xref: /linux/drivers/scsi/scsi_lib.c (revision cc4589ebfae6f8dbb5cf880a0a67eedab3416492)
1 /*
2  *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3  *
4  *  SCSI queueing library.
5  *      Initial versions: Eric Youngdale (eric@andante.org).
6  *                        Based upon conversations with large numbers
7  *                        of people at Linux Expo.
8  */
9 
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/mempool.h>
16 #include <linux/slab.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
22 
23 #include <scsi/scsi.h>
24 #include <scsi/scsi_cmnd.h>
25 #include <scsi/scsi_dbg.h>
26 #include <scsi/scsi_device.h>
27 #include <scsi/scsi_driver.h>
28 #include <scsi/scsi_eh.h>
29 #include <scsi/scsi_host.h>
30 
31 #include "scsi_priv.h"
32 #include "scsi_logging.h"
33 
34 
35 #define SG_MEMPOOL_NR		ARRAY_SIZE(scsi_sg_pools)
36 #define SG_MEMPOOL_SIZE		2
37 
38 struct scsi_host_sg_pool {
39 	size_t		size;
40 	char		*name;
41 	struct kmem_cache	*slab;
42 	mempool_t	*pool;
43 };
44 
45 #define SP(x) { x, "sgpool-" __stringify(x) }
46 #if (SCSI_MAX_SG_SEGMENTS < 32)
47 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
48 #endif
49 static struct scsi_host_sg_pool scsi_sg_pools[] = {
50 	SP(8),
51 	SP(16),
52 #if (SCSI_MAX_SG_SEGMENTS > 32)
53 	SP(32),
54 #if (SCSI_MAX_SG_SEGMENTS > 64)
55 	SP(64),
56 #if (SCSI_MAX_SG_SEGMENTS > 128)
57 	SP(128),
58 #if (SCSI_MAX_SG_SEGMENTS > 256)
59 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
60 #endif
61 #endif
62 #endif
63 #endif
64 	SP(SCSI_MAX_SG_SEGMENTS)
65 };
66 #undef SP
67 
68 struct kmem_cache *scsi_sdb_cache;
69 
70 static void scsi_run_queue(struct request_queue *q);
71 
72 /*
73  * Function:	scsi_unprep_request()
74  *
75  * Purpose:	Remove all preparation done for a request, including its
76  *		associated scsi_cmnd, so that it can be requeued.
77  *
78  * Arguments:	req	- request to unprepare
79  *
80  * Lock status:	Assumed that no locks are held upon entry.
81  *
82  * Returns:	Nothing.
83  */
84 static void scsi_unprep_request(struct request *req)
85 {
86 	struct scsi_cmnd *cmd = req->special;
87 
88 	blk_unprep_request(req);
89 	req->special = NULL;
90 
91 	scsi_put_command(cmd);
92 }
93 
94 /**
95  * __scsi_queue_insert - private queue insertion
96  * @cmd: The SCSI command being requeued
97  * @reason:  The reason for the requeue
98  * @unbusy: Whether the queue should be unbusied
99  *
100  * This is a private queue insertion.  The public interface
101  * scsi_queue_insert() always assumes the queue should be unbusied
102  * because it's always called before the completion.  This function is
103  * for a requeue after completion, which should only occur in this
104  * file.
105  */
106 static int __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
107 {
108 	struct Scsi_Host *host = cmd->device->host;
109 	struct scsi_device *device = cmd->device;
110 	struct scsi_target *starget = scsi_target(device);
111 	struct request_queue *q = device->request_queue;
112 	unsigned long flags;
113 
114 	SCSI_LOG_MLQUEUE(1,
115 		 printk("Inserting command %p into mlqueue\n", cmd));
116 
117 	/*
118 	 * Set the appropriate busy bit for the device/host.
119 	 *
120 	 * If the host/device isn't busy, assume that something actually
121 	 * completed, and that we should be able to queue a command now.
122 	 *
123 	 * Note that the prior mid-layer assumption that any host could
124 	 * always queue at least one command is now broken.  The mid-layer
125 	 * will implement a user specifiable stall (see
126 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
127 	 * if a command is requeued with no other commands outstanding
128 	 * either for the device or for the host.
129 	 */
130 	switch (reason) {
131 	case SCSI_MLQUEUE_HOST_BUSY:
132 		host->host_blocked = host->max_host_blocked;
133 		break;
134 	case SCSI_MLQUEUE_DEVICE_BUSY:
135 		device->device_blocked = device->max_device_blocked;
136 		break;
137 	case SCSI_MLQUEUE_TARGET_BUSY:
138 		starget->target_blocked = starget->max_target_blocked;
139 		break;
140 	}
141 
142 	/*
143 	 * Decrement the counters, since these commands are no longer
144 	 * active on the host/device.
145 	 */
146 	if (unbusy)
147 		scsi_device_unbusy(device);
148 
149 	/*
150 	 * Requeue this command.  It will go before all other commands
151 	 * that are already in the queue.
152 	 *
153 	 * NOTE: there is magic here about the way the queue is plugged if
154 	 * we have no outstanding commands.
155 	 *
156 	 * Although we *don't* plug the queue, we call the request
157 	 * function.  The SCSI request function detects the blocked condition
158 	 * and plugs the queue appropriately.
159          */
160 	spin_lock_irqsave(q->queue_lock, flags);
161 	blk_requeue_request(q, cmd->request);
162 	spin_unlock_irqrestore(q->queue_lock, flags);
163 
164 	scsi_run_queue(q);
165 
166 	return 0;
167 }
168 
169 /*
170  * Function:    scsi_queue_insert()
171  *
172  * Purpose:     Insert a command in the midlevel queue.
173  *
174  * Arguments:   cmd    - command that we are adding to queue.
175  *              reason - why we are inserting command to queue.
176  *
177  * Lock status: Assumed that lock is not held upon entry.
178  *
179  * Returns:     Nothing.
180  *
181  * Notes:       We do this for one of two cases.  Either the host is busy
182  *              and it cannot accept any more commands for the time being,
183  *              or the device returned QUEUE_FULL and can accept no more
184  *              commands.
185  * Notes:       This could be called either from an interrupt context or a
186  *              normal process context.
187  */
188 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
189 {
190 	return __scsi_queue_insert(cmd, reason, 1);
191 }
192 /**
193  * scsi_execute - insert request and wait for the result
194  * @sdev:	scsi device
195  * @cmd:	scsi command
196  * @data_direction: data direction
197  * @buffer:	data buffer
198  * @bufflen:	len of buffer
199  * @sense:	optional sense buffer
200  * @timeout:	request timeout in seconds
201  * @retries:	number of times to retry request
202  * @flags:	or into request flags;
203  * @resid:	optional residual length
204  *
205  * returns the req->errors value which is the scsi_cmnd result
206  * field.
207  */
208 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
209 		 int data_direction, void *buffer, unsigned bufflen,
210 		 unsigned char *sense, int timeout, int retries, int flags,
211 		 int *resid)
212 {
213 	struct request *req;
214 	int write = (data_direction == DMA_TO_DEVICE);
215 	int ret = DRIVER_ERROR << 24;
216 
217 	req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
218 
219 	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
220 					buffer, bufflen, __GFP_WAIT))
221 		goto out;
222 
223 	req->cmd_len = COMMAND_SIZE(cmd[0]);
224 	memcpy(req->cmd, cmd, req->cmd_len);
225 	req->sense = sense;
226 	req->sense_len = 0;
227 	req->retries = retries;
228 	req->timeout = timeout;
229 	req->cmd_type = REQ_TYPE_BLOCK_PC;
230 	req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
231 
232 	/*
233 	 * head injection *required* here otherwise quiesce won't work
234 	 */
235 	blk_execute_rq(req->q, NULL, req, 1);
236 
237 	/*
238 	 * Some devices (USB mass-storage in particular) may transfer
239 	 * garbage data together with a residue indicating that the data
240 	 * is invalid.  Prevent the garbage from being misinterpreted
241 	 * and prevent security leaks by zeroing out the excess data.
242 	 */
243 	if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
244 		memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
245 
246 	if (resid)
247 		*resid = req->resid_len;
248 	ret = req->errors;
249  out:
250 	blk_put_request(req);
251 
252 	return ret;
253 }
254 EXPORT_SYMBOL(scsi_execute);
255 
256 
257 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
258 		     int data_direction, void *buffer, unsigned bufflen,
259 		     struct scsi_sense_hdr *sshdr, int timeout, int retries,
260 		     int *resid)
261 {
262 	char *sense = NULL;
263 	int result;
264 
265 	if (sshdr) {
266 		sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
267 		if (!sense)
268 			return DRIVER_ERROR << 24;
269 	}
270 	result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
271 			      sense, timeout, retries, 0, resid);
272 	if (sshdr)
273 		scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
274 
275 	kfree(sense);
276 	return result;
277 }
278 EXPORT_SYMBOL(scsi_execute_req);
279 
280 /*
281  * Function:    scsi_init_cmd_errh()
282  *
283  * Purpose:     Initialize cmd fields related to error handling.
284  *
285  * Arguments:   cmd	- command that is ready to be queued.
286  *
287  * Notes:       This function has the job of initializing a number of
288  *              fields related to error handling.   Typically this will
289  *              be called once for each command, as required.
290  */
291 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
292 {
293 	cmd->serial_number = 0;
294 	scsi_set_resid(cmd, 0);
295 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
296 	if (cmd->cmd_len == 0)
297 		cmd->cmd_len = scsi_command_size(cmd->cmnd);
298 }
299 
300 void scsi_device_unbusy(struct scsi_device *sdev)
301 {
302 	struct Scsi_Host *shost = sdev->host;
303 	struct scsi_target *starget = scsi_target(sdev);
304 	unsigned long flags;
305 
306 	spin_lock_irqsave(shost->host_lock, flags);
307 	shost->host_busy--;
308 	starget->target_busy--;
309 	if (unlikely(scsi_host_in_recovery(shost) &&
310 		     (shost->host_failed || shost->host_eh_scheduled)))
311 		scsi_eh_wakeup(shost);
312 	spin_unlock(shost->host_lock);
313 	spin_lock(sdev->request_queue->queue_lock);
314 	sdev->device_busy--;
315 	spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
316 }
317 
318 /*
319  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
320  * and call blk_run_queue for all the scsi_devices on the target -
321  * including current_sdev first.
322  *
323  * Called with *no* scsi locks held.
