xref: /linux/drivers/scsi/scsi_lib.c (revision c537b994505099b7197e7d3125b942ecbcc51eb6)
1 /*
2  *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3  *
4  *  SCSI queueing library.
5  *      Initial versions: Eric Youngdale (eric@andante.org).
6  *                        Based upon conversations with large numbers
7  *                        of people at Linux Expo.
8  */
9 
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/completion.h>
13 #include <linux/kernel.h>
14 #include <linux/mempool.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/pci.h>
18 #include <linux/delay.h>
19 #include <linux/hardirq.h>
20 
21 #include <scsi/scsi.h>
22 #include <scsi/scsi_cmnd.h>
23 #include <scsi/scsi_dbg.h>
24 #include <scsi/scsi_device.h>
25 #include <scsi/scsi_driver.h>
26 #include <scsi/scsi_eh.h>
27 #include <scsi/scsi_host.h>
28 
29 #include "scsi_priv.h"
30 #include "scsi_logging.h"
31 
32 
33 #define SG_MEMPOOL_NR		ARRAY_SIZE(scsi_sg_pools)
34 #define SG_MEMPOOL_SIZE		32
35 
36 struct scsi_host_sg_pool {
37 	size_t		size;
38 	char		*name;
39 	struct kmem_cache	*slab;
40 	mempool_t	*pool;
41 };
42 
43 #if (SCSI_MAX_PHYS_SEGMENTS < 32)
44 #error SCSI_MAX_PHYS_SEGMENTS is too small
45 #endif
46 
47 #define SP(x) { x, "sgpool-" #x }
48 static struct scsi_host_sg_pool scsi_sg_pools[] = {
49 	SP(8),
50 	SP(16),
51 	SP(32),
52 #if (SCSI_MAX_PHYS_SEGMENTS > 32)
53 	SP(64),
54 #if (SCSI_MAX_PHYS_SEGMENTS > 64)
55 	SP(128),
56 #if (SCSI_MAX_PHYS_SEGMENTS > 128)
57 	SP(256),
58 #if (SCSI_MAX_PHYS_SEGMENTS > 256)
59 #error SCSI_MAX_PHYS_SEGMENTS is too large
60 #endif
61 #endif
62 #endif
63 #endif
64 };
65 #undef SP
66 
67 static void scsi_run_queue(struct request_queue *q);
68 
69 /*
70  * Function:	scsi_unprep_request()
71  *
72  * Purpose:	Remove all preparation done for a request, including its
73  *		associated scsi_cmnd, so that it can be requeued.
74  *
75  * Arguments:	req	- request to unprepare
76  *
77  * Lock status:	Assumed that no locks are held upon entry.
78  *
79  * Returns:	Nothing.
80  */
81 static void scsi_unprep_request(struct request *req)
82 {
83 	struct scsi_cmnd *cmd = req->special;
84 
85 	req->cmd_flags &= ~REQ_DONTPREP;
86 	req->special = NULL;
87 
88 	scsi_put_command(cmd);
89 }
90 
91 /*
92  * Function:    scsi_queue_insert()
93  *
94  * Purpose:     Insert a command in the midlevel queue.
95  *
96  * Arguments:   cmd    - command that we are adding to queue.
97  *              reason - why we are inserting command to queue.
98  *
99  * Lock status: Assumed that lock is not held upon entry.
100  *
101  * Returns:     Nothing.
102  *
103  * Notes:       We do this for one of two cases.  Either the host is busy
104  *              and it cannot accept any more commands for the time being,
105  *              or the device returned QUEUE_FULL and can accept no more
106  *              commands.
107  * Notes:       This could be called either from an interrupt context or a
108  *              normal process context.
109  */
110 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
111 {
112 	struct Scsi_Host *host = cmd->device->host;
113 	struct scsi_device *device = cmd->device;
114 	struct request_queue *q = device->request_queue;
115 	unsigned long flags;
116 
117 	SCSI_LOG_MLQUEUE(1,
118 		 printk("Inserting command %p into mlqueue\n", cmd));
119 
120 	/*
121 	 * Set the appropriate busy bit for the device/host.
122 	 *
123 	 * If the host/device isn't busy, assume that something actually
124 	 * completed, and that we should be able to queue a command now.
125 	 *
126 	 * Note that the prior mid-layer assumption that any host could
127 	 * always queue at least one command is now broken.  The mid-layer
128 	 * will implement a user specifiable stall (see
129 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
130 	 * if a command is requeued with no other commands outstanding
131 	 * either for the device or for the host.
132 	 */
133 	if (reason == SCSI_MLQUEUE_HOST_BUSY)
134 		host->host_blocked = host->max_host_blocked;
135 	else if (reason == SCSI_MLQUEUE_DEVICE_BUSY)
136 		device->device_blocked = device->max_device_blocked;
137 
138 	/*
139 	 * Decrement the counters, since these commands are no longer
140 	 * active on the host/device.
141 	 */
142 	scsi_device_unbusy(device);
143 
144 	/*
145 	 * Requeue this command.  It will go before all other commands
146 	 * that are already in the queue.
147 	 *
148 	 * NOTE: there is magic here about the way the queue is plugged if
149 	 * we have no outstanding commands.
150 	 *
151 	 * Although we *don't* plug the queue, we call the request
152 	 * function.  The SCSI request function detects the blocked condition
153 	 * and plugs the queue appropriately.
154          */
155 	spin_lock_irqsave(q->queue_lock, flags);
156 	blk_requeue_request(q, cmd->request);
157 	spin_unlock_irqrestore(q->queue_lock, flags);
158 
159 	scsi_run_queue(q);
160 
161 	return 0;
162 }
163 
164 /**
165  * scsi_execute - insert request and wait for the result
166  * @sdev:	scsi device
167  * @cmd:	scsi command
168  * @data_direction: data direction
169  * @buffer:	data buffer
170  * @bufflen:	len of buffer
171  * @sense:	optional sense buffer
172  * @timeout:	request timeout in seconds
173  * @retries:	number of times to retry request
174  * @flags:	or into request flags;
175  *
176  * returns the req->errors value which is the the scsi_cmnd result
177  * field.
178  **/
179 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
180 		 int data_direction, void *buffer, unsigned bufflen,
181 		 unsigned char *sense, int timeout, int retries, int flags)
182 {
183 	struct request *req;
184 	int write = (data_direction == DMA_TO_DEVICE);
185 	int ret = DRIVER_ERROR << 24;
186 
187 	req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
188 
189 	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
190 					buffer, bufflen, __GFP_WAIT))
191 		goto out;
192 
193 	req->cmd_len = COMMAND_SIZE(cmd[0]);
194 	memcpy(req->cmd, cmd, req->cmd_len);
195 	req->sense = sense;
196 	req->sense_len = 0;
197 	req->retries = retries;
198 	req->timeout = timeout;
199 	req->cmd_type = REQ_TYPE_BLOCK_PC;
200 	req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
201 
202 	/*
203 	 * head injection *required* here otherwise quiesce won't work
204 	 */
205 	blk_execute_rq(req->q, NULL, req, 1);
206 
207 	ret = req->errors;
208  out:
209 	blk_put_request(req);
210 
211 	return ret;
212 }
213 EXPORT_SYMBOL(scsi_execute);
214 
215 
216 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
217 		     int data_direction, void *buffer, unsigned bufflen,
218 		     struct scsi_sense_hdr *sshdr, int timeout, int retries)
219 {
220 	char *sense = NULL;
221 	int result;
222 
223 	if (sshdr) {
224 		sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
225 		if (!sense)
226 			return DRIVER_ERROR << 24;
227 	}
228 	result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
229 			      sense, timeout, retries, 0);
230 	if (sshdr)
231 		scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
232 
233 	kfree(sense);
234 	return result;
235 }
236 EXPORT_SYMBOL(scsi_execute_req);
237 
238 struct scsi_io_context {
239 	void *data;
240 	void (*done)(void *data, char *sense, int result, int resid);
241 	char sense[SCSI_SENSE_BUFFERSIZE];
242 };
243 
244 static struct kmem_cache *scsi_io_context_cache;
245 
246 static void scsi_end_async(struct request *req, int uptodate)
247 {
248 	struct scsi_io_context *sioc = req->end_io_data;
249 
250 	if (sioc->done)
251 		sioc->done(sioc->data, sioc->sense, req->errors, req->data_len);
252 
253 	kmem_cache_free(scsi_io_context_cache, sioc);
254 	__blk_put_request(req->q, req);
255 }
256 
257 static int scsi_merge_bio(struct request *rq, struct bio *bio)
258 {
259 	struct request_queue *q = rq->q;
260 
261 	bio->bi_flags &= ~(1 << BIO_SEG_VALID);
262 	if (rq_data_dir(rq) == WRITE)
263 		bio->bi_rw |= (1 << BIO_RW);
264 	blk_queue_bounce(q, &bio);
265 
266 	if (!rq->bio)
267 		blk_rq_bio_prep(q, rq, bio);
268 	else if (!ll_back_merge_fn(q, rq, bio))
269 		return -EINVAL;
270 	else {
271 		rq->biotail->bi_next = bio;
272 		rq->biotail = bio;
273 	}
274 
275 	return 0;
276 }
277 
278 static int scsi_bi_endio(struct bio *bio, unsigned int bytes_done, int error)
279 {
280 	if (bio->bi_size)
281 		return 1;
282 
283 	bio_put(bio);
284 	return 0;
285 }
286 
287 /**
288  * scsi_req_map_sg - map a scatterlist into a request
289  * @rq:		request to fill
290  * @sg:		scatterlist
291  * @nsegs:	number of elements
292  * @bufflen:	len of buffer
293  * @gfp:	memory allocation flags
294  *
295  * scsi_req_map_sg maps a scatterlist into a request so that the
296  * request can be sent to the block layer. We do not trust the scatterlist
297  * sent to use, as some ULDs use that struct to only organize the pages.
