1 /* 2 * scsi_lib.c Copyright (C) 1999 Eric Youngdale 3 * 4 * SCSI queueing library. 5 * Initial versions: Eric Youngdale (eric@andante.org). 6 * Based upon conversations with large numbers 7 * of people at Linux Expo. 8 */ 9 10 #include <linux/bio.h> 11 #include <linux/bitops.h> 12 #include <linux/blkdev.h> 13 #include <linux/completion.h> 14 #include <linux/kernel.h> 15 #include <linux/export.h> 16 #include <linux/mempool.h> 17 #include <linux/slab.h> 18 #include <linux/init.h> 19 #include <linux/pci.h> 20 #include <linux/delay.h> 21 #include <linux/hardirq.h> 22 #include <linux/scatterlist.h> 23 24 #include <scsi/scsi.h> 25 #include <scsi/scsi_cmnd.h> 26 #include <scsi/scsi_dbg.h> 27 #include <scsi/scsi_device.h> 28 #include <scsi/scsi_driver.h> 29 #include <scsi/scsi_eh.h> 30 #include <scsi/scsi_host.h> 31 32 #include "scsi_priv.h" 33 #include "scsi_logging.h" 34 35 36 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools) 37 #define SG_MEMPOOL_SIZE 2 38 39 struct scsi_host_sg_pool { 40 size_t size; 41 char *name; 42 struct kmem_cache *slab; 43 mempool_t *pool; 44 }; 45 46 #define SP(x) { x, "sgpool-" __stringify(x) } 47 #if (SCSI_MAX_SG_SEGMENTS < 32) 48 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater) 49 #endif 50 static struct scsi_host_sg_pool scsi_sg_pools[] = { 51 SP(8), 52 SP(16), 53 #if (SCSI_MAX_SG_SEGMENTS > 32) 54 SP(32), 55 #if (SCSI_MAX_SG_SEGMENTS > 64) 56 SP(64), 57 #if (SCSI_MAX_SG_SEGMENTS > 128) 58 SP(128), 59 #if (SCSI_MAX_SG_SEGMENTS > 256) 60 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX) 61 #endif 62 #endif 63 #endif 64 #endif 65 SP(SCSI_MAX_SG_SEGMENTS) 66 }; 67 #undef SP 68 69 struct kmem_cache *scsi_sdb_cache; 70 71 #ifdef CONFIG_ACPI 72 #include <acpi/acpi_bus.h> 73 74 int scsi_register_acpi_bus_type(struct acpi_bus_type *bus) 75 { 76 bus->bus = &scsi_bus_type; 77 return register_acpi_bus_type(bus); 78 } 79 EXPORT_SYMBOL_GPL(scsi_register_acpi_bus_type); 80 81 void scsi_unregister_acpi_bus_type(struct acpi_bus_type *bus) 82 { 83 unregister_acpi_bus_type(bus); 84 } 85 EXPORT_SYMBOL_GPL(scsi_unregister_acpi_bus_type); 86 #endif 87 88 /* 89 * When to reinvoke queueing after a resource shortage. It's 3 msecs to 90 * not change behaviour from the previous unplug mechanism, experimentation 91 * may prove this needs changing. 92 */ 93 #define SCSI_QUEUE_DELAY 3 94 95 /* 96 * Function: scsi_unprep_request() 97 * 98 * Purpose: Remove all preparation done for a request, including its 99 * associated scsi_cmnd, so that it can be requeued. 100 * 101 * Arguments: req - request to unprepare 102 * 103 * Lock status: Assumed that no locks are held upon entry. 104 * 105 * Returns: Nothing. 106 */ 107 static void scsi_unprep_request(struct request *req) 108 { 109 struct scsi_cmnd *cmd = req->special; 110 111 blk_unprep_request(req); 112 req->special = NULL; 113 114 scsi_put_command(cmd); 115 } 116 117 /** 118 * __scsi_queue_insert - private queue insertion 119 * @cmd: The SCSI command being requeued 120 * @reason: The reason for the requeue 121 * @unbusy: Whether the queue should be unbusied 122 * 123 * This is a private queue insertion. The public interface 124 * scsi_queue_insert() always assumes the queue should be unbusied 125 * because it's always called before the completion. This function is 126 * for a requeue after completion, which should only occur in this 127 * file. 128 */ 129 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy) 130 { 131 struct Scsi_Host *host = cmd->device->host; 132 struct scsi_device *device = cmd->device; 133 struct scsi_target *starget = scsi_target(device); 134 struct request_queue *q = device->request_queue; 135 unsigned long flags; 136 137 SCSI_LOG_MLQUEUE(1, 138 printk("Inserting command %p into mlqueue\n", cmd)); 139 140 /* 141 * Set the appropriate busy bit for the device/host. 142 * 143 * If the host/device isn't busy, assume that something actually 144 * completed, and that we should be able to queue a command now. 145 * 146 * Note that the prior mid-layer assumption that any host could 147 * always queue at least one command is now broken. The mid-layer 148 * will implement a user specifiable stall (see 149 * scsi_host.max_host_blocked and scsi_device.max_device_blocked) 150 * if a command is requeued with no other commands outstanding 151 * either for the device or for the host. 152 */ 153 switch (reason) { 154 case SCSI_MLQUEUE_HOST_BUSY: 155 host->host_blocked = host->max_host_blocked; 156 break; 157 case SCSI_MLQUEUE_DEVICE_BUSY: 158 case SCSI_MLQUEUE_EH_RETRY: 159 device->device_blocked = device->max_device_blocked; 160 break; 161 case SCSI_MLQUEUE_TARGET_BUSY: 162 starget->target_blocked = starget->max_target_blocked; 163 break; 164 } 165 166 /* 167 * Decrement the counters, since these commands are no longer 168 * active on the host/device. 169 */ 170 if (unbusy) 171 scsi_device_unbusy(device); 172 173 /* 174 * Requeue this command. It will go before all other commands 175 * that are already in the queue. Schedule requeue work under 176 * lock such that the kblockd_schedule_work() call happens 177 * before blk_cleanup_queue() finishes. 178 */ 179 spin_lock_irqsave(q->queue_lock, flags); 180 blk_requeue_request(q, cmd->request); 181 kblockd_schedule_work(q, &device->requeue_work); 182 spin_unlock_irqrestore(q->queue_lock, flags); 183 } 184 185 /* 186 * Function: scsi_queue_insert() 187 * 188 * Purpose: Insert a command in the midlevel queue. 189 * 190 * Arguments: cmd - command that we are adding to queue. 191 * reason - why we are inserting command to queue. 192 * 193 * Lock status: Assumed that lock is not held upon entry. 194 * 195 * Returns: Nothing. 196 * 197 * Notes: We do this for one of two cases. Either the host is busy 198 * and it cannot accept any more commands for the time being, 199 * or the device returned QUEUE_FULL and can accept no more 200 * commands. 201 * Notes: This could be called either from an interrupt context or a 202 * normal process context. 203 */ 204 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason) 205 { 206 __scsi_queue_insert(cmd, reason, 1); 207 } 208 /** 209 * scsi_execute - insert request and wait for the result 210 * @sdev: scsi device 211 * @cmd: scsi command 212 * @data_direction: data direction 213 * @buffer: data buffer 214 * @bufflen: len of buffer 215 * @sense: optional sense buffer 216 * @timeout: request timeout in seconds 217 * @retries: number of times to retry request 218 * @flags: or into request flags; 219 * @resid: optional residual length 220 * 221 * returns the req->errors value which is the scsi_cmnd result 222 * field. 223 */ 224 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd, 225 int data_direction, void *buffer, unsigned bufflen, 226 unsigned char *sense, int timeout, int retries, int flags, 227 int *resid) 228 { 229 struct request *req; 230 int write = (data_direction == DMA_TO_DEVICE); 231 int ret = DRIVER_ERROR << 24; 232 233 req = blk_get_request(sdev->request_queue, write, __GFP_WAIT); 234 if (!req) 235 return ret; 236 237 if (bufflen && blk_rq_map_kern(sdev->request_queue, req, 238 buffer, bufflen, __GFP_WAIT)) 239 goto out; 240 241 req->cmd_len = COMMAND_SIZE(cmd[0]); 242 memcpy(req->cmd, cmd, req->cmd_len); 243 req->sense = sense; 244 req->sense_len = 0; 245 req->retries = retries; 246 req->timeout = timeout; 247 req->cmd_type = REQ_TYPE_BLOCK_PC; 248 req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT; 249 250 /* 251 * head injection *required* here otherwise quiesce won't work 252 */ 253 blk_execute_rq(req->q, NULL, req, 1); 254 255 /* 256 * Some devices (USB mass-storage in particular) may transfer 257 * garbage data together with a residue indicating that the data 258 * is invalid. Prevent the garbage from being misinterpreted 259 * and prevent security leaks by zeroing out the excess data. 260 */ 261 if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen)) 262 memset(buffer + (bufflen - req->resid_len), 0, req->resid_len); 263 264 if (resid) 265 *resid = req->resid_len; 266 ret = req->errors; 267 out: 268 blk_put_request(req); 269 270 return ret; 271 } 272 EXPORT_SYMBOL(scsi_execute); 273 274 275 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd, 276 int data_direction, void *buffer, unsigned bufflen, 277 struct scsi_sense_hdr *sshdr, int timeout, int retries, 278 int *resid) 279 { 280 char *sense = NULL; 281 int result; 282 283 if (sshdr) { 284 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO); 285 if (!sense) 286 return DRIVER_ERROR << 24; 287 } 288 result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen, 289 sense, timeout, retries, 0, resid); 290 if (sshdr) 291 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr); 292 293 kfree(sense); 294 return result; 295 } 296 EXPORT_SYMBOL(scsi_execute_req); 297 298 /* 299 * Function: scsi_init_cmd_errh() 300 * 301 * Purpose: Initialize cmd fields related to error handling. 302 * 303 * Arguments: cmd - command that is ready to be queued. 304 * 305 * Notes: This function has the job of initializing a number of 306 * fields related to error handling. Typically this will 307 * be called once for each command, as required. 