xref: /linux/drivers/scsi/scsi_lib.c (revision c80e42a4963b3f593d53fb8f565e5bbca61a6531)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 1999 Eric Youngdale
4  * Copyright (C) 2014 Christoph Hellwig
5  *
6  *  SCSI queueing library.
7  *      Initial versions: Eric Youngdale (eric@andante.org).
8  *                        Based upon conversations with large numbers
9  *                        of people at Linux Expo.
10  */
11 
12 #include <linux/bio.h>
13 #include <linux/bitops.h>
14 #include <linux/blkdev.h>
15 #include <linux/completion.h>
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23 #include <linux/blk-mq.h>
24 #include <linux/ratelimit.h>
25 #include <asm/unaligned.h>
26 
27 #include <scsi/scsi.h>
28 #include <scsi/scsi_cmnd.h>
29 #include <scsi/scsi_dbg.h>
30 #include <scsi/scsi_device.h>
31 #include <scsi/scsi_driver.h>
32 #include <scsi/scsi_eh.h>
33 #include <scsi/scsi_host.h>
34 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
35 #include <scsi/scsi_dh.h>
36 
37 #include <trace/events/scsi.h>
38 
39 #include "scsi_debugfs.h"
40 #include "scsi_priv.h"
41 #include "scsi_logging.h"
42 
43 /*
44  * Size of integrity metadata is usually small, 1 inline sg should
45  * cover normal cases.
46  */
47 #ifdef CONFIG_ARCH_NO_SG_CHAIN
48 #define  SCSI_INLINE_PROT_SG_CNT  0
49 #define  SCSI_INLINE_SG_CNT  0
50 #else
51 #define  SCSI_INLINE_PROT_SG_CNT  1
52 #define  SCSI_INLINE_SG_CNT  2
53 #endif
54 
55 static struct kmem_cache *scsi_sense_cache;
56 static struct kmem_cache *scsi_sense_isadma_cache;
57 static DEFINE_MUTEX(scsi_sense_cache_mutex);
58 
59 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
60 
61 static inline struct kmem_cache *
62 scsi_select_sense_cache(bool unchecked_isa_dma)
63 {
64 	return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache;
65 }
66 
67 static void scsi_free_sense_buffer(bool unchecked_isa_dma,
68 				   unsigned char *sense_buffer)
69 {
70 	kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma),
71 			sense_buffer);
72 }
73 
74 static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma,
75 	gfp_t gfp_mask, int numa_node)
76 {
77 	return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma),
78 				     gfp_mask, numa_node);
79 }
80 
81 int scsi_init_sense_cache(struct Scsi_Host *shost)
82 {
83 	struct kmem_cache *cache;
84 	int ret = 0;
85 
86 	mutex_lock(&scsi_sense_cache_mutex);
87 	cache = scsi_select_sense_cache(shost->unchecked_isa_dma);
88 	if (cache)
89 		goto exit;
90 
91 	if (shost->unchecked_isa_dma) {
92 		scsi_sense_isadma_cache =
93 			kmem_cache_create("scsi_sense_cache(DMA)",
94 				SCSI_SENSE_BUFFERSIZE, 0,
95 				SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL);
96 		if (!scsi_sense_isadma_cache)
97 			ret = -ENOMEM;
98 	} else {
99 		scsi_sense_cache =
100 			kmem_cache_create_usercopy("scsi_sense_cache",
101 				SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
102 				0, SCSI_SENSE_BUFFERSIZE, NULL);
103 		if (!scsi_sense_cache)
104 			ret = -ENOMEM;
105 	}
106  exit:
107 	mutex_unlock(&scsi_sense_cache_mutex);
108 	return ret;
109 }
110 
111 /*
112  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
113  * not change behaviour from the previous unplug mechanism, experimentation
114  * may prove this needs changing.
115  */
116 #define SCSI_QUEUE_DELAY	3
117 
118 static void
119 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
120 {
121 	struct Scsi_Host *host = cmd->device->host;
122 	struct scsi_device *device = cmd->device;
123 	struct scsi_target *starget = scsi_target(device);
124 
125 	/*
126 	 * Set the appropriate busy bit for the device/host.
127 	 *
128 	 * If the host/device isn't busy, assume that something actually
129 	 * completed, and that we should be able to queue a command now.
130 	 *
131 	 * Note that the prior mid-layer assumption that any host could
132 	 * always queue at least one command is now broken.  The mid-layer
133 	 * will implement a user specifiable stall (see
134 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
135 	 * if a command is requeued with no other commands outstanding
136 	 * either for the device or for the host.
137 	 */
138 	switch (reason) {
139 	case SCSI_MLQUEUE_HOST_BUSY:
140 		atomic_set(&host->host_blocked, host->max_host_blocked);
141 		break;
142 	case SCSI_MLQUEUE_DEVICE_BUSY:
143 	case SCSI_MLQUEUE_EH_RETRY:
144 		atomic_set(&device->device_blocked,
145 			   device->max_device_blocked);
146 		break;
147 	case SCSI_MLQUEUE_TARGET_BUSY:
148 		atomic_set(&starget->target_blocked,
149 			   starget->max_target_blocked);
150 		break;
151 	}
152 }
153 
154 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
155 {
156 	if (cmd->request->rq_flags & RQF_DONTPREP) {
157 		cmd->request->rq_flags &= ~RQF_DONTPREP;
158 		scsi_mq_uninit_cmd(cmd);
159 	} else {
160 		WARN_ON_ONCE(true);
161 	}
162 	blk_mq_requeue_request(cmd->request, true);
163 }
164 
165 /**
166  * __scsi_queue_insert - private queue insertion
167  * @cmd: The SCSI command being requeued
168  * @reason:  The reason for the requeue
169  * @unbusy: Whether the queue should be unbusied
170  *
171  * This is a private queue insertion.  The public interface
172  * scsi_queue_insert() always assumes the queue should be unbusied
173  * because it's always called before the completion.  This function is
174  * for a requeue after completion, which should only occur in this
175  * file.
176  */
177 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
178 {
179 	struct scsi_device *device = cmd->device;
180 
181 	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
182 		"Inserting command %p into mlqueue\n", cmd));
183 
184 	scsi_set_blocked(cmd, reason);
185 
186 	/*
187 	 * Decrement the counters, since these commands are no longer
188 	 * active on the host/device.
189 	 */
190 	if (unbusy)
191 		scsi_device_unbusy(device, cmd);
192 
193 	/*
194 	 * Requeue this command.  It will go before all other commands
195 	 * that are already in the queue. Schedule requeue work under
196 	 * lock such that the kblockd_schedule_work() call happens
197 	 * before blk_cleanup_queue() finishes.
198 	 */
199 	cmd->result = 0;
200 
201 	blk_mq_requeue_request(cmd->request, true);
202 }
203 
204 /**
205  * scsi_queue_insert - Reinsert a command in the queue.
206  * @cmd:    command that we are adding to queue.
207  * @reason: why we are inserting command to queue.
208  *
209  * We do this for one of two cases. Either the host is busy and it cannot accept
210  * any more commands for the time being, or the device returned QUEUE_FULL and
211  * can accept no more commands.
212  *
213  * Context: This could be called either from an interrupt context or a normal
214  * process context.
215  */
216 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
217 {
218 	__scsi_queue_insert(cmd, reason, true);
219 }
220 
221 
222 /**
223  * __scsi_execute - insert request and wait for the result
224  * @sdev:	scsi device
225  * @cmd:	scsi command
226  * @data_direction: data direction
227  * @buffer:	data buffer
228  * @bufflen:	len of buffer
229  * @sense:	optional sense buffer
230  * @sshdr:	optional decoded sense header
231  * @timeout:	request timeout in seconds
232  * @retries:	number of times to retry request
233  * @flags:	flags for ->cmd_flags
234  * @rq_flags:	flags for ->rq_flags
235  * @resid:	optional residual length
236  *
237  * Returns the scsi_cmnd result field if a command was executed, or a negative
238  * Linux error code if we didn't get that far.
239  */
240 int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
241 		 int data_direction, void *buffer, unsigned bufflen,
242 		 unsigned char *sense, struct scsi_sense_hdr *sshdr,
243 		 int timeout, int retries, u64 flags, req_flags_t rq_flags,
244 		 int *resid)
245 {
246 	struct request *req;
247 	struct scsi_request *rq;
248 	int ret = DRIVER_ERROR << 24;
249 
250 	req = blk_get_request(sdev->request_queue,
251 			data_direction == DMA_TO_DEVICE ?
252 			REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, BLK_MQ_REQ_PREEMPT);
253 	if (IS_ERR(req))
254 		return ret;
255 	rq = scsi_req(req);
256 
257 	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
258 					buffer, bufflen, GFP_NOIO))
259 		goto out;
260 
261 	rq->cmd_len = COMMAND_SIZE(cmd[0]);
262 	memcpy(rq->cmd, cmd, rq->cmd_len);
263 	rq->retries = retries;
264 	req->timeout = timeout;
265 	req->cmd_flags |= flags;
266 	req->rq_flags |= rq_flags | RQF_QUIET;
267 
268 	/*
269 	 * head injection *required* here otherwise quiesce won't work
270 	 */
271 	blk_execute_rq(req->q, NULL, req, 1);
272 
273 	/*
274 	 * Some devices (USB mass-storage in particular) may transfer
275 	 * garbage data together with a residue indicating that the data
276 	 * is invalid.  Prevent the garbage from being misinterpreted
277 	 * and prevent security leaks by zeroing out the excess data.
278 	 */
279 	if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
280 		memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
281 
282 	if (resid)
283 		*resid = rq->resid_len;
284 	if (sense && rq->sense_len)
285 		memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
286 	if (sshdr)
287 		scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
288 	ret = rq->result;
289  out:
290 	blk_put_request(req);
291 
292 	return ret;
293 }
294 EXPORT_SYMBOL(__scsi_execute);
295 
296 /*
297  * Wake up the error handler if necessary. Avoid as follows that the error
298  * handler is not woken up if host in-flight requests number ==
299  * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
300  * with an RCU read lock in this function to ensure that this function in
301  * its entirety either finishes before scsi_eh_scmd_add() increases the
302  * host_failed counter or that it notices the shost state change made by
303  * scsi_eh_scmd_add().
304  */
305 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
306 {
307 	unsigned long flags;
308 
309 	rcu_read_lock();
310 	__clear_bit(SCMD_STATE_INFLIGHT, &cmd->state);
311 	if (unlikely(scsi_host_in_recovery(shost))) {
312 		spin_lock_irqsave(shost->host_lock, flags);
313 		if (shost->host_failed || shost->host_eh_scheduled)
314 			scsi_eh_wakeup(shost);
315 		spin_unlock_irqrestore(shost->host_lock, flags);
316 	}
317 	rcu_read_unlock();
318 }
319 
320 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd)
321 {
322 	struct Scsi_Host *shost = sdev->host;
323 	struct scsi_target *starget = scsi_target(sdev);
324 
325 	scsi_dec_host_busy(shost, cmd);
326 
327 	if (starget->can_queue > 0)
328 		atomic_dec(&starget->target_busy);
329 
330 	atomic_dec(&sdev->device_busy);
331 }
332 
333 static void scsi_kick_queue(struct request_queue *q)
334 {
335 	blk_mq_run_hw_queues(q, false);
336 }
337 
338 /*
339  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
340  * and call blk_run_queue for all the scsi_devices on the target -
341  * including current_sdev first.
342  *
343  * Called with *no* scsi locks held.
344  */
345 static void scsi_single_lun_run(struct scsi_device *current_sdev)
346 {
347 	struct Scsi_Host *shost = current_sdev->host;
348 	struct scsi_device *sdev, *tmp;
349 	struct scsi_target *starget = scsi_target(current_sdev);
350 	unsigned long flags;
351 
352 	spin_lock_irqsave(shost->host_lock, flags);
353 	starget->starget_sdev_user = NULL;
354 	spin_unlock_irqrestore(shost->host_lock, flags);
355 
356 	/*
357 	 * Call blk_run_queue for all LUNs on the target, starting with
358 	 * current_sdev. We race with others (to set starget_sdev_user),
359 	 * but in most cases, we will be first. Ideally, each LU on the
360 	 * target would get some limited time or requests on the target.
361 	 */
362 	scsi_kick_queue(current_sdev->request_queue);
363 
364 	spin_lock_irqsave(shost->host_lock, flags);
365 	if (starget->starget_sdev_user)
366 		goto out;
367 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
368 			same_target_siblings) {
369 		if (sdev == current_sdev)
370 			continue;
371 		if (scsi_device_get(sdev))
372 			continue;
373 
374 		spin_unlock_irqrestore(shost->host_lock, flags);
375 		scsi_kick_queue(sdev->request_queue);
376 		spin_lock_irqsave(shost->host_lock, flags);
377 
378 		scsi_device_put(sdev);
379 	}
380  out:
381 	spin_unlock_irqrestore(shost->host_lock, flags);
382 }
383 
384 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
385 {
386 	if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
387 		return true;
388 	if (atomic_read(&sdev->device_blocked) > 0)
389 		return true;
390 	return false;
391 }
392 
393 static inline bool scsi_target_is_busy(struct scsi_target *starget)
394 {
395 	if (starget->can_queue > 0) {
396 		if (atomic_read(&starget->target_busy) >= starget->can_queue)
397 			return true;
398 		if (atomic_read(&starget->target_blocked) > 0)
399 			return true;
400 	}
401 	return false;
402 }
403 
404 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
405 {
406 	if (atomic_read(&shost->host_blocked) > 0)
407 		return true;
408 	if (shost->host_self_blocked)
409 		return true;
410 	return false;
411 }
412 
413 static void scsi_starved_list_run(struct Scsi_Host *shost)
414 {
415 	LIST_HEAD(starved_list);
416 	struct scsi_device *sdev;
417 	unsigned long flags;
418 
419 	spin_lock_irqsave(shost->host_lock, flags);
420 	list_splice_init(&shost->starved_list, &starved_list);
421 
422 	while (!list_empty(&starved_list)) {
423 		struct request_queue *slq;
424 
425 		/*
426 		 * As long as shost is accepting commands and we have
427 		 * starved queues, call blk_run_queue. scsi_request_fn
428 		 * drops the queue_lock and can add us back to the
429 		 * starved_list.
