xref: /linux/drivers/scsi/scsi_lib.c (revision bea00fab2b0e5359ee88a2b127f15a35cd48872b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 1999 Eric Youngdale
4  * Copyright (C) 2014 Christoph Hellwig
5  *
6  *  SCSI queueing library.
7  *      Initial versions: Eric Youngdale (eric@andante.org).
8  *                        Based upon conversations with large numbers
9  *                        of people at Linux Expo.
10  */
11 
12 #include <linux/bio.h>
13 #include <linux/bitops.h>
14 #include <linux/blkdev.h>
15 #include <linux/completion.h>
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23 #include <linux/blk-mq.h>
24 #include <linux/blk-integrity.h>
25 #include <linux/ratelimit.h>
26 #include <asm/unaligned.h>
27 
28 #include <scsi/scsi.h>
29 #include <scsi/scsi_cmnd.h>
30 #include <scsi/scsi_dbg.h>
31 #include <scsi/scsi_device.h>
32 #include <scsi/scsi_driver.h>
33 #include <scsi/scsi_eh.h>
34 #include <scsi/scsi_host.h>
35 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
36 #include <scsi/scsi_dh.h>
37 
38 #include <trace/events/scsi.h>
39 
40 #include "scsi_debugfs.h"
41 #include "scsi_priv.h"
42 #include "scsi_logging.h"
43 
44 /*
45  * Size of integrity metadata is usually small, 1 inline sg should
46  * cover normal cases.
47  */
48 #ifdef CONFIG_ARCH_NO_SG_CHAIN
49 #define  SCSI_INLINE_PROT_SG_CNT  0
50 #define  SCSI_INLINE_SG_CNT  0
51 #else
52 #define  SCSI_INLINE_PROT_SG_CNT  1
53 #define  SCSI_INLINE_SG_CNT  2
54 #endif
55 
56 static struct kmem_cache *scsi_sense_cache;
57 static DEFINE_MUTEX(scsi_sense_cache_mutex);
58 
59 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
60 
61 int scsi_init_sense_cache(struct Scsi_Host *shost)
62 {
63 	int ret = 0;
64 
65 	mutex_lock(&scsi_sense_cache_mutex);
66 	if (!scsi_sense_cache) {
67 		scsi_sense_cache =
68 			kmem_cache_create_usercopy("scsi_sense_cache",
69 				SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
70 				0, SCSI_SENSE_BUFFERSIZE, NULL);
71 		if (!scsi_sense_cache)
72 			ret = -ENOMEM;
73 	}
74 	mutex_unlock(&scsi_sense_cache_mutex);
75 	return ret;
76 }
77 
78 static void
79 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
80 {
81 	struct Scsi_Host *host = cmd->device->host;
82 	struct scsi_device *device = cmd->device;
83 	struct scsi_target *starget = scsi_target(device);
84 
85 	/*
86 	 * Set the appropriate busy bit for the device/host.
87 	 *
88 	 * If the host/device isn't busy, assume that something actually
89 	 * completed, and that we should be able to queue a command now.
90 	 *
91 	 * Note that the prior mid-layer assumption that any host could
92 	 * always queue at least one command is now broken.  The mid-layer
93 	 * will implement a user specifiable stall (see
94 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
95 	 * if a command is requeued with no other commands outstanding
96 	 * either for the device or for the host.
97 	 */
98 	switch (reason) {
99 	case SCSI_MLQUEUE_HOST_BUSY:
100 		atomic_set(&host->host_blocked, host->max_host_blocked);
101 		break;
102 	case SCSI_MLQUEUE_DEVICE_BUSY:
103 	case SCSI_MLQUEUE_EH_RETRY:
104 		atomic_set(&device->device_blocked,
105 			   device->max_device_blocked);
106 		break;
107 	case SCSI_MLQUEUE_TARGET_BUSY:
108 		atomic_set(&starget->target_blocked,
109 			   starget->max_target_blocked);
110 		break;
111 	}
112 }
113 
114 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd, unsigned long msecs)
115 {
116 	struct request *rq = scsi_cmd_to_rq(cmd);
117 
118 	if (rq->rq_flags & RQF_DONTPREP) {
119 		rq->rq_flags &= ~RQF_DONTPREP;
120 		scsi_mq_uninit_cmd(cmd);
121 	} else {
122 		WARN_ON_ONCE(true);
123 	}
124 
125 	blk_mq_requeue_request(rq, false);
126 	if (!scsi_host_in_recovery(cmd->device->host))
127 		blk_mq_delay_kick_requeue_list(rq->q, msecs);
128 }
129 
130 /**
131  * __scsi_queue_insert - private queue insertion
132  * @cmd: The SCSI command being requeued
133  * @reason:  The reason for the requeue
134  * @unbusy: Whether the queue should be unbusied
135  *
136  * This is a private queue insertion.  The public interface
137  * scsi_queue_insert() always assumes the queue should be unbusied
138  * because it's always called before the completion.  This function is
139  * for a requeue after completion, which should only occur in this
140  * file.
141  */
142 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
143 {
144 	struct scsi_device *device = cmd->device;
145 
146 	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
147 		"Inserting command %p into mlqueue\n", cmd));
148 
149 	scsi_set_blocked(cmd, reason);
150 
151 	/*
152 	 * Decrement the counters, since these commands are no longer
153 	 * active on the host/device.
154 	 */
155 	if (unbusy)
156 		scsi_device_unbusy(device, cmd);
157 
158 	/*
159 	 * Requeue this command.  It will go before all other commands
160 	 * that are already in the queue. Schedule requeue work under
161 	 * lock such that the kblockd_schedule_work() call happens
162 	 * before blk_mq_destroy_queue() finishes.
163 	 */
164 	cmd->result = 0;
165 
166 	blk_mq_requeue_request(scsi_cmd_to_rq(cmd),
167 			       !scsi_host_in_recovery(cmd->device->host));
168 }
169 
170 /**
171  * scsi_queue_insert - Reinsert a command in the queue.
172  * @cmd:    command that we are adding to queue.
173  * @reason: why we are inserting command to queue.
174  *
175  * We do this for one of two cases. Either the host is busy and it cannot accept
176  * any more commands for the time being, or the device returned QUEUE_FULL and
177  * can accept no more commands.
178  *
179  * Context: This could be called either from an interrupt context or a normal
180  * process context.
181  */
182 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
183 {
184 	__scsi_queue_insert(cmd, reason, true);
185 }
186 
187 void scsi_failures_reset_retries(struct scsi_failures *failures)
188 {
189 	struct scsi_failure *failure;
190 
191 	failures->total_retries = 0;
192 
193 	for (failure = failures->failure_definitions; failure->result;
194 	     failure++)
195 		failure->retries = 0;
196 }
197 EXPORT_SYMBOL_GPL(scsi_failures_reset_retries);
198 
199 /**
200  * scsi_check_passthrough - Determine if passthrough scsi_cmnd needs a retry.
201  * @scmd: scsi_cmnd to check.
202  * @failures: scsi_failures struct that lists failures to check for.
203  *
204  * Returns -EAGAIN if the caller should retry else 0.
205  */
206 static int scsi_check_passthrough(struct scsi_cmnd *scmd,
207 				  struct scsi_failures *failures)
208 {
209 	struct scsi_failure *failure;
210 	struct scsi_sense_hdr sshdr;
211 	enum sam_status status;
212 
213 	if (!failures)
214 		return 0;
215 
216 	for (failure = failures->failure_definitions; failure->result;
217 	     failure++) {
218 		if (failure->result == SCMD_FAILURE_RESULT_ANY)
219 			goto maybe_retry;
220 
221 		if (host_byte(scmd->result) &&
222 		    host_byte(scmd->result) == host_byte(failure->result))
223 			goto maybe_retry;
224 
225 		status = status_byte(scmd->result);
226 		if (!status)
227 			continue;
228 
229 		if (failure->result == SCMD_FAILURE_STAT_ANY &&
230 		    !scsi_status_is_good(scmd->result))
231 			goto maybe_retry;
232 
233 		if (status != status_byte(failure->result))
234 			continue;
235 
236 		if (status_byte(failure->result) != SAM_STAT_CHECK_CONDITION ||
237 		    failure->sense == SCMD_FAILURE_SENSE_ANY)
238 			goto maybe_retry;
239 
240 		if (!scsi_command_normalize_sense(scmd, &sshdr))
241 			return 0;
242 
243 		if (failure->sense != sshdr.sense_key)
244 			continue;
245 
246 		if (failure->asc == SCMD_FAILURE_ASC_ANY)
247 			goto maybe_retry;
248 
249 		if (failure->asc != sshdr.asc)
250 			continue;
251 
252 		if (failure->ascq == SCMD_FAILURE_ASCQ_ANY ||
253 		    failure->ascq == sshdr.ascq)
254 			goto maybe_retry;
255 	}
256 
257 	return 0;
258 
259 maybe_retry:
260 	if (failure->allowed) {
261 		if (failure->allowed == SCMD_FAILURE_NO_LIMIT ||
262 		    ++failure->retries <= failure->allowed)
263 			return -EAGAIN;
264 	} else {
265 		if (failures->total_allowed == SCMD_FAILURE_NO_LIMIT ||
266 		    ++failures->total_retries <= failures->total_allowed)
267 			return -EAGAIN;
268 	}
269 
270 	return 0;
271 }
272 
273 /**
274  * scsi_execute_cmd - insert request and wait for the result
275  * @sdev:	scsi_device
276  * @cmd:	scsi command
277  * @opf:	block layer request cmd_flags
278  * @buffer:	data buffer
279  * @bufflen:	len of buffer
280  * @timeout:	request timeout in HZ
281  * @ml_retries:	number of times SCSI midlayer will retry request
282  * @args:	Optional args. See struct definition for field descriptions
283  *
284  * Returns the scsi_cmnd result field if a command was executed, or a negative
285  * Linux error code if we didn't get that far.
286  */
287 int scsi_execute_cmd(struct scsi_device *sdev, const unsigned char *cmd,
288 		     blk_opf_t opf, void *buffer, unsigned int bufflen,
289 		     int timeout, int ml_retries,
290 		     const struct scsi_exec_args *args)
291 {
292 	static const struct scsi_exec_args default_args;
293 	struct request *req;
294 	struct scsi_cmnd *scmd;
295 	int ret;
296 
297 	if (!args)
298 		args = &default_args;
299 	else if (WARN_ON_ONCE(args->sense &&
300 			      args->sense_len != SCSI_SENSE_BUFFERSIZE))
301 		return -EINVAL;
302 
303 retry:
304 	req = scsi_alloc_request(sdev->request_queue, opf, args->req_flags);
305 	if (IS_ERR(req))
306 		return PTR_ERR(req);
307 
308 	if (bufflen) {
309 		ret = blk_rq_map_kern(sdev->request_queue, req,
310 				      buffer, bufflen, GFP_NOIO);
311 		if (ret)
312 			goto out;
313 	}
314 	scmd = blk_mq_rq_to_pdu(req);
315 	scmd->cmd_len = COMMAND_SIZE(cmd[0]);
316 	memcpy(scmd->cmnd, cmd, scmd->cmd_len);
317 	scmd->allowed = ml_retries;
318 	scmd->flags |= args->scmd_flags;
319 	req->timeout = timeout;
320 	req->rq_flags |= RQF_QUIET;
321 
322 	/*
323 	 * head injection *required* here otherwise quiesce won't work
324 	 */
325 	blk_execute_rq(req, true);
326 
327 	if (scsi_check_passthrough(scmd, args->failures) == -EAGAIN) {
328 		blk_mq_free_request(req);
329 		goto retry;
330 	}
331 
332 	/*
333 	 * Some devices (USB mass-storage in particular) may transfer
334 	 * garbage data together with a residue indicating that the data
335 	 * is invalid.  Prevent the garbage from being misinterpreted
336 	 * and prevent security leaks by zeroing out the excess data.
337 	 */
338 	if (unlikely(scmd->resid_len > 0 && scmd->resid_len <= bufflen))
339 		memset(buffer + bufflen - scmd->resid_len, 0, scmd->resid_len);
340 
341 	if (args->resid)
342 		*args->resid = scmd->resid_len;
343 	if (args->sense)
344 		memcpy(args->sense, scmd->sense_buffer, SCSI_SENSE_BUFFERSIZE);
345 	if (args->sshdr)
346 		scsi_normalize_sense(scmd->sense_buffer, scmd->sense_len,
347 				     args->sshdr);
348 
349 	ret = scmd->result;
350  out:
351 	blk_mq_free_request(req);
352 
353 	return ret;
354 }
355 EXPORT_SYMBOL(scsi_execute_cmd);
356 
357 /*
358  * Wake up the error handler if necessary. Avoid as follows that the error
359  * handler is not woken up if host in-flight requests number ==
360  * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
361  * with an RCU read lock in this function to ensure that this function in
362  * its entirety either finishes before scsi_eh_scmd_add() increases the
363  * host_failed counter or that it notices the shost state change made by
364  * scsi_eh_scmd_add().
365  */
366 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
367 {
368 	unsigned long flags;
369 
370 	rcu_read_lock();
371 	__clear_bit(SCMD_STATE_INFLIGHT, &cmd->state);
372 	if (unlikely(scsi_host_in_recovery(shost))) {
373 		unsigned int busy = scsi_host_busy(shost);
374 
375 		spin_lock_irqsave(shost->host_lock, flags);
376 		if (shost->host_failed || shost->host_eh_scheduled)
377 			scsi_eh_wakeup(shost, busy);
378 		spin_unlock_irqrestore(shost->host_lock, flags);
379 	}
380 	rcu_read_unlock();
381 }
382 
383 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd)
384 {
385 	struct Scsi_Host *shost = sdev->host;
386 	struct scsi_target *starget = scsi_target(sdev);
387 
388 	scsi_dec_host_busy(shost, cmd);
389 
390 	if (starget->can_queue > 0)
391 		atomic_dec(&starget->target_busy);
392 
393 	sbitmap_put(&sdev->budget_map, cmd->budget_token);
394 	cmd->budget_token = -1;
395 }
396 
397 /*
398  * Kick the queue of SCSI device @sdev if @sdev != current_sdev. Called with
399  * interrupts disabled.
400  */
401 static void scsi_kick_sdev_queue(struct scsi_device *sdev, void *data)
402 {
403 	struct scsi_device *current_sdev = data;
404 
405 	if (sdev != current_sdev)
406 		blk_mq_run_hw_queues(sdev->request_queue, true);
407 }
408 
409 /*
410  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
411  * and call blk_run_queue for all the scsi_devices on the target -
412  * including current_sdev first.
413  *
414  * Called with *no* scsi locks held.