308 */ 309 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd) 310 { 311 cmd->serial_number = 0; 312 scsi_set_resid(cmd, 0); 313 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 314 if (cmd->cmd_len == 0) 315 cmd->cmd_len = scsi_command_size(cmd->cmnd); 316 } 317 318 void scsi_device_unbusy(struct scsi_device *sdev) 319 { 320 struct Scsi_Host *shost = sdev->host; 321 struct scsi_target *starget = scsi_target(sdev); 322 unsigned long flags; 323 324 spin_lock_irqsave(shost->host_lock, flags); 325 shost->host_busy--; 326 starget->target_busy--; 327 if (unlikely(scsi_host_in_recovery(shost) && 328 (shost->host_failed || shost->host_eh_scheduled))) 329 scsi_eh_wakeup(shost); 330 spin_unlock(shost->host_lock); 331 spin_lock(sdev->request_queue->queue_lock); 332 sdev->device_busy--; 333 spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags); 334 } 335 336 /* 337 * Called for single_lun devices on IO completion. Clear starget_sdev_user, 338 * and call blk_run_queue for all the scsi_devices on the target - 339 * including current_sdev first. 340 * 341 * Called with *no* scsi locks held. 342 */ 343 static void scsi_single_lun_run(struct scsi_device *current_sdev) 344 { 345 struct Scsi_Host *shost = current_sdev->host; 346 struct scsi_device *sdev, *tmp; 347 struct scsi_target *starget = scsi_target(current_sdev); 348 unsigned long flags; 349 350 spin_lock_irqsave(shost->host_lock, flags); 351 starget->starget_sdev_user = NULL; 352 spin_unlock_irqrestore(shost->host_lock, flags); 353 354 /* 355 * Call blk_run_queue for all LUNs on the target, starting with 356 * current_sdev. We race with others (to set starget_sdev_user), 357 * but in most cases, we will be first. Ideally, each LU on the 358 * target would get some limited time or requests on the target. 359 */ 360 blk_run_queue(current_sdev->request_queue); 361 362 spin_lock_irqsave(shost->host_lock, flags); 363 if (starget->starget_sdev_user) 364 goto out; 365 list_for_each_entry_safe(sdev, tmp, &starget->devices, 366 same_target_siblings) { 367 if (sdev == current_sdev) 368 continue; 369 if (scsi_device_get(sdev)) 370 continue; 371 372 spin_unlock_irqrestore(shost->host_lock, flags); 373 blk_run_queue(sdev->request_queue); 374 spin_lock_irqsave(shost->host_lock, flags); 375 376 scsi_device_put(sdev); 377 } 378 out: 379 spin_unlock_irqrestore(shost->host_lock, flags); 380 } 381 382 static inline int scsi_device_is_busy(struct scsi_device *sdev) 383 { 384 if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked) 385 return 1; 386 387 return 0; 388 } 389 390 static inline int scsi_target_is_busy(struct scsi_target *starget) 391 { 392 return ((starget->can_queue > 0 && 393 starget->target_busy >= starget->can_queue) || 394 starget->target_blocked); 395 } 396 397 static inline int scsi_host_is_busy(struct Scsi_Host *shost) 398 { 399 if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) || 400 shost->host_blocked || shost->host_self_blocked) 401 return 1; 402 403 return 0; 404 } 405 406 /* 407 * Function: scsi_run_queue() 408 * 409 * Purpose: Select a proper request queue to serve next 410 * 411 * Arguments: q - last request's queue 412 * 413 * Returns: Nothing 414 * 415 * Notes: The previous command was completely finished, start 416 * a new one if possible. 417 */ 418 static void scsi_run_queue(struct request_queue *q) 419 { 420 struct scsi_device *sdev = q->queuedata; 421 struct Scsi_Host *shost; 422 LIST_HEAD(starved_list); 423 unsigned long flags; 424 425 shost = sdev->host; 426 if (scsi_target(sdev)->single_lun) 427 scsi_single_lun_run(sdev); 428 429 spin_lock_irqsave(shost->host_lock, flags); 430 list_splice_init(&shost->starved_list, &starved_list); 431 432 while (!list_empty(&starved_list)) { 433 /* 434 * As long as shost is accepting commands and we have 435 * starved queues, call blk_run_queue. scsi_request_fn 436 * drops the queue_lock and can add us back to the 437 * starved_list. 438 * 439 * host_lock protects the starved_list and starved_entry. 440 * scsi_request_fn must get the host_lock before checking 441 * or modifying starved_list or starved_entry. 442 */ 443 if (scsi_host_is_busy(shost)) 444 break; 445 446 sdev = list_entry(starved_list.next, 447 struct scsi_device, starved_entry); 448 list_del_init(&sdev->starved_entry); 449 if (scsi_target_is_busy(scsi_target(sdev))) { 450 list_move_tail(&sdev->starved_entry, 451 &shost->starved_list); 452 continue; 453 } 454 455 spin_unlock(shost->host_lock); 456 spin_lock(sdev->request_queue->queue_lock); 457 __blk_run_queue(sdev->request_queue); 458 spin_unlock(sdev->request_queue->queue_lock); 459 spin_lock(shost->host_lock); 460 } 461 /* put any unprocessed entries back */ 462 list_splice(&starved_list, &shost->starved_list); 463 spin_unlock_irqrestore(shost->host_lock, flags); 464 465 blk_run_queue(q); 466 } 467 468 void scsi_requeue_run_queue(struct work_struct *work) 469 { 470 struct scsi_device *sdev; 471 struct request_queue *q; 472 473 sdev = container_of(work, struct scsi_device, requeue_work); 474 q = sdev->request_queue; 475 scsi_run_queue(q); 476 } 477 478 /* 479 * Function: scsi_requeue_command() 480 * 481 * Purpose: Handle post-processing of completed commands. 482 * 483 * Arguments: q - queue to operate on 484 * cmd - command that may need to be requeued. 485 * 486 * Returns: Nothing 487 * 488 * Notes: After command completion, there may be blocks left 489 * over which weren't finished by the previous command 490 * this can be for a number of reasons - the main one is 491 * I/O errors in the middle of the request, in which case 492 * we need to request the blocks that come after the bad 493 * sector. 494 * Notes: Upon return, cmd is a stale pointer. 495 */ 496 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd) 497 { 498 struct scsi_device *sdev = cmd->device; 499 struct request *req = cmd->request; 500 unsigned long flags; 501 502 /* 503 * We need to hold a reference on the device to avoid the queue being 504 * killed after the unlock and before scsi_run_queue is invoked which 505 * may happen because scsi_unprep_request() puts the command which 506 * releases its reference on the device. 507 */ 508 get_device(&sdev->sdev_gendev); 509 510 spin_lock_irqsave(q->queue_lock, flags); 511 scsi_unprep_request(req); 512 blk_requeue_request(q, req); 513 spin_unlock_irqrestore(q->queue_lock, flags); 514 515 scsi_run_queue(q); 516 517 put_device(&sdev->sdev_gendev); 518 } 519 520 void scsi_next_command(struct scsi_cmnd *cmd) 521 { 522 struct scsi_device *sdev = cmd->device; 523 struct request_queue *q = sdev->request_queue; 524 525 /* need to hold a reference on the device before we let go of the cmd */ 526 get_device(&sdev->sdev_gendev); 527 528 scsi_put_command(cmd); 529 scsi_run_queue(q); 530 531 /* ok to remove device now */ 532 put_device(&sdev->sdev_gendev); 533 } 534 535 void scsi_run_host_queues(struct Scsi_Host *shost) 536 { 537 struct scsi_device *sdev; 538 539 shost_for_each_device(sdev, shost) 540 scsi_run_queue(sdev->request_queue); 541 } 542 543 static void __scsi_release_buffers(struct scsi_cmnd *, int); 544 545 /* 546 * Function: scsi_end_request() 547 * 548 * Purpose: Post-processing of completed commands (usually invoked at end 549 * of upper level post-processing and scsi_io_completion). 550 * 551 * Arguments: cmd - command that is complete. 552 * error - 0 if I/O indicates success, < 0 for I/O error. 553 * bytes - number of bytes of completed I/O 554 * requeue - indicates whether we should requeue leftovers. 555 * 556 * Lock status: Assumed that lock is not held upon entry. 557 * 558 * Returns: cmd if requeue required, NULL otherwise. 559 * 560 * Notes: This is called for block device requests in order to 561 * mark some number of sectors as complete. 562 * 563 * We are guaranteeing that the request queue will be goosed 564 * at some point during this call. 565 * Notes: If cmd was requeued, upon return it will be a stale pointer. 566 */ 567 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error, 568 int bytes, int requeue) 569 { 570 struct request_queue *q = cmd->device->request_queue; 571 struct request *req = cmd->request; 572 573 /* 574 * If there are blocks left over at the end, set up the command 575 * to queue the remainder of them. 576 */ 577 if (blk_end_request(req, error, bytes)) { 578 /* kill remainder if no retrys */ 579 if (error && scsi_noretry_cmd(cmd)) 580 blk_end_request_all(req, error); 581 else { 582 if (requeue) { 583 /* 584 * Bleah. Leftovers again. Stick the 585 * leftovers in the front of the 586 * queue, and goose the queue again. 587 */ 588 scsi_release_buffers(cmd); 589 scsi_requeue_command(q, cmd); 590 cmd = NULL; 591 } 592 return cmd; 593 } 594 } 595 596 /* 597 * This will goose the queue request function at the end, so we don't 598 * need to worry about launching another command. 