324  */
325 static void scsi_single_lun_run(struct scsi_device *current_sdev)
326 {
327 	struct Scsi_Host *shost = current_sdev->host;
328 	struct scsi_device *sdev, *tmp;
329 	struct scsi_target *starget = scsi_target(current_sdev);
330 	unsigned long flags;
331 
332 	spin_lock_irqsave(shost->host_lock, flags);
333 	starget->starget_sdev_user = NULL;
334 	spin_unlock_irqrestore(shost->host_lock, flags);
335 
336 	/*
337 	 * Call blk_run_queue for all LUNs on the target, starting with
338 	 * current_sdev. We race with others (to set starget_sdev_user),
339 	 * but in most cases, we will be first. Ideally, each LU on the
340 	 * target would get some limited time or requests on the target.
341 	 */
342 	blk_run_queue(current_sdev->request_queue);
343 
344 	spin_lock_irqsave(shost->host_lock, flags);
345 	if (starget->starget_sdev_user)
346 		goto out;
347 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
348 			same_target_siblings) {
349 		if (sdev == current_sdev)
350 			continue;
351 		if (scsi_device_get(sdev))
352 			continue;
353 
354 		spin_unlock_irqrestore(shost->host_lock, flags);
355 		blk_run_queue(sdev->request_queue);
356 		spin_lock_irqsave(shost->host_lock, flags);
357 
358 		scsi_device_put(sdev);
359 	}
360  out:
361 	spin_unlock_irqrestore(shost->host_lock, flags);
362 }
363 
364 static inline int scsi_device_is_busy(struct scsi_device *sdev)
365 {
366 	if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
367 		return 1;
368 
369 	return 0;
370 }
371 
372 static inline int scsi_target_is_busy(struct scsi_target *starget)
373 {
374 	return ((starget->can_queue > 0 &&
375 		 starget->target_busy >= starget->can_queue) ||
376 		 starget->target_blocked);
377 }
378 
379 static inline int scsi_host_is_busy(struct Scsi_Host *shost)
380 {
381 	if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
382 	    shost->host_blocked || shost->host_self_blocked)
383 		return 1;
384 
385 	return 0;
386 }
387 
388 /*
389  * Function:	scsi_run_queue()
390  *
391  * Purpose:	Select a proper request queue to serve next
392  *
393  * Arguments:	q	- last request's queue
394  *
395  * Returns:     Nothing
396  *
397  * Notes:	The previous command was completely finished, start
398  *		a new one if possible.
399  */
400 static void scsi_run_queue(struct request_queue *q)
401 {
402 	struct scsi_device *sdev = q->queuedata;
403 	struct Scsi_Host *shost = sdev->host;
404 	LIST_HEAD(starved_list);
405 	unsigned long flags;
406 
407 	if (scsi_target(sdev)->single_lun)
408 		scsi_single_lun_run(sdev);
409 
410 	spin_lock_irqsave(shost->host_lock, flags);
411 	list_splice_init(&shost->starved_list, &starved_list);
412 
413 	while (!list_empty(&starved_list)) {
414 		int flagset;
415 
416 		/*
417 		 * As long as shost is accepting commands and we have
418 		 * starved queues, call blk_run_queue. scsi_request_fn
419 		 * drops the queue_lock and can add us back to the
420 		 * starved_list.
421 		 *
422 		 * host_lock protects the starved_list and starved_entry.
423 		 * scsi_request_fn must get the host_lock before checking
424 		 * or modifying starved_list or starved_entry.
425 		 */
426 		if (scsi_host_is_busy(shost))
427 			break;
428 
429 		sdev = list_entry(starved_list.next,
430 				  struct scsi_device, starved_entry);
431 		list_del_init(&sdev->starved_entry);
432 		if (scsi_target_is_busy(scsi_target(sdev))) {
433 			list_move_tail(&sdev->starved_entry,
434 				       &shost->starved_list);
435 			continue;
436 		}
437 
438 		spin_unlock(shost->host_lock);
439 
440 		spin_lock(sdev->request_queue->queue_lock);
441 		flagset = test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) &&
442 				!test_bit(QUEUE_FLAG_REENTER,
443 					&sdev->request_queue->queue_flags);
444 		if (flagset)
445 			queue_flag_set(QUEUE_FLAG_REENTER, sdev->request_queue);
446 		__blk_run_queue(sdev->request_queue);
447 		if (flagset)
448 			queue_flag_clear(QUEUE_FLAG_REENTER, sdev->request_queue);
449 		spin_unlock(sdev->request_queue->queue_lock);
450 
451 		spin_lock(shost->host_lock);
452 	}
453 	/* put any unprocessed entries back */
454 	list_splice(&starved_list, &shost->starved_list);
455 	spin_unlock_irqrestore(shost->host_lock, flags);
456 
457 	blk_run_queue(q);
458 }
459 
460 /*
461  * Function:	scsi_requeue_command()
462  *
463  * Purpose:	Handle post-processing of completed commands.
464  *
465  * Arguments:	q	- queue to operate on
466  *		cmd	- command that may need to be requeued.
467  *
468  * Returns:	Nothing
469  *
470  * Notes:	After command completion, there may be blocks left
471  *		over which weren't finished by the previous command
472  *		this can be for a number of reasons - the main one is
473  *		I/O errors in the middle of the request, in which case
474  *		we need to request the blocks that come after the bad
475  *		sector.
476  * Notes:	Upon return, cmd is a stale pointer.
477  */
478 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
479 {
480 	struct request *req = cmd->request;
481 	unsigned long flags;
482 
483 	spin_lock_irqsave(q->queue_lock, flags);
484 	scsi_unprep_request(req);
485 	blk_requeue_request(q, req);
486 	spin_unlock_irqrestore(q->queue_lock, flags);
487 
488 	scsi_run_queue(q);
489 }
490 
491 void scsi_next_command(struct scsi_cmnd *cmd)
492 {
493 	struct scsi_device *sdev = cmd->device;
494 	struct request_queue *q = sdev->request_queue;
495 
496 	/* need to hold a reference on the device before we let go of the cmd */
497 	get_device(&sdev->sdev_gendev);
498 
499 	scsi_put_command(cmd);
500 	scsi_run_queue(q);
501 
502 	/* ok to remove device now */
503 	put_device(&sdev->sdev_gendev);
504 }
505 
506 void scsi_run_host_queues(struct Scsi_Host *shost)
507 {
508 	struct scsi_device *sdev;
509 
510 	shost_for_each_device(sdev, shost)
511 		scsi_run_queue(sdev->request_queue);
512 }
513 
514 static void __scsi_release_buffers(struct scsi_cmnd *, int);
515 
516 /*
517  * Function:    scsi_end_request()
518  *
519  * Purpose:     Post-processing of completed commands (usually invoked at end
520  *		of upper level post-processing and scsi_io_completion).
521  *
522  * Arguments:   cmd	 - command that is complete.
523  *              error    - 0 if I/O indicates success, < 0 for I/O error.
524  *              bytes    - number of bytes of completed I/O
525  *		requeue  - indicates whether we should requeue leftovers.
526  *
527  * Lock status: Assumed that lock is not held upon entry.
528  *
529  * Returns:     cmd if requeue required, NULL otherwise.
530  *
531  * Notes:       This is called for block device requests in order to
532  *              mark some number of sectors as complete.
533  *
534  *		We are guaranteeing that the request queue will be goosed
535  *		at some point during this call.
536  * Notes:	If cmd was requeued, upon return it will be a stale pointer.
537  */
538 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
539 					  int bytes, int requeue)
540 {
541 	struct request_queue *q = cmd->device->request_queue;
542 	struct request *req = cmd->request;
543 
544 	/*
545 	 * If there are blocks left over at the end, set up the command
546 	 * to queue the remainder of them.
547 	 */
548 	if (blk_end_request(req, error, bytes)) {
549 		/* kill remainder if no retrys */
550 		if (error && scsi_noretry_cmd(cmd))
551 			blk_end_request_all(req, error);
552 		else {
553 			if (requeue) {
554 				/*
555 				 * Bleah.  Leftovers again.  Stick the
556 				 * leftovers in the front of the
557 				 * queue, and goose the queue again.
558 				 */
559 				scsi_release_buffers(cmd);
560 				scsi_requeue_command(q, cmd);
561 				cmd = NULL;
562 			}
563 			return cmd;
564 		}
565 	}
566 
567 	/*
568 	 * This will goose the queue request function at the end, so we don't
569 	 * need to worry about launching another command.
570 	 */
571 	__scsi_release_buffers(cmd, 0);
572 	scsi_next_command(cmd);
573 	return NULL;
574 }
575 
576 static inline unsigned int scsi_sgtable_index(unsigned short nents)
577 {
578 	unsigned int index;
579 
580 	BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
581 
582 	if (nents <= 8)
583 		index = 0;
584 	else
585 		index = get_count_order(nents) - 3;
586 
587 	return index;
588 }
589 
590 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
591 {
592 	struct scsi_host_sg_pool *sgp;
593 
594 	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
595 	mempool_free(sgl, sgp->pool);
596 }
597 
598 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
599 {
600 	struct scsi_host_sg_pool *sgp;
601 
602 	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
603 	return mempool_alloc(sgp->pool, gfp_mask);
604 }
605 
606 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
607 			      gfp_t gfp_mask)
608 {
609 	int ret;
610 
611 	BUG_ON(!nents);
612 
613 	ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
614 			       gfp_mask, scsi_sg_alloc);
615 	if (unlikely(ret))
616 		__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
617 				scsi_sg_free);
618 
619 	return ret;
620 }
621 
622 static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
623 {
624 	__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
625 }
626 
627 static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check)
628 {
629 
630 	if (cmd->sdb.table.nents)
631 		scsi_free_sgtable(&cmd->sdb);
632 
633 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
634 
635 	if (do_bidi_check && scsi_bidi_cmnd(cmd)) {
636 		struct scsi_data_buffer *bidi_sdb =
637 			cmd->request->next_rq->special;
638 		scsi_free_sgtable(bidi_sdb);
639 		kmem_cache_free(scsi_sdb_cache, bidi_sdb);
640 		cmd->request->next_rq->special = NULL;
641 	}
642 
643 	if (scsi_prot_sg_count(cmd))
644 		scsi_free_sgtable(cmd->prot_sdb);
645 }
646 
647 /*
648  * Function:    scsi_release_buffers()
649  *
650  * Purpose:     Completion processing for block device I/O requests.
651  *
652  * Arguments:   cmd	- command that we are bailing.
653  *
654  * Lock status: Assumed that no lock is held upon entry.
