xref: /linux/drivers/scsi/scsi_lib.c (revision e27ecdd94d81e5bc3d1f68591701db5adb342f0d)
1 /*
2  *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3  *
4  *  SCSI queueing library.
5  *      Initial versions: Eric Youngdale (eric@andante.org).
6  *                        Based upon conversations with large numbers
7  *                        of people at Linux Expo.
8  */
9 
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/mempool.h>
16 #include <linux/slab.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
22 
23 #include <scsi/scsi.h>
24 #include <scsi/scsi_cmnd.h>
25 #include <scsi/scsi_dbg.h>
26 #include <scsi/scsi_device.h>
27 #include <scsi/scsi_driver.h>
28 #include <scsi/scsi_eh.h>
29 #include <scsi/scsi_host.h>
30 
31 #include "scsi_priv.h"
32 #include "scsi_logging.h"
33 
34 
35 #define SG_MEMPOOL_NR		ARRAY_SIZE(scsi_sg_pools)
36 #define SG_MEMPOOL_SIZE		2
37 
38 struct scsi_host_sg_pool {
39 	size_t		size;
40 	char		*name;
41 	struct kmem_cache	*slab;
42 	mempool_t	*pool;
43 };
44 
45 #define SP(x) { x, "sgpool-" __stringify(x) }
46 #if (SCSI_MAX_SG_SEGMENTS < 32)
47 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
48 #endif
49 static struct scsi_host_sg_pool scsi_sg_pools[] = {
50 	SP(8),
51 	SP(16),
52 #if (SCSI_MAX_SG_SEGMENTS > 32)
53 	SP(32),
54 #if (SCSI_MAX_SG_SEGMENTS > 64)
55 	SP(64),
56 #if (SCSI_MAX_SG_SEGMENTS > 128)
57 	SP(128),
58 #if (SCSI_MAX_SG_SEGMENTS > 256)
59 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
60 #endif
61 #endif
62 #endif
63 #endif
64 	SP(SCSI_MAX_SG_SEGMENTS)
65 };
66 #undef SP
67 
68 struct kmem_cache *scsi_sdb_cache;
69 
70 static void scsi_run_queue(struct request_queue *q);
71 
72 /*
73  * Function:	scsi_unprep_request()
74  *
75  * Purpose:	Remove all preparation done for a request, including its
76  *		associated scsi_cmnd, so that it can be requeued.
77  *
78  * Arguments:	req	- request to unprepare
79  *
80  * Lock status:	Assumed that no locks are held upon entry.
81  *
82  * Returns:	Nothing.
83  */
84 static void scsi_unprep_request(struct request *req)
85 {
86 	struct scsi_cmnd *cmd = req->special;
87 
88 	req->cmd_flags &= ~REQ_DONTPREP;
89 	req->special = NULL;
90 
91 	scsi_put_command(cmd);
92 }
93 
94 /**
95  * __scsi_queue_insert - private queue insertion
96  * @cmd: The SCSI command being requeued
97  * @reason:  The reason for the requeue
98  * @unbusy: Whether the queue should be unbusied
99  *
100  * This is a private queue insertion.  The public interface
101  * scsi_queue_insert() always assumes the queue should be unbusied
102  * because it's always called before the completion.  This function is
103  * for a requeue after completion, which should only occur in this
104  * file.
105  */
106 static int __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
107 {
108 	struct Scsi_Host *host = cmd->device->host;
109 	struct scsi_device *device = cmd->device;
110 	struct scsi_target *starget = scsi_target(device);
111 	struct request_queue *q = device->request_queue;
112 	unsigned long flags;
113 
114 	SCSI_LOG_MLQUEUE(1,
115 		 printk("Inserting command %p into mlqueue\n", cmd));
116 
117 	/*
118 	 * Set the appropriate busy bit for the device/host.
119 	 *
120 	 * If the host/device isn't busy, assume that something actually
121 	 * completed, and that we should be able to queue a command now.
122 	 *
123 	 * Note that the prior mid-layer assumption that any host could
124 	 * always queue at least one command is now broken.  The mid-layer
125 	 * will implement a user specifiable stall (see
126 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
127 	 * if a command is requeued with no other commands outstanding
128 	 * either for the device or for the host.
129 	 */
130 	switch (reason) {
131 	case SCSI_MLQUEUE_HOST_BUSY:
132 		host->host_blocked = host->max_host_blocked;
133 		break;
134 	case SCSI_MLQUEUE_DEVICE_BUSY:
135 		device->device_blocked = device->max_device_blocked;
136 		break;
137 	case SCSI_MLQUEUE_TARGET_BUSY:
138 		starget->target_blocked = starget->max_target_blocked;
139 		break;
140 	}
141 
142 	/*
143 	 * Decrement the counters, since these commands are no longer
144 	 * active on the host/device.
145 	 */
146 	if (unbusy)
147 		scsi_device_unbusy(device);
148 
149 	/*
150 	 * Requeue this command.  It will go before all other commands
151 	 * that are already in the queue.
152 	 *
153 	 * NOTE: there is magic here about the way the queue is plugged if
154 	 * we have no outstanding commands.
155 	 *
156 	 * Although we *don't* plug the queue, we call the request
157 	 * function.  The SCSI request function detects the blocked condition
158 	 * and plugs the queue appropriately.
159          */
160 	spin_lock_irqsave(q->queue_lock, flags);
161 	blk_requeue_request(q, cmd->request);
162 	spin_unlock_irqrestore(q->queue_lock, flags);
163 
164 	scsi_run_queue(q);
165 
166 	return 0;
167 }
168 
169 /*
170  * Function:    scsi_queue_insert()
171  *
172  * Purpose:     Insert a command in the midlevel queue.
173  *
174  * Arguments:   cmd    - command that we are adding to queue.
175  *              reason - why we are inserting command to queue.
176  *
177  * Lock status: Assumed that lock is not held upon entry.
178  *
179  * Returns:     Nothing.
180  *
181  * Notes:       We do this for one of two cases.  Either the host is busy
182  *              and it cannot accept any more commands for the time being,
183  *              or the device returned QUEUE_FULL and can accept no more
184  *              commands.
185  * Notes:       This could be called either from an interrupt context or a
186  *              normal process context.
187  */
188 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
189 {
190 	return __scsi_queue_insert(cmd, reason, 1);
191 }
192 /**
193  * scsi_execute - insert request and wait for the result
194  * @sdev:	scsi device
195  * @cmd:	scsi command
196  * @data_direction: data direction
197  * @buffer:	data buffer
198  * @bufflen:	len of buffer
199  * @sense:	optional sense buffer
200  * @timeout:	request timeout in seconds
201  * @retries:	number of times to retry request
202  * @flags:	or into request flags;
203  * @resid:	optional residual length
204  *
205  * returns the req->errors value which is the scsi_cmnd result
206  * field.
207  */
208 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
209 		 int data_direction, void *buffer, unsigned bufflen,
210 		 unsigned char *sense, int timeout, int retries, int flags,
211 		 int *resid)
212 {
213 	struct request *req;
214 	int write = (data_direction == DMA_TO_DEVICE);
215 	int ret = DRIVER_ERROR << 24;
216 
217 	req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
218 
219 	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
220 					buffer, bufflen, __GFP_WAIT))
221 		goto out;
222 
223 	req->cmd_len = COMMAND_SIZE(cmd[0]);
224 	memcpy(req->cmd, cmd, req->cmd_len);
225 	req->sense = sense;
226 	req->sense_len = 0;
227 	req->retries = retries;
228 	req->timeout = timeout;
229 	req->cmd_type = REQ_TYPE_BLOCK_PC;
230 	req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
231 
232 	/*
233 	 * head injection *required* here otherwise quiesce won't work
234 	 */
235 	blk_execute_rq(req->q, NULL, req, 1);
236 
237 	/*
238 	 * Some devices (USB mass-storage in particular) may transfer
239 	 * garbage data together with a residue indicating that the data
240 	 * is invalid.  Prevent the garbage from being misinterpreted
241 	 * and prevent security leaks by zeroing out the excess data.
242 	 */
243 	if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
244 		memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
245 
246 	if (resid)
247 		*resid = req->resid_len;
248 	ret = req->errors;
249  out:
250 	blk_put_request(req);
251 
252 	return ret;
253 }
254 EXPORT_SYMBOL(scsi_execute);
255 
256 
257 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
258 		     int data_direction, void *buffer, unsigned bufflen,
259 		     struct scsi_sense_hdr *sshdr, int timeout, int retries,
260 		     int *resid)
261 {
262 	char *sense = NULL;
263 	int result;
264 
265 	if (sshdr) {
266 		sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
267 		if (!sense)
268 			return DRIVER_ERROR << 24;
269 	}
270 	result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
271 			      sense, timeout, retries, 0, resid);
272 	if (sshdr)
273 		scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
274 
275 	kfree(sense);
276 	return result;
277 }
278 EXPORT_SYMBOL(scsi_execute_req);
279 
280 /*
281  * Function:    scsi_init_cmd_errh()
282  *
283  * Purpose:     Initialize cmd fields related to error handling.
284  *
285  * Arguments:   cmd	- command that is ready to be queued.
286  *
287  * Notes:       This function has the job of initializing a number of
288  *              fields related to error handling.   Typically this will
289  *              be called once for each command, as required.
290  */
291 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
292 {
293 	cmd->serial_number = 0;
294 	scsi_set_resid(cmd, 0);
295 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
296 	if (cmd->cmd_len == 0)
297 		cmd->cmd_len = scsi_command_size(cmd->cmnd);
298 }
299 
300 void scsi_device_unbusy(struct scsi_device *sdev)
301 {
302 	struct Scsi_Host *shost = sdev->host;
303 	struct scsi_target *starget = scsi_target(sdev);
304 	unsigned long flags;
305 
306 	spin_lock_irqsave(shost->host_lock, flags);
307 	shost->host_busy--;
308 	starget->target_busy--;
309 	if (unlikely(scsi_host_in_recovery(shost) &&
310 		     (shost->host_failed || shost->host_eh_scheduled)))
311 		scsi_eh_wakeup(shost);
312 	spin_unlock(shost->host_lock);
313 	spin_lock(sdev->request_queue->queue_lock);
314 	sdev->device_busy--;
315 	spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
316 }
317 
318 /*
319  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
320  * and call blk_run_queue for all the scsi_devices on the target -
321  * including current_sdev first.
322  *
323  * Called with *no* scsi locks held.