415  */
416 static void scsi_single_lun_run(struct scsi_device *current_sdev)
417 {
418 	struct Scsi_Host *shost = current_sdev->host;
419 	struct scsi_target *starget = scsi_target(current_sdev);
420 	unsigned long flags;
421 
422 	spin_lock_irqsave(shost->host_lock, flags);
423 	starget->starget_sdev_user = NULL;
424 	spin_unlock_irqrestore(shost->host_lock, flags);
425 
426 	/*
427 	 * Call blk_run_queue for all LUNs on the target, starting with
428 	 * current_sdev. We race with others (to set starget_sdev_user),
429 	 * but in most cases, we will be first. Ideally, each LU on the
430 	 * target would get some limited time or requests on the target.
431 	 */
432 	blk_mq_run_hw_queues(current_sdev->request_queue,
433 			     shost->queuecommand_may_block);
434 
435 	spin_lock_irqsave(shost->host_lock, flags);
436 	if (!starget->starget_sdev_user)
437 		__starget_for_each_device(starget, current_sdev,
438 					  scsi_kick_sdev_queue);
439 	spin_unlock_irqrestore(shost->host_lock, flags);
440 }
441 
442 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
443 {
444 	if (scsi_device_busy(sdev) >= sdev->queue_depth)
445 		return true;
446 	if (atomic_read(&sdev->device_blocked) > 0)
447 		return true;
448 	return false;
449 }
450 
451 static inline bool scsi_target_is_busy(struct scsi_target *starget)
452 {
453 	if (starget->can_queue > 0) {
454 		if (atomic_read(&starget->target_busy) >= starget->can_queue)
455 			return true;
456 		if (atomic_read(&starget->target_blocked) > 0)
457 			return true;
458 	}
459 	return false;
460 }
461 
462 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
463 {
464 	if (atomic_read(&shost->host_blocked) > 0)
465 		return true;
466 	if (shost->host_self_blocked)
467 		return true;
468 	return false;
469 }
470 
471 static void scsi_starved_list_run(struct Scsi_Host *shost)
472 {
473 	LIST_HEAD(starved_list);
474 	struct scsi_device *sdev;
475 	unsigned long flags;
476 
477 	spin_lock_irqsave(shost->host_lock, flags);
478 	list_splice_init(&shost->starved_list, &starved_list);
479 
480 	while (!list_empty(&starved_list)) {
481 		struct request_queue *slq;
482 
483 		/*
484 		 * As long as shost is accepting commands and we have
485 		 * starved queues, call blk_run_queue. scsi_request_fn
486 		 * drops the queue_lock and can add us back to the
487 		 * starved_list.
488 		 *
489 		 * host_lock protects the starved_list and starved_entry.
490 		 * scsi_request_fn must get the host_lock before checking
491 		 * or modifying starved_list or starved_entry.
492 		 */
493 		if (scsi_host_is_busy(shost))
494 			break;
495 
496 		sdev = list_entry(starved_list.next,
497 				  struct scsi_device, starved_entry);
498 		list_del_init(&sdev->starved_entry);
499 		if (scsi_target_is_busy(scsi_target(sdev))) {
500 			list_move_tail(&sdev->starved_entry,
501 				       &shost->starved_list);
502 			continue;
503 		}
504 
505 		/*
506 		 * Once we drop the host lock, a racing scsi_remove_device()
507 		 * call may remove the sdev from the starved list and destroy
508 		 * it and the queue.  Mitigate by taking a reference to the
509 		 * queue and never touching the sdev again after we drop the
510 		 * host lock.  Note: if __scsi_remove_device() invokes
511 		 * blk_mq_destroy_queue() before the queue is run from this
512 		 * function then blk_run_queue() will return immediately since
513 		 * blk_mq_destroy_queue() marks the queue with QUEUE_FLAG_DYING.
514 		 */
515 		slq = sdev->request_queue;
516 		if (!blk_get_queue(slq))
517 			continue;
518 		spin_unlock_irqrestore(shost->host_lock, flags);
519 
520 		blk_mq_run_hw_queues(slq, false);
521 		blk_put_queue(slq);
522 
523 		spin_lock_irqsave(shost->host_lock, flags);
524 	}
525 	/* put any unprocessed entries back */
526 	list_splice(&starved_list, &shost->starved_list);
527 	spin_unlock_irqrestore(shost->host_lock, flags);
528 }
529 
530 /**
531  * scsi_run_queue - Select a proper request queue to serve next.
532  * @q:  last request's queue
533  *
534  * The previous command was completely finished, start a new one if possible.
535  */
536 static void scsi_run_queue(struct request_queue *q)
537 {
538 	struct scsi_device *sdev = q->queuedata;
539 
540 	if (scsi_target(sdev)->single_lun)
541 		scsi_single_lun_run(sdev);
542 	if (!list_empty(&sdev->host->starved_list))
543 		scsi_starved_list_run(sdev->host);
544 
545 	/* Note: blk_mq_kick_requeue_list() runs the queue asynchronously. */
546 	blk_mq_kick_requeue_list(q);
547 }
548 
549 void scsi_requeue_run_queue(struct work_struct *work)
550 {
551 	struct scsi_device *sdev;
552 	struct request_queue *q;
553 
554 	sdev = container_of(work, struct scsi_device, requeue_work);
555 	q = sdev->request_queue;
556 	scsi_run_queue(q);
557 }
558 
559 void scsi_run_host_queues(struct Scsi_Host *shost)
560 {
561 	struct scsi_device *sdev;
562 
563 	shost_for_each_device(sdev, shost)
564 		scsi_run_queue(sdev->request_queue);
565 }
566 
567 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
568 {
569 	if (!blk_rq_is_passthrough(scsi_cmd_to_rq(cmd))) {
570 		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
571 
572 		if (drv->uninit_command)
573 			drv->uninit_command(cmd);
574 	}
575 }
576 
577 void scsi_free_sgtables(struct scsi_cmnd *cmd)
578 {
579 	if (cmd->sdb.table.nents)
580 		sg_free_table_chained(&cmd->sdb.table,
581 				SCSI_INLINE_SG_CNT);
582 	if (scsi_prot_sg_count(cmd))
583 		sg_free_table_chained(&cmd->prot_sdb->table,
584 				SCSI_INLINE_PROT_SG_CNT);
585 }
586 EXPORT_SYMBOL_GPL(scsi_free_sgtables);
587 
588 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
589 {
590 	scsi_free_sgtables(cmd);
591 	scsi_uninit_cmd(cmd);
592 }
593 
594 static void scsi_run_queue_async(struct scsi_device *sdev)
595 {
596 	if (scsi_host_in_recovery(sdev->host))
597 		return;
598 
599 	if (scsi_target(sdev)->single_lun ||
600 	    !list_empty(&sdev->host->starved_list)) {
601 		kblockd_schedule_work(&sdev->requeue_work);
602 	} else {
603 		/*
604 		 * smp_mb() present in sbitmap_queue_clear() or implied in
605 		 * .end_io is for ordering writing .device_busy in
606 		 * scsi_device_unbusy() and reading sdev->restarts.
607 		 */
608 		int old = atomic_read(&sdev->restarts);
609 
610 		/*
611 		 * ->restarts has to be kept as non-zero if new budget
612 		 *  contention occurs.
613 		 *
614 		 *  No need to run queue when either another re-run
615 		 *  queue wins in updating ->restarts or a new budget
616 		 *  contention occurs.
617 		 */
618 		if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old)
619 			blk_mq_run_hw_queues(sdev->request_queue, true);
620 	}
621 }
622 
623 /* Returns false when no more bytes to process, true if there are more */
624 static bool scsi_end_request(struct request *req, blk_status_t error,
625 		unsigned int bytes)
626 {
627 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
628 	struct scsi_device *sdev = cmd->device;
629 	struct request_queue *q = sdev->request_queue;
630 
631 	if (blk_update_request(req, error, bytes))
632 		return true;
633 
634 	// XXX:
635 	if (blk_queue_add_random(q))
636 		add_disk_randomness(req->q->disk);
637 
638 	WARN_ON_ONCE(!blk_rq_is_passthrough(req) &&
639 		     !(cmd->flags & SCMD_INITIALIZED));
640 	cmd->flags = 0;
641 
642 	/*
643 	 * Calling rcu_barrier() is not necessary here because the
644 	 * SCSI error handler guarantees that the function called by
645 	 * call_rcu() has been called before scsi_end_request() is
646 	 * called.
647 	 */
648 	destroy_rcu_head(&cmd->rcu);
649 
650 	/*
651 	 * In the MQ case the command gets freed by __blk_mq_end_request,
652 	 * so we have to do all cleanup that depends on it earlier.
653 	 *
654 	 * We also can't kick the queues from irq context, so we
655 	 * will have to defer it to a workqueue.
656 	 */
657 	scsi_mq_uninit_cmd(cmd);
658 
659 	/*
660 	 * queue is still alive, so grab the ref for preventing it
661 	 * from being cleaned up during running queue.
662 	 */
663 	percpu_ref_get(&q->q_usage_counter);
664 
665 	__blk_mq_end_request(req, error);
666 
667 	scsi_run_queue_async(sdev);
668 
669 	percpu_ref_put(&q->q_usage_counter);
670 	return false;
671 }
672 
673 /**
674  * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
675  * @result:	scsi error code
676  *
677  * Translate a SCSI result code into a blk_status_t value.
678  */
679 static blk_status_t scsi_result_to_blk_status(int result)
680 {
681 	/*
682 	 * Check the scsi-ml byte first in case we converted a host or status
683 	 * byte.
684 	 */
685 	switch (scsi_ml_byte(result)) {
686 	case SCSIML_STAT_OK:
687 		break;
688 	case SCSIML_STAT_RESV_CONFLICT:
689 		return BLK_STS_RESV_CONFLICT;
690 	case SCSIML_STAT_NOSPC:
691 		return BLK_STS_NOSPC;
692 	case SCSIML_STAT_MED_ERROR:
693 		return BLK_STS_MEDIUM;
694 	case SCSIML_STAT_TGT_FAILURE:
695 		return BLK_STS_TARGET;
696 	case SCSIML_STAT_DL_TIMEOUT:
697 		return BLK_STS_DURATION_LIMIT;
698 	}
699 
700 	switch (host_byte(result)) {
701 	case DID_OK:
702 		if (scsi_status_is_good(result))
703 			return BLK_STS_OK;
704 		return BLK_STS_IOERR;
705 	case DID_TRANSPORT_FAILFAST:
706 	case DID_TRANSPORT_MARGINAL:
707 		return BLK_STS_TRANSPORT;
708 	default:
709 		return BLK_STS_IOERR;
710 	}
711 }
712 
713 /**
714  * scsi_rq_err_bytes - determine number of bytes till the next failure boundary
715  * @rq: request to examine
716  *
717  * Description:
718  *     A request could be merge of IOs which require different failure
719  *     handling.  This function determines the number of bytes which
720  *     can be failed from the beginning of the request without
721  *     crossing into area which need to be retried further.
722  *
723  * Return:
724  *     The number of bytes to fail.
725  */
726 static unsigned int scsi_rq_err_bytes(const struct request *rq)
727 {
728 	blk_opf_t ff = rq->cmd_flags & REQ_FAILFAST_MASK;
729 	unsigned int bytes = 0;
730 	struct bio *bio;
731 
732 	if (!(rq->rq_flags & RQF_MIXED_MERGE))
733 		return blk_rq_bytes(rq);
734 
735 	/*
736 	 * Currently the only 'mixing' which can happen is between
737 	 * different fastfail types.  We can safely fail portions
738 	 * which have all the failfast bits that the first one has -
739 	 * the ones which are at least as eager to fail as the first
740 	 * one.
741 	 */
742 	for (bio = rq->bio; bio; bio = bio->bi_next) {
743 		if ((bio->bi_opf & ff) != ff)
744 			break;
745 		bytes += bio->bi_iter.bi_size;
746 	}
747 
748 	/* this could lead to infinite loop */
749 	BUG_ON(blk_rq_bytes(rq) && !bytes);
750 	return bytes;
751 }
752 
753 static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd)
754 {
755 	struct request *req = scsi_cmd_to_rq(cmd);
756 	unsigned long wait_for;
757 
758 	if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT)
759 		return false;
760 
761 	wait_for = (cmd->allowed + 1) * req->timeout;
762 	if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
763 		scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n",
764 			    wait_for/HZ);
765 		return true;
766 	}
767 	return false;
768 }
769 
770 /*
771  * When ALUA transition state is returned, reprep the cmd to
772  * use the ALUA handler's transition timeout. Delay the reprep
773  * 1 sec to avoid aggressive retries of the target in that
774  * state.
775  */
776 #define ALUA_TRANSITION_REPREP_DELAY	1000
777 
778 /* Helper for scsi_io_completion() when special action required. */
779 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
780 {
781 	struct request *req = scsi_cmd_to_rq(cmd);
782 	int level = 0;
783 	enum {ACTION_FAIL, ACTION_REPREP, ACTION_DELAYED_REPREP,
784 	      ACTION_RETRY, ACTION_DELAYED_RETRY} action;
785 	struct scsi_sense_hdr sshdr;
786 	bool sense_valid;
787 	bool sense_current = true;      /* false implies "deferred sense" */
788 	blk_status_t blk_stat;
789 
790 	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
791 	if (sense_valid)
792 		sense_current = !scsi_sense_is_deferred(&sshdr);
793 
794 	blk_stat = scsi_result_to_blk_status(result);
795 
796 	if (host_byte(result) == DID_RESET) {
797 		/* Third party bus reset or reset for error recovery
798 		 * reasons.  Just retry the command and see what
799 		 * happens.
800 		 */
801 		action = ACTION_RETRY;
802 	} else if (sense_valid && sense_current) {
803 		switch (sshdr.sense_key) {
804 		case UNIT_ATTENTION:
805 			if (cmd->device->removable) {
806 				/* Detected disc change.  Set a bit
807 				 * and quietly refuse further access.
808 				 */
809 				cmd->device->changed = 1;
810 				action = ACTION_FAIL;
811 			} else {
812 				/* Must have been a power glitch, or a
813 				 * bus reset.  Could not have been a
814 				 * media change, so we just retry the
815 				 * command and see what happens.
816 				 */
817 				action = ACTION_RETRY;
818 			}
819 			break;
820 		case ILLEGAL_REQUEST:
821 			/* If we had an ILLEGAL REQUEST returned, then
822 			 * we may have performed an unsupported
823 			 * command.  The only thing this should be
824 			 * would be a ten byte read where only a six
825 			 * byte read was supported.  Also, on a system
826 			 * where READ CAPACITY failed, we may have
827 			 * read past the end of the disk.
828 			 */
829 			if ((cmd->device->use_10_for_rw &&
830 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
831 			    (cmd->cmnd[0] == READ_10 ||
832 			     cmd->cmnd[0] == WRITE_10)) {
833 				/* This will issue a new 6-byte command. */
834 				cmd->device->use_10_for_rw = 0;
835 				action = ACTION_REPREP;
836 			} else if (sshdr.asc == 0x10) /* DIX */ {
837 				action = ACTION_FAIL;
838 				blk_stat = BLK_STS_PROTECTION;
839 			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
840 			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
841 				action = ACTION_FAIL;
842 				blk_stat = BLK_STS_TARGET;
843 			} else
844 				action = ACTION_FAIL;
845 			break;
846 		case ABORTED_COMMAND:
847 			action = ACTION_FAIL;
848 			if (sshdr.asc == 0x10) /* DIF */
849 				blk_stat = BLK_STS_PROTECTION;
850 			break;
851 		case NOT_READY:
852 			/* If the device is in the process of becoming
853 			 * ready, or has a temporary blockage, retry.