655  *
656  * Returns:     Nothing
657  *
658  * Notes:       In the event that an upper level driver rejects a
659  *		command, we must release resources allocated during
660  *		the __init_io() function.  Primarily this would involve
661  *		the scatter-gather table, and potentially any bounce
662  *		buffers.
663  */
664 void scsi_release_buffers(struct scsi_cmnd *cmd)
665 {
666 	__scsi_release_buffers(cmd, 1);
667 }
668 EXPORT_SYMBOL(scsi_release_buffers);
669 
670 /*
671  * Function:    scsi_io_completion()
672  *
673  * Purpose:     Completion processing for block device I/O requests.
674  *
675  * Arguments:   cmd   - command that is finished.
676  *
677  * Lock status: Assumed that no lock is held upon entry.
678  *
679  * Returns:     Nothing
680  *
681  * Notes:       This function is matched in terms of capabilities to
682  *              the function that created the scatter-gather list.
683  *              In other words, if there are no bounce buffers
684  *              (the normal case for most drivers), we don't need
685  *              the logic to deal with cleaning up afterwards.
686  *
687  *		We must call scsi_end_request().  This will finish off
688  *		the specified number of sectors.  If we are done, the
689  *		command block will be released and the queue function
690  *		will be goosed.  If we are not done then we have to
691  *		figure out what to do next:
692  *
693  *		a) We can call scsi_requeue_command().  The request
694  *		   will be unprepared and put back on the queue.  Then
695  *		   a new command will be created for it.  This should
696  *		   be used if we made forward progress, or if we want
697  *		   to switch from READ(10) to READ(6) for example.
698  *
699  *		b) We can call scsi_queue_insert().  The request will
700  *		   be put back on the queue and retried using the same
701  *		   command as before, possibly after a delay.
702  *
703  *		c) We can call blk_end_request() with -EIO to fail
704  *		   the remainder of the request.
705  */
706 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
707 {
708 	int result = cmd->result;
709 	struct request_queue *q = cmd->device->request_queue;
710 	struct request *req = cmd->request;
711 	int error = 0;
712 	struct scsi_sense_hdr sshdr;
713 	int sense_valid = 0;
714 	int sense_deferred = 0;
715 	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
716 	      ACTION_DELAYED_RETRY} action;
717 	char *description = NULL;
718 
719 	if (result) {
720 		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
721 		if (sense_valid)
722 			sense_deferred = scsi_sense_is_deferred(&sshdr);
723 	}
724 
725 	if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
726 		req->errors = result;
727 		if (result) {
728 			if (sense_valid && req->sense) {
729 				/*
730 				 * SG_IO wants current and deferred errors
731 				 */
732 				int len = 8 + cmd->sense_buffer[7];
733 
734 				if (len > SCSI_SENSE_BUFFERSIZE)
735 					len = SCSI_SENSE_BUFFERSIZE;
736 				memcpy(req->sense, cmd->sense_buffer,  len);
737 				req->sense_len = len;
738 			}
739 			if (!sense_deferred)
740 				error = -EIO;
741 		}
742 
743 		req->resid_len = scsi_get_resid(cmd);
744 
745 		if (scsi_bidi_cmnd(cmd)) {
746 			/*
747 			 * Bidi commands Must be complete as a whole,
748 			 * both sides at once.
749 			 */
750 			req->next_rq->resid_len = scsi_in(cmd)->resid;
751 
752 			scsi_release_buffers(cmd);
753 			blk_end_request_all(req, 0);
754 
755 			scsi_next_command(cmd);
756 			return;
757 		}
758 	}
759 
760 	/* no bidi support for !REQ_TYPE_BLOCK_PC yet */
761 	BUG_ON(blk_bidi_rq(req));
762 
763 	/*
764 	 * Next deal with any sectors which we were able to correctly
765 	 * handle.
766 	 */
767 	SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, "
768 				      "%d bytes done.\n",
769 				      blk_rq_sectors(req), good_bytes));
770 
771 	/*
772 	 * Recovered errors need reporting, but they're always treated
773 	 * as success, so fiddle the result code here.  For BLOCK_PC
774 	 * we already took a copy of the original into rq->errors which
775 	 * is what gets returned to the user
776 	 */
777 	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
778 		/* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
779 		 * print since caller wants ATA registers. Only occurs on
780 		 * SCSI ATA PASS_THROUGH commands when CK_COND=1
781 		 */
782 		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
783 			;
784 		else if (!(req->cmd_flags & REQ_QUIET))
785 			scsi_print_sense("", cmd);
786 		result = 0;
787 		/* BLOCK_PC may have set error */
788 		error = 0;
789 	}
790 
791 	/*
792 	 * A number of bytes were successfully read.  If there
793 	 * are leftovers and there is some kind of error
794 	 * (result != 0), retry the rest.
795 	 */
796 	if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
797 		return;
798 
799 	error = -EIO;
800 
801 	if (host_byte(result) == DID_RESET) {
802 		/* Third party bus reset or reset for error recovery
803 		 * reasons.  Just retry the command and see what
804 		 * happens.
805 		 */
806 		action = ACTION_RETRY;
807 	} else if (sense_valid && !sense_deferred) {
808 		switch (sshdr.sense_key) {
809 		case UNIT_ATTENTION:
810 			if (cmd->device->removable) {
811 				/* Detected disc change.  Set a bit
812 				 * and quietly refuse further access.
813 				 */
814 				cmd->device->changed = 1;
815 				description = "Media Changed";
816 				action = ACTION_FAIL;
817 			} else {
818 				/* Must have been a power glitch, or a
819 				 * bus reset.  Could not have been a
820 				 * media change, so we just retry the
821 				 * command and see what happens.
822 				 */
823 				action = ACTION_RETRY;
824 			}
825 			break;
826 		case ILLEGAL_REQUEST:
827 			/* If we had an ILLEGAL REQUEST returned, then
828 			 * we may have performed an unsupported
829 			 * command.  The only thing this should be
830 			 * would be a ten byte read where only a six
831 			 * byte read was supported.  Also, on a system
832 			 * where READ CAPACITY failed, we may have
833 			 * read past the end of the disk.
834 			 */
835 			if ((cmd->device->use_10_for_rw &&
836 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
837 			    (cmd->cmnd[0] == READ_10 ||
838 			     cmd->cmnd[0] == WRITE_10)) {
839 				/* This will issue a new 6-byte command. */
840 				cmd->device->use_10_for_rw = 0;
841 				action = ACTION_REPREP;
842 			} else if (sshdr.asc == 0x10) /* DIX */ {
843 				description = "Host Data Integrity Failure";
844 				action = ACTION_FAIL;
845 				error = -EILSEQ;
846 			} else
847 				action = ACTION_FAIL;
848 			break;
849 		case ABORTED_COMMAND:
850 			action = ACTION_FAIL;
851 			if (sshdr.asc == 0x10) { /* DIF */
852 				description = "Target Data Integrity Failure";
853 				error = -EILSEQ;
854 			}
855 			break;
856 		case NOT_READY:
857 			/* If the device is in the process of becoming
858 			 * ready, or has a temporary blockage, retry.
859 			 */
860 			if (sshdr.asc == 0x04) {
861 				switch (sshdr.ascq) {
862 				case 0x01: /* becoming ready */
863 				case 0x04: /* format in progress */
864 				case 0x05: /* rebuild in progress */
865 				case 0x06: /* recalculation in progress */
866 				case 0x07: /* operation in progress */
867 				case 0x08: /* Long write in progress */
868 				case 0x09: /* self test in progress */
869 				case 0x14: /* space allocation in progress */
870 					action = ACTION_DELAYED_RETRY;
871 					break;
872 				default:
873 					description = "Device not ready";
874 					action = ACTION_FAIL;
875 					break;
876 				}
877 			} else {
878 				description = "Device not ready";
879 				action = ACTION_FAIL;
880 			}
881 			break;
882 		case VOLUME_OVERFLOW:
883 			/* See SSC3rXX or current. */
884 			action = ACTION_FAIL;
885 			break;
886 		default:
887 			description = "Unhandled sense code";
888 			action = ACTION_FAIL;
889 			break;
890 		}
891 	} else {
892 		description = "Unhandled error code";
893 		action = ACTION_FAIL;
894 	}
895 
896 	switch (action) {
897 	case ACTION_FAIL:
898 		/* Give up and fail the remainder of the request */
899 		scsi_release_buffers(cmd);
900 		if (!(req->cmd_flags & REQ_QUIET)) {
901 			if (description)
902 				scmd_printk(KERN_INFO, cmd, "%s\n",
903 					    description);
904 			scsi_print_result(cmd);
905 			if (driver_byte(result) & DRIVER_SENSE)
906 				scsi_print_sense("", cmd);
907 			scsi_print_command(cmd);
908 		}
909 		if (blk_end_request_err(req, error))
910 			scsi_requeue_command(q, cmd);
911 		else
912 			scsi_next_command(cmd);
913 		break;
914 	case ACTION_REPREP:
915 		/* Unprep the request and put it back at the head of the queue.
916 		 * A new command will be prepared and issued.
917 		 */
918 		scsi_release_buffers(cmd);
919 		scsi_requeue_command(q, cmd);
920 		break;
921 	case ACTION_RETRY:
922 		/* Retry the same command immediately */
923 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
924 		break;
925 	case ACTION_DELAYED_RETRY:
926 		/* Retry the same command after a delay */
927 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
928 		break;
929 	}
930 }
931 
932 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
933 			     gfp_t gfp_mask)
934 {
935 	int count;
936 
937 	/*
938 	 * If sg table allocation fails, requeue request later.
939 	 */
940 	if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
941 					gfp_mask))) {
942 		return BLKPREP_DEFER;
943 	}
944 
945 	req->buffer = NULL;
946 
947 	/*
948 	 * Next, walk the list, and fill in the addresses and sizes of
949 	 * each segment.
950 	 */
951 	count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
952 	BUG_ON(count > sdb->table.nents);
953 	sdb->table.nents = count;
954 	sdb->length = blk_rq_bytes(req);
955 	return BLKPREP_OK;
956 }
957 
958 /*
959  * Function:    scsi_init_io()
960  *
961  * Purpose:     SCSI I/O initialize function.