324  */
325 static void scsi_single_lun_run(struct scsi_device *current_sdev)
326 {
327 	struct Scsi_Host *shost = current_sdev->host;
328 	struct scsi_device *sdev, *tmp;
329 	struct scsi_target *starget = scsi_target(current_sdev);
330 	unsigned long flags;
331 
332 	spin_lock_irqsave(shost->host_lock, flags);
333 	starget->starget_sdev_user = NULL;
334 	spin_unlock_irqrestore(shost->host_lock, flags);
335 
336 	/*
337 	 * Call blk_run_queue for all LUNs on the target, starting with
338 	 * current_sdev. We race with others (to set starget_sdev_user),
339 	 * but in most cases, we will be first. Ideally, each LU on the
340 	 * target would get some limited time or requests on the target.
341 	 */
342 	blk_run_queue(current_sdev->request_queue);
343 
344 	spin_lock_irqsave(shost->host_lock, flags);
345 	if (starget->starget_sdev_user)
346 		goto out;
347 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
348 			same_target_siblings) {
349 		if (sdev == current_sdev)
350 			continue;
351 		if (scsi_device_get(sdev))
352 			continue;
353 
354 		spin_unlock_irqrestore(shost->host_lock, flags);
355 		blk_run_queue(sdev->request_queue);
356 		spin_lock_irqsave(shost->host_lock, flags);
357 
358 		scsi_device_put(sdev);
359 	}
360  out:
361 	spin_unlock_irqrestore(shost->host_lock, flags);
362 }
363 
364 static inline int scsi_device_is_busy(struct scsi_device *sdev)
365 {
366 	if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
367 		return 1;
368 
369 	return 0;
370 }
371 
372 static inline int scsi_target_is_busy(struct scsi_target *starget)
373 {
374 	return ((starget->can_queue > 0 &&
375 		 starget->target_busy >= starget->can_queue) ||
376 		 starget->target_blocked);
377 }
378 
379 static inline int scsi_host_is_busy(struct Scsi_Host *shost)
380 {
381 	if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
382 	    shost->host_blocked || shost->host_self_blocked)
383 		return 1;
384 
385 	return 0;
386 }
387 
388 /*
389  * Function:	scsi_run_queue()
390  *
391  * Purpose:	Select a proper request queue to serve next
392  *
393  * Arguments:	q	- last request's queue
394  *
395  * Returns:     Nothing
396  *
397  * Notes:	The previous command was completely finished, start
398  *		a new one if possible.
399  */
400 static void scsi_run_queue(struct request_queue *q)
401 {
402 	struct scsi_device *sdev = q->queuedata;
403 	struct Scsi_Host *shost = sdev->host;
404 	LIST_HEAD(starved_list);
405 	unsigned long flags;
406 
407 	if (scsi_target(sdev)->single_lun)
408 		scsi_single_lun_run(sdev);
409 
410 	spin_lock_irqsave(shost->host_lock, flags);
411 	list_splice_init(&shost->starved_list, &starved_list);
412 
413 	while (!list_empty(&starved_list)) {
414 		int flagset;
415 
416 		/*
417 		 * As long as shost is accepting commands and we have
418 		 * starved queues, call blk_run_queue. scsi_request_fn
419 		 * drops the queue_lock and can add us back to the
420 		 * starved_list.
421 		 *
422 		 * host_lock protects the starved_list and starved_entry.
423 		 * scsi_request_fn must get the host_lock before checking
424 		 * or modifying starved_list or starved_entry.
425 		 */
426 		if (scsi_host_is_busy(shost))
427 			break;
428 
429 		sdev = list_entry(starved_list.next,
430 				  struct scsi_device, starved_entry);
431 		list_del_init(&sdev->starved_entry);
432 		if (scsi_target_is_busy(scsi_target(sdev))) {
433 			list_move_tail(&sdev->starved_entry,
434 				       &shost->starved_list);
435 			continue;
436 		}
437 
438 		spin_unlock(shost->host_lock);
439 
440 		spin_lock(sdev->request_queue->queue_lock);
441 		flagset = test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) &&
442 				!test_bit(QUEUE_FLAG_REENTER,
443 					&sdev->request_queue->queue_flags);
444 		if (flagset)
445 			queue_flag_set(QUEUE_FLAG_REENTER, sdev->request_queue);
446 		__blk_run_queue(sdev->request_queue);
447 		if (flagset)
448 			queue_flag_clear(QUEUE_FLAG_REENTER, sdev->request_queue);
449 		spin_unlock(sdev->request_queue->queue_lock);
450 
451 		spin_lock(shost->host_lock);
452 	}
453 	/* put any unprocessed entries back */
454 	list_splice(&starved_list, &shost->starved_list);
455 	spin_unlock_irqrestore(shost->host_lock, flags);
456 
457 	blk_run_queue(q);
458 }
459 
460 /*
461  * Function:	scsi_requeue_command()
462  *
463  * Purpose:	Handle post-processing of completed commands.
464  *
465  * Arguments:	q	- queue to operate on
466  *		cmd	- command that may need to be requeued.
467  *
468  * Returns:	Nothing
469  *
470  * Notes:	After command completion, there may be blocks left
471  *		over which weren't finished by the previous command
472  *		this can be for a number of reasons - the main one is
473  *		I/O errors in the middle of the request, in which case
474  *		we need to request the blocks that come after the bad
475  *		sector.
476  * Notes:	Upon return, cmd is a stale pointer.
477  */
478 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
479 {
480 	struct request *req = cmd->request;
481 	unsigned long flags;
482 
483 	spin_lock_irqsave(q->queue_lock, flags);
484 	scsi_unprep_request(req);
485 	blk_requeue_request(q, req);
486 	spin_unlock_irqrestore(q->queue_lock, flags);
487 
488 	scsi_run_queue(q);
489 }
490 
491 void scsi_next_command(struct scsi_cmnd *cmd)
492 {
493 	struct scsi_device *sdev = cmd->device;
494 	struct request_queue *q = sdev->request_queue;
495 
496 	/* need to hold a reference on the device before we let go of the cmd */
497 	get_device(&sdev->sdev_gendev);
498 
499 	scsi_put_command(cmd);
500 	scsi_run_queue(q);
501 
502 	/* ok to remove device now */
503 	put_device(&sdev->sdev_gendev);
504 }
505 
506 void scsi_run_host_queues(struct Scsi_Host *shost)
507 {
508 	struct scsi_device *sdev;
509 
510 	shost_for_each_device(sdev, shost)
511 		scsi_run_queue(sdev->request_queue);
512 }
513 
514 static void __scsi_release_buffers(struct scsi_cmnd *, int);
515 
516 /*
517  * Function:    scsi_end_request()
518  *
519  * Purpose:     Post-processing of completed commands (usually invoked at end
520  *		of upper level post-processing and scsi_io_completion).
521  *
522  * Arguments:   cmd	 - command that is complete.
523  *              error    - 0 if I/O indicates success, < 0 for I/O error.
524  *              bytes    - number of bytes of completed I/O
525  *		requeue  - indicates whether we should requeue leftovers.
526  *
527  * Lock status: Assumed that lock is not held upon entry.
528  *
529  * Returns:     cmd if requeue required, NULL otherwise.
530  *
531  * Notes:       This is called for block device requests in order to
532  *              mark some number of sectors as complete.
533  *
534  *		We are guaranteeing that the request queue will be goosed
535  *		at some point during this call.
536  * Notes:	If cmd was requeued, upon return it will be a stale pointer.
537  */
538 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
539 					  int bytes, int requeue)
540 {
541 	struct request_queue *q = cmd->device->request_queue;
542 	struct request *req = cmd->request;
543 
544 	/*
545 	 * If there are blocks left over at the end, set up the command
546 	 * to queue the remainder of them.
547 	 */
548 	if (blk_end_request(req, error, bytes)) {
549 		/* kill remainder if no retrys */
550 		if (error && scsi_noretry_cmd(cmd))
551 			blk_end_request_all(req, error);
552 		else {
553 			if (requeue) {
554 				/*
555 				 * Bleah.  Leftovers again.  Stick the
556 				 * leftovers in the front of the
557 				 * queue, and goose the queue again.
558 				 */
559 				scsi_release_buffers(cmd);
560 				scsi_requeue_command(q, cmd);
561 				cmd = NULL;
562 			}
563 			return cmd;
564 		}
565 	}
566 
567 	/*
568 	 * This will goose the queue request function at the end, so we don't
569 	 * need to worry about launching another command.
570 	 */
571 	__scsi_release_buffers(cmd, 0);
572 	scsi_next_command(cmd);
573 	return NULL;
574 }
575 
576 static inline unsigned int scsi_sgtable_index(unsigned short nents)
577 {
578 	unsigned int index;
579 
580 	BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
581 
582 	if (nents <= 8)
583 		index = 0;
584 	else
585 		index = get_count_order(nents) - 3;
586 
587 	return index;
588 }
589 
590 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
591 {
592 	struct scsi_host_sg_pool *sgp;
593 
594 	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
595 	mempool_free(sgl, sgp->pool);
596 }
597 
598 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
599 {
600 	struct scsi_host_sg_pool *sgp;
601 
602 	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
603 	return mempool_alloc(sgp->pool, gfp_mask);
604 }
605 
606 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
607 			      gfp_t gfp_mask)
608 {
609 	int ret;
610 
611 	BUG_ON(!nents);
612 
613 	ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
614 			       gfp_mask, scsi_sg_alloc);
615 	if (unlikely(ret))
616 		__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
617 				scsi_sg_free);
618 
619 	return ret;
620 }
621 
622 static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
623 {
624 	__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
625 }
626 
627 static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check)
628 {
629 
630 	if (cmd->sdb.table.nents)
631 		scsi_free_sgtable(&cmd->sdb);
632 
633 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
634 
635 	if (do_bidi_check && scsi_bidi_cmnd(cmd)) {
636 		struct scsi_data_buffer *bidi_sdb =
637 			cmd->request->next_rq->special;
638 		scsi_free_sgtable(bidi_sdb);
639 		kmem_cache_free(scsi_sdb_cache, bidi_sdb);
640 		cmd->request->next_rq->special = NULL;
641 	}
642 
643 	if (scsi_prot_sg_count(cmd))
644 		scsi_free_sgtable(cmd->prot_sdb);
645 }
646 
647 /*
648  * Function:    scsi_release_buffers()
649  *
650  * Purpose:     Completion processing for block device I/O requests.
651  *
652  * Arguments:   cmd	- command that we are bailing.