854 			 */
855 			if (sshdr.asc == 0x04) {
856 				switch (sshdr.ascq) {
857 				case 0x01: /* becoming ready */
858 				case 0x04: /* format in progress */
859 				case 0x05: /* rebuild in progress */
860 				case 0x06: /* recalculation in progress */
861 				case 0x07: /* operation in progress */
862 				case 0x08: /* Long write in progress */
863 				case 0x09: /* self test in progress */
864 				case 0x11: /* notify (enable spinup) required */
865 				case 0x14: /* space allocation in progress */
866 				case 0x1a: /* start stop unit in progress */
867 				case 0x1b: /* sanitize in progress */
868 				case 0x1d: /* configuration in progress */
869 				case 0x24: /* depopulation in progress */
870 				case 0x25: /* depopulation restore in progress */
871 					action = ACTION_DELAYED_RETRY;
872 					break;
873 				case 0x0a: /* ALUA state transition */
874 					action = ACTION_DELAYED_REPREP;
875 					break;
876 				default:
877 					action = ACTION_FAIL;
878 					break;
879 				}
880 			} else
881 				action = ACTION_FAIL;
882 			break;
883 		case VOLUME_OVERFLOW:
884 			/* See SSC3rXX or current. */
885 			action = ACTION_FAIL;
886 			break;
887 		case DATA_PROTECT:
888 			action = ACTION_FAIL;
889 			if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) ||
890 			    (sshdr.asc == 0x55 &&
891 			     (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) {
892 				/* Insufficient zone resources */
893 				blk_stat = BLK_STS_ZONE_OPEN_RESOURCE;
894 			}
895 			break;
896 		case COMPLETED:
897 			fallthrough;
898 		default:
899 			action = ACTION_FAIL;
900 			break;
901 		}
902 	} else
903 		action = ACTION_FAIL;
904 
905 	if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd))
906 		action = ACTION_FAIL;
907 
908 	switch (action) {
909 	case ACTION_FAIL:
910 		/* Give up and fail the remainder of the request */
911 		if (!(req->rq_flags & RQF_QUIET)) {
912 			static DEFINE_RATELIMIT_STATE(_rs,
913 					DEFAULT_RATELIMIT_INTERVAL,
914 					DEFAULT_RATELIMIT_BURST);
915 
916 			if (unlikely(scsi_logging_level))
917 				level =
918 				     SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
919 						    SCSI_LOG_MLCOMPLETE_BITS);
920 
921 			/*
922 			 * if logging is enabled the failure will be printed
923 			 * in scsi_log_completion(), so avoid duplicate messages
924 			 */
925 			if (!level && __ratelimit(&_rs)) {
926 				scsi_print_result(cmd, NULL, FAILED);
927 				if (sense_valid)
928 					scsi_print_sense(cmd);
929 				scsi_print_command(cmd);
930 			}
931 		}
932 		if (!scsi_end_request(req, blk_stat, scsi_rq_err_bytes(req)))
933 			return;
934 		fallthrough;
935 	case ACTION_REPREP:
936 		scsi_mq_requeue_cmd(cmd, 0);
937 		break;
938 	case ACTION_DELAYED_REPREP:
939 		scsi_mq_requeue_cmd(cmd, ALUA_TRANSITION_REPREP_DELAY);
940 		break;
941 	case ACTION_RETRY:
942 		/* Retry the same command immediately */
943 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
944 		break;
945 	case ACTION_DELAYED_RETRY:
946 		/* Retry the same command after a delay */
947 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
948 		break;
949 	}
950 }
951 
952 /*
953  * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
954  * new result that may suppress further error checking. Also modifies
955  * *blk_statp in some cases.
956  */
957 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
958 					blk_status_t *blk_statp)
959 {
960 	bool sense_valid;
961 	bool sense_current = true;	/* false implies "deferred sense" */
962 	struct request *req = scsi_cmd_to_rq(cmd);
963 	struct scsi_sense_hdr sshdr;
964 
965 	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
966 	if (sense_valid)
967 		sense_current = !scsi_sense_is_deferred(&sshdr);
968 
969 	if (blk_rq_is_passthrough(req)) {
970 		if (sense_valid) {
971 			/*
972 			 * SG_IO wants current and deferred errors
973 			 */
974 			cmd->sense_len = min(8 + cmd->sense_buffer[7],
975 					     SCSI_SENSE_BUFFERSIZE);
976 		}
977 		if (sense_current)
978 			*blk_statp = scsi_result_to_blk_status(result);
979 	} else if (blk_rq_bytes(req) == 0 && sense_current) {
980 		/*
981 		 * Flush commands do not transfers any data, and thus cannot use
982 		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
983 		 * This sets *blk_statp explicitly for the problem case.
984 		 */
985 		*blk_statp = scsi_result_to_blk_status(result);
986 	}
987 	/*
988 	 * Recovered errors need reporting, but they're always treated as
989 	 * success, so fiddle the result code here.  For passthrough requests
990 	 * we already took a copy of the original into sreq->result which
991 	 * is what gets returned to the user
992 	 */
993 	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
994 		bool do_print = true;
995 		/*
996 		 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
997 		 * skip print since caller wants ATA registers. Only occurs
998 		 * on SCSI ATA PASS_THROUGH commands when CK_COND=1
999 		 */
1000 		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
1001 			do_print = false;
1002 		else if (req->rq_flags & RQF_QUIET)
1003 			do_print = false;
1004 		if (do_print)
1005 			scsi_print_sense(cmd);
1006 		result = 0;
1007 		/* for passthrough, *blk_statp may be set */
1008 		*blk_statp = BLK_STS_OK;
1009 	}
1010 	/*
1011 	 * Another corner case: the SCSI status byte is non-zero but 'good'.
1012 	 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
1013 	 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
1014 	 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
1015 	 * intermediate statuses (both obsolete in SAM-4) as good.
1016 	 */
1017 	if ((result & 0xff) && scsi_status_is_good(result)) {
1018 		result = 0;
1019 		*blk_statp = BLK_STS_OK;
1020 	}
1021 	return result;
1022 }
1023 
1024 /**
1025  * scsi_io_completion - Completion processing for SCSI commands.
1026  * @cmd:	command that is finished.
1027  * @good_bytes:	number of processed bytes.
1028  *
1029  * We will finish off the specified number of sectors. If we are done, the
1030  * command block will be released and the queue function will be goosed. If we
1031  * are not done then we have to figure out what to do next:
1032  *
1033  *   a) We can call scsi_mq_requeue_cmd().  The request will be
1034  *	unprepared and put back on the queue.  Then a new command will
1035  *	be created for it.  This should be used if we made forward
1036  *	progress, or if we want to switch from READ(10) to READ(6) for
1037  *	example.
1038  *
1039  *   b) We can call scsi_io_completion_action().  The request will be
1040  *	put back on the queue and retried using the same command as
1041  *	before, possibly after a delay.
1042  *
1043  *   c) We can call scsi_end_request() with blk_stat other than
1044  *	BLK_STS_OK, to fail the remainder of the request.
1045  */
1046 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
1047 {
1048 	int result = cmd->result;
1049 	struct request *req = scsi_cmd_to_rq(cmd);
1050 	blk_status_t blk_stat = BLK_STS_OK;
1051 
1052 	if (unlikely(result))	/* a nz result may or may not be an error */
1053 		result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
1054 
1055 	/*
1056 	 * Next deal with any sectors which we were able to correctly
1057 	 * handle.
1058 	 */
1059 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
1060 		"%u sectors total, %d bytes done.\n",
1061 		blk_rq_sectors(req), good_bytes));
1062 
1063 	/*
1064 	 * Failed, zero length commands always need to drop down
1065 	 * to retry code. Fast path should return in this block.
1066 	 */
1067 	if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
1068 		if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
1069 			return; /* no bytes remaining */
1070 	}
1071 
1072 	/* Kill remainder if no retries. */
1073 	if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
1074 		if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
1075 			WARN_ONCE(true,
1076 			    "Bytes remaining after failed, no-retry command");
1077 		return;
1078 	}
1079 
1080 	/*
1081 	 * If there had been no error, but we have leftover bytes in the
1082 	 * request just queue the command up again.
1083 	 */
1084 	if (likely(result == 0))
1085 		scsi_mq_requeue_cmd(cmd, 0);
1086 	else
1087 		scsi_io_completion_action(cmd, result);
1088 }
1089 
1090 static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev,
1091 		struct request *rq)
1092 {
1093 	return sdev->dma_drain_len && blk_rq_is_passthrough(rq) &&
1094 	       !op_is_write(req_op(rq)) &&
1095 	       sdev->host->hostt->dma_need_drain(rq);
1096 }
1097 
1098 /**
1099  * scsi_alloc_sgtables - Allocate and initialize data and integrity scatterlists
1100  * @cmd: SCSI command data structure to initialize.
1101  *
1102  * Initializes @cmd->sdb and also @cmd->prot_sdb if data integrity is enabled
1103  * for @cmd.
1104  *
1105  * Returns:
1106  * * BLK_STS_OK       - on success
1107  * * BLK_STS_RESOURCE - if the failure is retryable
1108  * * BLK_STS_IOERR    - if the failure is fatal
1109  */
1110 blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd)
1111 {
1112 	struct scsi_device *sdev = cmd->device;
1113 	struct request *rq = scsi_cmd_to_rq(cmd);
1114 	unsigned short nr_segs = blk_rq_nr_phys_segments(rq);
1115 	struct scatterlist *last_sg = NULL;
1116 	blk_status_t ret;
1117 	bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq);
1118 	int count;
1119 
1120 	if (WARN_ON_ONCE(!nr_segs))
1121 		return BLK_STS_IOERR;
1122 
1123 	/*
1124 	 * Make sure there is space for the drain.  The driver must adjust
1125 	 * max_hw_segments to be prepared for this.
1126 	 */
1127 	if (need_drain)
1128 		nr_segs++;
1129 
1130 	/*
1131 	 * If sg table allocation fails, requeue request later.
1132 	 */
1133 	if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs,
1134 			cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT)))
1135 		return BLK_STS_RESOURCE;
1136 
1137 	/*
1138 	 * Next, walk the list, and fill in the addresses and sizes of
1139 	 * each segment.
1140 	 */
1141 	count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg);
1142 
1143 	if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) {
1144 		unsigned int pad_len =
1145 			(rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
1146 
1147 		last_sg->length += pad_len;
1148 		cmd->extra_len += pad_len;
1149 	}
1150 
1151 	if (need_drain) {
1152 		sg_unmark_end(last_sg);
1153 		last_sg = sg_next(last_sg);
1154 		sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len);
1155 		sg_mark_end(last_sg);
1156 
1157 		cmd->extra_len += sdev->dma_drain_len;
1158 		count++;
1159 	}
1160 
1161 	BUG_ON(count > cmd->sdb.table.nents);
1162 	cmd->sdb.table.nents = count;
1163 	cmd->sdb.length = blk_rq_payload_bytes(rq);
1164 
1165 	if (blk_integrity_rq(rq)) {
1166 		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1167 		int ivecs;
1168 
1169 		if (WARN_ON_ONCE(!prot_sdb)) {
1170 			/*
1171 			 * This can happen if someone (e.g. multipath)
1172 			 * queues a command to a device on an adapter
1173 			 * that does not support DIX.
1174 			 */
1175 			ret = BLK_STS_IOERR;
1176 			goto out_free_sgtables;
1177 		}
1178 
1179 		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1180 
1181 		if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1182 				prot_sdb->table.sgl,
1183 				SCSI_INLINE_PROT_SG_CNT)) {
1184 			ret = BLK_STS_RESOURCE;
1185 			goto out_free_sgtables;
1186 		}
1187 
1188 		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1189 						prot_sdb->table.sgl);
1190 		BUG_ON(count > ivecs);
1191 		BUG_ON(count > queue_max_integrity_segments(rq->q));
1192 
1193 		cmd->prot_sdb = prot_sdb;
1194 		cmd->prot_sdb->table.nents = count;
1195 	}
1196 
1197 	return BLK_STS_OK;
1198 out_free_sgtables:
1199 	scsi_free_sgtables(cmd);
1200 	return ret;
1201 }
1202 EXPORT_SYMBOL(scsi_alloc_sgtables);
1203 
1204 /**
1205  * scsi_initialize_rq - initialize struct scsi_cmnd partially
1206  * @rq: Request associated with the SCSI command to be initialized.
1207  *
1208  * This function initializes the members of struct scsi_cmnd that must be
1209  * initialized before request processing starts and that won't be
1210  * reinitialized if a SCSI command is requeued.
1211  */
1212 static void scsi_initialize_rq(struct request *rq)
1213 {
1214 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1215 
1216 	memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1217 	cmd->cmd_len = MAX_COMMAND_SIZE;
1218 	cmd->sense_len = 0;
1219 	init_rcu_head(&cmd->rcu);
1220 	cmd->jiffies_at_alloc = jiffies;
1221 	cmd->retries = 0;
1222 }
1223 
1224 struct request *scsi_alloc_request(struct request_queue *q, blk_opf_t opf,
1225 				   blk_mq_req_flags_t flags)
1226 {
1227 	struct request *rq;
1228 
1229 	rq = blk_mq_alloc_request(q, opf, flags);
1230 	if (!IS_ERR(rq))
1231 		scsi_initialize_rq(rq);
1232 	return rq;
1233 }
1234 EXPORT_SYMBOL_GPL(scsi_alloc_request);
1235 
1236 /*
1237  * Only called when the request isn't completed by SCSI, and not freed by
1238  * SCSI
1239  */
1240 static void scsi_cleanup_rq(struct request *rq)
1241 {
1242 	if (rq->rq_flags & RQF_DONTPREP) {
1243 		scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq));
1244 		rq->rq_flags &= ~RQF_DONTPREP;
1245 	}
1246 }
1247 
1248 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */
1249 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1250 {
1251 	struct request *rq = scsi_cmd_to_rq(cmd);
1252 
1253 	if (!blk_rq_is_passthrough(rq) && !(cmd->flags & SCMD_INITIALIZED)) {
1254 		cmd->flags |= SCMD_INITIALIZED;
1255 		scsi_initialize_rq(rq);
1256 	}
1257 
1258 	cmd->device = dev;
1259 	INIT_LIST_HEAD(&cmd->eh_entry);
1260 	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1261 }
1262 
1263 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1264 		struct request *req)
1265 {
1266 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1267 
1268 	/*
1269 	 * Passthrough requests may transfer data, in which case they must
1270 	 * a bio attached to them.  Or they might contain a SCSI command
1271 	 * that does not transfer data, in which case they may optionally
1272 	 * submit a request without an attached bio.