430 		 *
431 		 * host_lock protects the starved_list and starved_entry.
432 		 * scsi_request_fn must get the host_lock before checking
433 		 * or modifying starved_list or starved_entry.
434 		 */
435 		if (scsi_host_is_busy(shost))
436 			break;
437 
438 		sdev = list_entry(starved_list.next,
439 				  struct scsi_device, starved_entry);
440 		list_del_init(&sdev->starved_entry);
441 		if (scsi_target_is_busy(scsi_target(sdev))) {
442 			list_move_tail(&sdev->starved_entry,
443 				       &shost->starved_list);
444 			continue;
445 		}
446 
447 		/*
448 		 * Once we drop the host lock, a racing scsi_remove_device()
449 		 * call may remove the sdev from the starved list and destroy
450 		 * it and the queue.  Mitigate by taking a reference to the
451 		 * queue and never touching the sdev again after we drop the
452 		 * host lock.  Note: if __scsi_remove_device() invokes
453 		 * blk_cleanup_queue() before the queue is run from this
454 		 * function then blk_run_queue() will return immediately since
455 		 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
456 		 */
457 		slq = sdev->request_queue;
458 		if (!blk_get_queue(slq))
459 			continue;
460 		spin_unlock_irqrestore(shost->host_lock, flags);
461 
462 		scsi_kick_queue(slq);
463 		blk_put_queue(slq);
464 
465 		spin_lock_irqsave(shost->host_lock, flags);
466 	}
467 	/* put any unprocessed entries back */
468 	list_splice(&starved_list, &shost->starved_list);
469 	spin_unlock_irqrestore(shost->host_lock, flags);
470 }
471 
472 /**
473  * scsi_run_queue - Select a proper request queue to serve next.
474  * @q:  last request's queue
475  *
476  * The previous command was completely finished, start a new one if possible.
477  */
478 static void scsi_run_queue(struct request_queue *q)
479 {
480 	struct scsi_device *sdev = q->queuedata;
481 
482 	if (scsi_target(sdev)->single_lun)
483 		scsi_single_lun_run(sdev);
484 	if (!list_empty(&sdev->host->starved_list))
485 		scsi_starved_list_run(sdev->host);
486 
487 	blk_mq_run_hw_queues(q, false);
488 }
489 
490 void scsi_requeue_run_queue(struct work_struct *work)
491 {
492 	struct scsi_device *sdev;
493 	struct request_queue *q;
494 
495 	sdev = container_of(work, struct scsi_device, requeue_work);
496 	q = sdev->request_queue;
497 	scsi_run_queue(q);
498 }
499 
500 void scsi_run_host_queues(struct Scsi_Host *shost)
501 {
502 	struct scsi_device *sdev;
503 
504 	shost_for_each_device(sdev, shost)
505 		scsi_run_queue(sdev->request_queue);
506 }
507 
508 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
509 {
510 	if (!blk_rq_is_passthrough(cmd->request)) {
511 		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
512 
513 		if (drv->uninit_command)
514 			drv->uninit_command(cmd);
515 	}
516 }
517 
518 void scsi_free_sgtables(struct scsi_cmnd *cmd)
519 {
520 	if (cmd->sdb.table.nents)
521 		sg_free_table_chained(&cmd->sdb.table,
522 				SCSI_INLINE_SG_CNT);
523 	if (scsi_prot_sg_count(cmd))
524 		sg_free_table_chained(&cmd->prot_sdb->table,
525 				SCSI_INLINE_PROT_SG_CNT);
526 }
527 EXPORT_SYMBOL_GPL(scsi_free_sgtables);
528 
529 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
530 {
531 	scsi_free_sgtables(cmd);
532 	scsi_uninit_cmd(cmd);
533 }
534 
535 static void scsi_run_queue_async(struct scsi_device *sdev)
536 {
537 	if (scsi_target(sdev)->single_lun ||
538 	    !list_empty(&sdev->host->starved_list)) {
539 		kblockd_schedule_work(&sdev->requeue_work);
540 	} else {
541 		/*
542 		 * smp_mb() present in sbitmap_queue_clear() or implied in
543 		 * .end_io is for ordering writing .device_busy in
544 		 * scsi_device_unbusy() and reading sdev->restarts.
545 		 */
546 		int old = atomic_read(&sdev->restarts);
547 
548 		/*
549 		 * ->restarts has to be kept as non-zero if new budget
550 		 *  contention occurs.
551 		 *
552 		 *  No need to run queue when either another re-run
553 		 *  queue wins in updating ->restarts or a new budget
554 		 *  contention occurs.
555 		 */
556 		if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old)
557 			blk_mq_run_hw_queues(sdev->request_queue, true);
558 	}
559 }
560 
561 /* Returns false when no more bytes to process, true if there are more */
562 static bool scsi_end_request(struct request *req, blk_status_t error,
563 		unsigned int bytes)
564 {
565 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
566 	struct scsi_device *sdev = cmd->device;
567 	struct request_queue *q = sdev->request_queue;
568 
569 	if (blk_update_request(req, error, bytes))
570 		return true;
571 
572 	if (blk_queue_add_random(q))
573 		add_disk_randomness(req->rq_disk);
574 
575 	if (!blk_rq_is_scsi(req)) {
576 		WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
577 		cmd->flags &= ~SCMD_INITIALIZED;
578 	}
579 
580 	/*
581 	 * Calling rcu_barrier() is not necessary here because the
582 	 * SCSI error handler guarantees that the function called by
583 	 * call_rcu() has been called before scsi_end_request() is
584 	 * called.
585 	 */
586 	destroy_rcu_head(&cmd->rcu);
587 
588 	/*
589 	 * In the MQ case the command gets freed by __blk_mq_end_request,
590 	 * so we have to do all cleanup that depends on it earlier.
591 	 *
592 	 * We also can't kick the queues from irq context, so we
593 	 * will have to defer it to a workqueue.
594 	 */
595 	scsi_mq_uninit_cmd(cmd);
596 
597 	/*
598 	 * queue is still alive, so grab the ref for preventing it
599 	 * from being cleaned up during running queue.
600 	 */
601 	percpu_ref_get(&q->q_usage_counter);
602 
603 	__blk_mq_end_request(req, error);
604 
605 	scsi_run_queue_async(sdev);
606 
607 	percpu_ref_put(&q->q_usage_counter);
608 	return false;
609 }
610 
611 /**
612  * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
613  * @cmd:	SCSI command
614  * @result:	scsi error code
615  *
616  * Translate a SCSI result code into a blk_status_t value. May reset the host
617  * byte of @cmd->result.
618  */
619 static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result)
620 {
621 	switch (host_byte(result)) {
622 	case DID_OK:
623 		/*
624 		 * Also check the other bytes than the status byte in result
625 		 * to handle the case when a SCSI LLD sets result to
626 		 * DRIVER_SENSE << 24 without setting SAM_STAT_CHECK_CONDITION.
627 		 */
628 		if (scsi_status_is_good(result) && (result & ~0xff) == 0)
629 			return BLK_STS_OK;
630 		return BLK_STS_IOERR;
631 	case DID_TRANSPORT_FAILFAST:
632 		return BLK_STS_TRANSPORT;
633 	case DID_TARGET_FAILURE:
634 		set_host_byte(cmd, DID_OK);
635 		return BLK_STS_TARGET;
636 	case DID_NEXUS_FAILURE:
637 		set_host_byte(cmd, DID_OK);
638 		return BLK_STS_NEXUS;
639 	case DID_ALLOC_FAILURE:
640 		set_host_byte(cmd, DID_OK);
641 		return BLK_STS_NOSPC;
642 	case DID_MEDIUM_ERROR:
643 		set_host_byte(cmd, DID_OK);
644 		return BLK_STS_MEDIUM;
645 	default:
646 		return BLK_STS_IOERR;
647 	}
648 }
649 
650 /* Helper for scsi_io_completion() when "reprep" action required. */
651 static void scsi_io_completion_reprep(struct scsi_cmnd *cmd,
652 				      struct request_queue *q)
653 {
654 	/* A new command will be prepared and issued. */
655 	scsi_mq_requeue_cmd(cmd);
656 }
657 
658 static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd)
659 {
660 	struct request *req = cmd->request;
661 	unsigned long wait_for;
662 
663 	if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT)
664 		return false;
665 
666 	wait_for = (cmd->allowed + 1) * req->timeout;
667 	if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
668 		scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n",
669 			    wait_for/HZ);
670 		return true;
671 	}
672 	return false;
673 }
674 
675 /* Helper for scsi_io_completion() when special action required. */
676 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
677 {
678 	struct request_queue *q = cmd->device->request_queue;
679 	struct request *req = cmd->request;
680 	int level = 0;
681 	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
682 	      ACTION_DELAYED_RETRY} action;
683 	struct scsi_sense_hdr sshdr;
684 	bool sense_valid;
685 	bool sense_current = true;      /* false implies "deferred sense" */
686 	blk_status_t blk_stat;
687 
688 	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
689 	if (sense_valid)
690 		sense_current = !scsi_sense_is_deferred(&sshdr);
691 
692 	blk_stat = scsi_result_to_blk_status(cmd, result);
693 
694 	if (host_byte(result) == DID_RESET) {
695 		/* Third party bus reset or reset for error recovery
696 		 * reasons.  Just retry the command and see what
697 		 * happens.
698 		 */
699 		action = ACTION_RETRY;
700 	} else if (sense_valid && sense_current) {
701 		switch (sshdr.sense_key) {
702 		case UNIT_ATTENTION:
703 			if (cmd->device->removable) {
704 				/* Detected disc change.  Set a bit
705 				 * and quietly refuse further access.
706 				 */
707 				cmd->device->changed = 1;
708 				action = ACTION_FAIL;
709 			} else {
710 				/* Must have been a power glitch, or a
711 				 * bus reset.  Could not have been a
712 				 * media change, so we just retry the
713 				 * command and see what happens.
714 				 */
715 				action = ACTION_RETRY;
716 			}
717 			break;
718 		case ILLEGAL_REQUEST:
719 			/* If we had an ILLEGAL REQUEST returned, then
720 			 * we may have performed an unsupported
721 			 * command.  The only thing this should be
722 			 * would be a ten byte read where only a six
723 			 * byte read was supported.  Also, on a system
724 			 * where READ CAPACITY failed, we may have
725 			 * read past the end of the disk.
726 			 */
727 			if ((cmd->device->use_10_for_rw &&
728 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
729 			    (cmd->cmnd[0] == READ_10 ||
730 			     cmd->cmnd[0] == WRITE_10)) {
731 				/* This will issue a new 6-byte command. */
732 				cmd->device->use_10_for_rw = 0;
733 				action = ACTION_REPREP;
734 			} else if (sshdr.asc == 0x10) /* DIX */ {
735 				action = ACTION_FAIL;
736 				blk_stat = BLK_STS_PROTECTION;
737 			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
738 			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
739 				action = ACTION_FAIL;
740 				blk_stat = BLK_STS_TARGET;
741 			} else
742 				action = ACTION_FAIL;
743 			break;
744 		case ABORTED_COMMAND:
745 			action = ACTION_FAIL;
746 			if (sshdr.asc == 0x10) /* DIF */
747 				blk_stat = BLK_STS_PROTECTION;
748 			break;
749 		case NOT_READY:
750 			/* If the device is in the process of becoming
751 			 * ready, or has a temporary blockage, retry.
