1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 1999 Eric Youngdale 4 * Copyright (C) 2014 Christoph Hellwig 5 * 6 * SCSI queueing library. 7 * Initial versions: Eric Youngdale (eric@andante.org). 8 * Based upon conversations with large numbers 9 * of people at Linux Expo. 10 */ 11 12 #include <linux/bio.h> 13 #include <linux/bitops.h> 14 #include <linux/blkdev.h> 15 #include <linux/completion.h> 16 #include <linux/kernel.h> 17 #include <linux/export.h> 18 #include <linux/init.h> 19 #include <linux/pci.h> 20 #include <linux/delay.h> 21 #include <linux/hardirq.h> 22 #include <linux/scatterlist.h> 23 #include <linux/blk-mq.h> 24 #include <linux/ratelimit.h> 25 #include <asm/unaligned.h> 26 27 #include <scsi/scsi.h> 28 #include <scsi/scsi_cmnd.h> 29 #include <scsi/scsi_dbg.h> 30 #include <scsi/scsi_device.h> 31 #include <scsi/scsi_driver.h> 32 #include <scsi/scsi_eh.h> 33 #include <scsi/scsi_host.h> 34 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */ 35 #include <scsi/scsi_dh.h> 36 37 #include <trace/events/scsi.h> 38 39 #include "scsi_debugfs.h" 40 #include "scsi_priv.h" 41 #include "scsi_logging.h" 42 43 /* 44 * Size of integrity metadata is usually small, 1 inline sg should 45 * cover normal cases. 46 */ 47 #ifdef CONFIG_ARCH_NO_SG_CHAIN 48 #define SCSI_INLINE_PROT_SG_CNT 0 49 #define SCSI_INLINE_SG_CNT 0 50 #else 51 #define SCSI_INLINE_PROT_SG_CNT 1 52 #define SCSI_INLINE_SG_CNT 2 53 #endif 54 55 static struct kmem_cache *scsi_sense_cache; 56 static struct kmem_cache *scsi_sense_isadma_cache; 57 static DEFINE_MUTEX(scsi_sense_cache_mutex); 58 59 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd); 60 61 static inline struct kmem_cache * 62 scsi_select_sense_cache(bool unchecked_isa_dma) 63 { 64 return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache; 65 } 66 67 static void scsi_free_sense_buffer(bool unchecked_isa_dma, 68 unsigned char *sense_buffer) 69 { 70 kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma), 71 sense_buffer); 72 } 73 74 static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma, 75 gfp_t gfp_mask, int numa_node) 76 { 77 return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma), 78 gfp_mask, numa_node); 79 } 80 81 int scsi_init_sense_cache(struct Scsi_Host *shost) 82 { 83 struct kmem_cache *cache; 84 int ret = 0; 85 86 mutex_lock(&scsi_sense_cache_mutex); 87 cache = scsi_select_sense_cache(shost->unchecked_isa_dma); 88 if (cache) 89 goto exit; 90 91 if (shost->unchecked_isa_dma) { 92 scsi_sense_isadma_cache = 93 kmem_cache_create("scsi_sense_cache(DMA)", 94 SCSI_SENSE_BUFFERSIZE, 0, 95 SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL); 96 if (!scsi_sense_isadma_cache) 97 ret = -ENOMEM; 98 } else { 99 scsi_sense_cache = 100 kmem_cache_create_usercopy("scsi_sense_cache", 101 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN, 102 0, SCSI_SENSE_BUFFERSIZE, NULL); 103 if (!scsi_sense_cache) 104 ret = -ENOMEM; 105 } 106 exit: 107 mutex_unlock(&scsi_sense_cache_mutex); 108 return ret; 109 } 110 111 /* 112 * When to reinvoke queueing after a resource shortage. It's 3 msecs to 113 * not change behaviour from the previous unplug mechanism, experimentation 114 * may prove this needs changing. 115 */ 116 #define SCSI_QUEUE_DELAY 3 117 118 static void 119 scsi_set_blocked(struct scsi_cmnd *cmd, int reason) 120 { 121 struct Scsi_Host *host = cmd->device->host; 122 struct scsi_device *device = cmd->device; 123 struct scsi_target *starget = scsi_target(device); 124 125 /* 126 * Set the appropriate busy bit for the device/host. 127 * 128 * If the host/device isn't busy, assume that something actually 129 * completed, and that we should be able to queue a command now. 130 * 131 * Note that the prior mid-layer assumption that any host could 132 * always queue at least one command is now broken. The mid-layer 133 * will implement a user specifiable stall (see 134 * scsi_host.max_host_blocked and scsi_device.max_device_blocked) 135 * if a command is requeued with no other commands outstanding 136 * either for the device or for the host. 137 */ 138 switch (reason) { 139 case SCSI_MLQUEUE_HOST_BUSY: 140 atomic_set(&host->host_blocked, host->max_host_blocked); 141 break; 142 case SCSI_MLQUEUE_DEVICE_BUSY: 143 case SCSI_MLQUEUE_EH_RETRY: 144 atomic_set(&device->device_blocked, 145 device->max_device_blocked); 146 break; 147 case SCSI_MLQUEUE_TARGET_BUSY: 148 atomic_set(&starget->target_blocked, 149 starget->max_target_blocked); 150 break; 151 } 152 } 153 154 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd) 155 { 156 if (cmd->request->rq_flags & RQF_DONTPREP) { 157 cmd->request->rq_flags &= ~RQF_DONTPREP; 158 scsi_mq_uninit_cmd(cmd); 159 } else { 160 WARN_ON_ONCE(true); 161 } 162 blk_mq_requeue_request(cmd->request, true); 163 } 164 165 /** 166 * __scsi_queue_insert - private queue insertion 167 * @cmd: The SCSI command being requeued 168 * @reason: The reason for the requeue 169 * @unbusy: Whether the queue should be unbusied 170 * 171 * This is a private queue insertion. The public interface 172 * scsi_queue_insert() always assumes the queue should be unbusied 173 * because it's always called before the completion. This function is 174 * for a requeue after completion, which should only occur in this 175 * file. 176 */ 177 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy) 178 { 179 struct scsi_device *device = cmd->device; 180 181 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd, 182 "Inserting command %p into mlqueue\n", cmd)); 183 184 scsi_set_blocked(cmd, reason); 185 186 /* 187 * Decrement the counters, since these commands are no longer 188 * active on the host/device. 189 */ 190 if (unbusy) 191 scsi_device_unbusy(device, cmd); 192 193 /* 194 * Requeue this command. It will go before all other commands 195 * that are already in the queue. Schedule requeue work under 196 * lock such that the kblockd_schedule_work() call happens 197 * before blk_cleanup_queue() finishes. 198 */ 199 cmd->result = 0; 200 201 blk_mq_requeue_request(cmd->request, true); 202 } 203 204 /** 205 * scsi_queue_insert - Reinsert a command in the queue. 206 * @cmd: command that we are adding to queue. 207 * @reason: why we are inserting command to queue. 208 * 209 * We do this for one of two cases. Either the host is busy and it cannot accept 210 * any more commands for the time being, or the device returned QUEUE_FULL and 211 * can accept no more commands. 212 * 213 * Context: This could be called either from an interrupt context or a normal 214 * process context. 215 */ 216 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason) 217 { 218 __scsi_queue_insert(cmd, reason, true); 219 } 220 221 222 /** 223 * __scsi_execute - insert request and wait for the result 224 * @sdev: scsi device 225 * @cmd: scsi command 226 * @data_direction: data direction 227 * @buffer: data buffer 228 * @bufflen: len of buffer 229 * @sense: optional sense buffer 230 * @sshdr: optional decoded sense header 231 * @timeout: request timeout in seconds 232 * @retries: number of times to retry request 233 * @flags: flags for ->cmd_flags 234 * @rq_flags: flags for ->rq_flags 235 * @resid: optional residual length 236 * 237 * Returns the scsi_cmnd result field if a command was executed, or a negative 238 * Linux error code if we didn't get that far. 239 */ 240 int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd, 241 int data_direction, void *buffer, unsigned bufflen, 242 unsigned char *sense, struct scsi_sense_hdr *sshdr, 243 int timeout, int retries, u64 flags, req_flags_t rq_flags, 244 int *resid) 245 { 246 struct request *req; 247 struct scsi_request *rq; 248 int ret = DRIVER_ERROR << 24; 249 250 req = blk_get_request(sdev->request_queue, 251 data_direction == DMA_TO_DEVICE ? 252 REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, BLK_MQ_REQ_PREEMPT); 253 if (IS_ERR(req)) 254 return ret; 255 rq = scsi_req(req); 256 257 if (bufflen && blk_rq_map_kern(sdev->request_queue, req, 258 buffer, bufflen, GFP_NOIO)) 259 goto out; 260 261 rq->cmd_len = COMMAND_SIZE(cmd[0]); 262 memcpy(rq->cmd, cmd, rq->cmd_len); 263 rq->retries = retries; 264 req->timeout = timeout; 265 req->cmd_flags |= flags; 266 req->rq_flags |= rq_flags | RQF_QUIET; 267 268 /* 269 * head injection *required* here otherwise quiesce won't work 270 */ 271 blk_execute_rq(req->q, NULL, req, 1); 272 273 /* 274 * Some devices (USB mass-storage in particular) may transfer 275 * garbage data together with a residue indicating that the data 276 * is invalid. Prevent the garbage from being misinterpreted 277 * and prevent security leaks by zeroing out the excess data. 278 */ 279 if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen)) 280 memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len); 281 282 if (resid) 283 *resid = rq->resid_len; 284 if (sense && rq->sense_len) 285 memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE); 286 if (sshdr) 287 scsi_normalize_sense(rq->sense, rq->sense_len, sshdr); 288 ret = rq->result; 289 out: 290 blk_put_request(req); 291 292 return ret; 293 } 294 EXPORT_SYMBOL(__scsi_execute); 295 296 /* 297 * Wake up the error handler if necessary. Avoid as follows that the error 298 * handler is not woken up if host in-flight requests number == 299 * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination 300 * with an RCU read lock in this function to ensure that this function in 301 * its entirety either finishes before scsi_eh_scmd_add() increases the 302 * host_failed counter or that it notices the shost state change made by 303 * scsi_eh_scmd_add(). 304 */ 305 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd) 306 { 307 unsigned long flags; 308 309 rcu_read_lock(); 310 __clear_bit(SCMD_STATE_INFLIGHT, &cmd->state); 311 if (unlikely(scsi_host_in_recovery(shost))) { 312 spin_lock_irqsave(shost->host_lock, flags); 313 if (shost->host_failed || shost->host_eh_scheduled) 314 scsi_eh_wakeup(shost); 315 spin_unlock_irqrestore(shost->host_lock, flags); 316 } 317 rcu_read_unlock(); 318 } 319 320 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd) 321 { 322 struct Scsi_Host *shost = sdev->host; 323 struct scsi_target *starget = scsi_target(sdev); 324 325 scsi_dec_host_busy(shost, cmd); 326 327 if (starget->can_queue > 0) 328 atomic_dec(&starget->target_busy); 329 330 atomic_dec(&sdev->device_busy); 331 } 332 333 static void scsi_kick_queue(struct request_queue *q) 334 { 335 blk_mq_run_hw_queues(q, false); 336 } 337 338 /* 339 * Called for single_lun devices on IO completion. Clear starget_sdev_user, 340 * and call blk_run_queue for all the scsi_devices on the target - 341 * including current_sdev first. 342 * 343 * Called with *no* scsi locks held. 344 */ 345 static void scsi_single_lun_run(struct scsi_device *current_sdev) 346 { 347 struct Scsi_Host *shost = current_sdev->host; 348 struct scsi_device *sdev, *tmp; 349 struct scsi_target *starget = scsi_target(current_sdev); 350 unsigned long flags; 351 352 spin_lock_irqsave(shost->host_lock, flags); 353 starget->starget_sdev_user = NULL; 354 spin_unlock_irqrestore(shost->host_lock, flags); 355 356 /* 357 * Call blk_run_queue for all LUNs on the target, starting with 358 * current_sdev. We race with others (to set starget_sdev_user), 359 * but in most cases, we will be first. Ideally, each LU on the 360 * target would get some limited time or requests on the target. 