1 /* 2 * scsi_lib.c Copyright (C) 1999 Eric Youngdale 3 * 4 * SCSI queueing library. 5 * Initial versions: Eric Youngdale (eric@andante.org). 6 * Based upon conversations with large numbers 7 * of people at Linux Expo. 8 */ 9 10 #include <linux/bio.h> 11 #include <linux/bitops.h> 12 #include <linux/blkdev.h> 13 #include <linux/completion.h> 14 #include <linux/kernel.h> 15 #include <linux/mempool.h> 16 #include <linux/slab.h> 17 #include <linux/init.h> 18 #include <linux/pci.h> 19 #include <linux/delay.h> 20 #include <linux/hardirq.h> 21 #include <linux/scatterlist.h> 22 23 #include <scsi/scsi.h> 24 #include <scsi/scsi_cmnd.h> 25 #include <scsi/scsi_dbg.h> 26 #include <scsi/scsi_device.h> 27 #include <scsi/scsi_driver.h> 28 #include <scsi/scsi_eh.h> 29 #include <scsi/scsi_host.h> 30 31 #include "scsi_priv.h" 32 #include "scsi_logging.h" 33 34 35 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools) 36 #define SG_MEMPOOL_SIZE 2 37 38 struct scsi_host_sg_pool { 39 size_t size; 40 char *name; 41 struct kmem_cache *slab; 42 mempool_t *pool; 43 }; 44 45 #define SP(x) { x, "sgpool-" __stringify(x) } 46 #if (SCSI_MAX_SG_SEGMENTS < 32) 47 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater) 48 #endif 49 static struct scsi_host_sg_pool scsi_sg_pools[] = { 50 SP(8), 51 SP(16), 52 #if (SCSI_MAX_SG_SEGMENTS > 32) 53 SP(32), 54 #if (SCSI_MAX_SG_SEGMENTS > 64) 55 SP(64), 56 #if (SCSI_MAX_SG_SEGMENTS > 128) 57 SP(128), 58 #if (SCSI_MAX_SG_SEGMENTS > 256) 59 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX) 60 #endif 61 #endif 62 #endif 63 #endif 64 SP(SCSI_MAX_SG_SEGMENTS) 65 }; 66 #undef SP 67 68 struct kmem_cache *scsi_sdb_cache; 69 70 static void scsi_run_queue(struct request_queue *q); 71 72 /* 73 * Function: scsi_unprep_request() 74 * 75 * Purpose: Remove all preparation done for a request, including its 76 * associated scsi_cmnd, so that it can be requeued. 77 * 78 * Arguments: req - request to unprepare 79 * 80 * Lock status: Assumed that no locks are held upon entry. 81 * 82 * Returns: Nothing. 83 */ 84 static void scsi_unprep_request(struct request *req) 85 { 86 struct scsi_cmnd *cmd = req->special; 87 88 req->cmd_flags &= ~REQ_DONTPREP; 89 req->special = NULL; 90 91 scsi_put_command(cmd); 92 } 93 94 /** 95 * __scsi_queue_insert - private queue insertion 96 * @cmd: The SCSI command being requeued 97 * @reason: The reason for the requeue 98 * @unbusy: Whether the queue should be unbusied 99 * 100 * This is a private queue insertion. The public interface 101 * scsi_queue_insert() always assumes the queue should be unbusied 102 * because it's always called before the completion. This function is 103 * for a requeue after completion, which should only occur in this 104 * file. 105 */ 106 static int __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy) 107 { 108 struct Scsi_Host *host = cmd->device->host; 109 struct scsi_device *device = cmd->device; 110 struct scsi_target *starget = scsi_target(device); 111 struct request_queue *q = device->request_queue; 112 unsigned long flags; 113 114 SCSI_LOG_MLQUEUE(1, 115 printk("Inserting command %p into mlqueue\n", cmd)); 116 117 /* 118 * Set the appropriate busy bit for the device/host. 119 * 120 * If the host/device isn't busy, assume that something actually 121 * completed, and that we should be able to queue a command now. 122 * 123 * Note that the prior mid-layer assumption that any host could 124 * always queue at least one command is now broken. The mid-layer 125 * will implement a user specifiable stall (see 126 * scsi_host.max_host_blocked and scsi_device.max_device_blocked) 127 * if a command is requeued with no other commands outstanding 128 * either for the device or for the host. 129 */ 130 switch (reason) { 131 case SCSI_MLQUEUE_HOST_BUSY: 132 host->host_blocked = host->max_host_blocked; 133 break; 134 case SCSI_MLQUEUE_DEVICE_BUSY: 135 device->device_blocked = device->max_device_blocked; 136 break; 137 case SCSI_MLQUEUE_TARGET_BUSY: 138 starget->target_blocked = starget->max_target_blocked; 139 break; 140 } 141 142 /* 143 * Decrement the counters, since these commands are no longer 144 * active on the host/device. 145 */ 146 if (unbusy) 147 scsi_device_unbusy(device); 148 149 /* 150 * Requeue this command. It will go before all other commands 151 * that are already in the queue. 152 * 153 * NOTE: there is magic here about the way the queue is plugged if 154 * we have no outstanding commands. 155 * 156 * Although we *don't* plug the queue, we call the request 157 * function. The SCSI request function detects the blocked condition 158 * and plugs the queue appropriately. 159 */ 160 spin_lock_irqsave(q->queue_lock, flags); 161 blk_requeue_request(q, cmd->request); 162 spin_unlock_irqrestore(q->queue_lock, flags); 163 164 scsi_run_queue(q); 165 166 return 0; 167 } 168 169 /* 170 * Function: scsi_queue_insert() 171 * 172 * Purpose: Insert a command in the midlevel queue. 173 * 174 * Arguments: cmd - command that we are adding to queue. 175 * reason - why we are inserting command to queue. 176 * 177 * Lock status: Assumed that lock is not held upon entry. 178 * 179 * Returns: Nothing. 180 * 181 * Notes: We do this for one of two cases. Either the host is busy 182 * and it cannot accept any more commands for the time being, 183 * or the device returned QUEUE_FULL and can accept no more 184 * commands. 185 * Notes: This could be called either from an interrupt context or a 186 * normal process context. 187 */ 188 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason) 189 { 190 return __scsi_queue_insert(cmd, reason, 1); 191 } 192 /** 193 * scsi_execute - insert request and wait for the result 194 * @sdev: scsi device 195 * @cmd: scsi command 196 * @data_direction: data direction 197 * @buffer: data buffer 198 * @bufflen: len of buffer 199 * @sense: optional sense buffer 200 * @timeout: request timeout in seconds 201 * @retries: number of times to retry request 202 * @flags: or into request flags; 203 * @resid: optional residual length 204 * 205 * returns the req->errors value which is the scsi_cmnd result 206 * field. 207 */ 208 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd, 209 int data_direction, void *buffer, unsigned bufflen, 210 unsigned char *sense, int timeout, int retries, int flags, 211 int *resid) 212 { 213 struct request *req; 214 int write = (data_direction == DMA_TO_DEVICE); 215 int ret = DRIVER_ERROR << 24; 216 217 req = blk_get_request(sdev->request_queue, write, __GFP_WAIT); 218 219 if (bufflen && blk_rq_map_kern(sdev->request_queue, req, 220 buffer, bufflen, __GFP_WAIT)) 221 goto out; 222 223 req->cmd_len = COMMAND_SIZE(cmd[0]); 224 memcpy(req->cmd, cmd, req->cmd_len); 225 req->sense = sense; 226 req->sense_len = 0; 227 req->retries = retries; 228 req->timeout = timeout; 229 req->cmd_type = REQ_TYPE_BLOCK_PC; 230 req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT; 231 232 /* 233 * head injection *required* here otherwise quiesce won't work 234 */ 235 blk_execute_rq(req->q, NULL, req, 1); 236 237 /* 238 * Some devices (USB mass-storage in particular) may transfer 239 * garbage data together with a residue indicating that the data 240 * is invalid. Prevent the garbage from being misinterpreted 241 * and prevent security leaks by zeroing out the excess data. 242 */ 243 if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen)) 244 memset(buffer + (bufflen - req->resid_len), 0, req->resid_len); 245 246 if (resid) 247 *resid = req->resid_len; 248 ret = req->errors; 249 out: 250 blk_put_request(req); 251 252 return ret; 253 } 254 EXPORT_SYMBOL(scsi_execute); 255 256 257 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd, 258 int data_direction, void *buffer, unsigned bufflen, 259 struct scsi_sense_hdr *sshdr, int timeout, int retries, 260 int *resid) 261 { 262 char *sense = NULL; 263 int result; 264 265 if (sshdr) { 266 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO); 267 if (!sense) 268 return DRIVER_ERROR << 24; 269 } 270 result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen, 271 sense, timeout, retries, 0, resid); 272 if (sshdr) 273 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr); 274 275 kfree(sense); 276 return result; 277 } 278 EXPORT_SYMBOL(scsi_execute_req); 279 280 /* 281 * Function: scsi_init_cmd_errh() 282 * 283 * Purpose: Initialize cmd fields related to error handling. 284 * 285 * Arguments: cmd - command that is ready to be queued. 286 * 287 * Notes: This function has the job of initializing a number of 288 * fields related to error handling. Typically this will 289 * be called once for each command, as required. 