599 */ 600 __scsi_release_buffers(cmd, 0); 601 scsi_next_command(cmd); 602 return NULL; 603 } 604 605 static inline unsigned int scsi_sgtable_index(unsigned short nents) 606 { 607 unsigned int index; 608 609 BUG_ON(nents > SCSI_MAX_SG_SEGMENTS); 610 611 if (nents <= 8) 612 index = 0; 613 else 614 index = get_count_order(nents) - 3; 615 616 return index; 617 } 618 619 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents) 620 { 621 struct scsi_host_sg_pool *sgp; 622 623 sgp = scsi_sg_pools + scsi_sgtable_index(nents); 624 mempool_free(sgl, sgp->pool); 625 } 626 627 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask) 628 { 629 struct scsi_host_sg_pool *sgp; 630 631 sgp = scsi_sg_pools + scsi_sgtable_index(nents); 632 return mempool_alloc(sgp->pool, gfp_mask); 633 } 634 635 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents, 636 gfp_t gfp_mask) 637 { 638 int ret; 639 640 BUG_ON(!nents); 641 642 ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS, 643 gfp_mask, scsi_sg_alloc); 644 if (unlikely(ret)) 645 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, 646 scsi_sg_free); 647 648 return ret; 649 } 650 651 static void scsi_free_sgtable(struct scsi_data_buffer *sdb) 652 { 653 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free); 654 } 655 656 static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check) 657 { 658 659 if (cmd->sdb.table.nents) 660 scsi_free_sgtable(&cmd->sdb); 661 662 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 663 664 if (do_bidi_check && scsi_bidi_cmnd(cmd)) { 665 struct scsi_data_buffer *bidi_sdb = 666 cmd->request->next_rq->special; 667 scsi_free_sgtable(bidi_sdb); 668 kmem_cache_free(scsi_sdb_cache, bidi_sdb); 669 cmd->request->next_rq->special = NULL; 670 } 671 672 if (scsi_prot_sg_count(cmd)) 673 scsi_free_sgtable(cmd->prot_sdb); 674 } 675 676 /* 677 * Function: scsi_release_buffers() 678 * 679 * Purpose: Completion processing for block device I/O requests. 680 * 681 * Arguments: cmd - command that we are bailing. 682 * 683 * Lock status: Assumed that no lock is held upon entry. 684 * 685 * Returns: Nothing 686 * 687 * Notes: In the event that an upper level driver rejects a 688 * command, we must release resources allocated during 689 * the __init_io() function. Primarily this would involve 690 * the scatter-gather table, and potentially any bounce 691 * buffers. 692 */ 693 void scsi_release_buffers(struct scsi_cmnd *cmd) 694 { 695 __scsi_release_buffers(cmd, 1); 696 } 697 EXPORT_SYMBOL(scsi_release_buffers); 698 699 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result) 700 { 701 int error = 0; 702 703 switch(host_byte(result)) { 704 case DID_TRANSPORT_FAILFAST: 705 error = -ENOLINK; 706 break; 707 case DID_TARGET_FAILURE: 708 set_host_byte(cmd, DID_OK); 709 error = -EREMOTEIO; 710 break; 711 case DID_NEXUS_FAILURE: 712 set_host_byte(cmd, DID_OK); 713 error = -EBADE; 714 break; 715 default: 716 error = -EIO; 717 break; 718 } 719 720 return error; 721 } 722 723 /* 724 * Function: scsi_io_completion() 725 * 726 * Purpose: Completion processing for block device I/O requests. 727 * 728 * Arguments: cmd - command that is finished. 729 * 730 * Lock status: Assumed that no lock is held upon entry. 731 * 732 * Returns: Nothing 733 * 734 * Notes: This function is matched in terms of capabilities to 735 * the function that created the scatter-gather list. 736 * In other words, if there are no bounce buffers 737 * (the normal case for most drivers), we don't need 738 * the logic to deal with cleaning up afterwards. 739 * 740 * We must call scsi_end_request(). This will finish off 741 * the specified number of sectors. If we are done, the 742 * command block will be released and the queue function 743 * will be goosed. If we are not done then we have to 744 * figure out what to do next: 745 * 746 * a) We can call scsi_requeue_command(). The request 747 * will be unprepared and put back on the queue. Then 748 * a new command will be created for it. This should 749 * be used if we made forward progress, or if we want 750 * to switch from READ(10) to READ(6) for example. 751 * 752 * b) We can call scsi_queue_insert(). The request will 753 * be put back on the queue and retried using the same 754 * command as before, possibly after a delay. 755 * 756 * c) We can call blk_end_request() with -EIO to fail 757 * the remainder of the request. 758 */ 759 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes) 760 { 761 int result = cmd->result; 762 struct request_queue *q = cmd->device->request_queue; 763 struct request *req = cmd->request; 764 int error = 0; 765 struct scsi_sense_hdr sshdr; 766 int sense_valid = 0; 767 int sense_deferred = 0; 768 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY, 769 ACTION_DELAYED_RETRY} action; 770 char *description = NULL; 771 772 if (result) { 773 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 774 if (sense_valid) 775 sense_deferred = scsi_sense_is_deferred(&sshdr); 776 } 777 778 if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */ 779 if (result) { 780 if (sense_valid && req->sense) { 781 /* 782 * SG_IO wants current and deferred errors 783 */ 784 int len = 8 + cmd->sense_buffer[7]; 785 786 if (len > SCSI_SENSE_BUFFERSIZE) 787 len = SCSI_SENSE_BUFFERSIZE; 788 memcpy(req->sense, cmd->sense_buffer, len); 789 req->sense_len = len; 790 } 791 if (!sense_deferred) 792 error = __scsi_error_from_host_byte(cmd, result); 793 } 794 /* 795 * __scsi_error_from_host_byte may have reset the host_byte 796 */ 797 req->errors = cmd->result; 798 799 req->resid_len = scsi_get_resid(cmd); 800 801 if (scsi_bidi_cmnd(cmd)) { 802 /* 803 * Bidi commands Must be complete as a whole, 804 * both sides at once. 805 */ 806 req->next_rq->resid_len = scsi_in(cmd)->resid; 807 808 scsi_release_buffers(cmd); 809 blk_end_request_all(req, 0); 810 811 scsi_next_command(cmd); 812 return; 813 } 814 } 815 816 /* no bidi support for !REQ_TYPE_BLOCK_PC yet */ 817 BUG_ON(blk_bidi_rq(req)); 818 819 /* 820 * Next deal with any sectors which we were able to correctly 821 * handle. 822 */ 823 SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, " 824 "%d bytes done.\n", 825 blk_rq_sectors(req), good_bytes)); 826 827 /* 828 * Recovered errors need reporting, but they're always treated 829 * as success, so fiddle the result code here. For BLOCK_PC 830 * we already took a copy of the original into rq->errors which 831 * is what gets returned to the user 832 */ 833 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) { 834 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip 835 * print since caller wants ATA registers. Only occurs on 836 * SCSI ATA PASS_THROUGH commands when CK_COND=1 837 */ 838 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d)) 839 ; 840 else if (!(req->cmd_flags & REQ_QUIET)) 841 scsi_print_sense("", cmd); 842 result = 0; 843 /* BLOCK_PC may have set error */ 844 error = 0; 845 } 846 847 /* 848 * A number of bytes were successfully read. If there 849 * are leftovers and there is some kind of error 850 * (result != 0), retry the rest. 851 */ 852 if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL) 853 return; 854 855 error = __scsi_error_from_host_byte(cmd, result); 856 857 if (host_byte(result) == DID_RESET) { 858 /* Third party bus reset or reset for error recovery 859 * reasons. Just retry the command and see what 860 * happens. 861 */ 862 action = ACTION_RETRY; 863 } else if (sense_valid && !sense_deferred) { 864 switch (sshdr.sense_key) { 865 case UNIT_ATTENTION: 866 if (cmd->device->removable) { 867 /* Detected disc change. Set a bit 868 * and quietly refuse further access. 869 */ 870 cmd->device->changed = 1; 871 description = "Media Changed"; 872 action = ACTION_FAIL; 873 } else { 874 /* Must have been a power glitch, or a 875 * bus reset. Could not have been a 876 * media change, so we just retry the 877 * command and see what happens. 878 */ 879 action = ACTION_RETRY; 880 } 881 break; 882 case ILLEGAL_REQUEST: 883 /* If we had an ILLEGAL REQUEST returned, then 884 * we may have performed an unsupported 885 * command. The only thing this should be 886 * would be a ten byte read where only a six 887 * byte read was supported. Also, on a system 888 * where READ CAPACITY failed, we may have 889 * read past the end of the disk. 890 */ 891 if ((cmd->device->use_10_for_rw && 892 sshdr.asc == 0x20 && sshdr.ascq == 0x00) && 893 (cmd->cmnd[0] == READ_10 || 894 cmd->cmnd[0] == WRITE_10)) { 895 /* This will issue a new 6-byte command. */ 896 cmd->device->use_10_for_rw = 0; 897 action = ACTION_REPREP; 898 } else if (sshdr.asc == 0x10) /* DIX */ { 899 description = "Host Data Integrity Failure"; 900 action = ACTION_FAIL; 901 error = -EILSEQ; 902 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */ 903 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) { 904 switch (cmd->cmnd[0]) { 905 case UNMAP: 906 description = "Discard failure"; 907 break; 908 case WRITE_SAME: 909 case WRITE_SAME_16: 910 if (cmd->cmnd[1] & 0x8) 911 description = "Discard failure"; 912 else 913 description = 914 "Write same failure"; 915 break; 916 default: 917 description = "Invalid command failure"; 918 break; 919 } 920 action = ACTION_FAIL; 921 error = -EREMOTEIO; 922 } else 923 action = ACTION_FAIL; 924 break; 925 case ABORTED_COMMAND: 926 action = ACTION_FAIL; 927 if (sshdr.asc == 0x10) { /* DIF */ 928 description = "Target Data Integrity Failure"; 929 error = -EILSEQ; 930 } 931 break; 932 case NOT_READY: 933 /* If the device is in the process of becoming 934 * ready, or has a temporary blockage, retry. 