xref: /linux/drivers/scsi/scsi_lib.c (revision b9ccfda293ee6fca9a89a1584f0900e0627b975e)
1 /*
2  *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3  *
4  *  SCSI queueing library.
5  *      Initial versions: Eric Youngdale (eric@andante.org).
6  *                        Based upon conversations with large numbers
7  *                        of people at Linux Expo.
8  */
9 
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/mempool.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23 
24 #include <scsi/scsi.h>
25 #include <scsi/scsi_cmnd.h>
26 #include <scsi/scsi_dbg.h>
27 #include <scsi/scsi_device.h>
28 #include <scsi/scsi_driver.h>
29 #include <scsi/scsi_eh.h>
30 #include <scsi/scsi_host.h>
31 
32 #include "scsi_priv.h"
33 #include "scsi_logging.h"
34 
35 
36 #define SG_MEMPOOL_NR		ARRAY_SIZE(scsi_sg_pools)
37 #define SG_MEMPOOL_SIZE		2
38 
39 struct scsi_host_sg_pool {
40 	size_t		size;
41 	char		*name;
42 	struct kmem_cache	*slab;
43 	mempool_t	*pool;
44 };
45 
46 #define SP(x) { x, "sgpool-" __stringify(x) }
47 #if (SCSI_MAX_SG_SEGMENTS < 32)
48 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
49 #endif
50 static struct scsi_host_sg_pool scsi_sg_pools[] = {
51 	SP(8),
52 	SP(16),
53 #if (SCSI_MAX_SG_SEGMENTS > 32)
54 	SP(32),
55 #if (SCSI_MAX_SG_SEGMENTS > 64)
56 	SP(64),
57 #if (SCSI_MAX_SG_SEGMENTS > 128)
58 	SP(128),
59 #if (SCSI_MAX_SG_SEGMENTS > 256)
60 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
61 #endif
62 #endif
63 #endif
64 #endif
65 	SP(SCSI_MAX_SG_SEGMENTS)
66 };
67 #undef SP
68 
69 struct kmem_cache *scsi_sdb_cache;
70 
71 /*
72  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
73  * not change behaviour from the previous unplug mechanism, experimentation
74  * may prove this needs changing.
75  */
76 #define SCSI_QUEUE_DELAY	3
77 
78 /*
79  * Function:	scsi_unprep_request()
80  *
81  * Purpose:	Remove all preparation done for a request, including its
82  *		associated scsi_cmnd, so that it can be requeued.
83  *
84  * Arguments:	req	- request to unprepare
85  *
86  * Lock status:	Assumed that no locks are held upon entry.
87  *
88  * Returns:	Nothing.
89  */
90 static void scsi_unprep_request(struct request *req)
91 {
92 	struct scsi_cmnd *cmd = req->special;
93 
94 	blk_unprep_request(req);
95 	req->special = NULL;
96 
97 	scsi_put_command(cmd);
98 }
99 
100 /**
101  * __scsi_queue_insert - private queue insertion
102  * @cmd: The SCSI command being requeued
103  * @reason:  The reason for the requeue
104  * @unbusy: Whether the queue should be unbusied
105  *
106  * This is a private queue insertion.  The public interface
107  * scsi_queue_insert() always assumes the queue should be unbusied
108  * because it's always called before the completion.  This function is
109  * for a requeue after completion, which should only occur in this
110  * file.
111  */
112 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
113 {
114 	struct Scsi_Host *host = cmd->device->host;
115 	struct scsi_device *device = cmd->device;
116 	struct scsi_target *starget = scsi_target(device);
117 	struct request_queue *q = device->request_queue;
118 	unsigned long flags;
119 
120 	SCSI_LOG_MLQUEUE(1,
121 		 printk("Inserting command %p into mlqueue\n", cmd));
122 
123 	/*
124 	 * Set the appropriate busy bit for the device/host.
125 	 *
126 	 * If the host/device isn't busy, assume that something actually
127 	 * completed, and that we should be able to queue a command now.
128 	 *
129 	 * Note that the prior mid-layer assumption that any host could
130 	 * always queue at least one command is now broken.  The mid-layer
131 	 * will implement a user specifiable stall (see
132 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
133 	 * if a command is requeued with no other commands outstanding
134 	 * either for the device or for the host.
135 	 */
136 	switch (reason) {
137 	case SCSI_MLQUEUE_HOST_BUSY:
138 		host->host_blocked = host->max_host_blocked;
139 		break;
140 	case SCSI_MLQUEUE_DEVICE_BUSY:
141 	case SCSI_MLQUEUE_EH_RETRY:
142 		device->device_blocked = device->max_device_blocked;
143 		break;
144 	case SCSI_MLQUEUE_TARGET_BUSY:
145 		starget->target_blocked = starget->max_target_blocked;
146 		break;
147 	}
148 
149 	/*
150 	 * Decrement the counters, since these commands are no longer
151 	 * active on the host/device.
152 	 */
153 	if (unbusy)
154 		scsi_device_unbusy(device);
155 
156 	/*
157 	 * Requeue this command.  It will go before all other commands
158 	 * that are already in the queue. Schedule requeue work under
159 	 * lock such that the kblockd_schedule_work() call happens
160 	 * before blk_cleanup_queue() finishes.
161 	 */
162 	spin_lock_irqsave(q->queue_lock, flags);
163 	blk_requeue_request(q, cmd->request);
164 	kblockd_schedule_work(q, &device->requeue_work);
165 	spin_unlock_irqrestore(q->queue_lock, flags);
166 }
167 
168 /*
169  * Function:    scsi_queue_insert()
170  *
171  * Purpose:     Insert a command in the midlevel queue.
172  *
173  * Arguments:   cmd    - command that we are adding to queue.
174  *              reason - why we are inserting command to queue.
175  *
176  * Lock status: Assumed that lock is not held upon entry.
177  *
178  * Returns:     Nothing.
179  *
180  * Notes:       We do this for one of two cases.  Either the host is busy
181  *              and it cannot accept any more commands for the time being,
182  *              or the device returned QUEUE_FULL and can accept no more
183  *              commands.
184  * Notes:       This could be called either from an interrupt context or a
185  *              normal process context.
186  */
187 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
188 {
189 	__scsi_queue_insert(cmd, reason, 1);
190 }
191 /**
192  * scsi_execute - insert request and wait for the result
193  * @sdev:	scsi device
194  * @cmd:	scsi command
195  * @data_direction: data direction
196  * @buffer:	data buffer
197  * @bufflen:	len of buffer
198  * @sense:	optional sense buffer
199  * @timeout:	request timeout in seconds
200  * @retries:	number of times to retry request
201  * @flags:	or into request flags;
202  * @resid:	optional residual length
203  *
204  * returns the req->errors value which is the scsi_cmnd result
205  * field.
206  */
207 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
208 		 int data_direction, void *buffer, unsigned bufflen,
209 		 unsigned char *sense, int timeout, int retries, int flags,
210 		 int *resid)
211 {
212 	struct request *req;
213 	int write = (data_direction == DMA_TO_DEVICE);
214 	int ret = DRIVER_ERROR << 24;
215 
216 	req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
217 	if (!req)
218 		return ret;
219 
220 	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
221 					buffer, bufflen, __GFP_WAIT))
222 		goto out;
223 
224 	req->cmd_len = COMMAND_SIZE(cmd[0]);
225 	memcpy(req->cmd, cmd, req->cmd_len);
226 	req->sense = sense;
227 	req->sense_len = 0;
228 	req->retries = retries;
229 	req->timeout = timeout;
230 	req->cmd_type = REQ_TYPE_BLOCK_PC;
231 	req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
232 
233 	/*
234 	 * head injection *required* here otherwise quiesce won't work
235 	 */
236 	blk_execute_rq(req->q, NULL, req, 1);
237 
238 	/*
239 	 * Some devices (USB mass-storage in particular) may transfer
240 	 * garbage data together with a residue indicating that the data
241 	 * is invalid.  Prevent the garbage from being misinterpreted
242 	 * and prevent security leaks by zeroing out the excess data.
243 	 */
244 	if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
245 		memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
246 
247 	if (resid)
248 		*resid = req->resid_len;
249 	ret = req->errors;
250  out:
251 	blk_put_request(req);
252 
253 	return ret;
254 }
255 EXPORT_SYMBOL(scsi_execute);
256 
257 
258 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
259 		     int data_direction, void *buffer, unsigned bufflen,
260 		     struct scsi_sense_hdr *sshdr, int timeout, int retries,
261 		     int *resid)
262 {
263 	char *sense = NULL;
264 	int result;
265 
266 	if (sshdr) {
267 		sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
268 		if (!sense)
269 			return DRIVER_ERROR << 24;
270 	}
271 	result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
272 			      sense, timeout, retries, 0, resid);
273 	if (sshdr)
274 		scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
275 
276 	kfree(sense);
277 	return result;
278 }
279 EXPORT_SYMBOL(scsi_execute_req);
280 
281 /*
282  * Function:    scsi_init_cmd_errh()
283  *
284  * Purpose:     Initialize cmd fields related to error handling.
285  *
286  * Arguments:   cmd	- command that is ready to be queued.
287  *
288  * Notes:       This function has the job of initializing a number of
289  *              fields related to error handling.   Typically this will
290  *              be called once for each command, as required.
291  */
292 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
293 {
294 	cmd->serial_number = 0;
295 	scsi_set_resid(cmd, 0);
296 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
297 	if (cmd->cmd_len == 0)
298 		cmd->cmd_len = scsi_command_size(cmd->cmnd);
299 }
300 
301 void scsi_device_unbusy(struct scsi_device *sdev)
302 {
303 	struct Scsi_Host *shost = sdev->host;
304 	struct scsi_target *starget = scsi_target(sdev);
305 	unsigned long flags;
306 
307 	spin_lock_irqsave(shost->host_lock, flags);
308 	shost->host_busy--;
309 	starget->target_busy--;
310 	if (unlikely(scsi_host_in_recovery(shost) &&
311 		     (shost->host_failed || shost->host_eh_scheduled)))
312 		scsi_eh_wakeup(shost);
313 	spin_unlock(shost->host_lock);
314 	spin_lock(sdev->request_queue->queue_lock);
315 	sdev->device_busy--;
316 	spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
317 }
318 
319 /*
320  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
321  * and call blk_run_queue for all the scsi_devices on the target -
322  * including current_sdev first.
323  *
324  * Called with *no* scsi locks held.
