1 /* 2 * scsi_lib.c Copyright (C) 1999 Eric Youngdale 3 * 4 * SCSI queueing library. 5 * Initial versions: Eric Youngdale (eric@andante.org). 6 * Based upon conversations with large numbers 7 * of people at Linux Expo. 8 */ 9 10 #include <linux/bio.h> 11 #include <linux/bitops.h> 12 #include <linux/blkdev.h> 13 #include <linux/completion.h> 14 #include <linux/kernel.h> 15 #include <linux/mempool.h> 16 #include <linux/slab.h> 17 #include <linux/init.h> 18 #include <linux/pci.h> 19 #include <linux/delay.h> 20 #include <linux/hardirq.h> 21 #include <linux/scatterlist.h> 22 23 #include <scsi/scsi.h> 24 #include <scsi/scsi_cmnd.h> 25 #include <scsi/scsi_dbg.h> 26 #include <scsi/scsi_device.h> 27 #include <scsi/scsi_driver.h> 28 #include <scsi/scsi_eh.h> 29 #include <scsi/scsi_host.h> 30 31 #include "scsi_priv.h" 32 #include "scsi_logging.h" 33 34 35 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools) 36 #define SG_MEMPOOL_SIZE 2 37 38 struct scsi_host_sg_pool { 39 size_t size; 40 char *name; 41 struct kmem_cache *slab; 42 mempool_t *pool; 43 }; 44 45 #define SP(x) { x, "sgpool-" __stringify(x) } 46 #if (SCSI_MAX_SG_SEGMENTS < 32) 47 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater) 48 #endif 49 static struct scsi_host_sg_pool scsi_sg_pools[] = { 50 SP(8), 51 SP(16), 52 #if (SCSI_MAX_SG_SEGMENTS > 32) 53 SP(32), 54 #if (SCSI_MAX_SG_SEGMENTS > 64) 55 SP(64), 56 #if (SCSI_MAX_SG_SEGMENTS > 128) 57 SP(128), 58 #if (SCSI_MAX_SG_SEGMENTS > 256) 59 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX) 60 #endif 61 #endif 62 #endif 63 #endif 64 SP(SCSI_MAX_SG_SEGMENTS) 65 }; 66 #undef SP 67 68 struct kmem_cache *scsi_sdb_cache; 69 70 static void scsi_run_queue(struct request_queue *q); 71 72 /* 73 * Function: scsi_unprep_request() 74 * 75 * Purpose: Remove all preparation done for a request, including its 76 * associated scsi_cmnd, so that it can be requeued. 77 * 78 * Arguments: req - request to unprepare 79 * 80 * Lock status: Assumed that no locks are held upon entry. 81 * 82 * Returns: Nothing. 83 */ 84 static void scsi_unprep_request(struct request *req) 85 { 86 struct scsi_cmnd *cmd = req->special; 87 88 blk_unprep_request(req); 89 req->special = NULL; 90 91 scsi_put_command(cmd); 92 } 93 94 /** 95 * __scsi_queue_insert - private queue insertion 96 * @cmd: The SCSI command being requeued 97 * @reason: The reason for the requeue 98 * @unbusy: Whether the queue should be unbusied 99 * 100 * This is a private queue insertion. The public interface 101 * scsi_queue_insert() always assumes the queue should be unbusied 102 * because it's always called before the completion. This function is 103 * for a requeue after completion, which should only occur in this 104 * file. 105 */ 106 static int __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy) 107 { 108 struct Scsi_Host *host = cmd->device->host; 109 struct scsi_device *device = cmd->device; 110 struct scsi_target *starget = scsi_target(device); 111 struct request_queue *q = device->request_queue; 112 unsigned long flags; 113 114 SCSI_LOG_MLQUEUE(1, 115 printk("Inserting command %p into mlqueue\n", cmd)); 116 117 /* 118 * Set the appropriate busy bit for the device/host. 119 * 120 * If the host/device isn't busy, assume that something actually 121 * completed, and that we should be able to queue a command now. 122 * 123 * Note that the prior mid-layer assumption that any host could 124 * always queue at least one command is now broken. The mid-layer 125 * will implement a user specifiable stall (see 126 * scsi_host.max_host_blocked and scsi_device.max_device_blocked) 127 * if a command is requeued with no other commands outstanding 128 * either for the device or for the host. 129 */ 130 switch (reason) { 131 case SCSI_MLQUEUE_HOST_BUSY: 132 host->host_blocked = host->max_host_blocked; 133 break; 134 case SCSI_MLQUEUE_DEVICE_BUSY: 135 device->device_blocked = device->max_device_blocked; 136 break; 137 case SCSI_MLQUEUE_TARGET_BUSY: 138 starget->target_blocked = starget->max_target_blocked; 139 break; 140 } 141 142 /* 143 * Decrement the counters, since these commands are no longer 144 * active on the host/device. 145 */ 146 if (unbusy) 147 scsi_device_unbusy(device); 148 149 /* 150 * Requeue this command. It will go before all other commands 151 * that are already in the queue. 152 * 153 * NOTE: there is magic here about the way the queue is plugged if 154 * we have no outstanding commands. 155 * 156 * Although we *don't* plug the queue, we call the request 157 * function. The SCSI request function detects the blocked condition 158 * and plugs the queue appropriately. 159 */ 160 spin_lock_irqsave(q->queue_lock, flags); 161 blk_requeue_request(q, cmd->request); 162 spin_unlock_irqrestore(q->queue_lock, flags); 163 164 scsi_run_queue(q); 165 166 return 0; 167 } 168 169 /* 170 * Function: scsi_queue_insert() 171 * 172 * Purpose: Insert a command in the midlevel queue. 173 * 174 * Arguments: cmd - command that we are adding to queue. 175 * reason - why we are inserting command to queue. 176 * 177 * Lock status: Assumed that lock is not held upon entry. 178 * 179 * Returns: Nothing. 180 * 181 * Notes: We do this for one of two cases. Either the host is busy 182 * and it cannot accept any more commands for the time being, 183 * or the device returned QUEUE_FULL and can accept no more 184 * commands. 185 * Notes: This could be called either from an interrupt context or a 186 * normal process context. 187 */ 188 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason) 189 { 190 return __scsi_queue_insert(cmd, reason, 1); 191 } 192 /** 193 * scsi_execute - insert request and wait for the result 194 * @sdev: scsi device 195 * @cmd: scsi command 196 * @data_direction: data direction 197 * @buffer: data buffer 198 * @bufflen: len of buffer 199 * @sense: optional sense buffer 200 * @timeout: request timeout in seconds 201 * @retries: number of times to retry request 202 * @flags: or into request flags; 203 * @resid: optional residual length 204 * 205 * returns the req->errors value which is the scsi_cmnd result 206 * field. 207 */ 208 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd, 209 int data_direction, void *buffer, unsigned bufflen, 210 unsigned char *sense, int timeout, int retries, int flags, 211 int *resid) 212 { 213 struct request *req; 214 int write = (data_direction == DMA_TO_DEVICE); 215 int ret = DRIVER_ERROR << 24; 216 217 req = blk_get_request(sdev->request_queue, write, __GFP_WAIT); 218 219 if (bufflen && blk_rq_map_kern(sdev->request_queue, req, 220 buffer, bufflen, __GFP_WAIT)) 221 goto out; 222 223 req->cmd_len = COMMAND_SIZE(cmd[0]); 224 memcpy(req->cmd, cmd, req->cmd_len); 225 req->sense = sense; 226 req->sense_len = 0; 227 req->retries = retries; 228 req->timeout = timeout; 229 req->cmd_type = REQ_TYPE_BLOCK_PC; 230 req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT; 231 232 /* 233 * head injection *required* here otherwise quiesce won't work 234 */ 235 blk_execute_rq(req->q, NULL, req, 1); 236 237 /* 238 * Some devices (USB mass-storage in particular) may transfer 239 * garbage data together with a residue indicating that the data 240 * is invalid. Prevent the garbage from being misinterpreted 241 * and prevent security leaks by zeroing out the excess data. 242 */ 243 if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen)) 244 memset(buffer + (bufflen - req->resid_len), 0, req->resid_len); 245 246 if (resid) 247 *resid = req->resid_len; 248 ret = req->errors; 249 out: 250 blk_put_request(req); 251 252 return ret; 253 } 254 EXPORT_SYMBOL(scsi_execute); 255 256 257 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd, 258 int data_direction, void *buffer, unsigned bufflen, 259 struct scsi_sense_hdr *sshdr, int timeout, int retries, 260 int *resid) 261 { 262 char *sense = NULL; 263 int result; 264 265 if (sshdr) { 266 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO); 267 if (!sense) 268 return DRIVER_ERROR << 24; 269 } 270 result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen, 271 sense, timeout, retries, 0, resid); 272 if (sshdr) 273 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr); 274 275 kfree(sense); 276 return result; 277 } 278 EXPORT_SYMBOL(scsi_execute_req); 279 280 /* 281 * Function: scsi_init_cmd_errh() 282 * 283 * Purpose: Initialize cmd fields related to error handling. 284 * 285 * Arguments: cmd - command that is ready to be queued. 286 * 287 * Notes: This function has the job of initializing a number of 288 * fields related to error handling. Typically this will 289 * be called once for each command, as required. 