298  */
299 static int scsi_req_map_sg(struct request *rq, struct scatterlist *sgl,
300 			   int nsegs, unsigned bufflen, gfp_t gfp)
301 {
302 	struct request_queue *q = rq->q;
303 	int nr_pages = (bufflen + sgl[0].offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
304 	unsigned int data_len = 0, len, bytes, off;
305 	struct page *page;
306 	struct bio *bio = NULL;
307 	int i, err, nr_vecs = 0;
308 
309 	for (i = 0; i < nsegs; i++) {
310 		page = sgl[i].page;
311 		off = sgl[i].offset;
312 		len = sgl[i].length;
313 		data_len += len;
314 
315 		while (len > 0) {
316 			bytes = min_t(unsigned int, len, PAGE_SIZE - off);
317 
318 			if (!bio) {
319 				nr_vecs = min_t(int, BIO_MAX_PAGES, nr_pages);
320 				nr_pages -= nr_vecs;
321 
322 				bio = bio_alloc(gfp, nr_vecs);
323 				if (!bio) {
324 					err = -ENOMEM;
325 					goto free_bios;
326 				}
327 				bio->bi_end_io = scsi_bi_endio;
328 			}
329 
330 			if (bio_add_pc_page(q, bio, page, bytes, off) !=
331 			    bytes) {
332 				bio_put(bio);
333 				err = -EINVAL;
334 				goto free_bios;
335 			}
336 
337 			if (bio->bi_vcnt >= nr_vecs) {
338 				err = scsi_merge_bio(rq, bio);
339 				if (err) {
340 					bio_endio(bio, bio->bi_size, 0);
341 					goto free_bios;
342 				}
343 				bio = NULL;
344 			}
345 
346 			page++;
347 			len -= bytes;
348 			off = 0;
349 		}
350 	}
351 
352 	rq->buffer = rq->data = NULL;
353 	rq->data_len = data_len;
354 	return 0;
355 
356 free_bios:
357 	while ((bio = rq->bio) != NULL) {
358 		rq->bio = bio->bi_next;
359 		/*
360 		 * call endio instead of bio_put incase it was bounced
361 		 */
362 		bio_endio(bio, bio->bi_size, 0);
363 	}
364 
365 	return err;
366 }
367 
368 /**
369  * scsi_execute_async - insert request
370  * @sdev:	scsi device
371  * @cmd:	scsi command
372  * @cmd_len:	length of scsi cdb
373  * @data_direction: data direction
374  * @buffer:	data buffer (this can be a kernel buffer or scatterlist)
375  * @bufflen:	len of buffer
376  * @use_sg:	if buffer is a scatterlist this is the number of elements
377  * @timeout:	request timeout in seconds
378  * @retries:	number of times to retry request
379  * @flags:	or into request flags
380  **/
381 int scsi_execute_async(struct scsi_device *sdev, const unsigned char *cmd,
382 		       int cmd_len, int data_direction, void *buffer, unsigned bufflen,
383 		       int use_sg, int timeout, int retries, void *privdata,
384 		       void (*done)(void *, char *, int, int), gfp_t gfp)
385 {
386 	struct request *req;
387 	struct scsi_io_context *sioc;
388 	int err = 0;
389 	int write = (data_direction == DMA_TO_DEVICE);
390 
391 	sioc = kmem_cache_zalloc(scsi_io_context_cache, gfp);
392 	if (!sioc)
393 		return DRIVER_ERROR << 24;
394 
395 	req = blk_get_request(sdev->request_queue, write, gfp);
396 	if (!req)
397 		goto free_sense;
398 	req->cmd_type = REQ_TYPE_BLOCK_PC;
399 	req->cmd_flags |= REQ_QUIET;
400 
401 	if (use_sg)
402 		err = scsi_req_map_sg(req, buffer, use_sg, bufflen, gfp);
403 	else if (bufflen)
404 		err = blk_rq_map_kern(req->q, req, buffer, bufflen, gfp);
405 
406 	if (err)
407 		goto free_req;
408 
409 	req->cmd_len = cmd_len;
410 	memset(req->cmd, 0, BLK_MAX_CDB); /* ATAPI hates garbage after CDB */
411 	memcpy(req->cmd, cmd, req->cmd_len);
412 	req->sense = sioc->sense;
413 	req->sense_len = 0;
414 	req->timeout = timeout;
415 	req->retries = retries;
416 	req->end_io_data = sioc;
417 
418 	sioc->data = privdata;
419 	sioc->done = done;
420 
421 	blk_execute_rq_nowait(req->q, NULL, req, 1, scsi_end_async);
422 	return 0;
423 
424 free_req:
425 	blk_put_request(req);
426 free_sense:
427 	kmem_cache_free(scsi_io_context_cache, sioc);
428 	return DRIVER_ERROR << 24;
429 }
430 EXPORT_SYMBOL_GPL(scsi_execute_async);
431 
432 /*
433  * Function:    scsi_init_cmd_errh()
434  *
435  * Purpose:     Initialize cmd fields related to error handling.
436  *
437  * Arguments:   cmd	- command that is ready to be queued.
438  *
439  * Notes:       This function has the job of initializing a number of
440  *              fields related to error handling.   Typically this will
441  *              be called once for each command, as required.
442  */
443 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
444 {
445 	cmd->serial_number = 0;
446 	memset(cmd->sense_buffer, 0, sizeof cmd->sense_buffer);
447 	if (cmd->cmd_len == 0)
448 		cmd->cmd_len = COMMAND_SIZE(cmd->cmnd[0]);
449 }
450 
451 void scsi_device_unbusy(struct scsi_device *sdev)
452 {
453 	struct Scsi_Host *shost = sdev->host;
454 	unsigned long flags;
455 
456 	spin_lock_irqsave(shost->host_lock, flags);
457 	shost->host_busy--;
458 	if (unlikely(scsi_host_in_recovery(shost) &&
459 		     (shost->host_failed || shost->host_eh_scheduled)))
460 		scsi_eh_wakeup(shost);
461 	spin_unlock(shost->host_lock);
462 	spin_lock(sdev->request_queue->queue_lock);
463 	sdev->device_busy--;
464 	spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
465 }
466 
467 /*
468  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
469  * and call blk_run_queue for all the scsi_devices on the target -
470  * including current_sdev first.
471  *
472  * Called with *no* scsi locks held.
473  */
474 static void scsi_single_lun_run(struct scsi_device *current_sdev)
475 {
476 	struct Scsi_Host *shost = current_sdev->host;
477 	struct scsi_device *sdev, *tmp;
478 	struct scsi_target *starget = scsi_target(current_sdev);
479 	unsigned long flags;
480 
481 	spin_lock_irqsave(shost->host_lock, flags);
482 	starget->starget_sdev_user = NULL;
483 	spin_unlock_irqrestore(shost->host_lock, flags);
484 
485 	/*
486 	 * Call blk_run_queue for all LUNs on the target, starting with
487 	 * current_sdev. We race with others (to set starget_sdev_user),
488 	 * but in most cases, we will be first. Ideally, each LU on the
489 	 * target would get some limited time or requests on the target.
490 	 */
491 	blk_run_queue(current_sdev->request_queue);
492 
493 	spin_lock_irqsave(shost->host_lock, flags);
494 	if (starget->starget_sdev_user)
495 		goto out;
496 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
497 			same_target_siblings) {
498 		if (sdev == current_sdev)
499 			continue;
500 		if (scsi_device_get(sdev))
501 			continue;
502 
503 		spin_unlock_irqrestore(shost->host_lock, flags);
504 		blk_run_queue(sdev->request_queue);
505 		spin_lock_irqsave(shost->host_lock, flags);
506 
507 		scsi_device_put(sdev);
508 	}
509  out:
510 	spin_unlock_irqrestore(shost->host_lock, flags);
511 }
512 
513 /*
514  * Function:	scsi_run_queue()
515  *
516  * Purpose:	Select a proper request queue to serve next
517  *
518  * Arguments:	q	- last request's queue
519  *
520  * Returns:     Nothing
521  *
522  * Notes:	The previous command was completely finished, start
523  *		a new one if possible.
524  */
525 static void scsi_run_queue(struct request_queue *q)
526 {
527 	struct scsi_device *sdev = q->queuedata;
528 	struct Scsi_Host *shost = sdev->host;
529 	unsigned long flags;
530 
531 	if (sdev->single_lun)
532 		scsi_single_lun_run(sdev);
533 
534 	spin_lock_irqsave(shost->host_lock, flags);
535 	while (!list_empty(&shost->starved_list) &&
536 	       !shost->host_blocked && !shost->host_self_blocked &&
537 		!((shost->can_queue > 0) &&
538 		  (shost->host_busy >= shost->can_queue))) {
539 		/*
540 		 * As long as shost is accepting commands and we have
541 		 * starved queues, call blk_run_queue. scsi_request_fn
542 		 * drops the queue_lock and can add us back to the
543 		 * starved_list.
544 		 *
545 		 * host_lock protects the starved_list and starved_entry.
546 		 * scsi_request_fn must get the host_lock before checking
547 		 * or modifying starved_list or starved_entry.
548 		 */
549 		sdev = list_entry(shost->starved_list.next,
550 					  struct scsi_device, starved_entry);
551 		list_del_init(&sdev->starved_entry);
552 		spin_unlock_irqrestore(shost->host_lock, flags);
553 
554 
555 		if (test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) &&
556 		    !test_and_set_bit(QUEUE_FLAG_REENTER,
557 				      &sdev->request_queue->queue_flags)) {
558 			blk_run_queue(sdev->request_queue);
559 			clear_bit(QUEUE_FLAG_REENTER,
560 				  &sdev->request_queue->queue_flags);
561 		} else
562 			blk_run_queue(sdev->request_queue);
563 
564 		spin_lock_irqsave(shost->host_lock, flags);
565 		if (unlikely(!list_empty(&sdev->starved_entry)))
566 			/*
567 			 * sdev lost a race, and was put back on the
568 			 * starved list. This is unlikely but without this
569 			 * in theory we could loop forever.