653  *
654  * Lock status: Assumed that no lock is held upon entry.
655  *
656  * Returns:     Nothing
657  *
658  * Notes:       In the event that an upper level driver rejects a
659  *		command, we must release resources allocated during
660  *		the __init_io() function.  Primarily this would involve
661  *		the scatter-gather table, and potentially any bounce
662  *		buffers.
663  */
664 void scsi_release_buffers(struct scsi_cmnd *cmd)
665 {
666 	__scsi_release_buffers(cmd, 1);
667 }
668 EXPORT_SYMBOL(scsi_release_buffers);
669 
670 /*
671  * Function:    scsi_io_completion()
672  *
673  * Purpose:     Completion processing for block device I/O requests.
674  *
675  * Arguments:   cmd   - command that is finished.
676  *
677  * Lock status: Assumed that no lock is held upon entry.
678  *
679  * Returns:     Nothing
680  *
681  * Notes:       This function is matched in terms of capabilities to
682  *              the function that created the scatter-gather list.
683  *              In other words, if there are no bounce buffers
684  *              (the normal case for most drivers), we don't need
685  *              the logic to deal with cleaning up afterwards.
686  *
687  *		We must call scsi_end_request().  This will finish off
688  *		the specified number of sectors.  If we are done, the
689  *		command block will be released and the queue function
690  *		will be goosed.  If we are not done then we have to
691  *		figure out what to do next:
692  *
693  *		a) We can call scsi_requeue_command().  The request
694  *		   will be unprepared and put back on the queue.  Then
695  *		   a new command will be created for it.  This should
696  *		   be used if we made forward progress, or if we want
697  *		   to switch from READ(10) to READ(6) for example.
698  *
699  *		b) We can call scsi_queue_insert().  The request will
700  *		   be put back on the queue and retried using the same
701  *		   command as before, possibly after a delay.
702  *
703  *		c) We can call blk_end_request() with -EIO to fail
704  *		   the remainder of the request.
705  */
706 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
707 {
708 	int result = cmd->result;
709 	struct request_queue *q = cmd->device->request_queue;
710 	struct request *req = cmd->request;
711 	int error = 0;
712 	struct scsi_sense_hdr sshdr;
713 	int sense_valid = 0;
714 	int sense_deferred = 0;
715 	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
716 	      ACTION_DELAYED_RETRY} action;
717 	char *description = NULL;
718 
719 	if (result) {
720 		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
721 		if (sense_valid)
722 			sense_deferred = scsi_sense_is_deferred(&sshdr);
723 	}
724 
725 	if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
726 		req->errors = result;
727 		if (result) {
728 			if (sense_valid && req->sense) {
729 				/*
730 				 * SG_IO wants current and deferred errors
731 				 */
732 				int len = 8 + cmd->sense_buffer[7];
733 
734 				if (len > SCSI_SENSE_BUFFERSIZE)
735 					len = SCSI_SENSE_BUFFERSIZE;
736 				memcpy(req->sense, cmd->sense_buffer,  len);
737 				req->sense_len = len;
738 			}
739 			if (!sense_deferred)
740 				error = -EIO;
741 		}
742 
743 		req->resid_len = scsi_get_resid(cmd);
744 
745 		if (scsi_bidi_cmnd(cmd)) {
746 			/*
747 			 * Bidi commands Must be complete as a whole,
748 			 * both sides at once.
749 			 */
750 			req->next_rq->resid_len = scsi_in(cmd)->resid;
751 
752 			blk_end_request_all(req, 0);
753 
754 			scsi_release_buffers(cmd);
755 			scsi_next_command(cmd);
756 			return;
757 		}
758 	}
759 
760 	BUG_ON(blk_bidi_rq(req)); /* bidi not support for !blk_pc_request yet */
761 
762 	/*
763 	 * Next deal with any sectors which we were able to correctly
764 	 * handle.
765 	 */
766 	SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, "
767 				      "%d bytes done.\n",
768 				      blk_rq_sectors(req), good_bytes));
769 
770 	/*
771 	 * Recovered errors need reporting, but they're always treated
772 	 * as success, so fiddle the result code here.  For BLOCK_PC
773 	 * we already took a copy of the original into rq->errors which
774 	 * is what gets returned to the user
775 	 */
776 	if (sense_valid && sshdr.sense_key == RECOVERED_ERROR) {
777 		if (!(req->cmd_flags & REQ_QUIET))
778 			scsi_print_sense("", cmd);
779 		result = 0;
780 		/* BLOCK_PC may have set error */
781 		error = 0;
782 	}
783 
784 	/*
785 	 * A number of bytes were successfully read.  If there
786 	 * are leftovers and there is some kind of error
787 	 * (result != 0), retry the rest.
788 	 */
789 	if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
790 		return;
791 
792 	error = -EIO;
793 
794 	if (host_byte(result) == DID_RESET) {
795 		/* Third party bus reset or reset for error recovery
796 		 * reasons.  Just retry the command and see what
797 		 * happens.
798 		 */
799 		action = ACTION_RETRY;
800 	} else if (sense_valid && !sense_deferred) {
801 		switch (sshdr.sense_key) {
802 		case UNIT_ATTENTION:
803 			if (cmd->device->removable) {
804 				/* Detected disc change.  Set a bit
805 				 * and quietly refuse further access.
806 				 */
807 				cmd->device->changed = 1;
808 				description = "Media Changed";
809 				action = ACTION_FAIL;
810 			} else {
811 				/* Must have been a power glitch, or a
812 				 * bus reset.  Could not have been a
813 				 * media change, so we just retry the
814 				 * command and see what happens.
815 				 */
816 				action = ACTION_RETRY;
817 			}
818 			break;
819 		case ILLEGAL_REQUEST:
820 			/* If we had an ILLEGAL REQUEST returned, then
821 			 * we may have performed an unsupported
822 			 * command.  The only thing this should be
823 			 * would be a ten byte read where only a six
824 			 * byte read was supported.  Also, on a system
825 			 * where READ CAPACITY failed, we may have
826 			 * read past the end of the disk.
827 			 */
828 			if ((cmd->device->use_10_for_rw &&
829 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
830 			    (cmd->cmnd[0] == READ_10 ||
831 			     cmd->cmnd[0] == WRITE_10)) {
832 				/* This will issue a new 6-byte command. */
833 				cmd->device->use_10_for_rw = 0;
834 				action = ACTION_REPREP;
835 			} else if (sshdr.asc == 0x10) /* DIX */ {
836 				description = "Host Data Integrity Failure";
837 				action = ACTION_FAIL;
838 				error = -EILSEQ;
839 			} else
840 				action = ACTION_FAIL;
841 			break;
842 		case ABORTED_COMMAND:
843 			action = ACTION_FAIL;
844 			if (sshdr.asc == 0x10) { /* DIF */
845 				description = "Target Data Integrity Failure";
846 				error = -EILSEQ;
847 			}
848 			break;
849 		case NOT_READY:
850 			/* If the device is in the process of becoming
851 			 * ready, or has a temporary blockage, retry.
852 			 */
853 			if (sshdr.asc == 0x04) {
854 				switch (sshdr.ascq) {
855 				case 0x01: /* becoming ready */
856 				case 0x04: /* format in progress */
857 				case 0x05: /* rebuild in progress */
858 				case 0x06: /* recalculation in progress */
859 				case 0x07: /* operation in progress */
860 				case 0x08: /* Long write in progress */
861 				case 0x09: /* self test in progress */
862 					action = ACTION_DELAYED_RETRY;
863 					break;
864 				default:
865 					description = "Device not ready";
866 					action = ACTION_FAIL;
867 					break;
868 				}
869 			} else {
870 				description = "Device not ready";
871 				action = ACTION_FAIL;
872 			}
873 			break;
874 		case VOLUME_OVERFLOW:
875 			/* See SSC3rXX or current. */
876 			action = ACTION_FAIL;
877 			break;
878 		default:
879 			description = "Unhandled sense code";
880 			action = ACTION_FAIL;
881 			break;
882 		}
883 	} else {
884 		description = "Unhandled error code";
885 		action = ACTION_FAIL;
886 	}
887 
888 	switch (action) {
889 	case ACTION_FAIL:
890 		/* Give up and fail the remainder of the request */
891 		scsi_release_buffers(cmd);
892 		if (!(req->cmd_flags & REQ_QUIET)) {
893 			if (description)
894 				scmd_printk(KERN_INFO, cmd, "%s\n",
895 					    description);
896 			scsi_print_result(cmd);
897 			if (driver_byte(result) & DRIVER_SENSE)
898 				scsi_print_sense("", cmd);
899 		}
900 		blk_end_request_all(req, -EIO);
901 		scsi_next_command(cmd);
902 		break;
903 	case ACTION_REPREP:
904 		/* Unprep the request and put it back at the head of the queue.
905 		 * A new command will be prepared and issued.
906 		 */
907 		scsi_release_buffers(cmd);
908 		scsi_requeue_command(q, cmd);
909 		break;
910 	case ACTION_RETRY:
911 		/* Retry the same command immediately */
912 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
913 		break;
914 	case ACTION_DELAYED_RETRY:
915 		/* Retry the same command after a delay */
916 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
917 		break;
918 	}
919 }
920 
921 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
922 			     gfp_t gfp_mask)
923 {
924 	int count;
925 
926 	/*
927 	 * If sg table allocation fails, requeue request later.
928 	 */
929 	if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
930 					gfp_mask))) {
931 		return BLKPREP_DEFER;
932 	}
933 
934 	req->buffer = NULL;
935 
936 	/*
937 	 * Next, walk the list, and fill in the addresses and sizes of
938 	 * each segment.
939 	 */
940 	count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
941 	BUG_ON(count > sdb->table.nents);
942 	sdb->table.nents = count;
943 	sdb->length = blk_rq_bytes(req);
944 	return BLKPREP_OK;
945 }
946 
947 /*
948  * Function:    scsi_init_io()
949  *
950  * Purpose:     SCSI I/O initialize function.