962  *
963  * Arguments:   cmd   - Command descriptor we wish to initialize
964  *
965  * Returns:     0 on success
966  *		BLKPREP_DEFER if the failure is retryable
967  *		BLKPREP_KILL if the failure is fatal
968  */
969 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
970 {
971 	int error = scsi_init_sgtable(cmd->request, &cmd->sdb, gfp_mask);
972 	if (error)
973 		goto err_exit;
974 
975 	if (blk_bidi_rq(cmd->request)) {
976 		struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
977 			scsi_sdb_cache, GFP_ATOMIC);
978 		if (!bidi_sdb) {
979 			error = BLKPREP_DEFER;
980 			goto err_exit;
981 		}
982 
983 		cmd->request->next_rq->special = bidi_sdb;
984 		error = scsi_init_sgtable(cmd->request->next_rq, bidi_sdb,
985 								    GFP_ATOMIC);
986 		if (error)
987 			goto err_exit;
988 	}
989 
990 	if (blk_integrity_rq(cmd->request)) {
991 		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
992 		int ivecs, count;
993 
994 		BUG_ON(prot_sdb == NULL);
995 		ivecs = blk_rq_count_integrity_sg(cmd->request);
996 
997 		if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
998 			error = BLKPREP_DEFER;
999 			goto err_exit;
1000 		}
1001 
1002 		count = blk_rq_map_integrity_sg(cmd->request,
1003 						prot_sdb->table.sgl);
1004 		BUG_ON(unlikely(count > ivecs));
1005 
1006 		cmd->prot_sdb = prot_sdb;
1007 		cmd->prot_sdb->table.nents = count;
1008 	}
1009 
1010 	return BLKPREP_OK ;
1011 
1012 err_exit:
1013 	scsi_release_buffers(cmd);
1014 	scsi_put_command(cmd);
1015 	cmd->request->special = NULL;
1016 	return error;
1017 }
1018 EXPORT_SYMBOL(scsi_init_io);
1019 
1020 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1021 		struct request *req)
1022 {
1023 	struct scsi_cmnd *cmd;
1024 
1025 	if (!req->special) {
1026 		cmd = scsi_get_command(sdev, GFP_ATOMIC);
1027 		if (unlikely(!cmd))
1028 			return NULL;
1029 		req->special = cmd;
1030 	} else {
1031 		cmd = req->special;
1032 	}
1033 
1034 	/* pull a tag out of the request if we have one */
1035 	cmd->tag = req->tag;
1036 	cmd->request = req;
1037 
1038 	cmd->cmnd = req->cmd;
1039 
1040 	return cmd;
1041 }
1042 
1043 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1044 {
1045 	struct scsi_cmnd *cmd;
1046 	int ret = scsi_prep_state_check(sdev, req);
1047 
1048 	if (ret != BLKPREP_OK)
1049 		return ret;
1050 
1051 	cmd = scsi_get_cmd_from_req(sdev, req);
1052 	if (unlikely(!cmd))
1053 		return BLKPREP_DEFER;
1054 
1055 	/*
1056 	 * BLOCK_PC requests may transfer data, in which case they must
1057 	 * a bio attached to them.  Or they might contain a SCSI command
1058 	 * that does not transfer data, in which case they may optionally
1059 	 * submit a request without an attached bio.
1060 	 */
1061 	if (req->bio) {
1062 		int ret;
1063 
1064 		BUG_ON(!req->nr_phys_segments);
1065 
1066 		ret = scsi_init_io(cmd, GFP_ATOMIC);
1067 		if (unlikely(ret))
1068 			return ret;
1069 	} else {
1070 		BUG_ON(blk_rq_bytes(req));
1071 
1072 		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1073 		req->buffer = NULL;
1074 	}
1075 
1076 	cmd->cmd_len = req->cmd_len;
1077 	if (!blk_rq_bytes(req))
1078 		cmd->sc_data_direction = DMA_NONE;
1079 	else if (rq_data_dir(req) == WRITE)
1080 		cmd->sc_data_direction = DMA_TO_DEVICE;
1081 	else
1082 		cmd->sc_data_direction = DMA_FROM_DEVICE;
1083 
1084 	cmd->transfersize = blk_rq_bytes(req);
1085 	cmd->allowed = req->retries;
1086 	return BLKPREP_OK;
1087 }
1088 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1089 
1090 /*
1091  * Setup a REQ_TYPE_FS command.  These are simple read/write request
1092  * from filesystems that still need to be translated to SCSI CDBs from
1093  * the ULD.
1094  */
1095 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1096 {
1097 	struct scsi_cmnd *cmd;
1098 	int ret = scsi_prep_state_check(sdev, req);
1099 
1100 	if (ret != BLKPREP_OK)
1101 		return ret;
1102 
1103 	if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1104 			 && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1105 		ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1106 		if (ret != BLKPREP_OK)
1107 			return ret;
1108 	}
1109 
1110 	/*
1111 	 * Filesystem requests must transfer data.
1112 	 */
1113 	BUG_ON(!req->nr_phys_segments);
1114 
1115 	cmd = scsi_get_cmd_from_req(sdev, req);
1116 	if (unlikely(!cmd))
1117 		return BLKPREP_DEFER;
1118 
1119 	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1120 	return scsi_init_io(cmd, GFP_ATOMIC);
1121 }
1122 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1123 
1124 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1125 {
1126 	int ret = BLKPREP_OK;
1127 
1128 	/*
1129 	 * If the device is not in running state we will reject some
1130 	 * or all commands.
1131 	 */
1132 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1133 		switch (sdev->sdev_state) {
1134 		case SDEV_OFFLINE:
1135 			/*
1136 			 * If the device is offline we refuse to process any
1137 			 * commands.  The device must be brought online
1138 			 * before trying any recovery commands.
1139 			 */
1140 			sdev_printk(KERN_ERR, sdev,
1141 				    "rejecting I/O to offline device\n");
1142 			ret = BLKPREP_KILL;
1143 			break;
1144 		case SDEV_DEL:
1145 			/*
1146 			 * If the device is fully deleted, we refuse to
1147 			 * process any commands as well.
1148 			 */
1149 			sdev_printk(KERN_ERR, sdev,
1150 				    "rejecting I/O to dead device\n");
1151 			ret = BLKPREP_KILL;
1152 			break;
1153 		case SDEV_QUIESCE:
1154 		case SDEV_BLOCK:
1155 		case SDEV_CREATED_BLOCK:
1156 			/*
1157 			 * If the devices is blocked we defer normal commands.
1158 			 */
1159 			if (!(req->cmd_flags & REQ_PREEMPT))
1160 				ret = BLKPREP_DEFER;
1161 			break;
1162 		default:
1163 			/*
1164 			 * For any other not fully online state we only allow
1165 			 * special commands.  In particular any user initiated
1166 			 * command is not allowed.
1167 			 */
1168 			if (!(req->cmd_flags & REQ_PREEMPT))
1169 				ret = BLKPREP_KILL;
1170 			break;
1171 		}
1172 	}
1173 	return ret;
1174 }
1175 EXPORT_SYMBOL(scsi_prep_state_check);
1176 
1177 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1178 {
1179 	struct scsi_device *sdev = q->queuedata;
1180 
1181 	switch (ret) {
1182 	case BLKPREP_KILL:
1183 		req->errors = DID_NO_CONNECT << 16;
1184 		/* release the command and kill it */
1185 		if (req->special) {
1186 			struct scsi_cmnd *cmd = req->special;
1187 			scsi_release_buffers(cmd);
1188 			scsi_put_command(cmd);
1189 			req->special = NULL;
1190 		}
1191 		break;
1192 	case BLKPREP_DEFER:
1193 		/*
1194 		 * If we defer, the blk_peek_request() returns NULL, but the
1195 		 * queue must be restarted, so we plug here if no returning
1196 		 * command will automatically do that.
1197 		 */
1198 		if (sdev->device_busy == 0)
1199 			blk_plug_device(q);
1200 		break;
1201 	default:
1202 		req->cmd_flags |= REQ_DONTPREP;
1203 	}
1204 
1205 	return ret;
1206 }
1207 EXPORT_SYMBOL(scsi_prep_return);
1208 
1209 int scsi_prep_fn(struct request_queue *q, struct request *req)
1210 {
1211 	struct scsi_device *sdev = q->queuedata;
1212 	int ret = BLKPREP_KILL;
1213 
1214 	if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1215 		ret = scsi_setup_blk_pc_cmnd(sdev, req);
1216 	return scsi_prep_return(q, req, ret);
1217 }
1218 EXPORT_SYMBOL(scsi_prep_fn);
1219 
1220 /*
1221  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1222  * return 0.
1223  *
1224  * Called with the queue_lock held.
1225  */
1226 static inline int scsi_dev_queue_ready(struct request_queue *q,
1227 				  struct scsi_device *sdev)
1228 {
1229 	if (sdev->device_busy == 0 && sdev->device_blocked) {
1230 		/*
1231 		 * unblock after device_blocked iterates to zero
1232 		 */
1233 		if (--sdev->device_blocked == 0) {
1234 			SCSI_LOG_MLQUEUE(3,
1235 				   sdev_printk(KERN_INFO, sdev,
1236 				   "unblocking device at zero depth\n"));
1237 		} else {
1238 			blk_plug_device(q);
1239 			return 0;
1240 		}
1241 	}
1242 	if (scsi_device_is_busy(sdev))
1243 		return 0;
1244 
1245 	return 1;
1246 }
1247 
1248 
1249 /*
1250  * scsi_target_queue_ready: checks if there we can send commands to target
1251  * @sdev: scsi device on starget to check.
1252  *
1253  * Called with the host lock held.
1254  */
1255 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1256 					   struct scsi_device *sdev)
1257 {
1258 	struct scsi_target *starget = scsi_target(sdev);
1259 
1260 	if (starget->single_lun) {
1261 		if (starget->starget_sdev_user &&
1262 		    starget->starget_sdev_user != sdev)
1263 			return 0;
1264 		starget->starget_sdev_user = sdev;
1265 	}
1266 
1267 	if (starget->target_busy == 0 && starget->target_blocked) {
1268 		/*
1269 		 * unblock after target_blocked iterates to zero
1270 		 */
1271 		if (--starget->target_blocked == 0) {
1272 			SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1273 					 "unblocking target at zero depth\n"));
1274 		} else
1275 			return 0;
1276 	}
1277 
1278 	if (scsi_target_is_busy(starget)) {
1279 		if (list_empty(&sdev->starved_entry)) {
1280 			list_add_tail(&sdev->starved_entry,
1281 				      &shost->starved_list);
1282 			return 0;
1283 		}
1284 	}
1285 
1286 	/* We're OK to process the command, so we can't be starved */
1287 	if (!list_empty(&sdev->starved_entry))
1288 		list_del_init(&sdev->starved_entry);
1289 	return 1;
1290 }
1291 
1292 /*
1293  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1294  * return 0. We must end up running the queue again whenever 0 is
1295  * returned, else IO can hang.