325  */
326 static void scsi_single_lun_run(struct scsi_device *current_sdev)
327 {
328 	struct Scsi_Host *shost = current_sdev->host;
329 	struct scsi_device *sdev, *tmp;
330 	struct scsi_target *starget = scsi_target(current_sdev);
331 	unsigned long flags;
332 
333 	spin_lock_irqsave(shost->host_lock, flags);
334 	starget->starget_sdev_user = NULL;
335 	spin_unlock_irqrestore(shost->host_lock, flags);
336 
337 	/*
338 	 * Call blk_run_queue for all LUNs on the target, starting with
339 	 * current_sdev. We race with others (to set starget_sdev_user),
340 	 * but in most cases, we will be first. Ideally, each LU on the
341 	 * target would get some limited time or requests on the target.
342 	 */
343 	blk_run_queue(current_sdev->request_queue);
344 
345 	spin_lock_irqsave(shost->host_lock, flags);
346 	if (starget->starget_sdev_user)
347 		goto out;
348 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
349 			same_target_siblings) {
350 		if (sdev == current_sdev)
351 			continue;
352 		if (scsi_device_get(sdev))
353 			continue;
354 
355 		spin_unlock_irqrestore(shost->host_lock, flags);
356 		blk_run_queue(sdev->request_queue);
357 		spin_lock_irqsave(shost->host_lock, flags);
358 
359 		scsi_device_put(sdev);
360 	}
361  out:
362 	spin_unlock_irqrestore(shost->host_lock, flags);
363 }
364 
365 static inline int scsi_device_is_busy(struct scsi_device *sdev)
366 {
367 	if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
368 		return 1;
369 
370 	return 0;
371 }
372 
373 static inline int scsi_target_is_busy(struct scsi_target *starget)
374 {
375 	return ((starget->can_queue > 0 &&
376 		 starget->target_busy >= starget->can_queue) ||
377 		 starget->target_blocked);
378 }
379 
380 static inline int scsi_host_is_busy(struct Scsi_Host *shost)
381 {
382 	if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
383 	    shost->host_blocked || shost->host_self_blocked)
384 		return 1;
385 
386 	return 0;
387 }
388 
389 /*
390  * Function:	scsi_run_queue()
391  *
392  * Purpose:	Select a proper request queue to serve next
393  *
394  * Arguments:	q	- last request's queue
395  *
396  * Returns:     Nothing
397  *
398  * Notes:	The previous command was completely finished, start
399  *		a new one if possible.
400  */
401 static void scsi_run_queue(struct request_queue *q)
402 {
403 	struct scsi_device *sdev = q->queuedata;
404 	struct Scsi_Host *shost;
405 	LIST_HEAD(starved_list);
406 	unsigned long flags;
407 
408 	shost = sdev->host;
409 	if (scsi_target(sdev)->single_lun)
410 		scsi_single_lun_run(sdev);
411 
412 	spin_lock_irqsave(shost->host_lock, flags);
413 	list_splice_init(&shost->starved_list, &starved_list);
414 
415 	while (!list_empty(&starved_list)) {
416 		/*
417 		 * As long as shost is accepting commands and we have
418 		 * starved queues, call blk_run_queue. scsi_request_fn
419 		 * drops the queue_lock and can add us back to the
420 		 * starved_list.
421 		 *
422 		 * host_lock protects the starved_list and starved_entry.
423 		 * scsi_request_fn must get the host_lock before checking
424 		 * or modifying starved_list or starved_entry.
425 		 */
426 		if (scsi_host_is_busy(shost))
427 			break;
428 
429 		sdev = list_entry(starved_list.next,
430 				  struct scsi_device, starved_entry);
431 		list_del_init(&sdev->starved_entry);
432 		if (scsi_target_is_busy(scsi_target(sdev))) {
433 			list_move_tail(&sdev->starved_entry,
434 				       &shost->starved_list);
435 			continue;
436 		}
437 
438 		spin_unlock(shost->host_lock);
439 		spin_lock(sdev->request_queue->queue_lock);
440 		__blk_run_queue(sdev->request_queue);
441 		spin_unlock(sdev->request_queue->queue_lock);
442 		spin_lock(shost->host_lock);
443 	}
444 	/* put any unprocessed entries back */
445 	list_splice(&starved_list, &shost->starved_list);
446 	spin_unlock_irqrestore(shost->host_lock, flags);
447 
448 	blk_run_queue(q);
449 }
450 
451 void scsi_requeue_run_queue(struct work_struct *work)
452 {
453 	struct scsi_device *sdev;
454 	struct request_queue *q;
455 
456 	sdev = container_of(work, struct scsi_device, requeue_work);
457 	q = sdev->request_queue;
458 	scsi_run_queue(q);
459 }
460 
461 /*
462  * Function:	scsi_requeue_command()
463  *
464  * Purpose:	Handle post-processing of completed commands.
465  *
466  * Arguments:	q	- queue to operate on
467  *		cmd	- command that may need to be requeued.
468  *
469  * Returns:	Nothing
470  *
471  * Notes:	After command completion, there may be blocks left
472  *		over which weren't finished by the previous command
473  *		this can be for a number of reasons - the main one is
474  *		I/O errors in the middle of the request, in which case
475  *		we need to request the blocks that come after the bad
476  *		sector.
477  * Notes:	Upon return, cmd is a stale pointer.
478  */
479 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
480 {
481 	struct scsi_device *sdev = cmd->device;
482 	struct request *req = cmd->request;
483 	unsigned long flags;
484 
485 	/*
486 	 * We need to hold a reference on the device to avoid the queue being
487 	 * killed after the unlock and before scsi_run_queue is invoked which
488 	 * may happen because scsi_unprep_request() puts the command which
489 	 * releases its reference on the device.
490 	 */
491 	get_device(&sdev->sdev_gendev);
492 
493 	spin_lock_irqsave(q->queue_lock, flags);
494 	scsi_unprep_request(req);
495 	blk_requeue_request(q, req);
496 	spin_unlock_irqrestore(q->queue_lock, flags);
497 
498 	scsi_run_queue(q);
499 
500 	put_device(&sdev->sdev_gendev);
501 }
502 
503 void scsi_next_command(struct scsi_cmnd *cmd)
504 {
505 	struct scsi_device *sdev = cmd->device;
506 	struct request_queue *q = sdev->request_queue;
507 
508 	/* need to hold a reference on the device before we let go of the cmd */
509 	get_device(&sdev->sdev_gendev);
510 
511 	scsi_put_command(cmd);
512 	scsi_run_queue(q);
513 
514 	/* ok to remove device now */
515 	put_device(&sdev->sdev_gendev);
516 }
517 
518 void scsi_run_host_queues(struct Scsi_Host *shost)
519 {
520 	struct scsi_device *sdev;
521 
522 	shost_for_each_device(sdev, shost)
523 		scsi_run_queue(sdev->request_queue);
524 }
525 
526 static void __scsi_release_buffers(struct scsi_cmnd *, int);
527 
528 /*
529  * Function:    scsi_end_request()
530  *
531  * Purpose:     Post-processing of completed commands (usually invoked at end
532  *		of upper level post-processing and scsi_io_completion).
533  *
534  * Arguments:   cmd	 - command that is complete.
535  *              error    - 0 if I/O indicates success, < 0 for I/O error.
536  *              bytes    - number of bytes of completed I/O
537  *		requeue  - indicates whether we should requeue leftovers.
538  *
539  * Lock status: Assumed that lock is not held upon entry.
540  *
541  * Returns:     cmd if requeue required, NULL otherwise.
542  *
543  * Notes:       This is called for block device requests in order to
544  *              mark some number of sectors as complete.
545  *
546  *		We are guaranteeing that the request queue will be goosed
547  *		at some point during this call.
548  * Notes:	If cmd was requeued, upon return it will be a stale pointer.
549  */
550 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
551 					  int bytes, int requeue)
552 {
553 	struct request_queue *q = cmd->device->request_queue;
554 	struct request *req = cmd->request;
555 
556 	/*
557 	 * If there are blocks left over at the end, set up the command
558 	 * to queue the remainder of them.
559 	 */
560 	if (blk_end_request(req, error, bytes)) {
561 		/* kill remainder if no retrys */
562 		if (error && scsi_noretry_cmd(cmd))
563 			blk_end_request_all(req, error);
564 		else {
565 			if (requeue) {
566 				/*
567 				 * Bleah.  Leftovers again.  Stick the
568 				 * leftovers in the front of the
569 				 * queue, and goose the queue again.
570 				 */
571 				scsi_release_buffers(cmd);
572 				scsi_requeue_command(q, cmd);
573 				cmd = NULL;
574 			}
575 			return cmd;
576 		}
577 	}
578 
579 	/*
580 	 * This will goose the queue request function at the end, so we don't
581 	 * need to worry about launching another command.
582 	 */
583 	__scsi_release_buffers(cmd, 0);
584 	scsi_next_command(cmd);
585 	return NULL;
586 }
587 
588 static inline unsigned int scsi_sgtable_index(unsigned short nents)
589 {
590 	unsigned int index;
591 
592 	BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
593 
594 	if (nents <= 8)
595 		index = 0;
596 	else
597 		index = get_count_order(nents) - 3;
598 
599 	return index;
600 }
601 
602 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
603 {
604 	struct scsi_host_sg_pool *sgp;
605 
606 	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
607 	mempool_free(sgl, sgp->pool);
608 }
609 
610 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
611 {
612 	struct scsi_host_sg_pool *sgp;
613 
614 	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
615 	return mempool_alloc(sgp->pool, gfp_mask);
616 }
617 
618 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
619 			      gfp_t gfp_mask)
620 {
621 	int ret;
622 
623 	BUG_ON(!nents);
624 
625 	ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
626 			       gfp_mask, scsi_sg_alloc);
627 	if (unlikely(ret))
628 		__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
629 				scsi_sg_free);
630 
631 	return ret;
632 }
633 
634 static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
635 {
636 	__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
637 }
638 
639 static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check)
640 {
641 
642 	if (cmd->sdb.table.nents)
643 		scsi_free_sgtable(&cmd->sdb);
644 
645 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
646 
647 	if (do_bidi_check && scsi_bidi_cmnd(cmd)) {
648 		struct scsi_data_buffer *bidi_sdb =
649 			cmd->request->next_rq->special;
650 		scsi_free_sgtable(bidi_sdb);
651 		kmem_cache_free(scsi_sdb_cache, bidi_sdb);
652 		cmd->request->next_rq->special = NULL;
653 	}
654 
655 	if (scsi_prot_sg_count(cmd))
656 		scsi_free_sgtable(cmd->prot_sdb);
657 }
658 
659 /*
660  * Function:    scsi_release_buffers()
661  *
662  * Purpose:     Completion processing for block device I/O requests.