951  *
952  * Arguments:   cmd   - Command descriptor we wish to initialize
953  *
954  * Returns:     0 on success
955  *		BLKPREP_DEFER if the failure is retryable
956  *		BLKPREP_KILL if the failure is fatal
957  */
958 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
959 {
960 	int error = scsi_init_sgtable(cmd->request, &cmd->sdb, gfp_mask);
961 	if (error)
962 		goto err_exit;
963 
964 	if (blk_bidi_rq(cmd->request)) {
965 		struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
966 			scsi_sdb_cache, GFP_ATOMIC);
967 		if (!bidi_sdb) {
968 			error = BLKPREP_DEFER;
969 			goto err_exit;
970 		}
971 
972 		cmd->request->next_rq->special = bidi_sdb;
973 		error = scsi_init_sgtable(cmd->request->next_rq, bidi_sdb,
974 								    GFP_ATOMIC);
975 		if (error)
976 			goto err_exit;
977 	}
978 
979 	if (blk_integrity_rq(cmd->request)) {
980 		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
981 		int ivecs, count;
982 
983 		BUG_ON(prot_sdb == NULL);
984 		ivecs = blk_rq_count_integrity_sg(cmd->request);
985 
986 		if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
987 			error = BLKPREP_DEFER;
988 			goto err_exit;
989 		}
990 
991 		count = blk_rq_map_integrity_sg(cmd->request,
992 						prot_sdb->table.sgl);
993 		BUG_ON(unlikely(count > ivecs));
994 
995 		cmd->prot_sdb = prot_sdb;
996 		cmd->prot_sdb->table.nents = count;
997 	}
998 
999 	return BLKPREP_OK ;
1000 
1001 err_exit:
1002 	scsi_release_buffers(cmd);
1003 	if (error == BLKPREP_KILL)
1004 		scsi_put_command(cmd);
1005 	else /* BLKPREP_DEFER */
1006 		scsi_unprep_request(cmd->request);
1007 
1008 	return error;
1009 }
1010 EXPORT_SYMBOL(scsi_init_io);
1011 
1012 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1013 		struct request *req)
1014 {
1015 	struct scsi_cmnd *cmd;
1016 
1017 	if (!req->special) {
1018 		cmd = scsi_get_command(sdev, GFP_ATOMIC);
1019 		if (unlikely(!cmd))
1020 			return NULL;
1021 		req->special = cmd;
1022 	} else {
1023 		cmd = req->special;
1024 	}
1025 
1026 	/* pull a tag out of the request if we have one */
1027 	cmd->tag = req->tag;
1028 	cmd->request = req;
1029 
1030 	cmd->cmnd = req->cmd;
1031 
1032 	return cmd;
1033 }
1034 
1035 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1036 {
1037 	struct scsi_cmnd *cmd;
1038 	int ret = scsi_prep_state_check(sdev, req);
1039 
1040 	if (ret != BLKPREP_OK)
1041 		return ret;
1042 
1043 	cmd = scsi_get_cmd_from_req(sdev, req);
1044 	if (unlikely(!cmd))
1045 		return BLKPREP_DEFER;
1046 
1047 	/*
1048 	 * BLOCK_PC requests may transfer data, in which case they must
1049 	 * a bio attached to them.  Or they might contain a SCSI command
1050 	 * that does not transfer data, in which case they may optionally
1051 	 * submit a request without an attached bio.
1052 	 */
1053 	if (req->bio) {
1054 		int ret;
1055 
1056 		BUG_ON(!req->nr_phys_segments);
1057 
1058 		ret = scsi_init_io(cmd, GFP_ATOMIC);
1059 		if (unlikely(ret))
1060 			return ret;
1061 	} else {
1062 		BUG_ON(blk_rq_bytes(req));
1063 
1064 		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1065 		req->buffer = NULL;
1066 	}
1067 
1068 	cmd->cmd_len = req->cmd_len;
1069 	if (!blk_rq_bytes(req))
1070 		cmd->sc_data_direction = DMA_NONE;
1071 	else if (rq_data_dir(req) == WRITE)
1072 		cmd->sc_data_direction = DMA_TO_DEVICE;
1073 	else
1074 		cmd->sc_data_direction = DMA_FROM_DEVICE;
1075 
1076 	cmd->transfersize = blk_rq_bytes(req);
1077 	cmd->allowed = req->retries;
1078 	return BLKPREP_OK;
1079 }
1080 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1081 
1082 /*
1083  * Setup a REQ_TYPE_FS command.  These are simple read/write request
1084  * from filesystems that still need to be translated to SCSI CDBs from
1085  * the ULD.
1086  */
1087 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1088 {
1089 	struct scsi_cmnd *cmd;
1090 	int ret = scsi_prep_state_check(sdev, req);
1091 
1092 	if (ret != BLKPREP_OK)
1093 		return ret;
1094 
1095 	if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1096 			 && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1097 		ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1098 		if (ret != BLKPREP_OK)
1099 			return ret;
1100 	}
1101 
1102 	/*
1103 	 * Filesystem requests must transfer data.
1104 	 */
1105 	BUG_ON(!req->nr_phys_segments);
1106 
1107 	cmd = scsi_get_cmd_from_req(sdev, req);
1108 	if (unlikely(!cmd))
1109 		return BLKPREP_DEFER;
1110 
1111 	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1112 	return scsi_init_io(cmd, GFP_ATOMIC);
1113 }
1114 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1115 
1116 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1117 {
1118 	int ret = BLKPREP_OK;
1119 
1120 	/*
1121 	 * If the device is not in running state we will reject some
1122 	 * or all commands.
1123 	 */
1124 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1125 		switch (sdev->sdev_state) {
1126 		case SDEV_OFFLINE:
1127 			/*
1128 			 * If the device is offline we refuse to process any
1129 			 * commands.  The device must be brought online
1130 			 * before trying any recovery commands.
1131 			 */
1132 			sdev_printk(KERN_ERR, sdev,
1133 				    "rejecting I/O to offline device\n");
1134 			ret = BLKPREP_KILL;
1135 			break;
1136 		case SDEV_DEL:
1137 			/*
1138 			 * If the device is fully deleted, we refuse to
1139 			 * process any commands as well.
1140 			 */
1141 			sdev_printk(KERN_ERR, sdev,
1142 				    "rejecting I/O to dead device\n");
1143 			ret = BLKPREP_KILL;
1144 			break;
1145 		case SDEV_QUIESCE:
1146 		case SDEV_BLOCK:
1147 		case SDEV_CREATED_BLOCK:
1148 			/*
1149 			 * If the devices is blocked we defer normal commands.
1150 			 */
1151 			if (!(req->cmd_flags & REQ_PREEMPT))
1152 				ret = BLKPREP_DEFER;
1153 			break;
1154 		default:
1155 			/*
1156 			 * For any other not fully online state we only allow
1157 			 * special commands.  In particular any user initiated
1158 			 * command is not allowed.
1159 			 */
1160 			if (!(req->cmd_flags & REQ_PREEMPT))
1161 				ret = BLKPREP_KILL;
1162 			break;
1163 		}
1164 	}
1165 	return ret;
1166 }
1167 EXPORT_SYMBOL(scsi_prep_state_check);
1168 
1169 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1170 {
1171 	struct scsi_device *sdev = q->queuedata;
1172 
1173 	switch (ret) {
1174 	case BLKPREP_KILL:
1175 		req->errors = DID_NO_CONNECT << 16;
1176 		/* release the command and kill it */
1177 		if (req->special) {
1178 			struct scsi_cmnd *cmd = req->special;
1179 			scsi_release_buffers(cmd);
1180 			scsi_put_command(cmd);
1181 			req->special = NULL;
1182 		}
1183 		break;
1184 	case BLKPREP_DEFER:
1185 		/*
1186 		 * If we defer, the blk_peek_request() returns NULL, but the
1187 		 * queue must be restarted, so we plug here if no returning
1188 		 * command will automatically do that.
1189 		 */
1190 		if (sdev->device_busy == 0)
1191 			blk_plug_device(q);
1192 		break;
1193 	default:
1194 		req->cmd_flags |= REQ_DONTPREP;
1195 	}
1196 
1197 	return ret;
1198 }
1199 EXPORT_SYMBOL(scsi_prep_return);
1200 
1201 int scsi_prep_fn(struct request_queue *q, struct request *req)
1202 {
1203 	struct scsi_device *sdev = q->queuedata;
1204 	int ret = BLKPREP_KILL;
1205 
1206 	if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1207 		ret = scsi_setup_blk_pc_cmnd(sdev, req);
1208 	return scsi_prep_return(q, req, ret);
1209 }
1210 
1211 /*
1212  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1213  * return 0.
1214  *
1215  * Called with the queue_lock held.
1216  */
1217 static inline int scsi_dev_queue_ready(struct request_queue *q,
1218 				  struct scsi_device *sdev)
1219 {
1220 	if (sdev->device_busy == 0 && sdev->device_blocked) {
1221 		/*
1222 		 * unblock after device_blocked iterates to zero
1223 		 */
1224 		if (--sdev->device_blocked == 0) {
1225 			SCSI_LOG_MLQUEUE(3,
1226 				   sdev_printk(KERN_INFO, sdev,
1227 				   "unblocking device at zero depth\n"));
1228 		} else {
1229 			blk_plug_device(q);
1230 			return 0;
1231 		}
1232 	}
1233 	if (scsi_device_is_busy(sdev))
1234 		return 0;
1235 
1236 	return 1;
1237 }
1238 
1239 
1240 /*
1241  * scsi_target_queue_ready: checks if there we can send commands to target
1242  * @sdev: scsi device on starget to check.
1243  *
1244  * Called with the host lock held.
1245  */
1246 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1247 					   struct scsi_device *sdev)
1248 {
1249 	struct scsi_target *starget = scsi_target(sdev);
1250 
1251 	if (starget->single_lun) {
1252 		if (starget->starget_sdev_user &&
1253 		    starget->starget_sdev_user != sdev)
1254 			return 0;
1255 		starget->starget_sdev_user = sdev;
1256 	}
1257 
1258 	if (starget->target_busy == 0 && starget->target_blocked) {
1259 		/*
1260 		 * unblock after target_blocked iterates to zero
1261 		 */
1262 		if (--starget->target_blocked == 0) {
1263 			SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1264 					 "unblocking target at zero depth\n"));
1265 		} else
1266 			return 0;
1267 	}
1268 
1269 	if (scsi_target_is_busy(starget)) {
1270 		if (list_empty(&sdev->starved_entry)) {
1271 			list_add_tail(&sdev->starved_entry,
1272 				      &shost->starved_list);
1273 			return 0;
1274 		}
1275 	}
1276 
1277 	/* We're OK to process the command, so we can't be starved */
1278 	if (!list_empty(&sdev->starved_entry))
1279 		list_del_init(&sdev->starved_entry);
1280 	return 1;
1281 }
1282 
1283 /*
1284  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1285  * return 0. We must end up running the queue again whenever 0 is
1286  * returned, else IO can hang.