1296  *
1297  * Called with host_lock held.
1298  */
1299 static inline int scsi_host_queue_ready(struct request_queue *q,
1300 				   struct Scsi_Host *shost,
1301 				   struct scsi_device *sdev)
1302 {
1303 	if (scsi_host_in_recovery(shost))
1304 		return 0;
1305 	if (shost->host_busy == 0 && shost->host_blocked) {
1306 		/*
1307 		 * unblock after host_blocked iterates to zero
1308 		 */
1309 		if (--shost->host_blocked == 0) {
1310 			SCSI_LOG_MLQUEUE(3,
1311 				printk("scsi%d unblocking host at zero depth\n",
1312 					shost->host_no));
1313 		} else {
1314 			return 0;
1315 		}
1316 	}
1317 	if (scsi_host_is_busy(shost)) {
1318 		if (list_empty(&sdev->starved_entry))
1319 			list_add_tail(&sdev->starved_entry, &shost->starved_list);
1320 		return 0;
1321 	}
1322 
1323 	/* We're OK to process the command, so we can't be starved */
1324 	if (!list_empty(&sdev->starved_entry))
1325 		list_del_init(&sdev->starved_entry);
1326 
1327 	return 1;
1328 }
1329 
1330 /*
1331  * Busy state exporting function for request stacking drivers.
1332  *
1333  * For efficiency, no lock is taken to check the busy state of
1334  * shost/starget/sdev, since the returned value is not guaranteed and
1335  * may be changed after request stacking drivers call the function,
1336  * regardless of taking lock or not.
1337  *
1338  * When scsi can't dispatch I/Os anymore and needs to kill I/Os
1339  * (e.g. !sdev), scsi needs to return 'not busy'.
1340  * Otherwise, request stacking drivers may hold requests forever.
1341  */
1342 static int scsi_lld_busy(struct request_queue *q)
1343 {
1344 	struct scsi_device *sdev = q->queuedata;
1345 	struct Scsi_Host *shost;
1346 	struct scsi_target *starget;
1347 
1348 	if (!sdev)
1349 		return 0;
1350 
1351 	shost = sdev->host;
1352 	starget = scsi_target(sdev);
1353 
1354 	if (scsi_host_in_recovery(shost) || scsi_host_is_busy(shost) ||
1355 	    scsi_target_is_busy(starget) || scsi_device_is_busy(sdev))
1356 		return 1;
1357 
1358 	return 0;
1359 }
1360 
1361 /*
1362  * Kill a request for a dead device
1363  */
1364 static void scsi_kill_request(struct request *req, struct request_queue *q)
1365 {
1366 	struct scsi_cmnd *cmd = req->special;
1367 	struct scsi_device *sdev;
1368 	struct scsi_target *starget;
1369 	struct Scsi_Host *shost;
1370 
1371 	blk_start_request(req);
1372 
1373 	if (unlikely(cmd == NULL)) {
1374 		printk(KERN_CRIT "impossible request in %s.\n",
1375 				 __func__);
1376 		BUG();
1377 	}
1378 
1379 	sdev = cmd->device;
1380 	starget = scsi_target(sdev);
1381 	shost = sdev->host;
1382 	scsi_init_cmd_errh(cmd);
1383 	cmd->result = DID_NO_CONNECT << 16;
1384 	atomic_inc(&cmd->device->iorequest_cnt);
1385 
1386 	/*
1387 	 * SCSI request completion path will do scsi_device_unbusy(),
1388 	 * bump busy counts.  To bump the counters, we need to dance
1389 	 * with the locks as normal issue path does.
1390 	 */
1391 	sdev->device_busy++;
1392 	spin_unlock(sdev->request_queue->queue_lock);
1393 	spin_lock(shost->host_lock);
1394 	shost->host_busy++;
1395 	starget->target_busy++;
1396 	spin_unlock(shost->host_lock);
1397 	spin_lock(sdev->request_queue->queue_lock);
1398 
1399 	blk_complete_request(req);
1400 }
1401 
1402 static void scsi_softirq_done(struct request *rq)
1403 {
1404 	struct scsi_cmnd *cmd = rq->special;
1405 	unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1406 	int disposition;
1407 
1408 	INIT_LIST_HEAD(&cmd->eh_entry);
1409 
1410 	/*
1411 	 * Set the serial numbers back to zero
1412 	 */
1413 	cmd->serial_number = 0;
1414 
1415 	atomic_inc(&cmd->device->iodone_cnt);
1416 	if (cmd->result)
1417 		atomic_inc(&cmd->device->ioerr_cnt);
1418 
1419 	disposition = scsi_decide_disposition(cmd);
1420 	if (disposition != SUCCESS &&
1421 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1422 		sdev_printk(KERN_ERR, cmd->device,
1423 			    "timing out command, waited %lus\n",
1424 			    wait_for/HZ);
1425 		disposition = SUCCESS;
1426 	}
1427 
1428 	scsi_log_completion(cmd, disposition);
1429 
1430 	switch (disposition) {
1431 		case SUCCESS:
1432 			scsi_finish_command(cmd);
1433 			break;
1434 		case NEEDS_RETRY:
1435 			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1436 			break;
1437 		case ADD_TO_MLQUEUE:
1438 			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1439 			break;
1440 		default:
1441 			if (!scsi_eh_scmd_add(cmd, 0))
1442 				scsi_finish_command(cmd);
1443 	}
1444 }
1445 
1446 /*
1447  * Function:    scsi_request_fn()
1448  *
1449  * Purpose:     Main strategy routine for SCSI.
1450  *
1451  * Arguments:   q       - Pointer to actual queue.
1452  *
1453  * Returns:     Nothing
1454  *
1455  * Lock status: IO request lock assumed to be held when called.
1456  */
1457 static void scsi_request_fn(struct request_queue *q)
1458 {
1459 	struct scsi_device *sdev = q->queuedata;
1460 	struct Scsi_Host *shost;
1461 	struct scsi_cmnd *cmd;
1462 	struct request *req;
1463 
1464 	if (!sdev) {
1465 		printk("scsi: killing requests for dead queue\n");
1466 		while ((req = blk_peek_request(q)) != NULL)
1467 			scsi_kill_request(req, q);
1468 		return;
1469 	}
1470 
1471 	if(!get_device(&sdev->sdev_gendev))
1472 		/* We must be tearing the block queue down already */
1473 		return;
1474 
1475 	/*
1476 	 * To start with, we keep looping until the queue is empty, or until
1477 	 * the host is no longer able to accept any more requests.
1478 	 */
1479 	shost = sdev->host;
1480 	while (!blk_queue_plugged(q)) {
1481 		int rtn;
1482 		/*
1483 		 * get next queueable request.  We do this early to make sure
1484 		 * that the request is fully prepared even if we cannot
1485 		 * accept it.
1486 		 */
1487 		req = blk_peek_request(q);
1488 		if (!req || !scsi_dev_queue_ready(q, sdev))
1489 			break;
1490 
1491 		if (unlikely(!scsi_device_online(sdev))) {
1492 			sdev_printk(KERN_ERR, sdev,
1493 				    "rejecting I/O to offline device\n");
1494 			scsi_kill_request(req, q);
1495 			continue;
1496 		}
1497 
1498 
1499 		/*
1500 		 * Remove the request from the request list.
1501 		 */
1502 		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1503 			blk_start_request(req);
1504 		sdev->device_busy++;
1505 
1506 		spin_unlock(q->queue_lock);
1507 		cmd = req->special;
1508 		if (unlikely(cmd == NULL)) {
1509 			printk(KERN_CRIT "impossible request in %s.\n"
1510 					 "please mail a stack trace to "
1511 					 "linux-scsi@vger.kernel.org\n",
1512 					 __func__);
1513 			blk_dump_rq_flags(req, "foo");
1514 			BUG();
1515 		}
1516 		spin_lock(shost->host_lock);
1517 
1518 		/*
1519 		 * We hit this when the driver is using a host wide
1520 		 * tag map. For device level tag maps the queue_depth check
1521 		 * in the device ready fn would prevent us from trying
1522 		 * to allocate a tag. Since the map is a shared host resource
1523 		 * we add the dev to the starved list so it eventually gets
1524 		 * a run when a tag is freed.
1525 		 */
1526 		if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1527 			if (list_empty(&sdev->starved_entry))
1528 				list_add_tail(&sdev->starved_entry,
1529 					      &shost->starved_list);
1530 			goto not_ready;
1531 		}
1532 
1533 		if (!scsi_target_queue_ready(shost, sdev))
1534 			goto not_ready;
1535 
1536 		if (!scsi_host_queue_ready(q, shost, sdev))
1537 			goto not_ready;
1538 
1539 		scsi_target(sdev)->target_busy++;
1540 		shost->host_busy++;
1541 
1542 		/*
1543 		 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1544 		 *		take the lock again.
1545 		 */
1546 		spin_unlock_irq(shost->host_lock);
1547 
1548 		/*
1549 		 * Finally, initialize any error handling parameters, and set up
1550 		 * the timers for timeouts.
1551 		 */
1552 		scsi_init_cmd_errh(cmd);
1553 
1554 		/*
1555 		 * Dispatch the command to the low-level driver.
1556 		 */
1557 		rtn = scsi_dispatch_cmd(cmd);
1558 		spin_lock_irq(q->queue_lock);
1559 		if(rtn) {
1560 			/* we're refusing the command; because of
1561 			 * the way locks get dropped, we need to
1562 			 * check here if plugging is required */
1563 			if(sdev->device_busy == 0)
1564 				blk_plug_device(q);
1565 
1566 			break;
1567 		}
1568 	}
1569 
1570 	goto out;
1571 
1572  not_ready:
1573 	spin_unlock_irq(shost->host_lock);
1574 
1575 	/*
1576 	 * lock q, handle tag, requeue req, and decrement device_busy. We
1577 	 * must return with queue_lock held.
1578 	 *
1579 	 * Decrementing device_busy without checking it is OK, as all such
1580 	 * cases (host limits or settings) should run the queue at some
1581 	 * later time.