663  *
664  * Arguments:   cmd	- command that we are bailing.
665  *
666  * Lock status: Assumed that no lock is held upon entry.
667  *
668  * Returns:     Nothing
669  *
670  * Notes:       In the event that an upper level driver rejects a
671  *		command, we must release resources allocated during
672  *		the __init_io() function.  Primarily this would involve
673  *		the scatter-gather table, and potentially any bounce
674  *		buffers.
675  */
676 void scsi_release_buffers(struct scsi_cmnd *cmd)
677 {
678 	__scsi_release_buffers(cmd, 1);
679 }
680 EXPORT_SYMBOL(scsi_release_buffers);
681 
682 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
683 {
684 	int error = 0;
685 
686 	switch(host_byte(result)) {
687 	case DID_TRANSPORT_FAILFAST:
688 		error = -ENOLINK;
689 		break;
690 	case DID_TARGET_FAILURE:
691 		set_host_byte(cmd, DID_OK);
692 		error = -EREMOTEIO;
693 		break;
694 	case DID_NEXUS_FAILURE:
695 		set_host_byte(cmd, DID_OK);
696 		error = -EBADE;
697 		break;
698 	default:
699 		error = -EIO;
700 		break;
701 	}
702 
703 	return error;
704 }
705 
706 /*
707  * Function:    scsi_io_completion()
708  *
709  * Purpose:     Completion processing for block device I/O requests.
710  *
711  * Arguments:   cmd   - command that is finished.
712  *
713  * Lock status: Assumed that no lock is held upon entry.
714  *
715  * Returns:     Nothing
716  *
717  * Notes:       This function is matched in terms of capabilities to
718  *              the function that created the scatter-gather list.
719  *              In other words, if there are no bounce buffers
720  *              (the normal case for most drivers), we don't need
721  *              the logic to deal with cleaning up afterwards.
722  *
723  *		We must call scsi_end_request().  This will finish off
724  *		the specified number of sectors.  If we are done, the
725  *		command block will be released and the queue function
726  *		will be goosed.  If we are not done then we have to
727  *		figure out what to do next:
728  *
729  *		a) We can call scsi_requeue_command().  The request
730  *		   will be unprepared and put back on the queue.  Then
731  *		   a new command will be created for it.  This should
732  *		   be used if we made forward progress, or if we want
733  *		   to switch from READ(10) to READ(6) for example.
734  *
735  *		b) We can call scsi_queue_insert().  The request will
736  *		   be put back on the queue and retried using the same
737  *		   command as before, possibly after a delay.
738  *
739  *		c) We can call blk_end_request() with -EIO to fail
740  *		   the remainder of the request.
741  */
742 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
743 {
744 	int result = cmd->result;
745 	struct request_queue *q = cmd->device->request_queue;
746 	struct request *req = cmd->request;
747 	int error = 0;
748 	struct scsi_sense_hdr sshdr;
749 	int sense_valid = 0;
750 	int sense_deferred = 0;
751 	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
752 	      ACTION_DELAYED_RETRY} action;
753 	char *description = NULL;
754 
755 	if (result) {
756 		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
757 		if (sense_valid)
758 			sense_deferred = scsi_sense_is_deferred(&sshdr);
759 	}
760 
761 	if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
762 		req->errors = result;
763 		if (result) {
764 			if (sense_valid && req->sense) {
765 				/*
766 				 * SG_IO wants current and deferred errors
767 				 */
768 				int len = 8 + cmd->sense_buffer[7];
769 
770 				if (len > SCSI_SENSE_BUFFERSIZE)
771 					len = SCSI_SENSE_BUFFERSIZE;
772 				memcpy(req->sense, cmd->sense_buffer,  len);
773 				req->sense_len = len;
774 			}
775 			if (!sense_deferred)
776 				error = __scsi_error_from_host_byte(cmd, result);
777 		}
778 
779 		req->resid_len = scsi_get_resid(cmd);
780 
781 		if (scsi_bidi_cmnd(cmd)) {
782 			/*
783 			 * Bidi commands Must be complete as a whole,
784 			 * both sides at once.
785 			 */
786 			req->next_rq->resid_len = scsi_in(cmd)->resid;
787 
788 			scsi_release_buffers(cmd);
789 			blk_end_request_all(req, 0);
790 
791 			scsi_next_command(cmd);
792 			return;
793 		}
794 	}
795 
796 	/* no bidi support for !REQ_TYPE_BLOCK_PC yet */
797 	BUG_ON(blk_bidi_rq(req));
798 
799 	/*
800 	 * Next deal with any sectors which we were able to correctly
801 	 * handle.
802 	 */
803 	SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, "
804 				      "%d bytes done.\n",
805 				      blk_rq_sectors(req), good_bytes));
806 
807 	/*
808 	 * Recovered errors need reporting, but they're always treated
809 	 * as success, so fiddle the result code here.  For BLOCK_PC
810 	 * we already took a copy of the original into rq->errors which
811 	 * is what gets returned to the user
812 	 */
813 	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
814 		/* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
815 		 * print since caller wants ATA registers. Only occurs on
816 		 * SCSI ATA PASS_THROUGH commands when CK_COND=1
817 		 */
818 		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
819 			;
820 		else if (!(req->cmd_flags & REQ_QUIET))
821 			scsi_print_sense("", cmd);
822 		result = 0;
823 		/* BLOCK_PC may have set error */
824 		error = 0;
825 	}
826 
827 	/*
828 	 * A number of bytes were successfully read.  If there
829 	 * are leftovers and there is some kind of error
830 	 * (result != 0), retry the rest.
831 	 */
832 	if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
833 		return;
834 
835 	error = __scsi_error_from_host_byte(cmd, result);
836 
837 	if (host_byte(result) == DID_RESET) {
838 		/* Third party bus reset or reset for error recovery
839 		 * reasons.  Just retry the command and see what
840 		 * happens.
841 		 */
842 		action = ACTION_RETRY;
843 	} else if (sense_valid && !sense_deferred) {
844 		switch (sshdr.sense_key) {
845 		case UNIT_ATTENTION:
846 			if (cmd->device->removable) {
847 				/* Detected disc change.  Set a bit
848 				 * and quietly refuse further access.
849 				 */
850 				cmd->device->changed = 1;
851 				description = "Media Changed";
852 				action = ACTION_FAIL;
853 			} else {
854 				/* Must have been a power glitch, or a
855 				 * bus reset.  Could not have been a
856 				 * media change, so we just retry the
857 				 * command and see what happens.
858 				 */
859 				action = ACTION_RETRY;
860 			}
861 			break;
862 		case ILLEGAL_REQUEST:
863 			/* If we had an ILLEGAL REQUEST returned, then
864 			 * we may have performed an unsupported
865 			 * command.  The only thing this should be
866 			 * would be a ten byte read where only a six
867 			 * byte read was supported.  Also, on a system
868 			 * where READ CAPACITY failed, we may have
869 			 * read past the end of the disk.
870 			 */
871 			if ((cmd->device->use_10_for_rw &&
872 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
873 			    (cmd->cmnd[0] == READ_10 ||
874 			     cmd->cmnd[0] == WRITE_10)) {
875 				/* This will issue a new 6-byte command. */
876 				cmd->device->use_10_for_rw = 0;
877 				action = ACTION_REPREP;
878 			} else if (sshdr.asc == 0x10) /* DIX */ {
879 				description = "Host Data Integrity Failure";
880 				action = ACTION_FAIL;
881 				error = -EILSEQ;
882 			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
883 			} else if ((sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
884 				   (cmd->cmnd[0] == UNMAP ||
885 				    cmd->cmnd[0] == WRITE_SAME_16 ||
886 				    cmd->cmnd[0] == WRITE_SAME)) {
887 				description = "Discard failure";
888 				action = ACTION_FAIL;
889 				error = -EREMOTEIO;
890 			} else
891 				action = ACTION_FAIL;
892 			break;
893 		case ABORTED_COMMAND:
894 			action = ACTION_FAIL;
895 			if (sshdr.asc == 0x10) { /* DIF */
896 				description = "Target Data Integrity Failure";
897 				error = -EILSEQ;
898 			}
899 			break;
900 		case NOT_READY:
901 			/* If the device is in the process of becoming
902 			 * ready, or has a temporary blockage, retry.
903 			 */
904 			if (sshdr.asc == 0x04) {
905 				switch (sshdr.ascq) {
906 				case 0x01: /* becoming ready */
907 				case 0x04: /* format in progress */
908 				case 0x05: /* rebuild in progress */
909 				case 0x06: /* recalculation in progress */
910 				case 0x07: /* operation in progress */
911 				case 0x08: /* Long write in progress */
912 				case 0x09: /* self test in progress */
913 				case 0x14: /* space allocation in progress */
914 					action = ACTION_DELAYED_RETRY;
915 					break;
916 				default:
917 					description = "Device not ready";
918 					action = ACTION_FAIL;
919 					break;
920 				}
921 			} else {
922 				description = "Device not ready";
923 				action = ACTION_FAIL;
924 			}
925 			break;
926 		case VOLUME_OVERFLOW:
927 			/* See SSC3rXX or current. */
928 			action = ACTION_FAIL;
929 			break;
930 		default:
931 			description = "Unhandled sense code";
932 			action = ACTION_FAIL;
933 			break;
934 		}
935 	} else {
936 		description = "Unhandled error code";
937 		action = ACTION_FAIL;
938 	}
939 
940 	switch (action) {
941 	case ACTION_FAIL:
942 		/* Give up and fail the remainder of the request */
943 		scsi_release_buffers(cmd);
944 		if (!(req->cmd_flags & REQ_QUIET)) {
945 			if (description)
946 				scmd_printk(KERN_INFO, cmd, "%s\n",
947 					    description);
948 			scsi_print_result(cmd);
949 			if (driver_byte(result) & DRIVER_SENSE)
950 				scsi_print_sense("", cmd);
951 			scsi_print_command(cmd);
952 		}
953 		if (blk_end_request_err(req, error))
954 			scsi_requeue_command(q, cmd);
955 		else
956 			scsi_next_command(cmd);
957 		break;
958 	case ACTION_REPREP:
959 		/* Unprep the request and put it back at the head of the queue.
960 		 * A new command will be prepared and issued.
961 		 */
962 		scsi_release_buffers(cmd);
963 		scsi_requeue_command(q, cmd);
964 		break;
965 	case ACTION_RETRY:
966 		/* Retry the same command immediately */
967 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
968 		break;
969 	case ACTION_DELAYED_RETRY:
970 		/* Retry the same command after a delay */
971 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
972 		break;
973 	}
974 }
975 
976 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
977 			     gfp_t gfp_mask)
978 {
979 	int count;
980 
981 	/*
982 	 * If sg table allocation fails, requeue request later.