1287  *
1288  * Called with host_lock held.
1289  */
1290 static inline int scsi_host_queue_ready(struct request_queue *q,
1291 				   struct Scsi_Host *shost,
1292 				   struct scsi_device *sdev)
1293 {
1294 	if (scsi_host_in_recovery(shost))
1295 		return 0;
1296 	if (shost->host_busy == 0 && shost->host_blocked) {
1297 		/*
1298 		 * unblock after host_blocked iterates to zero
1299 		 */
1300 		if (--shost->host_blocked == 0) {
1301 			SCSI_LOG_MLQUEUE(3,
1302 				printk("scsi%d unblocking host at zero depth\n",
1303 					shost->host_no));
1304 		} else {
1305 			return 0;
1306 		}
1307 	}
1308 	if (scsi_host_is_busy(shost)) {
1309 		if (list_empty(&sdev->starved_entry))
1310 			list_add_tail(&sdev->starved_entry, &shost->starved_list);
1311 		return 0;
1312 	}
1313 
1314 	/* We're OK to process the command, so we can't be starved */
1315 	if (!list_empty(&sdev->starved_entry))
1316 		list_del_init(&sdev->starved_entry);
1317 
1318 	return 1;
1319 }
1320 
1321 /*
1322  * Busy state exporting function for request stacking drivers.
1323  *
1324  * For efficiency, no lock is taken to check the busy state of
1325  * shost/starget/sdev, since the returned value is not guaranteed and
1326  * may be changed after request stacking drivers call the function,
1327  * regardless of taking lock or not.
1328  *
1329  * When scsi can't dispatch I/Os anymore and needs to kill I/Os
1330  * (e.g. !sdev), scsi needs to return 'not busy'.
1331  * Otherwise, request stacking drivers may hold requests forever.
1332  */
1333 static int scsi_lld_busy(struct request_queue *q)
1334 {
1335 	struct scsi_device *sdev = q->queuedata;
1336 	struct Scsi_Host *shost;
1337 	struct scsi_target *starget;
1338 
1339 	if (!sdev)
1340 		return 0;
1341 
1342 	shost = sdev->host;
1343 	starget = scsi_target(sdev);
1344 
1345 	if (scsi_host_in_recovery(shost) || scsi_host_is_busy(shost) ||
1346 	    scsi_target_is_busy(starget) || scsi_device_is_busy(sdev))
1347 		return 1;
1348 
1349 	return 0;
1350 }
1351 
1352 /*
1353  * Kill a request for a dead device
1354  */
1355 static void scsi_kill_request(struct request *req, struct request_queue *q)
1356 {
1357 	struct scsi_cmnd *cmd = req->special;
1358 	struct scsi_device *sdev = cmd->device;
1359 	struct scsi_target *starget = scsi_target(sdev);
1360 	struct Scsi_Host *shost = sdev->host;
1361 
1362 	blk_start_request(req);
1363 
1364 	if (unlikely(cmd == NULL)) {
1365 		printk(KERN_CRIT "impossible request in %s.\n",
1366 				 __func__);
1367 		BUG();
1368 	}
1369 
1370 	scsi_init_cmd_errh(cmd);
1371 	cmd->result = DID_NO_CONNECT << 16;
1372 	atomic_inc(&cmd->device->iorequest_cnt);
1373 
1374 	/*
1375 	 * SCSI request completion path will do scsi_device_unbusy(),
1376 	 * bump busy counts.  To bump the counters, we need to dance
1377 	 * with the locks as normal issue path does.
1378 	 */
1379 	sdev->device_busy++;
1380 	spin_unlock(sdev->request_queue->queue_lock);
1381 	spin_lock(shost->host_lock);
1382 	shost->host_busy++;
1383 	starget->target_busy++;
1384 	spin_unlock(shost->host_lock);
1385 	spin_lock(sdev->request_queue->queue_lock);
1386 
1387 	blk_complete_request(req);
1388 }
1389 
1390 static void scsi_softirq_done(struct request *rq)
1391 {
1392 	struct scsi_cmnd *cmd = rq->special;
1393 	unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1394 	int disposition;
1395 
1396 	INIT_LIST_HEAD(&cmd->eh_entry);
1397 
1398 	/*
1399 	 * Set the serial numbers back to zero
1400 	 */
1401 	cmd->serial_number = 0;
1402 
1403 	atomic_inc(&cmd->device->iodone_cnt);
1404 	if (cmd->result)
1405 		atomic_inc(&cmd->device->ioerr_cnt);
1406 
1407 	disposition = scsi_decide_disposition(cmd);
1408 	if (disposition != SUCCESS &&
1409 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1410 		sdev_printk(KERN_ERR, cmd->device,
1411 			    "timing out command, waited %lus\n",
1412 			    wait_for/HZ);
1413 		disposition = SUCCESS;
1414 	}
1415 
1416 	scsi_log_completion(cmd, disposition);
1417 
1418 	switch (disposition) {
1419 		case SUCCESS:
1420 			scsi_finish_command(cmd);
1421 			break;
1422 		case NEEDS_RETRY:
1423 			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1424 			break;
1425 		case ADD_TO_MLQUEUE:
1426 			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1427 			break;
1428 		default:
1429 			if (!scsi_eh_scmd_add(cmd, 0))
1430 				scsi_finish_command(cmd);
1431 	}
1432 }
1433 
1434 /*
1435  * Function:    scsi_request_fn()
1436  *
1437  * Purpose:     Main strategy routine for SCSI.
1438  *
1439  * Arguments:   q       - Pointer to actual queue.
1440  *
1441  * Returns:     Nothing
1442  *
1443  * Lock status: IO request lock assumed to be held when called.
1444  */
1445 static void scsi_request_fn(struct request_queue *q)
1446 {
1447 	struct scsi_device *sdev = q->queuedata;
1448 	struct Scsi_Host *shost;
1449 	struct scsi_cmnd *cmd;
1450 	struct request *req;
1451 
1452 	if (!sdev) {
1453 		printk("scsi: killing requests for dead queue\n");
1454 		while ((req = blk_peek_request(q)) != NULL)
1455 			scsi_kill_request(req, q);
1456 		return;
1457 	}
1458 
1459 	if(!get_device(&sdev->sdev_gendev))
1460 		/* We must be tearing the block queue down already */
1461 		return;
1462 
1463 	/*
1464 	 * To start with, we keep looping until the queue is empty, or until
1465 	 * the host is no longer able to accept any more requests.
1466 	 */
1467 	shost = sdev->host;
1468 	while (!blk_queue_plugged(q)) {
1469 		int rtn;
1470 		/*
1471 		 * get next queueable request.  We do this early to make sure
1472 		 * that the request is fully prepared even if we cannot
1473 		 * accept it.
1474 		 */
1475 		req = blk_peek_request(q);
1476 		if (!req || !scsi_dev_queue_ready(q, sdev))
1477 			break;
1478 
1479 		if (unlikely(!scsi_device_online(sdev))) {
1480 			sdev_printk(KERN_ERR, sdev,
1481 				    "rejecting I/O to offline device\n");
1482 			scsi_kill_request(req, q);
1483 			continue;
1484 		}
1485 
1486 
1487 		/*
1488 		 * Remove the request from the request list.
1489 		 */
1490 		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1491 			blk_start_request(req);
1492 		sdev->device_busy++;
1493 
1494 		spin_unlock(q->queue_lock);
1495 		cmd = req->special;
1496 		if (unlikely(cmd == NULL)) {
1497 			printk(KERN_CRIT "impossible request in %s.\n"
1498 					 "please mail a stack trace to "
1499 					 "linux-scsi@vger.kernel.org\n",
1500 					 __func__);
1501 			blk_dump_rq_flags(req, "foo");
1502 			BUG();
1503 		}
1504 		spin_lock(shost->host_lock);
1505 
1506 		/*
1507 		 * We hit this when the driver is using a host wide
1508 		 * tag map. For device level tag maps the queue_depth check
1509 		 * in the device ready fn would prevent us from trying
1510 		 * to allocate a tag. Since the map is a shared host resource
1511 		 * we add the dev to the starved list so it eventually gets
1512 		 * a run when a tag is freed.
1513 		 */
1514 		if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1515 			if (list_empty(&sdev->starved_entry))
1516 				list_add_tail(&sdev->starved_entry,
1517 					      &shost->starved_list);
1518 			goto not_ready;
1519 		}
1520 
1521 		if (!scsi_target_queue_ready(shost, sdev))
1522 			goto not_ready;
1523 
1524 		if (!scsi_host_queue_ready(q, shost, sdev))
1525 			goto not_ready;
1526 
1527 		scsi_target(sdev)->target_busy++;
1528 		shost->host_busy++;
1529 
1530 		/*
1531 		 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1532 		 *		take the lock again.
1533 		 */
1534 		spin_unlock_irq(shost->host_lock);
1535 
1536 		/*
1537 		 * Finally, initialize any error handling parameters, and set up
1538 		 * the timers for timeouts.
1539 		 */
1540 		scsi_init_cmd_errh(cmd);
1541 
1542 		/*
1543 		 * Dispatch the command to the low-level driver.
1544 		 */
1545 		rtn = scsi_dispatch_cmd(cmd);
1546 		spin_lock_irq(q->queue_lock);
1547 		if(rtn) {
1548 			/* we're refusing the command; because of
1549 			 * the way locks get dropped, we need to
1550 			 * check here if plugging is required */
1551 			if(sdev->device_busy == 0)
1552 				blk_plug_device(q);
1553 
1554 			break;
1555 		}
1556 	}
1557 
1558 	goto out;
1559 
1560  not_ready:
1561 	spin_unlock_irq(shost->host_lock);
1562 
1563 	/*
1564 	 * lock q, handle tag, requeue req, and decrement device_busy. We
1565 	 * must return with queue_lock held.
1566 	 *
1567 	 * Decrementing device_busy without checking it is OK, as all such
1568 	 * cases (host limits or settings) should run the queue at some
1569 	 * later time.
1570 	 */
1571 	spin_lock_irq(q->queue_lock);
1572 	blk_requeue_request(q, req);
1573 	sdev->device_busy--;
1574 	if(sdev->device_busy == 0)
1575 		blk_plug_device(q);
1576  out:
1577 	/* must be careful here...if we trigger the ->remove() function
1578 	 * we cannot be holding the q lock */
1579 	spin_unlock_irq(q->queue_lock);
1580 	put_device(&sdev->sdev_gendev);
1581 	spin_lock_irq(q->queue_lock);
1582 }
1583 
1584 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1585 {
1586 	struct device *host_dev;
1587 	u64 bounce_limit = 0xffffffff;
1588 
1589 	if (shost->unchecked_isa_dma)
1590 		return BLK_BOUNCE_ISA;
1591 	/*
1592 	 * Platforms with virtual-DMA translation
1593 	 * hardware have no practical limit.