752 			 */
753 			if (sshdr.asc == 0x04) {
754 				switch (sshdr.ascq) {
755 				case 0x01: /* becoming ready */
756 				case 0x04: /* format in progress */
757 				case 0x05: /* rebuild in progress */
758 				case 0x06: /* recalculation in progress */
759 				case 0x07: /* operation in progress */
760 				case 0x08: /* Long write in progress */
761 				case 0x09: /* self test in progress */
762 				case 0x14: /* space allocation in progress */
763 				case 0x1a: /* start stop unit in progress */
764 				case 0x1b: /* sanitize in progress */
765 				case 0x1d: /* configuration in progress */
766 				case 0x24: /* depopulation in progress */
767 					action = ACTION_DELAYED_RETRY;
768 					break;
769 				default:
770 					action = ACTION_FAIL;
771 					break;
772 				}
773 			} else
774 				action = ACTION_FAIL;
775 			break;
776 		case VOLUME_OVERFLOW:
777 			/* See SSC3rXX or current. */
778 			action = ACTION_FAIL;
779 			break;
780 		default:
781 			action = ACTION_FAIL;
782 			break;
783 		}
784 	} else
785 		action = ACTION_FAIL;
786 
787 	if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd))
788 		action = ACTION_FAIL;
789 
790 	switch (action) {
791 	case ACTION_FAIL:
792 		/* Give up and fail the remainder of the request */
793 		if (!(req->rq_flags & RQF_QUIET)) {
794 			static DEFINE_RATELIMIT_STATE(_rs,
795 					DEFAULT_RATELIMIT_INTERVAL,
796 					DEFAULT_RATELIMIT_BURST);
797 
798 			if (unlikely(scsi_logging_level))
799 				level =
800 				     SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
801 						    SCSI_LOG_MLCOMPLETE_BITS);
802 
803 			/*
804 			 * if logging is enabled the failure will be printed
805 			 * in scsi_log_completion(), so avoid duplicate messages
806 			 */
807 			if (!level && __ratelimit(&_rs)) {
808 				scsi_print_result(cmd, NULL, FAILED);
809 				if (driver_byte(result) == DRIVER_SENSE)
810 					scsi_print_sense(cmd);
811 				scsi_print_command(cmd);
812 			}
813 		}
814 		if (!scsi_end_request(req, blk_stat, blk_rq_err_bytes(req)))
815 			return;
816 		fallthrough;
817 	case ACTION_REPREP:
818 		scsi_io_completion_reprep(cmd, q);
819 		break;
820 	case ACTION_RETRY:
821 		/* Retry the same command immediately */
822 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
823 		break;
824 	case ACTION_DELAYED_RETRY:
825 		/* Retry the same command after a delay */
826 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
827 		break;
828 	}
829 }
830 
831 /*
832  * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
833  * new result that may suppress further error checking. Also modifies
834  * *blk_statp in some cases.
835  */
836 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
837 					blk_status_t *blk_statp)
838 {
839 	bool sense_valid;
840 	bool sense_current = true;	/* false implies "deferred sense" */
841 	struct request *req = cmd->request;
842 	struct scsi_sense_hdr sshdr;
843 
844 	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
845 	if (sense_valid)
846 		sense_current = !scsi_sense_is_deferred(&sshdr);
847 
848 	if (blk_rq_is_passthrough(req)) {
849 		if (sense_valid) {
850 			/*
851 			 * SG_IO wants current and deferred errors
852 			 */
853 			scsi_req(req)->sense_len =
854 				min(8 + cmd->sense_buffer[7],
855 				    SCSI_SENSE_BUFFERSIZE);
856 		}
857 		if (sense_current)
858 			*blk_statp = scsi_result_to_blk_status(cmd, result);
859 	} else if (blk_rq_bytes(req) == 0 && sense_current) {
860 		/*
861 		 * Flush commands do not transfers any data, and thus cannot use
862 		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
863 		 * This sets *blk_statp explicitly for the problem case.
864 		 */
865 		*blk_statp = scsi_result_to_blk_status(cmd, result);
866 	}
867 	/*
868 	 * Recovered errors need reporting, but they're always treated as
869 	 * success, so fiddle the result code here.  For passthrough requests
870 	 * we already took a copy of the original into sreq->result which
871 	 * is what gets returned to the user
872 	 */
873 	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
874 		bool do_print = true;
875 		/*
876 		 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
877 		 * skip print since caller wants ATA registers. Only occurs
878 		 * on SCSI ATA PASS_THROUGH commands when CK_COND=1
879 		 */
880 		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
881 			do_print = false;
882 		else if (req->rq_flags & RQF_QUIET)
883 			do_print = false;
884 		if (do_print)
885 			scsi_print_sense(cmd);
886 		result = 0;
887 		/* for passthrough, *blk_statp may be set */
888 		*blk_statp = BLK_STS_OK;
889 	}
890 	/*
891 	 * Another corner case: the SCSI status byte is non-zero but 'good'.
892 	 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
893 	 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
894 	 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
895 	 * intermediate statuses (both obsolete in SAM-4) as good.
896 	 */
897 	if (status_byte(result) && scsi_status_is_good(result)) {
898 		result = 0;
899 		*blk_statp = BLK_STS_OK;
900 	}
901 	return result;
902 }
903 
904 /**
905  * scsi_io_completion - Completion processing for SCSI commands.
906  * @cmd:	command that is finished.
907  * @good_bytes:	number of processed bytes.
908  *
909  * We will finish off the specified number of sectors. If we are done, the
910  * command block will be released and the queue function will be goosed. If we
911  * are not done then we have to figure out what to do next:
912  *
913  *   a) We can call scsi_io_completion_reprep().  The request will be
914  *	unprepared and put back on the queue.  Then a new command will
915  *	be created for it.  This should be used if we made forward
916  *	progress, or if we want to switch from READ(10) to READ(6) for
917  *	example.
918  *
919  *   b) We can call scsi_io_completion_action().  The request will be
920  *	put back on the queue and retried using the same command as
921  *	before, possibly after a delay.
922  *
923  *   c) We can call scsi_end_request() with blk_stat other than
924  *	BLK_STS_OK, to fail the remainder of the request.
925  */
926 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
927 {
928 	int result = cmd->result;
929 	struct request_queue *q = cmd->device->request_queue;
930 	struct request *req = cmd->request;
931 	blk_status_t blk_stat = BLK_STS_OK;
932 
933 	if (unlikely(result))	/* a nz result may or may not be an error */
934 		result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
935 
936 	if (unlikely(blk_rq_is_passthrough(req))) {
937 		/*
938 		 * scsi_result_to_blk_status may have reset the host_byte
939 		 */
940 		scsi_req(req)->result = cmd->result;
941 	}
942 
943 	/*
944 	 * Next deal with any sectors which we were able to correctly
945 	 * handle.
946 	 */
947 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
948 		"%u sectors total, %d bytes done.\n",
949 		blk_rq_sectors(req), good_bytes));
950 
951 	/*
952 	 * Failed, zero length commands always need to drop down
953 	 * to retry code. Fast path should return in this block.
954 	 */
955 	if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
956 		if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
957 			return; /* no bytes remaining */
958 	}
959 
960 	/* Kill remainder if no retries. */
961 	if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
962 		if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
963 			WARN_ONCE(true,
964 			    "Bytes remaining after failed, no-retry command");
965 		return;
966 	}
967 
968 	/*
969 	 * If there had been no error, but we have leftover bytes in the
970 	 * requeues just queue the command up again.
971 	 */
972 	if (likely(result == 0))
973 		scsi_io_completion_reprep(cmd, q);
974 	else
975 		scsi_io_completion_action(cmd, result);
976 }
977 
978 static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev,
979 		struct request *rq)
980 {
981 	return sdev->dma_drain_len && blk_rq_is_passthrough(rq) &&
982 	       !op_is_write(req_op(rq)) &&
983 	       sdev->host->hostt->dma_need_drain(rq);
984 }
985 
986 /**
987  * scsi_alloc_sgtables - allocate S/G tables for a command
988  * @cmd:  command descriptor we wish to initialize
989  *
990  * Returns:
991  * * BLK_STS_OK       - on success
992  * * BLK_STS_RESOURCE - if the failure is retryable
993  * * BLK_STS_IOERR    - if the failure is fatal
994  */
995 blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd)
996 {
997 	struct scsi_device *sdev = cmd->device;
998 	struct request *rq = cmd->request;
999 	unsigned short nr_segs = blk_rq_nr_phys_segments(rq);
1000 	struct scatterlist *last_sg = NULL;
1001 	blk_status_t ret;
1002 	bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq);
1003 	int count;
1004 
1005 	if (WARN_ON_ONCE(!nr_segs))
1006 		return BLK_STS_IOERR;
1007 
1008 	/*
1009 	 * Make sure there is space for the drain.  The driver must adjust
1010 	 * max_hw_segments to be prepared for this.
1011 	 */
1012 	if (need_drain)
1013 		nr_segs++;
1014 
1015 	/*
1016 	 * If sg table allocation fails, requeue request later.
1017 	 */
1018 	if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs,
1019 			cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT)))
1020 		return BLK_STS_RESOURCE;
1021 
1022 	/*
1023 	 * Next, walk the list, and fill in the addresses and sizes of
1024 	 * each segment.
1025 	 */
1026 	count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg);
1027 
1028 	if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) {
1029 		unsigned int pad_len =
1030 			(rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
1031 
1032 		last_sg->length += pad_len;
1033 		cmd->extra_len += pad_len;
1034 	}
1035 
1036 	if (need_drain) {
1037 		sg_unmark_end(last_sg);
1038 		last_sg = sg_next(last_sg);
1039 		sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len);
1040 		sg_mark_end(last_sg);
1041 
1042 		cmd->extra_len += sdev->dma_drain_len;
1043 		count++;
1044 	}
1045 
1046 	BUG_ON(count > cmd->sdb.table.nents);
1047 	cmd->sdb.table.nents = count;
1048 	cmd->sdb.length = blk_rq_payload_bytes(rq);
1049 
1050 	if (blk_integrity_rq(rq)) {
1051 		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1052 		int ivecs;
1053 
1054 		if (WARN_ON_ONCE(!prot_sdb)) {
1055 			/*
1056 			 * This can happen if someone (e.g. multipath)
1057 			 * queues a command to a device on an adapter
1058 			 * that does not support DIX.
1059 			 */
1060 			ret = BLK_STS_IOERR;
1061 			goto out_free_sgtables;
1062 		}
1063 
1064 		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1065 
1066 		if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1067 				prot_sdb->table.sgl,
1068 				SCSI_INLINE_PROT_SG_CNT)) {
1069 			ret = BLK_STS_RESOURCE;
1070 			goto out_free_sgtables;
1071 		}
1072 
1073 		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1074 						prot_sdb->table.sgl);
1075 		BUG_ON(count > ivecs);
1076 		BUG_ON(count > queue_max_integrity_segments(rq->q));
1077 
1078 		cmd->prot_sdb = prot_sdb;
1079 		cmd->prot_sdb->table.nents = count;
1080 	}
1081 
1082 	return BLK_STS_OK;
1083 out_free_sgtables:
1084 	scsi_free_sgtables(cmd);
1085 	return ret;
1086 }
1087 EXPORT_SYMBOL(scsi_alloc_sgtables);
1088 
1089 /**
1090  * scsi_initialize_rq - initialize struct scsi_cmnd partially
1091  * @rq: Request associated with the SCSI command to be initialized.
1092  *
1093  * This function initializes the members of struct scsi_cmnd that must be
1094  * initialized before request processing starts and that won't be
1095  * reinitialized if a SCSI command is requeued.
1096  *
1097  * Called from inside blk_get_request() for pass-through requests and from
1098  * inside scsi_init_command() for filesystem requests.
1099  */
1100 static void scsi_initialize_rq(struct request *rq)
1101 {
1102 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1103 
1104 	scsi_req_init(&cmd->req);
1105 	init_rcu_head(&cmd->rcu);
1106 	cmd->jiffies_at_alloc = jiffies;
1107 	cmd->retries = 0;
1108 }
1109 
1110 /*
1111  * Only called when the request isn't completed by SCSI, and not freed by
1112  * SCSI
1113  */
1114 static void scsi_cleanup_rq(struct request *rq)
1115 {
1116 	if (rq->rq_flags & RQF_DONTPREP) {
1117 		scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq));
1118 		rq->rq_flags &= ~RQF_DONTPREP;
1119 	}
1120 }
1121 
1122 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */
1123 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1124 {
1125 	void *buf = cmd->sense_buffer;
1126 	void *prot = cmd->prot_sdb;
1127 	struct request *rq = blk_mq_rq_from_pdu(cmd);
1128 	unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS;
1129 	unsigned long jiffies_at_alloc;
1130 	int retries, to_clear;
1131 	bool in_flight;
1132 
1133 	if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) {
1134 		flags |= SCMD_INITIALIZED;
1135 		scsi_initialize_rq(rq);
1136 	}
1137 
1138 	jiffies_at_alloc = cmd->jiffies_at_alloc;
1139 	retries = cmd->retries;
1140 	in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1141 	/*
1142 	 * Zero out the cmd, except for the embedded scsi_request. Only clear
1143 	 * the driver-private command data if the LLD does not supply a
1144 	 * function to initialize that data.
1145 	 */
1146 	to_clear = sizeof(*cmd) - sizeof(cmd->req);
1147 	if (!dev->host->hostt->init_cmd_priv)
1148 		to_clear += dev->host->hostt->cmd_size;
1149 	memset((char *)cmd + sizeof(cmd->req), 0, to_clear);
1150 
1151 	cmd->device = dev;
1152 	cmd->sense_buffer = buf;
1153 	cmd->prot_sdb = prot;
1154 	cmd->flags = flags;
1155 	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1156 	cmd->jiffies_at_alloc = jiffies_at_alloc;
1157 	cmd->retries = retries;
1158 	if (in_flight)
1159 		__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1160 
1161 }
1162 
1163 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1164 		struct request *req)
1165 {
1166 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1167 
1168 	/*
1169 	 * Passthrough requests may transfer data, in which case they must
1170 	 * a bio attached to them.  Or they might contain a SCSI command
1171 	 * that does not transfer data, in which case they may optionally
1172 	 * submit a request without an attached bio.