983 	 */
984 	if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
985 					gfp_mask))) {
986 		return BLKPREP_DEFER;
987 	}
988 
989 	req->buffer = NULL;
990 
991 	/*
992 	 * Next, walk the list, and fill in the addresses and sizes of
993 	 * each segment.
994 	 */
995 	count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
996 	BUG_ON(count > sdb->table.nents);
997 	sdb->table.nents = count;
998 	sdb->length = blk_rq_bytes(req);
999 	return BLKPREP_OK;
1000 }
1001 
1002 /*
1003  * Function:    scsi_init_io()
1004  *
1005  * Purpose:     SCSI I/O initialize function.
1006  *
1007  * Arguments:   cmd   - Command descriptor we wish to initialize
1008  *
1009  * Returns:     0 on success
1010  *		BLKPREP_DEFER if the failure is retryable
1011  *		BLKPREP_KILL if the failure is fatal
1012  */
1013 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1014 {
1015 	struct request *rq = cmd->request;
1016 
1017 	int error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask);
1018 	if (error)
1019 		goto err_exit;
1020 
1021 	if (blk_bidi_rq(rq)) {
1022 		struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
1023 			scsi_sdb_cache, GFP_ATOMIC);
1024 		if (!bidi_sdb) {
1025 			error = BLKPREP_DEFER;
1026 			goto err_exit;
1027 		}
1028 
1029 		rq->next_rq->special = bidi_sdb;
1030 		error = scsi_init_sgtable(rq->next_rq, bidi_sdb, GFP_ATOMIC);
1031 		if (error)
1032 			goto err_exit;
1033 	}
1034 
1035 	if (blk_integrity_rq(rq)) {
1036 		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1037 		int ivecs, count;
1038 
1039 		BUG_ON(prot_sdb == NULL);
1040 		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1041 
1042 		if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
1043 			error = BLKPREP_DEFER;
1044 			goto err_exit;
1045 		}
1046 
1047 		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1048 						prot_sdb->table.sgl);
1049 		BUG_ON(unlikely(count > ivecs));
1050 		BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1051 
1052 		cmd->prot_sdb = prot_sdb;
1053 		cmd->prot_sdb->table.nents = count;
1054 	}
1055 
1056 	return BLKPREP_OK ;
1057 
1058 err_exit:
1059 	scsi_release_buffers(cmd);
1060 	cmd->request->special = NULL;
1061 	scsi_put_command(cmd);
1062 	return error;
1063 }
1064 EXPORT_SYMBOL(scsi_init_io);
1065 
1066 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1067 		struct request *req)
1068 {
1069 	struct scsi_cmnd *cmd;
1070 
1071 	if (!req->special) {
1072 		cmd = scsi_get_command(sdev, GFP_ATOMIC);
1073 		if (unlikely(!cmd))
1074 			return NULL;
1075 		req->special = cmd;
1076 	} else {
1077 		cmd = req->special;
1078 	}
1079 
1080 	/* pull a tag out of the request if we have one */
1081 	cmd->tag = req->tag;
1082 	cmd->request = req;
1083 
1084 	cmd->cmnd = req->cmd;
1085 	cmd->prot_op = SCSI_PROT_NORMAL;
1086 
1087 	return cmd;
1088 }
1089 
1090 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1091 {
1092 	struct scsi_cmnd *cmd;
1093 	int ret = scsi_prep_state_check(sdev, req);
1094 
1095 	if (ret != BLKPREP_OK)
1096 		return ret;
1097 
1098 	cmd = scsi_get_cmd_from_req(sdev, req);
1099 	if (unlikely(!cmd))
1100 		return BLKPREP_DEFER;
1101 
1102 	/*
1103 	 * BLOCK_PC requests may transfer data, in which case they must
1104 	 * a bio attached to them.  Or they might contain a SCSI command
1105 	 * that does not transfer data, in which case they may optionally
1106 	 * submit a request without an attached bio.
1107 	 */
1108 	if (req->bio) {
1109 		int ret;
1110 
1111 		BUG_ON(!req->nr_phys_segments);
1112 
1113 		ret = scsi_init_io(cmd, GFP_ATOMIC);
1114 		if (unlikely(ret))
1115 			return ret;
1116 	} else {
1117 		BUG_ON(blk_rq_bytes(req));
1118 
1119 		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1120 		req->buffer = NULL;
1121 	}
1122 
1123 	cmd->cmd_len = req->cmd_len;
1124 	if (!blk_rq_bytes(req))
1125 		cmd->sc_data_direction = DMA_NONE;
1126 	else if (rq_data_dir(req) == WRITE)
1127 		cmd->sc_data_direction = DMA_TO_DEVICE;
1128 	else
1129 		cmd->sc_data_direction = DMA_FROM_DEVICE;
1130 
1131 	cmd->transfersize = blk_rq_bytes(req);
1132 	cmd->allowed = req->retries;
1133 	return BLKPREP_OK;
1134 }
1135 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1136 
1137 /*
1138  * Setup a REQ_TYPE_FS command.  These are simple read/write request
1139  * from filesystems that still need to be translated to SCSI CDBs from
1140  * the ULD.
1141  */
1142 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1143 {
1144 	struct scsi_cmnd *cmd;
1145 	int ret = scsi_prep_state_check(sdev, req);
1146 
1147 	if (ret != BLKPREP_OK)
1148 		return ret;
1149 
1150 	if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1151 			 && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1152 		ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1153 		if (ret != BLKPREP_OK)
1154 			return ret;
1155 	}
1156 
1157 	/*
1158 	 * Filesystem requests must transfer data.
1159 	 */
1160 	BUG_ON(!req->nr_phys_segments);
1161 
1162 	cmd = scsi_get_cmd_from_req(sdev, req);
1163 	if (unlikely(!cmd))
1164 		return BLKPREP_DEFER;
1165 
1166 	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1167 	return scsi_init_io(cmd, GFP_ATOMIC);
1168 }
1169 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1170 
1171 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1172 {
1173 	int ret = BLKPREP_OK;
1174 
1175 	/*
1176 	 * If the device is not in running state we will reject some
1177 	 * or all commands.
1178 	 */
1179 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1180 		switch (sdev->sdev_state) {
1181 		case SDEV_OFFLINE:
1182 		case SDEV_TRANSPORT_OFFLINE:
1183 			/*
1184 			 * If the device is offline we refuse to process any
1185 			 * commands.  The device must be brought online
1186 			 * before trying any recovery commands.
1187 			 */
1188 			sdev_printk(KERN_ERR, sdev,
1189 				    "rejecting I/O to offline device\n");
1190 			ret = BLKPREP_KILL;
1191 			break;
1192 		case SDEV_DEL:
1193 			/*
1194 			 * If the device is fully deleted, we refuse to
1195 			 * process any commands as well.
1196 			 */
1197 			sdev_printk(KERN_ERR, sdev,
1198 				    "rejecting I/O to dead device\n");
1199 			ret = BLKPREP_KILL;
1200 			break;
1201 		case SDEV_QUIESCE:
1202 		case SDEV_BLOCK:
1203 		case SDEV_CREATED_BLOCK:
1204 			/*
1205 			 * If the devices is blocked we defer normal commands.
1206 			 */
1207 			if (!(req->cmd_flags & REQ_PREEMPT))
1208 				ret = BLKPREP_DEFER;
1209 			break;
1210 		default:
1211 			/*
1212 			 * For any other not fully online state we only allow
1213 			 * special commands.  In particular any user initiated
1214 			 * command is not allowed.
1215 			 */
1216 			if (!(req->cmd_flags & REQ_PREEMPT))
1217 				ret = BLKPREP_KILL;
1218 			break;
1219 		}
1220 	}
1221 	return ret;
1222 }
1223 EXPORT_SYMBOL(scsi_prep_state_check);
1224 
1225 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1226 {
1227 	struct scsi_device *sdev = q->queuedata;
1228 
1229 	switch (ret) {
1230 	case BLKPREP_KILL:
1231 		req->errors = DID_NO_CONNECT << 16;
1232 		/* release the command and kill it */
1233 		if (req->special) {
1234 			struct scsi_cmnd *cmd = req->special;
1235 			scsi_release_buffers(cmd);
1236 			scsi_put_command(cmd);
1237 			req->special = NULL;
1238 		}
1239 		break;
1240 	case BLKPREP_DEFER:
1241 		/*
1242 		 * If we defer, the blk_peek_request() returns NULL, but the
1243 		 * queue must be restarted, so we schedule a callback to happen
1244 		 * shortly.
1245 		 */
1246 		if (sdev->device_busy == 0)
1247 			blk_delay_queue(q, SCSI_QUEUE_DELAY);
1248 		break;
1249 	default:
1250 		req->cmd_flags |= REQ_DONTPREP;
1251 	}
1252 
1253 	return ret;
1254 }
1255 EXPORT_SYMBOL(scsi_prep_return);
1256 
1257 int scsi_prep_fn(struct request_queue *q, struct request *req)
1258 {
1259 	struct scsi_device *sdev = q->queuedata;
1260 	int ret = BLKPREP_KILL;
1261 
1262 	if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1263 		ret = scsi_setup_blk_pc_cmnd(sdev, req);
1264 	return scsi_prep_return(q, req, ret);
1265 }
1266 EXPORT_SYMBOL(scsi_prep_fn);
1267 
1268 /*
1269  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1270  * return 0.
1271  *
1272  * Called with the queue_lock held.
1273  */
1274 static inline int scsi_dev_queue_ready(struct request_queue *q,
1275 				  struct scsi_device *sdev)
1276 {
1277 	if (sdev->device_busy == 0 && sdev->device_blocked) {
1278 		/*
1279 		 * unblock after device_blocked iterates to zero
1280 		 */
1281 		if (--sdev->device_blocked == 0) {
1282 			SCSI_LOG_MLQUEUE(3,
1283 				   sdev_printk(KERN_INFO, sdev,
1284 				   "unblocking device at zero depth\n"));
1285 		} else {
1286 			blk_delay_queue(q, SCSI_QUEUE_DELAY);
1287 			return 0;
1288 		}
1289 	}
1290 	if (scsi_device_is_busy(sdev))
1291 		return 0;
1292 
1293 	return 1;
1294 }
1295 
1296 
1297 /*
1298  * scsi_target_queue_ready: checks if there we can send commands to target
1299  * @sdev: scsi device on starget to check.
1300  *
1301  * Called with the host lock held.