1582 	 */
1583 	spin_lock_irq(q->queue_lock);
1584 	blk_requeue_request(q, req);
1585 	sdev->device_busy--;
1586 	if(sdev->device_busy == 0)
1587 		blk_plug_device(q);
1588  out:
1589 	/* must be careful here...if we trigger the ->remove() function
1590 	 * we cannot be holding the q lock */
1591 	spin_unlock_irq(q->queue_lock);
1592 	put_device(&sdev->sdev_gendev);
1593 	spin_lock_irq(q->queue_lock);
1594 }
1595 
1596 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1597 {
1598 	struct device *host_dev;
1599 	u64 bounce_limit = 0xffffffff;
1600 
1601 	if (shost->unchecked_isa_dma)
1602 		return BLK_BOUNCE_ISA;
1603 	/*
1604 	 * Platforms with virtual-DMA translation
1605 	 * hardware have no practical limit.
1606 	 */
1607 	if (!PCI_DMA_BUS_IS_PHYS)
1608 		return BLK_BOUNCE_ANY;
1609 
1610 	host_dev = scsi_get_device(shost);
1611 	if (host_dev && host_dev->dma_mask)
1612 		bounce_limit = *host_dev->dma_mask;
1613 
1614 	return bounce_limit;
1615 }
1616 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1617 
1618 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1619 					 request_fn_proc *request_fn)
1620 {
1621 	struct request_queue *q;
1622 	struct device *dev = shost->shost_gendev.parent;
1623 
1624 	q = blk_init_queue(request_fn, NULL);
1625 	if (!q)
1626 		return NULL;
1627 
1628 	/*
1629 	 * this limit is imposed by hardware restrictions
1630 	 */
1631 	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1632 					SCSI_MAX_SG_CHAIN_SEGMENTS));
1633 
1634 	blk_queue_max_hw_sectors(q, shost->max_sectors);
1635 	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1636 	blk_queue_segment_boundary(q, shost->dma_boundary);
1637 	dma_set_seg_boundary(dev, shost->dma_boundary);
1638 
1639 	blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1640 
1641 	/* New queue, no concurrency on queue_flags */
1642 	if (!shost->use_clustering)
1643 		queue_flag_clear_unlocked(QUEUE_FLAG_CLUSTER, q);
1644 
1645 	/*
1646 	 * set a reasonable default alignment on word boundaries: the
1647 	 * host and device may alter it using
1648 	 * blk_queue_update_dma_alignment() later.
1649 	 */
1650 	blk_queue_dma_alignment(q, 0x03);
1651 
1652 	return q;
1653 }
1654 EXPORT_SYMBOL(__scsi_alloc_queue);
1655 
1656 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1657 {
1658 	struct request_queue *q;
1659 
1660 	q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1661 	if (!q)
1662 		return NULL;
1663 
1664 	blk_queue_prep_rq(q, scsi_prep_fn);
1665 	blk_queue_softirq_done(q, scsi_softirq_done);
1666 	blk_queue_rq_timed_out(q, scsi_times_out);
1667 	blk_queue_lld_busy(q, scsi_lld_busy);
1668 	return q;
1669 }
1670 
1671 void scsi_free_queue(struct request_queue *q)
1672 {
1673 	blk_cleanup_queue(q);
1674 }
1675 
1676 /*
1677  * Function:    scsi_block_requests()
1678  *
1679  * Purpose:     Utility function used by low-level drivers to prevent further
1680  *		commands from being queued to the device.
1681  *
1682  * Arguments:   shost       - Host in question
1683  *
1684  * Returns:     Nothing
1685  *
1686  * Lock status: No locks are assumed held.
1687  *
1688  * Notes:       There is no timer nor any other means by which the requests
1689  *		get unblocked other than the low-level driver calling
1690  *		scsi_unblock_requests().
1691  */
1692 void scsi_block_requests(struct Scsi_Host *shost)
1693 {
1694 	shost->host_self_blocked = 1;
1695 }
1696 EXPORT_SYMBOL(scsi_block_requests);
1697 
1698 /*
1699  * Function:    scsi_unblock_requests()
1700  *
1701  * Purpose:     Utility function used by low-level drivers to allow further
1702  *		commands from being queued to the device.
1703  *
1704  * Arguments:   shost       - Host in question
1705  *
1706  * Returns:     Nothing
1707  *
1708  * Lock status: No locks are assumed held.
1709  *
1710  * Notes:       There is no timer nor any other means by which the requests
1711  *		get unblocked other than the low-level driver calling
1712  *		scsi_unblock_requests().
1713  *
1714  *		This is done as an API function so that changes to the
1715  *		internals of the scsi mid-layer won't require wholesale
1716  *		changes to drivers that use this feature.
1717  */
1718 void scsi_unblock_requests(struct Scsi_Host *shost)
1719 {
1720 	shost->host_self_blocked = 0;
1721 	scsi_run_host_queues(shost);
1722 }
1723 EXPORT_SYMBOL(scsi_unblock_requests);
1724 
1725 int __init scsi_init_queue(void)
1726 {
1727 	int i;
1728 
1729 	scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1730 					   sizeof(struct scsi_data_buffer),
1731 					   0, 0, NULL);
1732 	if (!scsi_sdb_cache) {
1733 		printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1734 		return -ENOMEM;
1735 	}
1736 
1737 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1738 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1739 		int size = sgp->size * sizeof(struct scatterlist);
1740 
1741 		sgp->slab = kmem_cache_create(sgp->name, size, 0,
1742 				SLAB_HWCACHE_ALIGN, NULL);
1743 		if (!sgp->slab) {
1744 			printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1745 					sgp->name);
1746 			goto cleanup_sdb;
1747 		}
1748 
1749 		sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1750 						     sgp->slab);
1751 		if (!sgp->pool) {
1752 			printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1753 					sgp->name);
1754 			goto cleanup_sdb;
1755 		}
1756 	}
1757 
1758 	return 0;
1759 
1760 cleanup_sdb:
1761 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1762 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1763 		if (sgp->pool)
1764 			mempool_destroy(sgp->pool);
1765 		if (sgp->slab)
1766 			kmem_cache_destroy(sgp->slab);
1767 	}
1768 	kmem_cache_destroy(scsi_sdb_cache);
1769 
1770 	return -ENOMEM;
1771 }
1772 
1773 void scsi_exit_queue(void)
1774 {
1775 	int i;
1776 
1777 	kmem_cache_destroy(scsi_sdb_cache);
1778 
1779 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1780 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1781 		mempool_destroy(sgp->pool);
1782 		kmem_cache_destroy(sgp->slab);
1783 	}
1784 }
1785 
1786 /**
1787  *	scsi_mode_select - issue a mode select
1788  *	@sdev:	SCSI device to be queried
1789  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
1790  *	@sp:	Save page bit (0 == don't save, 1 == save)
1791  *	@modepage: mode page being requested
1792  *	@buffer: request buffer (may not be smaller than eight bytes)
1793  *	@len:	length of request buffer.
1794  *	@timeout: command timeout
1795  *	@retries: number of retries before failing
1796  *	@data: returns a structure abstracting the mode header data
1797  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1798  *		must be SCSI_SENSE_BUFFERSIZE big.
1799  *
1800  *	Returns zero if successful; negative error number or scsi
1801  *	status on error
1802  *
1803  */
1804 int
1805 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1806 		 unsigned char *buffer, int len, int timeout, int retries,
1807 		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1808 {
1809 	unsigned char cmd[10];
1810 	unsigned char *real_buffer;
1811 	int ret;
1812 
1813 	memset(cmd, 0, sizeof(cmd));
1814 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1815 
1816 	if (sdev->use_10_for_ms) {
1817 		if (len > 65535)
1818 			return -EINVAL;
1819 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
1820 		if (!real_buffer)
1821 			return -ENOMEM;
1822 		memcpy(real_buffer + 8, buffer, len);
1823 		len += 8;
1824 		real_buffer[0] = 0;
1825 		real_buffer[1] = 0;
1826 		real_buffer[2] = data->medium_type;
1827 		real_buffer[3] = data->device_specific;
1828 		real_buffer[4] = data->longlba ? 0x01 : 0;
1829 		real_buffer[5] = 0;
1830 		real_buffer[6] = data->block_descriptor_length >> 8;
1831 		real_buffer[7] = data->block_descriptor_length;
1832 
1833 		cmd[0] = MODE_SELECT_10;
1834 		cmd[7] = len >> 8;
1835 		cmd[8] = len;
1836 	} else {
1837 		if (len > 255 || data->block_descriptor_length > 255 ||
1838 		    data->longlba)
1839 			return -EINVAL;
1840 
1841 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
1842 		if (!real_buffer)
1843 			return -ENOMEM;
1844 		memcpy(real_buffer + 4, buffer, len);
1845 		len += 4;
1846 		real_buffer[0] = 0;
1847 		real_buffer[1] = data->medium_type;
1848 		real_buffer[2] = data->device_specific;
1849 		real_buffer[3] = data->block_descriptor_length;
1850 
1851 
1852 		cmd[0] = MODE_SELECT;
1853 		cmd[4] = len;
1854 	}
1855 
1856 	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1857 			       sshdr, timeout, retries, NULL);
1858 	kfree(real_buffer);
1859 	return ret;
1860 }
1861 EXPORT_SYMBOL_GPL(scsi_mode_select);
1862 
1863 /**
1864  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1865  *	@sdev:	SCSI device to be queried
1866  *	@dbd:	set if mode sense will allow block descriptors to be returned
1867  *	@modepage: mode page being requested
1868  *	@buffer: request buffer (may not be smaller than eight bytes)
1869  *	@len:	length of request buffer.
1870  *	@timeout: command timeout
1871  *	@retries: number of retries before failing
1872  *	@data: returns a structure abstracting the mode header data
1873  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1874  *		must be SCSI_SENSE_BUFFERSIZE big.
1875  *
1876  *	Returns zero if unsuccessful, or the header offset (either 4
1877  *	or 8 depending on whether a six or ten byte command was
1878  *	issued) if successful.