1173 	 */
1174 	if (req->bio) {
1175 		blk_status_t ret = scsi_alloc_sgtables(cmd);
1176 		if (unlikely(ret != BLK_STS_OK))
1177 			return ret;
1178 	} else {
1179 		BUG_ON(blk_rq_bytes(req));
1180 
1181 		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1182 	}
1183 
1184 	cmd->cmd_len = scsi_req(req)->cmd_len;
1185 	if (cmd->cmd_len == 0)
1186 		cmd->cmd_len = scsi_command_size(cmd->cmnd);
1187 	cmd->cmnd = scsi_req(req)->cmd;
1188 	cmd->transfersize = blk_rq_bytes(req);
1189 	cmd->allowed = scsi_req(req)->retries;
1190 	return BLK_STS_OK;
1191 }
1192 
1193 static blk_status_t
1194 scsi_device_state_check(struct scsi_device *sdev, struct request *req)
1195 {
1196 	switch (sdev->sdev_state) {
1197 	case SDEV_OFFLINE:
1198 	case SDEV_TRANSPORT_OFFLINE:
1199 		/*
1200 		 * If the device is offline we refuse to process any
1201 		 * commands.  The device must be brought online
1202 		 * before trying any recovery commands.
1203 		 */
1204 		if (!sdev->offline_already) {
1205 			sdev->offline_already = true;
1206 			sdev_printk(KERN_ERR, sdev,
1207 				    "rejecting I/O to offline device\n");
1208 		}
1209 		return BLK_STS_IOERR;
1210 	case SDEV_DEL:
1211 		/*
1212 		 * If the device is fully deleted, we refuse to
1213 		 * process any commands as well.
1214 		 */
1215 		sdev_printk(KERN_ERR, sdev,
1216 			    "rejecting I/O to dead device\n");
1217 		return BLK_STS_IOERR;
1218 	case SDEV_BLOCK:
1219 	case SDEV_CREATED_BLOCK:
1220 		return BLK_STS_RESOURCE;
1221 	case SDEV_QUIESCE:
1222 		/*
1223 		 * If the devices is blocked we defer normal commands.
1224 		 */
1225 		if (req && !(req->rq_flags & RQF_PREEMPT))
1226 			return BLK_STS_RESOURCE;
1227 		return BLK_STS_OK;
1228 	default:
1229 		/*
1230 		 * For any other not fully online state we only allow
1231 		 * special commands.  In particular any user initiated
1232 		 * command is not allowed.
1233 		 */
1234 		if (req && !(req->rq_flags & RQF_PREEMPT))
1235 			return BLK_STS_IOERR;
1236 		return BLK_STS_OK;
1237 	}
1238 }
1239 
1240 /*
1241  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1242  * return 0.
1243  *
1244  * Called with the queue_lock held.
1245  */
1246 static inline int scsi_dev_queue_ready(struct request_queue *q,
1247 				  struct scsi_device *sdev)
1248 {
1249 	unsigned int busy;
1250 
1251 	busy = atomic_inc_return(&sdev->device_busy) - 1;
1252 	if (atomic_read(&sdev->device_blocked)) {
1253 		if (busy)
1254 			goto out_dec;
1255 
1256 		/*
1257 		 * unblock after device_blocked iterates to zero
1258 		 */
1259 		if (atomic_dec_return(&sdev->device_blocked) > 0)
1260 			goto out_dec;
1261 		SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1262 				   "unblocking device at zero depth\n"));
1263 	}
1264 
1265 	if (busy >= sdev->queue_depth)
1266 		goto out_dec;
1267 
1268 	return 1;
1269 out_dec:
1270 	atomic_dec(&sdev->device_busy);
1271 	return 0;
1272 }
1273 
1274 /*
1275  * scsi_target_queue_ready: checks if there we can send commands to target
1276  * @sdev: scsi device on starget to check.
1277  */
1278 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1279 					   struct scsi_device *sdev)
1280 {
1281 	struct scsi_target *starget = scsi_target(sdev);
1282 	unsigned int busy;
1283 
1284 	if (starget->single_lun) {
1285 		spin_lock_irq(shost->host_lock);
1286 		if (starget->starget_sdev_user &&
1287 		    starget->starget_sdev_user != sdev) {
1288 			spin_unlock_irq(shost->host_lock);
1289 			return 0;
1290 		}
1291 		starget->starget_sdev_user = sdev;
1292 		spin_unlock_irq(shost->host_lock);
1293 	}
1294 
1295 	if (starget->can_queue <= 0)
1296 		return 1;
1297 
1298 	busy = atomic_inc_return(&starget->target_busy) - 1;
1299 	if (atomic_read(&starget->target_blocked) > 0) {
1300 		if (busy)
1301 			goto starved;
1302 
1303 		/*
1304 		 * unblock after target_blocked iterates to zero
1305 		 */
1306 		if (atomic_dec_return(&starget->target_blocked) > 0)
1307 			goto out_dec;
1308 
1309 		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1310 				 "unblocking target at zero depth\n"));
1311 	}
1312 
1313 	if (busy >= starget->can_queue)
1314 		goto starved;
1315 
1316 	return 1;
1317 
1318 starved:
1319 	spin_lock_irq(shost->host_lock);
1320 	list_move_tail(&sdev->starved_entry, &shost->starved_list);
1321 	spin_unlock_irq(shost->host_lock);
1322 out_dec:
1323 	if (starget->can_queue > 0)
1324 		atomic_dec(&starget->target_busy);
1325 	return 0;
1326 }
1327 
1328 /*
1329  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1330  * return 0. We must end up running the queue again whenever 0 is
1331  * returned, else IO can hang.
1332  */
1333 static inline int scsi_host_queue_ready(struct request_queue *q,
1334 				   struct Scsi_Host *shost,
1335 				   struct scsi_device *sdev,
1336 				   struct scsi_cmnd *cmd)
1337 {
1338 	if (scsi_host_in_recovery(shost))
1339 		return 0;
1340 
1341 	if (atomic_read(&shost->host_blocked) > 0) {
1342 		if (scsi_host_busy(shost) > 0)
1343 			goto starved;
1344 
1345 		/*
1346 		 * unblock after host_blocked iterates to zero
1347 		 */
1348 		if (atomic_dec_return(&shost->host_blocked) > 0)
1349 			goto out_dec;
1350 
1351 		SCSI_LOG_MLQUEUE(3,
1352 			shost_printk(KERN_INFO, shost,
1353 				     "unblocking host at zero depth\n"));
1354 	}
1355 
1356 	if (shost->host_self_blocked)
1357 		goto starved;
1358 
1359 	/* We're OK to process the command, so we can't be starved */
1360 	if (!list_empty(&sdev->starved_entry)) {
1361 		spin_lock_irq(shost->host_lock);
1362 		if (!list_empty(&sdev->starved_entry))
1363 			list_del_init(&sdev->starved_entry);
1364 		spin_unlock_irq(shost->host_lock);
1365 	}
1366 
1367 	__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1368 
1369 	return 1;
1370 
1371 starved:
1372 	spin_lock_irq(shost->host_lock);
1373 	if (list_empty(&sdev->starved_entry))
1374 		list_add_tail(&sdev->starved_entry, &shost->starved_list);
1375 	spin_unlock_irq(shost->host_lock);
1376 out_dec:
1377 	scsi_dec_host_busy(shost, cmd);
1378 	return 0;
1379 }
1380 
1381 /*
1382  * Busy state exporting function for request stacking drivers.
1383  *
1384  * For efficiency, no lock is taken to check the busy state of
1385  * shost/starget/sdev, since the returned value is not guaranteed and
1386  * may be changed after request stacking drivers call the function,
1387  * regardless of taking lock or not.
1388  *
1389  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1390  * needs to return 'not busy'. Otherwise, request stacking drivers
1391  * may hold requests forever.
1392  */
1393 static bool scsi_mq_lld_busy(struct request_queue *q)
1394 {
1395 	struct scsi_device *sdev = q->queuedata;
1396 	struct Scsi_Host *shost;
1397 
1398 	if (blk_queue_dying(q))
1399 		return false;
1400 
1401 	shost = sdev->host;
1402 
1403 	/*
1404 	 * Ignore host/starget busy state.
1405 	 * Since block layer does not have a concept of fairness across
1406 	 * multiple queues, congestion of host/starget needs to be handled
1407 	 * in SCSI layer.
1408 	 */
1409 	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1410 		return true;
1411 
1412 	return false;
1413 }
1414 
1415 static void scsi_softirq_done(struct request *rq)
1416 {
1417 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1418 	int disposition;
1419 
1420 	INIT_LIST_HEAD(&cmd->eh_entry);
1421 
1422 	atomic_inc(&cmd->device->iodone_cnt);
1423 	if (cmd->result)
1424 		atomic_inc(&cmd->device->ioerr_cnt);
1425 
1426 	disposition = scsi_decide_disposition(cmd);
1427 	if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd))
1428 		disposition = SUCCESS;
1429 
1430 	scsi_log_completion(cmd, disposition);
1431 
1432 	switch (disposition) {
1433 	case SUCCESS:
1434 		scsi_finish_command(cmd);
1435 		break;
1436 	case NEEDS_RETRY:
1437 		scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1438 		break;
1439 	case ADD_TO_MLQUEUE:
1440 		scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1441 		break;
1442 	default:
1443 		scsi_eh_scmd_add(cmd);
1444 		break;
1445 	}
1446 }
1447 
1448 /**
1449  * scsi_dispatch_command - Dispatch a command to the low-level driver.
1450  * @cmd: command block we are dispatching.
1451  *
1452  * Return: nonzero return request was rejected and device's queue needs to be
1453  * plugged.
1454  */
1455 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1456 {
1457 	struct Scsi_Host *host = cmd->device->host;
1458 	int rtn = 0;
1459 
1460 	atomic_inc(&cmd->device->iorequest_cnt);
1461 
1462 	/* check if the device is still usable */
1463 	if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1464 		/* in SDEV_DEL we error all commands. DID_NO_CONNECT
1465 		 * returns an immediate error upwards, and signals
1466 		 * that the device is no longer present */
1467 		cmd->result = DID_NO_CONNECT << 16;
1468 		goto done;
1469 	}
1470 
1471 	/* Check to see if the scsi lld made this device blocked. */
1472 	if (unlikely(scsi_device_blocked(cmd->device))) {
1473 		/*
1474 		 * in blocked state, the command is just put back on
1475 		 * the device queue.  The suspend state has already
1476 		 * blocked the queue so future requests should not
1477 		 * occur until the device transitions out of the
1478 		 * suspend state.
1479 		 */
1480 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1481 			"queuecommand : device blocked\n"));
1482 		return SCSI_MLQUEUE_DEVICE_BUSY;
1483 	}
1484 
1485 	/* Store the LUN value in cmnd, if needed. */
1486 	if (cmd->device->lun_in_cdb)
1487 		cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1488 			       (cmd->device->lun << 5 & 0xe0);
1489 
1490 	scsi_log_send(cmd);
1491 
1492 	/*
1493 	 * Before we queue this command, check if the command
1494 	 * length exceeds what the host adapter can handle.
1495 	 */
1496 	if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1497 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1498 			       "queuecommand : command too long. "
1499 			       "cdb_size=%d host->max_cmd_len=%d\n",
1500 			       cmd->cmd_len, cmd->device->host->max_cmd_len));
1501 		cmd->result = (DID_ABORT << 16);
1502 		goto done;
1503 	}
1504 
1505 	if (unlikely(host->shost_state == SHOST_DEL)) {
1506 		cmd->result = (DID_NO_CONNECT << 16);
1507 		goto done;
1508 
1509 	}
1510 
1511 	trace_scsi_dispatch_cmd_start(cmd);
1512 	rtn = host->hostt->queuecommand(host, cmd);
1513 	if (rtn) {
1514 		trace_scsi_dispatch_cmd_error(cmd, rtn);
1515 		if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1516 		    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1517 			rtn = SCSI_MLQUEUE_HOST_BUSY;
1518 
1519 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1520 			"queuecommand : request rejected\n"));
1521 	}
1522 
1523 	return rtn;
1524  done:
1525 	cmd->scsi_done(cmd);
1526 	return 0;
1527 }
1528 
1529 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1530 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
1531 {
1532 	return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1533 		sizeof(struct scatterlist);
1534 }
1535 
1536 static blk_status_t scsi_prepare_cmd(struct request *req)
1537 {
1538 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1539 	struct scsi_device *sdev = req->q->queuedata;
1540 	struct Scsi_Host *shost = sdev->host;
1541 	struct scatterlist *sg;
1542 
1543 	scsi_init_command(sdev, cmd);
1544 
1545 	cmd->request = req;
1546 	cmd->tag = req->tag;
1547 	cmd->prot_op = SCSI_PROT_NORMAL;
1548 	if (blk_rq_bytes(req))
1549 		cmd->sc_data_direction = rq_dma_dir(req);
1550 	else
1551 		cmd->sc_data_direction = DMA_NONE;
1552 
1553 	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1554 	cmd->sdb.table.sgl = sg;
1555 
1556 	if (scsi_host_get_prot(shost)) {
1557 		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1558 
1559 		cmd->prot_sdb->table.sgl =
1560 			(struct scatterlist *)(cmd->prot_sdb + 1);
1561 	}
1562 
1563 	/*
1564 	 * Special handling for passthrough commands, which don't go to the ULP
1565 	 * at all:
1566 	 */
1567 	if (blk_rq_is_scsi(req))
1568 		return scsi_setup_scsi_cmnd(sdev, req);
1569 
1570 	if (sdev->handler && sdev->handler->prep_fn) {
1571 		blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1572 
1573 		if (ret != BLK_STS_OK)
1574 			return ret;
1575 	}
1576 
1577 	cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1578 	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1579 	return scsi_cmd_to_driver(cmd)->init_command(cmd);
1580 }
1581 
1582 static void scsi_mq_done(struct scsi_cmnd *cmd)
1583 {
1584 	if (unlikely(blk_should_fake_timeout(cmd->request->q)))
1585 		return;
1586 	if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1587 		return;
1588 	trace_scsi_dispatch_cmd_done(cmd);
1589 	blk_mq_complete_request(cmd->request);
1590 }
1591 
1592 static void scsi_mq_put_budget(struct request_queue *q)
1593 {
1594 	struct scsi_device *sdev = q->queuedata;
1595 
1596 	atomic_dec(&sdev->device_busy);
1597 }
1598 
1599 static bool scsi_mq_get_budget(struct request_queue *q)
1600 {
1601 	struct scsi_device *sdev = q->queuedata;
1602 
1603 	if (scsi_dev_queue_ready(q, sdev))
1604 		return true;
1605 
1606 	atomic_inc(&sdev->restarts);
1607 
1608 	/*
1609 	 * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy).