1302  */
1303 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1304 					   struct scsi_device *sdev)
1305 {
1306 	struct scsi_target *starget = scsi_target(sdev);
1307 
1308 	if (starget->single_lun) {
1309 		if (starget->starget_sdev_user &&
1310 		    starget->starget_sdev_user != sdev)
1311 			return 0;
1312 		starget->starget_sdev_user = sdev;
1313 	}
1314 
1315 	if (starget->target_busy == 0 && starget->target_blocked) {
1316 		/*
1317 		 * unblock after target_blocked iterates to zero
1318 		 */
1319 		if (--starget->target_blocked == 0) {
1320 			SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1321 					 "unblocking target at zero depth\n"));
1322 		} else
1323 			return 0;
1324 	}
1325 
1326 	if (scsi_target_is_busy(starget)) {
1327 		list_move_tail(&sdev->starved_entry, &shost->starved_list);
1328 		return 0;
1329 	}
1330 
1331 	return 1;
1332 }
1333 
1334 /*
1335  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1336  * return 0. We must end up running the queue again whenever 0 is
1337  * returned, else IO can hang.
1338  *
1339  * Called with host_lock held.
1340  */
1341 static inline int scsi_host_queue_ready(struct request_queue *q,
1342 				   struct Scsi_Host *shost,
1343 				   struct scsi_device *sdev)
1344 {
1345 	if (scsi_host_in_recovery(shost))
1346 		return 0;
1347 	if (shost->host_busy == 0 && shost->host_blocked) {
1348 		/*
1349 		 * unblock after host_blocked iterates to zero
1350 		 */
1351 		if (--shost->host_blocked == 0) {
1352 			SCSI_LOG_MLQUEUE(3,
1353 				printk("scsi%d unblocking host at zero depth\n",
1354 					shost->host_no));
1355 		} else {
1356 			return 0;
1357 		}
1358 	}
1359 	if (scsi_host_is_busy(shost)) {
1360 		if (list_empty(&sdev->starved_entry))
1361 			list_add_tail(&sdev->starved_entry, &shost->starved_list);
1362 		return 0;
1363 	}
1364 
1365 	/* We're OK to process the command, so we can't be starved */
1366 	if (!list_empty(&sdev->starved_entry))
1367 		list_del_init(&sdev->starved_entry);
1368 
1369 	return 1;
1370 }
1371 
1372 /*
1373  * Busy state exporting function for request stacking drivers.
1374  *
1375  * For efficiency, no lock is taken to check the busy state of
1376  * shost/starget/sdev, since the returned value is not guaranteed and
1377  * may be changed after request stacking drivers call the function,
1378  * regardless of taking lock or not.
1379  *
1380  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1381  * needs to return 'not busy'. Otherwise, request stacking drivers
1382  * may hold requests forever.
1383  */
1384 static int scsi_lld_busy(struct request_queue *q)
1385 {
1386 	struct scsi_device *sdev = q->queuedata;
1387 	struct Scsi_Host *shost;
1388 
1389 	if (blk_queue_dead(q))
1390 		return 0;
1391 
1392 	shost = sdev->host;
1393 
1394 	/*
1395 	 * Ignore host/starget busy state.
1396 	 * Since block layer does not have a concept of fairness across
1397 	 * multiple queues, congestion of host/starget needs to be handled
1398 	 * in SCSI layer.
1399 	 */
1400 	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1401 		return 1;
1402 
1403 	return 0;
1404 }
1405 
1406 /*
1407  * Kill a request for a dead device
1408  */
1409 static void scsi_kill_request(struct request *req, struct request_queue *q)
1410 {
1411 	struct scsi_cmnd *cmd = req->special;
1412 	struct scsi_device *sdev;
1413 	struct scsi_target *starget;
1414 	struct Scsi_Host *shost;
1415 
1416 	blk_start_request(req);
1417 
1418 	scmd_printk(KERN_INFO, cmd, "killing request\n");
1419 
1420 	sdev = cmd->device;
1421 	starget = scsi_target(sdev);
1422 	shost = sdev->host;
1423 	scsi_init_cmd_errh(cmd);
1424 	cmd->result = DID_NO_CONNECT << 16;
1425 	atomic_inc(&cmd->device->iorequest_cnt);
1426 
1427 	/*
1428 	 * SCSI request completion path will do scsi_device_unbusy(),
1429 	 * bump busy counts.  To bump the counters, we need to dance
1430 	 * with the locks as normal issue path does.
1431 	 */
1432 	sdev->device_busy++;
1433 	spin_unlock(sdev->request_queue->queue_lock);
1434 	spin_lock(shost->host_lock);
1435 	shost->host_busy++;
1436 	starget->target_busy++;
1437 	spin_unlock(shost->host_lock);
1438 	spin_lock(sdev->request_queue->queue_lock);
1439 
1440 	blk_complete_request(req);
1441 }
1442 
1443 static void scsi_softirq_done(struct request *rq)
1444 {
1445 	struct scsi_cmnd *cmd = rq->special;
1446 	unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1447 	int disposition;
1448 
1449 	INIT_LIST_HEAD(&cmd->eh_entry);
1450 
1451 	atomic_inc(&cmd->device->iodone_cnt);
1452 	if (cmd->result)
1453 		atomic_inc(&cmd->device->ioerr_cnt);
1454 
1455 	disposition = scsi_decide_disposition(cmd);
1456 	if (disposition != SUCCESS &&
1457 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1458 		sdev_printk(KERN_ERR, cmd->device,
1459 			    "timing out command, waited %lus\n",
1460 			    wait_for/HZ);
1461 		disposition = SUCCESS;
1462 	}
1463 
1464 	scsi_log_completion(cmd, disposition);
1465 
1466 	switch (disposition) {
1467 		case SUCCESS:
1468 			scsi_finish_command(cmd);
1469 			break;
1470 		case NEEDS_RETRY:
1471 			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1472 			break;
1473 		case ADD_TO_MLQUEUE:
1474 			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1475 			break;
1476 		default:
1477 			if (!scsi_eh_scmd_add(cmd, 0))
1478 				scsi_finish_command(cmd);
1479 	}
1480 }
1481 
1482 /*
1483  * Function:    scsi_request_fn()
1484  *
1485  * Purpose:     Main strategy routine for SCSI.
1486  *
1487  * Arguments:   q       - Pointer to actual queue.
1488  *
1489  * Returns:     Nothing
1490  *
1491  * Lock status: IO request lock assumed to be held when called.
1492  */
1493 static void scsi_request_fn(struct request_queue *q)
1494 {
1495 	struct scsi_device *sdev = q->queuedata;
1496 	struct Scsi_Host *shost;
1497 	struct scsi_cmnd *cmd;
1498 	struct request *req;
1499 
1500 	if(!get_device(&sdev->sdev_gendev))
1501 		/* We must be tearing the block queue down already */
1502 		return;
1503 
1504 	/*
1505 	 * To start with, we keep looping until the queue is empty, or until
1506 	 * the host is no longer able to accept any more requests.
1507 	 */
1508 	shost = sdev->host;
1509 	for (;;) {
1510 		int rtn;
1511 		/*
1512 		 * get next queueable request.  We do this early to make sure
1513 		 * that the request is fully prepared even if we cannot
1514 		 * accept it.
1515 		 */
1516 		req = blk_peek_request(q);
1517 		if (!req || !scsi_dev_queue_ready(q, sdev))
1518 			break;
1519 
1520 		if (unlikely(!scsi_device_online(sdev))) {
1521 			sdev_printk(KERN_ERR, sdev,
1522 				    "rejecting I/O to offline device\n");
1523 			scsi_kill_request(req, q);
1524 			continue;
1525 		}
1526 
1527 
1528 		/*
1529 		 * Remove the request from the request list.
1530 		 */
1531 		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1532 			blk_start_request(req);
1533 		sdev->device_busy++;
1534 
1535 		spin_unlock(q->queue_lock);
1536 		cmd = req->special;
1537 		if (unlikely(cmd == NULL)) {
1538 			printk(KERN_CRIT "impossible request in %s.\n"
1539 					 "please mail a stack trace to "
1540 					 "linux-scsi@vger.kernel.org\n",
1541 					 __func__);
1542 			blk_dump_rq_flags(req, "foo");
1543 			BUG();
1544 		}
1545 		spin_lock(shost->host_lock);
1546 
1547 		/*
1548 		 * We hit this when the driver is using a host wide
1549 		 * tag map. For device level tag maps the queue_depth check
1550 		 * in the device ready fn would prevent us from trying
1551 		 * to allocate a tag. Since the map is a shared host resource
1552 		 * we add the dev to the starved list so it eventually gets
1553 		 * a run when a tag is freed.
1554 		 */
1555 		if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1556 			if (list_empty(&sdev->starved_entry))
1557 				list_add_tail(&sdev->starved_entry,
1558 					      &shost->starved_list);
1559 			goto not_ready;
1560 		}
1561 
1562 		if (!scsi_target_queue_ready(shost, sdev))
1563 			goto not_ready;
1564 
1565 		if (!scsi_host_queue_ready(q, shost, sdev))
1566 			goto not_ready;
1567 
1568 		scsi_target(sdev)->target_busy++;
1569 		shost->host_busy++;
1570 
1571 		/*
1572 		 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1573 		 *		take the lock again.
1574 		 */
1575 		spin_unlock_irq(shost->host_lock);
1576 
1577 		/*
1578 		 * Finally, initialize any error handling parameters, and set up
1579 		 * the timers for timeouts.
1580 		 */
1581 		scsi_init_cmd_errh(cmd);
1582 
1583 		/*
1584 		 * Dispatch the command to the low-level driver.
1585 		 */
1586 		rtn = scsi_dispatch_cmd(cmd);
1587 		spin_lock_irq(q->queue_lock);
1588 		if (rtn)
1589 			goto out_delay;
1590 	}
1591 
1592 	goto out;
1593 
1594  not_ready:
1595 	spin_unlock_irq(shost->host_lock);
1596 
1597 	/*
1598 	 * lock q, handle tag, requeue req, and decrement device_busy. We
1599 	 * must return with queue_lock held.
1600 	 *
1601 	 * Decrementing device_busy without checking it is OK, as all such
1602 	 * cases (host limits or settings) should run the queue at some
1603 	 * later time.