1273 	 */
1274 	if (req->bio) {
1275 		blk_status_t ret = scsi_alloc_sgtables(cmd);
1276 		if (unlikely(ret != BLK_STS_OK))
1277 			return ret;
1278 	} else {
1279 		BUG_ON(blk_rq_bytes(req));
1280 
1281 		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1282 	}
1283 
1284 	cmd->transfersize = blk_rq_bytes(req);
1285 	return BLK_STS_OK;
1286 }
1287 
1288 static blk_status_t
1289 scsi_device_state_check(struct scsi_device *sdev, struct request *req)
1290 {
1291 	switch (sdev->sdev_state) {
1292 	case SDEV_CREATED:
1293 		return BLK_STS_OK;
1294 	case SDEV_OFFLINE:
1295 	case SDEV_TRANSPORT_OFFLINE:
1296 		/*
1297 		 * If the device is offline we refuse to process any
1298 		 * commands.  The device must be brought online
1299 		 * before trying any recovery commands.
1300 		 */
1301 		if (!sdev->offline_already) {
1302 			sdev->offline_already = true;
1303 			sdev_printk(KERN_ERR, sdev,
1304 				    "rejecting I/O to offline device\n");
1305 		}
1306 		return BLK_STS_IOERR;
1307 	case SDEV_DEL:
1308 		/*
1309 		 * If the device is fully deleted, we refuse to
1310 		 * process any commands as well.
1311 		 */
1312 		sdev_printk(KERN_ERR, sdev,
1313 			    "rejecting I/O to dead device\n");
1314 		return BLK_STS_IOERR;
1315 	case SDEV_BLOCK:
1316 	case SDEV_CREATED_BLOCK:
1317 		return BLK_STS_RESOURCE;
1318 	case SDEV_QUIESCE:
1319 		/*
1320 		 * If the device is blocked we only accept power management
1321 		 * commands.
1322 		 */
1323 		if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM)))
1324 			return BLK_STS_RESOURCE;
1325 		return BLK_STS_OK;
1326 	default:
1327 		/*
1328 		 * For any other not fully online state we only allow
1329 		 * power management commands.
1330 		 */
1331 		if (req && !(req->rq_flags & RQF_PM))
1332 			return BLK_STS_OFFLINE;
1333 		return BLK_STS_OK;
1334 	}
1335 }
1336 
1337 /*
1338  * scsi_dev_queue_ready: if we can send requests to sdev, assign one token
1339  * and return the token else return -1.
1340  */
1341 static inline int scsi_dev_queue_ready(struct request_queue *q,
1342 				  struct scsi_device *sdev)
1343 {
1344 	int token;
1345 
1346 	token = sbitmap_get(&sdev->budget_map);
1347 	if (token < 0)
1348 		return -1;
1349 
1350 	if (!atomic_read(&sdev->device_blocked))
1351 		return token;
1352 
1353 	/*
1354 	 * Only unblock if no other commands are pending and
1355 	 * if device_blocked has decreased to zero
1356 	 */
1357 	if (scsi_device_busy(sdev) > 1 ||
1358 	    atomic_dec_return(&sdev->device_blocked) > 0) {
1359 		sbitmap_put(&sdev->budget_map, token);
1360 		return -1;
1361 	}
1362 
1363 	SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1364 			 "unblocking device at zero depth\n"));
1365 
1366 	return token;
1367 }
1368 
1369 /*
1370  * scsi_target_queue_ready: checks if there we can send commands to target
1371  * @sdev: scsi device on starget to check.
1372  */
1373 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1374 					   struct scsi_device *sdev)
1375 {
1376 	struct scsi_target *starget = scsi_target(sdev);
1377 	unsigned int busy;
1378 
1379 	if (starget->single_lun) {
1380 		spin_lock_irq(shost->host_lock);
1381 		if (starget->starget_sdev_user &&
1382 		    starget->starget_sdev_user != sdev) {
1383 			spin_unlock_irq(shost->host_lock);
1384 			return 0;
1385 		}
1386 		starget->starget_sdev_user = sdev;
1387 		spin_unlock_irq(shost->host_lock);
1388 	}
1389 
1390 	if (starget->can_queue <= 0)
1391 		return 1;
1392 
1393 	busy = atomic_inc_return(&starget->target_busy) - 1;
1394 	if (atomic_read(&starget->target_blocked) > 0) {
1395 		if (busy)
1396 			goto starved;
1397 
1398 		/*
1399 		 * unblock after target_blocked iterates to zero
1400 		 */
1401 		if (atomic_dec_return(&starget->target_blocked) > 0)
1402 			goto out_dec;
1403 
1404 		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1405 				 "unblocking target at zero depth\n"));
1406 	}
1407 
1408 	if (busy >= starget->can_queue)
1409 		goto starved;
1410 
1411 	return 1;
1412 
1413 starved:
1414 	spin_lock_irq(shost->host_lock);
1415 	list_move_tail(&sdev->starved_entry, &shost->starved_list);
1416 	spin_unlock_irq(shost->host_lock);
1417 out_dec:
1418 	if (starget->can_queue > 0)
1419 		atomic_dec(&starget->target_busy);
1420 	return 0;
1421 }
1422 
1423 /*
1424  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1425  * return 0. We must end up running the queue again whenever 0 is
1426  * returned, else IO can hang.
1427  */
1428 static inline int scsi_host_queue_ready(struct request_queue *q,
1429 				   struct Scsi_Host *shost,
1430 				   struct scsi_device *sdev,
1431 				   struct scsi_cmnd *cmd)
1432 {
1433 	if (atomic_read(&shost->host_blocked) > 0) {
1434 		if (scsi_host_busy(shost) > 0)
1435 			goto starved;
1436 
1437 		/*
1438 		 * unblock after host_blocked iterates to zero
1439 		 */
1440 		if (atomic_dec_return(&shost->host_blocked) > 0)
1441 			goto out_dec;
1442 
1443 		SCSI_LOG_MLQUEUE(3,
1444 			shost_printk(KERN_INFO, shost,
1445 				     "unblocking host at zero depth\n"));
1446 	}
1447 
1448 	if (shost->host_self_blocked)
1449 		goto starved;
1450 
1451 	/* We're OK to process the command, so we can't be starved */
1452 	if (!list_empty(&sdev->starved_entry)) {
1453 		spin_lock_irq(shost->host_lock);
1454 		if (!list_empty(&sdev->starved_entry))
1455 			list_del_init(&sdev->starved_entry);
1456 		spin_unlock_irq(shost->host_lock);
1457 	}
1458 
1459 	__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1460 
1461 	return 1;
1462 
1463 starved:
1464 	spin_lock_irq(shost->host_lock);
1465 	if (list_empty(&sdev->starved_entry))
1466 		list_add_tail(&sdev->starved_entry, &shost->starved_list);
1467 	spin_unlock_irq(shost->host_lock);
1468 out_dec:
1469 	scsi_dec_host_busy(shost, cmd);
1470 	return 0;
1471 }
1472 
1473 /*
1474  * Busy state exporting function for request stacking drivers.
1475  *
1476  * For efficiency, no lock is taken to check the busy state of
1477  * shost/starget/sdev, since the returned value is not guaranteed and
1478  * may be changed after request stacking drivers call the function,
1479  * regardless of taking lock or not.
1480  *
1481  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1482  * needs to return 'not busy'. Otherwise, request stacking drivers
1483  * may hold requests forever.
1484  */
1485 static bool scsi_mq_lld_busy(struct request_queue *q)
1486 {
1487 	struct scsi_device *sdev = q->queuedata;
1488 	struct Scsi_Host *shost;
1489 
1490 	if (blk_queue_dying(q))
1491 		return false;
1492 
1493 	shost = sdev->host;
1494 
1495 	/*
1496 	 * Ignore host/starget busy state.
1497 	 * Since block layer does not have a concept of fairness across
1498 	 * multiple queues, congestion of host/starget needs to be handled
1499 	 * in SCSI layer.
1500 	 */
1501 	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1502 		return true;
1503 
1504 	return false;
1505 }
1506 
1507 /*
1508  * Block layer request completion callback. May be called from interrupt
1509  * context.
1510  */
1511 static void scsi_complete(struct request *rq)
1512 {
1513 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1514 	enum scsi_disposition disposition;
1515 
1516 	INIT_LIST_HEAD(&cmd->eh_entry);
1517 
1518 	atomic_inc(&cmd->device->iodone_cnt);
1519 	if (cmd->result)
1520 		atomic_inc(&cmd->device->ioerr_cnt);
1521 
1522 	disposition = scsi_decide_disposition(cmd);
1523 	if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd))
1524 		disposition = SUCCESS;
1525 
1526 	scsi_log_completion(cmd, disposition);
1527 
1528 	switch (disposition) {
1529 	case SUCCESS:
1530 		scsi_finish_command(cmd);
1531 		break;
1532 	case NEEDS_RETRY:
1533 		scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1534 		break;
1535 	case ADD_TO_MLQUEUE:
1536 		scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1537 		break;
1538 	default:
1539 		scsi_eh_scmd_add(cmd);
1540 		break;
1541 	}
1542 }
1543 
1544 /**
1545  * scsi_dispatch_cmd - Dispatch a command to the low-level driver.
1546  * @cmd: command block we are dispatching.
1547  *
1548  * Return: nonzero return request was rejected and device's queue needs to be
1549  * plugged.
1550  */
1551 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1552 {
1553 	struct Scsi_Host *host = cmd->device->host;
1554 	int rtn = 0;
1555 
1556 	atomic_inc(&cmd->device->iorequest_cnt);
1557 
1558 	/* check if the device is still usable */
1559 	if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1560 		/* in SDEV_DEL we error all commands. DID_NO_CONNECT
1561 		 * returns an immediate error upwards, and signals
1562 		 * that the device is no longer present */
1563 		cmd->result = DID_NO_CONNECT << 16;
1564 		goto done;
1565 	}
1566 
1567 	/* Check to see if the scsi lld made this device blocked. */
1568 	if (unlikely(scsi_device_blocked(cmd->device))) {
1569 		/*
1570 		 * in blocked state, the command is just put back on
1571 		 * the device queue.  The suspend state has already
1572 		 * blocked the queue so future requests should not
1573 		 * occur until the device transitions out of the
1574 		 * suspend state.
1575 		 */
1576 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1577 			"queuecommand : device blocked\n"));
1578 		atomic_dec(&cmd->device->iorequest_cnt);
1579 		return SCSI_MLQUEUE_DEVICE_BUSY;
1580 	}
1581 
1582 	/* Store the LUN value in cmnd, if needed. */
1583 	if (cmd->device->lun_in_cdb)
1584 		cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1585 			       (cmd->device->lun << 5 & 0xe0);
1586 
1587 	scsi_log_send(cmd);
1588 
1589 	/*
1590 	 * Before we queue this command, check if the command
1591 	 * length exceeds what the host adapter can handle.
1592 	 */
1593 	if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1594 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1595 			       "queuecommand : command too long. "
1596 			       "cdb_size=%d host->max_cmd_len=%d\n",
1597 			       cmd->cmd_len, cmd->device->host->max_cmd_len));
1598 		cmd->result = (DID_ABORT << 16);
1599 		goto done;
1600 	}
1601 
1602 	if (unlikely(host->shost_state == SHOST_DEL)) {
1603 		cmd->result = (DID_NO_CONNECT << 16);
1604 		goto done;
1605 
1606 	}
1607 
1608 	trace_scsi_dispatch_cmd_start(cmd);
1609 	rtn = host->hostt->queuecommand(host, cmd);
1610 	if (rtn) {
1611 		atomic_dec(&cmd->device->iorequest_cnt);
1612 		trace_scsi_dispatch_cmd_error(cmd, rtn);
1613 		if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1614 		    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1615 			rtn = SCSI_MLQUEUE_HOST_BUSY;
1616 
1617 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1618 			"queuecommand : request rejected\n"));
1619 	}
1620 
1621 	return rtn;
1622  done:
1623 	scsi_done(cmd);
1624 	return 0;
1625 }
1626 
1627 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1628 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
1629 {
1630 	return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1631 		sizeof(struct scatterlist);
1632 }
1633 
1634 static blk_status_t scsi_prepare_cmd(struct request *req)
1635 {
1636 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1637 	struct scsi_device *sdev = req->q->queuedata;
1638 	struct Scsi_Host *shost = sdev->host;
1639 	bool in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1640 	struct scatterlist *sg;
1641 
1642 	scsi_init_command(sdev, cmd);
1643 
1644 	cmd->eh_eflags = 0;
1645 	cmd->prot_type = 0;
1646 	cmd->prot_flags = 0;
1647 	cmd->submitter = 0;
1648 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1649 	cmd->underflow = 0;
1650 	cmd->transfersize = 0;
1651 	cmd->host_scribble = NULL;
1652 	cmd->result = 0;
1653 	cmd->extra_len = 0;
1654 	cmd->state = 0;
1655 	if (in_flight)
1656 		__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1657 
1658 	/*
1659 	 * Only clear the driver-private command data if the LLD does not supply
1660 	 * a function to initialize that data.
1661 	 */
1662 	if (!shost->hostt->init_cmd_priv)
1663 		memset(cmd + 1, 0, shost->hostt->cmd_size);
1664 
1665 	cmd->prot_op = SCSI_PROT_NORMAL;
1666 	if (blk_rq_bytes(req))
1667 		cmd->sc_data_direction = rq_dma_dir(req);
1668 	else
1669 		cmd->sc_data_direction = DMA_NONE;
1670 
1671 	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1672 	cmd->sdb.table.sgl = sg;
1673 
1674 	if (scsi_host_get_prot(shost)) {
1675 		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1676 
1677 		cmd->prot_sdb->table.sgl =
1678 			(struct scatterlist *)(cmd->prot_sdb + 1);
1679 	}
1680 
1681 	/*
1682 	 * Special handling for passthrough commands, which don't go to the ULP
1683 	 * at all:
1684 	 */
1685 	if (blk_rq_is_passthrough(req))
1686 		return scsi_setup_scsi_cmnd(sdev, req);
1687 
1688 	if (sdev->handler && sdev->handler->prep_fn) {
1689 		blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1690 
1691 		if (ret != BLK_STS_OK)
1692 			return ret;
1693 	}
1694 
1695 	/* Usually overridden by the ULP */
1696 	cmd->allowed = 0;
1697 	memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1698 	return scsi_cmd_to_driver(cmd)->init_command(cmd);
1699 }
1700 
1701 static void scsi_done_internal(struct scsi_cmnd *cmd, bool complete_directly)
1702 {
1703 	struct request *req = scsi_cmd_to_rq(cmd);
1704 
1705 	switch (cmd->submitter) {
1706 	case SUBMITTED_BY_BLOCK_LAYER:
1707 		break;
1708 	case SUBMITTED_BY_SCSI_ERROR_HANDLER:
1709 		return scsi_eh_done(cmd);
1710 	case SUBMITTED_BY_SCSI_RESET_IOCTL:
1711 		return;
1712 	}
1713 
1714 	if (unlikely(blk_should_fake_timeout(scsi_cmd_to_rq(cmd)->q)))
1715 		return;
1716 	if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1717 		return;
1718 	trace_scsi_dispatch_cmd_done(cmd);
1719 
1720 	if (complete_directly)
1721 		blk_mq_complete_request_direct(req, scsi_complete);
1722 	else
1723 		blk_mq_complete_request(req);
1724 }
1725 
1726 void scsi_done(struct scsi_cmnd *cmd)
1727 {
1728 	scsi_done_internal(cmd, false);
1729 }
1730 EXPORT_SYMBOL(scsi_done);
1731 
1732 void scsi_done_direct(struct scsi_cmnd *cmd)
1733 {
1734 	scsi_done_internal(cmd, true);
1735 }
1736 EXPORT_SYMBOL(scsi_done_direct);
1737 
1738 static void scsi_mq_put_budget(struct request_queue *q, int budget_token)
1739 {
1740 	struct scsi_device *sdev = q->queuedata;
1741 
1742 	sbitmap_put(&sdev->budget_map, budget_token);
1743 }
1744 
1745 /*
1746  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
1747  * not change behaviour from the previous unplug mechanism, experimentation
1748  * may prove this needs changing.