290 */ 291 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd) 292 { 293 cmd->serial_number = 0; 294 scsi_set_resid(cmd, 0); 295 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 296 if (cmd->cmd_len == 0) 297 cmd->cmd_len = scsi_command_size(cmd->cmnd); 298 } 299 300 void scsi_device_unbusy(struct scsi_device *sdev) 301 { 302 struct Scsi_Host *shost = sdev->host; 303 struct scsi_target *starget = scsi_target(sdev); 304 unsigned long flags; 305 306 spin_lock_irqsave(shost->host_lock, flags); 307 shost->host_busy--; 308 starget->target_busy--; 309 if (unlikely(scsi_host_in_recovery(shost) && 310 (shost->host_failed || shost->host_eh_scheduled))) 311 scsi_eh_wakeup(shost); 312 spin_unlock(shost->host_lock); 313 spin_lock(sdev->request_queue->queue_lock); 314 sdev->device_busy--; 315 spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags); 316 } 317 318 /* 319 * Called for single_lun devices on IO completion. Clear starget_sdev_user, 320 * and call blk_run_queue for all the scsi_devices on the target - 321 * including current_sdev first. 322 * 323 * Called with *no* scsi locks held. 324 */ 325 static void scsi_single_lun_run(struct scsi_device *current_sdev) 326 { 327 struct Scsi_Host *shost = current_sdev->host; 328 struct scsi_device *sdev, *tmp; 329 struct scsi_target *starget = scsi_target(current_sdev); 330 unsigned long flags; 331 332 spin_lock_irqsave(shost->host_lock, flags); 333 starget->starget_sdev_user = NULL; 334 spin_unlock_irqrestore(shost->host_lock, flags); 335 336 /* 337 * Call blk_run_queue for all LUNs on the target, starting with 338 * current_sdev. We race with others (to set starget_sdev_user), 339 * but in most cases, we will be first. Ideally, each LU on the 340 * target would get some limited time or requests on the target. 341 */ 342 blk_run_queue(current_sdev->request_queue); 343 344 spin_lock_irqsave(shost->host_lock, flags); 345 if (starget->starget_sdev_user) 346 goto out; 347 list_for_each_entry_safe(sdev, tmp, &starget->devices, 348 same_target_siblings) { 349 if (sdev == current_sdev) 350 continue; 351 if (scsi_device_get(sdev)) 352 continue; 353 354 spin_unlock_irqrestore(shost->host_lock, flags); 355 blk_run_queue(sdev->request_queue); 356 spin_lock_irqsave(shost->host_lock, flags); 357 358 scsi_device_put(sdev); 359 } 360 out: 361 spin_unlock_irqrestore(shost->host_lock, flags); 362 } 363 364 static inline int scsi_device_is_busy(struct scsi_device *sdev) 365 { 366 if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked) 367 return 1; 368 369 return 0; 370 } 371 372 static inline int scsi_target_is_busy(struct scsi_target *starget) 373 { 374 return ((starget->can_queue > 0 && 375 starget->target_busy >= starget->can_queue) || 376 starget->target_blocked); 377 } 378 379 static inline int scsi_host_is_busy(struct Scsi_Host *shost) 380 { 381 if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) || 382 shost->host_blocked || shost->host_self_blocked) 383 return 1; 384 385 return 0; 386 } 387 388 /* 389 * Function: scsi_run_queue() 390 * 391 * Purpose: Select a proper request queue to serve next 392 * 393 * Arguments: q - last request's queue 394 * 395 * Returns: Nothing 396 * 397 * Notes: The previous command was completely finished, start 398 * a new one if possible. 399 */ 400 static void scsi_run_queue(struct request_queue *q) 401 { 402 struct scsi_device *sdev = q->queuedata; 403 struct Scsi_Host *shost = sdev->host; 404 LIST_HEAD(starved_list); 405 unsigned long flags; 406 407 if (scsi_target(sdev)->single_lun) 408 scsi_single_lun_run(sdev); 409 410 spin_lock_irqsave(shost->host_lock, flags); 411 list_splice_init(&shost->starved_list, &starved_list); 412 413 while (!list_empty(&starved_list)) { 414 int flagset; 415 416 /* 417 * As long as shost is accepting commands and we have 418 * starved queues, call blk_run_queue. scsi_request_fn 419 * drops the queue_lock and can add us back to the 420 * starved_list. 421 * 422 * host_lock protects the starved_list and starved_entry. 423 * scsi_request_fn must get the host_lock before checking 424 * or modifying starved_list or starved_entry. 425 */ 426 if (scsi_host_is_busy(shost)) 427 break; 428 429 sdev = list_entry(starved_list.next, 430 struct scsi_device, starved_entry); 431 list_del_init(&sdev->starved_entry); 432 if (scsi_target_is_busy(scsi_target(sdev))) { 433 list_move_tail(&sdev->starved_entry, 434 &shost->starved_list); 435 continue; 436 } 437 438 spin_unlock(shost->host_lock); 439 440 spin_lock(sdev->request_queue->queue_lock); 441 flagset = test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) && 442 !test_bit(QUEUE_FLAG_REENTER, 443 &sdev->request_queue->queue_flags); 444 if (flagset) 445 queue_flag_set(QUEUE_FLAG_REENTER, sdev->request_queue); 446 __blk_run_queue(sdev->request_queue); 447 if (flagset) 448 queue_flag_clear(QUEUE_FLAG_REENTER, sdev->request_queue); 449 spin_unlock(sdev->request_queue->queue_lock); 450 451 spin_lock(shost->host_lock); 452 } 453 /* put any unprocessed entries back */ 454 list_splice(&starved_list, &shost->starved_list); 455 spin_unlock_irqrestore(shost->host_lock, flags); 456 457 blk_run_queue(q); 458 } 459 460 /* 461 * Function: scsi_requeue_command() 462 * 463 * Purpose: Handle post-processing of completed commands. 464 * 465 * Arguments: q - queue to operate on 466 * cmd - command that may need to be requeued. 467 * 468 * Returns: Nothing 469 * 470 * Notes: After command completion, there may be blocks left 471 * over which weren't finished by the previous command 472 * this can be for a number of reasons - the main one is 473 * I/O errors in the middle of the request, in which case 474 * we need to request the blocks that come after the bad 475 * sector. 476 * Notes: Upon return, cmd is a stale pointer. 477 */ 478 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd) 479 { 480 struct request *req = cmd->request; 481 unsigned long flags; 482 483 spin_lock_irqsave(q->queue_lock, flags); 484 scsi_unprep_request(req); 485 blk_requeue_request(q, req); 486 spin_unlock_irqrestore(q->queue_lock, flags); 487 488 scsi_run_queue(q); 489 } 490 491 void scsi_next_command(struct scsi_cmnd *cmd) 492 { 493 struct scsi_device *sdev = cmd->device; 494 struct request_queue *q = sdev->request_queue; 495 496 /* need to hold a reference on the device before we let go of the cmd */ 497 get_device(&sdev->sdev_gendev); 498 499 scsi_put_command(cmd); 500 scsi_run_queue(q); 501 502 /* ok to remove device now */ 503 put_device(&sdev->sdev_gendev); 504 } 505 506 void scsi_run_host_queues(struct Scsi_Host *shost) 507 { 508 struct scsi_device *sdev; 509 510 shost_for_each_device(sdev, shost) 511 scsi_run_queue(sdev->request_queue); 512 } 513 514 static void __scsi_release_buffers(struct scsi_cmnd *, int); 515 516 /* 517 * Function: scsi_end_request() 518 * 519 * Purpose: Post-processing of completed commands (usually invoked at end 520 * of upper level post-processing and scsi_io_completion). 521 * 522 * Arguments: cmd - command that is complete. 523 * error - 0 if I/O indicates success, < 0 for I/O error. 524 * bytes - number of bytes of completed I/O 525 * requeue - indicates whether we should requeue leftovers. 526 * 527 * Lock status: Assumed that lock is not held upon entry. 528 * 529 * Returns: cmd if requeue required, NULL otherwise. 530 * 531 * Notes: This is called for block device requests in order to 532 * mark some number of sectors as complete. 533 * 534 * We are guaranteeing that the request queue will be goosed 535 * at some point during this call. 536 * Notes: If cmd was requeued, upon return it will be a stale pointer. 537 */ 538 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error, 539 int bytes, int requeue) 540 { 541 struct request_queue *q = cmd->device->request_queue; 542 struct request *req = cmd->request; 543 544 /* 545 * If there are blocks left over at the end, set up the command 546 * to queue the remainder of them. 547 */ 548 if (blk_end_request(req, error, bytes)) { 549 /* kill remainder if no retrys */ 550 if (error && scsi_noretry_cmd(cmd)) 551 blk_end_request_all(req, error); 552 else { 553 if (requeue) { 554 /* 555 * Bleah. Leftovers again. Stick the 556 * leftovers in the front of the 557 * queue, and goose the queue again. 558 */ 559 scsi_release_buffers(cmd); 560 scsi_requeue_command(q, cmd); 561 cmd = NULL; 562 } 563 return cmd; 564 } 565 } 566 567 /* 568 * This will goose the queue request function at the end, so we don't 569 * need to worry about launching another command. 