1604 	 */
1605 	spin_lock_irq(q->queue_lock);
1606 	blk_requeue_request(q, req);
1607 	sdev->device_busy--;
1608 out_delay:
1609 	if (sdev->device_busy == 0)
1610 		blk_delay_queue(q, SCSI_QUEUE_DELAY);
1611 out:
1612 	/* must be careful here...if we trigger the ->remove() function
1613 	 * we cannot be holding the q lock */
1614 	spin_unlock_irq(q->queue_lock);
1615 	put_device(&sdev->sdev_gendev);
1616 	spin_lock_irq(q->queue_lock);
1617 }
1618 
1619 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1620 {
1621 	struct device *host_dev;
1622 	u64 bounce_limit = 0xffffffff;
1623 
1624 	if (shost->unchecked_isa_dma)
1625 		return BLK_BOUNCE_ISA;
1626 	/*
1627 	 * Platforms with virtual-DMA translation
1628 	 * hardware have no practical limit.
1629 	 */
1630 	if (!PCI_DMA_BUS_IS_PHYS)
1631 		return BLK_BOUNCE_ANY;
1632 
1633 	host_dev = scsi_get_device(shost);
1634 	if (host_dev && host_dev->dma_mask)
1635 		bounce_limit = *host_dev->dma_mask;
1636 
1637 	return bounce_limit;
1638 }
1639 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1640 
1641 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1642 					 request_fn_proc *request_fn)
1643 {
1644 	struct request_queue *q;
1645 	struct device *dev = shost->dma_dev;
1646 
1647 	q = blk_init_queue(request_fn, NULL);
1648 	if (!q)
1649 		return NULL;
1650 
1651 	/*
1652 	 * this limit is imposed by hardware restrictions
1653 	 */
1654 	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1655 					SCSI_MAX_SG_CHAIN_SEGMENTS));
1656 
1657 	if (scsi_host_prot_dma(shost)) {
1658 		shost->sg_prot_tablesize =
1659 			min_not_zero(shost->sg_prot_tablesize,
1660 				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1661 		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1662 		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1663 	}
1664 
1665 	blk_queue_max_hw_sectors(q, shost->max_sectors);
1666 	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1667 	blk_queue_segment_boundary(q, shost->dma_boundary);
1668 	dma_set_seg_boundary(dev, shost->dma_boundary);
1669 
1670 	blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1671 
1672 	if (!shost->use_clustering)
1673 		q->limits.cluster = 0;
1674 
1675 	/*
1676 	 * set a reasonable default alignment on word boundaries: the
1677 	 * host and device may alter it using
1678 	 * blk_queue_update_dma_alignment() later.
1679 	 */
1680 	blk_queue_dma_alignment(q, 0x03);
1681 
1682 	return q;
1683 }
1684 EXPORT_SYMBOL(__scsi_alloc_queue);
1685 
1686 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1687 {
1688 	struct request_queue *q;
1689 
1690 	q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1691 	if (!q)
1692 		return NULL;
1693 
1694 	blk_queue_prep_rq(q, scsi_prep_fn);
1695 	blk_queue_softirq_done(q, scsi_softirq_done);
1696 	blk_queue_rq_timed_out(q, scsi_times_out);
1697 	blk_queue_lld_busy(q, scsi_lld_busy);
1698 	return q;
1699 }
1700 
1701 /*
1702  * Function:    scsi_block_requests()
1703  *
1704  * Purpose:     Utility function used by low-level drivers to prevent further
1705  *		commands from being queued to the device.
1706  *
1707  * Arguments:   shost       - Host in question
1708  *
1709  * Returns:     Nothing
1710  *
1711  * Lock status: No locks are assumed held.
1712  *
1713  * Notes:       There is no timer nor any other means by which the requests
1714  *		get unblocked other than the low-level driver calling
1715  *		scsi_unblock_requests().
1716  */
1717 void scsi_block_requests(struct Scsi_Host *shost)
1718 {
1719 	shost->host_self_blocked = 1;
1720 }
1721 EXPORT_SYMBOL(scsi_block_requests);
1722 
1723 /*
1724  * Function:    scsi_unblock_requests()
1725  *
1726  * Purpose:     Utility function used by low-level drivers to allow further
1727  *		commands from being queued to the device.
1728  *
1729  * Arguments:   shost       - Host in question
1730  *
1731  * Returns:     Nothing
1732  *
1733  * Lock status: No locks are assumed held.
1734  *
1735  * Notes:       There is no timer nor any other means by which the requests
1736  *		get unblocked other than the low-level driver calling
1737  *		scsi_unblock_requests().
1738  *
1739  *		This is done as an API function so that changes to the
1740  *		internals of the scsi mid-layer won't require wholesale
1741  *		changes to drivers that use this feature.
1742  */
1743 void scsi_unblock_requests(struct Scsi_Host *shost)
1744 {
1745 	shost->host_self_blocked = 0;
1746 	scsi_run_host_queues(shost);
1747 }
1748 EXPORT_SYMBOL(scsi_unblock_requests);
1749 
1750 int __init scsi_init_queue(void)
1751 {
1752 	int i;
1753 
1754 	scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1755 					   sizeof(struct scsi_data_buffer),
1756 					   0, 0, NULL);
1757 	if (!scsi_sdb_cache) {
1758 		printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1759 		return -ENOMEM;
1760 	}
1761 
1762 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1763 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1764 		int size = sgp->size * sizeof(struct scatterlist);
1765 
1766 		sgp->slab = kmem_cache_create(sgp->name, size, 0,
1767 				SLAB_HWCACHE_ALIGN, NULL);
1768 		if (!sgp->slab) {
1769 			printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1770 					sgp->name);
1771 			goto cleanup_sdb;
1772 		}
1773 
1774 		sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1775 						     sgp->slab);
1776 		if (!sgp->pool) {
1777 			printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1778 					sgp->name);
1779 			goto cleanup_sdb;
1780 		}
1781 	}
1782 
1783 	return 0;
1784 
1785 cleanup_sdb:
1786 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1787 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1788 		if (sgp->pool)
1789 			mempool_destroy(sgp->pool);
1790 		if (sgp->slab)
1791 			kmem_cache_destroy(sgp->slab);
1792 	}
1793 	kmem_cache_destroy(scsi_sdb_cache);
1794 
1795 	return -ENOMEM;
1796 }
1797 
1798 void scsi_exit_queue(void)
1799 {
1800 	int i;
1801 
1802 	kmem_cache_destroy(scsi_sdb_cache);
1803 
1804 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1805 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1806 		mempool_destroy(sgp->pool);
1807 		kmem_cache_destroy(sgp->slab);
1808 	}
1809 }
1810 
1811 /**
1812  *	scsi_mode_select - issue a mode select
1813  *	@sdev:	SCSI device to be queried
1814  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
1815  *	@sp:	Save page bit (0 == don't save, 1 == save)
1816  *	@modepage: mode page being requested
1817  *	@buffer: request buffer (may not be smaller than eight bytes)
1818  *	@len:	length of request buffer.
1819  *	@timeout: command timeout
1820  *	@retries: number of retries before failing
1821  *	@data: returns a structure abstracting the mode header data
1822  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1823  *		must be SCSI_SENSE_BUFFERSIZE big.
1824  *
1825  *	Returns zero if successful; negative error number or scsi
1826  *	status on error
1827  *
1828  */
1829 int
1830 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1831 		 unsigned char *buffer, int len, int timeout, int retries,
1832 		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1833 {
1834 	unsigned char cmd[10];
1835 	unsigned char *real_buffer;
1836 	int ret;
1837 
1838 	memset(cmd, 0, sizeof(cmd));
1839 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1840 
1841 	if (sdev->use_10_for_ms) {
1842 		if (len > 65535)
1843 			return -EINVAL;
1844 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
1845 		if (!real_buffer)
1846 			return -ENOMEM;
1847 		memcpy(real_buffer + 8, buffer, len);
1848 		len += 8;
1849 		real_buffer[0] = 0;
1850 		real_buffer[1] = 0;
1851 		real_buffer[2] = data->medium_type;
1852 		real_buffer[3] = data->device_specific;
1853 		real_buffer[4] = data->longlba ? 0x01 : 0;
1854 		real_buffer[5] = 0;
1855 		real_buffer[6] = data->block_descriptor_length >> 8;
1856 		real_buffer[7] = data->block_descriptor_length;
1857 
1858 		cmd[0] = MODE_SELECT_10;
1859 		cmd[7] = len >> 8;
1860 		cmd[8] = len;
1861 	} else {
1862 		if (len > 255 || data->block_descriptor_length > 255 ||
1863 		    data->longlba)
1864 			return -EINVAL;
1865 
1866 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
1867 		if (!real_buffer)
1868 			return -ENOMEM;
1869 		memcpy(real_buffer + 4, buffer, len);
1870 		len += 4;
1871 		real_buffer[0] = 0;
1872 		real_buffer[1] = data->medium_type;
1873 		real_buffer[2] = data->device_specific;
1874 		real_buffer[3] = data->block_descriptor_length;
1875 
1876 
1877 		cmd[0] = MODE_SELECT;
1878 		cmd[4] = len;
1879 	}
1880 
1881 	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1882 			       sshdr, timeout, retries, NULL);
1883 	kfree(real_buffer);
1884 	return ret;
1885 }
1886 EXPORT_SYMBOL_GPL(scsi_mode_select);
1887 
1888 /**
1889  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1890  *	@sdev:	SCSI device to be queried
1891  *	@dbd:	set if mode sense will allow block descriptors to be returned
1892  *	@modepage: mode page being requested
1893  *	@buffer: request buffer (may not be smaller than eight bytes)
1894  *	@len:	length of request buffer.
1895  *	@timeout: command timeout
1896  *	@retries: number of retries before failing
1897  *	@data: returns a structure abstracting the mode header data
1898  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1899  *		must be SCSI_SENSE_BUFFERSIZE big.
1900  *
1901  *	Returns zero if unsuccessful, or the header offset (either 4
1902  *	or 8 depending on whether a six or ten byte command was
1903  *	issued) if successful.