1749  */
1750 #define SCSI_QUEUE_DELAY 3
1751 
1752 static int scsi_mq_get_budget(struct request_queue *q)
1753 {
1754 	struct scsi_device *sdev = q->queuedata;
1755 	int token = scsi_dev_queue_ready(q, sdev);
1756 
1757 	if (token >= 0)
1758 		return token;
1759 
1760 	atomic_inc(&sdev->restarts);
1761 
1762 	/*
1763 	 * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy).
1764 	 * .restarts must be incremented before .device_busy is read because the
1765 	 * code in scsi_run_queue_async() depends on the order of these operations.
1766 	 */
1767 	smp_mb__after_atomic();
1768 
1769 	/*
1770 	 * If all in-flight requests originated from this LUN are completed
1771 	 * before reading .device_busy, sdev->device_busy will be observed as
1772 	 * zero, then blk_mq_delay_run_hw_queues() will dispatch this request
1773 	 * soon. Otherwise, completion of one of these requests will observe
1774 	 * the .restarts flag, and the request queue will be run for handling
1775 	 * this request, see scsi_end_request().
1776 	 */
1777 	if (unlikely(scsi_device_busy(sdev) == 0 &&
1778 				!scsi_device_blocked(sdev)))
1779 		blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY);
1780 	return -1;
1781 }
1782 
1783 static void scsi_mq_set_rq_budget_token(struct request *req, int token)
1784 {
1785 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1786 
1787 	cmd->budget_token = token;
1788 }
1789 
1790 static int scsi_mq_get_rq_budget_token(struct request *req)
1791 {
1792 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1793 
1794 	return cmd->budget_token;
1795 }
1796 
1797 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1798 			 const struct blk_mq_queue_data *bd)
1799 {
1800 	struct request *req = bd->rq;
1801 	struct request_queue *q = req->q;
1802 	struct scsi_device *sdev = q->queuedata;
1803 	struct Scsi_Host *shost = sdev->host;
1804 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1805 	blk_status_t ret;
1806 	int reason;
1807 
1808 	WARN_ON_ONCE(cmd->budget_token < 0);
1809 
1810 	/*
1811 	 * If the device is not in running state we will reject some or all
1812 	 * commands.
1813 	 */
1814 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1815 		ret = scsi_device_state_check(sdev, req);
1816 		if (ret != BLK_STS_OK)
1817 			goto out_put_budget;
1818 	}
1819 
1820 	ret = BLK_STS_RESOURCE;
1821 	if (!scsi_target_queue_ready(shost, sdev))
1822 		goto out_put_budget;
1823 	if (unlikely(scsi_host_in_recovery(shost))) {
1824 		if (cmd->flags & SCMD_FAIL_IF_RECOVERING)
1825 			ret = BLK_STS_OFFLINE;
1826 		goto out_dec_target_busy;
1827 	}
1828 	if (!scsi_host_queue_ready(q, shost, sdev, cmd))
1829 		goto out_dec_target_busy;
1830 
1831 	if (!(req->rq_flags & RQF_DONTPREP)) {
1832 		ret = scsi_prepare_cmd(req);
1833 		if (ret != BLK_STS_OK)
1834 			goto out_dec_host_busy;
1835 		req->rq_flags |= RQF_DONTPREP;
1836 	} else {
1837 		clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1838 	}
1839 
1840 	cmd->flags &= SCMD_PRESERVED_FLAGS;
1841 	if (sdev->simple_tags)
1842 		cmd->flags |= SCMD_TAGGED;
1843 	if (bd->last)
1844 		cmd->flags |= SCMD_LAST;
1845 
1846 	scsi_set_resid(cmd, 0);
1847 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1848 	cmd->submitter = SUBMITTED_BY_BLOCK_LAYER;
1849 
1850 	blk_mq_start_request(req);
1851 	reason = scsi_dispatch_cmd(cmd);
1852 	if (reason) {
1853 		scsi_set_blocked(cmd, reason);
1854 		ret = BLK_STS_RESOURCE;
1855 		goto out_dec_host_busy;
1856 	}
1857 
1858 	return BLK_STS_OK;
1859 
1860 out_dec_host_busy:
1861 	scsi_dec_host_busy(shost, cmd);
1862 out_dec_target_busy:
1863 	if (scsi_target(sdev)->can_queue > 0)
1864 		atomic_dec(&scsi_target(sdev)->target_busy);
1865 out_put_budget:
1866 	scsi_mq_put_budget(q, cmd->budget_token);
1867 	cmd->budget_token = -1;
1868 	switch (ret) {
1869 	case BLK_STS_OK:
1870 		break;
1871 	case BLK_STS_RESOURCE:
1872 	case BLK_STS_ZONE_RESOURCE:
1873 		if (scsi_device_blocked(sdev))
1874 			ret = BLK_STS_DEV_RESOURCE;
1875 		break;
1876 	case BLK_STS_AGAIN:
1877 		cmd->result = DID_BUS_BUSY << 16;
1878 		if (req->rq_flags & RQF_DONTPREP)
1879 			scsi_mq_uninit_cmd(cmd);
1880 		break;
1881 	default:
1882 		if (unlikely(!scsi_device_online(sdev)))
1883 			cmd->result = DID_NO_CONNECT << 16;
1884 		else
1885 			cmd->result = DID_ERROR << 16;
1886 		/*
1887 		 * Make sure to release all allocated resources when
1888 		 * we hit an error, as we will never see this command
1889 		 * again.
1890 		 */
1891 		if (req->rq_flags & RQF_DONTPREP)
1892 			scsi_mq_uninit_cmd(cmd);
1893 		scsi_run_queue_async(sdev);
1894 		break;
1895 	}
1896 	return ret;
1897 }
1898 
1899 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1900 				unsigned int hctx_idx, unsigned int numa_node)
1901 {
1902 	struct Scsi_Host *shost = set->driver_data;
1903 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1904 	struct scatterlist *sg;
1905 	int ret = 0;
1906 
1907 	cmd->sense_buffer =
1908 		kmem_cache_alloc_node(scsi_sense_cache, GFP_KERNEL, numa_node);
1909 	if (!cmd->sense_buffer)
1910 		return -ENOMEM;
1911 
1912 	if (scsi_host_get_prot(shost)) {
1913 		sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1914 			shost->hostt->cmd_size;
1915 		cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1916 	}
1917 
1918 	if (shost->hostt->init_cmd_priv) {
1919 		ret = shost->hostt->init_cmd_priv(shost, cmd);
1920 		if (ret < 0)
1921 			kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1922 	}
1923 
1924 	return ret;
1925 }
1926 
1927 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1928 				 unsigned int hctx_idx)
1929 {
1930 	struct Scsi_Host *shost = set->driver_data;
1931 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1932 
1933 	if (shost->hostt->exit_cmd_priv)
1934 		shost->hostt->exit_cmd_priv(shost, cmd);
1935 	kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1936 }
1937 
1938 
1939 static int scsi_mq_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1940 {
1941 	struct Scsi_Host *shost = hctx->driver_data;
1942 
1943 	if (shost->hostt->mq_poll)
1944 		return shost->hostt->mq_poll(shost, hctx->queue_num);
1945 
1946 	return 0;
1947 }
1948 
1949 static int scsi_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1950 			  unsigned int hctx_idx)
1951 {
1952 	struct Scsi_Host *shost = data;
1953 
1954 	hctx->driver_data = shost;
1955 	return 0;
1956 }
1957 
1958 static void scsi_map_queues(struct blk_mq_tag_set *set)
1959 {
1960 	struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1961 
1962 	if (shost->hostt->map_queues)
1963 		return shost->hostt->map_queues(shost);
1964 	blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
1965 }
1966 
1967 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1968 {
1969 	struct device *dev = shost->dma_dev;
1970 
1971 	/*
1972 	 * this limit is imposed by hardware restrictions
1973 	 */
1974 	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1975 					SG_MAX_SEGMENTS));
1976 
1977 	if (scsi_host_prot_dma(shost)) {
1978 		shost->sg_prot_tablesize =
1979 			min_not_zero(shost->sg_prot_tablesize,
1980 				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1981 		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1982 		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1983 	}
1984 
1985 	blk_queue_max_hw_sectors(q, shost->max_sectors);
1986 	blk_queue_segment_boundary(q, shost->dma_boundary);
1987 	dma_set_seg_boundary(dev, shost->dma_boundary);
1988 
1989 	blk_queue_max_segment_size(q, shost->max_segment_size);
1990 	blk_queue_virt_boundary(q, shost->virt_boundary_mask);
1991 	dma_set_max_seg_size(dev, queue_max_segment_size(q));
1992 
1993 	/*
1994 	 * Set a reasonable default alignment:  The larger of 32-byte (dword),
1995 	 * which is a common minimum for HBAs, and the minimum DMA alignment,
1996 	 * which is set by the platform.
1997 	 *
1998 	 * Devices that require a bigger alignment can increase it later.
1999 	 */
2000 	blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
2001 }
2002 EXPORT_SYMBOL_GPL(__scsi_init_queue);
2003 
2004 static const struct blk_mq_ops scsi_mq_ops_no_commit = {
2005 	.get_budget	= scsi_mq_get_budget,
2006 	.put_budget	= scsi_mq_put_budget,
2007 	.queue_rq	= scsi_queue_rq,
2008 	.complete	= scsi_complete,
2009 	.timeout	= scsi_timeout,
2010 #ifdef CONFIG_BLK_DEBUG_FS
2011 	.show_rq	= scsi_show_rq,
2012 #endif
2013 	.init_request	= scsi_mq_init_request,
2014 	.exit_request	= scsi_mq_exit_request,
2015 	.cleanup_rq	= scsi_cleanup_rq,
2016 	.busy		= scsi_mq_lld_busy,
2017 	.map_queues	= scsi_map_queues,
2018 	.init_hctx	= scsi_init_hctx,
2019 	.poll		= scsi_mq_poll,
2020 	.set_rq_budget_token = scsi_mq_set_rq_budget_token,
2021 	.get_rq_budget_token = scsi_mq_get_rq_budget_token,
2022 };
2023 
2024 
2025 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
2026 {
2027 	struct Scsi_Host *shost = hctx->driver_data;
2028 
2029 	shost->hostt->commit_rqs(shost, hctx->queue_num);
2030 }
2031 
2032 static const struct blk_mq_ops scsi_mq_ops = {
2033 	.get_budget	= scsi_mq_get_budget,
2034 	.put_budget	= scsi_mq_put_budget,
2035 	.queue_rq	= scsi_queue_rq,
2036 	.commit_rqs	= scsi_commit_rqs,
2037 	.complete	= scsi_complete,
2038 	.timeout	= scsi_timeout,
2039 #ifdef CONFIG_BLK_DEBUG_FS
2040 	.show_rq	= scsi_show_rq,
2041 #endif
2042 	.init_request	= scsi_mq_init_request,
2043 	.exit_request	= scsi_mq_exit_request,
2044 	.cleanup_rq	= scsi_cleanup_rq,
2045 	.busy		= scsi_mq_lld_busy,
2046 	.map_queues	= scsi_map_queues,
2047 	.init_hctx	= scsi_init_hctx,
2048 	.poll		= scsi_mq_poll,
2049 	.set_rq_budget_token = scsi_mq_set_rq_budget_token,
2050 	.get_rq_budget_token = scsi_mq_get_rq_budget_token,
2051 };
2052 
2053 int scsi_mq_setup_tags(struct Scsi_Host *shost)
2054 {
2055 	unsigned int cmd_size, sgl_size;
2056 	struct blk_mq_tag_set *tag_set = &shost->tag_set;
2057 
2058 	sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
2059 				scsi_mq_inline_sgl_size(shost));
2060 	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2061 	if (scsi_host_get_prot(shost))
2062 		cmd_size += sizeof(struct scsi_data_buffer) +
2063 			sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
2064 
2065 	memset(tag_set, 0, sizeof(*tag_set));
2066 	if (shost->hostt->commit_rqs)
2067 		tag_set->ops = &scsi_mq_ops;
2068 	else
2069 		tag_set->ops = &scsi_mq_ops_no_commit;
2070 	tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1;
2071 	tag_set->nr_maps = shost->nr_maps ? : 1;
2072 	tag_set->queue_depth = shost->can_queue;
2073 	tag_set->cmd_size = cmd_size;
2074 	tag_set->numa_node = dev_to_node(shost->dma_dev);
2075 	tag_set->flags = BLK_MQ_F_SHOULD_MERGE;
2076 	tag_set->flags |=
2077 		BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
2078 	if (shost->queuecommand_may_block)
2079 		tag_set->flags |= BLK_MQ_F_BLOCKING;
2080 	tag_set->driver_data = shost;
2081 	if (shost->host_tagset)
2082 		tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
2083 
2084 	return blk_mq_alloc_tag_set(tag_set);
2085 }
2086 
2087 void scsi_mq_free_tags(struct kref *kref)
2088 {
2089 	struct Scsi_Host *shost = container_of(kref, typeof(*shost),
2090 					       tagset_refcnt);
2091 
2092 	blk_mq_free_tag_set(&shost->tag_set);
2093 	complete(&shost->tagset_freed);
2094 }
2095 
2096 /**
2097  * scsi_device_from_queue - return sdev associated with a request_queue
2098  * @q: The request queue to return the sdev from
2099  *
2100  * Return the sdev associated with a request queue or NULL if the
2101  * request_queue does not reference a SCSI device.