1879  */
1880 int
1881 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1882 		  unsigned char *buffer, int len, int timeout, int retries,
1883 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1884 {
1885 	unsigned char cmd[12];
1886 	int use_10_for_ms;
1887 	int header_length;
1888 	int result;
1889 	struct scsi_sense_hdr my_sshdr;
1890 
1891 	memset(data, 0, sizeof(*data));
1892 	memset(&cmd[0], 0, 12);
1893 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
1894 	cmd[2] = modepage;
1895 
1896 	/* caller might not be interested in sense, but we need it */
1897 	if (!sshdr)
1898 		sshdr = &my_sshdr;
1899 
1900  retry:
1901 	use_10_for_ms = sdev->use_10_for_ms;
1902 
1903 	if (use_10_for_ms) {
1904 		if (len < 8)
1905 			len = 8;
1906 
1907 		cmd[0] = MODE_SENSE_10;
1908 		cmd[8] = len;
1909 		header_length = 8;
1910 	} else {
1911 		if (len < 4)
1912 			len = 4;
1913 
1914 		cmd[0] = MODE_SENSE;
1915 		cmd[4] = len;
1916 		header_length = 4;
1917 	}
1918 
1919 	memset(buffer, 0, len);
1920 
1921 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1922 				  sshdr, timeout, retries, NULL);
1923 
1924 	/* This code looks awful: what it's doing is making sure an
1925 	 * ILLEGAL REQUEST sense return identifies the actual command
1926 	 * byte as the problem.  MODE_SENSE commands can return
1927 	 * ILLEGAL REQUEST if the code page isn't supported */
1928 
1929 	if (use_10_for_ms && !scsi_status_is_good(result) &&
1930 	    (driver_byte(result) & DRIVER_SENSE)) {
1931 		if (scsi_sense_valid(sshdr)) {
1932 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1933 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1934 				/*
1935 				 * Invalid command operation code
1936 				 */
1937 				sdev->use_10_for_ms = 0;
1938 				goto retry;
1939 			}
1940 		}
1941 	}
1942 
1943 	if(scsi_status_is_good(result)) {
1944 		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1945 			     (modepage == 6 || modepage == 8))) {
1946 			/* Initio breakage? */
1947 			header_length = 0;
1948 			data->length = 13;
1949 			data->medium_type = 0;
1950 			data->device_specific = 0;
1951 			data->longlba = 0;
1952 			data->block_descriptor_length = 0;
1953 		} else if(use_10_for_ms) {
1954 			data->length = buffer[0]*256 + buffer[1] + 2;
1955 			data->medium_type = buffer[2];
1956 			data->device_specific = buffer[3];
1957 			data->longlba = buffer[4] & 0x01;
1958 			data->block_descriptor_length = buffer[6]*256
1959 				+ buffer[7];
1960 		} else {
1961 			data->length = buffer[0] + 1;
1962 			data->medium_type = buffer[1];
1963 			data->device_specific = buffer[2];
1964 			data->block_descriptor_length = buffer[3];
1965 		}
1966 		data->header_length = header_length;
1967 	}
1968 
1969 	return result;
1970 }
1971 EXPORT_SYMBOL(scsi_mode_sense);
1972 
1973 /**
1974  *	scsi_test_unit_ready - test if unit is ready
1975  *	@sdev:	scsi device to change the state of.
1976  *	@timeout: command timeout
1977  *	@retries: number of retries before failing
1978  *	@sshdr_external: Optional pointer to struct scsi_sense_hdr for
1979  *		returning sense. Make sure that this is cleared before passing
1980  *		in.
1981  *
1982  *	Returns zero if unsuccessful or an error if TUR failed.  For
1983  *	removable media, a return of NOT_READY or UNIT_ATTENTION is
1984  *	translated to success, with the ->changed flag updated.
1985  **/
1986 int
1987 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
1988 		     struct scsi_sense_hdr *sshdr_external)
1989 {
1990 	char cmd[] = {
1991 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
1992 	};
1993 	struct scsi_sense_hdr *sshdr;
1994 	int result;
1995 
1996 	if (!sshdr_external)
1997 		sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
1998 	else
1999 		sshdr = sshdr_external;
2000 
2001 	/* try to eat the UNIT_ATTENTION if there are enough retries */
2002 	do {
2003 		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2004 					  timeout, retries, NULL);
2005 		if (sdev->removable && scsi_sense_valid(sshdr) &&
2006 		    sshdr->sense_key == UNIT_ATTENTION)
2007 			sdev->changed = 1;
2008 	} while (scsi_sense_valid(sshdr) &&
2009 		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2010 
2011 	if (!sshdr)
2012 		/* could not allocate sense buffer, so can't process it */
2013 		return result;
2014 
2015 	if (sdev->removable && scsi_sense_valid(sshdr) &&
2016 	    (sshdr->sense_key == UNIT_ATTENTION ||
2017 	     sshdr->sense_key == NOT_READY)) {
2018 		sdev->changed = 1;
2019 		result = 0;
2020 	}
2021 	if (!sshdr_external)
2022 		kfree(sshdr);
2023 	return result;
2024 }
2025 EXPORT_SYMBOL(scsi_test_unit_ready);
2026 
2027 /**
2028  *	scsi_device_set_state - Take the given device through the device state model.
2029  *	@sdev:	scsi device to change the state of.
2030  *	@state:	state to change to.
2031  *
2032  *	Returns zero if unsuccessful or an error if the requested
2033  *	transition is illegal.
2034  */
2035 int
2036 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2037 {
2038 	enum scsi_device_state oldstate = sdev->sdev_state;
2039 
2040 	if (state == oldstate)
2041 		return 0;
2042 
2043 	switch (state) {
2044 	case SDEV_CREATED:
2045 		switch (oldstate) {
2046 		case SDEV_CREATED_BLOCK:
2047 			break;
2048 		default:
2049 			goto illegal;
2050 		}
2051 		break;
2052 
2053 	case SDEV_RUNNING:
2054 		switch (oldstate) {
2055 		case SDEV_CREATED:
2056 		case SDEV_OFFLINE:
2057 		case SDEV_QUIESCE:
2058 		case SDEV_BLOCK:
2059 			break;
2060 		default:
2061 			goto illegal;
2062 		}
2063 		break;
2064 
2065 	case SDEV_QUIESCE:
2066 		switch (oldstate) {
2067 		case SDEV_RUNNING:
2068 		case SDEV_OFFLINE:
2069 			break;
2070 		default:
2071 			goto illegal;
2072 		}
2073 		break;
2074 
2075 	case SDEV_OFFLINE:
2076 		switch (oldstate) {
2077 		case SDEV_CREATED:
2078 		case SDEV_RUNNING:
2079 		case SDEV_QUIESCE:
2080 		case SDEV_BLOCK:
2081 			break;
2082 		default:
2083 			goto illegal;
2084 		}
2085 		break;
2086 
2087 	case SDEV_BLOCK:
2088 		switch (oldstate) {
2089 		case SDEV_RUNNING:
2090 		case SDEV_CREATED_BLOCK:
2091 			break;
2092 		default:
2093 			goto illegal;
2094 		}
2095 		break;
2096 
2097 	case SDEV_CREATED_BLOCK:
2098 		switch (oldstate) {
2099 		case SDEV_CREATED:
2100 			break;
2101 		default:
2102 			goto illegal;
2103 		}
2104 		break;
2105 
2106 	case SDEV_CANCEL:
2107 		switch (oldstate) {
2108 		case SDEV_CREATED:
2109 		case SDEV_RUNNING:
2110 		case SDEV_QUIESCE:
2111 		case SDEV_OFFLINE:
2112 		case SDEV_BLOCK:
2113 			break;
2114 		default:
2115 			goto illegal;
2116 		}
2117 		break;
2118 
2119 	case SDEV_DEL:
2120 		switch (oldstate) {
2121 		case SDEV_CREATED:
2122 		case SDEV_RUNNING:
2123 		case SDEV_OFFLINE:
2124 		case SDEV_CANCEL:
2125 			break;
2126 		default:
2127 			goto illegal;
2128 		}
2129 		break;
2130 
2131 	}
2132 	sdev->sdev_state = state;
2133 	return 0;
2134 
2135  illegal:
2136 	SCSI_LOG_ERROR_RECOVERY(1,
2137 				sdev_printk(KERN_ERR, sdev,
2138 					    "Illegal state transition %s->%s\n",
2139 					    scsi_device_state_name(oldstate),
2140 					    scsi_device_state_name(state))
2141 				);
2142 	return -EINVAL;
2143 }
2144 EXPORT_SYMBOL(scsi_device_set_state);
2145 
2146 /**
2147  * 	sdev_evt_emit - emit a single SCSI device uevent
2148  *	@sdev: associated SCSI device
2149  *	@evt: event to emit
2150  *
2151  *	Send a single uevent (scsi_event) to the associated scsi_device.
2152  */
2153 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2154 {
2155 	int idx = 0;
2156 	char *envp[3];
2157 
2158 	switch (evt->evt_type) {
2159 	case SDEV_EVT_MEDIA_CHANGE:
2160 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2161 		break;
2162 
2163 	default:
2164 		/* do nothing */
2165 		break;
2166 	}
2167 
2168 	envp[idx++] = NULL;
2169 
2170 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2171 }
2172 
2173 /**
2174  * 	sdev_evt_thread - send a uevent for each scsi event
2175  *	@work: work struct for scsi_device
2176  *
2177  *	Dispatch queued events to their associated scsi_device kobjects
2178  *	as uevents.
2179  */
2180 void scsi_evt_thread(struct work_struct *work)
2181 {
2182 	struct scsi_device *sdev;
2183 	LIST_HEAD(event_list);
2184 
2185 	sdev = container_of(work, struct scsi_device, event_work);
2186 
2187 	while (1) {
2188 		struct scsi_event *evt;
2189 		struct list_head *this, *tmp;
2190 		unsigned long flags;
2191 
2192 		spin_lock_irqsave(&sdev->list_lock, flags);
2193 		list_splice_init(&sdev->event_list, &event_list);
2194 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2195 
2196 		if (list_empty(&event_list))
2197 			break;
2198 
2199 		list_for_each_safe(this, tmp, &event_list) {
2200 			evt = list_entry(this, struct scsi_event, node);
2201 			list_del(&evt->node);
2202 			scsi_evt_emit(sdev, evt);
2203 			kfree(evt);
2204 		}
2205 	}
2206 }
2207 
2208 /**
2209  * 	sdev_evt_send - send asserted event to uevent thread
2210  *	@sdev: scsi_device event occurred on
2211  *	@evt: event to send
2212  *
2213  *	Assert scsi device event asynchronously.
2214  */
2215 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2216 {
2217 	unsigned long flags;
2218 
2219 #if 0
2220 	/* FIXME: currently this check eliminates all media change events
2221 	 * for polled devices.  Need to update to discriminate between AN
2222 	 * and polled events */
2223 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2224 		kfree(evt);
2225 		return;
2226 	}
2227 #endif
2228 
2229 	spin_lock_irqsave(&sdev->list_lock, flags);
2230 	list_add_tail(&evt->node, &sdev->event_list);
2231 	schedule_work(&sdev->event_work);
2232 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2233 }
2234 EXPORT_SYMBOL_GPL(sdev_evt_send);
2235 
2236 /**
2237  * 	sdev_evt_alloc - allocate a new scsi event
2238  *	@evt_type: type of event to allocate
2239  *	@gfpflags: GFP flags for allocation
2240  *
2241  *	Allocates and returns a new scsi_event.