361 */ 362 scsi_kick_queue(current_sdev->request_queue); 363 364 spin_lock_irqsave(shost->host_lock, flags); 365 if (starget->starget_sdev_user) 366 goto out; 367 list_for_each_entry_safe(sdev, tmp, &starget->devices, 368 same_target_siblings) { 369 if (sdev == current_sdev) 370 continue; 371 if (scsi_device_get(sdev)) 372 continue; 373 374 spin_unlock_irqrestore(shost->host_lock, flags); 375 scsi_kick_queue(sdev->request_queue); 376 spin_lock_irqsave(shost->host_lock, flags); 377 378 scsi_device_put(sdev); 379 } 380 out: 381 spin_unlock_irqrestore(shost->host_lock, flags); 382 } 383 384 static inline bool scsi_device_is_busy(struct scsi_device *sdev) 385 { 386 if (atomic_read(&sdev->device_busy) >= sdev->queue_depth) 387 return true; 388 if (atomic_read(&sdev->device_blocked) > 0) 389 return true; 390 return false; 391 } 392 393 static inline bool scsi_target_is_busy(struct scsi_target *starget) 394 { 395 if (starget->can_queue > 0) { 396 if (atomic_read(&starget->target_busy) >= starget->can_queue) 397 return true; 398 if (atomic_read(&starget->target_blocked) > 0) 399 return true; 400 } 401 return false; 402 } 403 404 static inline bool scsi_host_is_busy(struct Scsi_Host *shost) 405 { 406 if (atomic_read(&shost->host_blocked) > 0) 407 return true; 408 if (shost->host_self_blocked) 409 return true; 410 return false; 411 } 412 413 static void scsi_starved_list_run(struct Scsi_Host *shost) 414 { 415 LIST_HEAD(starved_list); 416 struct scsi_device *sdev; 417 unsigned long flags; 418 419 spin_lock_irqsave(shost->host_lock, flags); 420 list_splice_init(&shost->starved_list, &starved_list); 421 422 while (!list_empty(&starved_list)) { 423 struct request_queue *slq; 424 425 /* 426 * As long as shost is accepting commands and we have 427 * starved queues, call blk_run_queue. scsi_request_fn 428 * drops the queue_lock and can add us back to the 429 * starved_list. 430 * 431 * host_lock protects the starved_list and starved_entry. 432 * scsi_request_fn must get the host_lock before checking 433 * or modifying starved_list or starved_entry. 434 */ 435 if (scsi_host_is_busy(shost)) 436 break; 437 438 sdev = list_entry(starved_list.next, 439 struct scsi_device, starved_entry); 440 list_del_init(&sdev->starved_entry); 441 if (scsi_target_is_busy(scsi_target(sdev))) { 442 list_move_tail(&sdev->starved_entry, 443 &shost->starved_list); 444 continue; 445 } 446 447 /* 448 * Once we drop the host lock, a racing scsi_remove_device() 449 * call may remove the sdev from the starved list and destroy 450 * it and the queue. Mitigate by taking a reference to the 451 * queue and never touching the sdev again after we drop the 452 * host lock. Note: if __scsi_remove_device() invokes 453 * blk_cleanup_queue() before the queue is run from this 454 * function then blk_run_queue() will return immediately since 455 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING. 456 */ 457 slq = sdev->request_queue; 458 if (!blk_get_queue(slq)) 459 continue; 460 spin_unlock_irqrestore(shost->host_lock, flags); 461 462 scsi_kick_queue(slq); 463 blk_put_queue(slq); 464 465 spin_lock_irqsave(shost->host_lock, flags); 466 } 467 /* put any unprocessed entries back */ 468 list_splice(&starved_list, &shost->starved_list); 469 spin_unlock_irqrestore(shost->host_lock, flags); 470 } 471 472 /** 473 * scsi_run_queue - Select a proper request queue to serve next. 474 * @q: last request's queue 475 * 476 * The previous command was completely finished, start a new one if possible. 477 */ 478 static void scsi_run_queue(struct request_queue *q) 479 { 480 struct scsi_device *sdev = q->queuedata; 481 482 if (scsi_target(sdev)->single_lun) 483 scsi_single_lun_run(sdev); 484 if (!list_empty(&sdev->host->starved_list)) 485 scsi_starved_list_run(sdev->host); 486 487 blk_mq_run_hw_queues(q, false); 488 } 489 490 void scsi_requeue_run_queue(struct work_struct *work) 491 { 492 struct scsi_device *sdev; 493 struct request_queue *q; 494 495 sdev = container_of(work, struct scsi_device, requeue_work); 496 q = sdev->request_queue; 497 scsi_run_queue(q); 498 } 499 500 void scsi_run_host_queues(struct Scsi_Host *shost) 501 { 502 struct scsi_device *sdev; 503 504 shost_for_each_device(sdev, shost) 505 scsi_run_queue(sdev->request_queue); 506 } 507 508 static void scsi_uninit_cmd(struct scsi_cmnd *cmd) 509 { 510 if (!blk_rq_is_passthrough(cmd->request)) { 511 struct scsi_driver *drv = scsi_cmd_to_driver(cmd); 512 513 if (drv->uninit_command) 514 drv->uninit_command(cmd); 515 } 516 } 517 518 void scsi_free_sgtables(struct scsi_cmnd *cmd) 519 { 520 if (cmd->sdb.table.nents) 521 sg_free_table_chained(&cmd->sdb.table, 522 SCSI_INLINE_SG_CNT); 523 if (scsi_prot_sg_count(cmd)) 524 sg_free_table_chained(&cmd->prot_sdb->table, 525 SCSI_INLINE_PROT_SG_CNT); 526 } 527 EXPORT_SYMBOL_GPL(scsi_free_sgtables); 528 529 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd) 530 { 531 scsi_free_sgtables(cmd); 532 scsi_uninit_cmd(cmd); 533 } 534 535 static void scsi_run_queue_async(struct scsi_device *sdev) 536 { 537 if (scsi_target(sdev)->single_lun || 538 !list_empty(&sdev->host->starved_list)) { 539 kblockd_schedule_work(&sdev->requeue_work); 540 } else { 541 /* 542 * smp_mb() present in sbitmap_queue_clear() or implied in 543 * .end_io is for ordering writing .device_busy in 544 * scsi_device_unbusy() and reading sdev->restarts. 545 */ 546 int old = atomic_read(&sdev->restarts); 547 548 /* 549 * ->restarts has to be kept as non-zero if new budget 550 * contention occurs. 551 * 552 * No need to run queue when either another re-run 553 * queue wins in updating ->restarts or a new budget 554 * contention occurs. 555 */ 556 if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old) 557 blk_mq_run_hw_queues(sdev->request_queue, true); 558 } 559 } 560 561 /* Returns false when no more bytes to process, true if there are more */ 562 static bool scsi_end_request(struct request *req, blk_status_t error, 563 unsigned int bytes) 564 { 565 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 566 struct scsi_device *sdev = cmd->device; 567 struct request_queue *q = sdev->request_queue; 568 569 if (blk_update_request(req, error, bytes)) 570 return true; 571 572 if (blk_queue_add_random(q)) 573 add_disk_randomness(req->rq_disk); 574 575 if (!blk_rq_is_scsi(req)) { 576 WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED)); 577 cmd->flags &= ~SCMD_INITIALIZED; 578 } 579 580 /* 581 * Calling rcu_barrier() is not necessary here because the 582 * SCSI error handler guarantees that the function called by 583 * call_rcu() has been called before scsi_end_request() is 584 * called. 585 */ 586 destroy_rcu_head(&cmd->rcu); 587 588 /* 589 * In the MQ case the command gets freed by __blk_mq_end_request, 590 * so we have to do all cleanup that depends on it earlier. 591 * 592 * We also can't kick the queues from irq context, so we 593 * will have to defer it to a workqueue. 594 */ 595 scsi_mq_uninit_cmd(cmd); 596 597 /* 598 * queue is still alive, so grab the ref for preventing it 599 * from being cleaned up during running queue. 600 */ 601 percpu_ref_get(&q->q_usage_counter); 602 603 __blk_mq_end_request(req, error); 604 605 scsi_run_queue_async(sdev); 606 607 percpu_ref_put(&q->q_usage_counter); 608 return false; 609 } 610 611 /** 612 * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t 613 * @cmd: SCSI command 614 * @result: scsi error code 615 * 616 * Translate a SCSI result code into a blk_status_t value. May reset the host 617 * byte of @cmd->result. 618 */ 619 static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result) 620 { 621 switch (host_byte(result)) { 622 case DID_OK: 623 /* 624 * Also check the other bytes than the status byte in result 625 * to handle the case when a SCSI LLD sets result to 626 * DRIVER_SENSE << 24 without setting SAM_STAT_CHECK_CONDITION. 627 */ 628 if (scsi_status_is_good(result) && (result & ~0xff) == 0) 629 return BLK_STS_OK; 630 return BLK_STS_IOERR; 631 case DID_TRANSPORT_FAILFAST: 632 return BLK_STS_TRANSPORT; 633 case DID_TARGET_FAILURE: 634 set_host_byte(cmd, DID_OK); 635 return BLK_STS_TARGET; 636 case DID_NEXUS_FAILURE: 637 set_host_byte(cmd, DID_OK); 638 return BLK_STS_NEXUS; 639 case DID_ALLOC_FAILURE: 640 set_host_byte(cmd, DID_OK); 641 return BLK_STS_NOSPC; 642 case DID_MEDIUM_ERROR: 643 set_host_byte(cmd, DID_OK); 644 return BLK_STS_MEDIUM; 645 default: 646 return BLK_STS_IOERR; 647 } 648 } 649 650 /* Helper for scsi_io_completion() when "reprep" action required. */ 651 static void scsi_io_completion_reprep(struct scsi_cmnd *cmd, 652 struct request_queue *q) 653 { 654 /* A new command will be prepared and issued. */ 655 scsi_mq_requeue_cmd(cmd); 656 } 657 658 static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd) 659 { 660 struct request *req = cmd->request; 661 unsigned long wait_for; 662 663 if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT) 664 return false; 665 666 wait_for = (cmd->allowed + 1) * req->timeout; 667 if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) { 668 scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n", 669 wait_for/HZ); 670 return true; 671 } 672 return false; 673 } 674 675 /* Helper for scsi_io_completion() when special action required. */ 676 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result) 677 { 678 struct request_queue *q = cmd->device->request_queue; 679 struct request *req = cmd->request; 680 int level = 0; 681 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY, 682 ACTION_DELAYED_RETRY} action; 683 struct scsi_sense_hdr sshdr; 684 bool sense_valid; 685 bool sense_current = true; /* false implies "deferred sense" */ 686 blk_status_t blk_stat; 687 688 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 689 if (sense_valid) 690 sense_current = !scsi_sense_is_deferred(&sshdr); 691 692 blk_stat = scsi_result_to_blk_status(cmd, result); 693 694 if (host_byte(result) == DID_RESET) { 695 /* Third party bus reset or reset for error recovery 696 * reasons. Just retry the command and see what 697 * happens. 698 */ 699 action = ACTION_RETRY; 700 } else if (sense_valid && sense_current) { 701 switch (sshdr.sense_key) { 702 case UNIT_ATTENTION: 703 if (cmd->device->removable) { 704 /* Detected disc change. Set a bit 705 * and quietly refuse further access. 706 */ 707 cmd->device->changed = 1; 708 action = ACTION_FAIL; 709 } else { 710 /* Must have been a power glitch, or a 711 * bus reset. Could not have been a 712 * media change, so we just retry the 713 * command and see what happens. 714 */ 715 action = ACTION_RETRY; 716 } 717 break; 718 case ILLEGAL_REQUEST: 719 /* If we had an ILLEGAL REQUEST returned, then 720 * we may have performed an unsupported 721 * command. The only thing this should be 722 * would be a ten byte read where only a six 723 * byte read was supported. Also, on a system 724 * where READ CAPACITY failed, we may have 725 * read past the end of the disk. 726 */ 727 if ((cmd->device->use_10_for_rw && 728 sshdr.asc == 0x20 && sshdr.ascq == 0x00) && 729 (cmd->cmnd[0] == READ_10 || 730 cmd->cmnd[0] == WRITE_10)) { 731 /* This will issue a new 6-byte command. */ 732 cmd->device->use_10_for_rw = 0; 733 action = ACTION_REPREP; 734 } else if (sshdr.asc == 0x10) /* DIX */ { 735 action = ACTION_FAIL; 736 blk_stat = BLK_STS_PROTECTION; 737 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */ 738 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) { 739 action = ACTION_FAIL; 740 blk_stat = BLK_STS_TARGET; 741 } else 742 action = ACTION_FAIL; 743 break; 744 case ABORTED_COMMAND: 745 action = ACTION_FAIL; 746 if (sshdr.asc == 0x10) /* DIF */ 747 blk_stat = BLK_STS_PROTECTION; 748 break; 749 case NOT_READY: 750 /* If the device is in the process of becoming 751 * ready, or has a temporary blockage, retry. 