570 */ 571 __scsi_release_buffers(cmd, 0); 572 scsi_next_command(cmd); 573 return NULL; 574 } 575 576 static inline unsigned int scsi_sgtable_index(unsigned short nents) 577 { 578 unsigned int index; 579 580 BUG_ON(nents > SCSI_MAX_SG_SEGMENTS); 581 582 if (nents <= 8) 583 index = 0; 584 else 585 index = get_count_order(nents) - 3; 586 587 return index; 588 } 589 590 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents) 591 { 592 struct scsi_host_sg_pool *sgp; 593 594 sgp = scsi_sg_pools + scsi_sgtable_index(nents); 595 mempool_free(sgl, sgp->pool); 596 } 597 598 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask) 599 { 600 struct scsi_host_sg_pool *sgp; 601 602 sgp = scsi_sg_pools + scsi_sgtable_index(nents); 603 return mempool_alloc(sgp->pool, gfp_mask); 604 } 605 606 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents, 607 gfp_t gfp_mask) 608 { 609 int ret; 610 611 BUG_ON(!nents); 612 613 ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS, 614 gfp_mask, scsi_sg_alloc); 615 if (unlikely(ret)) 616 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, 617 scsi_sg_free); 618 619 return ret; 620 } 621 622 static void scsi_free_sgtable(struct scsi_data_buffer *sdb) 623 { 624 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free); 625 } 626 627 static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check) 628 { 629 630 if (cmd->sdb.table.nents) 631 scsi_free_sgtable(&cmd->sdb); 632 633 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 634 635 if (do_bidi_check && scsi_bidi_cmnd(cmd)) { 636 struct scsi_data_buffer *bidi_sdb = 637 cmd->request->next_rq->special; 638 scsi_free_sgtable(bidi_sdb); 639 kmem_cache_free(scsi_sdb_cache, bidi_sdb); 640 cmd->request->next_rq->special = NULL; 641 } 642 643 if (scsi_prot_sg_count(cmd)) 644 scsi_free_sgtable(cmd->prot_sdb); 645 } 646 647 /* 648 * Function: scsi_release_buffers() 649 * 650 * Purpose: Completion processing for block device I/O requests. 651 * 652 * Arguments: cmd - command that we are bailing. 653 * 654 * Lock status: Assumed that no lock is held upon entry. 655 * 656 * Returns: Nothing 657 * 658 * Notes: In the event that an upper level driver rejects a 659 * command, we must release resources allocated during 660 * the __init_io() function. Primarily this would involve 661 * the scatter-gather table, and potentially any bounce 662 * buffers. 663 */ 664 void scsi_release_buffers(struct scsi_cmnd *cmd) 665 { 666 __scsi_release_buffers(cmd, 1); 667 } 668 EXPORT_SYMBOL(scsi_release_buffers); 669 670 /* 671 * Function: scsi_io_completion() 672 * 673 * Purpose: Completion processing for block device I/O requests. 674 * 675 * Arguments: cmd - command that is finished. 676 * 677 * Lock status: Assumed that no lock is held upon entry. 678 * 679 * Returns: Nothing 680 * 681 * Notes: This function is matched in terms of capabilities to 682 * the function that created the scatter-gather list. 683 * In other words, if there are no bounce buffers 684 * (the normal case for most drivers), we don't need 685 * the logic to deal with cleaning up afterwards. 686 * 687 * We must call scsi_end_request(). This will finish off 688 * the specified number of sectors. If we are done, the 689 * command block will be released and the queue function 690 * will be goosed. If we are not done then we have to 691 * figure out what to do next: 692 * 693 * a) We can call scsi_requeue_command(). The request 694 * will be unprepared and put back on the queue. Then 695 * a new command will be created for it. This should 696 * be used if we made forward progress, or if we want 697 * to switch from READ(10) to READ(6) for example. 698 * 699 * b) We can call scsi_queue_insert(). The request will 700 * be put back on the queue and retried using the same 701 * command as before, possibly after a delay. 702 * 703 * c) We can call blk_end_request() with -EIO to fail 704 * the remainder of the request. 705 */ 706 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes) 707 { 708 int result = cmd->result; 709 struct request_queue *q = cmd->device->request_queue; 710 struct request *req = cmd->request; 711 int error = 0; 712 struct scsi_sense_hdr sshdr; 713 int sense_valid = 0; 714 int sense_deferred = 0; 715 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY, 716 ACTION_DELAYED_RETRY} action; 717 char *description = NULL; 718 719 if (result) { 720 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 721 if (sense_valid) 722 sense_deferred = scsi_sense_is_deferred(&sshdr); 723 } 724 725 if (blk_pc_request(req)) { /* SG_IO ioctl from block level */ 726 req->errors = result; 727 if (result) { 728 if (sense_valid && req->sense) { 729 /* 730 * SG_IO wants current and deferred errors 731 */ 732 int len = 8 + cmd->sense_buffer[7]; 733 734 if (len > SCSI_SENSE_BUFFERSIZE) 735 len = SCSI_SENSE_BUFFERSIZE; 736 memcpy(req->sense, cmd->sense_buffer, len); 737 req->sense_len = len; 738 } 739 if (!sense_deferred) 740 error = -EIO; 741 } 742 743 req->resid_len = scsi_get_resid(cmd); 744 745 if (scsi_bidi_cmnd(cmd)) { 746 /* 747 * Bidi commands Must be complete as a whole, 748 * both sides at once. 749 */ 750 req->next_rq->resid_len = scsi_in(cmd)->resid; 751 752 blk_end_request_all(req, 0); 753 754 scsi_release_buffers(cmd); 755 scsi_next_command(cmd); 756 return; 757 } 758 } 759 760 BUG_ON(blk_bidi_rq(req)); /* bidi not support for !blk_pc_request yet */ 761 762 /* 763 * Next deal with any sectors which we were able to correctly 764 * handle. 765 */ 766 SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, " 767 "%d bytes done.\n", 768 blk_rq_sectors(req), good_bytes)); 769 770 /* 771 * Recovered errors need reporting, but they're always treated 772 * as success, so fiddle the result code here. For BLOCK_PC 773 * we already took a copy of the original into rq->errors which 774 * is what gets returned to the user 775 */ 776 if (sense_valid && sshdr.sense_key == RECOVERED_ERROR) { 777 if (!(req->cmd_flags & REQ_QUIET)) 778 scsi_print_sense("", cmd); 779 result = 0; 780 /* BLOCK_PC may have set error */ 781 error = 0; 782 } 783 784 /* 785 * A number of bytes were successfully read. If there 786 * are leftovers and there is some kind of error 787 * (result != 0), retry the rest. 788 */ 789 if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL) 790 return; 791 792 error = -EIO; 793 794 if (host_byte(result) == DID_RESET) { 795 /* Third party bus reset or reset for error recovery 796 * reasons. Just retry the command and see what 797 * happens. 798 */ 799 action = ACTION_RETRY; 800 } else if (sense_valid && !sense_deferred) { 801 switch (sshdr.sense_key) { 802 case UNIT_ATTENTION: 803 if (cmd->device->removable) { 804 /* Detected disc change. Set a bit 805 * and quietly refuse further access. 806 */ 807 cmd->device->changed = 1; 808 description = "Media Changed"; 809 action = ACTION_FAIL; 810 } else { 811 /* Must have been a power glitch, or a 812 * bus reset. Could not have been a 813 * media change, so we just retry the 814 * command and see what happens. 815 */ 816 action = ACTION_RETRY; 817 } 818 break; 819 case ILLEGAL_REQUEST: 820 /* If we had an ILLEGAL REQUEST returned, then 821 * we may have performed an unsupported 822 * command. The only thing this should be 823 * would be a ten byte read where only a six 824 * byte read was supported. Also, on a system 825 * where READ CAPACITY failed, we may have 826 * read past the end of the disk. 827 */ 828 if ((cmd->device->use_10_for_rw && 829 sshdr.asc == 0x20 && sshdr.ascq == 0x00) && 830 (cmd->cmnd[0] == READ_10 || 831 cmd->cmnd[0] == WRITE_10)) { 832 /* This will issue a new 6-byte command. */ 833 cmd->device->use_10_for_rw = 0; 834 action = ACTION_REPREP; 835 } else if (sshdr.asc == 0x10) /* DIX */ { 836 description = "Host Data Integrity Failure"; 837 action = ACTION_FAIL; 838 error = -EILSEQ; 839 } else 840 action = ACTION_FAIL; 841 break; 842 case ABORTED_COMMAND: 843 action = ACTION_FAIL; 844 if (sshdr.asc == 0x10) { /* DIF */ 845 description = "Target Data Integrity Failure"; 846 error = -EILSEQ; 847 } 848 break; 849 case NOT_READY: 850 /* If the device is in the process of becoming 851 * ready, or has a temporary blockage, retry. 852 */ 853 if (sshdr.asc == 0x04) { 854 switch (sshdr.ascq) { 855 case 0x01: /* becoming ready */ 856 case 0x04: /* format in progress */ 857 case 0x05: /* rebuild in progress */ 858 case 0x06: /* recalculation in progress */ 859 case 0x07: /* operation in progress */ 860 case 0x08: /* Long write in progress */ 861 case 0x09: /* self test in progress */ 862 action = ACTION_DELAYED_RETRY; 863 break; 864 default: 865 description = "Device not ready"; 866 action = ACTION_FAIL; 867 break; 868 } 869 } else { 870 description = "Device not ready"; 871 action = ACTION_FAIL; 872 } 873 break; 874 case VOLUME_OVERFLOW: 875 /* See SSC3rXX or current. */ 876 action = ACTION_FAIL; 877 break; 878 default: 879 description = "Unhandled sense code"; 880 action = ACTION_FAIL; 881 break; 882 } 883 } else { 884 description = "Unhandled error code"; 885 action = ACTION_FAIL; 886 } 887 888 switch (action) { 889 case ACTION_FAIL: 890 /* Give up and fail the remainder of the request */ 891 scsi_release_buffers(cmd); 892 if (!(req->cmd_flags & REQ_QUIET)) { 893 if (description) 894 scmd_printk(KERN_INFO, cmd, "%s\n", 895 description); 896 scsi_print_result(cmd); 897 if (driver_byte(result) & DRIVER_SENSE) 898 scsi_print_sense("", cmd); 899 } 900 blk_end_request_all(req, -EIO); 901 scsi_next_command(cmd); 902 break; 903 case ACTION_REPREP: 904 /* Unprep the request and put it back at the head of the queue. 905 * A new command will be prepared and issued. 906 */ 907 scsi_release_buffers(cmd); 908 scsi_requeue_command(q, cmd); 909 break; 910 case ACTION_RETRY: 911 /* Retry the same command immediately */ 912 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0); 913 break; 914 case ACTION_DELAYED_RETRY: 915 /* Retry the same command after a delay */ 916 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0); 917 break; 918 } 919 } 920 921 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb, 922 gfp_t gfp_mask) 923 { 924 int count; 925 926 /* 927 * If sg table allocation fails, requeue request later. 