1610 	 * .restarts must be incremented before .device_busy is read because the
1611 	 * code in scsi_run_queue_async() depends on the order of these operations.
1612 	 */
1613 	smp_mb__after_atomic();
1614 
1615 	/*
1616 	 * If all in-flight requests originated from this LUN are completed
1617 	 * before reading .device_busy, sdev->device_busy will be observed as
1618 	 * zero, then blk_mq_delay_run_hw_queues() will dispatch this request
1619 	 * soon. Otherwise, completion of one of these requests will observe
1620 	 * the .restarts flag, and the request queue will be run for handling
1621 	 * this request, see scsi_end_request().
1622 	 */
1623 	if (unlikely(atomic_read(&sdev->device_busy) == 0 &&
1624 				!scsi_device_blocked(sdev)))
1625 		blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY);
1626 	return false;
1627 }
1628 
1629 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1630 			 const struct blk_mq_queue_data *bd)
1631 {
1632 	struct request *req = bd->rq;
1633 	struct request_queue *q = req->q;
1634 	struct scsi_device *sdev = q->queuedata;
1635 	struct Scsi_Host *shost = sdev->host;
1636 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1637 	blk_status_t ret;
1638 	int reason;
1639 
1640 	/*
1641 	 * If the device is not in running state we will reject some or all
1642 	 * commands.
1643 	 */
1644 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1645 		ret = scsi_device_state_check(sdev, req);
1646 		if (ret != BLK_STS_OK)
1647 			goto out_put_budget;
1648 	}
1649 
1650 	ret = BLK_STS_RESOURCE;
1651 	if (!scsi_target_queue_ready(shost, sdev))
1652 		goto out_put_budget;
1653 	if (!scsi_host_queue_ready(q, shost, sdev, cmd))
1654 		goto out_dec_target_busy;
1655 
1656 	if (!(req->rq_flags & RQF_DONTPREP)) {
1657 		ret = scsi_prepare_cmd(req);
1658 		if (ret != BLK_STS_OK)
1659 			goto out_dec_host_busy;
1660 		req->rq_flags |= RQF_DONTPREP;
1661 	} else {
1662 		clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1663 	}
1664 
1665 	cmd->flags &= SCMD_PRESERVED_FLAGS;
1666 	if (sdev->simple_tags)
1667 		cmd->flags |= SCMD_TAGGED;
1668 	if (bd->last)
1669 		cmd->flags |= SCMD_LAST;
1670 
1671 	scsi_set_resid(cmd, 0);
1672 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1673 	cmd->scsi_done = scsi_mq_done;
1674 
1675 	blk_mq_start_request(req);
1676 	reason = scsi_dispatch_cmd(cmd);
1677 	if (reason) {
1678 		scsi_set_blocked(cmd, reason);
1679 		ret = BLK_STS_RESOURCE;
1680 		goto out_dec_host_busy;
1681 	}
1682 
1683 	return BLK_STS_OK;
1684 
1685 out_dec_host_busy:
1686 	scsi_dec_host_busy(shost, cmd);
1687 out_dec_target_busy:
1688 	if (scsi_target(sdev)->can_queue > 0)
1689 		atomic_dec(&scsi_target(sdev)->target_busy);
1690 out_put_budget:
1691 	scsi_mq_put_budget(q);
1692 	switch (ret) {
1693 	case BLK_STS_OK:
1694 		break;
1695 	case BLK_STS_RESOURCE:
1696 	case BLK_STS_ZONE_RESOURCE:
1697 		if (atomic_read(&sdev->device_busy) ||
1698 		    scsi_device_blocked(sdev))
1699 			ret = BLK_STS_DEV_RESOURCE;
1700 		break;
1701 	default:
1702 		if (unlikely(!scsi_device_online(sdev)))
1703 			scsi_req(req)->result = DID_NO_CONNECT << 16;
1704 		else
1705 			scsi_req(req)->result = DID_ERROR << 16;
1706 		/*
1707 		 * Make sure to release all allocated resources when
1708 		 * we hit an error, as we will never see this command
1709 		 * again.
1710 		 */
1711 		if (req->rq_flags & RQF_DONTPREP)
1712 			scsi_mq_uninit_cmd(cmd);
1713 		scsi_run_queue_async(sdev);
1714 		break;
1715 	}
1716 	return ret;
1717 }
1718 
1719 static enum blk_eh_timer_return scsi_timeout(struct request *req,
1720 		bool reserved)
1721 {
1722 	if (reserved)
1723 		return BLK_EH_RESET_TIMER;
1724 	return scsi_times_out(req);
1725 }
1726 
1727 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1728 				unsigned int hctx_idx, unsigned int numa_node)
1729 {
1730 	struct Scsi_Host *shost = set->driver_data;
1731 	const bool unchecked_isa_dma = shost->unchecked_isa_dma;
1732 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1733 	struct scatterlist *sg;
1734 	int ret = 0;
1735 
1736 	if (unchecked_isa_dma)
1737 		cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
1738 	cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma,
1739 						    GFP_KERNEL, numa_node);
1740 	if (!cmd->sense_buffer)
1741 		return -ENOMEM;
1742 	cmd->req.sense = cmd->sense_buffer;
1743 
1744 	if (scsi_host_get_prot(shost)) {
1745 		sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1746 			shost->hostt->cmd_size;
1747 		cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1748 	}
1749 
1750 	if (shost->hostt->init_cmd_priv) {
1751 		ret = shost->hostt->init_cmd_priv(shost, cmd);
1752 		if (ret < 0)
1753 			scsi_free_sense_buffer(unchecked_isa_dma,
1754 					       cmd->sense_buffer);
1755 	}
1756 
1757 	return ret;
1758 }
1759 
1760 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1761 				 unsigned int hctx_idx)
1762 {
1763 	struct Scsi_Host *shost = set->driver_data;
1764 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1765 
1766 	if (shost->hostt->exit_cmd_priv)
1767 		shost->hostt->exit_cmd_priv(shost, cmd);
1768 	scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
1769 			       cmd->sense_buffer);
1770 }
1771 
1772 static int scsi_map_queues(struct blk_mq_tag_set *set)
1773 {
1774 	struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1775 
1776 	if (shost->hostt->map_queues)
1777 		return shost->hostt->map_queues(shost);
1778 	return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
1779 }
1780 
1781 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1782 {
1783 	struct device *dev = shost->dma_dev;
1784 
1785 	/*
1786 	 * this limit is imposed by hardware restrictions
1787 	 */
1788 	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1789 					SG_MAX_SEGMENTS));
1790 
1791 	if (scsi_host_prot_dma(shost)) {
1792 		shost->sg_prot_tablesize =
1793 			min_not_zero(shost->sg_prot_tablesize,
1794 				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1795 		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1796 		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1797 	}
1798 
1799 	if (dev->dma_mask) {
1800 		shost->max_sectors = min_t(unsigned int, shost->max_sectors,
1801 				dma_max_mapping_size(dev) >> SECTOR_SHIFT);
1802 	}
1803 	blk_queue_max_hw_sectors(q, shost->max_sectors);
1804 	if (shost->unchecked_isa_dma)
1805 		blk_queue_bounce_limit(q, BLK_BOUNCE_ISA);
1806 	blk_queue_segment_boundary(q, shost->dma_boundary);
1807 	dma_set_seg_boundary(dev, shost->dma_boundary);
1808 
1809 	blk_queue_max_segment_size(q, shost->max_segment_size);
1810 	blk_queue_virt_boundary(q, shost->virt_boundary_mask);
1811 	dma_set_max_seg_size(dev, queue_max_segment_size(q));
1812 
1813 	/*
1814 	 * Set a reasonable default alignment:  The larger of 32-byte (dword),
1815 	 * which is a common minimum for HBAs, and the minimum DMA alignment,
1816 	 * which is set by the platform.
1817 	 *
1818 	 * Devices that require a bigger alignment can increase it later.
1819 	 */
1820 	blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
1821 }
1822 EXPORT_SYMBOL_GPL(__scsi_init_queue);
1823 
1824 static const struct blk_mq_ops scsi_mq_ops_no_commit = {
1825 	.get_budget	= scsi_mq_get_budget,
1826 	.put_budget	= scsi_mq_put_budget,
1827 	.queue_rq	= scsi_queue_rq,
1828 	.complete	= scsi_softirq_done,
1829 	.timeout	= scsi_timeout,
1830 #ifdef CONFIG_BLK_DEBUG_FS
1831 	.show_rq	= scsi_show_rq,
1832 #endif
1833 	.init_request	= scsi_mq_init_request,
1834 	.exit_request	= scsi_mq_exit_request,
1835 	.initialize_rq_fn = scsi_initialize_rq,
1836 	.cleanup_rq	= scsi_cleanup_rq,
1837 	.busy		= scsi_mq_lld_busy,
1838 	.map_queues	= scsi_map_queues,
1839 };
1840 
1841 
1842 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
1843 {
1844 	struct request_queue *q = hctx->queue;
1845 	struct scsi_device *sdev = q->queuedata;
1846 	struct Scsi_Host *shost = sdev->host;
1847 
1848 	shost->hostt->commit_rqs(shost, hctx->queue_num);
1849 }
1850 
1851 static const struct blk_mq_ops scsi_mq_ops = {
1852 	.get_budget	= scsi_mq_get_budget,
1853 	.put_budget	= scsi_mq_put_budget,
1854 	.queue_rq	= scsi_queue_rq,
1855 	.commit_rqs	= scsi_commit_rqs,
1856 	.complete	= scsi_softirq_done,
1857 	.timeout	= scsi_timeout,
1858 #ifdef CONFIG_BLK_DEBUG_FS
1859 	.show_rq	= scsi_show_rq,
1860 #endif
1861 	.init_request	= scsi_mq_init_request,
1862 	.exit_request	= scsi_mq_exit_request,
1863 	.initialize_rq_fn = scsi_initialize_rq,
1864 	.cleanup_rq	= scsi_cleanup_rq,
1865 	.busy		= scsi_mq_lld_busy,
1866 	.map_queues	= scsi_map_queues,
1867 };
1868 
1869 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
1870 {
1871 	sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
1872 	if (IS_ERR(sdev->request_queue))
1873 		return NULL;
1874 
1875 	sdev->request_queue->queuedata = sdev;
1876 	__scsi_init_queue(sdev->host, sdev->request_queue);
1877 	blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, sdev->request_queue);
1878 	return sdev->request_queue;
1879 }
1880 
1881 int scsi_mq_setup_tags(struct Scsi_Host *shost)
1882 {
1883 	unsigned int cmd_size, sgl_size;
1884 	struct blk_mq_tag_set *tag_set = &shost->tag_set;
1885 
1886 	sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
1887 				scsi_mq_inline_sgl_size(shost));
1888 	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
1889 	if (scsi_host_get_prot(shost))
1890 		cmd_size += sizeof(struct scsi_data_buffer) +
1891 			sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
1892 
1893 	memset(tag_set, 0, sizeof(*tag_set));
1894 	if (shost->hostt->commit_rqs)
1895 		tag_set->ops = &scsi_mq_ops;
1896 	else
1897 		tag_set->ops = &scsi_mq_ops_no_commit;
1898 	tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1;
1899 	tag_set->queue_depth = shost->can_queue;
1900 	tag_set->cmd_size = cmd_size;
1901 	tag_set->numa_node = NUMA_NO_NODE;
1902 	tag_set->flags = BLK_MQ_F_SHOULD_MERGE;
1903 	tag_set->flags |=
1904 		BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
1905 	tag_set->driver_data = shost;
1906 	if (shost->host_tagset)
1907 		tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1908 
1909 	return blk_mq_alloc_tag_set(tag_set);
1910 }
1911 
1912 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
1913 {
1914 	blk_mq_free_tag_set(&shost->tag_set);
1915 }
1916 
1917 /**
1918  * scsi_device_from_queue - return sdev associated with a request_queue
1919  * @q: The request queue to return the sdev from
1920  *
1921  * Return the sdev associated with a request queue or NULL if the
1922  * request_queue does not reference a SCSI device.