935 */ 936 if (sshdr.asc == 0x04) { 937 switch (sshdr.ascq) { 938 case 0x01: /* becoming ready */ 939 case 0x04: /* format in progress */ 940 case 0x05: /* rebuild in progress */ 941 case 0x06: /* recalculation in progress */ 942 case 0x07: /* operation in progress */ 943 case 0x08: /* Long write in progress */ 944 case 0x09: /* self test in progress */ 945 case 0x14: /* space allocation in progress */ 946 action = ACTION_DELAYED_RETRY; 947 break; 948 default: 949 description = "Device not ready"; 950 action = ACTION_FAIL; 951 break; 952 } 953 } else { 954 description = "Device not ready"; 955 action = ACTION_FAIL; 956 } 957 break; 958 case VOLUME_OVERFLOW: 959 /* See SSC3rXX or current. */ 960 action = ACTION_FAIL; 961 break; 962 default: 963 description = "Unhandled sense code"; 964 action = ACTION_FAIL; 965 break; 966 } 967 } else { 968 description = "Unhandled error code"; 969 action = ACTION_FAIL; 970 } 971 972 switch (action) { 973 case ACTION_FAIL: 974 /* Give up and fail the remainder of the request */ 975 scsi_release_buffers(cmd); 976 if (!(req->cmd_flags & REQ_QUIET)) { 977 if (description) 978 scmd_printk(KERN_INFO, cmd, "%s\n", 979 description); 980 scsi_print_result(cmd); 981 if (driver_byte(result) & DRIVER_SENSE) 982 scsi_print_sense("", cmd); 983 scsi_print_command(cmd); 984 } 985 if (blk_end_request_err(req, error)) 986 scsi_requeue_command(q, cmd); 987 else 988 scsi_next_command(cmd); 989 break; 990 case ACTION_REPREP: 991 /* Unprep the request and put it back at the head of the queue. 992 * A new command will be prepared and issued. 993 */ 994 scsi_release_buffers(cmd); 995 scsi_requeue_command(q, cmd); 996 break; 997 case ACTION_RETRY: 998 /* Retry the same command immediately */ 999 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0); 1000 break; 1001 case ACTION_DELAYED_RETRY: 1002 /* Retry the same command after a delay */ 1003 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0); 1004 break; 1005 } 1006 } 1007 1008 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb, 1009 gfp_t gfp_mask) 1010 { 1011 int count; 1012 1013 /* 1014 * If sg table allocation fails, requeue request later. 1015 */ 1016 if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments, 1017 gfp_mask))) { 1018 return BLKPREP_DEFER; 1019 } 1020 1021 req->buffer = NULL; 1022 1023 /* 1024 * Next, walk the list, and fill in the addresses and sizes of 1025 * each segment. 1026 */ 1027 count = blk_rq_map_sg(req->q, req, sdb->table.sgl); 1028 BUG_ON(count > sdb->table.nents); 1029 sdb->table.nents = count; 1030 sdb->length = blk_rq_bytes(req); 1031 return BLKPREP_OK; 1032 } 1033 1034 /* 1035 * Function: scsi_init_io() 1036 * 1037 * Purpose: SCSI I/O initialize function. 1038 * 1039 * Arguments: cmd - Command descriptor we wish to initialize 1040 * 1041 * Returns: 0 on success 1042 * BLKPREP_DEFER if the failure is retryable 1043 * BLKPREP_KILL if the failure is fatal 1044 */ 1045 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask) 1046 { 1047 struct request *rq = cmd->request; 1048 1049 int error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask); 1050 if (error) 1051 goto err_exit; 1052 1053 if (blk_bidi_rq(rq)) { 1054 struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc( 1055 scsi_sdb_cache, GFP_ATOMIC); 1056 if (!bidi_sdb) { 1057 error = BLKPREP_DEFER; 1058 goto err_exit; 1059 } 1060 1061 rq->next_rq->special = bidi_sdb; 1062 error = scsi_init_sgtable(rq->next_rq, bidi_sdb, GFP_ATOMIC); 1063 if (error) 1064 goto err_exit; 1065 } 1066 1067 if (blk_integrity_rq(rq)) { 1068 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb; 1069 int ivecs, count; 1070 1071 BUG_ON(prot_sdb == NULL); 1072 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio); 1073 1074 if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) { 1075 error = BLKPREP_DEFER; 1076 goto err_exit; 1077 } 1078 1079 count = blk_rq_map_integrity_sg(rq->q, rq->bio, 1080 prot_sdb->table.sgl); 1081 BUG_ON(unlikely(count > ivecs)); 1082 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q))); 1083 1084 cmd->prot_sdb = prot_sdb; 1085 cmd->prot_sdb->table.nents = count; 1086 } 1087 1088 return BLKPREP_OK ; 1089 1090 err_exit: 1091 scsi_release_buffers(cmd); 1092 cmd->request->special = NULL; 1093 scsi_put_command(cmd); 1094 return error; 1095 } 1096 EXPORT_SYMBOL(scsi_init_io); 1097 1098 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev, 1099 struct request *req) 1100 { 1101 struct scsi_cmnd *cmd; 1102 1103 if (!req->special) { 1104 cmd = scsi_get_command(sdev, GFP_ATOMIC); 1105 if (unlikely(!cmd)) 1106 return NULL; 1107 req->special = cmd; 1108 } else { 1109 cmd = req->special; 1110 } 1111 1112 /* pull a tag out of the request if we have one */ 1113 cmd->tag = req->tag; 1114 cmd->request = req; 1115 1116 cmd->cmnd = req->cmd; 1117 cmd->prot_op = SCSI_PROT_NORMAL; 1118 1119 return cmd; 1120 } 1121 1122 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req) 1123 { 1124 struct scsi_cmnd *cmd; 1125 int ret = scsi_prep_state_check(sdev, req); 1126 1127 if (ret != BLKPREP_OK) 1128 return ret; 1129 1130 cmd = scsi_get_cmd_from_req(sdev, req); 1131 if (unlikely(!cmd)) 1132 return BLKPREP_DEFER; 1133 1134 /* 1135 * BLOCK_PC requests may transfer data, in which case they must 1136 * a bio attached to them. Or they might contain a SCSI command 1137 * that does not transfer data, in which case they may optionally 1138 * submit a request without an attached bio. 1139 */ 1140 if (req->bio) { 1141 int ret; 1142 1143 BUG_ON(!req->nr_phys_segments); 1144 1145 ret = scsi_init_io(cmd, GFP_ATOMIC); 1146 if (unlikely(ret)) 1147 return ret; 1148 } else { 1149 BUG_ON(blk_rq_bytes(req)); 1150 1151 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1152 req->buffer = NULL; 1153 } 1154 1155 cmd->cmd_len = req->cmd_len; 1156 if (!blk_rq_bytes(req)) 1157 cmd->sc_data_direction = DMA_NONE; 1158 else if (rq_data_dir(req) == WRITE) 1159 cmd->sc_data_direction = DMA_TO_DEVICE; 1160 else 1161 cmd->sc_data_direction = DMA_FROM_DEVICE; 1162 1163 cmd->transfersize = blk_rq_bytes(req); 1164 cmd->allowed = req->retries; 1165 return BLKPREP_OK; 1166 } 1167 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd); 1168 1169 /* 1170 * Setup a REQ_TYPE_FS command. These are simple read/write request 1171 * from filesystems that still need to be translated to SCSI CDBs from 1172 * the ULD. 1173 */ 1174 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req) 1175 { 1176 struct scsi_cmnd *cmd; 1177 int ret = scsi_prep_state_check(sdev, req); 1178 1179 if (ret != BLKPREP_OK) 1180 return ret; 1181 1182 if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh 1183 && sdev->scsi_dh_data->scsi_dh->prep_fn)) { 1184 ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req); 1185 if (ret != BLKPREP_OK) 1186 return ret; 1187 } 1188 1189 /* 1190 * Filesystem requests must transfer data. 1191 */ 1192 BUG_ON(!req->nr_phys_segments); 1193 1194 cmd = scsi_get_cmd_from_req(sdev, req); 1195 if (unlikely(!cmd)) 1196 return BLKPREP_DEFER; 1197 1198 memset(cmd->cmnd, 0, BLK_MAX_CDB); 1199 return scsi_init_io(cmd, GFP_ATOMIC); 1200 } 1201 EXPORT_SYMBOL(scsi_setup_fs_cmnd); 1202 1203 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req) 1204 { 1205 int ret = BLKPREP_OK; 1206 1207 /* 1208 * If the device is not in running state we will reject some 1209 * or all commands. 1210 */ 1211 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) { 1212 switch (sdev->sdev_state) { 1213 case SDEV_OFFLINE: 1214 case SDEV_TRANSPORT_OFFLINE: 1215 /* 1216 * If the device is offline we refuse to process any 1217 * commands. The device must be brought online 1218 * before trying any recovery commands. 1219 */ 1220 sdev_printk(KERN_ERR, sdev, 1221 "rejecting I/O to offline device\n"); 1222 ret = BLKPREP_KILL; 1223 break; 1224 case SDEV_DEL: 1225 /* 1226 * If the device is fully deleted, we refuse to 1227 * process any commands as well. 1228 */ 1229 sdev_printk(KERN_ERR, sdev, 1230 "rejecting I/O to dead device\n"); 1231 ret = BLKPREP_KILL; 1232 break; 1233 case SDEV_QUIESCE: 1234 case SDEV_BLOCK: 1235 case SDEV_CREATED_BLOCK: 1236 /* 1237 * If the devices is blocked we defer normal commands. 1238 */ 1239 if (!(req->cmd_flags & REQ_PREEMPT)) 1240 ret = BLKPREP_DEFER; 1241 break; 1242 default: 1243 /* 1244 * For any other not fully online state we only allow 1245 * special commands. In particular any user initiated 1246 * command is not allowed. 1247 */ 1248 if (!(req->cmd_flags & REQ_PREEMPT)) 1249 ret = BLKPREP_KILL; 1250 break; 1251 } 1252 } 1253 return ret; 1254 } 1255 EXPORT_SYMBOL(scsi_prep_state_check); 1256 1257 int scsi_prep_return(struct request_queue *q, struct request *req, int ret) 1258 { 1259 struct scsi_device *sdev = q->queuedata; 1260 1261 switch (ret) { 1262 case BLKPREP_KILL: 1263 req->errors = DID_NO_CONNECT << 16; 1264 /* release the command and kill it */ 1265 if (req->special) { 1266 struct scsi_cmnd *cmd = req->special; 1267 scsi_release_buffers(cmd); 1268 scsi_put_command(cmd); 1269 req->special = NULL; 1270 } 1271 break; 1272 case BLKPREP_DEFER: 1273 /* 1274 * If we defer, the blk_peek_request() returns NULL, but the 1275 * queue must be restarted, so we schedule a callback to happen 1276 * shortly. 1277 */ 1278 if (sdev->device_busy == 0) 1279 blk_delay_queue(q, SCSI_QUEUE_DELAY); 1280 break; 1281 default: 1282 req->cmd_flags |= REQ_DONTPREP; 1283 } 1284 1285 return ret; 1286 } 1287 EXPORT_SYMBOL(scsi_prep_return); 1288 1289 int scsi_prep_fn(struct request_queue *q, struct request *req) 1290 { 1291 struct scsi_device *sdev = q->queuedata; 1292 int ret = BLKPREP_KILL; 1293 1294 if (req->cmd_type == REQ_TYPE_BLOCK_PC) 1295 ret = scsi_setup_blk_pc_cmnd(sdev, req); 1296 return scsi_prep_return(q, req, ret); 1297 } 1298 EXPORT_SYMBOL(scsi_prep_fn); 1299 1300 /* 1301 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else 1302 * return 0. 