752 */ 753 if (sshdr.asc == 0x04) { 754 switch (sshdr.ascq) { 755 case 0x01: /* becoming ready */ 756 case 0x04: /* format in progress */ 757 case 0x05: /* rebuild in progress */ 758 case 0x06: /* recalculation in progress */ 759 case 0x07: /* operation in progress */ 760 case 0x08: /* Long write in progress */ 761 case 0x09: /* self test in progress */ 762 case 0x14: /* space allocation in progress */ 763 case 0x1a: /* start stop unit in progress */ 764 case 0x1b: /* sanitize in progress */ 765 case 0x1d: /* configuration in progress */ 766 case 0x24: /* depopulation in progress */ 767 action = ACTION_DELAYED_RETRY; 768 break; 769 default: 770 action = ACTION_FAIL; 771 break; 772 } 773 } else 774 action = ACTION_FAIL; 775 break; 776 case VOLUME_OVERFLOW: 777 /* See SSC3rXX or current. */ 778 action = ACTION_FAIL; 779 break; 780 default: 781 action = ACTION_FAIL; 782 break; 783 } 784 } else 785 action = ACTION_FAIL; 786 787 if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd)) 788 action = ACTION_FAIL; 789 790 switch (action) { 791 case ACTION_FAIL: 792 /* Give up and fail the remainder of the request */ 793 if (!(req->rq_flags & RQF_QUIET)) { 794 static DEFINE_RATELIMIT_STATE(_rs, 795 DEFAULT_RATELIMIT_INTERVAL, 796 DEFAULT_RATELIMIT_BURST); 797 798 if (unlikely(scsi_logging_level)) 799 level = 800 SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT, 801 SCSI_LOG_MLCOMPLETE_BITS); 802 803 /* 804 * if logging is enabled the failure will be printed 805 * in scsi_log_completion(), so avoid duplicate messages 806 */ 807 if (!level && __ratelimit(&_rs)) { 808 scsi_print_result(cmd, NULL, FAILED); 809 if (driver_byte(result) == DRIVER_SENSE) 810 scsi_print_sense(cmd); 811 scsi_print_command(cmd); 812 } 813 } 814 if (!scsi_end_request(req, blk_stat, blk_rq_err_bytes(req))) 815 return; 816 fallthrough; 817 case ACTION_REPREP: 818 scsi_io_completion_reprep(cmd, q); 819 break; 820 case ACTION_RETRY: 821 /* Retry the same command immediately */ 822 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false); 823 break; 824 case ACTION_DELAYED_RETRY: 825 /* Retry the same command after a delay */ 826 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false); 827 break; 828 } 829 } 830 831 /* 832 * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a 833 * new result that may suppress further error checking. Also modifies 834 * *blk_statp in some cases. 835 */ 836 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result, 837 blk_status_t *blk_statp) 838 { 839 bool sense_valid; 840 bool sense_current = true; /* false implies "deferred sense" */ 841 struct request *req = cmd->request; 842 struct scsi_sense_hdr sshdr; 843 844 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 845 if (sense_valid) 846 sense_current = !scsi_sense_is_deferred(&sshdr); 847 848 if (blk_rq_is_passthrough(req)) { 849 if (sense_valid) { 850 /* 851 * SG_IO wants current and deferred errors 852 */ 853 scsi_req(req)->sense_len = 854 min(8 + cmd->sense_buffer[7], 855 SCSI_SENSE_BUFFERSIZE); 856 } 857 if (sense_current) 858 *blk_statp = scsi_result_to_blk_status(cmd, result); 859 } else if (blk_rq_bytes(req) == 0 && sense_current) { 860 /* 861 * Flush commands do not transfers any data, and thus cannot use 862 * good_bytes != blk_rq_bytes(req) as the signal for an error. 863 * This sets *blk_statp explicitly for the problem case. 864 */ 865 *blk_statp = scsi_result_to_blk_status(cmd, result); 866 } 867 /* 868 * Recovered errors need reporting, but they're always treated as 869 * success, so fiddle the result code here. For passthrough requests 870 * we already took a copy of the original into sreq->result which 871 * is what gets returned to the user 872 */ 873 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) { 874 bool do_print = true; 875 /* 876 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d] 877 * skip print since caller wants ATA registers. Only occurs 878 * on SCSI ATA PASS_THROUGH commands when CK_COND=1 879 */ 880 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d)) 881 do_print = false; 882 else if (req->rq_flags & RQF_QUIET) 883 do_print = false; 884 if (do_print) 885 scsi_print_sense(cmd); 886 result = 0; 887 /* for passthrough, *blk_statp may be set */ 888 *blk_statp = BLK_STS_OK; 889 } 890 /* 891 * Another corner case: the SCSI status byte is non-zero but 'good'. 892 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when 893 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD 894 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related 895 * intermediate statuses (both obsolete in SAM-4) as good. 896 */ 897 if (status_byte(result) && scsi_status_is_good(result)) { 898 result = 0; 899 *blk_statp = BLK_STS_OK; 900 } 901 return result; 902 } 903 904 /** 905 * scsi_io_completion - Completion processing for SCSI commands. 906 * @cmd: command that is finished. 907 * @good_bytes: number of processed bytes. 908 * 909 * We will finish off the specified number of sectors. If we are done, the 910 * command block will be released and the queue function will be goosed. If we 911 * are not done then we have to figure out what to do next: 912 * 913 * a) We can call scsi_io_completion_reprep(). The request will be 914 * unprepared and put back on the queue. Then a new command will 915 * be created for it. This should be used if we made forward 916 * progress, or if we want to switch from READ(10) to READ(6) for 917 * example. 918 * 919 * b) We can call scsi_io_completion_action(). The request will be 920 * put back on the queue and retried using the same command as 921 * before, possibly after a delay. 922 * 923 * c) We can call scsi_end_request() with blk_stat other than 924 * BLK_STS_OK, to fail the remainder of the request. 925 */ 926 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes) 927 { 928 int result = cmd->result; 929 struct request_queue *q = cmd->device->request_queue; 930 struct request *req = cmd->request; 931 blk_status_t blk_stat = BLK_STS_OK; 932 933 if (unlikely(result)) /* a nz result may or may not be an error */ 934 result = scsi_io_completion_nz_result(cmd, result, &blk_stat); 935 936 if (unlikely(blk_rq_is_passthrough(req))) { 937 /* 938 * scsi_result_to_blk_status may have reset the host_byte 939 */ 940 scsi_req(req)->result = cmd->result; 941 } 942 943 /* 944 * Next deal with any sectors which we were able to correctly 945 * handle. 946 */ 947 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd, 948 "%u sectors total, %d bytes done.\n", 949 blk_rq_sectors(req), good_bytes)); 950 951 /* 952 * Failed, zero length commands always need to drop down 953 * to retry code. Fast path should return in this block. 954 */ 955 if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) { 956 if (likely(!scsi_end_request(req, blk_stat, good_bytes))) 957 return; /* no bytes remaining */ 958 } 959 960 /* Kill remainder if no retries. */ 961 if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) { 962 if (scsi_end_request(req, blk_stat, blk_rq_bytes(req))) 963 WARN_ONCE(true, 964 "Bytes remaining after failed, no-retry command"); 965 return; 966 } 967 968 /* 969 * If there had been no error, but we have leftover bytes in the 970 * requeues just queue the command up again. 971 */ 972 if (likely(result == 0)) 973 scsi_io_completion_reprep(cmd, q); 974 else 975 scsi_io_completion_action(cmd, result); 976 } 977 978 static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev, 979 struct request *rq) 980 { 981 return sdev->dma_drain_len && blk_rq_is_passthrough(rq) && 982 !op_is_write(req_op(rq)) && 983 sdev->host->hostt->dma_need_drain(rq); 984 } 985 986 /** 987 * scsi_alloc_sgtables - allocate S/G tables for a command 988 * @cmd: command descriptor we wish to initialize 989 * 990 * Returns: 991 * * BLK_STS_OK - on success 992 * * BLK_STS_RESOURCE - if the failure is retryable 993 * * BLK_STS_IOERR - if the failure is fatal 994 */ 995 blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd) 996 { 997 struct scsi_device *sdev = cmd->device; 998 struct request *rq = cmd->request; 999 unsigned short nr_segs = blk_rq_nr_phys_segments(rq); 1000 struct scatterlist *last_sg = NULL; 1001 blk_status_t ret; 1002 bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq); 1003 int count; 1004 1005 if (WARN_ON_ONCE(!nr_segs)) 1006 return BLK_STS_IOERR; 1007 1008 /* 1009 * Make sure there is space for the drain. The driver must adjust 1010 * max_hw_segments to be prepared for this. 1011 */ 1012 if (need_drain) 1013 nr_segs++; 1014 1015 /* 1016 * If sg table allocation fails, requeue request later. 1017 */ 1018 if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs, 1019 cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT))) 1020 return BLK_STS_RESOURCE; 1021 1022 /* 1023 * Next, walk the list, and fill in the addresses and sizes of 1024 * each segment. 1025 */ 1026 count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg); 1027 1028 if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) { 1029 unsigned int pad_len = 1030 (rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1; 1031 1032 last_sg->length += pad_len; 1033 cmd->extra_len += pad_len; 1034 } 1035 1036 if (need_drain) { 1037 sg_unmark_end(last_sg); 1038 last_sg = sg_next(last_sg); 1039 sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len); 1040 sg_mark_end(last_sg); 1041 1042 cmd->extra_len += sdev->dma_drain_len; 1043 count++; 1044 } 1045 1046 BUG_ON(count > cmd->sdb.table.nents); 1047 cmd->sdb.table.nents = count; 1048 cmd->sdb.length = blk_rq_payload_bytes(rq); 1049 1050 if (blk_integrity_rq(rq)) { 1051 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb; 1052 int ivecs; 1053 1054 if (WARN_ON_ONCE(!prot_sdb)) { 1055 /* 1056 * This can happen if someone (e.g. multipath) 1057 * queues a command to a device on an adapter 1058 * that does not support DIX. 1059 */ 1060 ret = BLK_STS_IOERR; 1061 goto out_free_sgtables; 1062 } 1063 1064 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio); 1065 1066 if (sg_alloc_table_chained(&prot_sdb->table, ivecs, 1067 prot_sdb->table.sgl, 1068 SCSI_INLINE_PROT_SG_CNT)) { 1069 ret = BLK_STS_RESOURCE; 1070 goto out_free_sgtables; 1071 } 1072 1073 count = blk_rq_map_integrity_sg(rq->q, rq->bio, 1074 prot_sdb->table.sgl); 1075 BUG_ON(count > ivecs); 1076 BUG_ON(count > queue_max_integrity_segments(rq->q)); 1077 1078 cmd->prot_sdb = prot_sdb; 1079 cmd->prot_sdb->table.nents = count; 1080 } 1081 1082 return BLK_STS_OK; 1083 out_free_sgtables: 1084 scsi_free_sgtables(cmd); 1085 return ret; 1086 } 1087 EXPORT_SYMBOL(scsi_alloc_sgtables); 1088 1089 /** 1090 * scsi_initialize_rq - initialize struct scsi_cmnd partially 1091 * @rq: Request associated with the SCSI command to be initialized. 1092 * 1093 * This function initializes the members of struct scsi_cmnd that must be 1094 * initialized before request processing starts and that won't be 1095 * reinitialized if a SCSI command is requeued. 1096 * 1097 * Called from inside blk_get_request() for pass-through requests and from 1098 * inside scsi_init_command() for filesystem requests. 