1594 	 */
1595 	if (!PCI_DMA_BUS_IS_PHYS)
1596 		return BLK_BOUNCE_ANY;
1597 
1598 	host_dev = scsi_get_device(shost);
1599 	if (host_dev && host_dev->dma_mask)
1600 		bounce_limit = *host_dev->dma_mask;
1601 
1602 	return bounce_limit;
1603 }
1604 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1605 
1606 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1607 					 request_fn_proc *request_fn)
1608 {
1609 	struct request_queue *q;
1610 	struct device *dev = shost->shost_gendev.parent;
1611 
1612 	q = blk_init_queue(request_fn, NULL);
1613 	if (!q)
1614 		return NULL;
1615 
1616 	/*
1617 	 * this limit is imposed by hardware restrictions
1618 	 */
1619 	blk_queue_max_hw_segments(q, shost->sg_tablesize);
1620 	blk_queue_max_phys_segments(q, SCSI_MAX_SG_CHAIN_SEGMENTS);
1621 
1622 	blk_queue_max_sectors(q, shost->max_sectors);
1623 	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1624 	blk_queue_segment_boundary(q, shost->dma_boundary);
1625 	dma_set_seg_boundary(dev, shost->dma_boundary);
1626 
1627 	blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1628 
1629 	/* New queue, no concurrency on queue_flags */
1630 	if (!shost->use_clustering)
1631 		queue_flag_clear_unlocked(QUEUE_FLAG_CLUSTER, q);
1632 
1633 	/*
1634 	 * set a reasonable default alignment on word boundaries: the
1635 	 * host and device may alter it using
1636 	 * blk_queue_update_dma_alignment() later.
1637 	 */
1638 	blk_queue_dma_alignment(q, 0x03);
1639 
1640 	return q;
1641 }
1642 EXPORT_SYMBOL(__scsi_alloc_queue);
1643 
1644 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1645 {
1646 	struct request_queue *q;
1647 
1648 	q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1649 	if (!q)
1650 		return NULL;
1651 
1652 	blk_queue_prep_rq(q, scsi_prep_fn);
1653 	blk_queue_softirq_done(q, scsi_softirq_done);
1654 	blk_queue_rq_timed_out(q, scsi_times_out);
1655 	blk_queue_lld_busy(q, scsi_lld_busy);
1656 	return q;
1657 }
1658 
1659 void scsi_free_queue(struct request_queue *q)
1660 {
1661 	blk_cleanup_queue(q);
1662 }
1663 
1664 /*
1665  * Function:    scsi_block_requests()
1666  *
1667  * Purpose:     Utility function used by low-level drivers to prevent further
1668  *		commands from being queued to the device.
1669  *
1670  * Arguments:   shost       - Host in question
1671  *
1672  * Returns:     Nothing
1673  *
1674  * Lock status: No locks are assumed held.
1675  *
1676  * Notes:       There is no timer nor any other means by which the requests
1677  *		get unblocked other than the low-level driver calling
1678  *		scsi_unblock_requests().
1679  */
1680 void scsi_block_requests(struct Scsi_Host *shost)
1681 {
1682 	shost->host_self_blocked = 1;
1683 }
1684 EXPORT_SYMBOL(scsi_block_requests);
1685 
1686 /*
1687  * Function:    scsi_unblock_requests()
1688  *
1689  * Purpose:     Utility function used by low-level drivers to allow further
1690  *		commands from being queued to the device.
1691  *
1692  * Arguments:   shost       - Host in question
1693  *
1694  * Returns:     Nothing
1695  *
1696  * Lock status: No locks are assumed held.
1697  *
1698  * Notes:       There is no timer nor any other means by which the requests
1699  *		get unblocked other than the low-level driver calling
1700  *		scsi_unblock_requests().
1701  *
1702  *		This is done as an API function so that changes to the
1703  *		internals of the scsi mid-layer won't require wholesale
1704  *		changes to drivers that use this feature.
1705  */
1706 void scsi_unblock_requests(struct Scsi_Host *shost)
1707 {
1708 	shost->host_self_blocked = 0;
1709 	scsi_run_host_queues(shost);
1710 }
1711 EXPORT_SYMBOL(scsi_unblock_requests);
1712 
1713 int __init scsi_init_queue(void)
1714 {
1715 	int i;
1716 
1717 	scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1718 					   sizeof(struct scsi_data_buffer),
1719 					   0, 0, NULL);
1720 	if (!scsi_sdb_cache) {
1721 		printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1722 		return -ENOMEM;
1723 	}
1724 
1725 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1726 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1727 		int size = sgp->size * sizeof(struct scatterlist);
1728 
1729 		sgp->slab = kmem_cache_create(sgp->name, size, 0,
1730 				SLAB_HWCACHE_ALIGN, NULL);
1731 		if (!sgp->slab) {
1732 			printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1733 					sgp->name);
1734 			goto cleanup_sdb;
1735 		}
1736 
1737 		sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1738 						     sgp->slab);
1739 		if (!sgp->pool) {
1740 			printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1741 					sgp->name);
1742 			goto cleanup_sdb;
1743 		}
1744 	}
1745 
1746 	return 0;
1747 
1748 cleanup_sdb:
1749 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1750 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1751 		if (sgp->pool)
1752 			mempool_destroy(sgp->pool);
1753 		if (sgp->slab)
1754 			kmem_cache_destroy(sgp->slab);
1755 	}
1756 	kmem_cache_destroy(scsi_sdb_cache);
1757 
1758 	return -ENOMEM;
1759 }
1760 
1761 void scsi_exit_queue(void)
1762 {
1763 	int i;
1764 
1765 	kmem_cache_destroy(scsi_sdb_cache);
1766 
1767 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1768 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1769 		mempool_destroy(sgp->pool);
1770 		kmem_cache_destroy(sgp->slab);
1771 	}
1772 }
1773 
1774 /**
1775  *	scsi_mode_select - issue a mode select
1776  *	@sdev:	SCSI device to be queried
1777  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
1778  *	@sp:	Save page bit (0 == don't save, 1 == save)
1779  *	@modepage: mode page being requested
1780  *	@buffer: request buffer (may not be smaller than eight bytes)
1781  *	@len:	length of request buffer.
1782  *	@timeout: command timeout
1783  *	@retries: number of retries before failing
1784  *	@data: returns a structure abstracting the mode header data
1785  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1786  *		must be SCSI_SENSE_BUFFERSIZE big.
1787  *
1788  *	Returns zero if successful; negative error number or scsi
1789  *	status on error
1790  *
1791  */
1792 int
1793 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1794 		 unsigned char *buffer, int len, int timeout, int retries,
1795 		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1796 {
1797 	unsigned char cmd[10];
1798 	unsigned char *real_buffer;
1799 	int ret;
1800 
1801 	memset(cmd, 0, sizeof(cmd));
1802 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1803 
1804 	if (sdev->use_10_for_ms) {
1805 		if (len > 65535)
1806 			return -EINVAL;
1807 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
1808 		if (!real_buffer)
1809 			return -ENOMEM;
1810 		memcpy(real_buffer + 8, buffer, len);
1811 		len += 8;
1812 		real_buffer[0] = 0;
1813 		real_buffer[1] = 0;
1814 		real_buffer[2] = data->medium_type;
1815 		real_buffer[3] = data->device_specific;
1816 		real_buffer[4] = data->longlba ? 0x01 : 0;
1817 		real_buffer[5] = 0;
1818 		real_buffer[6] = data->block_descriptor_length >> 8;
1819 		real_buffer[7] = data->block_descriptor_length;
1820 
1821 		cmd[0] = MODE_SELECT_10;
1822 		cmd[7] = len >> 8;
1823 		cmd[8] = len;
1824 	} else {
1825 		if (len > 255 || data->block_descriptor_length > 255 ||
1826 		    data->longlba)
1827 			return -EINVAL;
1828 
1829 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
1830 		if (!real_buffer)
1831 			return -ENOMEM;
1832 		memcpy(real_buffer + 4, buffer, len);
1833 		len += 4;
1834 		real_buffer[0] = 0;
1835 		real_buffer[1] = data->medium_type;
1836 		real_buffer[2] = data->device_specific;
1837 		real_buffer[3] = data->block_descriptor_length;
1838 
1839 
1840 		cmd[0] = MODE_SELECT;
1841 		cmd[4] = len;
1842 	}
1843 
1844 	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1845 			       sshdr, timeout, retries, NULL);
1846 	kfree(real_buffer);
1847 	return ret;
1848 }
1849 EXPORT_SYMBOL_GPL(scsi_mode_select);
1850 
1851 /**
1852  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1853  *	@sdev:	SCSI device to be queried
1854  *	@dbd:	set if mode sense will allow block descriptors to be returned
1855  *	@modepage: mode page being requested
1856  *	@buffer: request buffer (may not be smaller than eight bytes)
1857  *	@len:	length of request buffer.
1858  *	@timeout: command timeout
1859  *	@retries: number of retries before failing
1860  *	@data: returns a structure abstracting the mode header data
1861  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1862  *		must be SCSI_SENSE_BUFFERSIZE big.
1863  *
1864  *	Returns zero if unsuccessful, or the header offset (either 4
1865  *	or 8 depending on whether a six or ten byte command was
1866  *	issued) if successful.