290 */ 291 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd) 292 { 293 cmd->serial_number = 0; 294 scsi_set_resid(cmd, 0); 295 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 296 if (cmd->cmd_len == 0) 297 cmd->cmd_len = scsi_command_size(cmd->cmnd); 298 } 299 300 void scsi_device_unbusy(struct scsi_device *sdev) 301 { 302 struct Scsi_Host *shost = sdev->host; 303 struct scsi_target *starget = scsi_target(sdev); 304 unsigned long flags; 305 306 spin_lock_irqsave(shost->host_lock, flags); 307 shost->host_busy--; 308 starget->target_busy--; 309 if (unlikely(scsi_host_in_recovery(shost) && 310 (shost->host_failed || shost->host_eh_scheduled))) 311 scsi_eh_wakeup(shost); 312 spin_unlock(shost->host_lock); 313 spin_lock(sdev->request_queue->queue_lock); 314 sdev->device_busy--; 315 spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags); 316 } 317 318 /* 319 * Called for single_lun devices on IO completion. Clear starget_sdev_user, 320 * and call blk_run_queue for all the scsi_devices on the target - 321 * including current_sdev first. 322 * 323 * Called with *no* scsi locks held. 324 */ 325 static void scsi_single_lun_run(struct scsi_device *current_sdev) 326 { 327 struct Scsi_Host *shost = current_sdev->host; 328 struct scsi_device *sdev, *tmp; 329 struct scsi_target *starget = scsi_target(current_sdev); 330 unsigned long flags; 331 332 spin_lock_irqsave(shost->host_lock, flags); 333 starget->starget_sdev_user = NULL; 334 spin_unlock_irqrestore(shost->host_lock, flags); 335 336 /* 337 * Call blk_run_queue for all LUNs on the target, starting with 338 * current_sdev. We race with others (to set starget_sdev_user), 339 * but in most cases, we will be first. Ideally, each LU on the 340 * target would get some limited time or requests on the target. 341 */ 342 blk_run_queue(current_sdev->request_queue); 343 344 spin_lock_irqsave(shost->host_lock, flags); 345 if (starget->starget_sdev_user) 346 goto out; 347 list_for_each_entry_safe(sdev, tmp, &starget->devices, 348 same_target_siblings) { 349 if (sdev == current_sdev) 350 continue; 351 if (scsi_device_get(sdev)) 352 continue; 353 354 spin_unlock_irqrestore(shost->host_lock, flags); 355 blk_run_queue(sdev->request_queue); 356 spin_lock_irqsave(shost->host_lock, flags); 357 358 scsi_device_put(sdev); 359 } 360 out: 361 spin_unlock_irqrestore(shost->host_lock, flags); 362 } 363 364 static inline int scsi_device_is_busy(struct scsi_device *sdev) 365 { 366 if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked) 367 return 1; 368 369 return 0; 370 } 371 372 static inline int scsi_target_is_busy(struct scsi_target *starget) 373 { 374 return ((starget->can_queue > 0 && 375 starget->target_busy >= starget->can_queue) || 376 starget->target_blocked); 377 } 378 379 static inline int scsi_host_is_busy(struct Scsi_Host *shost) 380 { 381 if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) || 382 shost->host_blocked || shost->host_self_blocked) 383 return 1; 384 385 return 0; 386 } 387 388 /* 389 * Function: scsi_run_queue() 390 * 391 * Purpose: Select a proper request queue to serve next 392 * 393 * Arguments: q - last request's queue 394 * 395 * Returns: Nothing 396 * 397 * Notes: The previous command was completely finished, start 398 * a new one if possible. 399 */ 400 static void scsi_run_queue(struct request_queue *q) 401 { 402 struct scsi_device *sdev = q->queuedata; 403 struct Scsi_Host *shost = sdev->host; 404 LIST_HEAD(starved_list); 405 unsigned long flags; 406 407 if (scsi_target(sdev)->single_lun) 408 scsi_single_lun_run(sdev); 409 410 spin_lock_irqsave(shost->host_lock, flags); 411 list_splice_init(&shost->starved_list, &starved_list); 412 413 while (!list_empty(&starved_list)) { 414 int flagset; 415 416 /* 417 * As long as shost is accepting commands and we have 418 * starved queues, call blk_run_queue. scsi_request_fn 419 * drops the queue_lock and can add us back to the 420 * starved_list. 421 * 422 * host_lock protects the starved_list and starved_entry. 423 * scsi_request_fn must get the host_lock before checking 424 * or modifying starved_list or starved_entry. 425 */ 426 if (scsi_host_is_busy(shost)) 427 break; 428 429 sdev = list_entry(starved_list.next, 430 struct scsi_device, starved_entry); 431 list_del_init(&sdev->starved_entry); 432 if (scsi_target_is_busy(scsi_target(sdev))) { 433 list_move_tail(&sdev->starved_entry, 434 &shost->starved_list); 435 continue; 436 } 437 438 spin_unlock(shost->host_lock); 439 440 spin_lock(sdev->request_queue->queue_lock); 441 flagset = test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) && 442 !test_bit(QUEUE_FLAG_REENTER, 443 &sdev->request_queue->queue_flags); 444 if (flagset) 445 queue_flag_set(QUEUE_FLAG_REENTER, sdev->request_queue); 446 __blk_run_queue(sdev->request_queue); 447 if (flagset) 448 queue_flag_clear(QUEUE_FLAG_REENTER, sdev->request_queue); 449 spin_unlock(sdev->request_queue->queue_lock); 450 451 spin_lock(shost->host_lock); 452 } 453 /* put any unprocessed entries back */ 454 list_splice(&starved_list, &shost->starved_list); 455 spin_unlock_irqrestore(shost->host_lock, flags); 456 457 blk_run_queue(q); 458 } 459 460 /* 461 * Function: scsi_requeue_command() 462 * 463 * Purpose: Handle post-processing of completed commands. 464 * 465 * Arguments: q - queue to operate on 466 * cmd - command that may need to be requeued. 467 * 468 * Returns: Nothing 469 * 470 * Notes: After command completion, there may be blocks left 471 * over which weren't finished by the previous command 472 * this can be for a number of reasons - the main one is 473 * I/O errors in the middle of the request, in which case 474 * we need to request the blocks that come after the bad 475 * sector. 476 * Notes: Upon return, cmd is a stale pointer. 477 */ 478 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd) 479 { 480 struct request *req = cmd->request; 481 unsigned long flags; 482 483 spin_lock_irqsave(q->queue_lock, flags); 484 scsi_unprep_request(req); 485 blk_requeue_request(q, req); 486 spin_unlock_irqrestore(q->queue_lock, flags); 487 488 scsi_run_queue(q); 489 } 490 491 void scsi_next_command(struct scsi_cmnd *cmd) 492 { 493 struct scsi_device *sdev = cmd->device; 494 struct request_queue *q = sdev->request_queue; 495 496 /* need to hold a reference on the device before we let go of the cmd */ 497 get_device(&sdev->sdev_gendev); 498 499 scsi_put_command(cmd); 500 scsi_run_queue(q); 501 502 /* ok to remove device now */ 503 put_device(&sdev->sdev_gendev); 504 } 505 506 void scsi_run_host_queues(struct Scsi_Host *shost) 507 { 508 struct scsi_device *sdev; 509 510 shost_for_each_device(sdev, shost) 511 scsi_run_queue(sdev->request_queue); 512 } 513 514 static void __scsi_release_buffers(struct scsi_cmnd *, int); 515 516 /* 517 * Function: scsi_end_request() 518 * 519 * Purpose: Post-processing of completed commands (usually invoked at end 520 * of upper level post-processing and scsi_io_completion). 521 * 522 * Arguments: cmd - command that is complete. 523 * error - 0 if I/O indicates success, < 0 for I/O error. 524 * bytes - number of bytes of completed I/O 525 * requeue - indicates whether we should requeue leftovers. 526 * 527 * Lock status: Assumed that lock is not held upon entry. 528 * 529 * Returns: cmd if requeue required, NULL otherwise. 530 * 531 * Notes: This is called for block device requests in order to 532 * mark some number of sectors as complete. 533 * 534 * We are guaranteeing that the request queue will be goosed 535 * at some point during this call. 536 * Notes: If cmd was requeued, upon return it will be a stale pointer. 537 */ 538 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error, 539 int bytes, int requeue) 540 { 541 struct request_queue *q = cmd->device->request_queue; 542 struct request *req = cmd->request; 543 544 /* 545 * If there are blocks left over at the end, set up the command 546 * to queue the remainder of them. 547 */ 548 if (blk_end_request(req, error, bytes)) { 549 /* kill remainder if no retrys */ 550 if (error && scsi_noretry_cmd(cmd)) 551 blk_end_request_all(req, error); 552 else { 553 if (requeue) { 554 /* 555 * Bleah. Leftovers again. Stick the 556 * leftovers in the front of the 557 * queue, and goose the queue again. 558 */ 559 scsi_release_buffers(cmd); 560 scsi_requeue_command(q, cmd); 561 cmd = NULL; 562 } 563 return cmd; 564 } 565 } 566 567 /* 568 * This will goose the queue request function at the end, so we don't 569 * need to worry about launching another command. 570 */ 571 __scsi_release_buffers(cmd, 0); 572 scsi_next_command(cmd); 573 return NULL; 574 } 575 576 static inline unsigned int scsi_sgtable_index(unsigned short nents) 577 { 578 unsigned int index; 579 580 BUG_ON(nents > SCSI_MAX_SG_SEGMENTS); 581 582 if (nents <= 8) 583 index = 0; 584 else 585 index = get_count_order(nents) - 3; 586 587 return index; 588 } 589 590 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents) 591 { 592 struct scsi_host_sg_pool *sgp; 593 594 sgp = scsi_sg_pools + scsi_sgtable_index(nents); 595 mempool_free(sgl, sgp->pool); 596 } 597 598 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask) 599 { 600 struct scsi_host_sg_pool *sgp; 601 602 sgp = scsi_sg_pools + scsi_sgtable_index(nents); 603 return mempool_alloc(sgp->pool, gfp_mask); 604 } 605 606 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents, 607 gfp_t gfp_mask) 608 { 609 int ret; 610 611 BUG_ON(!nents); 612 613 ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS, 614 gfp_mask, scsi_sg_alloc); 615 if (unlikely(ret)) 616 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, 617 scsi_sg_free); 618 619 return ret; 620 } 621 622 static void scsi_free_sgtable(struct scsi_data_buffer *sdb) 623 { 624 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free); 625 } 626 627 static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check) 628 { 629 630 if (cmd->sdb.table.nents) 631 scsi_free_sgtable(&cmd->sdb); 632 633 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 634 635 if (do_bidi_check && scsi_bidi_cmnd(cmd)) { 636 struct scsi_data_buffer *bidi_sdb = 637 cmd->request->next_rq->special; 638 scsi_free_sgtable(bidi_sdb); 639 kmem_cache_free(scsi_sdb_cache, bidi_sdb); 640 cmd->request->next_rq->special = NULL; 641 } 642 643 if (scsi_prot_sg_count(cmd)) 644 scsi_free_sgtable(cmd->prot_sdb); 645 } 646 647 /* 648 * Function: scsi_release_buffers() 649 * 650 * Purpose: Completion processing for block device I/O requests. 