1099 */ 1100 static void scsi_initialize_rq(struct request *rq) 1101 { 1102 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1103 1104 scsi_req_init(&cmd->req); 1105 init_rcu_head(&cmd->rcu); 1106 cmd->jiffies_at_alloc = jiffies; 1107 cmd->retries = 0; 1108 } 1109 1110 /* 1111 * Only called when the request isn't completed by SCSI, and not freed by 1112 * SCSI 1113 */ 1114 static void scsi_cleanup_rq(struct request *rq) 1115 { 1116 if (rq->rq_flags & RQF_DONTPREP) { 1117 scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq)); 1118 rq->rq_flags &= ~RQF_DONTPREP; 1119 } 1120 } 1121 1122 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */ 1123 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd) 1124 { 1125 void *buf = cmd->sense_buffer; 1126 void *prot = cmd->prot_sdb; 1127 struct request *rq = blk_mq_rq_from_pdu(cmd); 1128 unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS; 1129 unsigned long jiffies_at_alloc; 1130 int retries, to_clear; 1131 bool in_flight; 1132 1133 if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) { 1134 flags |= SCMD_INITIALIZED; 1135 scsi_initialize_rq(rq); 1136 } 1137 1138 jiffies_at_alloc = cmd->jiffies_at_alloc; 1139 retries = cmd->retries; 1140 in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state); 1141 /* 1142 * Zero out the cmd, except for the embedded scsi_request. Only clear 1143 * the driver-private command data if the LLD does not supply a 1144 * function to initialize that data. 1145 */ 1146 to_clear = sizeof(*cmd) - sizeof(cmd->req); 1147 if (!dev->host->hostt->init_cmd_priv) 1148 to_clear += dev->host->hostt->cmd_size; 1149 memset((char *)cmd + sizeof(cmd->req), 0, to_clear); 1150 1151 cmd->device = dev; 1152 cmd->sense_buffer = buf; 1153 cmd->prot_sdb = prot; 1154 cmd->flags = flags; 1155 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler); 1156 cmd->jiffies_at_alloc = jiffies_at_alloc; 1157 cmd->retries = retries; 1158 if (in_flight) 1159 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state); 1160 1161 } 1162 1163 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev, 1164 struct request *req) 1165 { 1166 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1167 1168 /* 1169 * Passthrough requests may transfer data, in which case they must 1170 * a bio attached to them. Or they might contain a SCSI command 1171 * that does not transfer data, in which case they may optionally 1172 * submit a request without an attached bio. 1173 */ 1174 if (req->bio) { 1175 blk_status_t ret = scsi_alloc_sgtables(cmd); 1176 if (unlikely(ret != BLK_STS_OK)) 1177 return ret; 1178 } else { 1179 BUG_ON(blk_rq_bytes(req)); 1180 1181 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1182 } 1183 1184 cmd->cmd_len = scsi_req(req)->cmd_len; 1185 if (cmd->cmd_len == 0) 1186 cmd->cmd_len = scsi_command_size(cmd->cmnd); 1187 cmd->cmnd = scsi_req(req)->cmd; 1188 cmd->transfersize = blk_rq_bytes(req); 1189 cmd->allowed = scsi_req(req)->retries; 1190 return BLK_STS_OK; 1191 } 1192 1193 static blk_status_t 1194 scsi_device_state_check(struct scsi_device *sdev, struct request *req) 1195 { 1196 switch (sdev->sdev_state) { 1197 case SDEV_OFFLINE: 1198 case SDEV_TRANSPORT_OFFLINE: 1199 /* 1200 * If the device is offline we refuse to process any 1201 * commands. The device must be brought online 1202 * before trying any recovery commands. 1203 */ 1204 if (!sdev->offline_already) { 1205 sdev->offline_already = true; 1206 sdev_printk(KERN_ERR, sdev, 1207 "rejecting I/O to offline device\n"); 1208 } 1209 return BLK_STS_IOERR; 1210 case SDEV_DEL: 1211 /* 1212 * If the device is fully deleted, we refuse to 1213 * process any commands as well. 1214 */ 1215 sdev_printk(KERN_ERR, sdev, 1216 "rejecting I/O to dead device\n"); 1217 return BLK_STS_IOERR; 1218 case SDEV_BLOCK: 1219 case SDEV_CREATED_BLOCK: 1220 return BLK_STS_RESOURCE; 1221 case SDEV_QUIESCE: 1222 /* 1223 * If the devices is blocked we defer normal commands. 1224 */ 1225 if (req && !(req->rq_flags & RQF_PREEMPT)) 1226 return BLK_STS_RESOURCE; 1227 return BLK_STS_OK; 1228 default: 1229 /* 1230 * For any other not fully online state we only allow 1231 * special commands. In particular any user initiated 1232 * command is not allowed. 1233 */ 1234 if (req && !(req->rq_flags & RQF_PREEMPT)) 1235 return BLK_STS_IOERR; 1236 return BLK_STS_OK; 1237 } 1238 } 1239 1240 /* 1241 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else 1242 * return 0. 1243 * 1244 * Called with the queue_lock held. 1245 */ 1246 static inline int scsi_dev_queue_ready(struct request_queue *q, 1247 struct scsi_device *sdev) 1248 { 1249 unsigned int busy; 1250 1251 busy = atomic_inc_return(&sdev->device_busy) - 1; 1252 if (atomic_read(&sdev->device_blocked)) { 1253 if (busy) 1254 goto out_dec; 1255 1256 /* 1257 * unblock after device_blocked iterates to zero 1258 */ 1259 if (atomic_dec_return(&sdev->device_blocked) > 0) 1260 goto out_dec; 1261 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev, 1262 "unblocking device at zero depth\n")); 1263 } 1264 1265 if (busy >= sdev->queue_depth) 1266 goto out_dec; 1267 1268 return 1; 1269 out_dec: 1270 atomic_dec(&sdev->device_busy); 1271 return 0; 1272 } 1273 1274 /* 1275 * scsi_target_queue_ready: checks if there we can send commands to target 1276 * @sdev: scsi device on starget to check. 1277 */ 1278 static inline int scsi_target_queue_ready(struct Scsi_Host *shost, 1279 struct scsi_device *sdev) 1280 { 1281 struct scsi_target *starget = scsi_target(sdev); 1282 unsigned int busy; 1283 1284 if (starget->single_lun) { 1285 spin_lock_irq(shost->host_lock); 1286 if (starget->starget_sdev_user && 1287 starget->starget_sdev_user != sdev) { 1288 spin_unlock_irq(shost->host_lock); 1289 return 0; 1290 } 1291 starget->starget_sdev_user = sdev; 1292 spin_unlock_irq(shost->host_lock); 1293 } 1294 1295 if (starget->can_queue <= 0) 1296 return 1; 1297 1298 busy = atomic_inc_return(&starget->target_busy) - 1; 1299 if (atomic_read(&starget->target_blocked) > 0) { 1300 if (busy) 1301 goto starved; 1302 1303 /* 1304 * unblock after target_blocked iterates to zero 1305 */ 1306 if (atomic_dec_return(&starget->target_blocked) > 0) 1307 goto out_dec; 1308 1309 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget, 1310 "unblocking target at zero depth\n")); 1311 } 1312 1313 if (busy >= starget->can_queue) 1314 goto starved; 1315 1316 return 1; 1317 1318 starved: 1319 spin_lock_irq(shost->host_lock); 1320 list_move_tail(&sdev->starved_entry, &shost->starved_list); 1321 spin_unlock_irq(shost->host_lock); 1322 out_dec: 1323 if (starget->can_queue > 0) 1324 atomic_dec(&starget->target_busy); 1325 return 0; 1326 } 1327 1328 /* 1329 * scsi_host_queue_ready: if we can send requests to shost, return 1 else 1330 * return 0. We must end up running the queue again whenever 0 is 1331 * returned, else IO can hang. 1332 */ 1333 static inline int scsi_host_queue_ready(struct request_queue *q, 1334 struct Scsi_Host *shost, 1335 struct scsi_device *sdev, 1336 struct scsi_cmnd *cmd) 1337 { 1338 if (scsi_host_in_recovery(shost)) 1339 return 0; 1340 1341 if (atomic_read(&shost->host_blocked) > 0) { 1342 if (scsi_host_busy(shost) > 0) 1343 goto starved; 1344 1345 /* 1346 * unblock after host_blocked iterates to zero 1347 */ 1348 if (atomic_dec_return(&shost->host_blocked) > 0) 1349 goto out_dec; 1350 1351 SCSI_LOG_MLQUEUE(3, 1352 shost_printk(KERN_INFO, shost, 1353 "unblocking host at zero depth\n")); 1354 } 1355 1356 if (shost->host_self_blocked) 1357 goto starved; 1358 1359 /* We're OK to process the command, so we can't be starved */ 1360 if (!list_empty(&sdev->starved_entry)) { 1361 spin_lock_irq(shost->host_lock); 1362 if (!list_empty(&sdev->starved_entry)) 1363 list_del_init(&sdev->starved_entry); 1364 spin_unlock_irq(shost->host_lock); 1365 } 1366 1367 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state); 1368 1369 return 1; 1370 1371 starved: 1372 spin_lock_irq(shost->host_lock); 1373 if (list_empty(&sdev->starved_entry)) 1374 list_add_tail(&sdev->starved_entry, &shost->starved_list); 1375 spin_unlock_irq(shost->host_lock); 1376 out_dec: 1377 scsi_dec_host_busy(shost, cmd); 1378 return 0; 1379 } 1380 1381 /* 1382 * Busy state exporting function for request stacking drivers. 1383 * 1384 * For efficiency, no lock is taken to check the busy state of 1385 * shost/starget/sdev, since the returned value is not guaranteed and 1386 * may be changed after request stacking drivers call the function, 1387 * regardless of taking lock or not. 1388 * 1389 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi 1390 * needs to return 'not busy'. Otherwise, request stacking drivers 1391 * may hold requests forever. 1392 */ 1393 static bool scsi_mq_lld_busy(struct request_queue *q) 1394 { 1395 struct scsi_device *sdev = q->queuedata; 1396 struct Scsi_Host *shost; 1397 1398 if (blk_queue_dying(q)) 1399 return false; 1400 1401 shost = sdev->host; 1402 1403 /* 1404 * Ignore host/starget busy state. 1405 * Since block layer does not have a concept of fairness across 1406 * multiple queues, congestion of host/starget needs to be handled 1407 * in SCSI layer. 1408 */ 1409 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev)) 1410 return true; 1411 1412 return false; 1413 } 1414 1415 static void scsi_softirq_done(struct request *rq) 1416 { 1417 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1418 int disposition; 1419 1420 INIT_LIST_HEAD(&cmd->eh_entry); 1421 1422 atomic_inc(&cmd->device->iodone_cnt); 1423 if (cmd->result) 1424 atomic_inc(&cmd->device->ioerr_cnt); 1425 1426 disposition = scsi_decide_disposition(cmd); 1427 if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd)) 1428 disposition = SUCCESS; 1429 1430 scsi_log_completion(cmd, disposition); 1431 1432 switch (disposition) { 1433 case SUCCESS: 1434 scsi_finish_command(cmd); 1435 break; 1436 case NEEDS_RETRY: 1437 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY); 1438 break; 1439 case ADD_TO_MLQUEUE: 1440 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY); 1441 break; 1442 default: 1443 scsi_eh_scmd_add(cmd); 1444 break; 1445 } 1446 } 1447 1448 /** 1449 * scsi_dispatch_command - Dispatch a command to the low-level driver. 1450 * @cmd: command block we are dispatching. 1451 * 1452 * Return: nonzero return request was rejected and device's queue needs to be 1453 * plugged. 1454 */ 1455 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd) 1456 { 1457 struct Scsi_Host *host = cmd->device->host; 1458 int rtn = 0; 1459 1460 atomic_inc(&cmd->device->iorequest_cnt); 1461 1462 /* check if the device is still usable */ 1463 if (unlikely(cmd->device->sdev_state == SDEV_DEL)) { 1464 /* in SDEV_DEL we error all commands. DID_NO_CONNECT 1465 * returns an immediate error upwards, and signals 1466 * that the device is no longer present */ 1467 cmd->result = DID_NO_CONNECT << 16; 1468 goto done; 1469 } 1470 1471 /* Check to see if the scsi lld made this device blocked. */ 1472 if (unlikely(scsi_device_blocked(cmd->device))) { 1473 /* 1474 * in blocked state, the command is just put back on 1475 * the device queue. The suspend state has already 1476 * blocked the queue so future requests should not 1477 * occur until the device transitions out of the 1478 * suspend state. 1479 */ 1480 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1481 "queuecommand : device blocked\n")); 1482 return SCSI_MLQUEUE_DEVICE_BUSY; 1483 } 1484 1485 /* Store the LUN value in cmnd, if needed. */ 1486 if (cmd->device->lun_in_cdb) 1487 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) | 1488 (cmd->device->lun << 5 & 0xe0); 1489 1490 scsi_log_send(cmd); 1491 1492 /* 1493 * Before we queue this command, check if the command 1494 * length exceeds what the host adapter can handle. 