1867  */
1868 int
1869 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1870 		  unsigned char *buffer, int len, int timeout, int retries,
1871 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1872 {
1873 	unsigned char cmd[12];
1874 	int use_10_for_ms;
1875 	int header_length;
1876 	int result;
1877 	struct scsi_sense_hdr my_sshdr;
1878 
1879 	memset(data, 0, sizeof(*data));
1880 	memset(&cmd[0], 0, 12);
1881 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
1882 	cmd[2] = modepage;
1883 
1884 	/* caller might not be interested in sense, but we need it */
1885 	if (!sshdr)
1886 		sshdr = &my_sshdr;
1887 
1888  retry:
1889 	use_10_for_ms = sdev->use_10_for_ms;
1890 
1891 	if (use_10_for_ms) {
1892 		if (len < 8)
1893 			len = 8;
1894 
1895 		cmd[0] = MODE_SENSE_10;
1896 		cmd[8] = len;
1897 		header_length = 8;
1898 	} else {
1899 		if (len < 4)
1900 			len = 4;
1901 
1902 		cmd[0] = MODE_SENSE;
1903 		cmd[4] = len;
1904 		header_length = 4;
1905 	}
1906 
1907 	memset(buffer, 0, len);
1908 
1909 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1910 				  sshdr, timeout, retries, NULL);
1911 
1912 	/* This code looks awful: what it's doing is making sure an
1913 	 * ILLEGAL REQUEST sense return identifies the actual command
1914 	 * byte as the problem.  MODE_SENSE commands can return
1915 	 * ILLEGAL REQUEST if the code page isn't supported */
1916 
1917 	if (use_10_for_ms && !scsi_status_is_good(result) &&
1918 	    (driver_byte(result) & DRIVER_SENSE)) {
1919 		if (scsi_sense_valid(sshdr)) {
1920 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1921 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1922 				/*
1923 				 * Invalid command operation code
1924 				 */
1925 				sdev->use_10_for_ms = 0;
1926 				goto retry;
1927 			}
1928 		}
1929 	}
1930 
1931 	if(scsi_status_is_good(result)) {
1932 		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1933 			     (modepage == 6 || modepage == 8))) {
1934 			/* Initio breakage? */
1935 			header_length = 0;
1936 			data->length = 13;
1937 			data->medium_type = 0;
1938 			data->device_specific = 0;
1939 			data->longlba = 0;
1940 			data->block_descriptor_length = 0;
1941 		} else if(use_10_for_ms) {
1942 			data->length = buffer[0]*256 + buffer[1] + 2;
1943 			data->medium_type = buffer[2];
1944 			data->device_specific = buffer[3];
1945 			data->longlba = buffer[4] & 0x01;
1946 			data->block_descriptor_length = buffer[6]*256
1947 				+ buffer[7];
1948 		} else {
1949 			data->length = buffer[0] + 1;
1950 			data->medium_type = buffer[1];
1951 			data->device_specific = buffer[2];
1952 			data->block_descriptor_length = buffer[3];
1953 		}
1954 		data->header_length = header_length;
1955 	}
1956 
1957 	return result;
1958 }
1959 EXPORT_SYMBOL(scsi_mode_sense);
1960 
1961 /**
1962  *	scsi_test_unit_ready - test if unit is ready
1963  *	@sdev:	scsi device to change the state of.
1964  *	@timeout: command timeout
1965  *	@retries: number of retries before failing
1966  *	@sshdr_external: Optional pointer to struct scsi_sense_hdr for
1967  *		returning sense. Make sure that this is cleared before passing
1968  *		in.
1969  *
1970  *	Returns zero if unsuccessful or an error if TUR failed.  For
1971  *	removable media, a return of NOT_READY or UNIT_ATTENTION is
1972  *	translated to success, with the ->changed flag updated.
1973  **/
1974 int
1975 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
1976 		     struct scsi_sense_hdr *sshdr_external)
1977 {
1978 	char cmd[] = {
1979 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
1980 	};
1981 	struct scsi_sense_hdr *sshdr;
1982 	int result;
1983 
1984 	if (!sshdr_external)
1985 		sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
1986 	else
1987 		sshdr = sshdr_external;
1988 
1989 	/* try to eat the UNIT_ATTENTION if there are enough retries */
1990 	do {
1991 		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
1992 					  timeout, retries, NULL);
1993 		if (sdev->removable && scsi_sense_valid(sshdr) &&
1994 		    sshdr->sense_key == UNIT_ATTENTION)
1995 			sdev->changed = 1;
1996 	} while (scsi_sense_valid(sshdr) &&
1997 		 sshdr->sense_key == UNIT_ATTENTION && --retries);
1998 
1999 	if (!sshdr)
2000 		/* could not allocate sense buffer, so can't process it */
2001 		return result;
2002 
2003 	if (sdev->removable && scsi_sense_valid(sshdr) &&
2004 	    (sshdr->sense_key == UNIT_ATTENTION ||
2005 	     sshdr->sense_key == NOT_READY)) {
2006 		sdev->changed = 1;
2007 		result = 0;
2008 	}
2009 	if (!sshdr_external)
2010 		kfree(sshdr);
2011 	return result;
2012 }
2013 EXPORT_SYMBOL(scsi_test_unit_ready);
2014 
2015 /**
2016  *	scsi_device_set_state - Take the given device through the device state model.
2017  *	@sdev:	scsi device to change the state of.
2018  *	@state:	state to change to.
2019  *
2020  *	Returns zero if unsuccessful or an error if the requested
2021  *	transition is illegal.
2022  */
2023 int
2024 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2025 {
2026 	enum scsi_device_state oldstate = sdev->sdev_state;
2027 
2028 	if (state == oldstate)
2029 		return 0;
2030 
2031 	switch (state) {
2032 	case SDEV_CREATED:
2033 		switch (oldstate) {
2034 		case SDEV_CREATED_BLOCK:
2035 			break;
2036 		default:
2037 			goto illegal;
2038 		}
2039 		break;
2040 
2041 	case SDEV_RUNNING:
2042 		switch (oldstate) {
2043 		case SDEV_CREATED:
2044 		case SDEV_OFFLINE:
2045 		case SDEV_QUIESCE:
2046 		case SDEV_BLOCK:
2047 			break;
2048 		default:
2049 			goto illegal;
2050 		}
2051 		break;
2052 
2053 	case SDEV_QUIESCE:
2054 		switch (oldstate) {
2055 		case SDEV_RUNNING:
2056 		case SDEV_OFFLINE:
2057 			break;
2058 		default:
2059 			goto illegal;
2060 		}
2061 		break;
2062 
2063 	case SDEV_OFFLINE:
2064 		switch (oldstate) {
2065 		case SDEV_CREATED:
2066 		case SDEV_RUNNING:
2067 		case SDEV_QUIESCE:
2068 		case SDEV_BLOCK:
2069 			break;
2070 		default:
2071 			goto illegal;
2072 		}
2073 		break;
2074 
2075 	case SDEV_BLOCK:
2076 		switch (oldstate) {
2077 		case SDEV_RUNNING:
2078 		case SDEV_CREATED_BLOCK:
2079 			break;
2080 		default:
2081 			goto illegal;
2082 		}
2083 		break;
2084 
2085 	case SDEV_CREATED_BLOCK:
2086 		switch (oldstate) {
2087 		case SDEV_CREATED:
2088 			break;
2089 		default:
2090 			goto illegal;
2091 		}
2092 		break;
2093 
2094 	case SDEV_CANCEL:
2095 		switch (oldstate) {
2096 		case SDEV_CREATED:
2097 		case SDEV_RUNNING:
2098 		case SDEV_QUIESCE:
2099 		case SDEV_OFFLINE:
2100 		case SDEV_BLOCK:
2101 			break;
2102 		default:
2103 			goto illegal;
2104 		}
2105 		break;
2106 
2107 	case SDEV_DEL:
2108 		switch (oldstate) {
2109 		case SDEV_CREATED:
2110 		case SDEV_RUNNING:
2111 		case SDEV_OFFLINE:
2112 		case SDEV_CANCEL:
2113 			break;
2114 		default:
2115 			goto illegal;
2116 		}
2117 		break;
2118 
2119 	}
2120 	sdev->sdev_state = state;
2121 	return 0;
2122 
2123  illegal:
2124 	SCSI_LOG_ERROR_RECOVERY(1,
2125 				sdev_printk(KERN_ERR, sdev,
2126 					    "Illegal state transition %s->%s\n",
2127 					    scsi_device_state_name(oldstate),
2128 					    scsi_device_state_name(state))
2129 				);
2130 	return -EINVAL;
2131 }
2132 EXPORT_SYMBOL(scsi_device_set_state);
2133 
2134 /**
2135  * 	sdev_evt_emit - emit a single SCSI device uevent
2136  *	@sdev: associated SCSI device
2137  *	@evt: event to emit
2138  *
2139  *	Send a single uevent (scsi_event) to the associated scsi_device.
2140  */
2141 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2142 {
2143 	int idx = 0;
2144 	char *envp[3];
2145 
2146 	switch (evt->evt_type) {
2147 	case SDEV_EVT_MEDIA_CHANGE:
2148 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2149 		break;
2150 
2151 	default:
2152 		/* do nothing */
2153 		break;
2154 	}
2155 
2156 	envp[idx++] = NULL;
2157 
2158 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2159 }
2160 
2161 /**
2162  * 	sdev_evt_thread - send a uevent for each scsi event
2163  *	@work: work struct for scsi_device
2164  *
2165  *	Dispatch queued events to their associated scsi_device kobjects
2166  *	as uevents.
2167  */
2168 void scsi_evt_thread(struct work_struct *work)
2169 {
2170 	struct scsi_device *sdev;
2171 	LIST_HEAD(event_list);
2172 
2173 	sdev = container_of(work, struct scsi_device, event_work);
2174 
2175 	while (1) {
2176 		struct scsi_event *evt;
2177 		struct list_head *this, *tmp;
2178 		unsigned long flags;
2179 
2180 		spin_lock_irqsave(&sdev->list_lock, flags);
2181 		list_splice_init(&sdev->event_list, &event_list);
2182 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2183 
2184 		if (list_empty(&event_list))
2185 			break;
2186 
2187 		list_for_each_safe(this, tmp, &event_list) {
2188 			evt = list_entry(this, struct scsi_event, node);
2189 			list_del(&evt->node);
2190 			scsi_evt_emit(sdev, evt);
2191 			kfree(evt);
2192 		}
2193 	}
2194 }
2195 
2196 /**
2197  * 	sdev_evt_send - send asserted event to uevent thread
2198  *	@sdev: scsi_device event occurred on
2199  *	@evt: event to send
2200  *
2201  *	Assert scsi device event asynchronously.
2202  */
2203 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2204 {
2205 	unsigned long flags;
2206 
2207 #if 0
2208 	/* FIXME: currently this check eliminates all media change events
2209 	 * for polled devices.  Need to update to discriminate between AN
2210 	 * and polled events */
2211 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2212 		kfree(evt);
2213 		return;
2214 	}
2215 #endif
2216 
2217 	spin_lock_irqsave(&sdev->list_lock, flags);
2218 	list_add_tail(&evt->node, &sdev->event_list);
2219 	schedule_work(&sdev->event_work);
2220 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2221 }
2222 EXPORT_SYMBOL_GPL(sdev_evt_send);
2223 
2224 /**
2225  * 	sdev_evt_alloc - allocate a new scsi event
2226  *	@evt_type: type of event to allocate
2227  *	@gfpflags: GFP flags for allocation
2228  *
2229  *	Allocates and returns a new scsi_event.