651 * 652 * Arguments: cmd - command that we are bailing. 653 * 654 * Lock status: Assumed that no lock is held upon entry. 655 * 656 * Returns: Nothing 657 * 658 * Notes: In the event that an upper level driver rejects a 659 * command, we must release resources allocated during 660 * the __init_io() function. Primarily this would involve 661 * the scatter-gather table, and potentially any bounce 662 * buffers. 663 */ 664 void scsi_release_buffers(struct scsi_cmnd *cmd) 665 { 666 __scsi_release_buffers(cmd, 1); 667 } 668 EXPORT_SYMBOL(scsi_release_buffers); 669 670 /* 671 * Function: scsi_io_completion() 672 * 673 * Purpose: Completion processing for block device I/O requests. 674 * 675 * Arguments: cmd - command that is finished. 676 * 677 * Lock status: Assumed that no lock is held upon entry. 678 * 679 * Returns: Nothing 680 * 681 * Notes: This function is matched in terms of capabilities to 682 * the function that created the scatter-gather list. 683 * In other words, if there are no bounce buffers 684 * (the normal case for most drivers), we don't need 685 * the logic to deal with cleaning up afterwards. 686 * 687 * We must call scsi_end_request(). This will finish off 688 * the specified number of sectors. If we are done, the 689 * command block will be released and the queue function 690 * will be goosed. If we are not done then we have to 691 * figure out what to do next: 692 * 693 * a) We can call scsi_requeue_command(). The request 694 * will be unprepared and put back on the queue. Then 695 * a new command will be created for it. This should 696 * be used if we made forward progress, or if we want 697 * to switch from READ(10) to READ(6) for example. 698 * 699 * b) We can call scsi_queue_insert(). The request will 700 * be put back on the queue and retried using the same 701 * command as before, possibly after a delay. 702 * 703 * c) We can call blk_end_request() with -EIO to fail 704 * the remainder of the request. 705 */ 706 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes) 707 { 708 int result = cmd->result; 709 struct request_queue *q = cmd->device->request_queue; 710 struct request *req = cmd->request; 711 int error = 0; 712 struct scsi_sense_hdr sshdr; 713 int sense_valid = 0; 714 int sense_deferred = 0; 715 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY, 716 ACTION_DELAYED_RETRY} action; 717 char *description = NULL; 718 719 if (result) { 720 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 721 if (sense_valid) 722 sense_deferred = scsi_sense_is_deferred(&sshdr); 723 } 724 725 if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */ 726 req->errors = result; 727 if (result) { 728 if (sense_valid && req->sense) { 729 /* 730 * SG_IO wants current and deferred errors 731 */ 732 int len = 8 + cmd->sense_buffer[7]; 733 734 if (len > SCSI_SENSE_BUFFERSIZE) 735 len = SCSI_SENSE_BUFFERSIZE; 736 memcpy(req->sense, cmd->sense_buffer, len); 737 req->sense_len = len; 738 } 739 if (!sense_deferred) 740 error = -EIO; 741 } 742 743 req->resid_len = scsi_get_resid(cmd); 744 745 if (scsi_bidi_cmnd(cmd)) { 746 /* 747 * Bidi commands Must be complete as a whole, 748 * both sides at once. 749 */ 750 req->next_rq->resid_len = scsi_in(cmd)->resid; 751 752 scsi_release_buffers(cmd); 753 blk_end_request_all(req, 0); 754 755 scsi_next_command(cmd); 756 return; 757 } 758 } 759 760 /* no bidi support for !REQ_TYPE_BLOCK_PC yet */ 761 BUG_ON(blk_bidi_rq(req)); 762 763 /* 764 * Next deal with any sectors which we were able to correctly 765 * handle. 766 */ 767 SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, " 768 "%d bytes done.\n", 769 blk_rq_sectors(req), good_bytes)); 770 771 /* 772 * Recovered errors need reporting, but they're always treated 773 * as success, so fiddle the result code here. For BLOCK_PC 774 * we already took a copy of the original into rq->errors which 775 * is what gets returned to the user 776 */ 777 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) { 778 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip 779 * print since caller wants ATA registers. Only occurs on 780 * SCSI ATA PASS_THROUGH commands when CK_COND=1 781 */ 782 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d)) 783 ; 784 else if (!(req->cmd_flags & REQ_QUIET)) 785 scsi_print_sense("", cmd); 786 result = 0; 787 /* BLOCK_PC may have set error */ 788 error = 0; 789 } 790 791 /* 792 * A number of bytes were successfully read. If there 793 * are leftovers and there is some kind of error 794 * (result != 0), retry the rest. 795 */ 796 if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL) 797 return; 798 799 error = -EIO; 800 801 if (host_byte(result) == DID_RESET) { 802 /* Third party bus reset or reset for error recovery 803 * reasons. Just retry the command and see what 804 * happens. 805 */ 806 action = ACTION_RETRY; 807 } else if (sense_valid && !sense_deferred) { 808 switch (sshdr.sense_key) { 809 case UNIT_ATTENTION: 810 if (cmd->device->removable) { 811 /* Detected disc change. Set a bit 812 * and quietly refuse further access. 813 */ 814 cmd->device->changed = 1; 815 description = "Media Changed"; 816 action = ACTION_FAIL; 817 } else { 818 /* Must have been a power glitch, or a 819 * bus reset. Could not have been a 820 * media change, so we just retry the 821 * command and see what happens. 822 */ 823 action = ACTION_RETRY; 824 } 825 break; 826 case ILLEGAL_REQUEST: 827 /* If we had an ILLEGAL REQUEST returned, then 828 * we may have performed an unsupported 829 * command. The only thing this should be 830 * would be a ten byte read where only a six 831 * byte read was supported. Also, on a system 832 * where READ CAPACITY failed, we may have 833 * read past the end of the disk. 834 */ 835 if ((cmd->device->use_10_for_rw && 836 sshdr.asc == 0x20 && sshdr.ascq == 0x00) && 837 (cmd->cmnd[0] == READ_10 || 838 cmd->cmnd[0] == WRITE_10)) { 839 /* This will issue a new 6-byte command. */ 840 cmd->device->use_10_for_rw = 0; 841 action = ACTION_REPREP; 842 } else if (sshdr.asc == 0x10) /* DIX */ { 843 description = "Host Data Integrity Failure"; 844 action = ACTION_FAIL; 845 error = -EILSEQ; 846 } else 847 action = ACTION_FAIL; 848 break; 849 case ABORTED_COMMAND: 850 action = ACTION_FAIL; 851 if (sshdr.asc == 0x10) { /* DIF */ 852 description = "Target Data Integrity Failure"; 853 error = -EILSEQ; 854 } 855 break; 856 case NOT_READY: 857 /* If the device is in the process of becoming 858 * ready, or has a temporary blockage, retry. 859 */ 860 if (sshdr.asc == 0x04) { 861 switch (sshdr.ascq) { 862 case 0x01: /* becoming ready */ 863 case 0x04: /* format in progress */ 864 case 0x05: /* rebuild in progress */ 865 case 0x06: /* recalculation in progress */ 866 case 0x07: /* operation in progress */ 867 case 0x08: /* Long write in progress */ 868 case 0x09: /* self test in progress */ 869 case 0x14: /* space allocation in progress */ 870 action = ACTION_DELAYED_RETRY; 871 break; 872 default: 873 description = "Device not ready"; 874 action = ACTION_FAIL; 875 break; 876 } 877 } else { 878 description = "Device not ready"; 879 action = ACTION_FAIL; 880 } 881 break; 882 case VOLUME_OVERFLOW: 883 /* See SSC3rXX or current. */ 884 action = ACTION_FAIL; 885 break; 886 default: 887 description = "Unhandled sense code"; 888 action = ACTION_FAIL; 889 break; 890 } 891 } else { 892 description = "Unhandled error code"; 893 action = ACTION_FAIL; 894 } 895 896 switch (action) { 897 case ACTION_FAIL: 898 /* Give up and fail the remainder of the request */ 899 scsi_release_buffers(cmd); 900 if (!(req->cmd_flags & REQ_QUIET)) { 901 if (description) 902 scmd_printk(KERN_INFO, cmd, "%s\n", 903 description); 904 scsi_print_result(cmd); 905 if (driver_byte(result) & DRIVER_SENSE) 906 scsi_print_sense("", cmd); 907 scsi_print_command(cmd); 908 } 909 if (blk_end_request_err(req, error)) 910 scsi_requeue_command(q, cmd); 911 else 912 scsi_next_command(cmd); 913 break; 914 case ACTION_REPREP: 915 /* Unprep the request and put it back at the head of the queue. 916 * A new command will be prepared and issued. 