1923  */
1924 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
1925 {
1926 	struct scsi_device *sdev = NULL;
1927 
1928 	if (q->mq_ops == &scsi_mq_ops_no_commit ||
1929 	    q->mq_ops == &scsi_mq_ops)
1930 		sdev = q->queuedata;
1931 	if (!sdev || !get_device(&sdev->sdev_gendev))
1932 		sdev = NULL;
1933 
1934 	return sdev;
1935 }
1936 
1937 /**
1938  * scsi_block_requests - Utility function used by low-level drivers to prevent
1939  * further commands from being queued to the device.
1940  * @shost:  host in question
1941  *
1942  * There is no timer nor any other means by which the requests get unblocked
1943  * other than the low-level driver calling scsi_unblock_requests().
1944  */
1945 void scsi_block_requests(struct Scsi_Host *shost)
1946 {
1947 	shost->host_self_blocked = 1;
1948 }
1949 EXPORT_SYMBOL(scsi_block_requests);
1950 
1951 /**
1952  * scsi_unblock_requests - Utility function used by low-level drivers to allow
1953  * further commands to be queued to the device.
1954  * @shost:  host in question
1955  *
1956  * There is no timer nor any other means by which the requests get unblocked
1957  * other than the low-level driver calling scsi_unblock_requests(). This is done
1958  * as an API function so that changes to the internals of the scsi mid-layer
1959  * won't require wholesale changes to drivers that use this feature.
1960  */
1961 void scsi_unblock_requests(struct Scsi_Host *shost)
1962 {
1963 	shost->host_self_blocked = 0;
1964 	scsi_run_host_queues(shost);
1965 }
1966 EXPORT_SYMBOL(scsi_unblock_requests);
1967 
1968 void scsi_exit_queue(void)
1969 {
1970 	kmem_cache_destroy(scsi_sense_cache);
1971 	kmem_cache_destroy(scsi_sense_isadma_cache);
1972 }
1973 
1974 /**
1975  *	scsi_mode_select - issue a mode select
1976  *	@sdev:	SCSI device to be queried
1977  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
1978  *	@sp:	Save page bit (0 == don't save, 1 == save)
1979  *	@modepage: mode page being requested
1980  *	@buffer: request buffer (may not be smaller than eight bytes)
1981  *	@len:	length of request buffer.
1982  *	@timeout: command timeout
1983  *	@retries: number of retries before failing
1984  *	@data: returns a structure abstracting the mode header data
1985  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1986  *		must be SCSI_SENSE_BUFFERSIZE big.
1987  *
1988  *	Returns zero if successful; negative error number or scsi
1989  *	status on error
1990  *
1991  */
1992 int
1993 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1994 		 unsigned char *buffer, int len, int timeout, int retries,
1995 		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1996 {
1997 	unsigned char cmd[10];
1998 	unsigned char *real_buffer;
1999 	int ret;
2000 
2001 	memset(cmd, 0, sizeof(cmd));
2002 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2003 
2004 	if (sdev->use_10_for_ms) {
2005 		if (len > 65535)
2006 			return -EINVAL;
2007 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
2008 		if (!real_buffer)
2009 			return -ENOMEM;
2010 		memcpy(real_buffer + 8, buffer, len);
2011 		len += 8;
2012 		real_buffer[0] = 0;
2013 		real_buffer[1] = 0;
2014 		real_buffer[2] = data->medium_type;
2015 		real_buffer[3] = data->device_specific;
2016 		real_buffer[4] = data->longlba ? 0x01 : 0;
2017 		real_buffer[5] = 0;
2018 		real_buffer[6] = data->block_descriptor_length >> 8;
2019 		real_buffer[7] = data->block_descriptor_length;
2020 
2021 		cmd[0] = MODE_SELECT_10;
2022 		cmd[7] = len >> 8;
2023 		cmd[8] = len;
2024 	} else {
2025 		if (len > 255 || data->block_descriptor_length > 255 ||
2026 		    data->longlba)
2027 			return -EINVAL;
2028 
2029 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2030 		if (!real_buffer)
2031 			return -ENOMEM;
2032 		memcpy(real_buffer + 4, buffer, len);
2033 		len += 4;
2034 		real_buffer[0] = 0;
2035 		real_buffer[1] = data->medium_type;
2036 		real_buffer[2] = data->device_specific;
2037 		real_buffer[3] = data->block_descriptor_length;
2038 
2039 		cmd[0] = MODE_SELECT;
2040 		cmd[4] = len;
2041 	}
2042 
2043 	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2044 			       sshdr, timeout, retries, NULL);
2045 	kfree(real_buffer);
2046 	return ret;
2047 }
2048 EXPORT_SYMBOL_GPL(scsi_mode_select);
2049 
2050 /**
2051  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2052  *	@sdev:	SCSI device to be queried
2053  *	@dbd:	set if mode sense will allow block descriptors to be returned
2054  *	@modepage: mode page being requested
2055  *	@buffer: request buffer (may not be smaller than eight bytes)
2056  *	@len:	length of request buffer.
2057  *	@timeout: command timeout
2058  *	@retries: number of retries before failing
2059  *	@data: returns a structure abstracting the mode header data
2060  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2061  *		must be SCSI_SENSE_BUFFERSIZE big.
2062  *
2063  *	Returns zero if unsuccessful, or the header offset (either 4
2064  *	or 8 depending on whether a six or ten byte command was
2065  *	issued) if successful.
2066  */
2067 int
2068 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2069 		  unsigned char *buffer, int len, int timeout, int retries,
2070 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2071 {
2072 	unsigned char cmd[12];
2073 	int use_10_for_ms;
2074 	int header_length;
2075 	int result, retry_count = retries;
2076 	struct scsi_sense_hdr my_sshdr;
2077 
2078 	memset(data, 0, sizeof(*data));
2079 	memset(&cmd[0], 0, 12);
2080 
2081 	dbd = sdev->set_dbd_for_ms ? 8 : dbd;
2082 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2083 	cmd[2] = modepage;
2084 
2085 	/* caller might not be interested in sense, but we need it */
2086 	if (!sshdr)
2087 		sshdr = &my_sshdr;
2088 
2089  retry:
2090 	use_10_for_ms = sdev->use_10_for_ms;
2091 
2092 	if (use_10_for_ms) {
2093 		if (len < 8)
2094 			len = 8;
2095 
2096 		cmd[0] = MODE_SENSE_10;
2097 		cmd[8] = len;
2098 		header_length = 8;
2099 	} else {
2100 		if (len < 4)
2101 			len = 4;
2102 
2103 		cmd[0] = MODE_SENSE;
2104 		cmd[4] = len;
2105 		header_length = 4;
2106 	}
2107 
2108 	memset(buffer, 0, len);
2109 
2110 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2111 				  sshdr, timeout, retries, NULL);
2112 
2113 	/* This code looks awful: what it's doing is making sure an
2114 	 * ILLEGAL REQUEST sense return identifies the actual command
2115 	 * byte as the problem.  MODE_SENSE commands can return
2116 	 * ILLEGAL REQUEST if the code page isn't supported */
2117 
2118 	if (use_10_for_ms && !scsi_status_is_good(result) &&
2119 	    driver_byte(result) == DRIVER_SENSE) {
2120 		if (scsi_sense_valid(sshdr)) {
2121 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2122 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2123 				/*
2124 				 * Invalid command operation code
2125 				 */
2126 				sdev->use_10_for_ms = 0;
2127 				goto retry;
2128 			}
2129 		}
2130 	}
2131 
2132 	if (scsi_status_is_good(result)) {
2133 		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2134 			     (modepage == 6 || modepage == 8))) {
2135 			/* Initio breakage? */
2136 			header_length = 0;
2137 			data->length = 13;
2138 			data->medium_type = 0;
2139 			data->device_specific = 0;
2140 			data->longlba = 0;
2141 			data->block_descriptor_length = 0;
2142 		} else if (use_10_for_ms) {
2143 			data->length = buffer[0]*256 + buffer[1] + 2;
2144 			data->medium_type = buffer[2];
2145 			data->device_specific = buffer[3];
2146 			data->longlba = buffer[4] & 0x01;
2147 			data->block_descriptor_length = buffer[6]*256
2148 				+ buffer[7];
2149 		} else {
2150 			data->length = buffer[0] + 1;
2151 			data->medium_type = buffer[1];
2152 			data->device_specific = buffer[2];
2153 			data->block_descriptor_length = buffer[3];
2154 		}
2155 		data->header_length = header_length;
2156 	} else if ((status_byte(result) == CHECK_CONDITION) &&
2157 		   scsi_sense_valid(sshdr) &&
2158 		   sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2159 		retry_count--;
2160 		goto retry;
2161 	}
2162 
2163 	return result;
2164 }
2165 EXPORT_SYMBOL(scsi_mode_sense);
2166 
2167 /**
2168  *	scsi_test_unit_ready - test if unit is ready
2169  *	@sdev:	scsi device to change the state of.
2170  *	@timeout: command timeout
2171  *	@retries: number of retries before failing
2172  *	@sshdr: outpout pointer for decoded sense information.
2173  *
2174  *	Returns zero if unsuccessful or an error if TUR failed.  For
2175  *	removable media, UNIT_ATTENTION sets ->changed flag.
2176  **/
2177 int
2178 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2179 		     struct scsi_sense_hdr *sshdr)
2180 {
2181 	char cmd[] = {
2182 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2183 	};
2184 	int result;
2185 
2186 	/* try to eat the UNIT_ATTENTION if there are enough retries */
2187 	do {
2188 		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2189 					  timeout, 1, NULL);
2190 		if (sdev->removable && scsi_sense_valid(sshdr) &&
2191 		    sshdr->sense_key == UNIT_ATTENTION)
2192 			sdev->changed = 1;
2193 	} while (scsi_sense_valid(sshdr) &&
2194 		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2195 
2196 	return result;
2197 }
2198 EXPORT_SYMBOL(scsi_test_unit_ready);
2199 
2200 /**
2201  *	scsi_device_set_state - Take the given device through the device state model.
2202  *	@sdev:	scsi device to change the state of.
2203  *	@state:	state to change to.
2204  *
2205  *	Returns zero if successful or an error if the requested
2206  *	transition is illegal.
2207  */
2208 int
2209 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2210 {
2211 	enum scsi_device_state oldstate = sdev->sdev_state;
2212 
2213 	if (state == oldstate)
2214 		return 0;
2215 
2216 	switch (state) {
2217 	case SDEV_CREATED:
2218 		switch (oldstate) {
2219 		case SDEV_CREATED_BLOCK:
2220 			break;
2221 		default:
2222 			goto illegal;
2223 		}
2224 		break;
2225 
2226 	case SDEV_RUNNING:
2227 		switch (oldstate) {
2228 		case SDEV_CREATED:
2229 		case SDEV_OFFLINE:
2230 		case SDEV_TRANSPORT_OFFLINE:
2231 		case SDEV_QUIESCE:
2232 		case SDEV_BLOCK:
2233 			break;
2234 		default:
2235 			goto illegal;
2236 		}
2237 		break;
2238 
2239 	case SDEV_QUIESCE:
2240 		switch (oldstate) {
2241 		case SDEV_RUNNING:
2242 		case SDEV_OFFLINE:
2243 		case SDEV_TRANSPORT_OFFLINE:
2244 			break;
2245 		default:
2246 			goto illegal;
2247 		}
2248 		break;
2249 
2250 	case SDEV_OFFLINE:
2251 	case SDEV_TRANSPORT_OFFLINE:
2252 		switch (oldstate) {
2253 		case SDEV_CREATED:
2254 		case SDEV_RUNNING:
2255 		case SDEV_QUIESCE:
2256 		case SDEV_BLOCK:
2257 			break;
2258 		default:
2259 			goto illegal;
2260 		}
2261 		break;
2262 
2263 	case SDEV_BLOCK:
2264 		switch (oldstate) {
2265 		case SDEV_RUNNING:
2266 		case SDEV_CREATED_BLOCK:
2267 		case SDEV_QUIESCE:
2268 		case SDEV_OFFLINE:
2269 			break;
2270 		default:
2271 			goto illegal;
2272 		}
2273 		break;
2274 
2275 	case SDEV_CREATED_BLOCK:
2276 		switch (oldstate) {
2277 		case SDEV_CREATED:
2278 			break;
2279 		default:
2280 			goto illegal;
2281 		}
2282 		break;
2283 
2284 	case SDEV_CANCEL:
2285 		switch (oldstate) {
2286 		case SDEV_CREATED:
2287 		case SDEV_RUNNING:
2288 		case SDEV_QUIESCE:
2289 		case SDEV_OFFLINE:
2290 		case SDEV_TRANSPORT_OFFLINE:
2291 			break;
2292 		default:
2293 			goto illegal;
2294 		}
2295 		break;
2296 
2297 	case SDEV_DEL:
2298 		switch (oldstate) {
2299 		case SDEV_CREATED:
2300 		case SDEV_RUNNING:
2301 		case SDEV_OFFLINE:
2302 		case SDEV_TRANSPORT_OFFLINE:
2303 		case SDEV_CANCEL:
2304 		case SDEV_BLOCK:
2305 		case SDEV_CREATED_BLOCK:
2306 			break;
2307 		default:
2308 			goto illegal;
2309 		}
2310 		break;
2311 
2312 	}
2313 	sdev->offline_already = false;
2314 	sdev->sdev_state = state;
2315 	return 0;
2316 
2317  illegal:
2318 	SCSI_LOG_ERROR_RECOVERY(1,
2319 				sdev_printk(KERN_ERR, sdev,
2320 					    "Illegal state transition %s->%s",
2321 					    scsi_device_state_name(oldstate),
2322 					    scsi_device_state_name(state))
2323 				);
2324 	return -EINVAL;
2325 }
2326 EXPORT_SYMBOL(scsi_device_set_state);
2327 
2328 /**
2329  * 	sdev_evt_emit - emit a single SCSI device uevent
2330  *	@sdev: associated SCSI device
2331  *	@evt: event to emit
2332  *
2333  *	Send a single uevent (scsi_event) to the associated scsi_device.