1303 * 1304 * Called with the queue_lock held. 1305 */ 1306 static inline int scsi_dev_queue_ready(struct request_queue *q, 1307 struct scsi_device *sdev) 1308 { 1309 if (sdev->device_busy == 0 && sdev->device_blocked) { 1310 /* 1311 * unblock after device_blocked iterates to zero 1312 */ 1313 if (--sdev->device_blocked == 0) { 1314 SCSI_LOG_MLQUEUE(3, 1315 sdev_printk(KERN_INFO, sdev, 1316 "unblocking device at zero depth\n")); 1317 } else { 1318 blk_delay_queue(q, SCSI_QUEUE_DELAY); 1319 return 0; 1320 } 1321 } 1322 if (scsi_device_is_busy(sdev)) 1323 return 0; 1324 1325 return 1; 1326 } 1327 1328 1329 /* 1330 * scsi_target_queue_ready: checks if there we can send commands to target 1331 * @sdev: scsi device on starget to check. 1332 * 1333 * Called with the host lock held. 1334 */ 1335 static inline int scsi_target_queue_ready(struct Scsi_Host *shost, 1336 struct scsi_device *sdev) 1337 { 1338 struct scsi_target *starget = scsi_target(sdev); 1339 1340 if (starget->single_lun) { 1341 if (starget->starget_sdev_user && 1342 starget->starget_sdev_user != sdev) 1343 return 0; 1344 starget->starget_sdev_user = sdev; 1345 } 1346 1347 if (starget->target_busy == 0 && starget->target_blocked) { 1348 /* 1349 * unblock after target_blocked iterates to zero 1350 */ 1351 if (--starget->target_blocked == 0) { 1352 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget, 1353 "unblocking target at zero depth\n")); 1354 } else 1355 return 0; 1356 } 1357 1358 if (scsi_target_is_busy(starget)) { 1359 list_move_tail(&sdev->starved_entry, &shost->starved_list); 1360 return 0; 1361 } 1362 1363 return 1; 1364 } 1365 1366 /* 1367 * scsi_host_queue_ready: if we can send requests to shost, return 1 else 1368 * return 0. We must end up running the queue again whenever 0 is 1369 * returned, else IO can hang. 1370 * 1371 * Called with host_lock held. 1372 */ 1373 static inline int scsi_host_queue_ready(struct request_queue *q, 1374 struct Scsi_Host *shost, 1375 struct scsi_device *sdev) 1376 { 1377 if (scsi_host_in_recovery(shost)) 1378 return 0; 1379 if (shost->host_busy == 0 && shost->host_blocked) { 1380 /* 1381 * unblock after host_blocked iterates to zero 1382 */ 1383 if (--shost->host_blocked == 0) { 1384 SCSI_LOG_MLQUEUE(3, 1385 printk("scsi%d unblocking host at zero depth\n", 1386 shost->host_no)); 1387 } else { 1388 return 0; 1389 } 1390 } 1391 if (scsi_host_is_busy(shost)) { 1392 if (list_empty(&sdev->starved_entry)) 1393 list_add_tail(&sdev->starved_entry, &shost->starved_list); 1394 return 0; 1395 } 1396 1397 /* We're OK to process the command, so we can't be starved */ 1398 if (!list_empty(&sdev->starved_entry)) 1399 list_del_init(&sdev->starved_entry); 1400 1401 return 1; 1402 } 1403 1404 /* 1405 * Busy state exporting function for request stacking drivers. 1406 * 1407 * For efficiency, no lock is taken to check the busy state of 1408 * shost/starget/sdev, since the returned value is not guaranteed and 1409 * may be changed after request stacking drivers call the function, 1410 * regardless of taking lock or not. 1411 * 1412 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi 1413 * needs to return 'not busy'. Otherwise, request stacking drivers 1414 * may hold requests forever. 1415 */ 1416 static int scsi_lld_busy(struct request_queue *q) 1417 { 1418 struct scsi_device *sdev = q->queuedata; 1419 struct Scsi_Host *shost; 1420 1421 if (blk_queue_dead(q)) 1422 return 0; 1423 1424 shost = sdev->host; 1425 1426 /* 1427 * Ignore host/starget busy state. 1428 * Since block layer does not have a concept of fairness across 1429 * multiple queues, congestion of host/starget needs to be handled 1430 * in SCSI layer. 1431 */ 1432 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev)) 1433 return 1; 1434 1435 return 0; 1436 } 1437 1438 /* 1439 * Kill a request for a dead device 1440 */ 1441 static void scsi_kill_request(struct request *req, struct request_queue *q) 1442 { 1443 struct scsi_cmnd *cmd = req->special; 1444 struct scsi_device *sdev; 1445 struct scsi_target *starget; 1446 struct Scsi_Host *shost; 1447 1448 blk_start_request(req); 1449 1450 scmd_printk(KERN_INFO, cmd, "killing request\n"); 1451 1452 sdev = cmd->device; 1453 starget = scsi_target(sdev); 1454 shost = sdev->host; 1455 scsi_init_cmd_errh(cmd); 1456 cmd->result = DID_NO_CONNECT << 16; 1457 atomic_inc(&cmd->device->iorequest_cnt); 1458 1459 /* 1460 * SCSI request completion path will do scsi_device_unbusy(), 1461 * bump busy counts. To bump the counters, we need to dance 1462 * with the locks as normal issue path does. 1463 */ 1464 sdev->device_busy++; 1465 spin_unlock(sdev->request_queue->queue_lock); 1466 spin_lock(shost->host_lock); 1467 shost->host_busy++; 1468 starget->target_busy++; 1469 spin_unlock(shost->host_lock); 1470 spin_lock(sdev->request_queue->queue_lock); 1471 1472 blk_complete_request(req); 1473 } 1474 1475 static void scsi_softirq_done(struct request *rq) 1476 { 1477 struct scsi_cmnd *cmd = rq->special; 1478 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout; 1479 int disposition; 1480 1481 INIT_LIST_HEAD(&cmd->eh_entry); 1482 1483 atomic_inc(&cmd->device->iodone_cnt); 1484 if (cmd->result) 1485 atomic_inc(&cmd->device->ioerr_cnt); 1486 1487 disposition = scsi_decide_disposition(cmd); 1488 if (disposition != SUCCESS && 1489 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) { 1490 sdev_printk(KERN_ERR, cmd->device, 1491 "timing out command, waited %lus\n", 1492 wait_for/HZ); 1493 disposition = SUCCESS; 1494 } 1495 1496 scsi_log_completion(cmd, disposition); 1497 1498 switch (disposition) { 1499 case SUCCESS: 1500 scsi_finish_command(cmd); 1501 break; 1502 case NEEDS_RETRY: 1503 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY); 1504 break; 1505 case ADD_TO_MLQUEUE: 1506 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY); 1507 break; 1508 default: 1509 if (!scsi_eh_scmd_add(cmd, 0)) 1510 scsi_finish_command(cmd); 1511 } 1512 } 1513 1514 /* 1515 * Function: scsi_request_fn() 1516 * 1517 * Purpose: Main strategy routine for SCSI. 1518 * 1519 * Arguments: q - Pointer to actual queue. 1520 * 1521 * Returns: Nothing 1522 * 1523 * Lock status: IO request lock assumed to be held when called. 1524 */ 1525 static void scsi_request_fn(struct request_queue *q) 1526 { 1527 struct scsi_device *sdev = q->queuedata; 1528 struct Scsi_Host *shost; 1529 struct scsi_cmnd *cmd; 1530 struct request *req; 1531 1532 if(!get_device(&sdev->sdev_gendev)) 1533 /* We must be tearing the block queue down already */ 1534 return; 1535 1536 /* 1537 * To start with, we keep looping until the queue is empty, or until 1538 * the host is no longer able to accept any more requests. 1539 */ 1540 shost = sdev->host; 1541 for (;;) { 1542 int rtn; 1543 /* 1544 * get next queueable request. We do this early to make sure 1545 * that the request is fully prepared even if we cannot 1546 * accept it. 1547 */ 1548 req = blk_peek_request(q); 1549 if (!req || !scsi_dev_queue_ready(q, sdev)) 1550 break; 1551 1552 if (unlikely(!scsi_device_online(sdev))) { 1553 sdev_printk(KERN_ERR, sdev, 1554 "rejecting I/O to offline device\n"); 1555 scsi_kill_request(req, q); 1556 continue; 1557 } 1558 1559 1560 /* 1561 * Remove the request from the request list. 1562 */ 1563 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req))) 1564 blk_start_request(req); 1565 sdev->device_busy++; 1566 1567 spin_unlock(q->queue_lock); 1568 cmd = req->special; 1569 if (unlikely(cmd == NULL)) { 1570 printk(KERN_CRIT "impossible request in %s.\n" 1571 "please mail a stack trace to " 1572 "linux-scsi@vger.kernel.org\n", 1573 __func__); 1574 blk_dump_rq_flags(req, "foo"); 1575 BUG(); 1576 } 1577 spin_lock(shost->host_lock); 1578 1579 /* 1580 * We hit this when the driver is using a host wide 1581 * tag map. For device level tag maps the queue_depth check 1582 * in the device ready fn would prevent us from trying 1583 * to allocate a tag. Since the map is a shared host resource 1584 * we add the dev to the starved list so it eventually gets 1585 * a run when a tag is freed. 1586 */ 1587 if (blk_queue_tagged(q) && !blk_rq_tagged(req)) { 1588 if (list_empty(&sdev->starved_entry)) 1589 list_add_tail(&sdev->starved_entry, 1590 &shost->starved_list); 1591 goto not_ready; 1592 } 1593 1594 if (!scsi_target_queue_ready(shost, sdev)) 1595 goto not_ready; 1596 1597 if (!scsi_host_queue_ready(q, shost, sdev)) 1598 goto not_ready; 1599 1600 scsi_target(sdev)->target_busy++; 1601 shost->host_busy++; 1602 1603 /* 1604 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will 1605 * take the lock again. 1606 */ 1607 spin_unlock_irq(shost->host_lock); 1608 1609 /* 1610 * Finally, initialize any error handling parameters, and set up 1611 * the timers for timeouts. 1612 */ 1613 scsi_init_cmd_errh(cmd); 1614 1615 /* 1616 * Dispatch the command to the low-level driver. 