570 			 */
571 			break;
572 	}
573 	spin_unlock_irqrestore(shost->host_lock, flags);
574 
575 	blk_run_queue(q);
576 }
577 
578 /*
579  * Function:	scsi_requeue_command()
580  *
581  * Purpose:	Handle post-processing of completed commands.
582  *
583  * Arguments:	q	- queue to operate on
584  *		cmd	- command that may need to be requeued.
585  *
586  * Returns:	Nothing
587  *
588  * Notes:	After command completion, there may be blocks left
589  *		over which weren't finished by the previous command
590  *		this can be for a number of reasons - the main one is
591  *		I/O errors in the middle of the request, in which case
592  *		we need to request the blocks that come after the bad
593  *		sector.
594  * Notes:	Upon return, cmd is a stale pointer.
595  */
596 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
597 {
598 	struct request *req = cmd->request;
599 	unsigned long flags;
600 
601 	scsi_unprep_request(req);
602 	spin_lock_irqsave(q->queue_lock, flags);
603 	blk_requeue_request(q, req);
604 	spin_unlock_irqrestore(q->queue_lock, flags);
605 
606 	scsi_run_queue(q);
607 }
608 
609 void scsi_next_command(struct scsi_cmnd *cmd)
610 {
611 	struct scsi_device *sdev = cmd->device;
612 	struct request_queue *q = sdev->request_queue;
613 
614 	/* need to hold a reference on the device before we let go of the cmd */
615 	get_device(&sdev->sdev_gendev);
616 
617 	scsi_put_command(cmd);
618 	scsi_run_queue(q);
619 
620 	/* ok to remove device now */
621 	put_device(&sdev->sdev_gendev);
622 }
623 
624 void scsi_run_host_queues(struct Scsi_Host *shost)
625 {
626 	struct scsi_device *sdev;
627 
628 	shost_for_each_device(sdev, shost)
629 		scsi_run_queue(sdev->request_queue);
630 }
631 
632 /*
633  * Function:    scsi_end_request()
634  *
635  * Purpose:     Post-processing of completed commands (usually invoked at end
636  *		of upper level post-processing and scsi_io_completion).
637  *
638  * Arguments:   cmd	 - command that is complete.
639  *              uptodate - 1 if I/O indicates success, <= 0 for I/O error.
640  *              bytes    - number of bytes of completed I/O
641  *		requeue  - indicates whether we should requeue leftovers.
642  *
643  * Lock status: Assumed that lock is not held upon entry.
644  *
645  * Returns:     cmd if requeue required, NULL otherwise.
646  *
647  * Notes:       This is called for block device requests in order to
648  *              mark some number of sectors as complete.
649  *
650  *		We are guaranteeing that the request queue will be goosed
651  *		at some point during this call.
652  * Notes:	If cmd was requeued, upon return it will be a stale pointer.
653  */
654 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int uptodate,
655 					  int bytes, int requeue)
656 {
657 	request_queue_t *q = cmd->device->request_queue;
658 	struct request *req = cmd->request;
659 	unsigned long flags;
660 
661 	/*
662 	 * If there are blocks left over at the end, set up the command
663 	 * to queue the remainder of them.
664 	 */
665 	if (end_that_request_chunk(req, uptodate, bytes)) {
666 		int leftover = (req->hard_nr_sectors << 9);
667 
668 		if (blk_pc_request(req))
669 			leftover = req->data_len;
670 
671 		/* kill remainder if no retrys */
672 		if (!uptodate && blk_noretry_request(req))
673 			end_that_request_chunk(req, 0, leftover);
674 		else {
675 			if (requeue) {
676 				/*
677 				 * Bleah.  Leftovers again.  Stick the
678 				 * leftovers in the front of the
679 				 * queue, and goose the queue again.
680 				 */
681 				scsi_requeue_command(q, cmd);
682 				cmd = NULL;
683 			}
684 			return cmd;
685 		}
686 	}
687 
688 	add_disk_randomness(req->rq_disk);
689 
690 	spin_lock_irqsave(q->queue_lock, flags);
691 	if (blk_rq_tagged(req))
692 		blk_queue_end_tag(q, req);
693 	end_that_request_last(req, uptodate);
694 	spin_unlock_irqrestore(q->queue_lock, flags);
695 
696 	/*
697 	 * This will goose the queue request function at the end, so we don't
698 	 * need to worry about launching another command.
699 	 */
700 	scsi_next_command(cmd);
701 	return NULL;
702 }
703 
704 struct scatterlist *scsi_alloc_sgtable(struct scsi_cmnd *cmd, gfp_t gfp_mask)
705 {
706 	struct scsi_host_sg_pool *sgp;
707 	struct scatterlist *sgl;
708 
709 	BUG_ON(!cmd->use_sg);
710 
711 	switch (cmd->use_sg) {
712 	case 1 ... 8:
713 		cmd->sglist_len = 0;
714 		break;
715 	case 9 ... 16:
716 		cmd->sglist_len = 1;
717 		break;
718 	case 17 ... 32:
719 		cmd->sglist_len = 2;
720 		break;
721 #if (SCSI_MAX_PHYS_SEGMENTS > 32)
722 	case 33 ... 64:
723 		cmd->sglist_len = 3;
724 		break;
725 #if (SCSI_MAX_PHYS_SEGMENTS > 64)
726 	case 65 ... 128:
727 		cmd->sglist_len = 4;
728 		break;
729 #if (SCSI_MAX_PHYS_SEGMENTS  > 128)
730 	case 129 ... 256:
731 		cmd->sglist_len = 5;
732 		break;
733 #endif
734 #endif
735 #endif
736 	default:
737 		return NULL;
738 	}
739 
740 	sgp = scsi_sg_pools + cmd->sglist_len;
741 	sgl = mempool_alloc(sgp->pool, gfp_mask);
742 	return sgl;
743 }
744 
745 EXPORT_SYMBOL(scsi_alloc_sgtable);
746 
747 void scsi_free_sgtable(struct scatterlist *sgl, int index)
748 {
749 	struct scsi_host_sg_pool *sgp;
750 
751 	BUG_ON(index >= SG_MEMPOOL_NR);
752 
753 	sgp = scsi_sg_pools + index;
754 	mempool_free(sgl, sgp->pool);
755 }
756 
757 EXPORT_SYMBOL(scsi_free_sgtable);
758 
759 /*
760  * Function:    scsi_release_buffers()
761  *
762  * Purpose:     Completion processing for block device I/O requests.
763  *
764  * Arguments:   cmd	- command that we are bailing.
765  *
766  * Lock status: Assumed that no lock is held upon entry.
767  *
768  * Returns:     Nothing
769  *
770  * Notes:       In the event that an upper level driver rejects a
771  *		command, we must release resources allocated during
772  *		the __init_io() function.  Primarily this would involve
773  *		the scatter-gather table, and potentially any bounce
774  *		buffers.
775  */
776 static void scsi_release_buffers(struct scsi_cmnd *cmd)
777 {
778 	if (cmd->use_sg)
779 		scsi_free_sgtable(cmd->request_buffer, cmd->sglist_len);
780 
781 	/*
782 	 * Zero these out.  They now point to freed memory, and it is
783 	 * dangerous to hang onto the pointers.
784 	 */
785 	cmd->request_buffer = NULL;
786 	cmd->request_bufflen = 0;
787 }
788 
789 /*
790  * Function:    scsi_io_completion()
791  *
792  * Purpose:     Completion processing for block device I/O requests.
793  *
794  * Arguments:   cmd   - command that is finished.
795  *
796  * Lock status: Assumed that no lock is held upon entry.
797  *
798  * Returns:     Nothing
799  *
800  * Notes:       This function is matched in terms of capabilities to
801  *              the function that created the scatter-gather list.
802  *              In other words, if there are no bounce buffers
803  *              (the normal case for most drivers), we don't need
804  *              the logic to deal with cleaning up afterwards.
805  *
806  *		We must do one of several things here:
807  *
808  *		a) Call scsi_end_request.  This will finish off the
809  *		   specified number of sectors.  If we are done, the
810  *		   command block will be released, and the queue
811  *		   function will be goosed.  If we are not done, then
812  *		   scsi_end_request will directly goose the queue.
813  *
814  *		b) We can just use scsi_requeue_command() here.  This would
815  *		   be used if we just wanted to retry, for example.
816  */
817 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
818 {
819 	int result = cmd->result;
820 	int this_count = cmd->request_bufflen;
821 	request_queue_t *q = cmd->device->request_queue;
822 	struct request *req = cmd->request;
823 	int clear_errors = 1;
824 	struct scsi_sense_hdr sshdr;
825 	int sense_valid = 0;
826 	int sense_deferred = 0;
827 
828 	scsi_release_buffers(cmd);
829 
830 	if (result) {
831 		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
832 		if (sense_valid)
833 			sense_deferred = scsi_sense_is_deferred(&sshdr);
834 	}
835 
836 	if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
837 		req->errors = result;
838 		if (result) {
839 			clear_errors = 0;
840 			if (sense_valid && req->sense) {
841 				/*
842 				 * SG_IO wants current and deferred errors
843 				 */
844 				int len = 8 + cmd->sense_buffer[7];
845 
846 				if (len > SCSI_SENSE_BUFFERSIZE)
847 					len = SCSI_SENSE_BUFFERSIZE;
848 				memcpy(req->sense, cmd->sense_buffer,  len);
849 				req->sense_len = len;
850 			}
851 		} else
852 			req->data_len = cmd->resid;
853 	}
854 
855 	/*
856 	 * Next deal with any sectors which we were able to correctly
857 	 * handle.
858 	 */
859 	SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, "
860 				      "%d bytes done.\n",
861 				      req->nr_sectors, good_bytes));
862 	SCSI_LOG_HLCOMPLETE(1, printk("use_sg is %d\n", cmd->use_sg));
863 
864 	if (clear_errors)
865 		req->errors = 0;
866 
867 	/* A number of bytes were successfully read.  If there
868 	 * are leftovers and there is some kind of error
869 	 * (result != 0), retry the rest.