1495 */ 1496 if (cmd->cmd_len > cmd->device->host->max_cmd_len) { 1497 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1498 "queuecommand : command too long. " 1499 "cdb_size=%d host->max_cmd_len=%d\n", 1500 cmd->cmd_len, cmd->device->host->max_cmd_len)); 1501 cmd->result = (DID_ABORT << 16); 1502 goto done; 1503 } 1504 1505 if (unlikely(host->shost_state == SHOST_DEL)) { 1506 cmd->result = (DID_NO_CONNECT << 16); 1507 goto done; 1508 1509 } 1510 1511 trace_scsi_dispatch_cmd_start(cmd); 1512 rtn = host->hostt->queuecommand(host, cmd); 1513 if (rtn) { 1514 trace_scsi_dispatch_cmd_error(cmd, rtn); 1515 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY && 1516 rtn != SCSI_MLQUEUE_TARGET_BUSY) 1517 rtn = SCSI_MLQUEUE_HOST_BUSY; 1518 1519 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1520 "queuecommand : request rejected\n")); 1521 } 1522 1523 return rtn; 1524 done: 1525 cmd->scsi_done(cmd); 1526 return 0; 1527 } 1528 1529 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */ 1530 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost) 1531 { 1532 return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) * 1533 sizeof(struct scatterlist); 1534 } 1535 1536 static blk_status_t scsi_prepare_cmd(struct request *req) 1537 { 1538 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1539 struct scsi_device *sdev = req->q->queuedata; 1540 struct Scsi_Host *shost = sdev->host; 1541 struct scatterlist *sg; 1542 1543 scsi_init_command(sdev, cmd); 1544 1545 cmd->request = req; 1546 cmd->tag = req->tag; 1547 cmd->prot_op = SCSI_PROT_NORMAL; 1548 if (blk_rq_bytes(req)) 1549 cmd->sc_data_direction = rq_dma_dir(req); 1550 else 1551 cmd->sc_data_direction = DMA_NONE; 1552 1553 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size; 1554 cmd->sdb.table.sgl = sg; 1555 1556 if (scsi_host_get_prot(shost)) { 1557 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer)); 1558 1559 cmd->prot_sdb->table.sgl = 1560 (struct scatterlist *)(cmd->prot_sdb + 1); 1561 } 1562 1563 /* 1564 * Special handling for passthrough commands, which don't go to the ULP 1565 * at all: 1566 */ 1567 if (blk_rq_is_scsi(req)) 1568 return scsi_setup_scsi_cmnd(sdev, req); 1569 1570 if (sdev->handler && sdev->handler->prep_fn) { 1571 blk_status_t ret = sdev->handler->prep_fn(sdev, req); 1572 1573 if (ret != BLK_STS_OK) 1574 return ret; 1575 } 1576 1577 cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd; 1578 memset(cmd->cmnd, 0, BLK_MAX_CDB); 1579 return scsi_cmd_to_driver(cmd)->init_command(cmd); 1580 } 1581 1582 static void scsi_mq_done(struct scsi_cmnd *cmd) 1583 { 1584 if (unlikely(blk_should_fake_timeout(cmd->request->q))) 1585 return; 1586 if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state))) 1587 return; 1588 trace_scsi_dispatch_cmd_done(cmd); 1589 blk_mq_complete_request(cmd->request); 1590 } 1591 1592 static void scsi_mq_put_budget(struct request_queue *q) 1593 { 1594 struct scsi_device *sdev = q->queuedata; 1595 1596 atomic_dec(&sdev->device_busy); 1597 } 1598 1599 static bool scsi_mq_get_budget(struct request_queue *q) 1600 { 1601 struct scsi_device *sdev = q->queuedata; 1602 1603 if (scsi_dev_queue_ready(q, sdev)) 1604 return true; 1605 1606 atomic_inc(&sdev->restarts); 1607 1608 /* 1609 * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy). 1610 * .restarts must be incremented before .device_busy is read because the 1611 * code in scsi_run_queue_async() depends on the order of these operations. 1612 */ 1613 smp_mb__after_atomic(); 1614 1615 /* 1616 * If all in-flight requests originated from this LUN are completed 1617 * before reading .device_busy, sdev->device_busy will be observed as 1618 * zero, then blk_mq_delay_run_hw_queues() will dispatch this request 1619 * soon. Otherwise, completion of one of these requests will observe 1620 * the .restarts flag, and the request queue will be run for handling 1621 * this request, see scsi_end_request(). 1622 */ 1623 if (unlikely(atomic_read(&sdev->device_busy) == 0 && 1624 !scsi_device_blocked(sdev))) 1625 blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY); 1626 return false; 1627 } 1628 1629 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx, 1630 const struct blk_mq_queue_data *bd) 1631 { 1632 struct request *req = bd->rq; 1633 struct request_queue *q = req->q; 1634 struct scsi_device *sdev = q->queuedata; 1635 struct Scsi_Host *shost = sdev->host; 1636 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1637 blk_status_t ret; 1638 int reason; 1639 1640 /* 1641 * If the device is not in running state we will reject some or all 1642 * commands. 1643 */ 1644 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) { 1645 ret = scsi_device_state_check(sdev, req); 1646 if (ret != BLK_STS_OK) 1647 goto out_put_budget; 1648 } 1649 1650 ret = BLK_STS_RESOURCE; 1651 if (!scsi_target_queue_ready(shost, sdev)) 1652 goto out_put_budget; 1653 if (!scsi_host_queue_ready(q, shost, sdev, cmd)) 1654 goto out_dec_target_busy; 1655 1656 if (!(req->rq_flags & RQF_DONTPREP)) { 1657 ret = scsi_prepare_cmd(req); 1658 if (ret != BLK_STS_OK) 1659 goto out_dec_host_busy; 1660 req->rq_flags |= RQF_DONTPREP; 1661 } else { 1662 clear_bit(SCMD_STATE_COMPLETE, &cmd->state); 1663 } 1664 1665 cmd->flags &= SCMD_PRESERVED_FLAGS; 1666 if (sdev->simple_tags) 1667 cmd->flags |= SCMD_TAGGED; 1668 if (bd->last) 1669 cmd->flags |= SCMD_LAST; 1670 1671 scsi_set_resid(cmd, 0); 1672 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 1673 cmd->scsi_done = scsi_mq_done; 1674 1675 blk_mq_start_request(req); 1676 reason = scsi_dispatch_cmd(cmd); 1677 if (reason) { 1678 scsi_set_blocked(cmd, reason); 1679 ret = BLK_STS_RESOURCE; 1680 goto out_dec_host_busy; 1681 } 1682 1683 return BLK_STS_OK; 1684 1685 out_dec_host_busy: 1686 scsi_dec_host_busy(shost, cmd); 1687 out_dec_target_busy: 1688 if (scsi_target(sdev)->can_queue > 0) 1689 atomic_dec(&scsi_target(sdev)->target_busy); 1690 out_put_budget: 1691 scsi_mq_put_budget(q); 1692 switch (ret) { 1693 case BLK_STS_OK: 1694 break; 1695 case BLK_STS_RESOURCE: 1696 case BLK_STS_ZONE_RESOURCE: 1697 if (atomic_read(&sdev->device_busy) || 1698 scsi_device_blocked(sdev)) 1699 ret = BLK_STS_DEV_RESOURCE; 1700 break; 1701 default: 1702 if (unlikely(!scsi_device_online(sdev))) 1703 scsi_req(req)->result = DID_NO_CONNECT << 16; 1704 else 1705 scsi_req(req)->result = DID_ERROR << 16; 1706 /* 1707 * Make sure to release all allocated resources when 1708 * we hit an error, as we will never see this command 1709 * again. 1710 */ 1711 if (req->rq_flags & RQF_DONTPREP) 1712 scsi_mq_uninit_cmd(cmd); 1713 scsi_run_queue_async(sdev); 1714 break; 1715 } 1716 return ret; 1717 } 1718 1719 static enum blk_eh_timer_return scsi_timeout(struct request *req, 1720 bool reserved) 1721 { 1722 if (reserved) 1723 return BLK_EH_RESET_TIMER; 1724 return scsi_times_out(req); 1725 } 1726 1727 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 1728 unsigned int hctx_idx, unsigned int numa_node) 1729 { 1730 struct Scsi_Host *shost = set->driver_data; 1731 const bool unchecked_isa_dma = shost->unchecked_isa_dma; 1732 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1733 struct scatterlist *sg; 1734 int ret = 0; 1735 1736 if (unchecked_isa_dma) 1737 cmd->flags |= SCMD_UNCHECKED_ISA_DMA; 1738 cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma, 1739 GFP_KERNEL, numa_node); 1740 if (!cmd->sense_buffer) 1741 return -ENOMEM; 1742 cmd->req.sense = cmd->sense_buffer; 1743 1744 if (scsi_host_get_prot(shost)) { 1745 sg = (void *)cmd + sizeof(struct scsi_cmnd) + 1746 shost->hostt->cmd_size; 1747 cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost); 1748 } 1749 1750 if (shost->hostt->init_cmd_priv) { 1751 ret = shost->hostt->init_cmd_priv(shost, cmd); 1752 if (ret < 0) 1753 scsi_free_sense_buffer(unchecked_isa_dma, 1754 cmd->sense_buffer); 1755 } 1756 1757 return ret; 1758 } 1759 1760 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq, 1761 unsigned int hctx_idx) 1762 { 1763 struct Scsi_Host *shost = set->driver_data; 1764 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1765 1766 if (shost->hostt->exit_cmd_priv) 1767 shost->hostt->exit_cmd_priv(shost, cmd); 1768 scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA, 1769 cmd->sense_buffer); 1770 } 1771 1772 static int scsi_map_queues(struct blk_mq_tag_set *set) 1773 { 1774 struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set); 1775 1776 if (shost->hostt->map_queues) 1777 return shost->hostt->map_queues(shost); 1778 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 1779 } 1780 1781 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q) 1782 { 1783 struct device *dev = shost->dma_dev; 1784 1785 /* 1786 * this limit is imposed by hardware restrictions 1787 */ 1788 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize, 1789 SG_MAX_SEGMENTS)); 1790 1791 if (scsi_host_prot_dma(shost)) { 1792 shost->sg_prot_tablesize = 1793 min_not_zero(shost->sg_prot_tablesize, 1794 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS); 1795 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize); 1796 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize); 1797 } 1798 1799 if (dev->dma_mask) { 1800 shost->max_sectors = min_t(unsigned int, shost->max_sectors, 1801 dma_max_mapping_size(dev) >> SECTOR_SHIFT); 1802 } 1803 blk_queue_max_hw_sectors(q, shost->max_sectors); 1804 if (shost->unchecked_isa_dma) 1805 blk_queue_bounce_limit(q, BLK_BOUNCE_ISA); 1806 blk_queue_segment_boundary(q, shost->dma_boundary); 1807 dma_set_seg_boundary(dev, shost->dma_boundary); 1808 1809 blk_queue_max_segment_size(q, shost->max_segment_size); 1810 blk_queue_virt_boundary(q, shost->virt_boundary_mask); 1811 dma_set_max_seg_size(dev, queue_max_segment_size(q)); 1812 1813 /* 1814 * Set a reasonable default alignment: The larger of 32-byte (dword), 1815 * which is a common minimum for HBAs, and the minimum DMA alignment, 1816 * which is set by the platform. 1817 * 1818 * Devices that require a bigger alignment can increase it later. 1819 */ 1820 blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1); 1821 } 1822 EXPORT_SYMBOL_GPL(__scsi_init_queue); 1823 1824 static const struct blk_mq_ops scsi_mq_ops_no_commit = { 1825 .get_budget = scsi_mq_get_budget, 1826 .put_budget = scsi_mq_put_budget, 1827 .queue_rq = scsi_queue_rq, 1828 .complete = scsi_softirq_done, 1829 .timeout = scsi_timeout, 1830 #ifdef CONFIG_BLK_DEBUG_FS 1831 .show_rq = scsi_show_rq, 1832 #endif 1833 .init_request = scsi_mq_init_request, 1834 .exit_request = scsi_mq_exit_request, 1835 .initialize_rq_fn = scsi_initialize_rq, 1836 .cleanup_rq = scsi_cleanup_rq, 1837 .busy = scsi_mq_lld_busy, 1838 .map_queues = scsi_map_queues, 1839 }; 1840 1841 1842 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx) 1843 { 1844 struct request_queue *q = hctx->queue; 1845 struct scsi_device *sdev = q->queuedata; 1846 struct Scsi_Host *shost = sdev->host; 1847 1848 shost->hostt->commit_rqs(shost, hctx->queue_num); 1849 } 1850 1851 static const struct blk_mq_ops scsi_mq_ops = { 1852 .get_budget = scsi_mq_get_budget, 1853 .put_budget = scsi_mq_put_budget, 1854 .queue_rq = scsi_queue_rq, 1855 .commit_rqs = scsi_commit_rqs, 1856 .complete = scsi_softirq_done, 1857 .timeout = scsi_timeout, 1858 #ifdef CONFIG_BLK_DEBUG_FS 1859 .show_rq = scsi_show_rq, 1860 #endif 1861 .init_request = scsi_mq_init_request, 1862 .exit_request = scsi_mq_exit_request, 1863 .initialize_rq_fn = scsi_initialize_rq, 1864 .cleanup_rq = scsi_cleanup_rq, 1865 .busy = scsi_mq_lld_busy, 1866 .map_queues = scsi_map_queues, 1867 }; 1868 1869 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev) 1870 { 1871 sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set); 1872 if (IS_ERR(sdev->request_queue)) 1873 return NULL; 1874 1875 sdev->request_queue->queuedata = sdev; 1876 __scsi_init_queue(sdev->host, sdev->request_queue); 1877 blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, sdev->request_queue); 1878 return sdev->request_queue; 1879 } 1880 1881 int scsi_mq_setup_tags(struct Scsi_Host *shost) 1882 { 1883 unsigned int cmd_size, sgl_size; 1884 struct blk_mq_tag_set *tag_set = &shost->tag_set; 1885 1886 sgl_size = max_t(unsigned int, sizeof(struct scatterlist), 1887 scsi_mq_inline_sgl_size(shost)); 1888 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size; 1889 if (scsi_host_get_prot(shost)) 1890 cmd_size += sizeof(struct scsi_data_buffer) + 1891 sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT; 1892 1893 memset(tag_set, 0, sizeof(*tag_set)); 1894 if (shost->hostt->commit_rqs) 1895 tag_set->ops = &scsi_mq_ops; 1896 else 1897 tag_set->ops = &scsi_mq_ops_no_commit; 1898 tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1; 1899 tag_set->queue_depth = shost->can_queue; 1900 tag_set->cmd_size = cmd_size; 1901 tag_set->numa_node = NUMA_NO_NODE; 1902 tag_set->flags = BLK_MQ_F_SHOULD_MERGE; 1903 tag_set->flags |= 1904 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy); 1905 tag_set->driver_data = shost; 1906 if (shost->host_tagset) 1907 tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED; 1908 1909 return blk_mq_alloc_tag_set(tag_set); 1910 } 1911 1912 void scsi_mq_destroy_tags(struct Scsi_Host *shost) 1913 { 1914 blk_mq_free_tag_set(&shost->tag_set); 1915 } 1916 1917 /** 1918 * scsi_device_from_queue - return sdev associated with a request_queue 1919 * @q: The request queue to return the sdev from 1920 * 1921 * Return the sdev associated with a request queue or NULL if the 1922 * request_queue does not reference a SCSI device. 