2242  */
2243 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2244 				  gfp_t gfpflags)
2245 {
2246 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2247 	if (!evt)
2248 		return NULL;
2249 
2250 	evt->evt_type = evt_type;
2251 	INIT_LIST_HEAD(&evt->node);
2252 
2253 	/* evt_type-specific initialization, if any */
2254 	switch (evt_type) {
2255 	case SDEV_EVT_MEDIA_CHANGE:
2256 	default:
2257 		/* do nothing */
2258 		break;
2259 	}
2260 
2261 	return evt;
2262 }
2263 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2264 
2265 /**
2266  * 	sdev_evt_send_simple - send asserted event to uevent thread
2267  *	@sdev: scsi_device event occurred on
2268  *	@evt_type: type of event to send
2269  *	@gfpflags: GFP flags for allocation
2270  *
2271  *	Assert scsi device event asynchronously, given an event type.
2272  */
2273 void sdev_evt_send_simple(struct scsi_device *sdev,
2274 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2275 {
2276 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2277 	if (!evt) {
2278 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2279 			    evt_type);
2280 		return;
2281 	}
2282 
2283 	sdev_evt_send(sdev, evt);
2284 }
2285 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2286 
2287 /**
2288  *	scsi_device_quiesce - Block user issued commands.
2289  *	@sdev:	scsi device to quiesce.
2290  *
2291  *	This works by trying to transition to the SDEV_QUIESCE state
2292  *	(which must be a legal transition).  When the device is in this
2293  *	state, only special requests will be accepted, all others will
2294  *	be deferred.  Since special requests may also be requeued requests,
2295  *	a successful return doesn't guarantee the device will be
2296  *	totally quiescent.
2297  *
2298  *	Must be called with user context, may sleep.
2299  *
2300  *	Returns zero if unsuccessful or an error if not.
2301  */
2302 int
2303 scsi_device_quiesce(struct scsi_device *sdev)
2304 {
2305 	int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2306 	if (err)
2307 		return err;
2308 
2309 	scsi_run_queue(sdev->request_queue);
2310 	while (sdev->device_busy) {
2311 		msleep_interruptible(200);
2312 		scsi_run_queue(sdev->request_queue);
2313 	}
2314 	return 0;
2315 }
2316 EXPORT_SYMBOL(scsi_device_quiesce);
2317 
2318 /**
2319  *	scsi_device_resume - Restart user issued commands to a quiesced device.
2320  *	@sdev:	scsi device to resume.
2321  *
2322  *	Moves the device from quiesced back to running and restarts the
2323  *	queues.
2324  *
2325  *	Must be called with user context, may sleep.
2326  */
2327 void
2328 scsi_device_resume(struct scsi_device *sdev)
2329 {
2330 	if(scsi_device_set_state(sdev, SDEV_RUNNING))
2331 		return;
2332 	scsi_run_queue(sdev->request_queue);
2333 }
2334 EXPORT_SYMBOL(scsi_device_resume);
2335 
2336 static void
2337 device_quiesce_fn(struct scsi_device *sdev, void *data)
2338 {
2339 	scsi_device_quiesce(sdev);
2340 }
2341 
2342 void
2343 scsi_target_quiesce(struct scsi_target *starget)
2344 {
2345 	starget_for_each_device(starget, NULL, device_quiesce_fn);
2346 }
2347 EXPORT_SYMBOL(scsi_target_quiesce);
2348 
2349 static void
2350 device_resume_fn(struct scsi_device *sdev, void *data)
2351 {
2352 	scsi_device_resume(sdev);
2353 }
2354 
2355 void
2356 scsi_target_resume(struct scsi_target *starget)
2357 {
2358 	starget_for_each_device(starget, NULL, device_resume_fn);
2359 }
2360 EXPORT_SYMBOL(scsi_target_resume);
2361 
2362 /**
2363  * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2364  * @sdev:	device to block
2365  *
2366  * Block request made by scsi lld's to temporarily stop all
2367  * scsi commands on the specified device.  Called from interrupt
2368  * or normal process context.
2369  *
2370  * Returns zero if successful or error if not
2371  *
2372  * Notes:
2373  *	This routine transitions the device to the SDEV_BLOCK state
2374  *	(which must be a legal transition).  When the device is in this
2375  *	state, all commands are deferred until the scsi lld reenables
2376  *	the device with scsi_device_unblock or device_block_tmo fires.
2377  *	This routine assumes the host_lock is held on entry.
2378  */
2379 int
2380 scsi_internal_device_block(struct scsi_device *sdev)
2381 {
2382 	struct request_queue *q = sdev->request_queue;
2383 	unsigned long flags;
2384 	int err = 0;
2385 
2386 	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2387 	if (err) {
2388 		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2389 
2390 		if (err)
2391 			return err;
2392 	}
2393 
2394 	/*
2395 	 * The device has transitioned to SDEV_BLOCK.  Stop the
2396 	 * block layer from calling the midlayer with this device's
2397 	 * request queue.
2398 	 */
2399 	spin_lock_irqsave(q->queue_lock, flags);
2400 	blk_stop_queue(q);
2401 	spin_unlock_irqrestore(q->queue_lock, flags);
2402 
2403 	return 0;
2404 }
2405 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2406 
2407 /**
2408  * scsi_internal_device_unblock - resume a device after a block request
2409  * @sdev:	device to resume
2410  *
2411  * Called by scsi lld's or the midlayer to restart the device queue
2412  * for the previously suspended scsi device.  Called from interrupt or
2413  * normal process context.
2414  *
2415  * Returns zero if successful or error if not.
2416  *
2417  * Notes:
2418  *	This routine transitions the device to the SDEV_RUNNING state
2419  *	(which must be a legal transition) allowing the midlayer to
2420  *	goose the queue for this device.  This routine assumes the
2421  *	host_lock is held upon entry.
2422  */
2423 int
2424 scsi_internal_device_unblock(struct scsi_device *sdev)
2425 {
2426 	struct request_queue *q = sdev->request_queue;
2427 	unsigned long flags;
2428 
2429 	/*
2430 	 * Try to transition the scsi device to SDEV_RUNNING
2431 	 * and goose the device queue if successful.
2432 	 */
2433 	if (sdev->sdev_state == SDEV_BLOCK)
2434 		sdev->sdev_state = SDEV_RUNNING;
2435 	else if (sdev->sdev_state == SDEV_CREATED_BLOCK)
2436 		sdev->sdev_state = SDEV_CREATED;
2437 	else
2438 		return -EINVAL;
2439 
2440 	spin_lock_irqsave(q->queue_lock, flags);
2441 	blk_start_queue(q);
2442 	spin_unlock_irqrestore(q->queue_lock, flags);
2443 
2444 	return 0;
2445 }
2446 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2447 
2448 static void
2449 device_block(struct scsi_device *sdev, void *data)
2450 {
2451 	scsi_internal_device_block(sdev);
2452 }
2453 
2454 static int
2455 target_block(struct device *dev, void *data)
2456 {
2457 	if (scsi_is_target_device(dev))
2458 		starget_for_each_device(to_scsi_target(dev), NULL,
2459 					device_block);
2460 	return 0;
2461 }
2462 
2463 void
2464 scsi_target_block(struct device *dev)
2465 {
2466 	if (scsi_is_target_device(dev))
2467 		starget_for_each_device(to_scsi_target(dev), NULL,
2468 					device_block);
2469 	else
2470 		device_for_each_child(dev, NULL, target_block);
2471 }
2472 EXPORT_SYMBOL_GPL(scsi_target_block);
2473 
2474 static void
2475 device_unblock(struct scsi_device *sdev, void *data)
2476 {
2477 	scsi_internal_device_unblock(sdev);
2478 }
2479 
2480 static int
2481 target_unblock(struct device *dev, void *data)
2482 {
2483 	if (scsi_is_target_device(dev))
2484 		starget_for_each_device(to_scsi_target(dev), NULL,
2485 					device_unblock);
2486 	return 0;
2487 }
2488 
2489 void
2490 scsi_target_unblock(struct device *dev)
2491 {
2492 	if (scsi_is_target_device(dev))
2493 		starget_for_each_device(to_scsi_target(dev), NULL,
2494 					device_unblock);
2495 	else
2496 		device_for_each_child(dev, NULL, target_unblock);
2497 }
2498 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2499 
2500 /**
2501  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2502  * @sgl:	scatter-gather list
2503  * @sg_count:	number of segments in sg
2504  * @offset:	offset in bytes into sg, on return offset into the mapped area
2505  * @len:	bytes to map, on return number of bytes mapped
2506  *
2507  * Returns virtual address of the start of the mapped page
2508  */
2509 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2510 			  size_t *offset, size_t *len)
2511 {
2512 	int i;
2513 	size_t sg_len = 0, len_complete = 0;
2514 	struct scatterlist *sg;
2515 	struct page *page;
2516 
2517 	WARN_ON(!irqs_disabled());
2518 
2519 	for_each_sg(sgl, sg, sg_count, i) {
2520 		len_complete = sg_len; /* Complete sg-entries */
2521 		sg_len += sg->length;
2522 		if (sg_len > *offset)
2523 			break;
2524 	}
2525 
2526 	if (unlikely(i == sg_count)) {
2527 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2528 			"elements %d\n",
2529 		       __func__, sg_len, *offset, sg_count);
2530 		WARN_ON(1);
2531 		return NULL;
2532 	}
2533 
2534 	/* Offset starting from the beginning of first page in this sg-entry */
2535 	*offset = *offset - len_complete + sg->offset;
2536 
2537 	/* Assumption: contiguous pages can be accessed as "page + i" */
2538 	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2539 	*offset &= ~PAGE_MASK;
2540 
2541 	/* Bytes in this sg-entry from *offset to the end of the page */
2542 	sg_len = PAGE_SIZE - *offset;
2543 	if (*len > sg_len)
2544 		*len = sg_len;
2545 
2546 	return kmap_atomic(page, KM_BIO_SRC_IRQ);
2547 }
2548 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2549 
2550 /**
2551  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2552  * @virt:	virtual address to be unmapped
2553  */
2554 void scsi_kunmap_atomic_sg(void *virt)
2555 {
2556 	kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2557 }
2558 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2559