1617 */ 1618 rtn = scsi_dispatch_cmd(cmd); 1619 spin_lock_irq(q->queue_lock); 1620 if (rtn) 1621 goto out_delay; 1622 } 1623 1624 goto out; 1625 1626 not_ready: 1627 spin_unlock_irq(shost->host_lock); 1628 1629 /* 1630 * lock q, handle tag, requeue req, and decrement device_busy. We 1631 * must return with queue_lock held. 1632 * 1633 * Decrementing device_busy without checking it is OK, as all such 1634 * cases (host limits or settings) should run the queue at some 1635 * later time. 1636 */ 1637 spin_lock_irq(q->queue_lock); 1638 blk_requeue_request(q, req); 1639 sdev->device_busy--; 1640 out_delay: 1641 if (sdev->device_busy == 0) 1642 blk_delay_queue(q, SCSI_QUEUE_DELAY); 1643 out: 1644 /* must be careful here...if we trigger the ->remove() function 1645 * we cannot be holding the q lock */ 1646 spin_unlock_irq(q->queue_lock); 1647 put_device(&sdev->sdev_gendev); 1648 spin_lock_irq(q->queue_lock); 1649 } 1650 1651 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost) 1652 { 1653 struct device *host_dev; 1654 u64 bounce_limit = 0xffffffff; 1655 1656 if (shost->unchecked_isa_dma) 1657 return BLK_BOUNCE_ISA; 1658 /* 1659 * Platforms with virtual-DMA translation 1660 * hardware have no practical limit. 1661 */ 1662 if (!PCI_DMA_BUS_IS_PHYS) 1663 return BLK_BOUNCE_ANY; 1664 1665 host_dev = scsi_get_device(shost); 1666 if (host_dev && host_dev->dma_mask) 1667 bounce_limit = *host_dev->dma_mask; 1668 1669 return bounce_limit; 1670 } 1671 EXPORT_SYMBOL(scsi_calculate_bounce_limit); 1672 1673 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost, 1674 request_fn_proc *request_fn) 1675 { 1676 struct request_queue *q; 1677 struct device *dev = shost->dma_dev; 1678 1679 q = blk_init_queue(request_fn, NULL); 1680 if (!q) 1681 return NULL; 1682 1683 /* 1684 * this limit is imposed by hardware restrictions 1685 */ 1686 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize, 1687 SCSI_MAX_SG_CHAIN_SEGMENTS)); 1688 1689 if (scsi_host_prot_dma(shost)) { 1690 shost->sg_prot_tablesize = 1691 min_not_zero(shost->sg_prot_tablesize, 1692 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS); 1693 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize); 1694 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize); 1695 } 1696 1697 blk_queue_max_hw_sectors(q, shost->max_sectors); 1698 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost)); 1699 blk_queue_segment_boundary(q, shost->dma_boundary); 1700 dma_set_seg_boundary(dev, shost->dma_boundary); 1701 1702 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev)); 1703 1704 if (!shost->use_clustering) 1705 q->limits.cluster = 0; 1706 1707 /* 1708 * set a reasonable default alignment on word boundaries: the 1709 * host and device may alter it using 1710 * blk_queue_update_dma_alignment() later. 1711 */ 1712 blk_queue_dma_alignment(q, 0x03); 1713 1714 return q; 1715 } 1716 EXPORT_SYMBOL(__scsi_alloc_queue); 1717 1718 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev) 1719 { 1720 struct request_queue *q; 1721 1722 q = __scsi_alloc_queue(sdev->host, scsi_request_fn); 1723 if (!q) 1724 return NULL; 1725 1726 blk_queue_prep_rq(q, scsi_prep_fn); 1727 blk_queue_softirq_done(q, scsi_softirq_done); 1728 blk_queue_rq_timed_out(q, scsi_times_out); 1729 blk_queue_lld_busy(q, scsi_lld_busy); 1730 return q; 1731 } 1732 1733 /* 1734 * Function: scsi_block_requests() 1735 * 1736 * Purpose: Utility function used by low-level drivers to prevent further 1737 * commands from being queued to the device. 1738 * 1739 * Arguments: shost - Host in question 1740 * 1741 * Returns: Nothing 1742 * 1743 * Lock status: No locks are assumed held. 1744 * 1745 * Notes: There is no timer nor any other means by which the requests 1746 * get unblocked other than the low-level driver calling 1747 * scsi_unblock_requests(). 1748 */ 1749 void scsi_block_requests(struct Scsi_Host *shost) 1750 { 1751 shost->host_self_blocked = 1; 1752 } 1753 EXPORT_SYMBOL(scsi_block_requests); 1754 1755 /* 1756 * Function: scsi_unblock_requests() 1757 * 1758 * Purpose: Utility function used by low-level drivers to allow further 1759 * commands from being queued to the device. 1760 * 1761 * Arguments: shost - Host in question 1762 * 1763 * Returns: Nothing 1764 * 1765 * Lock status: No locks are assumed held. 1766 * 1767 * Notes: There is no timer nor any other means by which the requests 1768 * get unblocked other than the low-level driver calling 1769 * scsi_unblock_requests(). 1770 * 1771 * This is done as an API function so that changes to the 1772 * internals of the scsi mid-layer won't require wholesale 1773 * changes to drivers that use this feature. 1774 */ 1775 void scsi_unblock_requests(struct Scsi_Host *shost) 1776 { 1777 shost->host_self_blocked = 0; 1778 scsi_run_host_queues(shost); 1779 } 1780 EXPORT_SYMBOL(scsi_unblock_requests); 1781 1782 int __init scsi_init_queue(void) 1783 { 1784 int i; 1785 1786 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer", 1787 sizeof(struct scsi_data_buffer), 1788 0, 0, NULL); 1789 if (!scsi_sdb_cache) { 1790 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n"); 1791 return -ENOMEM; 1792 } 1793 1794 for (i = 0; i < SG_MEMPOOL_NR; i++) { 1795 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i; 1796 int size = sgp->size * sizeof(struct scatterlist); 1797 1798 sgp->slab = kmem_cache_create(sgp->name, size, 0, 1799 SLAB_HWCACHE_ALIGN, NULL); 1800 if (!sgp->slab) { 1801 printk(KERN_ERR "SCSI: can't init sg slab %s\n", 1802 sgp->name); 1803 goto cleanup_sdb; 1804 } 1805 1806 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE, 1807 sgp->slab); 1808 if (!sgp->pool) { 1809 printk(KERN_ERR "SCSI: can't init sg mempool %s\n", 1810 sgp->name); 1811 goto cleanup_sdb; 1812 } 1813 } 1814 1815 return 0; 1816 1817 cleanup_sdb: 1818 for (i = 0; i < SG_MEMPOOL_NR; i++) { 1819 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i; 1820 if (sgp->pool) 1821 mempool_destroy(sgp->pool); 1822 if (sgp->slab) 1823 kmem_cache_destroy(sgp->slab); 1824 } 1825 kmem_cache_destroy(scsi_sdb_cache); 1826 1827 return -ENOMEM; 1828 } 1829 1830 void scsi_exit_queue(void) 1831 { 1832 int i; 1833 1834 kmem_cache_destroy(scsi_sdb_cache); 1835 1836 for (i = 0; i < SG_MEMPOOL_NR; i++) { 1837 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i; 1838 mempool_destroy(sgp->pool); 1839 kmem_cache_destroy(sgp->slab); 1840 } 1841 } 1842 1843 /** 1844 * scsi_mode_select - issue a mode select 1845 * @sdev: SCSI device to be queried 1846 * @pf: Page format bit (1 == standard, 0 == vendor specific) 1847 * @sp: Save page bit (0 == don't save, 1 == save) 1848 * @modepage: mode page being requested 1849 * @buffer: request buffer (may not be smaller than eight bytes) 1850 * @len: length of request buffer. 1851 * @timeout: command timeout 1852 * @retries: number of retries before failing 1853 * @data: returns a structure abstracting the mode header data 1854 * @sshdr: place to put sense data (or NULL if no sense to be collected). 1855 * must be SCSI_SENSE_BUFFERSIZE big. 1856 * 1857 * Returns zero if successful; negative error number or scsi 1858 * status on error 1859 * 1860 */ 1861 int 1862 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage, 1863 unsigned char *buffer, int len, int timeout, int retries, 1864 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 1865 { 1866 unsigned char cmd[10]; 1867 unsigned char *real_buffer; 1868 int ret; 1869 1870 memset(cmd, 0, sizeof(cmd)); 1871 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0); 1872 1873 if (sdev->use_10_for_ms) { 1874 if (len > 65535) 1875 return -EINVAL; 1876 real_buffer = kmalloc(8 + len, GFP_KERNEL); 1877 if (!real_buffer) 1878 return -ENOMEM; 1879 memcpy(real_buffer + 8, buffer, len); 1880 len += 8; 1881 real_buffer[0] = 0; 1882 real_buffer[1] = 0; 1883 real_buffer[2] = data->medium_type; 1884 real_buffer[3] = data->device_specific; 1885 real_buffer[4] = data->longlba ? 0x01 : 0; 1886 real_buffer[5] = 0; 1887 real_buffer[6] = data->block_descriptor_length >> 8; 1888 real_buffer[7] = data->block_descriptor_length; 1889 1890 cmd[0] = MODE_SELECT_10; 1891 cmd[7] = len >> 8; 1892 cmd[8] = len; 1893 } else { 1894 if (len > 255 || data->block_descriptor_length > 255 || 1895 data->longlba) 1896 return -EINVAL; 1897 1898 real_buffer = kmalloc(4 + len, GFP_KERNEL); 1899 if (!real_buffer) 1900 return -ENOMEM; 1901 memcpy(real_buffer + 4, buffer, len); 1902 len += 4; 1903 real_buffer[0] = 0; 1904 real_buffer[1] = data->medium_type; 1905 real_buffer[2] = data->device_specific; 1906 real_buffer[3] = data->block_descriptor_length; 1907 1908 1909 cmd[0] = MODE_SELECT; 1910 cmd[4] = len; 1911 } 1912 1913 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len, 1914 sshdr, timeout, retries, NULL); 1915 kfree(real_buffer); 1916 return ret; 1917 } 1918 EXPORT_SYMBOL_GPL(scsi_mode_select); 1919 1920 /** 1921 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary. 1922 * @sdev: SCSI device to be queried 1923 * @dbd: set if mode sense will allow block descriptors to be returned 1924 * @modepage: mode page being requested 1925 * @buffer: request buffer (may not be smaller than eight bytes) 1926 * @len: length of request buffer. 1927 * @timeout: command timeout 1928 * @retries: number of retries before failing 1929 * @data: returns a structure abstracting the mode header data 1930 * @sshdr: place to put sense data (or NULL if no sense to be collected). 1931 * must be SCSI_SENSE_BUFFERSIZE big. 1932 * 1933 * Returns zero if unsuccessful, or the header offset (either 4 1934 * or 8 depending on whether a six or ten byte command was 1935 * issued) if successful. 