870 	 */
871 	if (scsi_end_request(cmd, 1, good_bytes, result == 0) == NULL)
872 		return;
873 
874 	/* good_bytes = 0, or (inclusive) there were leftovers and
875 	 * result = 0, so scsi_end_request couldn't retry.
876 	 */
877 	if (sense_valid && !sense_deferred) {
878 		switch (sshdr.sense_key) {
879 		case UNIT_ATTENTION:
880 			if (cmd->device->removable) {
881 				/* Detected disc change.  Set a bit
882 				 * and quietly refuse further access.
883 				 */
884 				cmd->device->changed = 1;
885 				scsi_end_request(cmd, 0, this_count, 1);
886 				return;
887 			} else {
888 				/* Must have been a power glitch, or a
889 				 * bus reset.  Could not have been a
890 				 * media change, so we just retry the
891 				 * request and see what happens.
892 				 */
893 				scsi_requeue_command(q, cmd);
894 				return;
895 			}
896 			break;
897 		case ILLEGAL_REQUEST:
898 			/* If we had an ILLEGAL REQUEST returned, then
899 			 * we may have performed an unsupported
900 			 * command.  The only thing this should be
901 			 * would be a ten byte read where only a six
902 			 * byte read was supported.  Also, on a system
903 			 * where READ CAPACITY failed, we may have
904 			 * read past the end of the disk.
905 			 */
906 			if ((cmd->device->use_10_for_rw &&
907 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
908 			    (cmd->cmnd[0] == READ_10 ||
909 			     cmd->cmnd[0] == WRITE_10)) {
910 				cmd->device->use_10_for_rw = 0;
911 				/* This will cause a retry with a
912 				 * 6-byte command.
913 				 */
914 				scsi_requeue_command(q, cmd);
915 				return;
916 			} else {
917 				scsi_end_request(cmd, 0, this_count, 1);
918 				return;
919 			}
920 			break;
921 		case NOT_READY:
922 			/* If the device is in the process of becoming
923 			 * ready, or has a temporary blockage, retry.
924 			 */
925 			if (sshdr.asc == 0x04) {
926 				switch (sshdr.ascq) {
927 				case 0x01: /* becoming ready */
928 				case 0x04: /* format in progress */
929 				case 0x05: /* rebuild in progress */
930 				case 0x06: /* recalculation in progress */
931 				case 0x07: /* operation in progress */
932 				case 0x08: /* Long write in progress */
933 				case 0x09: /* self test in progress */
934 					scsi_requeue_command(q, cmd);
935 					return;
936 				default:
937 					break;
938 				}
939 			}
940 			if (!(req->cmd_flags & REQ_QUIET)) {
941 				scmd_printk(KERN_INFO, cmd,
942 					    "Device not ready: ");
943 				scsi_print_sense_hdr("", &sshdr);
944 			}
945 			scsi_end_request(cmd, 0, this_count, 1);
946 			return;
947 		case VOLUME_OVERFLOW:
948 			if (!(req->cmd_flags & REQ_QUIET)) {
949 				scmd_printk(KERN_INFO, cmd,
950 					    "Volume overflow, CDB: ");
951 				__scsi_print_command(cmd->cmnd);
952 				scsi_print_sense("", cmd);
953 			}
954 			/* See SSC3rXX or current. */
955 			scsi_end_request(cmd, 0, this_count, 1);
956 			return;
957 		default:
958 			break;
959 		}
960 	}
961 	if (host_byte(result) == DID_RESET) {
962 		/* Third party bus reset or reset for error recovery
963 		 * reasons.  Just retry the request and see what
964 		 * happens.
965 		 */
966 		scsi_requeue_command(q, cmd);
967 		return;
968 	}
969 	if (result) {
970 		if (!(req->cmd_flags & REQ_QUIET)) {
971 			scmd_printk(KERN_INFO, cmd,
972 				    "SCSI error: return code = 0x%08x\n",
973 				    result);
974 			if (driver_byte(result) & DRIVER_SENSE)
975 				scsi_print_sense("", cmd);
976 		}
977 	}
978 	scsi_end_request(cmd, 0, this_count, !result);
979 }
980 EXPORT_SYMBOL(scsi_io_completion);
981 
982 /*
983  * Function:    scsi_init_io()
984  *
985  * Purpose:     SCSI I/O initialize function.
986  *
987  * Arguments:   cmd   - Command descriptor we wish to initialize
988  *
989  * Returns:     0 on success
990  *		BLKPREP_DEFER if the failure is retryable
991  *		BLKPREP_KILL if the failure is fatal
992  */
993 static int scsi_init_io(struct scsi_cmnd *cmd)
994 {
995 	struct request     *req = cmd->request;
996 	struct scatterlist *sgpnt;
997 	int		   count;
998 
999 	/*
1000 	 * We used to not use scatter-gather for single segment request,
1001 	 * but now we do (it makes highmem I/O easier to support without
1002 	 * kmapping pages)
1003 	 */
1004 	cmd->use_sg = req->nr_phys_segments;
1005 
1006 	/*
1007 	 * If sg table allocation fails, requeue request later.
1008 	 */
1009 	sgpnt = scsi_alloc_sgtable(cmd, GFP_ATOMIC);
1010 	if (unlikely(!sgpnt)) {
1011 		scsi_unprep_request(req);
1012 		return BLKPREP_DEFER;
1013 	}
1014 
1015 	req->buffer = NULL;
1016 	cmd->request_buffer = (char *) sgpnt;
1017 	if (blk_pc_request(req))
1018 		cmd->request_bufflen = req->data_len;
1019 	else
1020 		cmd->request_bufflen = req->nr_sectors << 9;
1021 
1022 	/*
1023 	 * Next, walk the list, and fill in the addresses and sizes of
1024 	 * each segment.
1025 	 */
1026 	count = blk_rq_map_sg(req->q, req, cmd->request_buffer);
1027 	if (likely(count <= cmd->use_sg)) {
1028 		cmd->use_sg = count;
1029 		return BLKPREP_OK;
1030 	}
1031 
1032 	printk(KERN_ERR "Incorrect number of segments after building list\n");
1033 	printk(KERN_ERR "counted %d, received %d\n", count, cmd->use_sg);
1034 	printk(KERN_ERR "req nr_sec %lu, cur_nr_sec %u\n", req->nr_sectors,
1035 			req->current_nr_sectors);
1036 
1037 	/* release the command and kill it */
1038 	scsi_release_buffers(cmd);
1039 	scsi_put_command(cmd);
1040 	return BLKPREP_KILL;
1041 }
1042 
1043 static int scsi_issue_flush_fn(request_queue_t *q, struct gendisk *disk,
1044 			       sector_t *error_sector)
1045 {
1046 	struct scsi_device *sdev = q->queuedata;
1047 	struct scsi_driver *drv;
1048 
1049 	if (sdev->sdev_state != SDEV_RUNNING)
1050 		return -ENXIO;
1051 
1052 	drv = *(struct scsi_driver **) disk->private_data;
1053 	if (drv->issue_flush)
1054 		return drv->issue_flush(&sdev->sdev_gendev, error_sector);
1055 
1056 	return -EOPNOTSUPP;
1057 }
1058 
1059 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1060 		struct request *req)
1061 {
1062 	struct scsi_cmnd *cmd;
1063 
1064 	if (!req->special) {
1065 		cmd = scsi_get_command(sdev, GFP_ATOMIC);
1066 		if (unlikely(!cmd))
1067 			return NULL;
1068 		req->special = cmd;
1069 	} else {
1070 		cmd = req->special;
1071 	}
1072 
1073 	/* pull a tag out of the request if we have one */
1074 	cmd->tag = req->tag;
1075 	cmd->request = req;
1076 
1077 	return cmd;
1078 }
1079 
1080 static void scsi_blk_pc_done(struct scsi_cmnd *cmd)
1081 {
1082 	BUG_ON(!blk_pc_request(cmd->request));
1083 	/*
1084 	 * This will complete the whole command with uptodate=1 so
1085 	 * as far as the block layer is concerned the command completed
1086 	 * successfully. Since this is a REQ_BLOCK_PC command the
1087 	 * caller should check the request's errors value
1088 	 */
1089 	scsi_io_completion(cmd, cmd->request_bufflen);
1090 }
1091 
1092 static int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1093 {
1094 	struct scsi_cmnd *cmd;
1095 
1096 	cmd = scsi_get_cmd_from_req(sdev, req);
1097 	if (unlikely(!cmd))
1098 		return BLKPREP_DEFER;
1099 
1100 	/*
1101 	 * BLOCK_PC requests may transfer data, in which case they must
1102 	 * a bio attached to them.  Or they might contain a SCSI command
1103 	 * that does not transfer data, in which case they may optionally
1104 	 * submit a request without an attached bio.
1105 	 */
1106 	if (req->bio) {
1107 		int ret;
1108 
1109 		BUG_ON(!req->nr_phys_segments);
1110 
1111 		ret = scsi_init_io(cmd);
1112 		if (unlikely(ret))
1113 			return ret;
1114 	} else {
1115 		BUG_ON(req->data_len);
1116 		BUG_ON(req->data);
1117 
1118 		cmd->request_bufflen = 0;
1119 		cmd->request_buffer = NULL;
1120 		cmd->use_sg = 0;
1121 		req->buffer = NULL;
1122 	}
1123 
1124 	BUILD_BUG_ON(sizeof(req->cmd) > sizeof(cmd->cmnd));
1125 	memcpy(cmd->cmnd, req->cmd, sizeof(cmd->cmnd));
1126 	cmd->cmd_len = req->cmd_len;
1127 	if (!req->data_len)
1128 		cmd->sc_data_direction = DMA_NONE;
1129 	else if (rq_data_dir(req) == WRITE)
1130 		cmd->sc_data_direction = DMA_TO_DEVICE;
1131 	else
1132 		cmd->sc_data_direction = DMA_FROM_DEVICE;
1133 
1134 	cmd->transfersize = req->data_len;
1135 	cmd->allowed = req->retries;
1136 	cmd->timeout_per_command = req->timeout;
1137 	cmd->done = scsi_blk_pc_done;
1138 	return BLKPREP_OK;
1139 }
1140 
1141 /*
1142  * Setup a REQ_TYPE_FS command.  These are simple read/write request
1143  * from filesystems that still need to be translated to SCSI CDBs from
1144  * the ULD.