1923 */ 1924 struct scsi_device *scsi_device_from_queue(struct request_queue *q) 1925 { 1926 struct scsi_device *sdev = NULL; 1927 1928 if (q->mq_ops == &scsi_mq_ops_no_commit || 1929 q->mq_ops == &scsi_mq_ops) 1930 sdev = q->queuedata; 1931 if (!sdev || !get_device(&sdev->sdev_gendev)) 1932 sdev = NULL; 1933 1934 return sdev; 1935 } 1936 1937 /** 1938 * scsi_block_requests - Utility function used by low-level drivers to prevent 1939 * further commands from being queued to the device. 1940 * @shost: host in question 1941 * 1942 * There is no timer nor any other means by which the requests get unblocked 1943 * other than the low-level driver calling scsi_unblock_requests(). 1944 */ 1945 void scsi_block_requests(struct Scsi_Host *shost) 1946 { 1947 shost->host_self_blocked = 1; 1948 } 1949 EXPORT_SYMBOL(scsi_block_requests); 1950 1951 /** 1952 * scsi_unblock_requests - Utility function used by low-level drivers to allow 1953 * further commands to be queued to the device. 1954 * @shost: host in question 1955 * 1956 * There is no timer nor any other means by which the requests get unblocked 1957 * other than the low-level driver calling scsi_unblock_requests(). This is done 1958 * as an API function so that changes to the internals of the scsi mid-layer 1959 * won't require wholesale changes to drivers that use this feature. 1960 */ 1961 void scsi_unblock_requests(struct Scsi_Host *shost) 1962 { 1963 shost->host_self_blocked = 0; 1964 scsi_run_host_queues(shost); 1965 } 1966 EXPORT_SYMBOL(scsi_unblock_requests); 1967 1968 void scsi_exit_queue(void) 1969 { 1970 kmem_cache_destroy(scsi_sense_cache); 1971 kmem_cache_destroy(scsi_sense_isadma_cache); 1972 } 1973 1974 /** 1975 * scsi_mode_select - issue a mode select 1976 * @sdev: SCSI device to be queried 1977 * @pf: Page format bit (1 == standard, 0 == vendor specific) 1978 * @sp: Save page bit (0 == don't save, 1 == save) 1979 * @modepage: mode page being requested 1980 * @buffer: request buffer (may not be smaller than eight bytes) 1981 * @len: length of request buffer. 1982 * @timeout: command timeout 1983 * @retries: number of retries before failing 1984 * @data: returns a structure abstracting the mode header data 1985 * @sshdr: place to put sense data (or NULL if no sense to be collected). 1986 * must be SCSI_SENSE_BUFFERSIZE big. 1987 * 1988 * Returns zero if successful; negative error number or scsi 1989 * status on error 1990 * 1991 */ 1992 int 1993 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage, 1994 unsigned char *buffer, int len, int timeout, int retries, 1995 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 1996 { 1997 unsigned char cmd[10]; 1998 unsigned char *real_buffer; 1999 int ret; 2000 2001 memset(cmd, 0, sizeof(cmd)); 2002 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0); 2003 2004 if (sdev->use_10_for_ms) { 2005 if (len > 65535) 2006 return -EINVAL; 2007 real_buffer = kmalloc(8 + len, GFP_KERNEL); 2008 if (!real_buffer) 2009 return -ENOMEM; 2010 memcpy(real_buffer + 8, buffer, len); 2011 len += 8; 2012 real_buffer[0] = 0; 2013 real_buffer[1] = 0; 2014 real_buffer[2] = data->medium_type; 2015 real_buffer[3] = data->device_specific; 2016 real_buffer[4] = data->longlba ? 0x01 : 0; 2017 real_buffer[5] = 0; 2018 real_buffer[6] = data->block_descriptor_length >> 8; 2019 real_buffer[7] = data->block_descriptor_length; 2020 2021 cmd[0] = MODE_SELECT_10; 2022 cmd[7] = len >> 8; 2023 cmd[8] = len; 2024 } else { 2025 if (len > 255 || data->block_descriptor_length > 255 || 2026 data->longlba) 2027 return -EINVAL; 2028 2029 real_buffer = kmalloc(4 + len, GFP_KERNEL); 2030 if (!real_buffer) 2031 return -ENOMEM; 2032 memcpy(real_buffer + 4, buffer, len); 2033 len += 4; 2034 real_buffer[0] = 0; 2035 real_buffer[1] = data->medium_type; 2036 real_buffer[2] = data->device_specific; 2037 real_buffer[3] = data->block_descriptor_length; 2038 2039 cmd[0] = MODE_SELECT; 2040 cmd[4] = len; 2041 } 2042 2043 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len, 2044 sshdr, timeout, retries, NULL); 2045 kfree(real_buffer); 2046 return ret; 2047 } 2048 EXPORT_SYMBOL_GPL(scsi_mode_select); 2049 2050 /** 2051 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary. 2052 * @sdev: SCSI device to be queried 2053 * @dbd: set if mode sense will allow block descriptors to be returned 2054 * @modepage: mode page being requested 2055 * @buffer: request buffer (may not be smaller than eight bytes) 2056 * @len: length of request buffer. 2057 * @timeout: command timeout 2058 * @retries: number of retries before failing 2059 * @data: returns a structure abstracting the mode header data 2060 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2061 * must be SCSI_SENSE_BUFFERSIZE big. 2062 * 2063 * Returns zero if unsuccessful, or the header offset (either 4 2064 * or 8 depending on whether a six or ten byte command was 2065 * issued) if successful. 2066 */ 2067 int 2068 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, 2069 unsigned char *buffer, int len, int timeout, int retries, 2070 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2071 { 2072 unsigned char cmd[12]; 2073 int use_10_for_ms; 2074 int header_length; 2075 int result, retry_count = retries; 2076 struct scsi_sense_hdr my_sshdr; 2077 2078 memset(data, 0, sizeof(*data)); 2079 memset(&cmd[0], 0, 12); 2080 2081 dbd = sdev->set_dbd_for_ms ? 8 : dbd; 2082 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */ 2083 cmd[2] = modepage; 2084 2085 /* caller might not be interested in sense, but we need it */ 2086 if (!sshdr) 2087 sshdr = &my_sshdr; 2088 2089 retry: 2090 use_10_for_ms = sdev->use_10_for_ms; 2091 2092 if (use_10_for_ms) { 2093 if (len < 8) 2094 len = 8; 2095 2096 cmd[0] = MODE_SENSE_10; 2097 cmd[8] = len; 2098 header_length = 8; 2099 } else { 2100 if (len < 4) 2101 len = 4; 2102 2103 cmd[0] = MODE_SENSE; 2104 cmd[4] = len; 2105 header_length = 4; 2106 } 2107 2108 memset(buffer, 0, len); 2109 2110 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len, 2111 sshdr, timeout, retries, NULL); 2112 2113 /* This code looks awful: what it's doing is making sure an 2114 * ILLEGAL REQUEST sense return identifies the actual command 2115 * byte as the problem. MODE_SENSE commands can return 2116 * ILLEGAL REQUEST if the code page isn't supported */ 2117 2118 if (use_10_for_ms && !scsi_status_is_good(result) && 2119 driver_byte(result) == DRIVER_SENSE) { 2120 if (scsi_sense_valid(sshdr)) { 2121 if ((sshdr->sense_key == ILLEGAL_REQUEST) && 2122 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) { 2123 /* 2124 * Invalid command operation code 2125 */ 2126 sdev->use_10_for_ms = 0; 2127 goto retry; 2128 } 2129 } 2130 } 2131 2132 if (scsi_status_is_good(result)) { 2133 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b && 2134 (modepage == 6 || modepage == 8))) { 2135 /* Initio breakage? */ 2136 header_length = 0; 2137 data->length = 13; 2138 data->medium_type = 0; 2139 data->device_specific = 0; 2140 data->longlba = 0; 2141 data->block_descriptor_length = 0; 2142 } else if (use_10_for_ms) { 2143 data->length = buffer[0]*256 + buffer[1] + 2; 2144 data->medium_type = buffer[2]; 2145 data->device_specific = buffer[3]; 2146 data->longlba = buffer[4] & 0x01; 2147 data->block_descriptor_length = buffer[6]*256 2148 + buffer[7]; 2149 } else { 2150 data->length = buffer[0] + 1; 2151 data->medium_type = buffer[1]; 2152 data->device_specific = buffer[2]; 2153 data->block_descriptor_length = buffer[3]; 2154 } 2155 data->header_length = header_length; 2156 } else if ((status_byte(result) == CHECK_CONDITION) && 2157 scsi_sense_valid(sshdr) && 2158 sshdr->sense_key == UNIT_ATTENTION && retry_count) { 2159 retry_count--; 2160 goto retry; 2161 } 2162 2163 return result; 2164 } 2165 EXPORT_SYMBOL(scsi_mode_sense); 2166 2167 /** 2168 * scsi_test_unit_ready - test if unit is ready 2169 * @sdev: scsi device to change the state of. 2170 * @timeout: command timeout 2171 * @retries: number of retries before failing 2172 * @sshdr: outpout pointer for decoded sense information. 2173 * 2174 * Returns zero if unsuccessful or an error if TUR failed. For 2175 * removable media, UNIT_ATTENTION sets ->changed flag. 2176 **/ 2177 int 2178 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries, 2179 struct scsi_sense_hdr *sshdr) 2180 { 2181 char cmd[] = { 2182 TEST_UNIT_READY, 0, 0, 0, 0, 0, 2183 }; 2184 int result; 2185 2186 /* try to eat the UNIT_ATTENTION if there are enough retries */ 2187 do { 2188 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr, 2189 timeout, 1, NULL); 2190 if (sdev->removable && scsi_sense_valid(sshdr) && 2191 sshdr->sense_key == UNIT_ATTENTION) 2192 sdev->changed = 1; 2193 } while (scsi_sense_valid(sshdr) && 2194 sshdr->sense_key == UNIT_ATTENTION && --retries); 2195 2196 return result; 2197 } 2198 EXPORT_SYMBOL(scsi_test_unit_ready); 2199 2200 /** 2201 * scsi_device_set_state - Take the given device through the device state model. 2202 * @sdev: scsi device to change the state of. 2203 * @state: state to change to. 2204 * 2205 * Returns zero if successful or an error if the requested 2206 * transition is illegal. 2207 */ 2208 int 2209 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state) 2210 { 2211 enum scsi_device_state oldstate = sdev->sdev_state; 2212 2213 if (state == oldstate) 2214 return 0; 2215 2216 switch (state) { 2217 case SDEV_CREATED: 2218 switch (oldstate) { 2219 case SDEV_CREATED_BLOCK: 2220 break; 2221 default: 2222 goto illegal; 2223 } 2224 break; 2225 2226 case SDEV_RUNNING: 2227 switch (oldstate) { 2228 case SDEV_CREATED: 2229 case SDEV_OFFLINE: 2230 case SDEV_TRANSPORT_OFFLINE: 2231 case SDEV_QUIESCE: 2232 case SDEV_BLOCK: 2233 break; 2234 default: 2235 goto illegal; 2236 } 2237 break; 2238 2239 case SDEV_QUIESCE: 2240 switch (oldstate) { 2241 case SDEV_RUNNING: 2242 case SDEV_OFFLINE: 2243 case SDEV_TRANSPORT_OFFLINE: 2244 break; 2245 default: 2246 goto illegal; 2247 } 2248 break; 2249 2250 case SDEV_OFFLINE: 2251 case SDEV_TRANSPORT_OFFLINE: 2252 switch (oldstate) { 2253 case SDEV_CREATED: 2254 case SDEV_RUNNING: 2255 case SDEV_QUIESCE: 2256 case SDEV_BLOCK: 2257 break; 2258 default: 2259 goto illegal; 2260 } 2261 break; 2262 2263 case SDEV_BLOCK: 2264 switch (oldstate) { 2265 case SDEV_RUNNING: 2266 case SDEV_CREATED_BLOCK: 2267 case SDEV_QUIESCE: 2268 case SDEV_OFFLINE: 2269 break; 2270 default: 2271 goto illegal; 2272 } 2273 break; 2274 2275 case SDEV_CREATED_BLOCK: 2276 switch (oldstate) { 2277 case SDEV_CREATED: 2278 break; 2279 default: 2280 goto illegal; 2281 } 2282 break; 2283 2284 case SDEV_CANCEL: 2285 switch (oldstate) { 2286 case SDEV_CREATED: 2287 case SDEV_RUNNING: 2288 case SDEV_QUIESCE: 2289 case SDEV_OFFLINE: 2290 case SDEV_TRANSPORT_OFFLINE: 2291 break; 2292 default: 2293 goto illegal; 2294 } 2295 break; 2296 2297 case SDEV_DEL: 2298 switch (oldstate) { 2299 case SDEV_CREATED: 2300 case SDEV_RUNNING: 2301 case SDEV_OFFLINE: 2302 case SDEV_TRANSPORT_OFFLINE: 2303 case SDEV_CANCEL: 2304 case SDEV_BLOCK: 2305 case SDEV_CREATED_BLOCK: 2306 break; 2307 default: 2308 goto illegal; 2309 } 2310 break; 2311 2312 } 2313 sdev->offline_already = false; 2314 sdev->sdev_state = state; 2315 return 0; 2316 2317 illegal: 2318 SCSI_LOG_ERROR_RECOVERY(1, 2319 sdev_printk(KERN_ERR, sdev, 2320 "Illegal state transition %s->%s", 2321 scsi_device_state_name(oldstate), 2322 scsi_device_state_name(state)) 2323 ); 2324 return -EINVAL; 2325 } 2326 EXPORT_SYMBOL(scsi_device_set_state); 2327 2328 /** 2329 * sdev_evt_emit - emit a single SCSI device uevent 2330 * @sdev: associated SCSI device 2331 * @evt: event to emit 2332 * 2333 * Send a single uevent (scsi_event) to the associated scsi_device. 