1904  */
1905 int
1906 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1907 		  unsigned char *buffer, int len, int timeout, int retries,
1908 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1909 {
1910 	unsigned char cmd[12];
1911 	int use_10_for_ms;
1912 	int header_length;
1913 	int result;
1914 	struct scsi_sense_hdr my_sshdr;
1915 
1916 	memset(data, 0, sizeof(*data));
1917 	memset(&cmd[0], 0, 12);
1918 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
1919 	cmd[2] = modepage;
1920 
1921 	/* caller might not be interested in sense, but we need it */
1922 	if (!sshdr)
1923 		sshdr = &my_sshdr;
1924 
1925  retry:
1926 	use_10_for_ms = sdev->use_10_for_ms;
1927 
1928 	if (use_10_for_ms) {
1929 		if (len < 8)
1930 			len = 8;
1931 
1932 		cmd[0] = MODE_SENSE_10;
1933 		cmd[8] = len;
1934 		header_length = 8;
1935 	} else {
1936 		if (len < 4)
1937 			len = 4;
1938 
1939 		cmd[0] = MODE_SENSE;
1940 		cmd[4] = len;
1941 		header_length = 4;
1942 	}
1943 
1944 	memset(buffer, 0, len);
1945 
1946 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1947 				  sshdr, timeout, retries, NULL);
1948 
1949 	/* This code looks awful: what it's doing is making sure an
1950 	 * ILLEGAL REQUEST sense return identifies the actual command
1951 	 * byte as the problem.  MODE_SENSE commands can return
1952 	 * ILLEGAL REQUEST if the code page isn't supported */
1953 
1954 	if (use_10_for_ms && !scsi_status_is_good(result) &&
1955 	    (driver_byte(result) & DRIVER_SENSE)) {
1956 		if (scsi_sense_valid(sshdr)) {
1957 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1958 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1959 				/*
1960 				 * Invalid command operation code
1961 				 */
1962 				sdev->use_10_for_ms = 0;
1963 				goto retry;
1964 			}
1965 		}
1966 	}
1967 
1968 	if(scsi_status_is_good(result)) {
1969 		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1970 			     (modepage == 6 || modepage == 8))) {
1971 			/* Initio breakage? */
1972 			header_length = 0;
1973 			data->length = 13;
1974 			data->medium_type = 0;
1975 			data->device_specific = 0;
1976 			data->longlba = 0;
1977 			data->block_descriptor_length = 0;
1978 		} else if(use_10_for_ms) {
1979 			data->length = buffer[0]*256 + buffer[1] + 2;
1980 			data->medium_type = buffer[2];
1981 			data->device_specific = buffer[3];
1982 			data->longlba = buffer[4] & 0x01;
1983 			data->block_descriptor_length = buffer[6]*256
1984 				+ buffer[7];
1985 		} else {
1986 			data->length = buffer[0] + 1;
1987 			data->medium_type = buffer[1];
1988 			data->device_specific = buffer[2];
1989 			data->block_descriptor_length = buffer[3];
1990 		}
1991 		data->header_length = header_length;
1992 	}
1993 
1994 	return result;
1995 }
1996 EXPORT_SYMBOL(scsi_mode_sense);
1997 
1998 /**
1999  *	scsi_test_unit_ready - test if unit is ready
2000  *	@sdev:	scsi device to change the state of.
2001  *	@timeout: command timeout
2002  *	@retries: number of retries before failing
2003  *	@sshdr_external: Optional pointer to struct scsi_sense_hdr for
2004  *		returning sense. Make sure that this is cleared before passing
2005  *		in.
2006  *
2007  *	Returns zero if unsuccessful or an error if TUR failed.  For
2008  *	removable media, UNIT_ATTENTION sets ->changed flag.
2009  **/
2010 int
2011 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2012 		     struct scsi_sense_hdr *sshdr_external)
2013 {
2014 	char cmd[] = {
2015 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2016 	};
2017 	struct scsi_sense_hdr *sshdr;
2018 	int result;
2019 
2020 	if (!sshdr_external)
2021 		sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2022 	else
2023 		sshdr = sshdr_external;
2024 
2025 	/* try to eat the UNIT_ATTENTION if there are enough retries */
2026 	do {
2027 		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2028 					  timeout, retries, NULL);
2029 		if (sdev->removable && scsi_sense_valid(sshdr) &&
2030 		    sshdr->sense_key == UNIT_ATTENTION)
2031 			sdev->changed = 1;
2032 	} while (scsi_sense_valid(sshdr) &&
2033 		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2034 
2035 	if (!sshdr_external)
2036 		kfree(sshdr);
2037 	return result;
2038 }
2039 EXPORT_SYMBOL(scsi_test_unit_ready);
2040 
2041 /**
2042  *	scsi_device_set_state - Take the given device through the device state model.
2043  *	@sdev:	scsi device to change the state of.
2044  *	@state:	state to change to.
2045  *
2046  *	Returns zero if unsuccessful or an error if the requested
2047  *	transition is illegal.
2048  */
2049 int
2050 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2051 {
2052 	enum scsi_device_state oldstate = sdev->sdev_state;
2053 
2054 	if (state == oldstate)
2055 		return 0;
2056 
2057 	switch (state) {
2058 	case SDEV_CREATED:
2059 		switch (oldstate) {
2060 		case SDEV_CREATED_BLOCK:
2061 			break;
2062 		default:
2063 			goto illegal;
2064 		}
2065 		break;
2066 
2067 	case SDEV_RUNNING:
2068 		switch (oldstate) {
2069 		case SDEV_CREATED:
2070 		case SDEV_OFFLINE:
2071 		case SDEV_TRANSPORT_OFFLINE:
2072 		case SDEV_QUIESCE:
2073 		case SDEV_BLOCK:
2074 			break;
2075 		default:
2076 			goto illegal;
2077 		}
2078 		break;
2079 
2080 	case SDEV_QUIESCE:
2081 		switch (oldstate) {
2082 		case SDEV_RUNNING:
2083 		case SDEV_OFFLINE:
2084 		case SDEV_TRANSPORT_OFFLINE:
2085 			break;
2086 		default:
2087 			goto illegal;
2088 		}
2089 		break;
2090 
2091 	case SDEV_OFFLINE:
2092 	case SDEV_TRANSPORT_OFFLINE:
2093 		switch (oldstate) {
2094 		case SDEV_CREATED:
2095 		case SDEV_RUNNING:
2096 		case SDEV_QUIESCE:
2097 		case SDEV_BLOCK:
2098 			break;
2099 		default:
2100 			goto illegal;
2101 		}
2102 		break;
2103 
2104 	case SDEV_BLOCK:
2105 		switch (oldstate) {
2106 		case SDEV_RUNNING:
2107 		case SDEV_CREATED_BLOCK:
2108 			break;
2109 		default:
2110 			goto illegal;
2111 		}
2112 		break;
2113 
2114 	case SDEV_CREATED_BLOCK:
2115 		switch (oldstate) {
2116 		case SDEV_CREATED:
2117 			break;
2118 		default:
2119 			goto illegal;
2120 		}
2121 		break;
2122 
2123 	case SDEV_CANCEL:
2124 		switch (oldstate) {
2125 		case SDEV_CREATED:
2126 		case SDEV_RUNNING:
2127 		case SDEV_QUIESCE:
2128 		case SDEV_OFFLINE:
2129 		case SDEV_TRANSPORT_OFFLINE:
2130 		case SDEV_BLOCK:
2131 			break;
2132 		default:
2133 			goto illegal;
2134 		}
2135 		break;
2136 
2137 	case SDEV_DEL:
2138 		switch (oldstate) {
2139 		case SDEV_CREATED:
2140 		case SDEV_RUNNING:
2141 		case SDEV_OFFLINE:
2142 		case SDEV_TRANSPORT_OFFLINE:
2143 		case SDEV_CANCEL:
2144 			break;
2145 		default:
2146 			goto illegal;
2147 		}
2148 		break;
2149 
2150 	}
2151 	sdev->sdev_state = state;
2152 	return 0;
2153 
2154  illegal:
2155 	SCSI_LOG_ERROR_RECOVERY(1,
2156 				sdev_printk(KERN_ERR, sdev,
2157 					    "Illegal state transition %s->%s\n",
2158 					    scsi_device_state_name(oldstate),
2159 					    scsi_device_state_name(state))
2160 				);
2161 	return -EINVAL;
2162 }
2163 EXPORT_SYMBOL(scsi_device_set_state);
2164 
2165 /**
2166  * 	sdev_evt_emit - emit a single SCSI device uevent
2167  *	@sdev: associated SCSI device
2168  *	@evt: event to emit
2169  *
2170  *	Send a single uevent (scsi_event) to the associated scsi_device.
2171  */
2172 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2173 {
2174 	int idx = 0;
2175 	char *envp[3];
2176 
2177 	switch (evt->evt_type) {
2178 	case SDEV_EVT_MEDIA_CHANGE:
2179 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2180 		break;
2181 
2182 	default:
2183 		/* do nothing */
2184 		break;
2185 	}
2186 
2187 	envp[idx++] = NULL;
2188 
2189 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2190 }
2191 
2192 /**
2193  * 	sdev_evt_thread - send a uevent for each scsi event
2194  *	@work: work struct for scsi_device
2195  *
2196  *	Dispatch queued events to their associated scsi_device kobjects
2197  *	as uevents.
2198  */
2199 void scsi_evt_thread(struct work_struct *work)
2200 {
2201 	struct scsi_device *sdev;
2202 	LIST_HEAD(event_list);
2203 
2204 	sdev = container_of(work, struct scsi_device, event_work);
2205 
2206 	while (1) {
2207 		struct scsi_event *evt;
2208 		struct list_head *this, *tmp;
2209 		unsigned long flags;
2210 
2211 		spin_lock_irqsave(&sdev->list_lock, flags);
2212 		list_splice_init(&sdev->event_list, &event_list);
2213 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2214 
2215 		if (list_empty(&event_list))
2216 			break;
2217 
2218 		list_for_each_safe(this, tmp, &event_list) {
2219 			evt = list_entry(this, struct scsi_event, node);
2220 			list_del(&evt->node);
2221 			scsi_evt_emit(sdev, evt);
2222 			kfree(evt);
2223 		}
2224 	}
2225 }
2226 
2227 /**
2228  * 	sdev_evt_send - send asserted event to uevent thread
2229  *	@sdev: scsi_device event occurred on
2230  *	@evt: event to send
2231  *
2232  *	Assert scsi device event asynchronously.
2233  */
2234 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2235 {
2236 	unsigned long flags;
2237 
2238 #if 0
2239 	/* FIXME: currently this check eliminates all media change events
2240 	 * for polled devices.  Need to update to discriminate between AN
2241 	 * and polled events */
2242 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2243 		kfree(evt);
2244 		return;
2245 	}
2246 #endif
2247 
2248 	spin_lock_irqsave(&sdev->list_lock, flags);
2249 	list_add_tail(&evt->node, &sdev->event_list);
2250 	schedule_work(&sdev->event_work);
2251 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2252 }
2253 EXPORT_SYMBOL_GPL(sdev_evt_send);
2254 
2255 /**
2256  * 	sdev_evt_alloc - allocate a new scsi event
2257  *	@evt_type: type of event to allocate
2258  *	@gfpflags: GFP flags for allocation
2259  *
2260  *	Allocates and returns a new scsi_event.