917 */ 918 scsi_release_buffers(cmd); 919 scsi_requeue_command(q, cmd); 920 break; 921 case ACTION_RETRY: 922 /* Retry the same command immediately */ 923 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0); 924 break; 925 case ACTION_DELAYED_RETRY: 926 /* Retry the same command after a delay */ 927 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0); 928 break; 929 } 930 } 931 932 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb, 933 gfp_t gfp_mask) 934 { 935 int count; 936 937 /* 938 * If sg table allocation fails, requeue request later. 939 */ 940 if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments, 941 gfp_mask))) { 942 return BLKPREP_DEFER; 943 } 944 945 req->buffer = NULL; 946 947 /* 948 * Next, walk the list, and fill in the addresses and sizes of 949 * each segment. 950 */ 951 count = blk_rq_map_sg(req->q, req, sdb->table.sgl); 952 BUG_ON(count > sdb->table.nents); 953 sdb->table.nents = count; 954 sdb->length = blk_rq_bytes(req); 955 return BLKPREP_OK; 956 } 957 958 /* 959 * Function: scsi_init_io() 960 * 961 * Purpose: SCSI I/O initialize function. 962 * 963 * Arguments: cmd - Command descriptor we wish to initialize 964 * 965 * Returns: 0 on success 966 * BLKPREP_DEFER if the failure is retryable 967 * BLKPREP_KILL if the failure is fatal 968 */ 969 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask) 970 { 971 int error = scsi_init_sgtable(cmd->request, &cmd->sdb, gfp_mask); 972 if (error) 973 goto err_exit; 974 975 if (blk_bidi_rq(cmd->request)) { 976 struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc( 977 scsi_sdb_cache, GFP_ATOMIC); 978 if (!bidi_sdb) { 979 error = BLKPREP_DEFER; 980 goto err_exit; 981 } 982 983 cmd->request->next_rq->special = bidi_sdb; 984 error = scsi_init_sgtable(cmd->request->next_rq, bidi_sdb, 985 GFP_ATOMIC); 986 if (error) 987 goto err_exit; 988 } 989 990 if (blk_integrity_rq(cmd->request)) { 991 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb; 992 int ivecs, count; 993 994 BUG_ON(prot_sdb == NULL); 995 ivecs = blk_rq_count_integrity_sg(cmd->request); 996 997 if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) { 998 error = BLKPREP_DEFER; 999 goto err_exit; 1000 } 1001 1002 count = blk_rq_map_integrity_sg(cmd->request, 1003 prot_sdb->table.sgl); 1004 BUG_ON(unlikely(count > ivecs)); 1005 1006 cmd->prot_sdb = prot_sdb; 1007 cmd->prot_sdb->table.nents = count; 1008 } 1009 1010 return BLKPREP_OK ; 1011 1012 err_exit: 1013 scsi_release_buffers(cmd); 1014 scsi_put_command(cmd); 1015 cmd->request->special = NULL; 1016 return error; 1017 } 1018 EXPORT_SYMBOL(scsi_init_io); 1019 1020 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev, 1021 struct request *req) 1022 { 1023 struct scsi_cmnd *cmd; 1024 1025 if (!req->special) { 1026 cmd = scsi_get_command(sdev, GFP_ATOMIC); 1027 if (unlikely(!cmd)) 1028 return NULL; 1029 req->special = cmd; 1030 } else { 1031 cmd = req->special; 1032 } 1033 1034 /* pull a tag out of the request if we have one */ 1035 cmd->tag = req->tag; 1036 cmd->request = req; 1037 1038 cmd->cmnd = req->cmd; 1039 1040 return cmd; 1041 } 1042 1043 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req) 1044 { 1045 struct scsi_cmnd *cmd; 1046 int ret = scsi_prep_state_check(sdev, req); 1047 1048 if (ret != BLKPREP_OK) 1049 return ret; 1050 1051 cmd = scsi_get_cmd_from_req(sdev, req); 1052 if (unlikely(!cmd)) 1053 return BLKPREP_DEFER; 1054 1055 /* 1056 * BLOCK_PC requests may transfer data, in which case they must 1057 * a bio attached to them. Or they might contain a SCSI command 1058 * that does not transfer data, in which case they may optionally 1059 * submit a request without an attached bio. 1060 */ 1061 if (req->bio) { 1062 int ret; 1063 1064 BUG_ON(!req->nr_phys_segments); 1065 1066 ret = scsi_init_io(cmd, GFP_ATOMIC); 1067 if (unlikely(ret)) 1068 return ret; 1069 } else { 1070 BUG_ON(blk_rq_bytes(req)); 1071 1072 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1073 req->buffer = NULL; 1074 } 1075 1076 cmd->cmd_len = req->cmd_len; 1077 if (!blk_rq_bytes(req)) 1078 cmd->sc_data_direction = DMA_NONE; 1079 else if (rq_data_dir(req) == WRITE) 1080 cmd->sc_data_direction = DMA_TO_DEVICE; 1081 else 1082 cmd->sc_data_direction = DMA_FROM_DEVICE; 1083 1084 cmd->transfersize = blk_rq_bytes(req); 1085 cmd->allowed = req->retries; 1086 return BLKPREP_OK; 1087 } 1088 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd); 1089 1090 /* 1091 * Setup a REQ_TYPE_FS command. These are simple read/write request 1092 * from filesystems that still need to be translated to SCSI CDBs from 1093 * the ULD. 1094 */ 1095 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req) 1096 { 1097 struct scsi_cmnd *cmd; 1098 int ret = scsi_prep_state_check(sdev, req); 1099 1100 if (ret != BLKPREP_OK) 1101 return ret; 1102 1103 if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh 1104 && sdev->scsi_dh_data->scsi_dh->prep_fn)) { 1105 ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req); 1106 if (ret != BLKPREP_OK) 1107 return ret; 1108 } 1109 1110 /* 1111 * Filesystem requests must transfer data. 1112 */ 1113 BUG_ON(!req->nr_phys_segments); 1114 1115 cmd = scsi_get_cmd_from_req(sdev, req); 1116 if (unlikely(!cmd)) 1117 return BLKPREP_DEFER; 1118 1119 memset(cmd->cmnd, 0, BLK_MAX_CDB); 1120 return scsi_init_io(cmd, GFP_ATOMIC); 1121 } 1122 EXPORT_SYMBOL(scsi_setup_fs_cmnd); 1123 1124 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req) 1125 { 1126 int ret = BLKPREP_OK; 1127 1128 /* 1129 * If the device is not in running state we will reject some 1130 * or all commands. 1131 */ 1132 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) { 1133 switch (sdev->sdev_state) { 1134 case SDEV_OFFLINE: 1135 /* 1136 * If the device is offline we refuse to process any 1137 * commands. The device must be brought online 1138 * before trying any recovery commands. 1139 */ 1140 sdev_printk(KERN_ERR, sdev, 1141 "rejecting I/O to offline device\n"); 1142 ret = BLKPREP_KILL; 1143 break; 1144 case SDEV_DEL: 1145 /* 1146 * If the device is fully deleted, we refuse to 1147 * process any commands as well. 1148 */ 1149 sdev_printk(KERN_ERR, sdev, 1150 "rejecting I/O to dead device\n"); 1151 ret = BLKPREP_KILL; 1152 break; 1153 case SDEV_QUIESCE: 1154 case SDEV_BLOCK: 1155 case SDEV_CREATED_BLOCK: 1156 /* 1157 * If the devices is blocked we defer normal commands. 1158 */ 1159 if (!(req->cmd_flags & REQ_PREEMPT)) 1160 ret = BLKPREP_DEFER; 1161 break; 1162 default: 1163 /* 1164 * For any other not fully online state we only allow 1165 * special commands. In particular any user initiated 1166 * command is not allowed. 1167 */ 1168 if (!(req->cmd_flags & REQ_PREEMPT)) 1169 ret = BLKPREP_KILL; 1170 break; 1171 } 1172 } 1173 return ret; 1174 } 1175 EXPORT_SYMBOL(scsi_prep_state_check); 1176 1177 int scsi_prep_return(struct request_queue *q, struct request *req, int ret) 1178 { 1179 struct scsi_device *sdev = q->queuedata; 1180 1181 switch (ret) { 1182 case BLKPREP_KILL: 1183 req->errors = DID_NO_CONNECT << 16; 1184 /* release the command and kill it */ 1185 if (req->special) { 1186 struct scsi_cmnd *cmd = req->special; 1187 scsi_release_buffers(cmd); 1188 scsi_put_command(cmd); 1189 req->special = NULL; 1190 } 1191 break; 1192 case BLKPREP_DEFER: 1193 /* 1194 * If we defer, the blk_peek_request() returns NULL, but the 1195 * queue must be restarted, so we plug here if no returning 1196 * command will automatically do that. 1197 */ 1198 if (sdev->device_busy == 0) 1199 blk_plug_device(q); 1200 break; 1201 default: 1202 req->cmd_flags |= REQ_DONTPREP; 1203 } 1204 1205 return ret; 1206 } 1207 EXPORT_SYMBOL(scsi_prep_return); 1208 1209 int scsi_prep_fn(struct request_queue *q, struct request *req) 1210 { 1211 struct scsi_device *sdev = q->queuedata; 1212 int ret = BLKPREP_KILL; 1213 1214 if (req->cmd_type == REQ_TYPE_BLOCK_PC) 1215 ret = scsi_setup_blk_pc_cmnd(sdev, req); 1216 return scsi_prep_return(q, req, ret); 1217 } 1218 EXPORT_SYMBOL(scsi_prep_fn); 1219 1220 /* 1221 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else 1222 * return 0. 1223 * 1224 * Called with the queue_lock held. 1225 */ 1226 static inline int scsi_dev_queue_ready(struct request_queue *q, 1227 struct scsi_device *sdev) 1228 { 1229 if (sdev->device_busy == 0 && sdev->device_blocked) { 1230 /* 1231 * unblock after device_blocked iterates to zero 1232 */ 1233 if (--sdev->device_blocked == 0) { 1234 SCSI_LOG_MLQUEUE(3, 1235 sdev_printk(KERN_INFO, sdev, 1236 "unblocking device at zero depth\n")); 1237 } else { 1238 blk_plug_device(q); 1239 return 0; 1240 } 1241 } 1242 if (scsi_device_is_busy(sdev)) 1243 return 0; 1244 1245 return 1; 1246 } 1247 1248 1249 /* 1250 * scsi_target_queue_ready: checks if there we can send commands to target 1251 * @sdev: scsi device on starget to check. 