2334 */ 2335 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt) 2336 { 2337 int idx = 0; 2338 char *envp[3]; 2339 2340 switch (evt->evt_type) { 2341 case SDEV_EVT_MEDIA_CHANGE: 2342 envp[idx++] = "SDEV_MEDIA_CHANGE=1"; 2343 break; 2344 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2345 scsi_rescan_device(&sdev->sdev_gendev); 2346 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED"; 2347 break; 2348 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2349 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED"; 2350 break; 2351 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2352 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED"; 2353 break; 2354 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2355 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED"; 2356 break; 2357 case SDEV_EVT_LUN_CHANGE_REPORTED: 2358 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED"; 2359 break; 2360 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2361 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED"; 2362 break; 2363 case SDEV_EVT_POWER_ON_RESET_OCCURRED: 2364 envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED"; 2365 break; 2366 default: 2367 /* do nothing */ 2368 break; 2369 } 2370 2371 envp[idx++] = NULL; 2372 2373 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp); 2374 } 2375 2376 /** 2377 * sdev_evt_thread - send a uevent for each scsi event 2378 * @work: work struct for scsi_device 2379 * 2380 * Dispatch queued events to their associated scsi_device kobjects 2381 * as uevents. 2382 */ 2383 void scsi_evt_thread(struct work_struct *work) 2384 { 2385 struct scsi_device *sdev; 2386 enum scsi_device_event evt_type; 2387 LIST_HEAD(event_list); 2388 2389 sdev = container_of(work, struct scsi_device, event_work); 2390 2391 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++) 2392 if (test_and_clear_bit(evt_type, sdev->pending_events)) 2393 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL); 2394 2395 while (1) { 2396 struct scsi_event *evt; 2397 struct list_head *this, *tmp; 2398 unsigned long flags; 2399 2400 spin_lock_irqsave(&sdev->list_lock, flags); 2401 list_splice_init(&sdev->event_list, &event_list); 2402 spin_unlock_irqrestore(&sdev->list_lock, flags); 2403 2404 if (list_empty(&event_list)) 2405 break; 2406 2407 list_for_each_safe(this, tmp, &event_list) { 2408 evt = list_entry(this, struct scsi_event, node); 2409 list_del(&evt->node); 2410 scsi_evt_emit(sdev, evt); 2411 kfree(evt); 2412 } 2413 } 2414 } 2415 2416 /** 2417 * sdev_evt_send - send asserted event to uevent thread 2418 * @sdev: scsi_device event occurred on 2419 * @evt: event to send 2420 * 2421 * Assert scsi device event asynchronously. 2422 */ 2423 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt) 2424 { 2425 unsigned long flags; 2426 2427 #if 0 2428 /* FIXME: currently this check eliminates all media change events 2429 * for polled devices. Need to update to discriminate between AN 2430 * and polled events */ 2431 if (!test_bit(evt->evt_type, sdev->supported_events)) { 2432 kfree(evt); 2433 return; 2434 } 2435 #endif 2436 2437 spin_lock_irqsave(&sdev->list_lock, flags); 2438 list_add_tail(&evt->node, &sdev->event_list); 2439 schedule_work(&sdev->event_work); 2440 spin_unlock_irqrestore(&sdev->list_lock, flags); 2441 } 2442 EXPORT_SYMBOL_GPL(sdev_evt_send); 2443 2444 /** 2445 * sdev_evt_alloc - allocate a new scsi event 2446 * @evt_type: type of event to allocate 2447 * @gfpflags: GFP flags for allocation 2448 * 2449 * Allocates and returns a new scsi_event. 2450 */ 2451 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type, 2452 gfp_t gfpflags) 2453 { 2454 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags); 2455 if (!evt) 2456 return NULL; 2457 2458 evt->evt_type = evt_type; 2459 INIT_LIST_HEAD(&evt->node); 2460 2461 /* evt_type-specific initialization, if any */ 2462 switch (evt_type) { 2463 case SDEV_EVT_MEDIA_CHANGE: 2464 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2465 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2466 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2467 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2468 case SDEV_EVT_LUN_CHANGE_REPORTED: 2469 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2470 case SDEV_EVT_POWER_ON_RESET_OCCURRED: 2471 default: 2472 /* do nothing */ 2473 break; 2474 } 2475 2476 return evt; 2477 } 2478 EXPORT_SYMBOL_GPL(sdev_evt_alloc); 2479 2480 /** 2481 * sdev_evt_send_simple - send asserted event to uevent thread 2482 * @sdev: scsi_device event occurred on 2483 * @evt_type: type of event to send 2484 * @gfpflags: GFP flags for allocation 2485 * 2486 * Assert scsi device event asynchronously, given an event type. 2487 */ 2488 void sdev_evt_send_simple(struct scsi_device *sdev, 2489 enum scsi_device_event evt_type, gfp_t gfpflags) 2490 { 2491 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags); 2492 if (!evt) { 2493 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n", 2494 evt_type); 2495 return; 2496 } 2497 2498 sdev_evt_send(sdev, evt); 2499 } 2500 EXPORT_SYMBOL_GPL(sdev_evt_send_simple); 2501 2502 /** 2503 * scsi_device_quiesce - Block user issued commands. 2504 * @sdev: scsi device to quiesce. 2505 * 2506 * This works by trying to transition to the SDEV_QUIESCE state 2507 * (which must be a legal transition). When the device is in this 2508 * state, only special requests will be accepted, all others will 2509 * be deferred. Since special requests may also be requeued requests, 2510 * a successful return doesn't guarantee the device will be 2511 * totally quiescent. 2512 * 2513 * Must be called with user context, may sleep. 2514 * 2515 * Returns zero if unsuccessful or an error if not. 2516 */ 2517 int 2518 scsi_device_quiesce(struct scsi_device *sdev) 2519 { 2520 struct request_queue *q = sdev->request_queue; 2521 int err; 2522 2523 /* 2524 * It is allowed to call scsi_device_quiesce() multiple times from 2525 * the same context but concurrent scsi_device_quiesce() calls are 2526 * not allowed. 2527 */ 2528 WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current); 2529 2530 if (sdev->quiesced_by == current) 2531 return 0; 2532 2533 blk_set_pm_only(q); 2534 2535 blk_mq_freeze_queue(q); 2536 /* 2537 * Ensure that the effect of blk_set_pm_only() will be visible 2538 * for percpu_ref_tryget() callers that occur after the queue 2539 * unfreeze even if the queue was already frozen before this function 2540 * was called. See also https://lwn.net/Articles/573497/. 2541 */ 2542 synchronize_rcu(); 2543 blk_mq_unfreeze_queue(q); 2544 2545 mutex_lock(&sdev->state_mutex); 2546 err = scsi_device_set_state(sdev, SDEV_QUIESCE); 2547 if (err == 0) 2548 sdev->quiesced_by = current; 2549 else 2550 blk_clear_pm_only(q); 2551 mutex_unlock(&sdev->state_mutex); 2552 2553 return err; 2554 } 2555 EXPORT_SYMBOL(scsi_device_quiesce); 2556 2557 /** 2558 * scsi_device_resume - Restart user issued commands to a quiesced device. 2559 * @sdev: scsi device to resume. 2560 * 2561 * Moves the device from quiesced back to running and restarts the 2562 * queues. 2563 * 2564 * Must be called with user context, may sleep. 2565 */ 2566 void scsi_device_resume(struct scsi_device *sdev) 2567 { 2568 /* check if the device state was mutated prior to resume, and if 2569 * so assume the state is being managed elsewhere (for example 2570 * device deleted during suspend) 2571 */ 2572 mutex_lock(&sdev->state_mutex); 2573 if (sdev->quiesced_by) { 2574 sdev->quiesced_by = NULL; 2575 blk_clear_pm_only(sdev->request_queue); 2576 } 2577 if (sdev->sdev_state == SDEV_QUIESCE) 2578 scsi_device_set_state(sdev, SDEV_RUNNING); 2579 mutex_unlock(&sdev->state_mutex); 2580 } 2581 EXPORT_SYMBOL(scsi_device_resume); 2582 2583 static void 2584 device_quiesce_fn(struct scsi_device *sdev, void *data) 2585 { 2586 scsi_device_quiesce(sdev); 2587 } 2588 2589 void 2590 scsi_target_quiesce(struct scsi_target *starget) 2591 { 2592 starget_for_each_device(starget, NULL, device_quiesce_fn); 2593 } 2594 EXPORT_SYMBOL(scsi_target_quiesce); 2595 2596 static void 2597 device_resume_fn(struct scsi_device *sdev, void *data) 2598 { 2599 scsi_device_resume(sdev); 2600 } 2601 2602 void 2603 scsi_target_resume(struct scsi_target *starget) 2604 { 2605 starget_for_each_device(starget, NULL, device_resume_fn); 2606 } 2607 EXPORT_SYMBOL(scsi_target_resume); 2608 2609 /** 2610 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state 2611 * @sdev: device to block 2612 * 2613 * Pause SCSI command processing on the specified device. Does not sleep. 2614 * 2615 * Returns zero if successful or a negative error code upon failure. 2616 * 2617 * Notes: 2618 * This routine transitions the device to the SDEV_BLOCK state (which must be 2619 * a legal transition). When the device is in this state, command processing 2620 * is paused until the device leaves the SDEV_BLOCK state. See also 2621 * scsi_internal_device_unblock_nowait(). 2622 */ 2623 int scsi_internal_device_block_nowait(struct scsi_device *sdev) 2624 { 2625 struct request_queue *q = sdev->request_queue; 2626 int err = 0; 2627 2628 err = scsi_device_set_state(sdev, SDEV_BLOCK); 2629 if (err) { 2630 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK); 2631 2632 if (err) 2633 return err; 2634 } 2635 2636 /* 2637 * The device has transitioned to SDEV_BLOCK. Stop the 2638 * block layer from calling the midlayer with this device's 2639 * request queue. 2640 */ 2641 blk_mq_quiesce_queue_nowait(q); 2642 return 0; 2643 } 2644 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait); 2645 2646 /** 2647 * scsi_internal_device_block - try to transition to the SDEV_BLOCK state 2648 * @sdev: device to block 2649 * 2650 * Pause SCSI command processing on the specified device and wait until all 2651 * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep. 2652 * 2653 * Returns zero if successful or a negative error code upon failure. 2654 * 2655 * Note: 2656 * This routine transitions the device to the SDEV_BLOCK state (which must be 2657 * a legal transition). When the device is in this state, command processing 2658 * is paused until the device leaves the SDEV_BLOCK state. See also 2659 * scsi_internal_device_unblock(). 2660 */ 2661 static int scsi_internal_device_block(struct scsi_device *sdev) 2662 { 2663 struct request_queue *q = sdev->request_queue; 2664 int err; 2665 2666 mutex_lock(&sdev->state_mutex); 2667 err = scsi_internal_device_block_nowait(sdev); 2668 if (err == 0) 2669 blk_mq_quiesce_queue(q); 2670 mutex_unlock(&sdev->state_mutex); 2671 2672 return err; 2673 } 2674 2675 void scsi_start_queue(struct scsi_device *sdev) 2676 { 2677 struct request_queue *q = sdev->request_queue; 2678 2679 blk_mq_unquiesce_queue(q); 2680 } 2681 2682 /** 2683 * scsi_internal_device_unblock_nowait - resume a device after a block request 2684 * @sdev: device to resume 2685 * @new_state: state to set the device to after unblocking 2686 * 2687 * Restart the device queue for a previously suspended SCSI device. Does not 2688 * sleep. 2689 * 2690 * Returns zero if successful or a negative error code upon failure. 2691 * 2692 * Notes: 2693 * This routine transitions the device to the SDEV_RUNNING state or to one of 2694 * the offline states (which must be a legal transition) allowing the midlayer 2695 * to goose the queue for this device. 