2334  */
2335 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2336 {
2337 	int idx = 0;
2338 	char *envp[3];
2339 
2340 	switch (evt->evt_type) {
2341 	case SDEV_EVT_MEDIA_CHANGE:
2342 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2343 		break;
2344 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2345 		scsi_rescan_device(&sdev->sdev_gendev);
2346 		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2347 		break;
2348 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2349 		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2350 		break;
2351 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2352 	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2353 		break;
2354 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2355 		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2356 		break;
2357 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2358 		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2359 		break;
2360 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2361 		envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2362 		break;
2363 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2364 		envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2365 		break;
2366 	default:
2367 		/* do nothing */
2368 		break;
2369 	}
2370 
2371 	envp[idx++] = NULL;
2372 
2373 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2374 }
2375 
2376 /**
2377  * 	sdev_evt_thread - send a uevent for each scsi event
2378  *	@work: work struct for scsi_device
2379  *
2380  *	Dispatch queued events to their associated scsi_device kobjects
2381  *	as uevents.
2382  */
2383 void scsi_evt_thread(struct work_struct *work)
2384 {
2385 	struct scsi_device *sdev;
2386 	enum scsi_device_event evt_type;
2387 	LIST_HEAD(event_list);
2388 
2389 	sdev = container_of(work, struct scsi_device, event_work);
2390 
2391 	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2392 		if (test_and_clear_bit(evt_type, sdev->pending_events))
2393 			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2394 
2395 	while (1) {
2396 		struct scsi_event *evt;
2397 		struct list_head *this, *tmp;
2398 		unsigned long flags;
2399 
2400 		spin_lock_irqsave(&sdev->list_lock, flags);
2401 		list_splice_init(&sdev->event_list, &event_list);
2402 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2403 
2404 		if (list_empty(&event_list))
2405 			break;
2406 
2407 		list_for_each_safe(this, tmp, &event_list) {
2408 			evt = list_entry(this, struct scsi_event, node);
2409 			list_del(&evt->node);
2410 			scsi_evt_emit(sdev, evt);
2411 			kfree(evt);
2412 		}
2413 	}
2414 }
2415 
2416 /**
2417  * 	sdev_evt_send - send asserted event to uevent thread
2418  *	@sdev: scsi_device event occurred on
2419  *	@evt: event to send
2420  *
2421  *	Assert scsi device event asynchronously.
2422  */
2423 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2424 {
2425 	unsigned long flags;
2426 
2427 #if 0
2428 	/* FIXME: currently this check eliminates all media change events
2429 	 * for polled devices.  Need to update to discriminate between AN
2430 	 * and polled events */
2431 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2432 		kfree(evt);
2433 		return;
2434 	}
2435 #endif
2436 
2437 	spin_lock_irqsave(&sdev->list_lock, flags);
2438 	list_add_tail(&evt->node, &sdev->event_list);
2439 	schedule_work(&sdev->event_work);
2440 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2441 }
2442 EXPORT_SYMBOL_GPL(sdev_evt_send);
2443 
2444 /**
2445  * 	sdev_evt_alloc - allocate a new scsi event
2446  *	@evt_type: type of event to allocate
2447  *	@gfpflags: GFP flags for allocation
2448  *
2449  *	Allocates and returns a new scsi_event.
2450  */
2451 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2452 				  gfp_t gfpflags)
2453 {
2454 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2455 	if (!evt)
2456 		return NULL;
2457 
2458 	evt->evt_type = evt_type;
2459 	INIT_LIST_HEAD(&evt->node);
2460 
2461 	/* evt_type-specific initialization, if any */
2462 	switch (evt_type) {
2463 	case SDEV_EVT_MEDIA_CHANGE:
2464 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2465 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2466 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2467 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2468 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2469 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2470 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2471 	default:
2472 		/* do nothing */
2473 		break;
2474 	}
2475 
2476 	return evt;
2477 }
2478 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2479 
2480 /**
2481  * 	sdev_evt_send_simple - send asserted event to uevent thread
2482  *	@sdev: scsi_device event occurred on
2483  *	@evt_type: type of event to send
2484  *	@gfpflags: GFP flags for allocation
2485  *
2486  *	Assert scsi device event asynchronously, given an event type.
2487  */
2488 void sdev_evt_send_simple(struct scsi_device *sdev,
2489 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2490 {
2491 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2492 	if (!evt) {
2493 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2494 			    evt_type);
2495 		return;
2496 	}
2497 
2498 	sdev_evt_send(sdev, evt);
2499 }
2500 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2501 
2502 /**
2503  *	scsi_device_quiesce - Block user issued commands.
2504  *	@sdev:	scsi device to quiesce.
2505  *
2506  *	This works by trying to transition to the SDEV_QUIESCE state
2507  *	(which must be a legal transition).  When the device is in this
2508  *	state, only special requests will be accepted, all others will
2509  *	be deferred.  Since special requests may also be requeued requests,
2510  *	a successful return doesn't guarantee the device will be
2511  *	totally quiescent.
2512  *
2513  *	Must be called with user context, may sleep.
2514  *
2515  *	Returns zero if unsuccessful or an error if not.
2516  */
2517 int
2518 scsi_device_quiesce(struct scsi_device *sdev)
2519 {
2520 	struct request_queue *q = sdev->request_queue;
2521 	int err;
2522 
2523 	/*
2524 	 * It is allowed to call scsi_device_quiesce() multiple times from
2525 	 * the same context but concurrent scsi_device_quiesce() calls are
2526 	 * not allowed.
2527 	 */
2528 	WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2529 
2530 	if (sdev->quiesced_by == current)
2531 		return 0;
2532 
2533 	blk_set_pm_only(q);
2534 
2535 	blk_mq_freeze_queue(q);
2536 	/*
2537 	 * Ensure that the effect of blk_set_pm_only() will be visible
2538 	 * for percpu_ref_tryget() callers that occur after the queue
2539 	 * unfreeze even if the queue was already frozen before this function
2540 	 * was called. See also https://lwn.net/Articles/573497/.
2541 	 */
2542 	synchronize_rcu();
2543 	blk_mq_unfreeze_queue(q);
2544 
2545 	mutex_lock(&sdev->state_mutex);
2546 	err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2547 	if (err == 0)
2548 		sdev->quiesced_by = current;
2549 	else
2550 		blk_clear_pm_only(q);
2551 	mutex_unlock(&sdev->state_mutex);
2552 
2553 	return err;
2554 }
2555 EXPORT_SYMBOL(scsi_device_quiesce);
2556 
2557 /**
2558  *	scsi_device_resume - Restart user issued commands to a quiesced device.
2559  *	@sdev:	scsi device to resume.
2560  *
2561  *	Moves the device from quiesced back to running and restarts the
2562  *	queues.
2563  *
2564  *	Must be called with user context, may sleep.
2565  */
2566 void scsi_device_resume(struct scsi_device *sdev)
2567 {
2568 	/* check if the device state was mutated prior to resume, and if
2569 	 * so assume the state is being managed elsewhere (for example
2570 	 * device deleted during suspend)
2571 	 */
2572 	mutex_lock(&sdev->state_mutex);
2573 	if (sdev->quiesced_by) {
2574 		sdev->quiesced_by = NULL;
2575 		blk_clear_pm_only(sdev->request_queue);
2576 	}
2577 	if (sdev->sdev_state == SDEV_QUIESCE)
2578 		scsi_device_set_state(sdev, SDEV_RUNNING);
2579 	mutex_unlock(&sdev->state_mutex);
2580 }
2581 EXPORT_SYMBOL(scsi_device_resume);
2582 
2583 static void
2584 device_quiesce_fn(struct scsi_device *sdev, void *data)
2585 {
2586 	scsi_device_quiesce(sdev);
2587 }
2588 
2589 void
2590 scsi_target_quiesce(struct scsi_target *starget)
2591 {
2592 	starget_for_each_device(starget, NULL, device_quiesce_fn);
2593 }
2594 EXPORT_SYMBOL(scsi_target_quiesce);
2595 
2596 static void
2597 device_resume_fn(struct scsi_device *sdev, void *data)
2598 {
2599 	scsi_device_resume(sdev);
2600 }
2601 
2602 void
2603 scsi_target_resume(struct scsi_target *starget)
2604 {
2605 	starget_for_each_device(starget, NULL, device_resume_fn);
2606 }
2607 EXPORT_SYMBOL(scsi_target_resume);
2608 
2609 /**
2610  * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2611  * @sdev: device to block
2612  *
2613  * Pause SCSI command processing on the specified device. Does not sleep.
2614  *
2615  * Returns zero if successful or a negative error code upon failure.
2616  *
2617  * Notes:
2618  * This routine transitions the device to the SDEV_BLOCK state (which must be
2619  * a legal transition). When the device is in this state, command processing
2620  * is paused until the device leaves the SDEV_BLOCK state. See also
2621  * scsi_internal_device_unblock_nowait().
2622  */
2623 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2624 {
2625 	struct request_queue *q = sdev->request_queue;
2626 	int err = 0;
2627 
2628 	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2629 	if (err) {
2630 		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2631 
2632 		if (err)
2633 			return err;
2634 	}
2635 
2636 	/*
2637 	 * The device has transitioned to SDEV_BLOCK.  Stop the
2638 	 * block layer from calling the midlayer with this device's
2639 	 * request queue.
2640 	 */
2641 	blk_mq_quiesce_queue_nowait(q);
2642 	return 0;
2643 }
2644 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2645 
2646 /**
2647  * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
2648  * @sdev: device to block
2649  *
2650  * Pause SCSI command processing on the specified device and wait until all
2651  * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
2652  *
2653  * Returns zero if successful or a negative error code upon failure.
2654  *
2655  * Note:
2656  * This routine transitions the device to the SDEV_BLOCK state (which must be
2657  * a legal transition). When the device is in this state, command processing
2658  * is paused until the device leaves the SDEV_BLOCK state. See also
2659  * scsi_internal_device_unblock().
2660  */
2661 static int scsi_internal_device_block(struct scsi_device *sdev)
2662 {
2663 	struct request_queue *q = sdev->request_queue;
2664 	int err;
2665 
2666 	mutex_lock(&sdev->state_mutex);
2667 	err = scsi_internal_device_block_nowait(sdev);
2668 	if (err == 0)
2669 		blk_mq_quiesce_queue(q);
2670 	mutex_unlock(&sdev->state_mutex);
2671 
2672 	return err;
2673 }
2674 
2675 void scsi_start_queue(struct scsi_device *sdev)
2676 {
2677 	struct request_queue *q = sdev->request_queue;
2678 
2679 	blk_mq_unquiesce_queue(q);
2680 }
2681 
2682 /**
2683  * scsi_internal_device_unblock_nowait - resume a device after a block request
2684  * @sdev:	device to resume
2685  * @new_state:	state to set the device to after unblocking
2686  *
2687  * Restart the device queue for a previously suspended SCSI device. Does not
2688  * sleep.
2689  *
2690  * Returns zero if successful or a negative error code upon failure.
2691  *
2692  * Notes:
2693  * This routine transitions the device to the SDEV_RUNNING state or to one of
2694  * the offline states (which must be a legal transition) allowing the midlayer
2695  * to goose the queue for this device.
2696  */
2697 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2698 					enum scsi_device_state new_state)
2699 {
2700 	switch (new_state) {
2701 	case SDEV_RUNNING:
2702 	case SDEV_TRANSPORT_OFFLINE:
2703 		break;
2704 	default:
2705 		return -EINVAL;
2706 	}
2707 
2708 	/*
2709 	 * Try to transition the scsi device to SDEV_RUNNING or one of the
2710 	 * offlined states and goose the device queue if successful.
2711 	 */
2712 	switch (sdev->sdev_state) {
2713 	case SDEV_BLOCK:
2714 	case SDEV_TRANSPORT_OFFLINE:
2715 		sdev->sdev_state = new_state;
2716 		break;
2717 	case SDEV_CREATED_BLOCK:
2718 		if (new_state == SDEV_TRANSPORT_OFFLINE ||
2719 		    new_state == SDEV_OFFLINE)
2720 			sdev->sdev_state = new_state;
2721 		else
2722 			sdev->sdev_state = SDEV_CREATED;
2723 		break;
2724 	case SDEV_CANCEL:
2725 	case SDEV_OFFLINE:
2726 		break;
2727 	default:
2728 		return -EINVAL;
2729 	}
2730 	scsi_start_queue(sdev);
2731 
2732 	return 0;
2733 }
2734 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2735 
2736 /**
2737  * scsi_internal_device_unblock - resume a device after a block request
2738  * @sdev:	device to resume
2739  * @new_state:	state to set the device to after unblocking
2740  *
2741  * Restart the device queue for a previously suspended SCSI device. May sleep.
2742  *
2743  * Returns zero if successful or a negative error code upon failure.