1145  */
1146 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1147 {
1148 	struct scsi_cmnd *cmd;
1149 	struct scsi_driver *drv;
1150 	int ret;
1151 
1152 	/*
1153 	 * Filesystem requests must transfer data.
1154 	 */
1155 	BUG_ON(!req->nr_phys_segments);
1156 
1157 	cmd = scsi_get_cmd_from_req(sdev, req);
1158 	if (unlikely(!cmd))
1159 		return BLKPREP_DEFER;
1160 
1161 	ret = scsi_init_io(cmd);
1162 	if (unlikely(ret))
1163 		return ret;
1164 
1165 	/*
1166 	 * Initialize the actual SCSI command for this request.
1167 	 */
1168 	drv = *(struct scsi_driver **)req->rq_disk->private_data;
1169 	if (unlikely(!drv->init_command(cmd))) {
1170 		scsi_release_buffers(cmd);
1171 		scsi_put_command(cmd);
1172 		return BLKPREP_KILL;
1173 	}
1174 
1175 	return BLKPREP_OK;
1176 }
1177 
1178 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1179 {
1180 	struct scsi_device *sdev = q->queuedata;
1181 	int ret = BLKPREP_OK;
1182 
1183 	/*
1184 	 * If the device is not in running state we will reject some
1185 	 * or all commands.
1186 	 */
1187 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1188 		switch (sdev->sdev_state) {
1189 		case SDEV_OFFLINE:
1190 			/*
1191 			 * If the device is offline we refuse to process any
1192 			 * commands.  The device must be brought online
1193 			 * before trying any recovery commands.
1194 			 */
1195 			sdev_printk(KERN_ERR, sdev,
1196 				    "rejecting I/O to offline device\n");
1197 			ret = BLKPREP_KILL;
1198 			break;
1199 		case SDEV_DEL:
1200 			/*
1201 			 * If the device is fully deleted, we refuse to
1202 			 * process any commands as well.
1203 			 */
1204 			sdev_printk(KERN_ERR, sdev,
1205 				    "rejecting I/O to dead device\n");
1206 			ret = BLKPREP_KILL;
1207 			break;
1208 		case SDEV_QUIESCE:
1209 		case SDEV_BLOCK:
1210 			/*
1211 			 * If the devices is blocked we defer normal commands.
1212 			 */
1213 			if (!(req->cmd_flags & REQ_PREEMPT))
1214 				ret = BLKPREP_DEFER;
1215 			break;
1216 		default:
1217 			/*
1218 			 * For any other not fully online state we only allow
1219 			 * special commands.  In particular any user initiated
1220 			 * command is not allowed.
1221 			 */
1222 			if (!(req->cmd_flags & REQ_PREEMPT))
1223 				ret = BLKPREP_KILL;
1224 			break;
1225 		}
1226 
1227 		if (ret != BLKPREP_OK)
1228 			goto out;
1229 	}
1230 
1231 	switch (req->cmd_type) {
1232 	case REQ_TYPE_BLOCK_PC:
1233 		ret = scsi_setup_blk_pc_cmnd(sdev, req);
1234 		break;
1235 	case REQ_TYPE_FS:
1236 		ret = scsi_setup_fs_cmnd(sdev, req);
1237 		break;
1238 	default:
1239 		/*
1240 		 * All other command types are not supported.
1241 		 *
1242 		 * Note that these days the SCSI subsystem does not use
1243 		 * REQ_TYPE_SPECIAL requests anymore.  These are only used
1244 		 * (directly or via blk_insert_request) by non-SCSI drivers.
1245 		 */
1246 		blk_dump_rq_flags(req, "SCSI bad req");
1247 		ret = BLKPREP_KILL;
1248 		break;
1249 	}
1250 
1251  out:
1252 	switch (ret) {
1253 	case BLKPREP_KILL:
1254 		req->errors = DID_NO_CONNECT << 16;
1255 		break;
1256 	case BLKPREP_DEFER:
1257 		/*
1258 		 * If we defer, the elv_next_request() returns NULL, but the
1259 		 * queue must be restarted, so we plug here if no returning
1260 		 * command will automatically do that.
1261 		 */
1262 		if (sdev->device_busy == 0)
1263 			blk_plug_device(q);
1264 		break;
1265 	default:
1266 		req->cmd_flags |= REQ_DONTPREP;
1267 	}
1268 
1269 	return ret;
1270 }
1271 
1272 /*
1273  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1274  * return 0.
1275  *
1276  * Called with the queue_lock held.
1277  */
1278 static inline int scsi_dev_queue_ready(struct request_queue *q,
1279 				  struct scsi_device *sdev)
1280 {
1281 	if (sdev->device_busy >= sdev->queue_depth)
1282 		return 0;
1283 	if (sdev->device_busy == 0 && sdev->device_blocked) {
1284 		/*
1285 		 * unblock after device_blocked iterates to zero
1286 		 */
1287 		if (--sdev->device_blocked == 0) {
1288 			SCSI_LOG_MLQUEUE(3,
1289 				   sdev_printk(KERN_INFO, sdev,
1290 				   "unblocking device at zero depth\n"));
1291 		} else {
1292 			blk_plug_device(q);
1293 			return 0;
1294 		}
1295 	}
1296 	if (sdev->device_blocked)
1297 		return 0;
1298 
1299 	return 1;
1300 }
1301 
1302 /*
1303  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1304  * return 0. We must end up running the queue again whenever 0 is
1305  * returned, else IO can hang.
1306  *
1307  * Called with host_lock held.
1308  */
1309 static inline int scsi_host_queue_ready(struct request_queue *q,
1310 				   struct Scsi_Host *shost,
1311 				   struct scsi_device *sdev)
1312 {
1313 	if (scsi_host_in_recovery(shost))
1314 		return 0;
1315 	if (shost->host_busy == 0 && shost->host_blocked) {
1316 		/*
1317 		 * unblock after host_blocked iterates to zero
1318 		 */
1319 		if (--shost->host_blocked == 0) {
1320 			SCSI_LOG_MLQUEUE(3,
1321 				printk("scsi%d unblocking host at zero depth\n",
1322 					shost->host_no));
1323 		} else {
1324 			blk_plug_device(q);
1325 			return 0;
1326 		}
1327 	}
1328 	if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
1329 	    shost->host_blocked || shost->host_self_blocked) {
1330 		if (list_empty(&sdev->starved_entry))
1331 			list_add_tail(&sdev->starved_entry, &shost->starved_list);
1332 		return 0;
1333 	}
1334 
1335 	/* We're OK to process the command, so we can't be starved */
1336 	if (!list_empty(&sdev->starved_entry))
1337 		list_del_init(&sdev->starved_entry);
1338 
1339 	return 1;
1340 }
1341 
1342 /*
1343  * Kill a request for a dead device
1344  */
1345 static void scsi_kill_request(struct request *req, request_queue_t *q)
1346 {
1347 	struct scsi_cmnd *cmd = req->special;
1348 	struct scsi_device *sdev = cmd->device;
1349 	struct Scsi_Host *shost = sdev->host;
1350 
1351 	blkdev_dequeue_request(req);
1352 
1353 	if (unlikely(cmd == NULL)) {
1354 		printk(KERN_CRIT "impossible request in %s.\n",
1355 				 __FUNCTION__);
1356 		BUG();
1357 	}
1358 
1359 	scsi_init_cmd_errh(cmd);
1360 	cmd->result = DID_NO_CONNECT << 16;
1361 	atomic_inc(&cmd->device->iorequest_cnt);
1362 
1363 	/*
1364 	 * SCSI request completion path will do scsi_device_unbusy(),
1365 	 * bump busy counts.  To bump the counters, we need to dance
1366 	 * with the locks as normal issue path does.
1367 	 */
1368 	sdev->device_busy++;
1369 	spin_unlock(sdev->request_queue->queue_lock);
1370 	spin_lock(shost->host_lock);
1371 	shost->host_busy++;
1372 	spin_unlock(shost->host_lock);
1373 	spin_lock(sdev->request_queue->queue_lock);
1374 
1375 	__scsi_done(cmd);
1376 }
1377 
1378 static void scsi_softirq_done(struct request *rq)
1379 {
1380 	struct scsi_cmnd *cmd = rq->completion_data;
1381 	unsigned long wait_for = (cmd->allowed + 1) * cmd->timeout_per_command;
1382 	int disposition;
1383 
1384 	INIT_LIST_HEAD(&cmd->eh_entry);
1385 
1386 	disposition = scsi_decide_disposition(cmd);
1387 	if (disposition != SUCCESS &&
1388 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1389 		sdev_printk(KERN_ERR, cmd->device,
1390 			    "timing out command, waited %lus\n",
1391 			    wait_for/HZ);
1392 		disposition = SUCCESS;
1393 	}
1394 
1395 	scsi_log_completion(cmd, disposition);
1396 
1397 	switch (disposition) {
1398 		case SUCCESS:
1399 			scsi_finish_command(cmd);
1400 			break;
1401 		case NEEDS_RETRY:
1402 			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1403 			break;
1404 		case ADD_TO_MLQUEUE:
1405 			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1406 			break;
1407 		default:
1408 			if (!scsi_eh_scmd_add(cmd, 0))
1409 				scsi_finish_command(cmd);
1410 	}
1411 }
1412 
1413 /*
1414  * Function:    scsi_request_fn()
1415  *
1416  * Purpose:     Main strategy routine for SCSI.