1252 * 1253 * Called with the host lock held. 1254 */ 1255 static inline int scsi_target_queue_ready(struct Scsi_Host *shost, 1256 struct scsi_device *sdev) 1257 { 1258 struct scsi_target *starget = scsi_target(sdev); 1259 1260 if (starget->single_lun) { 1261 if (starget->starget_sdev_user && 1262 starget->starget_sdev_user != sdev) 1263 return 0; 1264 starget->starget_sdev_user = sdev; 1265 } 1266 1267 if (starget->target_busy == 0 && starget->target_blocked) { 1268 /* 1269 * unblock after target_blocked iterates to zero 1270 */ 1271 if (--starget->target_blocked == 0) { 1272 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget, 1273 "unblocking target at zero depth\n")); 1274 } else 1275 return 0; 1276 } 1277 1278 if (scsi_target_is_busy(starget)) { 1279 if (list_empty(&sdev->starved_entry)) { 1280 list_add_tail(&sdev->starved_entry, 1281 &shost->starved_list); 1282 return 0; 1283 } 1284 } 1285 1286 /* We're OK to process the command, so we can't be starved */ 1287 if (!list_empty(&sdev->starved_entry)) 1288 list_del_init(&sdev->starved_entry); 1289 return 1; 1290 } 1291 1292 /* 1293 * scsi_host_queue_ready: if we can send requests to shost, return 1 else 1294 * return 0. We must end up running the queue again whenever 0 is 1295 * returned, else IO can hang. 1296 * 1297 * Called with host_lock held. 1298 */ 1299 static inline int scsi_host_queue_ready(struct request_queue *q, 1300 struct Scsi_Host *shost, 1301 struct scsi_device *sdev) 1302 { 1303 if (scsi_host_in_recovery(shost)) 1304 return 0; 1305 if (shost->host_busy == 0 && shost->host_blocked) { 1306 /* 1307 * unblock after host_blocked iterates to zero 1308 */ 1309 if (--shost->host_blocked == 0) { 1310 SCSI_LOG_MLQUEUE(3, 1311 printk("scsi%d unblocking host at zero depth\n", 1312 shost->host_no)); 1313 } else { 1314 return 0; 1315 } 1316 } 1317 if (scsi_host_is_busy(shost)) { 1318 if (list_empty(&sdev->starved_entry)) 1319 list_add_tail(&sdev->starved_entry, &shost->starved_list); 1320 return 0; 1321 } 1322 1323 /* We're OK to process the command, so we can't be starved */ 1324 if (!list_empty(&sdev->starved_entry)) 1325 list_del_init(&sdev->starved_entry); 1326 1327 return 1; 1328 } 1329 1330 /* 1331 * Busy state exporting function for request stacking drivers. 1332 * 1333 * For efficiency, no lock is taken to check the busy state of 1334 * shost/starget/sdev, since the returned value is not guaranteed and 1335 * may be changed after request stacking drivers call the function, 1336 * regardless of taking lock or not. 1337 * 1338 * When scsi can't dispatch I/Os anymore and needs to kill I/Os 1339 * (e.g. !sdev), scsi needs to return 'not busy'. 1340 * Otherwise, request stacking drivers may hold requests forever. 1341 */ 1342 static int scsi_lld_busy(struct request_queue *q) 1343 { 1344 struct scsi_device *sdev = q->queuedata; 1345 struct Scsi_Host *shost; 1346 struct scsi_target *starget; 1347 1348 if (!sdev) 1349 return 0; 1350 1351 shost = sdev->host; 1352 starget = scsi_target(sdev); 1353 1354 if (scsi_host_in_recovery(shost) || scsi_host_is_busy(shost) || 1355 scsi_target_is_busy(starget) || scsi_device_is_busy(sdev)) 1356 return 1; 1357 1358 return 0; 1359 } 1360 1361 /* 1362 * Kill a request for a dead device 1363 */ 1364 static void scsi_kill_request(struct request *req, struct request_queue *q) 1365 { 1366 struct scsi_cmnd *cmd = req->special; 1367 struct scsi_device *sdev; 1368 struct scsi_target *starget; 1369 struct Scsi_Host *shost; 1370 1371 blk_start_request(req); 1372 1373 if (unlikely(cmd == NULL)) { 1374 printk(KERN_CRIT "impossible request in %s.\n", 1375 __func__); 1376 BUG(); 1377 } 1378 1379 sdev = cmd->device; 1380 starget = scsi_target(sdev); 1381 shost = sdev->host; 1382 scsi_init_cmd_errh(cmd); 1383 cmd->result = DID_NO_CONNECT << 16; 1384 atomic_inc(&cmd->device->iorequest_cnt); 1385 1386 /* 1387 * SCSI request completion path will do scsi_device_unbusy(), 1388 * bump busy counts. To bump the counters, we need to dance 1389 * with the locks as normal issue path does. 1390 */ 1391 sdev->device_busy++; 1392 spin_unlock(sdev->request_queue->queue_lock); 1393 spin_lock(shost->host_lock); 1394 shost->host_busy++; 1395 starget->target_busy++; 1396 spin_unlock(shost->host_lock); 1397 spin_lock(sdev->request_queue->queue_lock); 1398 1399 blk_complete_request(req); 1400 } 1401 1402 static void scsi_softirq_done(struct request *rq) 1403 { 1404 struct scsi_cmnd *cmd = rq->special; 1405 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout; 1406 int disposition; 1407 1408 INIT_LIST_HEAD(&cmd->eh_entry); 1409 1410 /* 1411 * Set the serial numbers back to zero 1412 */ 1413 cmd->serial_number = 0; 1414 1415 atomic_inc(&cmd->device->iodone_cnt); 1416 if (cmd->result) 1417 atomic_inc(&cmd->device->ioerr_cnt); 1418 1419 disposition = scsi_decide_disposition(cmd); 1420 if (disposition != SUCCESS && 1421 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) { 1422 sdev_printk(KERN_ERR, cmd->device, 1423 "timing out command, waited %lus\n", 1424 wait_for/HZ); 1425 disposition = SUCCESS; 1426 } 1427 1428 scsi_log_completion(cmd, disposition); 1429 1430 switch (disposition) { 1431 case SUCCESS: 1432 scsi_finish_command(cmd); 1433 break; 1434 case NEEDS_RETRY: 1435 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY); 1436 break; 1437 case ADD_TO_MLQUEUE: 1438 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY); 1439 break; 1440 default: 1441 if (!scsi_eh_scmd_add(cmd, 0)) 1442 scsi_finish_command(cmd); 1443 } 1444 } 1445 1446 /* 1447 * Function: scsi_request_fn() 1448 * 1449 * Purpose: Main strategy routine for SCSI. 1450 * 1451 * Arguments: q - Pointer to actual queue. 1452 * 1453 * Returns: Nothing 1454 * 1455 * Lock status: IO request lock assumed to be held when called. 1456 */ 1457 static void scsi_request_fn(struct request_queue *q) 1458 { 1459 struct scsi_device *sdev = q->queuedata; 1460 struct Scsi_Host *shost; 1461 struct scsi_cmnd *cmd; 1462 struct request *req; 1463 1464 if (!sdev) { 1465 printk("scsi: killing requests for dead queue\n"); 1466 while ((req = blk_peek_request(q)) != NULL) 1467 scsi_kill_request(req, q); 1468 return; 1469 } 1470 1471 if(!get_device(&sdev->sdev_gendev)) 1472 /* We must be tearing the block queue down already */ 1473 return; 1474 1475 /* 1476 * To start with, we keep looping until the queue is empty, or until 1477 * the host is no longer able to accept any more requests. 1478 */ 1479 shost = sdev->host; 1480 while (!blk_queue_plugged(q)) { 1481 int rtn; 1482 /* 1483 * get next queueable request. We do this early to make sure 1484 * that the request is fully prepared even if we cannot 1485 * accept it. 1486 */ 1487 req = blk_peek_request(q); 1488 if (!req || !scsi_dev_queue_ready(q, sdev)) 1489 break; 1490 1491 if (unlikely(!scsi_device_online(sdev))) { 1492 sdev_printk(KERN_ERR, sdev, 1493 "rejecting I/O to offline device\n"); 1494 scsi_kill_request(req, q); 1495 continue; 1496 } 1497 1498 1499 /* 1500 * Remove the request from the request list. 1501 */ 1502 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req))) 1503 blk_start_request(req); 1504 sdev->device_busy++; 1505 1506 spin_unlock(q->queue_lock); 1507 cmd = req->special; 1508 if (unlikely(cmd == NULL)) { 1509 printk(KERN_CRIT "impossible request in %s.\n" 1510 "please mail a stack trace to " 1511 "linux-scsi@vger.kernel.org\n", 1512 __func__); 1513 blk_dump_rq_flags(req, "foo"); 1514 BUG(); 1515 } 1516 spin_lock(shost->host_lock); 1517 1518 /* 1519 * We hit this when the driver is using a host wide 1520 * tag map. For device level tag maps the queue_depth check 1521 * in the device ready fn would prevent us from trying 1522 * to allocate a tag. Since the map is a shared host resource 1523 * we add the dev to the starved list so it eventually gets 1524 * a run when a tag is freed. 1525 */ 1526 if (blk_queue_tagged(q) && !blk_rq_tagged(req)) { 1527 if (list_empty(&sdev->starved_entry)) 1528 list_add_tail(&sdev->starved_entry, 1529 &shost->starved_list); 1530 goto not_ready; 1531 } 1532 1533 if (!scsi_target_queue_ready(shost, sdev)) 1534 goto not_ready; 1535 1536 if (!scsi_host_queue_ready(q, shost, sdev)) 1537 goto not_ready; 1538 1539 scsi_target(sdev)->target_busy++; 1540 shost->host_busy++; 1541 1542 /* 1543 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will 1544 * take the lock again. 1545 */ 1546 spin_unlock_irq(shost->host_lock); 1547 1548 /* 1549 * Finally, initialize any error handling parameters, and set up 1550 * the timers for timeouts. 1551 */ 1552 scsi_init_cmd_errh(cmd); 1553 1554 /* 1555 * Dispatch the command to the low-level driver. 1556 */ 1557 rtn = scsi_dispatch_cmd(cmd); 1558 spin_lock_irq(q->queue_lock); 1559 if(rtn) { 1560 /* we're refusing the command; because of 1561 * the way locks get dropped, we need to 1562 * check here if plugging is required */ 1563 if(sdev->device_busy == 0) 1564 blk_plug_device(q); 1565 1566 break; 1567 } 1568 } 1569 1570 goto out; 1571 1572 not_ready: 1573 spin_unlock_irq(shost->host_lock); 1574 1575 /* 1576 * lock q, handle tag, requeue req, and decrement device_busy. We 1577 * must return with queue_lock held. 1578 * 1579 * Decrementing device_busy without checking it is OK, as all such 1580 * cases (host limits or settings) should run the queue at some 1581 * later time. 1582 */ 1583 spin_lock_irq(q->queue_lock); 1584 blk_requeue_request(q, req); 1585 sdev->device_busy--; 1586 if(sdev->device_busy == 0) 1587 blk_plug_device(q); 1588 out: 1589 /* must be careful here...if we trigger the ->remove() function 1590 * we cannot be holding the q lock */ 1591 spin_unlock_irq(q->queue_lock); 1592 put_device(&sdev->sdev_gendev); 1593 spin_lock_irq(q->queue_lock); 1594 } 1595 1596 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost) 1597 { 1598 struct device *host_dev; 1599 u64 bounce_limit = 0xffffffff; 1600 1601 if (shost->unchecked_isa_dma) 1602 return BLK_BOUNCE_ISA; 1603 /* 1604 * Platforms with virtual-DMA translation 1605 * hardware have no practical limit. 