2261  */
2262 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2263 				  gfp_t gfpflags)
2264 {
2265 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2266 	if (!evt)
2267 		return NULL;
2268 
2269 	evt->evt_type = evt_type;
2270 	INIT_LIST_HEAD(&evt->node);
2271 
2272 	/* evt_type-specific initialization, if any */
2273 	switch (evt_type) {
2274 	case SDEV_EVT_MEDIA_CHANGE:
2275 	default:
2276 		/* do nothing */
2277 		break;
2278 	}
2279 
2280 	return evt;
2281 }
2282 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2283 
2284 /**
2285  * 	sdev_evt_send_simple - send asserted event to uevent thread
2286  *	@sdev: scsi_device event occurred on
2287  *	@evt_type: type of event to send
2288  *	@gfpflags: GFP flags for allocation
2289  *
2290  *	Assert scsi device event asynchronously, given an event type.
2291  */
2292 void sdev_evt_send_simple(struct scsi_device *sdev,
2293 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2294 {
2295 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2296 	if (!evt) {
2297 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2298 			    evt_type);
2299 		return;
2300 	}
2301 
2302 	sdev_evt_send(sdev, evt);
2303 }
2304 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2305 
2306 /**
2307  *	scsi_device_quiesce - Block user issued commands.
2308  *	@sdev:	scsi device to quiesce.
2309  *
2310  *	This works by trying to transition to the SDEV_QUIESCE state
2311  *	(which must be a legal transition).  When the device is in this
2312  *	state, only special requests will be accepted, all others will
2313  *	be deferred.  Since special requests may also be requeued requests,
2314  *	a successful return doesn't guarantee the device will be
2315  *	totally quiescent.
2316  *
2317  *	Must be called with user context, may sleep.
2318  *
2319  *	Returns zero if unsuccessful or an error if not.
2320  */
2321 int
2322 scsi_device_quiesce(struct scsi_device *sdev)
2323 {
2324 	int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2325 	if (err)
2326 		return err;
2327 
2328 	scsi_run_queue(sdev->request_queue);
2329 	while (sdev->device_busy) {
2330 		msleep_interruptible(200);
2331 		scsi_run_queue(sdev->request_queue);
2332 	}
2333 	return 0;
2334 }
2335 EXPORT_SYMBOL(scsi_device_quiesce);
2336 
2337 /**
2338  *	scsi_device_resume - Restart user issued commands to a quiesced device.
2339  *	@sdev:	scsi device to resume.
2340  *
2341  *	Moves the device from quiesced back to running and restarts the
2342  *	queues.
2343  *
2344  *	Must be called with user context, may sleep.
2345  */
2346 void scsi_device_resume(struct scsi_device *sdev)
2347 {
2348 	/* check if the device state was mutated prior to resume, and if
2349 	 * so assume the state is being managed elsewhere (for example
2350 	 * device deleted during suspend)
2351 	 */
2352 	if (sdev->sdev_state != SDEV_QUIESCE ||
2353 	    scsi_device_set_state(sdev, SDEV_RUNNING))
2354 		return;
2355 	scsi_run_queue(sdev->request_queue);
2356 }
2357 EXPORT_SYMBOL(scsi_device_resume);
2358 
2359 static void
2360 device_quiesce_fn(struct scsi_device *sdev, void *data)
2361 {
2362 	scsi_device_quiesce(sdev);
2363 }
2364 
2365 void
2366 scsi_target_quiesce(struct scsi_target *starget)
2367 {
2368 	starget_for_each_device(starget, NULL, device_quiesce_fn);
2369 }
2370 EXPORT_SYMBOL(scsi_target_quiesce);
2371 
2372 static void
2373 device_resume_fn(struct scsi_device *sdev, void *data)
2374 {
2375 	scsi_device_resume(sdev);
2376 }
2377 
2378 void
2379 scsi_target_resume(struct scsi_target *starget)
2380 {
2381 	starget_for_each_device(starget, NULL, device_resume_fn);
2382 }
2383 EXPORT_SYMBOL(scsi_target_resume);
2384 
2385 /**
2386  * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2387  * @sdev:	device to block
2388  *
2389  * Block request made by scsi lld's to temporarily stop all
2390  * scsi commands on the specified device.  Called from interrupt
2391  * or normal process context.
2392  *
2393  * Returns zero if successful or error if not
2394  *
2395  * Notes:
2396  *	This routine transitions the device to the SDEV_BLOCK state
2397  *	(which must be a legal transition).  When the device is in this
2398  *	state, all commands are deferred until the scsi lld reenables
2399  *	the device with scsi_device_unblock or device_block_tmo fires.
2400  */
2401 int
2402 scsi_internal_device_block(struct scsi_device *sdev)
2403 {
2404 	struct request_queue *q = sdev->request_queue;
2405 	unsigned long flags;
2406 	int err = 0;
2407 
2408 	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2409 	if (err) {
2410 		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2411 
2412 		if (err)
2413 			return err;
2414 	}
2415 
2416 	/*
2417 	 * The device has transitioned to SDEV_BLOCK.  Stop the
2418 	 * block layer from calling the midlayer with this device's
2419 	 * request queue.
2420 	 */
2421 	spin_lock_irqsave(q->queue_lock, flags);
2422 	blk_stop_queue(q);
2423 	spin_unlock_irqrestore(q->queue_lock, flags);
2424 
2425 	return 0;
2426 }
2427 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2428 
2429 /**
2430  * scsi_internal_device_unblock - resume a device after a block request
2431  * @sdev:	device to resume
2432  * @new_state:	state to set devices to after unblocking
2433  *
2434  * Called by scsi lld's or the midlayer to restart the device queue
2435  * for the previously suspended scsi device.  Called from interrupt or
2436  * normal process context.
2437  *
2438  * Returns zero if successful or error if not.
2439  *
2440  * Notes:
2441  *	This routine transitions the device to the SDEV_RUNNING state
2442  *	or to one of the offline states (which must be a legal transition)
2443  *	allowing the midlayer to goose the queue for this device.
2444  */
2445 int
2446 scsi_internal_device_unblock(struct scsi_device *sdev,
2447 			     enum scsi_device_state new_state)
2448 {
2449 	struct request_queue *q = sdev->request_queue;
2450 	unsigned long flags;
2451 
2452 	/*
2453 	 * Try to transition the scsi device to SDEV_RUNNING or one of the
2454 	 * offlined states and goose the device queue if successful.
2455 	 */
2456 	if (sdev->sdev_state == SDEV_BLOCK)
2457 		sdev->sdev_state = new_state;
2458 	else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
2459 		if (new_state == SDEV_TRANSPORT_OFFLINE ||
2460 		    new_state == SDEV_OFFLINE)
2461 			sdev->sdev_state = new_state;
2462 		else
2463 			sdev->sdev_state = SDEV_CREATED;
2464 	} else if (sdev->sdev_state != SDEV_CANCEL &&
2465 		 sdev->sdev_state != SDEV_OFFLINE)
2466 		return -EINVAL;
2467 
2468 	spin_lock_irqsave(q->queue_lock, flags);
2469 	blk_start_queue(q);
2470 	spin_unlock_irqrestore(q->queue_lock, flags);
2471 
2472 	return 0;
2473 }
2474 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2475 
2476 static void
2477 device_block(struct scsi_device *sdev, void *data)
2478 {
2479 	scsi_internal_device_block(sdev);
2480 }
2481 
2482 static int
2483 target_block(struct device *dev, void *data)
2484 {
2485 	if (scsi_is_target_device(dev))
2486 		starget_for_each_device(to_scsi_target(dev), NULL,
2487 					device_block);
2488 	return 0;
2489 }
2490 
2491 void
2492 scsi_target_block(struct device *dev)
2493 {
2494 	if (scsi_is_target_device(dev))
2495 		starget_for_each_device(to_scsi_target(dev), NULL,
2496 					device_block);
2497 	else
2498 		device_for_each_child(dev, NULL, target_block);
2499 }
2500 EXPORT_SYMBOL_GPL(scsi_target_block);
2501 
2502 static void
2503 device_unblock(struct scsi_device *sdev, void *data)
2504 {
2505 	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2506 }
2507 
2508 static int
2509 target_unblock(struct device *dev, void *data)
2510 {
2511 	if (scsi_is_target_device(dev))
2512 		starget_for_each_device(to_scsi_target(dev), data,
2513 					device_unblock);
2514 	return 0;
2515 }
2516 
2517 void
2518 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2519 {
2520 	if (scsi_is_target_device(dev))
2521 		starget_for_each_device(to_scsi_target(dev), &new_state,
2522 					device_unblock);
2523 	else
2524 		device_for_each_child(dev, &new_state, target_unblock);
2525 }
2526 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2527 
2528 /**
2529  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2530  * @sgl:	scatter-gather list
2531  * @sg_count:	number of segments in sg
2532  * @offset:	offset in bytes into sg, on return offset into the mapped area
2533  * @len:	bytes to map, on return number of bytes mapped
2534  *
2535  * Returns virtual address of the start of the mapped page
2536  */
2537 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2538 			  size_t *offset, size_t *len)
2539 {
2540 	int i;
2541 	size_t sg_len = 0, len_complete = 0;
2542 	struct scatterlist *sg;
2543 	struct page *page;
2544 
2545 	WARN_ON(!irqs_disabled());
2546 
2547 	for_each_sg(sgl, sg, sg_count, i) {
2548 		len_complete = sg_len; /* Complete sg-entries */
2549 		sg_len += sg->length;
2550 		if (sg_len > *offset)
2551 			break;
2552 	}
2553 
2554 	if (unlikely(i == sg_count)) {
2555 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2556 			"elements %d\n",
2557 		       __func__, sg_len, *offset, sg_count);
2558 		WARN_ON(1);
2559 		return NULL;
2560 	}
2561 
2562 	/* Offset starting from the beginning of first page in this sg-entry */
2563 	*offset = *offset - len_complete + sg->offset;
2564 
2565 	/* Assumption: contiguous pages can be accessed as "page + i" */
2566 	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2567 	*offset &= ~PAGE_MASK;
2568 
2569 	/* Bytes in this sg-entry from *offset to the end of the page */
2570 	sg_len = PAGE_SIZE - *offset;
2571 	if (*len > sg_len)
2572 		*len = sg_len;
2573 
2574 	return kmap_atomic(page);
2575 }
2576 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2577 
2578 /**
2579  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2580  * @virt:	virtual address to be unmapped
2581  */
2582 void scsi_kunmap_atomic_sg(void *virt)
2583 {
2584 	kunmap_atomic(virt);
2585 }
2586 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2587