1417  *
1418  * Arguments:   q       - Pointer to actual queue.
1419  *
1420  * Returns:     Nothing
1421  *
1422  * Lock status: IO request lock assumed to be held when called.
1423  */
1424 static void scsi_request_fn(struct request_queue *q)
1425 {
1426 	struct scsi_device *sdev = q->queuedata;
1427 	struct Scsi_Host *shost;
1428 	struct scsi_cmnd *cmd;
1429 	struct request *req;
1430 
1431 	if (!sdev) {
1432 		printk("scsi: killing requests for dead queue\n");
1433 		while ((req = elv_next_request(q)) != NULL)
1434 			scsi_kill_request(req, q);
1435 		return;
1436 	}
1437 
1438 	if(!get_device(&sdev->sdev_gendev))
1439 		/* We must be tearing the block queue down already */
1440 		return;
1441 
1442 	/*
1443 	 * To start with, we keep looping until the queue is empty, or until
1444 	 * the host is no longer able to accept any more requests.
1445 	 */
1446 	shost = sdev->host;
1447 	while (!blk_queue_plugged(q)) {
1448 		int rtn;
1449 		/*
1450 		 * get next queueable request.  We do this early to make sure
1451 		 * that the request is fully prepared even if we cannot
1452 		 * accept it.
1453 		 */
1454 		req = elv_next_request(q);
1455 		if (!req || !scsi_dev_queue_ready(q, sdev))
1456 			break;
1457 
1458 		if (unlikely(!scsi_device_online(sdev))) {
1459 			sdev_printk(KERN_ERR, sdev,
1460 				    "rejecting I/O to offline device\n");
1461 			scsi_kill_request(req, q);
1462 			continue;
1463 		}
1464 
1465 
1466 		/*
1467 		 * Remove the request from the request list.
1468 		 */
1469 		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1470 			blkdev_dequeue_request(req);
1471 		sdev->device_busy++;
1472 
1473 		spin_unlock(q->queue_lock);
1474 		cmd = req->special;
1475 		if (unlikely(cmd == NULL)) {
1476 			printk(KERN_CRIT "impossible request in %s.\n"
1477 					 "please mail a stack trace to "
1478 					 "linux-scsi@vger.kernel.org\n",
1479 					 __FUNCTION__);
1480 			blk_dump_rq_flags(req, "foo");
1481 			BUG();
1482 		}
1483 		spin_lock(shost->host_lock);
1484 
1485 		if (!scsi_host_queue_ready(q, shost, sdev))
1486 			goto not_ready;
1487 		if (sdev->single_lun) {
1488 			if (scsi_target(sdev)->starget_sdev_user &&
1489 			    scsi_target(sdev)->starget_sdev_user != sdev)
1490 				goto not_ready;
1491 			scsi_target(sdev)->starget_sdev_user = sdev;
1492 		}
1493 		shost->host_busy++;
1494 
1495 		/*
1496 		 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1497 		 *		take the lock again.
1498 		 */
1499 		spin_unlock_irq(shost->host_lock);
1500 
1501 		/*
1502 		 * Finally, initialize any error handling parameters, and set up
1503 		 * the timers for timeouts.
1504 		 */
1505 		scsi_init_cmd_errh(cmd);
1506 
1507 		/*
1508 		 * Dispatch the command to the low-level driver.
1509 		 */
1510 		rtn = scsi_dispatch_cmd(cmd);
1511 		spin_lock_irq(q->queue_lock);
1512 		if(rtn) {
1513 			/* we're refusing the command; because of
1514 			 * the way locks get dropped, we need to
1515 			 * check here if plugging is required */
1516 			if(sdev->device_busy == 0)
1517 				blk_plug_device(q);
1518 
1519 			break;
1520 		}
1521 	}
1522 
1523 	goto out;
1524 
1525  not_ready:
1526 	spin_unlock_irq(shost->host_lock);
1527 
1528 	/*
1529 	 * lock q, handle tag, requeue req, and decrement device_busy. We
1530 	 * must return with queue_lock held.
1531 	 *
1532 	 * Decrementing device_busy without checking it is OK, as all such
1533 	 * cases (host limits or settings) should run the queue at some
1534 	 * later time.
1535 	 */
1536 	spin_lock_irq(q->queue_lock);
1537 	blk_requeue_request(q, req);
1538 	sdev->device_busy--;
1539 	if(sdev->device_busy == 0)
1540 		blk_plug_device(q);
1541  out:
1542 	/* must be careful here...if we trigger the ->remove() function
1543 	 * we cannot be holding the q lock */
1544 	spin_unlock_irq(q->queue_lock);
1545 	put_device(&sdev->sdev_gendev);
1546 	spin_lock_irq(q->queue_lock);
1547 }
1548 
1549 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1550 {
1551 	struct device *host_dev;
1552 	u64 bounce_limit = 0xffffffff;
1553 
1554 	if (shost->unchecked_isa_dma)
1555 		return BLK_BOUNCE_ISA;
1556 	/*
1557 	 * Platforms with virtual-DMA translation
1558 	 * hardware have no practical limit.
1559 	 */
1560 	if (!PCI_DMA_BUS_IS_PHYS)
1561 		return BLK_BOUNCE_ANY;
1562 
1563 	host_dev = scsi_get_device(shost);
1564 	if (host_dev && host_dev->dma_mask)
1565 		bounce_limit = *host_dev->dma_mask;
1566 
1567 	return bounce_limit;
1568 }
1569 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1570 
1571 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1572 					 request_fn_proc *request_fn)
1573 {
1574 	struct request_queue *q;
1575 
1576 	q = blk_init_queue(request_fn, NULL);
1577 	if (!q)
1578 		return NULL;
1579 
1580 	blk_queue_max_hw_segments(q, shost->sg_tablesize);
1581 	blk_queue_max_phys_segments(q, SCSI_MAX_PHYS_SEGMENTS);
1582 	blk_queue_max_sectors(q, shost->max_sectors);
1583 	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1584 	blk_queue_segment_boundary(q, shost->dma_boundary);
1585 
1586 	if (!shost->use_clustering)
1587 		clear_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags);
1588 	return q;
1589 }
1590 EXPORT_SYMBOL(__scsi_alloc_queue);
1591 
1592 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1593 {
1594 	struct request_queue *q;
1595 
1596 	q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1597 	if (!q)
1598 		return NULL;
1599 
1600 	blk_queue_prep_rq(q, scsi_prep_fn);
1601 	blk_queue_issue_flush_fn(q, scsi_issue_flush_fn);
1602 	blk_queue_softirq_done(q, scsi_softirq_done);
1603 	return q;
1604 }
1605 
1606 void scsi_free_queue(struct request_queue *q)
1607 {
1608 	blk_cleanup_queue(q);
1609 }
1610 
1611 /*
1612  * Function:    scsi_block_requests()
1613  *
1614  * Purpose:     Utility function used by low-level drivers to prevent further
1615  *		commands from being queued to the device.
1616  *
1617  * Arguments:   shost       - Host in question
1618  *
1619  * Returns:     Nothing
1620  *
1621  * Lock status: No locks are assumed held.
1622  *
1623  * Notes:       There is no timer nor any other means by which the requests
1624  *		get unblocked other than the low-level driver calling
1625  *		scsi_unblock_requests().
1626  */
1627 void scsi_block_requests(struct Scsi_Host *shost)
1628 {
1629 	shost->host_self_blocked = 1;
1630 }
1631 EXPORT_SYMBOL(scsi_block_requests);
1632 
1633 /*
1634  * Function:    scsi_unblock_requests()
1635  *
1636  * Purpose:     Utility function used by low-level drivers to allow further
1637  *		commands from being queued to the device.
1638  *
1639  * Arguments:   shost       - Host in question
1640  *
1641  * Returns:     Nothing
1642  *
1643  * Lock status: No locks are assumed held.
1644  *
1645  * Notes:       There is no timer nor any other means by which the requests
1646  *		get unblocked other than the low-level driver calling
1647  *		scsi_unblock_requests().
1648  *
1649  *		This is done as an API function so that changes to the
1650  *		internals of the scsi mid-layer won't require wholesale
1651  *		changes to drivers that use this feature.
1652  */
1653 void scsi_unblock_requests(struct Scsi_Host *shost)
1654 {
1655 	shost->host_self_blocked = 0;
1656 	scsi_run_host_queues(shost);
1657 }
1658 EXPORT_SYMBOL(scsi_unblock_requests);
1659 
1660 int __init scsi_init_queue(void)
1661 {
1662 	int i;
1663 
1664 	scsi_io_context_cache = kmem_cache_create("scsi_io_context",
1665 					sizeof(struct scsi_io_context),
1666 					0, 0, NULL, NULL);
1667 	if (!scsi_io_context_cache) {
1668 		printk(KERN_ERR "SCSI: can't init scsi io context cache\n");
1669 		return -ENOMEM;
1670 	}
1671 
1672 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1673 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1674 		int size = sgp->size * sizeof(struct scatterlist);
1675 
1676 		sgp->slab = kmem_cache_create(sgp->name, size, 0,
1677 				SLAB_HWCACHE_ALIGN, NULL, NULL);
1678 		if (!sgp->slab) {
1679 			printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1680 					sgp->name);
1681 		}
1682 
1683 		sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1684 						     sgp->slab);
1685 		if (!sgp->pool) {
1686 			printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1687 					sgp->name);
1688 		}
1689 	}
1690 
1691 	return 0;
1692 }
1693 
1694 void scsi_exit_queue(void)
1695 {
1696 	int i;
1697 
1698 	kmem_cache_destroy(scsi_io_context_cache);
1699 
1700 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1701 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1702 		mempool_destroy(sgp->pool);
1703 		kmem_cache_destroy(sgp->slab);
1704 	}
1705 }
1706 
1707 /**
1708  *	scsi_mode_select - issue a mode select
1709  *	@sdev:	SCSI device to be queried
1710  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
1711  *	@sp:	Save page bit (0 == don't save, 1 == save)
1712  *	@modepage: mode page being requested
1713  *	@buffer: request buffer (may not be smaller than eight bytes)
1714  *	@len:	length of request buffer.