1606 */ 1607 if (!PCI_DMA_BUS_IS_PHYS) 1608 return BLK_BOUNCE_ANY; 1609 1610 host_dev = scsi_get_device(shost); 1611 if (host_dev && host_dev->dma_mask) 1612 bounce_limit = *host_dev->dma_mask; 1613 1614 return bounce_limit; 1615 } 1616 EXPORT_SYMBOL(scsi_calculate_bounce_limit); 1617 1618 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost, 1619 request_fn_proc *request_fn) 1620 { 1621 struct request_queue *q; 1622 struct device *dev = shost->shost_gendev.parent; 1623 1624 q = blk_init_queue(request_fn, NULL); 1625 if (!q) 1626 return NULL; 1627 1628 /* 1629 * this limit is imposed by hardware restrictions 1630 */ 1631 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize, 1632 SCSI_MAX_SG_CHAIN_SEGMENTS)); 1633 1634 blk_queue_max_hw_sectors(q, shost->max_sectors); 1635 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost)); 1636 blk_queue_segment_boundary(q, shost->dma_boundary); 1637 dma_set_seg_boundary(dev, shost->dma_boundary); 1638 1639 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev)); 1640 1641 /* New queue, no concurrency on queue_flags */ 1642 if (!shost->use_clustering) 1643 queue_flag_clear_unlocked(QUEUE_FLAG_CLUSTER, q); 1644 1645 /* 1646 * set a reasonable default alignment on word boundaries: the 1647 * host and device may alter it using 1648 * blk_queue_update_dma_alignment() later. 1649 */ 1650 blk_queue_dma_alignment(q, 0x03); 1651 1652 return q; 1653 } 1654 EXPORT_SYMBOL(__scsi_alloc_queue); 1655 1656 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev) 1657 { 1658 struct request_queue *q; 1659 1660 q = __scsi_alloc_queue(sdev->host, scsi_request_fn); 1661 if (!q) 1662 return NULL; 1663 1664 blk_queue_prep_rq(q, scsi_prep_fn); 1665 blk_queue_softirq_done(q, scsi_softirq_done); 1666 blk_queue_rq_timed_out(q, scsi_times_out); 1667 blk_queue_lld_busy(q, scsi_lld_busy); 1668 return q; 1669 } 1670 1671 void scsi_free_queue(struct request_queue *q) 1672 { 1673 blk_cleanup_queue(q); 1674 } 1675 1676 /* 1677 * Function: scsi_block_requests() 1678 * 1679 * Purpose: Utility function used by low-level drivers to prevent further 1680 * commands from being queued to the device. 1681 * 1682 * Arguments: shost - Host in question 1683 * 1684 * Returns: Nothing 1685 * 1686 * Lock status: No locks are assumed held. 1687 * 1688 * Notes: There is no timer nor any other means by which the requests 1689 * get unblocked other than the low-level driver calling 1690 * scsi_unblock_requests(). 1691 */ 1692 void scsi_block_requests(struct Scsi_Host *shost) 1693 { 1694 shost->host_self_blocked = 1; 1695 } 1696 EXPORT_SYMBOL(scsi_block_requests); 1697 1698 /* 1699 * Function: scsi_unblock_requests() 1700 * 1701 * Purpose: Utility function used by low-level drivers to allow further 1702 * commands from being queued to the device. 1703 * 1704 * Arguments: shost - Host in question 1705 * 1706 * Returns: Nothing 1707 * 1708 * Lock status: No locks are assumed held. 1709 * 1710 * Notes: There is no timer nor any other means by which the requests 1711 * get unblocked other than the low-level driver calling 1712 * scsi_unblock_requests(). 1713 * 1714 * This is done as an API function so that changes to the 1715 * internals of the scsi mid-layer won't require wholesale 1716 * changes to drivers that use this feature. 1717 */ 1718 void scsi_unblock_requests(struct Scsi_Host *shost) 1719 { 1720 shost->host_self_blocked = 0; 1721 scsi_run_host_queues(shost); 1722 } 1723 EXPORT_SYMBOL(scsi_unblock_requests); 1724 1725 int __init scsi_init_queue(void) 1726 { 1727 int i; 1728 1729 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer", 1730 sizeof(struct scsi_data_buffer), 1731 0, 0, NULL); 1732 if (!scsi_sdb_cache) { 1733 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n"); 1734 return -ENOMEM; 1735 } 1736 1737 for (i = 0; i < SG_MEMPOOL_NR; i++) { 1738 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i; 1739 int size = sgp->size * sizeof(struct scatterlist); 1740 1741 sgp->slab = kmem_cache_create(sgp->name, size, 0, 1742 SLAB_HWCACHE_ALIGN, NULL); 1743 if (!sgp->slab) { 1744 printk(KERN_ERR "SCSI: can't init sg slab %s\n", 1745 sgp->name); 1746 goto cleanup_sdb; 1747 } 1748 1749 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE, 1750 sgp->slab); 1751 if (!sgp->pool) { 1752 printk(KERN_ERR "SCSI: can't init sg mempool %s\n", 1753 sgp->name); 1754 goto cleanup_sdb; 1755 } 1756 } 1757 1758 return 0; 1759 1760 cleanup_sdb: 1761 for (i = 0; i < SG_MEMPOOL_NR; i++) { 1762 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i; 1763 if (sgp->pool) 1764 mempool_destroy(sgp->pool); 1765 if (sgp->slab) 1766 kmem_cache_destroy(sgp->slab); 1767 } 1768 kmem_cache_destroy(scsi_sdb_cache); 1769 1770 return -ENOMEM; 1771 } 1772 1773 void scsi_exit_queue(void) 1774 { 1775 int i; 1776 1777 kmem_cache_destroy(scsi_sdb_cache); 1778 1779 for (i = 0; i < SG_MEMPOOL_NR; i++) { 1780 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i; 1781 mempool_destroy(sgp->pool); 1782 kmem_cache_destroy(sgp->slab); 1783 } 1784 } 1785 1786 /** 1787 * scsi_mode_select - issue a mode select 1788 * @sdev: SCSI device to be queried 1789 * @pf: Page format bit (1 == standard, 0 == vendor specific) 1790 * @sp: Save page bit (0 == don't save, 1 == save) 1791 * @modepage: mode page being requested 1792 * @buffer: request buffer (may not be smaller than eight bytes) 1793 * @len: length of request buffer. 1794 * @timeout: command timeout 1795 * @retries: number of retries before failing 1796 * @data: returns a structure abstracting the mode header data 1797 * @sshdr: place to put sense data (or NULL if no sense to be collected). 1798 * must be SCSI_SENSE_BUFFERSIZE big. 1799 * 1800 * Returns zero if successful; negative error number or scsi 1801 * status on error 1802 * 1803 */ 1804 int 1805 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage, 1806 unsigned char *buffer, int len, int timeout, int retries, 1807 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 1808 { 1809 unsigned char cmd[10]; 1810 unsigned char *real_buffer; 1811 int ret; 1812 1813 memset(cmd, 0, sizeof(cmd)); 1814 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0); 1815 1816 if (sdev->use_10_for_ms) { 1817 if (len > 65535) 1818 return -EINVAL; 1819 real_buffer = kmalloc(8 + len, GFP_KERNEL); 1820 if (!real_buffer) 1821 return -ENOMEM; 1822 memcpy(real_buffer + 8, buffer, len); 1823 len += 8; 1824 real_buffer[0] = 0; 1825 real_buffer[1] = 0; 1826 real_buffer[2] = data->medium_type; 1827 real_buffer[3] = data->device_specific; 1828 real_buffer[4] = data->longlba ? 0x01 : 0; 1829 real_buffer[5] = 0; 1830 real_buffer[6] = data->block_descriptor_length >> 8; 1831 real_buffer[7] = data->block_descriptor_length; 1832 1833 cmd[0] = MODE_SELECT_10; 1834 cmd[7] = len >> 8; 1835 cmd[8] = len; 1836 } else { 1837 if (len > 255 || data->block_descriptor_length > 255 || 1838 data->longlba) 1839 return -EINVAL; 1840 1841 real_buffer = kmalloc(4 + len, GFP_KERNEL); 1842 if (!real_buffer) 1843 return -ENOMEM; 1844 memcpy(real_buffer + 4, buffer, len); 1845 len += 4; 1846 real_buffer[0] = 0; 1847 real_buffer[1] = data->medium_type; 1848 real_buffer[2] = data->device_specific; 1849 real_buffer[3] = data->block_descriptor_length; 1850 1851 1852 cmd[0] = MODE_SELECT; 1853 cmd[4] = len; 1854 } 1855 1856 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len, 1857 sshdr, timeout, retries, NULL); 1858 kfree(real_buffer); 1859 return ret; 1860 } 1861 EXPORT_SYMBOL_GPL(scsi_mode_select); 1862 1863 /** 1864 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary. 1865 * @sdev: SCSI device to be queried 1866 * @dbd: set if mode sense will allow block descriptors to be returned 1867 * @modepage: mode page being requested 1868 * @buffer: request buffer (may not be smaller than eight bytes) 1869 * @len: length of request buffer. 1870 * @timeout: command timeout 1871 * @retries: number of retries before failing 1872 * @data: returns a structure abstracting the mode header data 1873 * @sshdr: place to put sense data (or NULL if no sense to be collected). 1874 * must be SCSI_SENSE_BUFFERSIZE big. 1875 * 1876 * Returns zero if unsuccessful, or the header offset (either 4 1877 * or 8 depending on whether a six or ten byte command was 1878 * issued) if successful. 