928 */ 929 if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments, 930 gfp_mask))) { 931 return BLKPREP_DEFER; 932 } 933 934 req->buffer = NULL; 935 936 /* 937 * Next, walk the list, and fill in the addresses and sizes of 938 * each segment. 939 */ 940 count = blk_rq_map_sg(req->q, req, sdb->table.sgl); 941 BUG_ON(count > sdb->table.nents); 942 sdb->table.nents = count; 943 sdb->length = blk_rq_bytes(req); 944 return BLKPREP_OK; 945 } 946 947 /* 948 * Function: scsi_init_io() 949 * 950 * Purpose: SCSI I/O initialize function. 951 * 952 * Arguments: cmd - Command descriptor we wish to initialize 953 * 954 * Returns: 0 on success 955 * BLKPREP_DEFER if the failure is retryable 956 * BLKPREP_KILL if the failure is fatal 957 */ 958 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask) 959 { 960 int error = scsi_init_sgtable(cmd->request, &cmd->sdb, gfp_mask); 961 if (error) 962 goto err_exit; 963 964 if (blk_bidi_rq(cmd->request)) { 965 struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc( 966 scsi_sdb_cache, GFP_ATOMIC); 967 if (!bidi_sdb) { 968 error = BLKPREP_DEFER; 969 goto err_exit; 970 } 971 972 cmd->request->next_rq->special = bidi_sdb; 973 error = scsi_init_sgtable(cmd->request->next_rq, bidi_sdb, 974 GFP_ATOMIC); 975 if (error) 976 goto err_exit; 977 } 978 979 if (blk_integrity_rq(cmd->request)) { 980 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb; 981 int ivecs, count; 982 983 BUG_ON(prot_sdb == NULL); 984 ivecs = blk_rq_count_integrity_sg(cmd->request); 985 986 if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) { 987 error = BLKPREP_DEFER; 988 goto err_exit; 989 } 990 991 count = blk_rq_map_integrity_sg(cmd->request, 992 prot_sdb->table.sgl); 993 BUG_ON(unlikely(count > ivecs)); 994 995 cmd->prot_sdb = prot_sdb; 996 cmd->prot_sdb->table.nents = count; 997 } 998 999 return BLKPREP_OK ; 1000 1001 err_exit: 1002 scsi_release_buffers(cmd); 1003 if (error == BLKPREP_KILL) 1004 scsi_put_command(cmd); 1005 else /* BLKPREP_DEFER */ 1006 scsi_unprep_request(cmd->request); 1007 1008 return error; 1009 } 1010 EXPORT_SYMBOL(scsi_init_io); 1011 1012 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev, 1013 struct request *req) 1014 { 1015 struct scsi_cmnd *cmd; 1016 1017 if (!req->special) { 1018 cmd = scsi_get_command(sdev, GFP_ATOMIC); 1019 if (unlikely(!cmd)) 1020 return NULL; 1021 req->special = cmd; 1022 } else { 1023 cmd = req->special; 1024 } 1025 1026 /* pull a tag out of the request if we have one */ 1027 cmd->tag = req->tag; 1028 cmd->request = req; 1029 1030 cmd->cmnd = req->cmd; 1031 1032 return cmd; 1033 } 1034 1035 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req) 1036 { 1037 struct scsi_cmnd *cmd; 1038 int ret = scsi_prep_state_check(sdev, req); 1039 1040 if (ret != BLKPREP_OK) 1041 return ret; 1042 1043 cmd = scsi_get_cmd_from_req(sdev, req); 1044 if (unlikely(!cmd)) 1045 return BLKPREP_DEFER; 1046 1047 /* 1048 * BLOCK_PC requests may transfer data, in which case they must 1049 * a bio attached to them. Or they might contain a SCSI command 1050 * that does not transfer data, in which case they may optionally 1051 * submit a request without an attached bio. 1052 */ 1053 if (req->bio) { 1054 int ret; 1055 1056 BUG_ON(!req->nr_phys_segments); 1057 1058 ret = scsi_init_io(cmd, GFP_ATOMIC); 1059 if (unlikely(ret)) 1060 return ret; 1061 } else { 1062 BUG_ON(blk_rq_bytes(req)); 1063 1064 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1065 req->buffer = NULL; 1066 } 1067 1068 cmd->cmd_len = req->cmd_len; 1069 if (!blk_rq_bytes(req)) 1070 cmd->sc_data_direction = DMA_NONE; 1071 else if (rq_data_dir(req) == WRITE) 1072 cmd->sc_data_direction = DMA_TO_DEVICE; 1073 else 1074 cmd->sc_data_direction = DMA_FROM_DEVICE; 1075 1076 cmd->transfersize = blk_rq_bytes(req); 1077 cmd->allowed = req->retries; 1078 return BLKPREP_OK; 1079 } 1080 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd); 1081 1082 /* 1083 * Setup a REQ_TYPE_FS command. These are simple read/write request 1084 * from filesystems that still need to be translated to SCSI CDBs from 1085 * the ULD. 1086 */ 1087 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req) 1088 { 1089 struct scsi_cmnd *cmd; 1090 int ret = scsi_prep_state_check(sdev, req); 1091 1092 if (ret != BLKPREP_OK) 1093 return ret; 1094 1095 if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh 1096 && sdev->scsi_dh_data->scsi_dh->prep_fn)) { 1097 ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req); 1098 if (ret != BLKPREP_OK) 1099 return ret; 1100 } 1101 1102 /* 1103 * Filesystem requests must transfer data. 1104 */ 1105 BUG_ON(!req->nr_phys_segments); 1106 1107 cmd = scsi_get_cmd_from_req(sdev, req); 1108 if (unlikely(!cmd)) 1109 return BLKPREP_DEFER; 1110 1111 memset(cmd->cmnd, 0, BLK_MAX_CDB); 1112 return scsi_init_io(cmd, GFP_ATOMIC); 1113 } 1114 EXPORT_SYMBOL(scsi_setup_fs_cmnd); 1115 1116 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req) 1117 { 1118 int ret = BLKPREP_OK; 1119 1120 /* 1121 * If the device is not in running state we will reject some 1122 * or all commands. 1123 */ 1124 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) { 1125 switch (sdev->sdev_state) { 1126 case SDEV_OFFLINE: 1127 /* 1128 * If the device is offline we refuse to process any 1129 * commands. The device must be brought online 1130 * before trying any recovery commands. 1131 */ 1132 sdev_printk(KERN_ERR, sdev, 1133 "rejecting I/O to offline device\n"); 1134 ret = BLKPREP_KILL; 1135 break; 1136 case SDEV_DEL: 1137 /* 1138 * If the device is fully deleted, we refuse to 1139 * process any commands as well. 1140 */ 1141 sdev_printk(KERN_ERR, sdev, 1142 "rejecting I/O to dead device\n"); 1143 ret = BLKPREP_KILL; 1144 break; 1145 case SDEV_QUIESCE: 1146 case SDEV_BLOCK: 1147 case SDEV_CREATED_BLOCK: 1148 /* 1149 * If the devices is blocked we defer normal commands. 1150 */ 1151 if (!(req->cmd_flags & REQ_PREEMPT)) 1152 ret = BLKPREP_DEFER; 1153 break; 1154 default: 1155 /* 1156 * For any other not fully online state we only allow 1157 * special commands. In particular any user initiated 1158 * command is not allowed. 1159 */ 1160 if (!(req->cmd_flags & REQ_PREEMPT)) 1161 ret = BLKPREP_KILL; 1162 break; 1163 } 1164 } 1165 return ret; 1166 } 1167 EXPORT_SYMBOL(scsi_prep_state_check); 1168 1169 int scsi_prep_return(struct request_queue *q, struct request *req, int ret) 1170 { 1171 struct scsi_device *sdev = q->queuedata; 1172 1173 switch (ret) { 1174 case BLKPREP_KILL: 1175 req->errors = DID_NO_CONNECT << 16; 1176 /* release the command and kill it */ 1177 if (req->special) { 1178 struct scsi_cmnd *cmd = req->special; 1179 scsi_release_buffers(cmd); 1180 scsi_put_command(cmd); 1181 req->special = NULL; 1182 } 1183 break; 1184 case BLKPREP_DEFER: 1185 /* 1186 * If we defer, the blk_peek_request() returns NULL, but the 1187 * queue must be restarted, so we plug here if no returning 1188 * command will automatically do that. 1189 */ 1190 if (sdev->device_busy == 0) 1191 blk_plug_device(q); 1192 break; 1193 default: 1194 req->cmd_flags |= REQ_DONTPREP; 1195 } 1196 1197 return ret; 1198 } 1199 EXPORT_SYMBOL(scsi_prep_return); 1200 1201 int scsi_prep_fn(struct request_queue *q, struct request *req) 1202 { 1203 struct scsi_device *sdev = q->queuedata; 1204 int ret = BLKPREP_KILL; 1205 1206 if (req->cmd_type == REQ_TYPE_BLOCK_PC) 1207 ret = scsi_setup_blk_pc_cmnd(sdev, req); 1208 return scsi_prep_return(q, req, ret); 1209 } 1210 1211 /* 1212 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else 1213 * return 0. 1214 * 1215 * Called with the queue_lock held. 1216 */ 1217 static inline int scsi_dev_queue_ready(struct request_queue *q, 1218 struct scsi_device *sdev) 1219 { 1220 if (sdev->device_busy == 0 && sdev->device_blocked) { 1221 /* 1222 * unblock after device_blocked iterates to zero 1223 */ 1224 if (--sdev->device_blocked == 0) { 1225 SCSI_LOG_MLQUEUE(3, 1226 sdev_printk(KERN_INFO, sdev, 1227 "unblocking device at zero depth\n")); 1228 } else { 1229 blk_plug_device(q); 1230 return 0; 1231 } 1232 } 1233 if (scsi_device_is_busy(sdev)) 1234 return 0; 1235 1236 return 1; 1237 } 1238 1239 1240 /* 1241 * scsi_target_queue_ready: checks if there we can send commands to target 1242 * @sdev: scsi device on starget to check. 