1715  *	@timeout: command timeout
1716  *	@retries: number of retries before failing
1717  *	@data: returns a structure abstracting the mode header data
1718  *	@sense: place to put sense data (or NULL if no sense to be collected).
1719  *		must be SCSI_SENSE_BUFFERSIZE big.
1720  *
1721  *	Returns zero if successful; negative error number or scsi
1722  *	status on error
1723  *
1724  */
1725 int
1726 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1727 		 unsigned char *buffer, int len, int timeout, int retries,
1728 		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1729 {
1730 	unsigned char cmd[10];
1731 	unsigned char *real_buffer;
1732 	int ret;
1733 
1734 	memset(cmd, 0, sizeof(cmd));
1735 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1736 
1737 	if (sdev->use_10_for_ms) {
1738 		if (len > 65535)
1739 			return -EINVAL;
1740 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
1741 		if (!real_buffer)
1742 			return -ENOMEM;
1743 		memcpy(real_buffer + 8, buffer, len);
1744 		len += 8;
1745 		real_buffer[0] = 0;
1746 		real_buffer[1] = 0;
1747 		real_buffer[2] = data->medium_type;
1748 		real_buffer[3] = data->device_specific;
1749 		real_buffer[4] = data->longlba ? 0x01 : 0;
1750 		real_buffer[5] = 0;
1751 		real_buffer[6] = data->block_descriptor_length >> 8;
1752 		real_buffer[7] = data->block_descriptor_length;
1753 
1754 		cmd[0] = MODE_SELECT_10;
1755 		cmd[7] = len >> 8;
1756 		cmd[8] = len;
1757 	} else {
1758 		if (len > 255 || data->block_descriptor_length > 255 ||
1759 		    data->longlba)
1760 			return -EINVAL;
1761 
1762 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
1763 		if (!real_buffer)
1764 			return -ENOMEM;
1765 		memcpy(real_buffer + 4, buffer, len);
1766 		len += 4;
1767 		real_buffer[0] = 0;
1768 		real_buffer[1] = data->medium_type;
1769 		real_buffer[2] = data->device_specific;
1770 		real_buffer[3] = data->block_descriptor_length;
1771 
1772 
1773 		cmd[0] = MODE_SELECT;
1774 		cmd[4] = len;
1775 	}
1776 
1777 	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1778 			       sshdr, timeout, retries);
1779 	kfree(real_buffer);
1780 	return ret;
1781 }
1782 EXPORT_SYMBOL_GPL(scsi_mode_select);
1783 
1784 /**
1785  *	scsi_mode_sense - issue a mode sense, falling back from 10 to
1786  *		six bytes if necessary.
1787  *	@sdev:	SCSI device to be queried
1788  *	@dbd:	set if mode sense will allow block descriptors to be returned
1789  *	@modepage: mode page being requested
1790  *	@buffer: request buffer (may not be smaller than eight bytes)
1791  *	@len:	length of request buffer.
1792  *	@timeout: command timeout
1793  *	@retries: number of retries before failing
1794  *	@data: returns a structure abstracting the mode header data
1795  *	@sense: place to put sense data (or NULL if no sense to be collected).
1796  *		must be SCSI_SENSE_BUFFERSIZE big.
1797  *
1798  *	Returns zero if unsuccessful, or the header offset (either 4
1799  *	or 8 depending on whether a six or ten byte command was
1800  *	issued) if successful.
1801  **/
1802 int
1803 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1804 		  unsigned char *buffer, int len, int timeout, int retries,
1805 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1806 {
1807 	unsigned char cmd[12];
1808 	int use_10_for_ms;
1809 	int header_length;
1810 	int result;
1811 	struct scsi_sense_hdr my_sshdr;
1812 
1813 	memset(data, 0, sizeof(*data));
1814 	memset(&cmd[0], 0, 12);
1815 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
1816 	cmd[2] = modepage;
1817 
1818 	/* caller might not be interested in sense, but we need it */
1819 	if (!sshdr)
1820 		sshdr = &my_sshdr;
1821 
1822  retry:
1823 	use_10_for_ms = sdev->use_10_for_ms;
1824 
1825 	if (use_10_for_ms) {
1826 		if (len < 8)
1827 			len = 8;
1828 
1829 		cmd[0] = MODE_SENSE_10;
1830 		cmd[8] = len;
1831 		header_length = 8;
1832 	} else {
1833 		if (len < 4)
1834 			len = 4;
1835 
1836 		cmd[0] = MODE_SENSE;
1837 		cmd[4] = len;
1838 		header_length = 4;
1839 	}
1840 
1841 	memset(buffer, 0, len);
1842 
1843 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1844 				  sshdr, timeout, retries);
1845 
1846 	/* This code looks awful: what it's doing is making sure an
1847 	 * ILLEGAL REQUEST sense return identifies the actual command
1848 	 * byte as the problem.  MODE_SENSE commands can return
1849 	 * ILLEGAL REQUEST if the code page isn't supported */
1850 
1851 	if (use_10_for_ms && !scsi_status_is_good(result) &&
1852 	    (driver_byte(result) & DRIVER_SENSE)) {
1853 		if (scsi_sense_valid(sshdr)) {
1854 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1855 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1856 				/*
1857 				 * Invalid command operation code
1858 				 */
1859 				sdev->use_10_for_ms = 0;
1860 				goto retry;
1861 			}
1862 		}
1863 	}
1864 
1865 	if(scsi_status_is_good(result)) {
1866 		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1867 			     (modepage == 6 || modepage == 8))) {
1868 			/* Initio breakage? */
1869 			header_length = 0;
1870 			data->length = 13;
1871 			data->medium_type = 0;
1872 			data->device_specific = 0;
1873 			data->longlba = 0;
1874 			data->block_descriptor_length = 0;
1875 		} else if(use_10_for_ms) {
1876 			data->length = buffer[0]*256 + buffer[1] + 2;
1877 			data->medium_type = buffer[2];
1878 			data->device_specific = buffer[3];
1879 			data->longlba = buffer[4] & 0x01;
1880 			data->block_descriptor_length = buffer[6]*256
1881 				+ buffer[7];
1882 		} else {
1883 			data->length = buffer[0] + 1;
1884 			data->medium_type = buffer[1];
1885 			data->device_specific = buffer[2];
1886 			data->block_descriptor_length = buffer[3];
1887 		}
1888 		data->header_length = header_length;
1889 	}
1890 
1891 	return result;
1892 }
1893 EXPORT_SYMBOL(scsi_mode_sense);
1894 
1895 int
1896 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries)
1897 {
1898 	char cmd[] = {
1899 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
1900 	};
1901 	struct scsi_sense_hdr sshdr;
1902 	int result;
1903 
1904 	result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, &sshdr,
1905 				  timeout, retries);
1906 
1907 	if ((driver_byte(result) & DRIVER_SENSE) && sdev->removable) {
1908 
1909 		if ((scsi_sense_valid(&sshdr)) &&
1910 		    ((sshdr.sense_key == UNIT_ATTENTION) ||
1911 		     (sshdr.sense_key == NOT_READY))) {
1912 			sdev->changed = 1;
1913 			result = 0;
1914 		}
1915 	}
1916 	return result;
1917 }
1918 EXPORT_SYMBOL(scsi_test_unit_ready);
1919 
1920 /**
1921  *	scsi_device_set_state - Take the given device through the device
1922  *		state model.
1923  *	@sdev:	scsi device to change the state of.
1924  *	@state:	state to change to.
1925  *
1926  *	Returns zero if unsuccessful or an error if the requested
1927  *	transition is illegal.
1928  **/
1929 int
1930 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
1931 {
1932 	enum scsi_device_state oldstate = sdev->sdev_state;
1933 
1934 	if (state == oldstate)
1935 		return 0;
1936 
1937 	switch (state) {
1938 	case SDEV_CREATED:
1939 		/* There are no legal states that come back to
1940 		 * created.  This is the manually initialised start
1941 		 * state */
1942 		goto illegal;
1943 
1944 	case SDEV_RUNNING:
1945 		switch (oldstate) {
1946 		case SDEV_CREATED:
1947 		case SDEV_OFFLINE:
1948 		case SDEV_QUIESCE:
1949 		case SDEV_BLOCK:
1950 			break;
1951 		default:
1952 			goto illegal;
1953 		}
1954 		break;
1955 
1956 	case SDEV_QUIESCE:
1957 		switch (oldstate) {
1958 		case SDEV_RUNNING:
1959 		case SDEV_OFFLINE:
1960 			break;
1961 		default:
1962 			goto illegal;
1963 		}
1964 		break;
1965 
1966 	case SDEV_OFFLINE:
1967 		switch (oldstate) {
1968 		case SDEV_CREATED:
1969 		case SDEV_RUNNING:
1970 		case SDEV_QUIESCE:
1971 		case SDEV_BLOCK:
1972 			break;
1973 		default:
1974 			goto illegal;
1975 		}
1976 		break;
1977 
1978 	case SDEV_BLOCK:
1979 		switch (oldstate) {
1980 		case SDEV_CREATED:
1981 		case SDEV_RUNNING:
1982 			break;
1983 		default:
1984 			goto illegal;
1985 		}
1986 		break;
1987 
1988 	case SDEV_CANCEL:
1989 		switch (oldstate) {
1990 		case SDEV_CREATED:
1991 		case SDEV_RUNNING:
1992 		case SDEV_QUIESCE:
1993 		case SDEV_OFFLINE:
1994 		case SDEV_BLOCK:
1995 			break;
1996 		default:
1997 			goto illegal;
1998 		}
1999 		break;
2000 
2001 	case SDEV_DEL:
2002 		switch (oldstate) {
2003 		case SDEV_CREATED:
2004 		case SDEV_RUNNING:
2005 		case SDEV_OFFLINE:
2006 		case SDEV_CANCEL:
2007 			break;
2008 		default:
2009 			goto illegal;
2010 		}
2011 		break;
2012 
2013 	}
2014 	sdev->sdev_state = state;
2015 	return 0;
2016 
2017  illegal:
2018 	SCSI_LOG_ERROR_RECOVERY(1,
2019 				sdev_printk(KERN_ERR, sdev,
2020 					    "Illegal state transition %s->%s\n",
2021 					    scsi_device_state_name(oldstate),
2022 					    scsi_device_state_name(state))
2023 				);
2024 	return -EINVAL;
2025 }
2026 EXPORT_SYMBOL(scsi_device_set_state);
2027 
2028 /**
2029  *	scsi_device_quiesce - Block user issued commands.