1936 */ 1937 int 1938 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, 1939 unsigned char *buffer, int len, int timeout, int retries, 1940 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 1941 { 1942 unsigned char cmd[12]; 1943 int use_10_for_ms; 1944 int header_length; 1945 int result; 1946 struct scsi_sense_hdr my_sshdr; 1947 1948 memset(data, 0, sizeof(*data)); 1949 memset(&cmd[0], 0, 12); 1950 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */ 1951 cmd[2] = modepage; 1952 1953 /* caller might not be interested in sense, but we need it */ 1954 if (!sshdr) 1955 sshdr = &my_sshdr; 1956 1957 retry: 1958 use_10_for_ms = sdev->use_10_for_ms; 1959 1960 if (use_10_for_ms) { 1961 if (len < 8) 1962 len = 8; 1963 1964 cmd[0] = MODE_SENSE_10; 1965 cmd[8] = len; 1966 header_length = 8; 1967 } else { 1968 if (len < 4) 1969 len = 4; 1970 1971 cmd[0] = MODE_SENSE; 1972 cmd[4] = len; 1973 header_length = 4; 1974 } 1975 1976 memset(buffer, 0, len); 1977 1978 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len, 1979 sshdr, timeout, retries, NULL); 1980 1981 /* This code looks awful: what it's doing is making sure an 1982 * ILLEGAL REQUEST sense return identifies the actual command 1983 * byte as the problem. MODE_SENSE commands can return 1984 * ILLEGAL REQUEST if the code page isn't supported */ 1985 1986 if (use_10_for_ms && !scsi_status_is_good(result) && 1987 (driver_byte(result) & DRIVER_SENSE)) { 1988 if (scsi_sense_valid(sshdr)) { 1989 if ((sshdr->sense_key == ILLEGAL_REQUEST) && 1990 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) { 1991 /* 1992 * Invalid command operation code 1993 */ 1994 sdev->use_10_for_ms = 0; 1995 goto retry; 1996 } 1997 } 1998 } 1999 2000 if(scsi_status_is_good(result)) { 2001 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b && 2002 (modepage == 6 || modepage == 8))) { 2003 /* Initio breakage? */ 2004 header_length = 0; 2005 data->length = 13; 2006 data->medium_type = 0; 2007 data->device_specific = 0; 2008 data->longlba = 0; 2009 data->block_descriptor_length = 0; 2010 } else if(use_10_for_ms) { 2011 data->length = buffer[0]*256 + buffer[1] + 2; 2012 data->medium_type = buffer[2]; 2013 data->device_specific = buffer[3]; 2014 data->longlba = buffer[4] & 0x01; 2015 data->block_descriptor_length = buffer[6]*256 2016 + buffer[7]; 2017 } else { 2018 data->length = buffer[0] + 1; 2019 data->medium_type = buffer[1]; 2020 data->device_specific = buffer[2]; 2021 data->block_descriptor_length = buffer[3]; 2022 } 2023 data->header_length = header_length; 2024 } 2025 2026 return result; 2027 } 2028 EXPORT_SYMBOL(scsi_mode_sense); 2029 2030 /** 2031 * scsi_test_unit_ready - test if unit is ready 2032 * @sdev: scsi device to change the state of. 2033 * @timeout: command timeout 2034 * @retries: number of retries before failing 2035 * @sshdr_external: Optional pointer to struct scsi_sense_hdr for 2036 * returning sense. Make sure that this is cleared before passing 2037 * in. 2038 * 2039 * Returns zero if unsuccessful or an error if TUR failed. For 2040 * removable media, UNIT_ATTENTION sets ->changed flag. 2041 **/ 2042 int 2043 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries, 2044 struct scsi_sense_hdr *sshdr_external) 2045 { 2046 char cmd[] = { 2047 TEST_UNIT_READY, 0, 0, 0, 0, 0, 2048 }; 2049 struct scsi_sense_hdr *sshdr; 2050 int result; 2051 2052 if (!sshdr_external) 2053 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL); 2054 else 2055 sshdr = sshdr_external; 2056 2057 /* try to eat the UNIT_ATTENTION if there are enough retries */ 2058 do { 2059 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr, 2060 timeout, retries, NULL); 2061 if (sdev->removable && scsi_sense_valid(sshdr) && 2062 sshdr->sense_key == UNIT_ATTENTION) 2063 sdev->changed = 1; 2064 } while (scsi_sense_valid(sshdr) && 2065 sshdr->sense_key == UNIT_ATTENTION && --retries); 2066 2067 if (!sshdr_external) 2068 kfree(sshdr); 2069 return result; 2070 } 2071 EXPORT_SYMBOL(scsi_test_unit_ready); 2072 2073 /** 2074 * scsi_device_set_state - Take the given device through the device state model. 2075 * @sdev: scsi device to change the state of. 2076 * @state: state to change to. 2077 * 2078 * Returns zero if unsuccessful or an error if the requested 2079 * transition is illegal. 2080 */ 2081 int 2082 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state) 2083 { 2084 enum scsi_device_state oldstate = sdev->sdev_state; 2085 2086 if (state == oldstate) 2087 return 0; 2088 2089 switch (state) { 2090 case SDEV_CREATED: 2091 switch (oldstate) { 2092 case SDEV_CREATED_BLOCK: 2093 break; 2094 default: 2095 goto illegal; 2096 } 2097 break; 2098 2099 case SDEV_RUNNING: 2100 switch (oldstate) { 2101 case SDEV_CREATED: 2102 case SDEV_OFFLINE: 2103 case SDEV_TRANSPORT_OFFLINE: 2104 case SDEV_QUIESCE: 2105 case SDEV_BLOCK: 2106 break; 2107 default: 2108 goto illegal; 2109 } 2110 break; 2111 2112 case SDEV_QUIESCE: 2113 switch (oldstate) { 2114 case SDEV_RUNNING: 2115 case SDEV_OFFLINE: 2116 case SDEV_TRANSPORT_OFFLINE: 2117 break; 2118 default: 2119 goto illegal; 2120 } 2121 break; 2122 2123 case SDEV_OFFLINE: 2124 case SDEV_TRANSPORT_OFFLINE: 2125 switch (oldstate) { 2126 case SDEV_CREATED: 2127 case SDEV_RUNNING: 2128 case SDEV_QUIESCE: 2129 case SDEV_BLOCK: 2130 break; 2131 default: 2132 goto illegal; 2133 } 2134 break; 2135 2136 case SDEV_BLOCK: 2137 switch (oldstate) { 2138 case SDEV_RUNNING: 2139 case SDEV_CREATED_BLOCK: 2140 break; 2141 default: 2142 goto illegal; 2143 } 2144 break; 2145 2146 case SDEV_CREATED_BLOCK: 2147 switch (oldstate) { 2148 case SDEV_CREATED: 2149 break; 2150 default: 2151 goto illegal; 2152 } 2153 break; 2154 2155 case SDEV_CANCEL: 2156 switch (oldstate) { 2157 case SDEV_CREATED: 2158 case SDEV_RUNNING: 2159 case SDEV_QUIESCE: 2160 case SDEV_OFFLINE: 2161 case SDEV_TRANSPORT_OFFLINE: 2162 case SDEV_BLOCK: 2163 break; 2164 default: 2165 goto illegal; 2166 } 2167 break; 2168 2169 case SDEV_DEL: 2170 switch (oldstate) { 2171 case SDEV_CREATED: 2172 case SDEV_RUNNING: 2173 case SDEV_OFFLINE: 2174 case SDEV_TRANSPORT_OFFLINE: 2175 case SDEV_CANCEL: 2176 break; 2177 default: 2178 goto illegal; 2179 } 2180 break; 2181 2182 } 2183 sdev->sdev_state = state; 2184 return 0; 2185 2186 illegal: 2187 SCSI_LOG_ERROR_RECOVERY(1, 2188 sdev_printk(KERN_ERR, sdev, 2189 "Illegal state transition %s->%s\n", 2190 scsi_device_state_name(oldstate), 2191 scsi_device_state_name(state)) 2192 ); 2193 return -EINVAL; 2194 } 2195 EXPORT_SYMBOL(scsi_device_set_state); 2196 2197 /** 2198 * sdev_evt_emit - emit a single SCSI device uevent 2199 * @sdev: associated SCSI device 2200 * @evt: event to emit 2201 * 2202 * Send a single uevent (scsi_event) to the associated scsi_device. 2203 */ 2204 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt) 2205 { 2206 int idx = 0; 2207 char *envp[3]; 2208 2209 switch (evt->evt_type) { 2210 case SDEV_EVT_MEDIA_CHANGE: 2211 envp[idx++] = "SDEV_MEDIA_CHANGE=1"; 2212 break; 2213 2214 default: 2215 /* do nothing */ 2216 break; 2217 } 2218 2219 envp[idx++] = NULL; 2220 2221 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp); 2222 } 2223 2224 /** 2225 * sdev_evt_thread - send a uevent for each scsi event 2226 * @work: work struct for scsi_device 2227 * 2228 * Dispatch queued events to their associated scsi_device kobjects 2229 * as uevents. 2230 */ 2231 void scsi_evt_thread(struct work_struct *work) 2232 { 2233 struct scsi_device *sdev; 2234 LIST_HEAD(event_list); 2235 2236 sdev = container_of(work, struct scsi_device, event_work); 2237 2238 while (1) { 2239 struct scsi_event *evt; 2240 struct list_head *this, *tmp; 2241 unsigned long flags; 2242 2243 spin_lock_irqsave(&sdev->list_lock, flags); 2244 list_splice_init(&sdev->event_list, &event_list); 2245 spin_unlock_irqrestore(&sdev->list_lock, flags); 2246 2247 if (list_empty(&event_list)) 2248 break; 2249 2250 list_for_each_safe(this, tmp, &event_list) { 2251 evt = list_entry(this, struct scsi_event, node); 2252 list_del(&evt->node); 2253 scsi_evt_emit(sdev, evt); 2254 kfree(evt); 2255 } 2256 } 2257 } 2258 2259 /** 2260 * sdev_evt_send - send asserted event to uevent thread 2261 * @sdev: scsi_device event occurred on 2262 * @evt: event to send 2263 * 2264 * Assert scsi device event asynchronously. 2265 */ 2266 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt) 2267 { 2268 unsigned long flags; 2269 2270 #if 0 2271 /* FIXME: currently this check eliminates all media change events 2272 * for polled devices. Need to update to discriminate between AN 2273 * and polled events */ 2274 if (!test_bit(evt->evt_type, sdev->supported_events)) { 2275 kfree(evt); 2276 return; 2277 } 2278 #endif 2279 2280 spin_lock_irqsave(&sdev->list_lock, flags); 2281 list_add_tail(&evt->node, &sdev->event_list); 2282 schedule_work(&sdev->event_work); 2283 spin_unlock_irqrestore(&sdev->list_lock, flags); 2284 } 2285 EXPORT_SYMBOL_GPL(sdev_evt_send); 2286 2287 /** 2288 * sdev_evt_alloc - allocate a new scsi event 2289 * @evt_type: type of event to allocate 2290 * @gfpflags: GFP flags for allocation 2291 * 2292 * Allocates and returns a new scsi_event. 