1243 * 1244 * Called with the host lock held. 1245 */ 1246 static inline int scsi_target_queue_ready(struct Scsi_Host *shost, 1247 struct scsi_device *sdev) 1248 { 1249 struct scsi_target *starget = scsi_target(sdev); 1250 1251 if (starget->single_lun) { 1252 if (starget->starget_sdev_user && 1253 starget->starget_sdev_user != sdev) 1254 return 0; 1255 starget->starget_sdev_user = sdev; 1256 } 1257 1258 if (starget->target_busy == 0 && starget->target_blocked) { 1259 /* 1260 * unblock after target_blocked iterates to zero 1261 */ 1262 if (--starget->target_blocked == 0) { 1263 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget, 1264 "unblocking target at zero depth\n")); 1265 } else 1266 return 0; 1267 } 1268 1269 if (scsi_target_is_busy(starget)) { 1270 if (list_empty(&sdev->starved_entry)) { 1271 list_add_tail(&sdev->starved_entry, 1272 &shost->starved_list); 1273 return 0; 1274 } 1275 } 1276 1277 /* We're OK to process the command, so we can't be starved */ 1278 if (!list_empty(&sdev->starved_entry)) 1279 list_del_init(&sdev->starved_entry); 1280 return 1; 1281 } 1282 1283 /* 1284 * scsi_host_queue_ready: if we can send requests to shost, return 1 else 1285 * return 0. We must end up running the queue again whenever 0 is 1286 * returned, else IO can hang. 1287 * 1288 * Called with host_lock held. 1289 */ 1290 static inline int scsi_host_queue_ready(struct request_queue *q, 1291 struct Scsi_Host *shost, 1292 struct scsi_device *sdev) 1293 { 1294 if (scsi_host_in_recovery(shost)) 1295 return 0; 1296 if (shost->host_busy == 0 && shost->host_blocked) { 1297 /* 1298 * unblock after host_blocked iterates to zero 1299 */ 1300 if (--shost->host_blocked == 0) { 1301 SCSI_LOG_MLQUEUE(3, 1302 printk("scsi%d unblocking host at zero depth\n", 1303 shost->host_no)); 1304 } else { 1305 return 0; 1306 } 1307 } 1308 if (scsi_host_is_busy(shost)) { 1309 if (list_empty(&sdev->starved_entry)) 1310 list_add_tail(&sdev->starved_entry, &shost->starved_list); 1311 return 0; 1312 } 1313 1314 /* We're OK to process the command, so we can't be starved */ 1315 if (!list_empty(&sdev->starved_entry)) 1316 list_del_init(&sdev->starved_entry); 1317 1318 return 1; 1319 } 1320 1321 /* 1322 * Busy state exporting function for request stacking drivers. 1323 * 1324 * For efficiency, no lock is taken to check the busy state of 1325 * shost/starget/sdev, since the returned value is not guaranteed and 1326 * may be changed after request stacking drivers call the function, 1327 * regardless of taking lock or not. 1328 * 1329 * When scsi can't dispatch I/Os anymore and needs to kill I/Os 1330 * (e.g. !sdev), scsi needs to return 'not busy'. 1331 * Otherwise, request stacking drivers may hold requests forever. 1332 */ 1333 static int scsi_lld_busy(struct request_queue *q) 1334 { 1335 struct scsi_device *sdev = q->queuedata; 1336 struct Scsi_Host *shost; 1337 struct scsi_target *starget; 1338 1339 if (!sdev) 1340 return 0; 1341 1342 shost = sdev->host; 1343 starget = scsi_target(sdev); 1344 1345 if (scsi_host_in_recovery(shost) || scsi_host_is_busy(shost) || 1346 scsi_target_is_busy(starget) || scsi_device_is_busy(sdev)) 1347 return 1; 1348 1349 return 0; 1350 } 1351 1352 /* 1353 * Kill a request for a dead device 1354 */ 1355 static void scsi_kill_request(struct request *req, struct request_queue *q) 1356 { 1357 struct scsi_cmnd *cmd = req->special; 1358 struct scsi_device *sdev = cmd->device; 1359 struct scsi_target *starget = scsi_target(sdev); 1360 struct Scsi_Host *shost = sdev->host; 1361 1362 blk_start_request(req); 1363 1364 if (unlikely(cmd == NULL)) { 1365 printk(KERN_CRIT "impossible request in %s.\n", 1366 __func__); 1367 BUG(); 1368 } 1369 1370 scsi_init_cmd_errh(cmd); 1371 cmd->result = DID_NO_CONNECT << 16; 1372 atomic_inc(&cmd->device->iorequest_cnt); 1373 1374 /* 1375 * SCSI request completion path will do scsi_device_unbusy(), 1376 * bump busy counts. To bump the counters, we need to dance 1377 * with the locks as normal issue path does. 1378 */ 1379 sdev->device_busy++; 1380 spin_unlock(sdev->request_queue->queue_lock); 1381 spin_lock(shost->host_lock); 1382 shost->host_busy++; 1383 starget->target_busy++; 1384 spin_unlock(shost->host_lock); 1385 spin_lock(sdev->request_queue->queue_lock); 1386 1387 blk_complete_request(req); 1388 } 1389 1390 static void scsi_softirq_done(struct request *rq) 1391 { 1392 struct scsi_cmnd *cmd = rq->special; 1393 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout; 1394 int disposition; 1395 1396 INIT_LIST_HEAD(&cmd->eh_entry); 1397 1398 /* 1399 * Set the serial numbers back to zero 1400 */ 1401 cmd->serial_number = 0; 1402 1403 atomic_inc(&cmd->device->iodone_cnt); 1404 if (cmd->result) 1405 atomic_inc(&cmd->device->ioerr_cnt); 1406 1407 disposition = scsi_decide_disposition(cmd); 1408 if (disposition != SUCCESS && 1409 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) { 1410 sdev_printk(KERN_ERR, cmd->device, 1411 "timing out command, waited %lus\n", 1412 wait_for/HZ); 1413 disposition = SUCCESS; 1414 } 1415 1416 scsi_log_completion(cmd, disposition); 1417 1418 switch (disposition) { 1419 case SUCCESS: 1420 scsi_finish_command(cmd); 1421 break; 1422 case NEEDS_RETRY: 1423 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY); 1424 break; 1425 case ADD_TO_MLQUEUE: 1426 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY); 1427 break; 1428 default: 1429 if (!scsi_eh_scmd_add(cmd, 0)) 1430 scsi_finish_command(cmd); 1431 } 1432 } 1433 1434 /* 1435 * Function: scsi_request_fn() 1436 * 1437 * Purpose: Main strategy routine for SCSI. 1438 * 1439 * Arguments: q - Pointer to actual queue. 1440 * 1441 * Returns: Nothing 1442 * 1443 * Lock status: IO request lock assumed to be held when called. 1444 */ 1445 static void scsi_request_fn(struct request_queue *q) 1446 { 1447 struct scsi_device *sdev = q->queuedata; 1448 struct Scsi_Host *shost; 1449 struct scsi_cmnd *cmd; 1450 struct request *req; 1451 1452 if (!sdev) { 1453 printk("scsi: killing requests for dead queue\n"); 1454 while ((req = blk_peek_request(q)) != NULL) 1455 scsi_kill_request(req, q); 1456 return; 1457 } 1458 1459 if(!get_device(&sdev->sdev_gendev)) 1460 /* We must be tearing the block queue down already */ 1461 return; 1462 1463 /* 1464 * To start with, we keep looping until the queue is empty, or until 1465 * the host is no longer able to accept any more requests. 1466 */ 1467 shost = sdev->host; 1468 while (!blk_queue_plugged(q)) { 1469 int rtn; 1470 /* 1471 * get next queueable request. We do this early to make sure 1472 * that the request is fully prepared even if we cannot 1473 * accept it. 1474 */ 1475 req = blk_peek_request(q); 1476 if (!req || !scsi_dev_queue_ready(q, sdev)) 1477 break; 1478 1479 if (unlikely(!scsi_device_online(sdev))) { 1480 sdev_printk(KERN_ERR, sdev, 1481 "rejecting I/O to offline device\n"); 1482 scsi_kill_request(req, q); 1483 continue; 1484 } 1485 1486 1487 /* 1488 * Remove the request from the request list. 1489 */ 1490 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req))) 1491 blk_start_request(req); 1492 sdev->device_busy++; 1493 1494 spin_unlock(q->queue_lock); 1495 cmd = req->special; 1496 if (unlikely(cmd == NULL)) { 1497 printk(KERN_CRIT "impossible request in %s.\n" 1498 "please mail a stack trace to " 1499 "linux-scsi@vger.kernel.org\n", 1500 __func__); 1501 blk_dump_rq_flags(req, "foo"); 1502 BUG(); 1503 } 1504 spin_lock(shost->host_lock); 1505 1506 /* 1507 * We hit this when the driver is using a host wide 1508 * tag map. For device level tag maps the queue_depth check 1509 * in the device ready fn would prevent us from trying 1510 * to allocate a tag. Since the map is a shared host resource 1511 * we add the dev to the starved list so it eventually gets 1512 * a run when a tag is freed. 1513 */ 1514 if (blk_queue_tagged(q) && !blk_rq_tagged(req)) { 1515 if (list_empty(&sdev->starved_entry)) 1516 list_add_tail(&sdev->starved_entry, 1517 &shost->starved_list); 1518 goto not_ready; 1519 } 1520 1521 if (!scsi_target_queue_ready(shost, sdev)) 1522 goto not_ready; 1523 1524 if (!scsi_host_queue_ready(q, shost, sdev)) 1525 goto not_ready; 1526 1527 scsi_target(sdev)->target_busy++; 1528 shost->host_busy++; 1529 1530 /* 1531 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will 1532 * take the lock again. 1533 */ 1534 spin_unlock_irq(shost->host_lock); 1535 1536 /* 1537 * Finally, initialize any error handling parameters, and set up 1538 * the timers for timeouts. 1539 */ 1540 scsi_init_cmd_errh(cmd); 1541 1542 /* 1543 * Dispatch the command to the low-level driver. 1544 */ 1545 rtn = scsi_dispatch_cmd(cmd); 1546 spin_lock_irq(q->queue_lock); 1547 if(rtn) { 1548 /* we're refusing the command; because of 1549 * the way locks get dropped, we need to 1550 * check here if plugging is required */ 1551 if(sdev->device_busy == 0) 1552 blk_plug_device(q); 1553 1554 break; 1555 } 1556 } 1557 1558 goto out; 1559 1560 not_ready: 1561 spin_unlock_irq(shost->host_lock); 1562 1563 /* 1564 * lock q, handle tag, requeue req, and decrement device_busy. We 1565 * must return with queue_lock held. 1566 * 1567 * Decrementing device_busy without checking it is OK, as all such 1568 * cases (host limits or settings) should run the queue at some 1569 * later time. 1570 */ 1571 spin_lock_irq(q->queue_lock); 1572 blk_requeue_request(q, req); 1573 sdev->device_busy--; 1574 if(sdev->device_busy == 0) 1575 blk_plug_device(q); 1576 out: 1577 /* must be careful here...if we trigger the ->remove() function 1578 * we cannot be holding the q lock */ 1579 spin_unlock_irq(q->queue_lock); 1580 put_device(&sdev->sdev_gendev); 1581 spin_lock_irq(q->queue_lock); 1582 } 1583 1584 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost) 1585 { 1586 struct device *host_dev; 1587 u64 bounce_limit = 0xffffffff; 1588 1589 if (shost->unchecked_isa_dma) 1590 return BLK_BOUNCE_ISA; 1591 /* 1592 * Platforms with virtual-DMA translation 1593 * hardware have no practical limit. 