2744  *
2745  * Notes:
2746  * This routine transitions the device to the SDEV_RUNNING state or to one of
2747  * the offline states (which must be a legal transition) allowing the midlayer
2748  * to goose the queue for this device.
2749  */
2750 static int scsi_internal_device_unblock(struct scsi_device *sdev,
2751 					enum scsi_device_state new_state)
2752 {
2753 	int ret;
2754 
2755 	mutex_lock(&sdev->state_mutex);
2756 	ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2757 	mutex_unlock(&sdev->state_mutex);
2758 
2759 	return ret;
2760 }
2761 
2762 static void
2763 device_block(struct scsi_device *sdev, void *data)
2764 {
2765 	int ret;
2766 
2767 	ret = scsi_internal_device_block(sdev);
2768 
2769 	WARN_ONCE(ret, "scsi_internal_device_block(%s) failed: ret = %d\n",
2770 		  dev_name(&sdev->sdev_gendev), ret);
2771 }
2772 
2773 static int
2774 target_block(struct device *dev, void *data)
2775 {
2776 	if (scsi_is_target_device(dev))
2777 		starget_for_each_device(to_scsi_target(dev), NULL,
2778 					device_block);
2779 	return 0;
2780 }
2781 
2782 void
2783 scsi_target_block(struct device *dev)
2784 {
2785 	if (scsi_is_target_device(dev))
2786 		starget_for_each_device(to_scsi_target(dev), NULL,
2787 					device_block);
2788 	else
2789 		device_for_each_child(dev, NULL, target_block);
2790 }
2791 EXPORT_SYMBOL_GPL(scsi_target_block);
2792 
2793 static void
2794 device_unblock(struct scsi_device *sdev, void *data)
2795 {
2796 	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2797 }
2798 
2799 static int
2800 target_unblock(struct device *dev, void *data)
2801 {
2802 	if (scsi_is_target_device(dev))
2803 		starget_for_each_device(to_scsi_target(dev), data,
2804 					device_unblock);
2805 	return 0;
2806 }
2807 
2808 void
2809 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2810 {
2811 	if (scsi_is_target_device(dev))
2812 		starget_for_each_device(to_scsi_target(dev), &new_state,
2813 					device_unblock);
2814 	else
2815 		device_for_each_child(dev, &new_state, target_unblock);
2816 }
2817 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2818 
2819 int
2820 scsi_host_block(struct Scsi_Host *shost)
2821 {
2822 	struct scsi_device *sdev;
2823 	int ret = 0;
2824 
2825 	/*
2826 	 * Call scsi_internal_device_block_nowait so we can avoid
2827 	 * calling synchronize_rcu() for each LUN.
2828 	 */
2829 	shost_for_each_device(sdev, shost) {
2830 		mutex_lock(&sdev->state_mutex);
2831 		ret = scsi_internal_device_block_nowait(sdev);
2832 		mutex_unlock(&sdev->state_mutex);
2833 		if (ret) {
2834 			scsi_device_put(sdev);
2835 			break;
2836 		}
2837 	}
2838 
2839 	/*
2840 	 * SCSI never enables blk-mq's BLK_MQ_F_BLOCKING flag so
2841 	 * calling synchronize_rcu() once is enough.
2842 	 */
2843 	WARN_ON_ONCE(shost->tag_set.flags & BLK_MQ_F_BLOCKING);
2844 
2845 	if (!ret)
2846 		synchronize_rcu();
2847 
2848 	return ret;
2849 }
2850 EXPORT_SYMBOL_GPL(scsi_host_block);
2851 
2852 int
2853 scsi_host_unblock(struct Scsi_Host *shost, int new_state)
2854 {
2855 	struct scsi_device *sdev;
2856 	int ret = 0;
2857 
2858 	shost_for_each_device(sdev, shost) {
2859 		ret = scsi_internal_device_unblock(sdev, new_state);
2860 		if (ret) {
2861 			scsi_device_put(sdev);
2862 			break;
2863 		}
2864 	}
2865 	return ret;
2866 }
2867 EXPORT_SYMBOL_GPL(scsi_host_unblock);
2868 
2869 /**
2870  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2871  * @sgl:	scatter-gather list
2872  * @sg_count:	number of segments in sg
2873  * @offset:	offset in bytes into sg, on return offset into the mapped area
2874  * @len:	bytes to map, on return number of bytes mapped
2875  *
2876  * Returns virtual address of the start of the mapped page
2877  */
2878 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2879 			  size_t *offset, size_t *len)
2880 {
2881 	int i;
2882 	size_t sg_len = 0, len_complete = 0;
2883 	struct scatterlist *sg;
2884 	struct page *page;
2885 
2886 	WARN_ON(!irqs_disabled());
2887 
2888 	for_each_sg(sgl, sg, sg_count, i) {
2889 		len_complete = sg_len; /* Complete sg-entries */
2890 		sg_len += sg->length;
2891 		if (sg_len > *offset)
2892 			break;
2893 	}
2894 
2895 	if (unlikely(i == sg_count)) {
2896 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2897 			"elements %d\n",
2898 		       __func__, sg_len, *offset, sg_count);
2899 		WARN_ON(1);
2900 		return NULL;
2901 	}
2902 
2903 	/* Offset starting from the beginning of first page in this sg-entry */
2904 	*offset = *offset - len_complete + sg->offset;
2905 
2906 	/* Assumption: contiguous pages can be accessed as "page + i" */
2907 	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2908 	*offset &= ~PAGE_MASK;
2909 
2910 	/* Bytes in this sg-entry from *offset to the end of the page */
2911 	sg_len = PAGE_SIZE - *offset;
2912 	if (*len > sg_len)
2913 		*len = sg_len;
2914 
2915 	return kmap_atomic(page);
2916 }
2917 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2918 
2919 /**
2920  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2921  * @virt:	virtual address to be unmapped
2922  */
2923 void scsi_kunmap_atomic_sg(void *virt)
2924 {
2925 	kunmap_atomic(virt);
2926 }
2927 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2928 
2929 void sdev_disable_disk_events(struct scsi_device *sdev)
2930 {
2931 	atomic_inc(&sdev->disk_events_disable_depth);
2932 }
2933 EXPORT_SYMBOL(sdev_disable_disk_events);
2934 
2935 void sdev_enable_disk_events(struct scsi_device *sdev)
2936 {
2937 	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
2938 		return;
2939 	atomic_dec(&sdev->disk_events_disable_depth);
2940 }
2941 EXPORT_SYMBOL(sdev_enable_disk_events);
2942 
2943 /**
2944  * scsi_vpd_lun_id - return a unique device identification
2945  * @sdev: SCSI device
2946  * @id:   buffer for the identification
2947  * @id_len:  length of the buffer
2948  *
2949  * Copies a unique device identification into @id based
2950  * on the information in the VPD page 0x83 of the device.
2951  * The string will be formatted as a SCSI name string.
2952  *
2953  * Returns the length of the identification or error on failure.
2954  * If the identifier is longer than the supplied buffer the actual
2955  * identifier length is returned and the buffer is not zero-padded.
2956  */
2957 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
2958 {
2959 	u8 cur_id_type = 0xff;
2960 	u8 cur_id_size = 0;
2961 	const unsigned char *d, *cur_id_str;
2962 	const struct scsi_vpd *vpd_pg83;
2963 	int id_size = -EINVAL;
2964 
2965 	rcu_read_lock();
2966 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
2967 	if (!vpd_pg83) {
2968 		rcu_read_unlock();
2969 		return -ENXIO;
2970 	}
2971 
2972 	/*
2973 	 * Look for the correct descriptor.
2974 	 * Order of preference for lun descriptor:
2975 	 * - SCSI name string
2976 	 * - NAA IEEE Registered Extended
2977 	 * - EUI-64 based 16-byte
2978 	 * - EUI-64 based 12-byte
2979 	 * - NAA IEEE Registered
2980 	 * - NAA IEEE Extended
2981 	 * - T10 Vendor ID
2982 	 * as longer descriptors reduce the likelyhood
2983 	 * of identification clashes.
2984 	 */
2985 
2986 	/* The id string must be at least 20 bytes + terminating NULL byte */
2987 	if (id_len < 21) {
2988 		rcu_read_unlock();
2989 		return -EINVAL;
2990 	}
2991 
2992 	memset(id, 0, id_len);
2993 	d = vpd_pg83->data + 4;
2994 	while (d < vpd_pg83->data + vpd_pg83->len) {
2995 		/* Skip designators not referring to the LUN */
2996 		if ((d[1] & 0x30) != 0x00)
2997 			goto next_desig;
2998 
2999 		switch (d[1] & 0xf) {
3000 		case 0x1:
3001 			/* T10 Vendor ID */
3002 			if (cur_id_size > d[3])
3003 				break;
3004 			/* Prefer anything */
3005 			if (cur_id_type > 0x01 && cur_id_type != 0xff)
3006 				break;
3007 			cur_id_size = d[3];
3008 			if (cur_id_size + 4 > id_len)
3009 				cur_id_size = id_len - 4;
3010 			cur_id_str = d + 4;
3011 			cur_id_type = d[1] & 0xf;
3012 			id_size = snprintf(id, id_len, "t10.%*pE",
3013 					   cur_id_size, cur_id_str);
3014 			break;
3015 		case 0x2:
3016 			/* EUI-64 */
3017 			if (cur_id_size > d[3])
3018 				break;
3019 			/* Prefer NAA IEEE Registered Extended */
3020 			if (cur_id_type == 0x3 &&
3021 			    cur_id_size == d[3])
3022 				break;
3023 			cur_id_size = d[3];
3024 			cur_id_str = d + 4;
3025 			cur_id_type = d[1] & 0xf;
3026 			switch (cur_id_size) {
3027 			case 8:
3028 				id_size = snprintf(id, id_len,
3029 						   "eui.%8phN",
3030 						   cur_id_str);
3031 				break;
3032 			case 12:
3033 				id_size = snprintf(id, id_len,
3034 						   "eui.%12phN",
3035 						   cur_id_str);
3036 				break;
3037 			case 16:
3038 				id_size = snprintf(id, id_len,
3039 						   "eui.%16phN",
3040 						   cur_id_str);
3041 				break;
3042 			default:
3043 				cur_id_size = 0;
3044 				break;
3045 			}
3046 			break;
3047 		case 0x3:
3048 			/* NAA */
3049 			if (cur_id_size > d[3])
3050 				break;
3051 			cur_id_size = d[3];
3052 			cur_id_str = d + 4;
3053 			cur_id_type = d[1] & 0xf;
3054 			switch (cur_id_size) {
3055 			case 8:
3056 				id_size = snprintf(id, id_len,
3057 						   "naa.%8phN",
3058 						   cur_id_str);
3059 				break;
3060 			case 16:
3061 				id_size = snprintf(id, id_len,
3062 						   "naa.%16phN",
3063 						   cur_id_str);
3064 				break;
3065 			default:
3066 				cur_id_size = 0;
3067 				break;
3068 			}
3069 			break;
3070 		case 0x8:
3071 			/* SCSI name string */
3072 			if (cur_id_size + 4 > d[3])
3073 				break;
3074 			/* Prefer others for truncated descriptor */
3075 			if (cur_id_size && d[3] > id_len)
3076 				break;
3077 			cur_id_size = id_size = d[3];
3078 			cur_id_str = d + 4;
3079 			cur_id_type = d[1] & 0xf;
3080 			if (cur_id_size >= id_len)
3081 				cur_id_size = id_len - 1;
3082 			memcpy(id, cur_id_str, cur_id_size);
3083 			/* Decrease priority for truncated descriptor */
3084 			if (cur_id_size != id_size)
3085 				cur_id_size = 6;
3086 			break;
3087 		default:
3088 			break;
3089 		}
3090 next_desig:
3091 		d += d[3] + 4;
3092 	}
3093 	rcu_read_unlock();
3094 
3095 	return id_size;
3096 }
3097 EXPORT_SYMBOL(scsi_vpd_lun_id);
3098 
3099 /*
3100  * scsi_vpd_tpg_id - return a target port group identifier
3101  * @sdev: SCSI device
3102  *
3103  * Returns the Target Port Group identifier from the information
3104  * froom VPD page 0x83 of the device.
3105  *
3106  * Returns the identifier or error on failure.
3107  */
3108 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3109 {
3110 	const unsigned char *d;
3111 	const struct scsi_vpd *vpd_pg83;
3112 	int group_id = -EAGAIN, rel_port = -1;
3113 
3114 	rcu_read_lock();
3115 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3116 	if (!vpd_pg83) {
3117 		rcu_read_unlock();
3118 		return -ENXIO;
3119 	}
3120 
3121 	d = vpd_pg83->data + 4;
3122 	while (d < vpd_pg83->data + vpd_pg83->len) {
3123 		switch (d[1] & 0xf) {
3124 		case 0x4:
3125 			/* Relative target port */
3126 			rel_port = get_unaligned_be16(&d[6]);
3127 			break;
3128 		case 0x5:
3129 			/* Target port group */
3130 			group_id = get_unaligned_be16(&d[6]);
3131 			break;
3132 		default:
3133 			break;
3134 		}
3135 		d += d[3] + 4;
3136 	}
3137 	rcu_read_unlock();
3138 
3139 	if (group_id >= 0 && rel_id && rel_port != -1)
3140 		*rel_id = rel_port;
3141 
3142 	return group_id;
3143 }
3144 EXPORT_SYMBOL(scsi_vpd_tpg_id);
3145