1879 */ 1880 int 1881 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, 1882 unsigned char *buffer, int len, int timeout, int retries, 1883 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 1884 { 1885 unsigned char cmd[12]; 1886 int use_10_for_ms; 1887 int header_length; 1888 int result; 1889 struct scsi_sense_hdr my_sshdr; 1890 1891 memset(data, 0, sizeof(*data)); 1892 memset(&cmd[0], 0, 12); 1893 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */ 1894 cmd[2] = modepage; 1895 1896 /* caller might not be interested in sense, but we need it */ 1897 if (!sshdr) 1898 sshdr = &my_sshdr; 1899 1900 retry: 1901 use_10_for_ms = sdev->use_10_for_ms; 1902 1903 if (use_10_for_ms) { 1904 if (len < 8) 1905 len = 8; 1906 1907 cmd[0] = MODE_SENSE_10; 1908 cmd[8] = len; 1909 header_length = 8; 1910 } else { 1911 if (len < 4) 1912 len = 4; 1913 1914 cmd[0] = MODE_SENSE; 1915 cmd[4] = len; 1916 header_length = 4; 1917 } 1918 1919 memset(buffer, 0, len); 1920 1921 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len, 1922 sshdr, timeout, retries, NULL); 1923 1924 /* This code looks awful: what it's doing is making sure an 1925 * ILLEGAL REQUEST sense return identifies the actual command 1926 * byte as the problem. MODE_SENSE commands can return 1927 * ILLEGAL REQUEST if the code page isn't supported */ 1928 1929 if (use_10_for_ms && !scsi_status_is_good(result) && 1930 (driver_byte(result) & DRIVER_SENSE)) { 1931 if (scsi_sense_valid(sshdr)) { 1932 if ((sshdr->sense_key == ILLEGAL_REQUEST) && 1933 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) { 1934 /* 1935 * Invalid command operation code 1936 */ 1937 sdev->use_10_for_ms = 0; 1938 goto retry; 1939 } 1940 } 1941 } 1942 1943 if(scsi_status_is_good(result)) { 1944 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b && 1945 (modepage == 6 || modepage == 8))) { 1946 /* Initio breakage? */ 1947 header_length = 0; 1948 data->length = 13; 1949 data->medium_type = 0; 1950 data->device_specific = 0; 1951 data->longlba = 0; 1952 data->block_descriptor_length = 0; 1953 } else if(use_10_for_ms) { 1954 data->length = buffer[0]*256 + buffer[1] + 2; 1955 data->medium_type = buffer[2]; 1956 data->device_specific = buffer[3]; 1957 data->longlba = buffer[4] & 0x01; 1958 data->block_descriptor_length = buffer[6]*256 1959 + buffer[7]; 1960 } else { 1961 data->length = buffer[0] + 1; 1962 data->medium_type = buffer[1]; 1963 data->device_specific = buffer[2]; 1964 data->block_descriptor_length = buffer[3]; 1965 } 1966 data->header_length = header_length; 1967 } 1968 1969 return result; 1970 } 1971 EXPORT_SYMBOL(scsi_mode_sense); 1972 1973 /** 1974 * scsi_test_unit_ready - test if unit is ready 1975 * @sdev: scsi device to change the state of. 1976 * @timeout: command timeout 1977 * @retries: number of retries before failing 1978 * @sshdr_external: Optional pointer to struct scsi_sense_hdr for 1979 * returning sense. Make sure that this is cleared before passing 1980 * in. 1981 * 1982 * Returns zero if unsuccessful or an error if TUR failed. For 1983 * removable media, a return of NOT_READY or UNIT_ATTENTION is 1984 * translated to success, with the ->changed flag updated. 1985 **/ 1986 int 1987 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries, 1988 struct scsi_sense_hdr *sshdr_external) 1989 { 1990 char cmd[] = { 1991 TEST_UNIT_READY, 0, 0, 0, 0, 0, 1992 }; 1993 struct scsi_sense_hdr *sshdr; 1994 int result; 1995 1996 if (!sshdr_external) 1997 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL); 1998 else 1999 sshdr = sshdr_external; 2000 2001 /* try to eat the UNIT_ATTENTION if there are enough retries */ 2002 do { 2003 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr, 2004 timeout, retries, NULL); 2005 if (sdev->removable && scsi_sense_valid(sshdr) && 2006 sshdr->sense_key == UNIT_ATTENTION) 2007 sdev->changed = 1; 2008 } while (scsi_sense_valid(sshdr) && 2009 sshdr->sense_key == UNIT_ATTENTION && --retries); 2010 2011 if (!sshdr) 2012 /* could not allocate sense buffer, so can't process it */ 2013 return result; 2014 2015 if (sdev->removable && scsi_sense_valid(sshdr) && 2016 (sshdr->sense_key == UNIT_ATTENTION || 2017 sshdr->sense_key == NOT_READY)) { 2018 sdev->changed = 1; 2019 result = 0; 2020 } 2021 if (!sshdr_external) 2022 kfree(sshdr); 2023 return result; 2024 } 2025 EXPORT_SYMBOL(scsi_test_unit_ready); 2026 2027 /** 2028 * scsi_device_set_state - Take the given device through the device state model. 2029 * @sdev: scsi device to change the state of. 2030 * @state: state to change to. 2031 * 2032 * Returns zero if unsuccessful or an error if the requested 2033 * transition is illegal. 2034 */ 2035 int 2036 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state) 2037 { 2038 enum scsi_device_state oldstate = sdev->sdev_state; 2039 2040 if (state == oldstate) 2041 return 0; 2042 2043 switch (state) { 2044 case SDEV_CREATED: 2045 switch (oldstate) { 2046 case SDEV_CREATED_BLOCK: 2047 break; 2048 default: 2049 goto illegal; 2050 } 2051 break; 2052 2053 case SDEV_RUNNING: 2054 switch (oldstate) { 2055 case SDEV_CREATED: 2056 case SDEV_OFFLINE: 2057 case SDEV_QUIESCE: 2058 case SDEV_BLOCK: 2059 break; 2060 default: 2061 goto illegal; 2062 } 2063 break; 2064 2065 case SDEV_QUIESCE: 2066 switch (oldstate) { 2067 case SDEV_RUNNING: 2068 case SDEV_OFFLINE: 2069 break; 2070 default: 2071 goto illegal; 2072 } 2073 break; 2074 2075 case SDEV_OFFLINE: 2076 switch (oldstate) { 2077 case SDEV_CREATED: 2078 case SDEV_RUNNING: 2079 case SDEV_QUIESCE: 2080 case SDEV_BLOCK: 2081 break; 2082 default: 2083 goto illegal; 2084 } 2085 break; 2086 2087 case SDEV_BLOCK: 2088 switch (oldstate) { 2089 case SDEV_RUNNING: 2090 case SDEV_CREATED_BLOCK: 2091 break; 2092 default: 2093 goto illegal; 2094 } 2095 break; 2096 2097 case SDEV_CREATED_BLOCK: 2098 switch (oldstate) { 2099 case SDEV_CREATED: 2100 break; 2101 default: 2102 goto illegal; 2103 } 2104 break; 2105 2106 case SDEV_CANCEL: 2107 switch (oldstate) { 2108 case SDEV_CREATED: 2109 case SDEV_RUNNING: 2110 case SDEV_QUIESCE: 2111 case SDEV_OFFLINE: 2112 case SDEV_BLOCK: 2113 break; 2114 default: 2115 goto illegal; 2116 } 2117 break; 2118 2119 case SDEV_DEL: 2120 switch (oldstate) { 2121 case SDEV_CREATED: 2122 case SDEV_RUNNING: 2123 case SDEV_OFFLINE: 2124 case SDEV_CANCEL: 2125 break; 2126 default: 2127 goto illegal; 2128 } 2129 break; 2130 2131 } 2132 sdev->sdev_state = state; 2133 return 0; 2134 2135 illegal: 2136 SCSI_LOG_ERROR_RECOVERY(1, 2137 sdev_printk(KERN_ERR, sdev, 2138 "Illegal state transition %s->%s\n", 2139 scsi_device_state_name(oldstate), 2140 scsi_device_state_name(state)) 2141 ); 2142 return -EINVAL; 2143 } 2144 EXPORT_SYMBOL(scsi_device_set_state); 2145 2146 /** 2147 * sdev_evt_emit - emit a single SCSI device uevent 2148 * @sdev: associated SCSI device 2149 * @evt: event to emit 2150 * 2151 * Send a single uevent (scsi_event) to the associated scsi_device. 2152 */ 2153 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt) 2154 { 2155 int idx = 0; 2156 char *envp[3]; 2157 2158 switch (evt->evt_type) { 2159 case SDEV_EVT_MEDIA_CHANGE: 2160 envp[idx++] = "SDEV_MEDIA_CHANGE=1"; 2161 break; 2162 2163 default: 2164 /* do nothing */ 2165 break; 2166 } 2167 2168 envp[idx++] = NULL; 2169 2170 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp); 2171 } 2172 2173 /** 2174 * sdev_evt_thread - send a uevent for each scsi event 2175 * @work: work struct for scsi_device 2176 * 2177 * Dispatch queued events to their associated scsi_device kobjects 2178 * as uevents. 2179 */ 2180 void scsi_evt_thread(struct work_struct *work) 2181 { 2182 struct scsi_device *sdev; 2183 LIST_HEAD(event_list); 2184 2185 sdev = container_of(work, struct scsi_device, event_work); 2186 2187 while (1) { 2188 struct scsi_event *evt; 2189 struct list_head *this, *tmp; 2190 unsigned long flags; 2191 2192 spin_lock_irqsave(&sdev->list_lock, flags); 2193 list_splice_init(&sdev->event_list, &event_list); 2194 spin_unlock_irqrestore(&sdev->list_lock, flags); 2195 2196 if (list_empty(&event_list)) 2197 break; 2198 2199 list_for_each_safe(this, tmp, &event_list) { 2200 evt = list_entry(this, struct scsi_event, node); 2201 list_del(&evt->node); 2202 scsi_evt_emit(sdev, evt); 2203 kfree(evt); 2204 } 2205 } 2206 } 2207 2208 /** 2209 * sdev_evt_send - send asserted event to uevent thread 2210 * @sdev: scsi_device event occurred on 2211 * @evt: event to send 2212 * 2213 * Assert scsi device event asynchronously. 2214 */ 2215 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt) 2216 { 2217 unsigned long flags; 2218 2219 #if 0 2220 /* FIXME: currently this check eliminates all media change events 2221 * for polled devices. Need to update to discriminate between AN 2222 * and polled events */ 2223 if (!test_bit(evt->evt_type, sdev->supported_events)) { 2224 kfree(evt); 2225 return; 2226 } 2227 #endif 2228 2229 spin_lock_irqsave(&sdev->list_lock, flags); 2230 list_add_tail(&evt->node, &sdev->event_list); 2231 schedule_work(&sdev->event_work); 2232 spin_unlock_irqrestore(&sdev->list_lock, flags); 2233 } 2234 EXPORT_SYMBOL_GPL(sdev_evt_send); 2235 2236 /** 2237 * sdev_evt_alloc - allocate a new scsi event 2238 * @evt_type: type of event to allocate 2239 * @gfpflags: GFP flags for allocation 2240 * 2241 * Allocates and returns a new scsi_event. 