2696 */ 2697 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev, 2698 enum scsi_device_state new_state) 2699 { 2700 switch (new_state) { 2701 case SDEV_RUNNING: 2702 case SDEV_TRANSPORT_OFFLINE: 2703 break; 2704 default: 2705 return -EINVAL; 2706 } 2707 2708 /* 2709 * Try to transition the scsi device to SDEV_RUNNING or one of the 2710 * offlined states and goose the device queue if successful. 2711 */ 2712 switch (sdev->sdev_state) { 2713 case SDEV_BLOCK: 2714 case SDEV_TRANSPORT_OFFLINE: 2715 sdev->sdev_state = new_state; 2716 break; 2717 case SDEV_CREATED_BLOCK: 2718 if (new_state == SDEV_TRANSPORT_OFFLINE || 2719 new_state == SDEV_OFFLINE) 2720 sdev->sdev_state = new_state; 2721 else 2722 sdev->sdev_state = SDEV_CREATED; 2723 break; 2724 case SDEV_CANCEL: 2725 case SDEV_OFFLINE: 2726 break; 2727 default: 2728 return -EINVAL; 2729 } 2730 scsi_start_queue(sdev); 2731 2732 return 0; 2733 } 2734 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait); 2735 2736 /** 2737 * scsi_internal_device_unblock - resume a device after a block request 2738 * @sdev: device to resume 2739 * @new_state: state to set the device to after unblocking 2740 * 2741 * Restart the device queue for a previously suspended SCSI device. May sleep. 2742 * 2743 * Returns zero if successful or a negative error code upon failure. 2744 * 2745 * Notes: 2746 * This routine transitions the device to the SDEV_RUNNING state or to one of 2747 * the offline states (which must be a legal transition) allowing the midlayer 2748 * to goose the queue for this device. 2749 */ 2750 static int scsi_internal_device_unblock(struct scsi_device *sdev, 2751 enum scsi_device_state new_state) 2752 { 2753 int ret; 2754 2755 mutex_lock(&sdev->state_mutex); 2756 ret = scsi_internal_device_unblock_nowait(sdev, new_state); 2757 mutex_unlock(&sdev->state_mutex); 2758 2759 return ret; 2760 } 2761 2762 static void 2763 device_block(struct scsi_device *sdev, void *data) 2764 { 2765 int ret; 2766 2767 ret = scsi_internal_device_block(sdev); 2768 2769 WARN_ONCE(ret, "scsi_internal_device_block(%s) failed: ret = %d\n", 2770 dev_name(&sdev->sdev_gendev), ret); 2771 } 2772 2773 static int 2774 target_block(struct device *dev, void *data) 2775 { 2776 if (scsi_is_target_device(dev)) 2777 starget_for_each_device(to_scsi_target(dev), NULL, 2778 device_block); 2779 return 0; 2780 } 2781 2782 void 2783 scsi_target_block(struct device *dev) 2784 { 2785 if (scsi_is_target_device(dev)) 2786 starget_for_each_device(to_scsi_target(dev), NULL, 2787 device_block); 2788 else 2789 device_for_each_child(dev, NULL, target_block); 2790 } 2791 EXPORT_SYMBOL_GPL(scsi_target_block); 2792 2793 static void 2794 device_unblock(struct scsi_device *sdev, void *data) 2795 { 2796 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data); 2797 } 2798 2799 static int 2800 target_unblock(struct device *dev, void *data) 2801 { 2802 if (scsi_is_target_device(dev)) 2803 starget_for_each_device(to_scsi_target(dev), data, 2804 device_unblock); 2805 return 0; 2806 } 2807 2808 void 2809 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state) 2810 { 2811 if (scsi_is_target_device(dev)) 2812 starget_for_each_device(to_scsi_target(dev), &new_state, 2813 device_unblock); 2814 else 2815 device_for_each_child(dev, &new_state, target_unblock); 2816 } 2817 EXPORT_SYMBOL_GPL(scsi_target_unblock); 2818 2819 int 2820 scsi_host_block(struct Scsi_Host *shost) 2821 { 2822 struct scsi_device *sdev; 2823 int ret = 0; 2824 2825 /* 2826 * Call scsi_internal_device_block_nowait so we can avoid 2827 * calling synchronize_rcu() for each LUN. 2828 */ 2829 shost_for_each_device(sdev, shost) { 2830 mutex_lock(&sdev->state_mutex); 2831 ret = scsi_internal_device_block_nowait(sdev); 2832 mutex_unlock(&sdev->state_mutex); 2833 if (ret) { 2834 scsi_device_put(sdev); 2835 break; 2836 } 2837 } 2838 2839 /* 2840 * SCSI never enables blk-mq's BLK_MQ_F_BLOCKING flag so 2841 * calling synchronize_rcu() once is enough. 2842 */ 2843 WARN_ON_ONCE(shost->tag_set.flags & BLK_MQ_F_BLOCKING); 2844 2845 if (!ret) 2846 synchronize_rcu(); 2847 2848 return ret; 2849 } 2850 EXPORT_SYMBOL_GPL(scsi_host_block); 2851 2852 int 2853 scsi_host_unblock(struct Scsi_Host *shost, int new_state) 2854 { 2855 struct scsi_device *sdev; 2856 int ret = 0; 2857 2858 shost_for_each_device(sdev, shost) { 2859 ret = scsi_internal_device_unblock(sdev, new_state); 2860 if (ret) { 2861 scsi_device_put(sdev); 2862 break; 2863 } 2864 } 2865 return ret; 2866 } 2867 EXPORT_SYMBOL_GPL(scsi_host_unblock); 2868 2869 /** 2870 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt 2871 * @sgl: scatter-gather list 2872 * @sg_count: number of segments in sg 2873 * @offset: offset in bytes into sg, on return offset into the mapped area 2874 * @len: bytes to map, on return number of bytes mapped 2875 * 2876 * Returns virtual address of the start of the mapped page 2877 */ 2878 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count, 2879 size_t *offset, size_t *len) 2880 { 2881 int i; 2882 size_t sg_len = 0, len_complete = 0; 2883 struct scatterlist *sg; 2884 struct page *page; 2885 2886 WARN_ON(!irqs_disabled()); 2887 2888 for_each_sg(sgl, sg, sg_count, i) { 2889 len_complete = sg_len; /* Complete sg-entries */ 2890 sg_len += sg->length; 2891 if (sg_len > *offset) 2892 break; 2893 } 2894 2895 if (unlikely(i == sg_count)) { 2896 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, " 2897 "elements %d\n", 2898 __func__, sg_len, *offset, sg_count); 2899 WARN_ON(1); 2900 return NULL; 2901 } 2902 2903 /* Offset starting from the beginning of first page in this sg-entry */ 2904 *offset = *offset - len_complete + sg->offset; 2905 2906 /* Assumption: contiguous pages can be accessed as "page + i" */ 2907 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT)); 2908 *offset &= ~PAGE_MASK; 2909 2910 /* Bytes in this sg-entry from *offset to the end of the page */ 2911 sg_len = PAGE_SIZE - *offset; 2912 if (*len > sg_len) 2913 *len = sg_len; 2914 2915 return kmap_atomic(page); 2916 } 2917 EXPORT_SYMBOL(scsi_kmap_atomic_sg); 2918 2919 /** 2920 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg 2921 * @virt: virtual address to be unmapped 2922 */ 2923 void scsi_kunmap_atomic_sg(void *virt) 2924 { 2925 kunmap_atomic(virt); 2926 } 2927 EXPORT_SYMBOL(scsi_kunmap_atomic_sg); 2928 2929 void sdev_disable_disk_events(struct scsi_device *sdev) 2930 { 2931 atomic_inc(&sdev->disk_events_disable_depth); 2932 } 2933 EXPORT_SYMBOL(sdev_disable_disk_events); 2934 2935 void sdev_enable_disk_events(struct scsi_device *sdev) 2936 { 2937 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0)) 2938 return; 2939 atomic_dec(&sdev->disk_events_disable_depth); 2940 } 2941 EXPORT_SYMBOL(sdev_enable_disk_events); 2942 2943 /** 2944 * scsi_vpd_lun_id - return a unique device identification 2945 * @sdev: SCSI device 2946 * @id: buffer for the identification 2947 * @id_len: length of the buffer 2948 * 2949 * Copies a unique device identification into @id based 2950 * on the information in the VPD page 0x83 of the device. 2951 * The string will be formatted as a SCSI name string. 2952 * 2953 * Returns the length of the identification or error on failure. 2954 * If the identifier is longer than the supplied buffer the actual 2955 * identifier length is returned and the buffer is not zero-padded. 2956 */ 2957 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len) 2958 { 2959 u8 cur_id_type = 0xff; 2960 u8 cur_id_size = 0; 2961 const unsigned char *d, *cur_id_str; 2962 const struct scsi_vpd *vpd_pg83; 2963 int id_size = -EINVAL; 2964 2965 rcu_read_lock(); 2966 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 2967 if (!vpd_pg83) { 2968 rcu_read_unlock(); 2969 return -ENXIO; 2970 } 2971 2972 /* 2973 * Look for the correct descriptor. 2974 * Order of preference for lun descriptor: 2975 * - SCSI name string 2976 * - NAA IEEE Registered Extended 2977 * - EUI-64 based 16-byte 2978 * - EUI-64 based 12-byte 2979 * - NAA IEEE Registered 2980 * - NAA IEEE Extended 2981 * - T10 Vendor ID 2982 * as longer descriptors reduce the likelyhood 2983 * of identification clashes. 2984 */ 2985 2986 /* The id string must be at least 20 bytes + terminating NULL byte */ 2987 if (id_len < 21) { 2988 rcu_read_unlock(); 2989 return -EINVAL; 2990 } 2991 2992 memset(id, 0, id_len); 2993 d = vpd_pg83->data + 4; 2994 while (d < vpd_pg83->data + vpd_pg83->len) { 2995 /* Skip designators not referring to the LUN */ 2996 if ((d[1] & 0x30) != 0x00) 2997 goto next_desig; 2998 2999 switch (d[1] & 0xf) { 3000 case 0x1: 3001 /* T10 Vendor ID */ 3002 if (cur_id_size > d[3]) 3003 break; 3004 /* Prefer anything */ 3005 if (cur_id_type > 0x01 && cur_id_type != 0xff) 3006 break; 3007 cur_id_size = d[3]; 3008 if (cur_id_size + 4 > id_len) 3009 cur_id_size = id_len - 4; 3010 cur_id_str = d + 4; 3011 cur_id_type = d[1] & 0xf; 3012 id_size = snprintf(id, id_len, "t10.%*pE", 3013 cur_id_size, cur_id_str); 3014 break; 3015 case 0x2: 3016 /* EUI-64 */ 3017 if (cur_id_size > d[3]) 3018 break; 3019 /* Prefer NAA IEEE Registered Extended */ 3020 if (cur_id_type == 0x3 && 3021 cur_id_size == d[3]) 3022 break; 3023 cur_id_size = d[3]; 3024 cur_id_str = d + 4; 3025 cur_id_type = d[1] & 0xf; 3026 switch (cur_id_size) { 3027 case 8: 3028 id_size = snprintf(id, id_len, 3029 "eui.%8phN", 3030 cur_id_str); 3031 break; 3032 case 12: 3033 id_size = snprintf(id, id_len, 3034 "eui.%12phN", 3035 cur_id_str); 3036 break; 3037 case 16: 3038 id_size = snprintf(id, id_len, 3039 "eui.%16phN", 3040 cur_id_str); 3041 break; 3042 default: 3043 cur_id_size = 0; 3044 break; 3045 } 3046 break; 3047 case 0x3: 3048 /* NAA */ 3049 if (cur_id_size > d[3]) 3050 break; 3051 cur_id_size = d[3]; 3052 cur_id_str = d + 4; 3053 cur_id_type = d[1] & 0xf; 3054 switch (cur_id_size) { 3055 case 8: 3056 id_size = snprintf(id, id_len, 3057 "naa.%8phN", 3058 cur_id_str); 3059 break; 3060 case 16: 3061 id_size = snprintf(id, id_len, 3062 "naa.%16phN", 3063 cur_id_str); 3064 break; 3065 default: 3066 cur_id_size = 0; 3067 break; 3068 } 3069 break; 3070 case 0x8: 3071 /* SCSI name string */ 3072 if (cur_id_size + 4 > d[3]) 3073 break; 3074 /* Prefer others for truncated descriptor */ 3075 if (cur_id_size && d[3] > id_len) 3076 break; 3077 cur_id_size = id_size = d[3]; 3078 cur_id_str = d + 4; 3079 cur_id_type = d[1] & 0xf; 3080 if (cur_id_size >= id_len) 3081 cur_id_size = id_len - 1; 3082 memcpy(id, cur_id_str, cur_id_size); 3083 /* Decrease priority for truncated descriptor */ 3084 if (cur_id_size != id_size) 3085 cur_id_size = 6; 3086 break; 3087 default: 3088 break; 3089 } 3090 next_desig: 3091 d += d[3] + 4; 3092 } 3093 rcu_read_unlock(); 3094 3095 return id_size; 3096 } 3097 EXPORT_SYMBOL(scsi_vpd_lun_id); 3098 3099 /* 3100 * scsi_vpd_tpg_id - return a target port group identifier 3101 * @sdev: SCSI device 3102 * 3103 * Returns the Target Port Group identifier from the information 3104 * froom VPD page 0x83 of the device. 3105 * 3106 * Returns the identifier or error on failure. 3107 */ 3108 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id) 3109 { 3110 const unsigned char *d; 3111 const struct scsi_vpd *vpd_pg83; 3112 int group_id = -EAGAIN, rel_port = -1; 3113 3114 rcu_read_lock(); 3115 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 3116 if (!vpd_pg83) { 3117 rcu_read_unlock(); 3118 return -ENXIO; 3119 } 3120 3121 d = vpd_pg83->data + 4; 3122 while (d < vpd_pg83->data + vpd_pg83->len) { 3123 switch (d[1] & 0xf) { 3124 case 0x4: 3125 /* Relative target port */ 3126 rel_port = get_unaligned_be16(&d[6]); 3127 break; 3128 case 0x5: 3129 /* Target port group */ 3130 group_id = get_unaligned_be16(&d[6]); 3131 break; 3132 default: 3133 break; 3134 } 3135 d += d[3] + 4; 3136 } 3137 rcu_read_unlock(); 3138 3139 if (group_id >= 0 && rel_id && rel_port != -1) 3140 *rel_id = rel_port; 3141 3142 return group_id; 3143 } 3144 EXPORT_SYMBOL(scsi_vpd_tpg_id); 3145