1594 */ 1595 if (!PCI_DMA_BUS_IS_PHYS) 1596 return BLK_BOUNCE_ANY; 1597 1598 host_dev = scsi_get_device(shost); 1599 if (host_dev && host_dev->dma_mask) 1600 bounce_limit = *host_dev->dma_mask; 1601 1602 return bounce_limit; 1603 } 1604 EXPORT_SYMBOL(scsi_calculate_bounce_limit); 1605 1606 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost, 1607 request_fn_proc *request_fn) 1608 { 1609 struct request_queue *q; 1610 struct device *dev = shost->shost_gendev.parent; 1611 1612 q = blk_init_queue(request_fn, NULL); 1613 if (!q) 1614 return NULL; 1615 1616 /* 1617 * this limit is imposed by hardware restrictions 1618 */ 1619 blk_queue_max_hw_segments(q, shost->sg_tablesize); 1620 blk_queue_max_phys_segments(q, SCSI_MAX_SG_CHAIN_SEGMENTS); 1621 1622 blk_queue_max_sectors(q, shost->max_sectors); 1623 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost)); 1624 blk_queue_segment_boundary(q, shost->dma_boundary); 1625 dma_set_seg_boundary(dev, shost->dma_boundary); 1626 1627 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev)); 1628 1629 /* New queue, no concurrency on queue_flags */ 1630 if (!shost->use_clustering) 1631 queue_flag_clear_unlocked(QUEUE_FLAG_CLUSTER, q); 1632 1633 /* 1634 * set a reasonable default alignment on word boundaries: the 1635 * host and device may alter it using 1636 * blk_queue_update_dma_alignment() later. 1637 */ 1638 blk_queue_dma_alignment(q, 0x03); 1639 1640 return q; 1641 } 1642 EXPORT_SYMBOL(__scsi_alloc_queue); 1643 1644 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev) 1645 { 1646 struct request_queue *q; 1647 1648 q = __scsi_alloc_queue(sdev->host, scsi_request_fn); 1649 if (!q) 1650 return NULL; 1651 1652 blk_queue_prep_rq(q, scsi_prep_fn); 1653 blk_queue_softirq_done(q, scsi_softirq_done); 1654 blk_queue_rq_timed_out(q, scsi_times_out); 1655 blk_queue_lld_busy(q, scsi_lld_busy); 1656 return q; 1657 } 1658 1659 void scsi_free_queue(struct request_queue *q) 1660 { 1661 blk_cleanup_queue(q); 1662 } 1663 1664 /* 1665 * Function: scsi_block_requests() 1666 * 1667 * Purpose: Utility function used by low-level drivers to prevent further 1668 * commands from being queued to the device. 1669 * 1670 * Arguments: shost - Host in question 1671 * 1672 * Returns: Nothing 1673 * 1674 * Lock status: No locks are assumed held. 1675 * 1676 * Notes: There is no timer nor any other means by which the requests 1677 * get unblocked other than the low-level driver calling 1678 * scsi_unblock_requests(). 1679 */ 1680 void scsi_block_requests(struct Scsi_Host *shost) 1681 { 1682 shost->host_self_blocked = 1; 1683 } 1684 EXPORT_SYMBOL(scsi_block_requests); 1685 1686 /* 1687 * Function: scsi_unblock_requests() 1688 * 1689 * Purpose: Utility function used by low-level drivers to allow further 1690 * commands from being queued to the device. 1691 * 1692 * Arguments: shost - Host in question 1693 * 1694 * Returns: Nothing 1695 * 1696 * Lock status: No locks are assumed held. 1697 * 1698 * Notes: There is no timer nor any other means by which the requests 1699 * get unblocked other than the low-level driver calling 1700 * scsi_unblock_requests(). 1701 * 1702 * This is done as an API function so that changes to the 1703 * internals of the scsi mid-layer won't require wholesale 1704 * changes to drivers that use this feature. 1705 */ 1706 void scsi_unblock_requests(struct Scsi_Host *shost) 1707 { 1708 shost->host_self_blocked = 0; 1709 scsi_run_host_queues(shost); 1710 } 1711 EXPORT_SYMBOL(scsi_unblock_requests); 1712 1713 int __init scsi_init_queue(void) 1714 { 1715 int i; 1716 1717 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer", 1718 sizeof(struct scsi_data_buffer), 1719 0, 0, NULL); 1720 if (!scsi_sdb_cache) { 1721 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n"); 1722 return -ENOMEM; 1723 } 1724 1725 for (i = 0; i < SG_MEMPOOL_NR; i++) { 1726 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i; 1727 int size = sgp->size * sizeof(struct scatterlist); 1728 1729 sgp->slab = kmem_cache_create(sgp->name, size, 0, 1730 SLAB_HWCACHE_ALIGN, NULL); 1731 if (!sgp->slab) { 1732 printk(KERN_ERR "SCSI: can't init sg slab %s\n", 1733 sgp->name); 1734 goto cleanup_sdb; 1735 } 1736 1737 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE, 1738 sgp->slab); 1739 if (!sgp->pool) { 1740 printk(KERN_ERR "SCSI: can't init sg mempool %s\n", 1741 sgp->name); 1742 goto cleanup_sdb; 1743 } 1744 } 1745 1746 return 0; 1747 1748 cleanup_sdb: 1749 for (i = 0; i < SG_MEMPOOL_NR; i++) { 1750 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i; 1751 if (sgp->pool) 1752 mempool_destroy(sgp->pool); 1753 if (sgp->slab) 1754 kmem_cache_destroy(sgp->slab); 1755 } 1756 kmem_cache_destroy(scsi_sdb_cache); 1757 1758 return -ENOMEM; 1759 } 1760 1761 void scsi_exit_queue(void) 1762 { 1763 int i; 1764 1765 kmem_cache_destroy(scsi_sdb_cache); 1766 1767 for (i = 0; i < SG_MEMPOOL_NR; i++) { 1768 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i; 1769 mempool_destroy(sgp->pool); 1770 kmem_cache_destroy(sgp->slab); 1771 } 1772 } 1773 1774 /** 1775 * scsi_mode_select - issue a mode select 1776 * @sdev: SCSI device to be queried 1777 * @pf: Page format bit (1 == standard, 0 == vendor specific) 1778 * @sp: Save page bit (0 == don't save, 1 == save) 1779 * @modepage: mode page being requested 1780 * @buffer: request buffer (may not be smaller than eight bytes) 1781 * @len: length of request buffer. 1782 * @timeout: command timeout 1783 * @retries: number of retries before failing 1784 * @data: returns a structure abstracting the mode header data 1785 * @sshdr: place to put sense data (or NULL if no sense to be collected). 1786 * must be SCSI_SENSE_BUFFERSIZE big. 1787 * 1788 * Returns zero if successful; negative error number or scsi 1789 * status on error 1790 * 1791 */ 1792 int 1793 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage, 1794 unsigned char *buffer, int len, int timeout, int retries, 1795 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 1796 { 1797 unsigned char cmd[10]; 1798 unsigned char *real_buffer; 1799 int ret; 1800 1801 memset(cmd, 0, sizeof(cmd)); 1802 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0); 1803 1804 if (sdev->use_10_for_ms) { 1805 if (len > 65535) 1806 return -EINVAL; 1807 real_buffer = kmalloc(8 + len, GFP_KERNEL); 1808 if (!real_buffer) 1809 return -ENOMEM; 1810 memcpy(real_buffer + 8, buffer, len); 1811 len += 8; 1812 real_buffer[0] = 0; 1813 real_buffer[1] = 0; 1814 real_buffer[2] = data->medium_type; 1815 real_buffer[3] = data->device_specific; 1816 real_buffer[4] = data->longlba ? 0x01 : 0; 1817 real_buffer[5] = 0; 1818 real_buffer[6] = data->block_descriptor_length >> 8; 1819 real_buffer[7] = data->block_descriptor_length; 1820 1821 cmd[0] = MODE_SELECT_10; 1822 cmd[7] = len >> 8; 1823 cmd[8] = len; 1824 } else { 1825 if (len > 255 || data->block_descriptor_length > 255 || 1826 data->longlba) 1827 return -EINVAL; 1828 1829 real_buffer = kmalloc(4 + len, GFP_KERNEL); 1830 if (!real_buffer) 1831 return -ENOMEM; 1832 memcpy(real_buffer + 4, buffer, len); 1833 len += 4; 1834 real_buffer[0] = 0; 1835 real_buffer[1] = data->medium_type; 1836 real_buffer[2] = data->device_specific; 1837 real_buffer[3] = data->block_descriptor_length; 1838 1839 1840 cmd[0] = MODE_SELECT; 1841 cmd[4] = len; 1842 } 1843 1844 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len, 1845 sshdr, timeout, retries, NULL); 1846 kfree(real_buffer); 1847 return ret; 1848 } 1849 EXPORT_SYMBOL_GPL(scsi_mode_select); 1850 1851 /** 1852 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary. 1853 * @sdev: SCSI device to be queried 1854 * @dbd: set if mode sense will allow block descriptors to be returned 1855 * @modepage: mode page being requested 1856 * @buffer: request buffer (may not be smaller than eight bytes) 1857 * @len: length of request buffer. 1858 * @timeout: command timeout 1859 * @retries: number of retries before failing 1860 * @data: returns a structure abstracting the mode header data 1861 * @sshdr: place to put sense data (or NULL if no sense to be collected). 1862 * must be SCSI_SENSE_BUFFERSIZE big. 1863 * 1864 * Returns zero if unsuccessful, or the header offset (either 4 1865 * or 8 depending on whether a six or ten byte command was 1866 * issued) if successful. 