2102  */
2103 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2104 {
2105 	struct scsi_device *sdev = NULL;
2106 
2107 	if (q->mq_ops == &scsi_mq_ops_no_commit ||
2108 	    q->mq_ops == &scsi_mq_ops)
2109 		sdev = q->queuedata;
2110 	if (!sdev || !get_device(&sdev->sdev_gendev))
2111 		sdev = NULL;
2112 
2113 	return sdev;
2114 }
2115 /*
2116  * pktcdvd should have been integrated into the SCSI layers, but for historical
2117  * reasons like the old IDE driver it isn't.  This export allows it to safely
2118  * probe if a given device is a SCSI one and only attach to that.
2119  */
2120 #ifdef CONFIG_CDROM_PKTCDVD_MODULE
2121 EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2122 #endif
2123 
2124 /**
2125  * scsi_block_requests - Utility function used by low-level drivers to prevent
2126  * further commands from being queued to the device.
2127  * @shost:  host in question
2128  *
2129  * There is no timer nor any other means by which the requests get unblocked
2130  * other than the low-level driver calling scsi_unblock_requests().
2131  */
2132 void scsi_block_requests(struct Scsi_Host *shost)
2133 {
2134 	shost->host_self_blocked = 1;
2135 }
2136 EXPORT_SYMBOL(scsi_block_requests);
2137 
2138 /**
2139  * scsi_unblock_requests - Utility function used by low-level drivers to allow
2140  * further commands to be queued to the device.
2141  * @shost:  host in question
2142  *
2143  * There is no timer nor any other means by which the requests get unblocked
2144  * other than the low-level driver calling scsi_unblock_requests(). This is done
2145  * as an API function so that changes to the internals of the scsi mid-layer
2146  * won't require wholesale changes to drivers that use this feature.
2147  */
2148 void scsi_unblock_requests(struct Scsi_Host *shost)
2149 {
2150 	shost->host_self_blocked = 0;
2151 	scsi_run_host_queues(shost);
2152 }
2153 EXPORT_SYMBOL(scsi_unblock_requests);
2154 
2155 void scsi_exit_queue(void)
2156 {
2157 	kmem_cache_destroy(scsi_sense_cache);
2158 }
2159 
2160 /**
2161  *	scsi_mode_select - issue a mode select
2162  *	@sdev:	SCSI device to be queried
2163  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
2164  *	@sp:	Save page bit (0 == don't save, 1 == save)
2165  *	@buffer: request buffer (may not be smaller than eight bytes)
2166  *	@len:	length of request buffer.
2167  *	@timeout: command timeout
2168  *	@retries: number of retries before failing
2169  *	@data: returns a structure abstracting the mode header data
2170  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2171  *		must be SCSI_SENSE_BUFFERSIZE big.
2172  *
2173  *	Returns zero if successful; negative error number or scsi
2174  *	status on error
2175  *
2176  */
2177 int scsi_mode_select(struct scsi_device *sdev, int pf, int sp,
2178 		     unsigned char *buffer, int len, int timeout, int retries,
2179 		     struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2180 {
2181 	unsigned char cmd[10];
2182 	unsigned char *real_buffer;
2183 	const struct scsi_exec_args exec_args = {
2184 		.sshdr = sshdr,
2185 	};
2186 	int ret;
2187 
2188 	memset(cmd, 0, sizeof(cmd));
2189 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2190 
2191 	/*
2192 	 * Use MODE SELECT(10) if the device asked for it or if the mode page
2193 	 * and the mode select header cannot fit within the maximumm 255 bytes
2194 	 * of the MODE SELECT(6) command.
2195 	 */
2196 	if (sdev->use_10_for_ms ||
2197 	    len + 4 > 255 ||
2198 	    data->block_descriptor_length > 255) {
2199 		if (len > 65535 - 8)
2200 			return -EINVAL;
2201 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
2202 		if (!real_buffer)
2203 			return -ENOMEM;
2204 		memcpy(real_buffer + 8, buffer, len);
2205 		len += 8;
2206 		real_buffer[0] = 0;
2207 		real_buffer[1] = 0;
2208 		real_buffer[2] = data->medium_type;
2209 		real_buffer[3] = data->device_specific;
2210 		real_buffer[4] = data->longlba ? 0x01 : 0;
2211 		real_buffer[5] = 0;
2212 		put_unaligned_be16(data->block_descriptor_length,
2213 				   &real_buffer[6]);
2214 
2215 		cmd[0] = MODE_SELECT_10;
2216 		put_unaligned_be16(len, &cmd[7]);
2217 	} else {
2218 		if (data->longlba)
2219 			return -EINVAL;
2220 
2221 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2222 		if (!real_buffer)
2223 			return -ENOMEM;
2224 		memcpy(real_buffer + 4, buffer, len);
2225 		len += 4;
2226 		real_buffer[0] = 0;
2227 		real_buffer[1] = data->medium_type;
2228 		real_buffer[2] = data->device_specific;
2229 		real_buffer[3] = data->block_descriptor_length;
2230 
2231 		cmd[0] = MODE_SELECT;
2232 		cmd[4] = len;
2233 	}
2234 
2235 	ret = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, real_buffer, len,
2236 			       timeout, retries, &exec_args);
2237 	kfree(real_buffer);
2238 	return ret;
2239 }
2240 EXPORT_SYMBOL_GPL(scsi_mode_select);
2241 
2242 /**
2243  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2244  *	@sdev:	SCSI device to be queried
2245  *	@dbd:	set to prevent mode sense from returning block descriptors
2246  *	@modepage: mode page being requested
2247  *	@subpage: sub-page of the mode page being requested
2248  *	@buffer: request buffer (may not be smaller than eight bytes)
2249  *	@len:	length of request buffer.
2250  *	@timeout: command timeout
2251  *	@retries: number of retries before failing
2252  *	@data: returns a structure abstracting the mode header data
2253  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2254  *		must be SCSI_SENSE_BUFFERSIZE big.
2255  *
2256  *	Returns zero if successful, or a negative error number on failure
2257  */
2258 int
2259 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, int subpage,
2260 		  unsigned char *buffer, int len, int timeout, int retries,
2261 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2262 {
2263 	unsigned char cmd[12];
2264 	int use_10_for_ms;
2265 	int header_length;
2266 	int result;
2267 	struct scsi_sense_hdr my_sshdr;
2268 	struct scsi_failure failure_defs[] = {
2269 		{
2270 			.sense = UNIT_ATTENTION,
2271 			.asc = SCMD_FAILURE_ASC_ANY,
2272 			.ascq = SCMD_FAILURE_ASCQ_ANY,
2273 			.allowed = retries,
2274 			.result = SAM_STAT_CHECK_CONDITION,
2275 		},
2276 		{}
2277 	};
2278 	struct scsi_failures failures = {
2279 		.failure_definitions = failure_defs,
2280 	};
2281 	const struct scsi_exec_args exec_args = {
2282 		/* caller might not be interested in sense, but we need it */
2283 		.sshdr = sshdr ? : &my_sshdr,
2284 		.failures = &failures,
2285 	};
2286 
2287 	memset(data, 0, sizeof(*data));
2288 	memset(&cmd[0], 0, 12);
2289 
2290 	dbd = sdev->set_dbd_for_ms ? 8 : dbd;
2291 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2292 	cmd[2] = modepage;
2293 	cmd[3] = subpage;
2294 
2295 	sshdr = exec_args.sshdr;
2296 
2297  retry:
2298 	use_10_for_ms = sdev->use_10_for_ms || len > 255;
2299 
2300 	if (use_10_for_ms) {
2301 		if (len < 8 || len > 65535)
2302 			return -EINVAL;
2303 
2304 		cmd[0] = MODE_SENSE_10;
2305 		put_unaligned_be16(len, &cmd[7]);
2306 		header_length = 8;
2307 	} else {
2308 		if (len < 4)
2309 			return -EINVAL;
2310 
2311 		cmd[0] = MODE_SENSE;
2312 		cmd[4] = len;
2313 		header_length = 4;
2314 	}
2315 
2316 	memset(buffer, 0, len);
2317 
2318 	result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, buffer, len,
2319 				  timeout, retries, &exec_args);
2320 	if (result < 0)
2321 		return result;
2322 
2323 	/* This code looks awful: what it's doing is making sure an
2324 	 * ILLEGAL REQUEST sense return identifies the actual command
2325 	 * byte as the problem.  MODE_SENSE commands can return
2326 	 * ILLEGAL REQUEST if the code page isn't supported */
2327 
2328 	if (!scsi_status_is_good(result)) {
2329 		if (scsi_sense_valid(sshdr)) {
2330 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2331 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2332 				/*
2333 				 * Invalid command operation code: retry using
2334 				 * MODE SENSE(6) if this was a MODE SENSE(10)
2335 				 * request, except if the request mode page is
2336 				 * too large for MODE SENSE single byte
2337 				 * allocation length field.
2338 				 */
2339 				if (use_10_for_ms) {
2340 					if (len > 255)
2341 						return -EIO;
2342 					sdev->use_10_for_ms = 0;
2343 					goto retry;
2344 				}
2345 			}
2346 		}
2347 		return -EIO;
2348 	}
2349 	if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2350 		     (modepage == 6 || modepage == 8))) {
2351 		/* Initio breakage? */
2352 		header_length = 0;
2353 		data->length = 13;
2354 		data->medium_type = 0;
2355 		data->device_specific = 0;
2356 		data->longlba = 0;
2357 		data->block_descriptor_length = 0;
2358 	} else if (use_10_for_ms) {
2359 		data->length = get_unaligned_be16(&buffer[0]) + 2;
2360 		data->medium_type = buffer[2];
2361 		data->device_specific = buffer[3];
2362 		data->longlba = buffer[4] & 0x01;
2363 		data->block_descriptor_length = get_unaligned_be16(&buffer[6]);
2364 	} else {
2365 		data->length = buffer[0] + 1;
2366 		data->medium_type = buffer[1];
2367 		data->device_specific = buffer[2];
2368 		data->block_descriptor_length = buffer[3];
2369 	}
2370 	data->header_length = header_length;
2371 
2372 	return 0;
2373 }
2374 EXPORT_SYMBOL(scsi_mode_sense);
2375 
2376 /**
2377  *	scsi_test_unit_ready - test if unit is ready
2378  *	@sdev:	scsi device to change the state of.
2379  *	@timeout: command timeout
2380  *	@retries: number of retries before failing
2381  *	@sshdr: outpout pointer for decoded sense information.
2382  *
2383  *	Returns zero if unsuccessful or an error if TUR failed.  For
2384  *	removable media, UNIT_ATTENTION sets ->changed flag.
2385  **/
2386 int
2387 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2388 		     struct scsi_sense_hdr *sshdr)
2389 {
2390 	char cmd[] = {
2391 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2392 	};
2393 	const struct scsi_exec_args exec_args = {
2394 		.sshdr = sshdr,
2395 	};
2396 	int result;
2397 
2398 	/* try to eat the UNIT_ATTENTION if there are enough retries */
2399 	do {
2400 		result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, NULL, 0,
2401 					  timeout, 1, &exec_args);
2402 		if (sdev->removable && result > 0 && scsi_sense_valid(sshdr) &&
2403 		    sshdr->sense_key == UNIT_ATTENTION)
2404 			sdev->changed = 1;
2405 	} while (result > 0 && scsi_sense_valid(sshdr) &&
2406 		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2407 
2408 	return result;
2409 }
2410 EXPORT_SYMBOL(scsi_test_unit_ready);
2411 
2412 /**
2413  *	scsi_device_set_state - Take the given device through the device state model.
2414  *	@sdev:	scsi device to change the state of.
2415  *	@state:	state to change to.
2416  *
2417  *	Returns zero if successful or an error if the requested
2418  *	transition is illegal.
2419  */
2420 int
2421 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2422 {
2423 	enum scsi_device_state oldstate = sdev->sdev_state;
2424 
2425 	if (state == oldstate)
2426 		return 0;
2427 
2428 	switch (state) {
2429 	case SDEV_CREATED:
2430 		switch (oldstate) {
2431 		case SDEV_CREATED_BLOCK:
2432 			break;
2433 		default:
2434 			goto illegal;
2435 		}
2436 		break;
2437 
2438 	case SDEV_RUNNING:
2439 		switch (oldstate) {
2440 		case SDEV_CREATED:
2441 		case SDEV_OFFLINE:
2442 		case SDEV_TRANSPORT_OFFLINE:
2443 		case SDEV_QUIESCE:
2444 		case SDEV_BLOCK:
2445 			break;
2446 		default:
2447 			goto illegal;
2448 		}
2449 		break;
2450 
2451 	case SDEV_QUIESCE:
2452 		switch (oldstate) {
2453 		case SDEV_RUNNING:
2454 		case SDEV_OFFLINE:
2455 		case SDEV_TRANSPORT_OFFLINE:
2456 			break;
2457 		default:
2458 			goto illegal;
2459 		}
2460 		break;
2461 
2462 	case SDEV_OFFLINE:
2463 	case SDEV_TRANSPORT_OFFLINE:
2464 		switch (oldstate) {
2465 		case SDEV_CREATED:
2466 		case SDEV_RUNNING:
2467 		case SDEV_QUIESCE:
2468 		case SDEV_BLOCK:
2469 			break;
2470 		default:
2471 			goto illegal;
2472 		}
2473 		break;
2474 
2475 	case SDEV_BLOCK:
2476 		switch (oldstate) {
2477 		case SDEV_RUNNING:
2478 		case SDEV_CREATED_BLOCK:
2479 		case SDEV_QUIESCE:
2480 		case SDEV_OFFLINE:
2481 			break;
2482 		default:
2483 			goto illegal;
2484 		}
2485 		break;
2486 
2487 	case SDEV_CREATED_BLOCK:
2488 		switch (oldstate) {
2489 		case SDEV_CREATED:
2490 			break;
2491 		default:
2492 			goto illegal;
2493 		}
2494 		break;
2495 
2496 	case SDEV_CANCEL:
2497 		switch (oldstate) {
2498 		case SDEV_CREATED:
2499 		case SDEV_RUNNING:
2500 		case SDEV_QUIESCE:
2501 		case SDEV_OFFLINE:
2502 		case SDEV_TRANSPORT_OFFLINE:
2503 			break;
2504 		default:
2505 			goto illegal;
2506 		}
2507 		break;
2508 
2509 	case SDEV_DEL:
2510 		switch (oldstate) {
2511 		case SDEV_CREATED:
2512 		case SDEV_RUNNING:
2513 		case SDEV_OFFLINE:
2514 		case SDEV_TRANSPORT_OFFLINE:
2515 		case SDEV_CANCEL:
2516 		case SDEV_BLOCK:
2517 		case SDEV_CREATED_BLOCK:
2518 			break;
2519 		default:
2520 			goto illegal;
2521 		}
2522 		break;
2523 
2524 	}
2525 	sdev->offline_already = false;
2526 	sdev->sdev_state = state;
2527 	return 0;
2528 
2529  illegal:
2530 	SCSI_LOG_ERROR_RECOVERY(1,
2531 				sdev_printk(KERN_ERR, sdev,
2532 					    "Illegal state transition %s->%s",
2533 					    scsi_device_state_name(oldstate),
2534 					    scsi_device_state_name(state))
2535 				);
2536 	return -EINVAL;
2537 }
2538 EXPORT_SYMBOL(scsi_device_set_state);
2539 
2540 /**
2541  *	scsi_evt_emit - emit a single SCSI device uevent
2542  *	@sdev: associated SCSI device
2543  *	@evt: event to emit
2544  *
2545  *	Send a single uevent (scsi_event) to the associated scsi_device.