2242 */ 2243 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type, 2244 gfp_t gfpflags) 2245 { 2246 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags); 2247 if (!evt) 2248 return NULL; 2249 2250 evt->evt_type = evt_type; 2251 INIT_LIST_HEAD(&evt->node); 2252 2253 /* evt_type-specific initialization, if any */ 2254 switch (evt_type) { 2255 case SDEV_EVT_MEDIA_CHANGE: 2256 default: 2257 /* do nothing */ 2258 break; 2259 } 2260 2261 return evt; 2262 } 2263 EXPORT_SYMBOL_GPL(sdev_evt_alloc); 2264 2265 /** 2266 * sdev_evt_send_simple - send asserted event to uevent thread 2267 * @sdev: scsi_device event occurred on 2268 * @evt_type: type of event to send 2269 * @gfpflags: GFP flags for allocation 2270 * 2271 * Assert scsi device event asynchronously, given an event type. 2272 */ 2273 void sdev_evt_send_simple(struct scsi_device *sdev, 2274 enum scsi_device_event evt_type, gfp_t gfpflags) 2275 { 2276 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags); 2277 if (!evt) { 2278 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n", 2279 evt_type); 2280 return; 2281 } 2282 2283 sdev_evt_send(sdev, evt); 2284 } 2285 EXPORT_SYMBOL_GPL(sdev_evt_send_simple); 2286 2287 /** 2288 * scsi_device_quiesce - Block user issued commands. 2289 * @sdev: scsi device to quiesce. 2290 * 2291 * This works by trying to transition to the SDEV_QUIESCE state 2292 * (which must be a legal transition). When the device is in this 2293 * state, only special requests will be accepted, all others will 2294 * be deferred. Since special requests may also be requeued requests, 2295 * a successful return doesn't guarantee the device will be 2296 * totally quiescent. 2297 * 2298 * Must be called with user context, may sleep. 2299 * 2300 * Returns zero if unsuccessful or an error if not. 2301 */ 2302 int 2303 scsi_device_quiesce(struct scsi_device *sdev) 2304 { 2305 int err = scsi_device_set_state(sdev, SDEV_QUIESCE); 2306 if (err) 2307 return err; 2308 2309 scsi_run_queue(sdev->request_queue); 2310 while (sdev->device_busy) { 2311 msleep_interruptible(200); 2312 scsi_run_queue(sdev->request_queue); 2313 } 2314 return 0; 2315 } 2316 EXPORT_SYMBOL(scsi_device_quiesce); 2317 2318 /** 2319 * scsi_device_resume - Restart user issued commands to a quiesced device. 2320 * @sdev: scsi device to resume. 2321 * 2322 * Moves the device from quiesced back to running and restarts the 2323 * queues. 2324 * 2325 * Must be called with user context, may sleep. 2326 */ 2327 void 2328 scsi_device_resume(struct scsi_device *sdev) 2329 { 2330 if(scsi_device_set_state(sdev, SDEV_RUNNING)) 2331 return; 2332 scsi_run_queue(sdev->request_queue); 2333 } 2334 EXPORT_SYMBOL(scsi_device_resume); 2335 2336 static void 2337 device_quiesce_fn(struct scsi_device *sdev, void *data) 2338 { 2339 scsi_device_quiesce(sdev); 2340 } 2341 2342 void 2343 scsi_target_quiesce(struct scsi_target *starget) 2344 { 2345 starget_for_each_device(starget, NULL, device_quiesce_fn); 2346 } 2347 EXPORT_SYMBOL(scsi_target_quiesce); 2348 2349 static void 2350 device_resume_fn(struct scsi_device *sdev, void *data) 2351 { 2352 scsi_device_resume(sdev); 2353 } 2354 2355 void 2356 scsi_target_resume(struct scsi_target *starget) 2357 { 2358 starget_for_each_device(starget, NULL, device_resume_fn); 2359 } 2360 EXPORT_SYMBOL(scsi_target_resume); 2361 2362 /** 2363 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state 2364 * @sdev: device to block 2365 * 2366 * Block request made by scsi lld's to temporarily stop all 2367 * scsi commands on the specified device. Called from interrupt 2368 * or normal process context. 2369 * 2370 * Returns zero if successful or error if not 2371 * 2372 * Notes: 2373 * This routine transitions the device to the SDEV_BLOCK state 2374 * (which must be a legal transition). When the device is in this 2375 * state, all commands are deferred until the scsi lld reenables 2376 * the device with scsi_device_unblock or device_block_tmo fires. 2377 * This routine assumes the host_lock is held on entry. 2378 */ 2379 int 2380 scsi_internal_device_block(struct scsi_device *sdev) 2381 { 2382 struct request_queue *q = sdev->request_queue; 2383 unsigned long flags; 2384 int err = 0; 2385 2386 err = scsi_device_set_state(sdev, SDEV_BLOCK); 2387 if (err) { 2388 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK); 2389 2390 if (err) 2391 return err; 2392 } 2393 2394 /* 2395 * The device has transitioned to SDEV_BLOCK. Stop the 2396 * block layer from calling the midlayer with this device's 2397 * request queue. 2398 */ 2399 spin_lock_irqsave(q->queue_lock, flags); 2400 blk_stop_queue(q); 2401 spin_unlock_irqrestore(q->queue_lock, flags); 2402 2403 return 0; 2404 } 2405 EXPORT_SYMBOL_GPL(scsi_internal_device_block); 2406 2407 /** 2408 * scsi_internal_device_unblock - resume a device after a block request 2409 * @sdev: device to resume 2410 * 2411 * Called by scsi lld's or the midlayer to restart the device queue 2412 * for the previously suspended scsi device. Called from interrupt or 2413 * normal process context. 2414 * 2415 * Returns zero if successful or error if not. 2416 * 2417 * Notes: 2418 * This routine transitions the device to the SDEV_RUNNING state 2419 * (which must be a legal transition) allowing the midlayer to 2420 * goose the queue for this device. This routine assumes the 2421 * host_lock is held upon entry. 2422 */ 2423 int 2424 scsi_internal_device_unblock(struct scsi_device *sdev) 2425 { 2426 struct request_queue *q = sdev->request_queue; 2427 unsigned long flags; 2428 2429 /* 2430 * Try to transition the scsi device to SDEV_RUNNING 2431 * and goose the device queue if successful. 2432 */ 2433 if (sdev->sdev_state == SDEV_BLOCK) 2434 sdev->sdev_state = SDEV_RUNNING; 2435 else if (sdev->sdev_state == SDEV_CREATED_BLOCK) 2436 sdev->sdev_state = SDEV_CREATED; 2437 else 2438 return -EINVAL; 2439 2440 spin_lock_irqsave(q->queue_lock, flags); 2441 blk_start_queue(q); 2442 spin_unlock_irqrestore(q->queue_lock, flags); 2443 2444 return 0; 2445 } 2446 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock); 2447 2448 static void 2449 device_block(struct scsi_device *sdev, void *data) 2450 { 2451 scsi_internal_device_block(sdev); 2452 } 2453 2454 static int 2455 target_block(struct device *dev, void *data) 2456 { 2457 if (scsi_is_target_device(dev)) 2458 starget_for_each_device(to_scsi_target(dev), NULL, 2459 device_block); 2460 return 0; 2461 } 2462 2463 void 2464 scsi_target_block(struct device *dev) 2465 { 2466 if (scsi_is_target_device(dev)) 2467 starget_for_each_device(to_scsi_target(dev), NULL, 2468 device_block); 2469 else 2470 device_for_each_child(dev, NULL, target_block); 2471 } 2472 EXPORT_SYMBOL_GPL(scsi_target_block); 2473 2474 static void 2475 device_unblock(struct scsi_device *sdev, void *data) 2476 { 2477 scsi_internal_device_unblock(sdev); 2478 } 2479 2480 static int 2481 target_unblock(struct device *dev, void *data) 2482 { 2483 if (scsi_is_target_device(dev)) 2484 starget_for_each_device(to_scsi_target(dev), NULL, 2485 device_unblock); 2486 return 0; 2487 } 2488 2489 void 2490 scsi_target_unblock(struct device *dev) 2491 { 2492 if (scsi_is_target_device(dev)) 2493 starget_for_each_device(to_scsi_target(dev), NULL, 2494 device_unblock); 2495 else 2496 device_for_each_child(dev, NULL, target_unblock); 2497 } 2498 EXPORT_SYMBOL_GPL(scsi_target_unblock); 2499 2500 /** 2501 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt 2502 * @sgl: scatter-gather list 2503 * @sg_count: number of segments in sg 2504 * @offset: offset in bytes into sg, on return offset into the mapped area 2505 * @len: bytes to map, on return number of bytes mapped 2506 * 2507 * Returns virtual address of the start of the mapped page 2508 */ 2509 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count, 2510 size_t *offset, size_t *len) 2511 { 2512 int i; 2513 size_t sg_len = 0, len_complete = 0; 2514 struct scatterlist *sg; 2515 struct page *page; 2516 2517 WARN_ON(!irqs_disabled()); 2518 2519 for_each_sg(sgl, sg, sg_count, i) { 2520 len_complete = sg_len; /* Complete sg-entries */ 2521 sg_len += sg->length; 2522 if (sg_len > *offset) 2523 break; 2524 } 2525 2526 if (unlikely(i == sg_count)) { 2527 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, " 2528 "elements %d\n", 2529 __func__, sg_len, *offset, sg_count); 2530 WARN_ON(1); 2531 return NULL; 2532 } 2533 2534 /* Offset starting from the beginning of first page in this sg-entry */ 2535 *offset = *offset - len_complete + sg->offset; 2536 2537 /* Assumption: contiguous pages can be accessed as "page + i" */ 2538 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT)); 2539 *offset &= ~PAGE_MASK; 2540 2541 /* Bytes in this sg-entry from *offset to the end of the page */ 2542 sg_len = PAGE_SIZE - *offset; 2543 if (*len > sg_len) 2544 *len = sg_len; 2545 2546 return kmap_atomic(page, KM_BIO_SRC_IRQ); 2547 } 2548 EXPORT_SYMBOL(scsi_kmap_atomic_sg); 2549 2550 /** 2551 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg 2552 * @virt: virtual address to be unmapped 2553 */ 2554 void scsi_kunmap_atomic_sg(void *virt) 2555 { 2556 kunmap_atomic(virt, KM_BIO_SRC_IRQ); 2557 } 2558 EXPORT_SYMBOL(scsi_kunmap_atomic_sg); 2559