1867 */ 1868 int 1869 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, 1870 unsigned char *buffer, int len, int timeout, int retries, 1871 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 1872 { 1873 unsigned char cmd[12]; 1874 int use_10_for_ms; 1875 int header_length; 1876 int result; 1877 struct scsi_sense_hdr my_sshdr; 1878 1879 memset(data, 0, sizeof(*data)); 1880 memset(&cmd[0], 0, 12); 1881 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */ 1882 cmd[2] = modepage; 1883 1884 /* caller might not be interested in sense, but we need it */ 1885 if (!sshdr) 1886 sshdr = &my_sshdr; 1887 1888 retry: 1889 use_10_for_ms = sdev->use_10_for_ms; 1890 1891 if (use_10_for_ms) { 1892 if (len < 8) 1893 len = 8; 1894 1895 cmd[0] = MODE_SENSE_10; 1896 cmd[8] = len; 1897 header_length = 8; 1898 } else { 1899 if (len < 4) 1900 len = 4; 1901 1902 cmd[0] = MODE_SENSE; 1903 cmd[4] = len; 1904 header_length = 4; 1905 } 1906 1907 memset(buffer, 0, len); 1908 1909 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len, 1910 sshdr, timeout, retries, NULL); 1911 1912 /* This code looks awful: what it's doing is making sure an 1913 * ILLEGAL REQUEST sense return identifies the actual command 1914 * byte as the problem. MODE_SENSE commands can return 1915 * ILLEGAL REQUEST if the code page isn't supported */ 1916 1917 if (use_10_for_ms && !scsi_status_is_good(result) && 1918 (driver_byte(result) & DRIVER_SENSE)) { 1919 if (scsi_sense_valid(sshdr)) { 1920 if ((sshdr->sense_key == ILLEGAL_REQUEST) && 1921 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) { 1922 /* 1923 * Invalid command operation code 1924 */ 1925 sdev->use_10_for_ms = 0; 1926 goto retry; 1927 } 1928 } 1929 } 1930 1931 if(scsi_status_is_good(result)) { 1932 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b && 1933 (modepage == 6 || modepage == 8))) { 1934 /* Initio breakage? */ 1935 header_length = 0; 1936 data->length = 13; 1937 data->medium_type = 0; 1938 data->device_specific = 0; 1939 data->longlba = 0; 1940 data->block_descriptor_length = 0; 1941 } else if(use_10_for_ms) { 1942 data->length = buffer[0]*256 + buffer[1] + 2; 1943 data->medium_type = buffer[2]; 1944 data->device_specific = buffer[3]; 1945 data->longlba = buffer[4] & 0x01; 1946 data->block_descriptor_length = buffer[6]*256 1947 + buffer[7]; 1948 } else { 1949 data->length = buffer[0] + 1; 1950 data->medium_type = buffer[1]; 1951 data->device_specific = buffer[2]; 1952 data->block_descriptor_length = buffer[3]; 1953 } 1954 data->header_length = header_length; 1955 } 1956 1957 return result; 1958 } 1959 EXPORT_SYMBOL(scsi_mode_sense); 1960 1961 /** 1962 * scsi_test_unit_ready - test if unit is ready 1963 * @sdev: scsi device to change the state of. 1964 * @timeout: command timeout 1965 * @retries: number of retries before failing 1966 * @sshdr_external: Optional pointer to struct scsi_sense_hdr for 1967 * returning sense. Make sure that this is cleared before passing 1968 * in. 1969 * 1970 * Returns zero if unsuccessful or an error if TUR failed. For 1971 * removable media, a return of NOT_READY or UNIT_ATTENTION is 1972 * translated to success, with the ->changed flag updated. 1973 **/ 1974 int 1975 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries, 1976 struct scsi_sense_hdr *sshdr_external) 1977 { 1978 char cmd[] = { 1979 TEST_UNIT_READY, 0, 0, 0, 0, 0, 1980 }; 1981 struct scsi_sense_hdr *sshdr; 1982 int result; 1983 1984 if (!sshdr_external) 1985 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL); 1986 else 1987 sshdr = sshdr_external; 1988 1989 /* try to eat the UNIT_ATTENTION if there are enough retries */ 1990 do { 1991 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr, 1992 timeout, retries, NULL); 1993 if (sdev->removable && scsi_sense_valid(sshdr) && 1994 sshdr->sense_key == UNIT_ATTENTION) 1995 sdev->changed = 1; 1996 } while (scsi_sense_valid(sshdr) && 1997 sshdr->sense_key == UNIT_ATTENTION && --retries); 1998 1999 if (!sshdr) 2000 /* could not allocate sense buffer, so can't process it */ 2001 return result; 2002 2003 if (sdev->removable && scsi_sense_valid(sshdr) && 2004 (sshdr->sense_key == UNIT_ATTENTION || 2005 sshdr->sense_key == NOT_READY)) { 2006 sdev->changed = 1; 2007 result = 0; 2008 } 2009 if (!sshdr_external) 2010 kfree(sshdr); 2011 return result; 2012 } 2013 EXPORT_SYMBOL(scsi_test_unit_ready); 2014 2015 /** 2016 * scsi_device_set_state - Take the given device through the device state model. 2017 * @sdev: scsi device to change the state of. 2018 * @state: state to change to. 2019 * 2020 * Returns zero if unsuccessful or an error if the requested 2021 * transition is illegal. 2022 */ 2023 int 2024 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state) 2025 { 2026 enum scsi_device_state oldstate = sdev->sdev_state; 2027 2028 if (state == oldstate) 2029 return 0; 2030 2031 switch (state) { 2032 case SDEV_CREATED: 2033 switch (oldstate) { 2034 case SDEV_CREATED_BLOCK: 2035 break; 2036 default: 2037 goto illegal; 2038 } 2039 break; 2040 2041 case SDEV_RUNNING: 2042 switch (oldstate) { 2043 case SDEV_CREATED: 2044 case SDEV_OFFLINE: 2045 case SDEV_QUIESCE: 2046 case SDEV_BLOCK: 2047 break; 2048 default: 2049 goto illegal; 2050 } 2051 break; 2052 2053 case SDEV_QUIESCE: 2054 switch (oldstate) { 2055 case SDEV_RUNNING: 2056 case SDEV_OFFLINE: 2057 break; 2058 default: 2059 goto illegal; 2060 } 2061 break; 2062 2063 case SDEV_OFFLINE: 2064 switch (oldstate) { 2065 case SDEV_CREATED: 2066 case SDEV_RUNNING: 2067 case SDEV_QUIESCE: 2068 case SDEV_BLOCK: 2069 break; 2070 default: 2071 goto illegal; 2072 } 2073 break; 2074 2075 case SDEV_BLOCK: 2076 switch (oldstate) { 2077 case SDEV_RUNNING: 2078 case SDEV_CREATED_BLOCK: 2079 break; 2080 default: 2081 goto illegal; 2082 } 2083 break; 2084 2085 case SDEV_CREATED_BLOCK: 2086 switch (oldstate) { 2087 case SDEV_CREATED: 2088 break; 2089 default: 2090 goto illegal; 2091 } 2092 break; 2093 2094 case SDEV_CANCEL: 2095 switch (oldstate) { 2096 case SDEV_CREATED: 2097 case SDEV_RUNNING: 2098 case SDEV_QUIESCE: 2099 case SDEV_OFFLINE: 2100 case SDEV_BLOCK: 2101 break; 2102 default: 2103 goto illegal; 2104 } 2105 break; 2106 2107 case SDEV_DEL: 2108 switch (oldstate) { 2109 case SDEV_CREATED: 2110 case SDEV_RUNNING: 2111 case SDEV_OFFLINE: 2112 case SDEV_CANCEL: 2113 break; 2114 default: 2115 goto illegal; 2116 } 2117 break; 2118 2119 } 2120 sdev->sdev_state = state; 2121 return 0; 2122 2123 illegal: 2124 SCSI_LOG_ERROR_RECOVERY(1, 2125 sdev_printk(KERN_ERR, sdev, 2126 "Illegal state transition %s->%s\n", 2127 scsi_device_state_name(oldstate), 2128 scsi_device_state_name(state)) 2129 ); 2130 return -EINVAL; 2131 } 2132 EXPORT_SYMBOL(scsi_device_set_state); 2133 2134 /** 2135 * sdev_evt_emit - emit a single SCSI device uevent 2136 * @sdev: associated SCSI device 2137 * @evt: event to emit 2138 * 2139 * Send a single uevent (scsi_event) to the associated scsi_device. 2140 */ 2141 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt) 2142 { 2143 int idx = 0; 2144 char *envp[3]; 2145 2146 switch (evt->evt_type) { 2147 case SDEV_EVT_MEDIA_CHANGE: 2148 envp[idx++] = "SDEV_MEDIA_CHANGE=1"; 2149 break; 2150 2151 default: 2152 /* do nothing */ 2153 break; 2154 } 2155 2156 envp[idx++] = NULL; 2157 2158 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp); 2159 } 2160 2161 /** 2162 * sdev_evt_thread - send a uevent for each scsi event 2163 * @work: work struct for scsi_device 2164 * 2165 * Dispatch queued events to their associated scsi_device kobjects 2166 * as uevents. 2167 */ 2168 void scsi_evt_thread(struct work_struct *work) 2169 { 2170 struct scsi_device *sdev; 2171 LIST_HEAD(event_list); 2172 2173 sdev = container_of(work, struct scsi_device, event_work); 2174 2175 while (1) { 2176 struct scsi_event *evt; 2177 struct list_head *this, *tmp; 2178 unsigned long flags; 2179 2180 spin_lock_irqsave(&sdev->list_lock, flags); 2181 list_splice_init(&sdev->event_list, &event_list); 2182 spin_unlock_irqrestore(&sdev->list_lock, flags); 2183 2184 if (list_empty(&event_list)) 2185 break; 2186 2187 list_for_each_safe(this, tmp, &event_list) { 2188 evt = list_entry(this, struct scsi_event, node); 2189 list_del(&evt->node); 2190 scsi_evt_emit(sdev, evt); 2191 kfree(evt); 2192 } 2193 } 2194 } 2195 2196 /** 2197 * sdev_evt_send - send asserted event to uevent thread 2198 * @sdev: scsi_device event occurred on 2199 * @evt: event to send 2200 * 2201 * Assert scsi device event asynchronously. 2202 */ 2203 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt) 2204 { 2205 unsigned long flags; 2206 2207 #if 0 2208 /* FIXME: currently this check eliminates all media change events 2209 * for polled devices. Need to update to discriminate between AN 2210 * and polled events */ 2211 if (!test_bit(evt->evt_type, sdev->supported_events)) { 2212 kfree(evt); 2213 return; 2214 } 2215 #endif 2216 2217 spin_lock_irqsave(&sdev->list_lock, flags); 2218 list_add_tail(&evt->node, &sdev->event_list); 2219 schedule_work(&sdev->event_work); 2220 spin_unlock_irqrestore(&sdev->list_lock, flags); 2221 } 2222 EXPORT_SYMBOL_GPL(sdev_evt_send); 2223 2224 /** 2225 * sdev_evt_alloc - allocate a new scsi event 2226 * @evt_type: type of event to allocate 2227 * @gfpflags: GFP flags for allocation 2228 * 2229 * Allocates and returns a new scsi_event. 