2230  */
2231 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2232 				  gfp_t gfpflags)
2233 {
2234 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2235 	if (!evt)
2236 		return NULL;
2237 
2238 	evt->evt_type = evt_type;
2239 	INIT_LIST_HEAD(&evt->node);
2240 
2241 	/* evt_type-specific initialization, if any */
2242 	switch (evt_type) {
2243 	case SDEV_EVT_MEDIA_CHANGE:
2244 	default:
2245 		/* do nothing */
2246 		break;
2247 	}
2248 
2249 	return evt;
2250 }
2251 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2252 
2253 /**
2254  * 	sdev_evt_send_simple - send asserted event to uevent thread
2255  *	@sdev: scsi_device event occurred on
2256  *	@evt_type: type of event to send
2257  *	@gfpflags: GFP flags for allocation
2258  *
2259  *	Assert scsi device event asynchronously, given an event type.
2260  */
2261 void sdev_evt_send_simple(struct scsi_device *sdev,
2262 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2263 {
2264 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2265 	if (!evt) {
2266 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2267 			    evt_type);
2268 		return;
2269 	}
2270 
2271 	sdev_evt_send(sdev, evt);
2272 }
2273 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2274 
2275 /**
2276  *	scsi_device_quiesce - Block user issued commands.
2277  *	@sdev:	scsi device to quiesce.
2278  *
2279  *	This works by trying to transition to the SDEV_QUIESCE state
2280  *	(which must be a legal transition).  When the device is in this
2281  *	state, only special requests will be accepted, all others will
2282  *	be deferred.  Since special requests may also be requeued requests,
2283  *	a successful return doesn't guarantee the device will be
2284  *	totally quiescent.
2285  *
2286  *	Must be called with user context, may sleep.
2287  *
2288  *	Returns zero if unsuccessful or an error if not.
2289  */
2290 int
2291 scsi_device_quiesce(struct scsi_device *sdev)
2292 {
2293 	int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2294 	if (err)
2295 		return err;
2296 
2297 	scsi_run_queue(sdev->request_queue);
2298 	while (sdev->device_busy) {
2299 		msleep_interruptible(200);
2300 		scsi_run_queue(sdev->request_queue);
2301 	}
2302 	return 0;
2303 }
2304 EXPORT_SYMBOL(scsi_device_quiesce);
2305 
2306 /**
2307  *	scsi_device_resume - Restart user issued commands to a quiesced device.
2308  *	@sdev:	scsi device to resume.
2309  *
2310  *	Moves the device from quiesced back to running and restarts the
2311  *	queues.
2312  *
2313  *	Must be called with user context, may sleep.
2314  */
2315 void
2316 scsi_device_resume(struct scsi_device *sdev)
2317 {
2318 	if(scsi_device_set_state(sdev, SDEV_RUNNING))
2319 		return;
2320 	scsi_run_queue(sdev->request_queue);
2321 }
2322 EXPORT_SYMBOL(scsi_device_resume);
2323 
2324 static void
2325 device_quiesce_fn(struct scsi_device *sdev, void *data)
2326 {
2327 	scsi_device_quiesce(sdev);
2328 }
2329 
2330 void
2331 scsi_target_quiesce(struct scsi_target *starget)
2332 {
2333 	starget_for_each_device(starget, NULL, device_quiesce_fn);
2334 }
2335 EXPORT_SYMBOL(scsi_target_quiesce);
2336 
2337 static void
2338 device_resume_fn(struct scsi_device *sdev, void *data)
2339 {
2340 	scsi_device_resume(sdev);
2341 }
2342 
2343 void
2344 scsi_target_resume(struct scsi_target *starget)
2345 {
2346 	starget_for_each_device(starget, NULL, device_resume_fn);
2347 }
2348 EXPORT_SYMBOL(scsi_target_resume);
2349 
2350 /**
2351  * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2352  * @sdev:	device to block
2353  *
2354  * Block request made by scsi lld's to temporarily stop all
2355  * scsi commands on the specified device.  Called from interrupt
2356  * or normal process context.
2357  *
2358  * Returns zero if successful or error if not
2359  *
2360  * Notes:
2361  *	This routine transitions the device to the SDEV_BLOCK state
2362  *	(which must be a legal transition).  When the device is in this
2363  *	state, all commands are deferred until the scsi lld reenables
2364  *	the device with scsi_device_unblock or device_block_tmo fires.
2365  *	This routine assumes the host_lock is held on entry.
2366  */
2367 int
2368 scsi_internal_device_block(struct scsi_device *sdev)
2369 {
2370 	struct request_queue *q = sdev->request_queue;
2371 	unsigned long flags;
2372 	int err = 0;
2373 
2374 	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2375 	if (err) {
2376 		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2377 
2378 		if (err)
2379 			return err;
2380 	}
2381 
2382 	/*
2383 	 * The device has transitioned to SDEV_BLOCK.  Stop the
2384 	 * block layer from calling the midlayer with this device's
2385 	 * request queue.
2386 	 */
2387 	spin_lock_irqsave(q->queue_lock, flags);
2388 	blk_stop_queue(q);
2389 	spin_unlock_irqrestore(q->queue_lock, flags);
2390 
2391 	return 0;
2392 }
2393 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2394 
2395 /**
2396  * scsi_internal_device_unblock - resume a device after a block request
2397  * @sdev:	device to resume
2398  *
2399  * Called by scsi lld's or the midlayer to restart the device queue
2400  * for the previously suspended scsi device.  Called from interrupt or
2401  * normal process context.
2402  *
2403  * Returns zero if successful or error if not.
2404  *
2405  * Notes:
2406  *	This routine transitions the device to the SDEV_RUNNING state
2407  *	(which must be a legal transition) allowing the midlayer to
2408  *	goose the queue for this device.  This routine assumes the
2409  *	host_lock is held upon entry.
2410  */
2411 int
2412 scsi_internal_device_unblock(struct scsi_device *sdev)
2413 {
2414 	struct request_queue *q = sdev->request_queue;
2415 	unsigned long flags;
2416 
2417 	/*
2418 	 * Try to transition the scsi device to SDEV_RUNNING
2419 	 * and goose the device queue if successful.
2420 	 */
2421 	if (sdev->sdev_state == SDEV_BLOCK)
2422 		sdev->sdev_state = SDEV_RUNNING;
2423 	else if (sdev->sdev_state == SDEV_CREATED_BLOCK)
2424 		sdev->sdev_state = SDEV_CREATED;
2425 	else
2426 		return -EINVAL;
2427 
2428 	spin_lock_irqsave(q->queue_lock, flags);
2429 	blk_start_queue(q);
2430 	spin_unlock_irqrestore(q->queue_lock, flags);
2431 
2432 	return 0;
2433 }
2434 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2435 
2436 static void
2437 device_block(struct scsi_device *sdev, void *data)
2438 {
2439 	scsi_internal_device_block(sdev);
2440 }
2441 
2442 static int
2443 target_block(struct device *dev, void *data)
2444 {
2445 	if (scsi_is_target_device(dev))
2446 		starget_for_each_device(to_scsi_target(dev), NULL,
2447 					device_block);
2448 	return 0;
2449 }
2450 
2451 void
2452 scsi_target_block(struct device *dev)
2453 {
2454 	if (scsi_is_target_device(dev))
2455 		starget_for_each_device(to_scsi_target(dev), NULL,
2456 					device_block);
2457 	else
2458 		device_for_each_child(dev, NULL, target_block);
2459 }
2460 EXPORT_SYMBOL_GPL(scsi_target_block);
2461 
2462 static void
2463 device_unblock(struct scsi_device *sdev, void *data)
2464 {
2465 	scsi_internal_device_unblock(sdev);
2466 }
2467 
2468 static int
2469 target_unblock(struct device *dev, void *data)
2470 {
2471 	if (scsi_is_target_device(dev))
2472 		starget_for_each_device(to_scsi_target(dev), NULL,
2473 					device_unblock);
2474 	return 0;
2475 }
2476 
2477 void
2478 scsi_target_unblock(struct device *dev)
2479 {
2480 	if (scsi_is_target_device(dev))
2481 		starget_for_each_device(to_scsi_target(dev), NULL,
2482 					device_unblock);
2483 	else
2484 		device_for_each_child(dev, NULL, target_unblock);
2485 }
2486 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2487 
2488 /**
2489  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2490  * @sgl:	scatter-gather list
2491  * @sg_count:	number of segments in sg
2492  * @offset:	offset in bytes into sg, on return offset into the mapped area
2493  * @len:	bytes to map, on return number of bytes mapped
2494  *
2495  * Returns virtual address of the start of the mapped page
2496  */
2497 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2498 			  size_t *offset, size_t *len)
2499 {
2500 	int i;
2501 	size_t sg_len = 0, len_complete = 0;
2502 	struct scatterlist *sg;
2503 	struct page *page;
2504 
2505 	WARN_ON(!irqs_disabled());
2506 
2507 	for_each_sg(sgl, sg, sg_count, i) {
2508 		len_complete = sg_len; /* Complete sg-entries */
2509 		sg_len += sg->length;
2510 		if (sg_len > *offset)
2511 			break;
2512 	}
2513 
2514 	if (unlikely(i == sg_count)) {
2515 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2516 			"elements %d\n",
2517 		       __func__, sg_len, *offset, sg_count);
2518 		WARN_ON(1);
2519 		return NULL;
2520 	}
2521 
2522 	/* Offset starting from the beginning of first page in this sg-entry */
2523 	*offset = *offset - len_complete + sg->offset;
2524 
2525 	/* Assumption: contiguous pages can be accessed as "page + i" */
2526 	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2527 	*offset &= ~PAGE_MASK;
2528 
2529 	/* Bytes in this sg-entry from *offset to the end of the page */
2530 	sg_len = PAGE_SIZE - *offset;
2531 	if (*len > sg_len)
2532 		*len = sg_len;
2533 
2534 	return kmap_atomic(page, KM_BIO_SRC_IRQ);
2535 }
2536 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2537 
2538 /**
2539  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2540  * @virt:	virtual address to be unmapped
2541  */
2542 void scsi_kunmap_atomic_sg(void *virt)
2543 {
2544 	kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2545 }
2546 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2547