2546  */
2547 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2548 {
2549 	int idx = 0;
2550 	char *envp[3];
2551 
2552 	switch (evt->evt_type) {
2553 	case SDEV_EVT_MEDIA_CHANGE:
2554 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2555 		break;
2556 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2557 		scsi_rescan_device(sdev);
2558 		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2559 		break;
2560 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2561 		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2562 		break;
2563 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2564 	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2565 		break;
2566 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2567 		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2568 		break;
2569 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2570 		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2571 		break;
2572 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2573 		envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2574 		break;
2575 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2576 		envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2577 		break;
2578 	default:
2579 		/* do nothing */
2580 		break;
2581 	}
2582 
2583 	envp[idx++] = NULL;
2584 
2585 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2586 }
2587 
2588 /**
2589  *	scsi_evt_thread - send a uevent for each scsi event
2590  *	@work: work struct for scsi_device
2591  *
2592  *	Dispatch queued events to their associated scsi_device kobjects
2593  *	as uevents.
2594  */
2595 void scsi_evt_thread(struct work_struct *work)
2596 {
2597 	struct scsi_device *sdev;
2598 	enum scsi_device_event evt_type;
2599 	LIST_HEAD(event_list);
2600 
2601 	sdev = container_of(work, struct scsi_device, event_work);
2602 
2603 	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2604 		if (test_and_clear_bit(evt_type, sdev->pending_events))
2605 			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2606 
2607 	while (1) {
2608 		struct scsi_event *evt;
2609 		struct list_head *this, *tmp;
2610 		unsigned long flags;
2611 
2612 		spin_lock_irqsave(&sdev->list_lock, flags);
2613 		list_splice_init(&sdev->event_list, &event_list);
2614 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2615 
2616 		if (list_empty(&event_list))
2617 			break;
2618 
2619 		list_for_each_safe(this, tmp, &event_list) {
2620 			evt = list_entry(this, struct scsi_event, node);
2621 			list_del(&evt->node);
2622 			scsi_evt_emit(sdev, evt);
2623 			kfree(evt);
2624 		}
2625 	}
2626 }
2627 
2628 /**
2629  * 	sdev_evt_send - send asserted event to uevent thread
2630  *	@sdev: scsi_device event occurred on
2631  *	@evt: event to send
2632  *
2633  *	Assert scsi device event asynchronously.
2634  */
2635 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2636 {
2637 	unsigned long flags;
2638 
2639 #if 0
2640 	/* FIXME: currently this check eliminates all media change events
2641 	 * for polled devices.  Need to update to discriminate between AN
2642 	 * and polled events */
2643 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2644 		kfree(evt);
2645 		return;
2646 	}
2647 #endif
2648 
2649 	spin_lock_irqsave(&sdev->list_lock, flags);
2650 	list_add_tail(&evt->node, &sdev->event_list);
2651 	schedule_work(&sdev->event_work);
2652 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2653 }
2654 EXPORT_SYMBOL_GPL(sdev_evt_send);
2655 
2656 /**
2657  * 	sdev_evt_alloc - allocate a new scsi event
2658  *	@evt_type: type of event to allocate
2659  *	@gfpflags: GFP flags for allocation
2660  *
2661  *	Allocates and returns a new scsi_event.
2662  */
2663 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2664 				  gfp_t gfpflags)
2665 {
2666 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2667 	if (!evt)
2668 		return NULL;
2669 
2670 	evt->evt_type = evt_type;
2671 	INIT_LIST_HEAD(&evt->node);
2672 
2673 	/* evt_type-specific initialization, if any */
2674 	switch (evt_type) {
2675 	case SDEV_EVT_MEDIA_CHANGE:
2676 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2677 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2678 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2679 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2680 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2681 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2682 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2683 	default:
2684 		/* do nothing */
2685 		break;
2686 	}
2687 
2688 	return evt;
2689 }
2690 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2691 
2692 /**
2693  * 	sdev_evt_send_simple - send asserted event to uevent thread
2694  *	@sdev: scsi_device event occurred on
2695  *	@evt_type: type of event to send
2696  *	@gfpflags: GFP flags for allocation
2697  *
2698  *	Assert scsi device event asynchronously, given an event type.
2699  */
2700 void sdev_evt_send_simple(struct scsi_device *sdev,
2701 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2702 {
2703 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2704 	if (!evt) {
2705 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2706 			    evt_type);
2707 		return;
2708 	}
2709 
2710 	sdev_evt_send(sdev, evt);
2711 }
2712 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2713 
2714 /**
2715  *	scsi_device_quiesce - Block all commands except power management.
2716  *	@sdev:	scsi device to quiesce.
2717  *
2718  *	This works by trying to transition to the SDEV_QUIESCE state
2719  *	(which must be a legal transition).  When the device is in this
2720  *	state, only power management requests will be accepted, all others will
2721  *	be deferred.
2722  *
2723  *	Must be called with user context, may sleep.
2724  *
2725  *	Returns zero if unsuccessful or an error if not.
2726  */
2727 int
2728 scsi_device_quiesce(struct scsi_device *sdev)
2729 {
2730 	struct request_queue *q = sdev->request_queue;
2731 	int err;
2732 
2733 	/*
2734 	 * It is allowed to call scsi_device_quiesce() multiple times from
2735 	 * the same context but concurrent scsi_device_quiesce() calls are
2736 	 * not allowed.
2737 	 */
2738 	WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2739 
2740 	if (sdev->quiesced_by == current)
2741 		return 0;
2742 
2743 	blk_set_pm_only(q);
2744 
2745 	blk_mq_freeze_queue(q);
2746 	/*
2747 	 * Ensure that the effect of blk_set_pm_only() will be visible
2748 	 * for percpu_ref_tryget() callers that occur after the queue
2749 	 * unfreeze even if the queue was already frozen before this function
2750 	 * was called. See also https://lwn.net/Articles/573497/.
2751 	 */
2752 	synchronize_rcu();
2753 	blk_mq_unfreeze_queue(q);
2754 
2755 	mutex_lock(&sdev->state_mutex);
2756 	err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2757 	if (err == 0)
2758 		sdev->quiesced_by = current;
2759 	else
2760 		blk_clear_pm_only(q);
2761 	mutex_unlock(&sdev->state_mutex);
2762 
2763 	return err;
2764 }
2765 EXPORT_SYMBOL(scsi_device_quiesce);
2766 
2767 /**
2768  *	scsi_device_resume - Restart user issued commands to a quiesced device.
2769  *	@sdev:	scsi device to resume.
2770  *
2771  *	Moves the device from quiesced back to running and restarts the
2772  *	queues.
2773  *
2774  *	Must be called with user context, may sleep.
2775  */
2776 void scsi_device_resume(struct scsi_device *sdev)
2777 {
2778 	/* check if the device state was mutated prior to resume, and if
2779 	 * so assume the state is being managed elsewhere (for example
2780 	 * device deleted during suspend)
2781 	 */
2782 	mutex_lock(&sdev->state_mutex);
2783 	if (sdev->sdev_state == SDEV_QUIESCE)
2784 		scsi_device_set_state(sdev, SDEV_RUNNING);
2785 	if (sdev->quiesced_by) {
2786 		sdev->quiesced_by = NULL;
2787 		blk_clear_pm_only(sdev->request_queue);
2788 	}
2789 	mutex_unlock(&sdev->state_mutex);
2790 }
2791 EXPORT_SYMBOL(scsi_device_resume);
2792 
2793 static void
2794 device_quiesce_fn(struct scsi_device *sdev, void *data)
2795 {
2796 	scsi_device_quiesce(sdev);
2797 }
2798 
2799 void
2800 scsi_target_quiesce(struct scsi_target *starget)
2801 {
2802 	starget_for_each_device(starget, NULL, device_quiesce_fn);
2803 }
2804 EXPORT_SYMBOL(scsi_target_quiesce);
2805 
2806 static void
2807 device_resume_fn(struct scsi_device *sdev, void *data)
2808 {
2809 	scsi_device_resume(sdev);
2810 }
2811 
2812 void
2813 scsi_target_resume(struct scsi_target *starget)
2814 {
2815 	starget_for_each_device(starget, NULL, device_resume_fn);
2816 }
2817 EXPORT_SYMBOL(scsi_target_resume);
2818 
2819 static int __scsi_internal_device_block_nowait(struct scsi_device *sdev)
2820 {
2821 	if (scsi_device_set_state(sdev, SDEV_BLOCK))
2822 		return scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2823 
2824 	return 0;
2825 }
2826 
2827 void scsi_start_queue(struct scsi_device *sdev)
2828 {
2829 	if (cmpxchg(&sdev->queue_stopped, 1, 0))
2830 		blk_mq_unquiesce_queue(sdev->request_queue);
2831 }
2832 
2833 static void scsi_stop_queue(struct scsi_device *sdev)
2834 {
2835 	/*
2836 	 * The atomic variable of ->queue_stopped covers that
2837 	 * blk_mq_quiesce_queue* is balanced with blk_mq_unquiesce_queue.
2838 	 *
2839 	 * The caller needs to wait until quiesce is done.
2840 	 */
2841 	if (!cmpxchg(&sdev->queue_stopped, 0, 1))
2842 		blk_mq_quiesce_queue_nowait(sdev->request_queue);
2843 }
2844 
2845 /**
2846  * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2847  * @sdev: device to block
2848  *
2849  * Pause SCSI command processing on the specified device. Does not sleep.
2850  *
2851  * Returns zero if successful or a negative error code upon failure.
2852  *
2853  * Notes:
2854  * This routine transitions the device to the SDEV_BLOCK state (which must be
2855  * a legal transition). When the device is in this state, command processing
2856  * is paused until the device leaves the SDEV_BLOCK state. See also
2857  * scsi_internal_device_unblock_nowait().
2858  */
2859 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2860 {
2861 	int ret = __scsi_internal_device_block_nowait(sdev);
2862 
2863 	/*
2864 	 * The device has transitioned to SDEV_BLOCK.  Stop the
2865 	 * block layer from calling the midlayer with this device's
2866 	 * request queue.
2867 	 */
2868 	if (!ret)
2869 		scsi_stop_queue(sdev);
2870 	return ret;
2871 }
2872 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2873 
2874 /**
2875  * scsi_device_block - try to transition to the SDEV_BLOCK state
2876  * @sdev: device to block
2877  * @data: dummy argument, ignored
2878  *
2879  * Pause SCSI command processing on the specified device. Callers must wait
2880  * until all ongoing scsi_queue_rq() calls have finished after this function
2881  * returns.
2882  *
2883  * Note:
2884  * This routine transitions the device to the SDEV_BLOCK state (which must be
2885  * a legal transition). When the device is in this state, command processing
2886  * is paused until the device leaves the SDEV_BLOCK state. See also
2887  * scsi_internal_device_unblock().
2888  */
2889 static void scsi_device_block(struct scsi_device *sdev, void *data)
2890 {
2891 	int err;
2892 	enum scsi_device_state state;
2893 
2894 	mutex_lock(&sdev->state_mutex);
2895 	err = __scsi_internal_device_block_nowait(sdev);
2896 	state = sdev->sdev_state;
2897 	if (err == 0)
2898 		/*
2899 		 * scsi_stop_queue() must be called with the state_mutex
2900 		 * held. Otherwise a simultaneous scsi_start_queue() call
2901 		 * might unquiesce the queue before we quiesce it.
2902 		 */
2903 		scsi_stop_queue(sdev);
2904 
2905 	mutex_unlock(&sdev->state_mutex);
2906 
2907 	WARN_ONCE(err, "%s: failed to block %s in state %d\n",
2908 		  __func__, dev_name(&sdev->sdev_gendev), state);
2909 }
2910 
2911 /**
2912  * scsi_internal_device_unblock_nowait - resume a device after a block request
2913  * @sdev:	device to resume
2914  * @new_state:	state to set the device to after unblocking
2915  *
2916  * Restart the device queue for a previously suspended SCSI device. Does not
2917  * sleep.
2918  *
2919  * Returns zero if successful or a negative error code upon failure.
2920  *
2921  * Notes:
2922  * This routine transitions the device to the SDEV_RUNNING state or to one of
2923  * the offline states (which must be a legal transition) allowing the midlayer
2924  * to goose the queue for this device.
2925  */
2926 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2927 					enum scsi_device_state new_state)
2928 {
2929 	switch (new_state) {
2930 	case SDEV_RUNNING:
2931 	case SDEV_TRANSPORT_OFFLINE:
2932 		break;
2933 	default:
2934 		return -EINVAL;
2935 	}
2936 
2937 	/*
2938 	 * Try to transition the scsi device to SDEV_RUNNING or one of the
2939 	 * offlined states and goose the device queue if successful.
2940 	 */
2941 	switch (sdev->sdev_state) {
2942 	case SDEV_BLOCK:
2943 	case SDEV_TRANSPORT_OFFLINE:
2944 		sdev->sdev_state = new_state;
2945 		break;
2946 	case SDEV_CREATED_BLOCK:
2947 		if (new_state == SDEV_TRANSPORT_OFFLINE ||
2948 		    new_state == SDEV_OFFLINE)
2949 			sdev->sdev_state = new_state;
2950 		else
2951 			sdev->sdev_state = SDEV_CREATED;
2952 		break;
2953 	case SDEV_CANCEL:
2954 	case SDEV_OFFLINE:
2955 		break;
2956 	default:
2957 		return -EINVAL;
2958 	}
2959 	scsi_start_queue(sdev);
2960 
2961 	return 0;
2962 }
2963 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2964 
2965 /**
2966  * scsi_internal_device_unblock - resume a device after a block request
2967  * @sdev:	device to resume
2968  * @new_state:	state to set the device to after unblocking
2969  *
2970  * Restart the device queue for a previously suspended SCSI device. May sleep.
2971  *
2972  * Returns zero if successful or a negative error code upon failure.
2973  *
2974  * Notes:
2975  * This routine transitions the device to the SDEV_RUNNING state or to one of
2976  * the offline states (which must be a legal transition) allowing the midlayer
2977  * to goose the queue for this device.