2230 */ 2231 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type, 2232 gfp_t gfpflags) 2233 { 2234 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags); 2235 if (!evt) 2236 return NULL; 2237 2238 evt->evt_type = evt_type; 2239 INIT_LIST_HEAD(&evt->node); 2240 2241 /* evt_type-specific initialization, if any */ 2242 switch (evt_type) { 2243 case SDEV_EVT_MEDIA_CHANGE: 2244 default: 2245 /* do nothing */ 2246 break; 2247 } 2248 2249 return evt; 2250 } 2251 EXPORT_SYMBOL_GPL(sdev_evt_alloc); 2252 2253 /** 2254 * sdev_evt_send_simple - send asserted event to uevent thread 2255 * @sdev: scsi_device event occurred on 2256 * @evt_type: type of event to send 2257 * @gfpflags: GFP flags for allocation 2258 * 2259 * Assert scsi device event asynchronously, given an event type. 2260 */ 2261 void sdev_evt_send_simple(struct scsi_device *sdev, 2262 enum scsi_device_event evt_type, gfp_t gfpflags) 2263 { 2264 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags); 2265 if (!evt) { 2266 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n", 2267 evt_type); 2268 return; 2269 } 2270 2271 sdev_evt_send(sdev, evt); 2272 } 2273 EXPORT_SYMBOL_GPL(sdev_evt_send_simple); 2274 2275 /** 2276 * scsi_device_quiesce - Block user issued commands. 2277 * @sdev: scsi device to quiesce. 2278 * 2279 * This works by trying to transition to the SDEV_QUIESCE state 2280 * (which must be a legal transition). When the device is in this 2281 * state, only special requests will be accepted, all others will 2282 * be deferred. Since special requests may also be requeued requests, 2283 * a successful return doesn't guarantee the device will be 2284 * totally quiescent. 2285 * 2286 * Must be called with user context, may sleep. 2287 * 2288 * Returns zero if unsuccessful or an error if not. 2289 */ 2290 int 2291 scsi_device_quiesce(struct scsi_device *sdev) 2292 { 2293 int err = scsi_device_set_state(sdev, SDEV_QUIESCE); 2294 if (err) 2295 return err; 2296 2297 scsi_run_queue(sdev->request_queue); 2298 while (sdev->device_busy) { 2299 msleep_interruptible(200); 2300 scsi_run_queue(sdev->request_queue); 2301 } 2302 return 0; 2303 } 2304 EXPORT_SYMBOL(scsi_device_quiesce); 2305 2306 /** 2307 * scsi_device_resume - Restart user issued commands to a quiesced device. 2308 * @sdev: scsi device to resume. 2309 * 2310 * Moves the device from quiesced back to running and restarts the 2311 * queues. 2312 * 2313 * Must be called with user context, may sleep. 2314 */ 2315 void 2316 scsi_device_resume(struct scsi_device *sdev) 2317 { 2318 if(scsi_device_set_state(sdev, SDEV_RUNNING)) 2319 return; 2320 scsi_run_queue(sdev->request_queue); 2321 } 2322 EXPORT_SYMBOL(scsi_device_resume); 2323 2324 static void 2325 device_quiesce_fn(struct scsi_device *sdev, void *data) 2326 { 2327 scsi_device_quiesce(sdev); 2328 } 2329 2330 void 2331 scsi_target_quiesce(struct scsi_target *starget) 2332 { 2333 starget_for_each_device(starget, NULL, device_quiesce_fn); 2334 } 2335 EXPORT_SYMBOL(scsi_target_quiesce); 2336 2337 static void 2338 device_resume_fn(struct scsi_device *sdev, void *data) 2339 { 2340 scsi_device_resume(sdev); 2341 } 2342 2343 void 2344 scsi_target_resume(struct scsi_target *starget) 2345 { 2346 starget_for_each_device(starget, NULL, device_resume_fn); 2347 } 2348 EXPORT_SYMBOL(scsi_target_resume); 2349 2350 /** 2351 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state 2352 * @sdev: device to block 2353 * 2354 * Block request made by scsi lld's to temporarily stop all 2355 * scsi commands on the specified device. Called from interrupt 2356 * or normal process context. 2357 * 2358 * Returns zero if successful or error if not 2359 * 2360 * Notes: 2361 * This routine transitions the device to the SDEV_BLOCK state 2362 * (which must be a legal transition). When the device is in this 2363 * state, all commands are deferred until the scsi lld reenables 2364 * the device with scsi_device_unblock or device_block_tmo fires. 2365 * This routine assumes the host_lock is held on entry. 2366 */ 2367 int 2368 scsi_internal_device_block(struct scsi_device *sdev) 2369 { 2370 struct request_queue *q = sdev->request_queue; 2371 unsigned long flags; 2372 int err = 0; 2373 2374 err = scsi_device_set_state(sdev, SDEV_BLOCK); 2375 if (err) { 2376 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK); 2377 2378 if (err) 2379 return err; 2380 } 2381 2382 /* 2383 * The device has transitioned to SDEV_BLOCK. Stop the 2384 * block layer from calling the midlayer with this device's 2385 * request queue. 2386 */ 2387 spin_lock_irqsave(q->queue_lock, flags); 2388 blk_stop_queue(q); 2389 spin_unlock_irqrestore(q->queue_lock, flags); 2390 2391 return 0; 2392 } 2393 EXPORT_SYMBOL_GPL(scsi_internal_device_block); 2394 2395 /** 2396 * scsi_internal_device_unblock - resume a device after a block request 2397 * @sdev: device to resume 2398 * 2399 * Called by scsi lld's or the midlayer to restart the device queue 2400 * for the previously suspended scsi device. Called from interrupt or 2401 * normal process context. 2402 * 2403 * Returns zero if successful or error if not. 2404 * 2405 * Notes: 2406 * This routine transitions the device to the SDEV_RUNNING state 2407 * (which must be a legal transition) allowing the midlayer to 2408 * goose the queue for this device. This routine assumes the 2409 * host_lock is held upon entry. 2410 */ 2411 int 2412 scsi_internal_device_unblock(struct scsi_device *sdev) 2413 { 2414 struct request_queue *q = sdev->request_queue; 2415 unsigned long flags; 2416 2417 /* 2418 * Try to transition the scsi device to SDEV_RUNNING 2419 * and goose the device queue if successful. 2420 */ 2421 if (sdev->sdev_state == SDEV_BLOCK) 2422 sdev->sdev_state = SDEV_RUNNING; 2423 else if (sdev->sdev_state == SDEV_CREATED_BLOCK) 2424 sdev->sdev_state = SDEV_CREATED; 2425 else 2426 return -EINVAL; 2427 2428 spin_lock_irqsave(q->queue_lock, flags); 2429 blk_start_queue(q); 2430 spin_unlock_irqrestore(q->queue_lock, flags); 2431 2432 return 0; 2433 } 2434 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock); 2435 2436 static void 2437 device_block(struct scsi_device *sdev, void *data) 2438 { 2439 scsi_internal_device_block(sdev); 2440 } 2441 2442 static int 2443 target_block(struct device *dev, void *data) 2444 { 2445 if (scsi_is_target_device(dev)) 2446 starget_for_each_device(to_scsi_target(dev), NULL, 2447 device_block); 2448 return 0; 2449 } 2450 2451 void 2452 scsi_target_block(struct device *dev) 2453 { 2454 if (scsi_is_target_device(dev)) 2455 starget_for_each_device(to_scsi_target(dev), NULL, 2456 device_block); 2457 else 2458 device_for_each_child(dev, NULL, target_block); 2459 } 2460 EXPORT_SYMBOL_GPL(scsi_target_block); 2461 2462 static void 2463 device_unblock(struct scsi_device *sdev, void *data) 2464 { 2465 scsi_internal_device_unblock(sdev); 2466 } 2467 2468 static int 2469 target_unblock(struct device *dev, void *data) 2470 { 2471 if (scsi_is_target_device(dev)) 2472 starget_for_each_device(to_scsi_target(dev), NULL, 2473 device_unblock); 2474 return 0; 2475 } 2476 2477 void 2478 scsi_target_unblock(struct device *dev) 2479 { 2480 if (scsi_is_target_device(dev)) 2481 starget_for_each_device(to_scsi_target(dev), NULL, 2482 device_unblock); 2483 else 2484 device_for_each_child(dev, NULL, target_unblock); 2485 } 2486 EXPORT_SYMBOL_GPL(scsi_target_unblock); 2487 2488 /** 2489 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt 2490 * @sgl: scatter-gather list 2491 * @sg_count: number of segments in sg 2492 * @offset: offset in bytes into sg, on return offset into the mapped area 2493 * @len: bytes to map, on return number of bytes mapped 2494 * 2495 * Returns virtual address of the start of the mapped page 2496 */ 2497 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count, 2498 size_t *offset, size_t *len) 2499 { 2500 int i; 2501 size_t sg_len = 0, len_complete = 0; 2502 struct scatterlist *sg; 2503 struct page *page; 2504 2505 WARN_ON(!irqs_disabled()); 2506 2507 for_each_sg(sgl, sg, sg_count, i) { 2508 len_complete = sg_len; /* Complete sg-entries */ 2509 sg_len += sg->length; 2510 if (sg_len > *offset) 2511 break; 2512 } 2513 2514 if (unlikely(i == sg_count)) { 2515 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, " 2516 "elements %d\n", 2517 __func__, sg_len, *offset, sg_count); 2518 WARN_ON(1); 2519 return NULL; 2520 } 2521 2522 /* Offset starting from the beginning of first page in this sg-entry */ 2523 *offset = *offset - len_complete + sg->offset; 2524 2525 /* Assumption: contiguous pages can be accessed as "page + i" */ 2526 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT)); 2527 *offset &= ~PAGE_MASK; 2528 2529 /* Bytes in this sg-entry from *offset to the end of the page */ 2530 sg_len = PAGE_SIZE - *offset; 2531 if (*len > sg_len) 2532 *len = sg_len; 2533 2534 return kmap_atomic(page, KM_BIO_SRC_IRQ); 2535 } 2536 EXPORT_SYMBOL(scsi_kmap_atomic_sg); 2537 2538 /** 2539 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg 2540 * @virt: virtual address to be unmapped 2541 */ 2542 void scsi_kunmap_atomic_sg(void *virt) 2543 { 2544 kunmap_atomic(virt, KM_BIO_SRC_IRQ); 2545 } 2546 EXPORT_SYMBOL(scsi_kunmap_atomic_sg); 2547