2293 */ 2294 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type, 2295 gfp_t gfpflags) 2296 { 2297 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags); 2298 if (!evt) 2299 return NULL; 2300 2301 evt->evt_type = evt_type; 2302 INIT_LIST_HEAD(&evt->node); 2303 2304 /* evt_type-specific initialization, if any */ 2305 switch (evt_type) { 2306 case SDEV_EVT_MEDIA_CHANGE: 2307 default: 2308 /* do nothing */ 2309 break; 2310 } 2311 2312 return evt; 2313 } 2314 EXPORT_SYMBOL_GPL(sdev_evt_alloc); 2315 2316 /** 2317 * sdev_evt_send_simple - send asserted event to uevent thread 2318 * @sdev: scsi_device event occurred on 2319 * @evt_type: type of event to send 2320 * @gfpflags: GFP flags for allocation 2321 * 2322 * Assert scsi device event asynchronously, given an event type. 2323 */ 2324 void sdev_evt_send_simple(struct scsi_device *sdev, 2325 enum scsi_device_event evt_type, gfp_t gfpflags) 2326 { 2327 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags); 2328 if (!evt) { 2329 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n", 2330 evt_type); 2331 return; 2332 } 2333 2334 sdev_evt_send(sdev, evt); 2335 } 2336 EXPORT_SYMBOL_GPL(sdev_evt_send_simple); 2337 2338 /** 2339 * scsi_device_quiesce - Block user issued commands. 2340 * @sdev: scsi device to quiesce. 2341 * 2342 * This works by trying to transition to the SDEV_QUIESCE state 2343 * (which must be a legal transition). When the device is in this 2344 * state, only special requests will be accepted, all others will 2345 * be deferred. Since special requests may also be requeued requests, 2346 * a successful return doesn't guarantee the device will be 2347 * totally quiescent. 2348 * 2349 * Must be called with user context, may sleep. 2350 * 2351 * Returns zero if unsuccessful or an error if not. 2352 */ 2353 int 2354 scsi_device_quiesce(struct scsi_device *sdev) 2355 { 2356 int err = scsi_device_set_state(sdev, SDEV_QUIESCE); 2357 if (err) 2358 return err; 2359 2360 scsi_run_queue(sdev->request_queue); 2361 while (sdev->device_busy) { 2362 msleep_interruptible(200); 2363 scsi_run_queue(sdev->request_queue); 2364 } 2365 return 0; 2366 } 2367 EXPORT_SYMBOL(scsi_device_quiesce); 2368 2369 /** 2370 * scsi_device_resume - Restart user issued commands to a quiesced device. 2371 * @sdev: scsi device to resume. 2372 * 2373 * Moves the device from quiesced back to running and restarts the 2374 * queues. 2375 * 2376 * Must be called with user context, may sleep. 2377 */ 2378 void scsi_device_resume(struct scsi_device *sdev) 2379 { 2380 /* check if the device state was mutated prior to resume, and if 2381 * so assume the state is being managed elsewhere (for example 2382 * device deleted during suspend) 2383 */ 2384 if (sdev->sdev_state != SDEV_QUIESCE || 2385 scsi_device_set_state(sdev, SDEV_RUNNING)) 2386 return; 2387 scsi_run_queue(sdev->request_queue); 2388 } 2389 EXPORT_SYMBOL(scsi_device_resume); 2390 2391 static void 2392 device_quiesce_fn(struct scsi_device *sdev, void *data) 2393 { 2394 scsi_device_quiesce(sdev); 2395 } 2396 2397 void 2398 scsi_target_quiesce(struct scsi_target *starget) 2399 { 2400 starget_for_each_device(starget, NULL, device_quiesce_fn); 2401 } 2402 EXPORT_SYMBOL(scsi_target_quiesce); 2403 2404 static void 2405 device_resume_fn(struct scsi_device *sdev, void *data) 2406 { 2407 scsi_device_resume(sdev); 2408 } 2409 2410 void 2411 scsi_target_resume(struct scsi_target *starget) 2412 { 2413 starget_for_each_device(starget, NULL, device_resume_fn); 2414 } 2415 EXPORT_SYMBOL(scsi_target_resume); 2416 2417 /** 2418 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state 2419 * @sdev: device to block 2420 * 2421 * Block request made by scsi lld's to temporarily stop all 2422 * scsi commands on the specified device. Called from interrupt 2423 * or normal process context. 2424 * 2425 * Returns zero if successful or error if not 2426 * 2427 * Notes: 2428 * This routine transitions the device to the SDEV_BLOCK state 2429 * (which must be a legal transition). When the device is in this 2430 * state, all commands are deferred until the scsi lld reenables 2431 * the device with scsi_device_unblock or device_block_tmo fires. 2432 */ 2433 int 2434 scsi_internal_device_block(struct scsi_device *sdev) 2435 { 2436 struct request_queue *q = sdev->request_queue; 2437 unsigned long flags; 2438 int err = 0; 2439 2440 err = scsi_device_set_state(sdev, SDEV_BLOCK); 2441 if (err) { 2442 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK); 2443 2444 if (err) 2445 return err; 2446 } 2447 2448 /* 2449 * The device has transitioned to SDEV_BLOCK. Stop the 2450 * block layer from calling the midlayer with this device's 2451 * request queue. 2452 */ 2453 spin_lock_irqsave(q->queue_lock, flags); 2454 blk_stop_queue(q); 2455 spin_unlock_irqrestore(q->queue_lock, flags); 2456 2457 return 0; 2458 } 2459 EXPORT_SYMBOL_GPL(scsi_internal_device_block); 2460 2461 /** 2462 * scsi_internal_device_unblock - resume a device after a block request 2463 * @sdev: device to resume 2464 * @new_state: state to set devices to after unblocking 2465 * 2466 * Called by scsi lld's or the midlayer to restart the device queue 2467 * for the previously suspended scsi device. Called from interrupt or 2468 * normal process context. 2469 * 2470 * Returns zero if successful or error if not. 2471 * 2472 * Notes: 2473 * This routine transitions the device to the SDEV_RUNNING state 2474 * or to one of the offline states (which must be a legal transition) 2475 * allowing the midlayer to goose the queue for this device. 2476 */ 2477 int 2478 scsi_internal_device_unblock(struct scsi_device *sdev, 2479 enum scsi_device_state new_state) 2480 { 2481 struct request_queue *q = sdev->request_queue; 2482 unsigned long flags; 2483 2484 /* 2485 * Try to transition the scsi device to SDEV_RUNNING or one of the 2486 * offlined states and goose the device queue if successful. 2487 */ 2488 if ((sdev->sdev_state == SDEV_BLOCK) || 2489 (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE)) 2490 sdev->sdev_state = new_state; 2491 else if (sdev->sdev_state == SDEV_CREATED_BLOCK) { 2492 if (new_state == SDEV_TRANSPORT_OFFLINE || 2493 new_state == SDEV_OFFLINE) 2494 sdev->sdev_state = new_state; 2495 else 2496 sdev->sdev_state = SDEV_CREATED; 2497 } else if (sdev->sdev_state != SDEV_CANCEL && 2498 sdev->sdev_state != SDEV_OFFLINE) 2499 return -EINVAL; 2500 2501 spin_lock_irqsave(q->queue_lock, flags); 2502 blk_start_queue(q); 2503 spin_unlock_irqrestore(q->queue_lock, flags); 2504 2505 return 0; 2506 } 2507 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock); 2508 2509 static void 2510 device_block(struct scsi_device *sdev, void *data) 2511 { 2512 scsi_internal_device_block(sdev); 2513 } 2514 2515 static int 2516 target_block(struct device *dev, void *data) 2517 { 2518 if (scsi_is_target_device(dev)) 2519 starget_for_each_device(to_scsi_target(dev), NULL, 2520 device_block); 2521 return 0; 2522 } 2523 2524 void 2525 scsi_target_block(struct device *dev) 2526 { 2527 if (scsi_is_target_device(dev)) 2528 starget_for_each_device(to_scsi_target(dev), NULL, 2529 device_block); 2530 else 2531 device_for_each_child(dev, NULL, target_block); 2532 } 2533 EXPORT_SYMBOL_GPL(scsi_target_block); 2534 2535 static void 2536 device_unblock(struct scsi_device *sdev, void *data) 2537 { 2538 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data); 2539 } 2540 2541 static int 2542 target_unblock(struct device *dev, void *data) 2543 { 2544 if (scsi_is_target_device(dev)) 2545 starget_for_each_device(to_scsi_target(dev), data, 2546 device_unblock); 2547 return 0; 2548 } 2549 2550 void 2551 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state) 2552 { 2553 if (scsi_is_target_device(dev)) 2554 starget_for_each_device(to_scsi_target(dev), &new_state, 2555 device_unblock); 2556 else 2557 device_for_each_child(dev, &new_state, target_unblock); 2558 } 2559 EXPORT_SYMBOL_GPL(scsi_target_unblock); 2560 2561 /** 2562 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt 2563 * @sgl: scatter-gather list 2564 * @sg_count: number of segments in sg 2565 * @offset: offset in bytes into sg, on return offset into the mapped area 2566 * @len: bytes to map, on return number of bytes mapped 2567 * 2568 * Returns virtual address of the start of the mapped page 2569 */ 2570 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count, 2571 size_t *offset, size_t *len) 2572 { 2573 int i; 2574 size_t sg_len = 0, len_complete = 0; 2575 struct scatterlist *sg; 2576 struct page *page; 2577 2578 WARN_ON(!irqs_disabled()); 2579 2580 for_each_sg(sgl, sg, sg_count, i) { 2581 len_complete = sg_len; /* Complete sg-entries */ 2582 sg_len += sg->length; 2583 if (sg_len > *offset) 2584 break; 2585 } 2586 2587 if (unlikely(i == sg_count)) { 2588 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, " 2589 "elements %d\n", 2590 __func__, sg_len, *offset, sg_count); 2591 WARN_ON(1); 2592 return NULL; 2593 } 2594 2595 /* Offset starting from the beginning of first page in this sg-entry */ 2596 *offset = *offset - len_complete + sg->offset; 2597 2598 /* Assumption: contiguous pages can be accessed as "page + i" */ 2599 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT)); 2600 *offset &= ~PAGE_MASK; 2601 2602 /* Bytes in this sg-entry from *offset to the end of the page */ 2603 sg_len = PAGE_SIZE - *offset; 2604 if (*len > sg_len) 2605 *len = sg_len; 2606 2607 return kmap_atomic(page); 2608 } 2609 EXPORT_SYMBOL(scsi_kmap_atomic_sg); 2610 2611 /** 2612 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg 2613 * @virt: virtual address to be unmapped 2614 */ 2615 void scsi_kunmap_atomic_sg(void *virt) 2616 { 2617 kunmap_atomic(virt); 2618 } 2619 EXPORT_SYMBOL(scsi_kunmap_atomic_sg); 2620