2978  */
2979 static int scsi_internal_device_unblock(struct scsi_device *sdev,
2980 					enum scsi_device_state new_state)
2981 {
2982 	int ret;
2983 
2984 	mutex_lock(&sdev->state_mutex);
2985 	ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2986 	mutex_unlock(&sdev->state_mutex);
2987 
2988 	return ret;
2989 }
2990 
2991 static int
2992 target_block(struct device *dev, void *data)
2993 {
2994 	if (scsi_is_target_device(dev))
2995 		starget_for_each_device(to_scsi_target(dev), NULL,
2996 					scsi_device_block);
2997 	return 0;
2998 }
2999 
3000 /**
3001  * scsi_block_targets - transition all SCSI child devices to SDEV_BLOCK state
3002  * @dev: a parent device of one or more scsi_target devices
3003  * @shost: the Scsi_Host to which this device belongs
3004  *
3005  * Iterate over all children of @dev, which should be scsi_target devices,
3006  * and switch all subordinate scsi devices to SDEV_BLOCK state. Wait for
3007  * ongoing scsi_queue_rq() calls to finish. May sleep.
3008  *
3009  * Note:
3010  * @dev must not itself be a scsi_target device.
3011  */
3012 void
3013 scsi_block_targets(struct Scsi_Host *shost, struct device *dev)
3014 {
3015 	WARN_ON_ONCE(scsi_is_target_device(dev));
3016 	device_for_each_child(dev, NULL, target_block);
3017 	blk_mq_wait_quiesce_done(&shost->tag_set);
3018 }
3019 EXPORT_SYMBOL_GPL(scsi_block_targets);
3020 
3021 static void
3022 device_unblock(struct scsi_device *sdev, void *data)
3023 {
3024 	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
3025 }
3026 
3027 static int
3028 target_unblock(struct device *dev, void *data)
3029 {
3030 	if (scsi_is_target_device(dev))
3031 		starget_for_each_device(to_scsi_target(dev), data,
3032 					device_unblock);
3033 	return 0;
3034 }
3035 
3036 void
3037 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
3038 {
3039 	if (scsi_is_target_device(dev))
3040 		starget_for_each_device(to_scsi_target(dev), &new_state,
3041 					device_unblock);
3042 	else
3043 		device_for_each_child(dev, &new_state, target_unblock);
3044 }
3045 EXPORT_SYMBOL_GPL(scsi_target_unblock);
3046 
3047 /**
3048  * scsi_host_block - Try to transition all logical units to the SDEV_BLOCK state
3049  * @shost: device to block
3050  *
3051  * Pause SCSI command processing for all logical units associated with the SCSI
3052  * host and wait until pending scsi_queue_rq() calls have finished.
3053  *
3054  * Returns zero if successful or a negative error code upon failure.
3055  */
3056 int
3057 scsi_host_block(struct Scsi_Host *shost)
3058 {
3059 	struct scsi_device *sdev;
3060 	int ret;
3061 
3062 	/*
3063 	 * Call scsi_internal_device_block_nowait so we can avoid
3064 	 * calling synchronize_rcu() for each LUN.
3065 	 */
3066 	shost_for_each_device(sdev, shost) {
3067 		mutex_lock(&sdev->state_mutex);
3068 		ret = scsi_internal_device_block_nowait(sdev);
3069 		mutex_unlock(&sdev->state_mutex);
3070 		if (ret) {
3071 			scsi_device_put(sdev);
3072 			return ret;
3073 		}
3074 	}
3075 
3076 	/* Wait for ongoing scsi_queue_rq() calls to finish. */
3077 	blk_mq_wait_quiesce_done(&shost->tag_set);
3078 
3079 	return 0;
3080 }
3081 EXPORT_SYMBOL_GPL(scsi_host_block);
3082 
3083 int
3084 scsi_host_unblock(struct Scsi_Host *shost, int new_state)
3085 {
3086 	struct scsi_device *sdev;
3087 	int ret = 0;
3088 
3089 	shost_for_each_device(sdev, shost) {
3090 		ret = scsi_internal_device_unblock(sdev, new_state);
3091 		if (ret) {
3092 			scsi_device_put(sdev);
3093 			break;
3094 		}
3095 	}
3096 	return ret;
3097 }
3098 EXPORT_SYMBOL_GPL(scsi_host_unblock);
3099 
3100 /**
3101  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3102  * @sgl:	scatter-gather list
3103  * @sg_count:	number of segments in sg
3104  * @offset:	offset in bytes into sg, on return offset into the mapped area
3105  * @len:	bytes to map, on return number of bytes mapped
3106  *
3107  * Returns virtual address of the start of the mapped page
3108  */
3109 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3110 			  size_t *offset, size_t *len)
3111 {
3112 	int i;
3113 	size_t sg_len = 0, len_complete = 0;
3114 	struct scatterlist *sg;
3115 	struct page *page;
3116 
3117 	WARN_ON(!irqs_disabled());
3118 
3119 	for_each_sg(sgl, sg, sg_count, i) {
3120 		len_complete = sg_len; /* Complete sg-entries */
3121 		sg_len += sg->length;
3122 		if (sg_len > *offset)
3123 			break;
3124 	}
3125 
3126 	if (unlikely(i == sg_count)) {
3127 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3128 			"elements %d\n",
3129 		       __func__, sg_len, *offset, sg_count);
3130 		WARN_ON(1);
3131 		return NULL;
3132 	}
3133 
3134 	/* Offset starting from the beginning of first page in this sg-entry */
3135 	*offset = *offset - len_complete + sg->offset;
3136 
3137 	/* Assumption: contiguous pages can be accessed as "page + i" */
3138 	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3139 	*offset &= ~PAGE_MASK;
3140 
3141 	/* Bytes in this sg-entry from *offset to the end of the page */
3142 	sg_len = PAGE_SIZE - *offset;
3143 	if (*len > sg_len)
3144 		*len = sg_len;
3145 
3146 	return kmap_atomic(page);
3147 }
3148 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3149 
3150 /**
3151  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3152  * @virt:	virtual address to be unmapped
3153  */
3154 void scsi_kunmap_atomic_sg(void *virt)
3155 {
3156 	kunmap_atomic(virt);
3157 }
3158 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3159 
3160 void sdev_disable_disk_events(struct scsi_device *sdev)
3161 {
3162 	atomic_inc(&sdev->disk_events_disable_depth);
3163 }
3164 EXPORT_SYMBOL(sdev_disable_disk_events);
3165 
3166 void sdev_enable_disk_events(struct scsi_device *sdev)
3167 {
3168 	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3169 		return;
3170 	atomic_dec(&sdev->disk_events_disable_depth);
3171 }
3172 EXPORT_SYMBOL(sdev_enable_disk_events);
3173 
3174 static unsigned char designator_prio(const unsigned char *d)
3175 {
3176 	if (d[1] & 0x30)
3177 		/* not associated with LUN */
3178 		return 0;
3179 
3180 	if (d[3] == 0)
3181 		/* invalid length */
3182 		return 0;
3183 
3184 	/*
3185 	 * Order of preference for lun descriptor:
3186 	 * - SCSI name string
3187 	 * - NAA IEEE Registered Extended
3188 	 * - EUI-64 based 16-byte
3189 	 * - EUI-64 based 12-byte
3190 	 * - NAA IEEE Registered
3191 	 * - NAA IEEE Extended
3192 	 * - EUI-64 based 8-byte
3193 	 * - SCSI name string (truncated)
3194 	 * - T10 Vendor ID
3195 	 * as longer descriptors reduce the likelyhood
3196 	 * of identification clashes.
3197 	 */
3198 
3199 	switch (d[1] & 0xf) {
3200 	case 8:
3201 		/* SCSI name string, variable-length UTF-8 */
3202 		return 9;
3203 	case 3:
3204 		switch (d[4] >> 4) {
3205 		case 6:
3206 			/* NAA registered extended */
3207 			return 8;
3208 		case 5:
3209 			/* NAA registered */
3210 			return 5;
3211 		case 4:
3212 			/* NAA extended */
3213 			return 4;
3214 		case 3:
3215 			/* NAA locally assigned */
3216 			return 1;
3217 		default:
3218 			break;
3219 		}
3220 		break;
3221 	case 2:
3222 		switch (d[3]) {
3223 		case 16:
3224 			/* EUI64-based, 16 byte */
3225 			return 7;
3226 		case 12:
3227 			/* EUI64-based, 12 byte */
3228 			return 6;
3229 		case 8:
3230 			/* EUI64-based, 8 byte */
3231 			return 3;
3232 		default:
3233 			break;
3234 		}
3235 		break;
3236 	case 1:
3237 		/* T10 vendor ID */
3238 		return 1;
3239 	default:
3240 		break;
3241 	}
3242 
3243 	return 0;
3244 }
3245 
3246 /**
3247  * scsi_vpd_lun_id - return a unique device identification
3248  * @sdev: SCSI device
3249  * @id:   buffer for the identification
3250  * @id_len:  length of the buffer
3251  *
3252  * Copies a unique device identification into @id based
3253  * on the information in the VPD page 0x83 of the device.
3254  * The string will be formatted as a SCSI name string.
3255  *
3256  * Returns the length of the identification or error on failure.
3257  * If the identifier is longer than the supplied buffer the actual
3258  * identifier length is returned and the buffer is not zero-padded.
3259  */
3260 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3261 {
3262 	u8 cur_id_prio = 0;
3263 	u8 cur_id_size = 0;
3264 	const unsigned char *d, *cur_id_str;
3265 	const struct scsi_vpd *vpd_pg83;
3266 	int id_size = -EINVAL;
3267 
3268 	rcu_read_lock();
3269 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3270 	if (!vpd_pg83) {
3271 		rcu_read_unlock();
3272 		return -ENXIO;
3273 	}
3274 
3275 	/* The id string must be at least 20 bytes + terminating NULL byte */
3276 	if (id_len < 21) {
3277 		rcu_read_unlock();
3278 		return -EINVAL;
3279 	}
3280 
3281 	memset(id, 0, id_len);
3282 	for (d = vpd_pg83->data + 4;
3283 	     d < vpd_pg83->data + vpd_pg83->len;
3284 	     d += d[3] + 4) {
3285 		u8 prio = designator_prio(d);
3286 
3287 		if (prio == 0 || cur_id_prio > prio)
3288 			continue;
3289 
3290 		switch (d[1] & 0xf) {
3291 		case 0x1:
3292 			/* T10 Vendor ID */
3293 			if (cur_id_size > d[3])
3294 				break;
3295 			cur_id_prio = prio;
3296 			cur_id_size = d[3];
3297 			if (cur_id_size + 4 > id_len)
3298 				cur_id_size = id_len - 4;
3299 			cur_id_str = d + 4;
3300 			id_size = snprintf(id, id_len, "t10.%*pE",
3301 					   cur_id_size, cur_id_str);
3302 			break;
3303 		case 0x2:
3304 			/* EUI-64 */
3305 			cur_id_prio = prio;
3306 			cur_id_size = d[3];
3307 			cur_id_str = d + 4;
3308 			switch (cur_id_size) {
3309 			case 8:
3310 				id_size = snprintf(id, id_len,
3311 						   "eui.%8phN",
3312 						   cur_id_str);
3313 				break;
3314 			case 12:
3315 				id_size = snprintf(id, id_len,
3316 						   "eui.%12phN",
3317 						   cur_id_str);
3318 				break;
3319 			case 16:
3320 				id_size = snprintf(id, id_len,
3321 						   "eui.%16phN",
3322 						   cur_id_str);
3323 				break;
3324 			default:
3325 				break;
3326 			}
3327 			break;
3328 		case 0x3:
3329 			/* NAA */
3330 			cur_id_prio = prio;
3331 			cur_id_size = d[3];
3332 			cur_id_str = d + 4;
3333 			switch (cur_id_size) {
3334 			case 8:
3335 				id_size = snprintf(id, id_len,
3336 						   "naa.%8phN",
3337 						   cur_id_str);
3338 				break;
3339 			case 16:
3340 				id_size = snprintf(id, id_len,
3341 						   "naa.%16phN",
3342 						   cur_id_str);
3343 				break;
3344 			default:
3345 				break;
3346 			}
3347 			break;
3348 		case 0x8:
3349 			/* SCSI name string */
3350 			if (cur_id_size > d[3])
3351 				break;
3352 			/* Prefer others for truncated descriptor */
3353 			if (d[3] > id_len) {
3354 				prio = 2;
3355 				if (cur_id_prio > prio)
3356 					break;
3357 			}
3358 			cur_id_prio = prio;
3359 			cur_id_size = id_size = d[3];
3360 			cur_id_str = d + 4;
3361 			if (cur_id_size >= id_len)
3362 				cur_id_size = id_len - 1;
3363 			memcpy(id, cur_id_str, cur_id_size);
3364 			break;
3365 		default:
3366 			break;
3367 		}
3368 	}
3369 	rcu_read_unlock();
3370 
3371 	return id_size;
3372 }
3373 EXPORT_SYMBOL(scsi_vpd_lun_id);
3374 
3375 /*
3376  * scsi_vpd_tpg_id - return a target port group identifier
3377  * @sdev: SCSI device
3378  *
3379  * Returns the Target Port Group identifier from the information
3380  * froom VPD page 0x83 of the device.
3381  *
3382  * Returns the identifier or error on failure.
3383  */
3384 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3385 {
3386 	const unsigned char *d;
3387 	const struct scsi_vpd *vpd_pg83;
3388 	int group_id = -EAGAIN, rel_port = -1;
3389 
3390 	rcu_read_lock();
3391 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3392 	if (!vpd_pg83) {
3393 		rcu_read_unlock();
3394 		return -ENXIO;
3395 	}
3396 
3397 	d = vpd_pg83->data + 4;
3398 	while (d < vpd_pg83->data + vpd_pg83->len) {
3399 		switch (d[1] & 0xf) {
3400 		case 0x4:
3401 			/* Relative target port */
3402 			rel_port = get_unaligned_be16(&d[6]);
3403 			break;
3404 		case 0x5:
3405 			/* Target port group */
3406 			group_id = get_unaligned_be16(&d[6]);
3407 			break;
3408 		default:
3409 			break;
3410 		}
3411 		d += d[3] + 4;
3412 	}
3413 	rcu_read_unlock();
3414 
3415 	if (group_id >= 0 && rel_id && rel_port != -1)
3416 		*rel_id = rel_port;
3417 
3418 	return group_id;
3419 }
3420 EXPORT_SYMBOL(scsi_vpd_tpg_id);
3421 
3422 /**
3423  * scsi_build_sense - build sense data for a command
3424  * @scmd:	scsi command for which the sense should be formatted
3425  * @desc:	Sense format (non-zero == descriptor format,
3426  *              0 == fixed format)
3427  * @key:	Sense key
3428  * @asc:	Additional sense code
3429  * @ascq:	Additional sense code qualifier
3430  *
3431  **/
3432 void scsi_build_sense(struct scsi_cmnd *scmd, int desc, u8 key, u8 asc, u8 ascq)
3433 {
3434 	scsi_build_sense_buffer(desc, scmd->sense_buffer, key, asc, ascq);
3435 	scmd->result = SAM_STAT_CHECK_CONDITION;
3436 }
3437 EXPORT_SYMBOL_GPL(scsi_build_sense);
3438 
3439 #ifdef CONFIG_SCSI_LIB_KUNIT_TEST
3440 #include "scsi_lib_test.c"
3441 #endif
3442