2030  *	@sdev:	scsi device to quiesce.
2031  *
2032  *	This works by trying to transition to the SDEV_QUIESCE state
2033  *	(which must be a legal transition).  When the device is in this
2034  *	state, only special requests will be accepted, all others will
2035  *	be deferred.  Since special requests may also be requeued requests,
2036  *	a successful return doesn't guarantee the device will be
2037  *	totally quiescent.
2038  *
2039  *	Must be called with user context, may sleep.
2040  *
2041  *	Returns zero if unsuccessful or an error if not.
2042  **/
2043 int
2044 scsi_device_quiesce(struct scsi_device *sdev)
2045 {
2046 	int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2047 	if (err)
2048 		return err;
2049 
2050 	scsi_run_queue(sdev->request_queue);
2051 	while (sdev->device_busy) {
2052 		msleep_interruptible(200);
2053 		scsi_run_queue(sdev->request_queue);
2054 	}
2055 	return 0;
2056 }
2057 EXPORT_SYMBOL(scsi_device_quiesce);
2058 
2059 /**
2060  *	scsi_device_resume - Restart user issued commands to a quiesced device.
2061  *	@sdev:	scsi device to resume.
2062  *
2063  *	Moves the device from quiesced back to running and restarts the
2064  *	queues.
2065  *
2066  *	Must be called with user context, may sleep.
2067  **/
2068 void
2069 scsi_device_resume(struct scsi_device *sdev)
2070 {
2071 	if(scsi_device_set_state(sdev, SDEV_RUNNING))
2072 		return;
2073 	scsi_run_queue(sdev->request_queue);
2074 }
2075 EXPORT_SYMBOL(scsi_device_resume);
2076 
2077 static void
2078 device_quiesce_fn(struct scsi_device *sdev, void *data)
2079 {
2080 	scsi_device_quiesce(sdev);
2081 }
2082 
2083 void
2084 scsi_target_quiesce(struct scsi_target *starget)
2085 {
2086 	starget_for_each_device(starget, NULL, device_quiesce_fn);
2087 }
2088 EXPORT_SYMBOL(scsi_target_quiesce);
2089 
2090 static void
2091 device_resume_fn(struct scsi_device *sdev, void *data)
2092 {
2093 	scsi_device_resume(sdev);
2094 }
2095 
2096 void
2097 scsi_target_resume(struct scsi_target *starget)
2098 {
2099 	starget_for_each_device(starget, NULL, device_resume_fn);
2100 }
2101 EXPORT_SYMBOL(scsi_target_resume);
2102 
2103 /**
2104  * scsi_internal_device_block - internal function to put a device
2105  *				temporarily into the SDEV_BLOCK state
2106  * @sdev:	device to block
2107  *
2108  * Block request made by scsi lld's to temporarily stop all
2109  * scsi commands on the specified device.  Called from interrupt
2110  * or normal process context.
2111  *
2112  * Returns zero if successful or error if not
2113  *
2114  * Notes:
2115  *	This routine transitions the device to the SDEV_BLOCK state
2116  *	(which must be a legal transition).  When the device is in this
2117  *	state, all commands are deferred until the scsi lld reenables
2118  *	the device with scsi_device_unblock or device_block_tmo fires.
2119  *	This routine assumes the host_lock is held on entry.
2120  **/
2121 int
2122 scsi_internal_device_block(struct scsi_device *sdev)
2123 {
2124 	request_queue_t *q = sdev->request_queue;
2125 	unsigned long flags;
2126 	int err = 0;
2127 
2128 	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2129 	if (err)
2130 		return err;
2131 
2132 	/*
2133 	 * The device has transitioned to SDEV_BLOCK.  Stop the
2134 	 * block layer from calling the midlayer with this device's
2135 	 * request queue.
2136 	 */
2137 	spin_lock_irqsave(q->queue_lock, flags);
2138 	blk_stop_queue(q);
2139 	spin_unlock_irqrestore(q->queue_lock, flags);
2140 
2141 	return 0;
2142 }
2143 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2144 
2145 /**
2146  * scsi_internal_device_unblock - resume a device after a block request
2147  * @sdev:	device to resume
2148  *
2149  * Called by scsi lld's or the midlayer to restart the device queue
2150  * for the previously suspended scsi device.  Called from interrupt or
2151  * normal process context.
2152  *
2153  * Returns zero if successful or error if not.
2154  *
2155  * Notes:
2156  *	This routine transitions the device to the SDEV_RUNNING state
2157  *	(which must be a legal transition) allowing the midlayer to
2158  *	goose the queue for this device.  This routine assumes the
2159  *	host_lock is held upon entry.
2160  **/
2161 int
2162 scsi_internal_device_unblock(struct scsi_device *sdev)
2163 {
2164 	request_queue_t *q = sdev->request_queue;
2165 	int err;
2166 	unsigned long flags;
2167 
2168 	/*
2169 	 * Try to transition the scsi device to SDEV_RUNNING
2170 	 * and goose the device queue if successful.
2171 	 */
2172 	err = scsi_device_set_state(sdev, SDEV_RUNNING);
2173 	if (err)
2174 		return err;
2175 
2176 	spin_lock_irqsave(q->queue_lock, flags);
2177 	blk_start_queue(q);
2178 	spin_unlock_irqrestore(q->queue_lock, flags);
2179 
2180 	return 0;
2181 }
2182 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2183 
2184 static void
2185 device_block(struct scsi_device *sdev, void *data)
2186 {
2187 	scsi_internal_device_block(sdev);
2188 }
2189 
2190 static int
2191 target_block(struct device *dev, void *data)
2192 {
2193 	if (scsi_is_target_device(dev))
2194 		starget_for_each_device(to_scsi_target(dev), NULL,
2195 					device_block);
2196 	return 0;
2197 }
2198 
2199 void
2200 scsi_target_block(struct device *dev)
2201 {
2202 	if (scsi_is_target_device(dev))
2203 		starget_for_each_device(to_scsi_target(dev), NULL,
2204 					device_block);
2205 	else
2206 		device_for_each_child(dev, NULL, target_block);
2207 }
2208 EXPORT_SYMBOL_GPL(scsi_target_block);
2209 
2210 static void
2211 device_unblock(struct scsi_device *sdev, void *data)
2212 {
2213 	scsi_internal_device_unblock(sdev);
2214 }
2215 
2216 static int
2217 target_unblock(struct device *dev, void *data)
2218 {
2219 	if (scsi_is_target_device(dev))
2220 		starget_for_each_device(to_scsi_target(dev), NULL,
2221 					device_unblock);
2222 	return 0;
2223 }
2224 
2225 void
2226 scsi_target_unblock(struct device *dev)
2227 {
2228 	if (scsi_is_target_device(dev))
2229 		starget_for_each_device(to_scsi_target(dev), NULL,
2230 					device_unblock);
2231 	else
2232 		device_for_each_child(dev, NULL, target_unblock);
2233 }
2234 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2235 
2236 /**
2237  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2238  * @sg:		scatter-gather list
2239  * @sg_count:	number of segments in sg
2240  * @offset:	offset in bytes into sg, on return offset into the mapped area
2241  * @len:	bytes to map, on return number of bytes mapped
2242  *
2243  * Returns virtual address of the start of the mapped page
2244  */
2245 void *scsi_kmap_atomic_sg(struct scatterlist *sg, int sg_count,
2246 			  size_t *offset, size_t *len)
2247 {
2248 	int i;
2249 	size_t sg_len = 0, len_complete = 0;
2250 	struct page *page;
2251 
2252 	WARN_ON(!irqs_disabled());
2253 
2254 	for (i = 0; i < sg_count; i++) {
2255 		len_complete = sg_len; /* Complete sg-entries */
2256 		sg_len += sg[i].length;
2257 		if (sg_len > *offset)
2258 			break;
2259 	}
2260 
2261 	if (unlikely(i == sg_count)) {
2262 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2263 			"elements %d\n",
2264 		       __FUNCTION__, sg_len, *offset, sg_count);
2265 		WARN_ON(1);
2266 		return NULL;
2267 	}
2268 
2269 	/* Offset starting from the beginning of first page in this sg-entry */
2270 	*offset = *offset - len_complete + sg[i].offset;
2271 
2272 	/* Assumption: contiguous pages can be accessed as "page + i" */
2273 	page = nth_page(sg[i].page, (*offset >> PAGE_SHIFT));
2274 	*offset &= ~PAGE_MASK;
2275 
2276 	/* Bytes in this sg-entry from *offset to the end of the page */
2277 	sg_len = PAGE_SIZE - *offset;
2278 	if (*len > sg_len)
2279 		*len = sg_len;
2280 
2281 	return kmap_atomic(page, KM_BIO_SRC_IRQ);
2282 }
2283 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2284 
2285 /**
2286  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously
2287  *			   mapped with scsi_kmap_atomic_sg
2288  * @virt:	virtual address to be unmapped
2289  */
2290 void scsi_kunmap_atomic_sg(void *virt)
2291 {
2292 	kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2293 }
2294 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2295