_str);
3471 				break;
3472 			default:
3473 				cur_id_size = 0;
3474 				break;
3475 			}
3476 			break;
3477 		case 0x8:
3478 			/* SCSI name string */
3479 			if (cur_id_size + 4 > d[3])
3480 				break;
3481 			/* Prefer others for truncated descriptor */
3482 			if (cur_id_size && d[3] > id_len)
3483 				break;
3484 			cur_id_size = id_size = d[3];
3485 			cur_id_str = d + 4;
3486 			cur_id_type = d[1] & 0xf;
3487 			if (cur_id_size >= id_len)
3488 				cur_id_size = id_len - 1;
3489 			memcpy(id, cur_id_str, cur_id_size);
3490 			/* Decrease priority for truncated descriptor */
3491 			if (cur_id_size != id_size)
3492 				cur_id_size = 6;
3493 			break;
3494 		default:
3495 			break;
3496 		}
3497 next_desig:
3498 		d += d[3] + 4;
3499 	}
3500 	rcu_read_unlock();
3501 
3502 	return id_size;
3503 }
3504 EXPORT_SYMBOL(scsi_vpd_lun_id);
3505 
3506 /*
3507  * scsi_vpd_tpg_id - return a target port group identifier
3508  * @sdev: SCSI device
3509  *
3510  * Returns the Target Port Group identifier from the information
3511  * froom VPD page 0x83 of the device.
3512  *
3513  * Returns the identifier or error on failure.
3514  */
3515 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3516 {
3517 	const unsigned char *d;
3518 	const struct scsi_vpd *vpd_pg83;
3519 	int group_id = -EAGAIN, rel_port = -1;
3520 
3521 	rcu_read_lock();
3522 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3523 	if (!vpd_pg83) {
3524 		rcu_read_unlock();
3525 		return -ENXIO;
3526 	}
3527 
3528 	d = vpd_pg83->data + 4;
3529 	while (d < vpd_pg83->data + vpd_pg83->len) {
3530 		switch (d[1] & 0xf) {
3531 		case 0x4:
3532 			/* Relative target port */
3533 			rel_port = get_unaligned_be16(&d[6]);
3534 			break;
3535 		case 0x5:
3536 			/* Target port group */
3537 			group_id = get_unaligned_be16(&d[6]);
3538 			break;
3539 		default:
3540 			break;
3541 		}
3542 		d += d[3] + 4;
3543 	}
3544 	rcu_read_unlock();
3545 
3546 	if (group_id >= 0 && rel_id && rel_port != -1)
3547 		*rel_id = rel_port;
3548 
3549 	return group_id;
3550 }
3551 EXPORT_SYMBOL(scsi_vpd_tpg_id);
3552