1 /* 2 * scsi_lib.c Copyright (C) 1999 Eric Youngdale 3 * 4 * SCSI queueing library. 5 * Initial versions: Eric Youngdale (eric@andante.org). 6 * Based upon conversations with large numbers 7 * of people at Linux Expo. 8 */ 9 10 #include <linux/bio.h> 11 #include <linux/bitops.h> 12 #include <linux/blkdev.h> 13 #include <linux/completion.h> 14 #include <linux/kernel.h> 15 #include <linux/export.h> 16 #include <linux/mempool.h> 17 #include <linux/slab.h> 18 #include <linux/init.h> 19 #include <linux/pci.h> 20 #include <linux/delay.h> 21 #include <linux/hardirq.h> 22 #include <linux/scatterlist.h> 23 24 #include <scsi/scsi.h> 25 #include <scsi/scsi_cmnd.h> 26 #include <scsi/scsi_dbg.h> 27 #include <scsi/scsi_device.h> 28 #include <scsi/scsi_driver.h> 29 #include <scsi/scsi_eh.h> 30 #include <scsi/scsi_host.h> 31 32 #include "scsi_priv.h" 33 #include "scsi_logging.h" 34 35 36 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools) 37 #define SG_MEMPOOL_SIZE 2 38 39 struct scsi_host_sg_pool { 40 size_t size; 41 char *name; 42 struct kmem_cache *slab; 43 mempool_t *pool; 44 }; 45 46 #define SP(x) { x, "sgpool-" __stringify(x) } 47 #if (SCSI_MAX_SG_SEGMENTS < 32) 48 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater) 49 #endif 50 static struct scsi_host_sg_pool scsi_sg_pools[] = { 51 SP(8), 52 SP(16), 53 #if (SCSI_MAX_SG_SEGMENTS > 32) 54 SP(32), 55 #if (SCSI_MAX_SG_SEGMENTS > 64) 56 SP(64), 57 #if (SCSI_MAX_SG_SEGMENTS > 128) 58 SP(128), 59 #if (SCSI_MAX_SG_SEGMENTS > 256) 60 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX) 61 #endif 62 #endif 63 #endif 64 #endif 65 SP(SCSI_MAX_SG_SEGMENTS) 66 }; 67 #undef SP 68 69 struct kmem_cache *scsi_sdb_cache; 70 71 /* 72 * When to reinvoke queueing after a resource shortage. It's 3 msecs to 73 * not change behaviour from the previous unplug mechanism, experimentation 74 * may prove this needs changing. 75 */ 76 #define SCSI_QUEUE_DELAY 3 77 78 /* 79 * Function: scsi_unprep_request() 80 * 81 * Purpose: Remove all preparation done for a request, including its 82 * associated scsi_cmnd, so that it can be requeued. 83 * 84 * Arguments: req - request to unprepare 85 * 86 * Lock status: Assumed that no locks are held upon entry. 87 * 88 * Returns: Nothing. 89 */ 90 static void scsi_unprep_request(struct request *req) 91 { 92 struct scsi_cmnd *cmd = req->special; 93 94 blk_unprep_request(req); 95 req->special = NULL; 96 97 scsi_put_command(cmd); 98 } 99 100 /** 101 * __scsi_queue_insert - private queue insertion 102 * @cmd: The SCSI command being requeued 103 * @reason: The reason for the requeue 104 * @unbusy: Whether the queue should be unbusied 105 * 106 * This is a private queue insertion. The public interface 107 * scsi_queue_insert() always assumes the queue should be unbusied 108 * because it's always called before the completion. This function is 109 * for a requeue after completion, which should only occur in this 110 * file. 111 */ 112 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy) 113 { 114 struct Scsi_Host *host = cmd->device->host; 115 struct scsi_device *device = cmd->device; 116 struct scsi_target *starget = scsi_target(device); 117 struct request_queue *q = device->request_queue; 118 unsigned long flags; 119 120 SCSI_LOG_MLQUEUE(1, 121 printk("Inserting command %p into mlqueue\n", cmd)); 122 123 /* 124 * Set the appropriate busy bit for the device/host. 125 * 126 * If the host/device isn't busy, assume that something actually 127 * completed, and that we should be able to queue a command now. 128 * 129 * Note that the prior mid-layer assumption that any host could 130 * always queue at least one command is now broken. The mid-layer 131 * will implement a user specifiable stall (see 132 * scsi_host.max_host_blocked and scsi_device.max_device_blocked) 133 * if a command is requeued with no other commands outstanding 134 * either for the device or for the host. 135 */ 136 switch (reason) { 137 case SCSI_MLQUEUE_HOST_BUSY: 138 host->host_blocked = host->max_host_blocked; 139 break; 140 case SCSI_MLQUEUE_DEVICE_BUSY: 141 case SCSI_MLQUEUE_EH_RETRY: 142 device->device_blocked = device->max_device_blocked; 143 break; 144 case SCSI_MLQUEUE_TARGET_BUSY: 145 starget->target_blocked = starget->max_target_blocked; 146 break; 147 } 148 149 /* 150 * Decrement the counters, since these commands are no longer 151 * active on the host/device. 152 */ 153 if (unbusy) 154 scsi_device_unbusy(device); 155 156 /* 157 * Requeue this command. It will go before all other commands 158 * that are already in the queue. Schedule requeue work under 159 * lock such that the kblockd_schedule_work() call happens 160 * before blk_cleanup_queue() finishes. 161 */ 162 spin_lock_irqsave(q->queue_lock, flags); 163 blk_requeue_request(q, cmd->request); 164 kblockd_schedule_work(q, &device->requeue_work); 165 spin_unlock_irqrestore(q->queue_lock, flags); 166 } 167 168 /* 169 * Function: scsi_queue_insert() 170 * 171 * Purpose: Insert a command in the midlevel queue. 172 * 173 * Arguments: cmd - command that we are adding to queue. 174 * reason - why we are inserting command to queue. 175 * 176 * Lock status: Assumed that lock is not held upon entry. 177 * 178 * Returns: Nothing. 179 * 180 * Notes: We do this for one of two cases. Either the host is busy 181 * and it cannot accept any more commands for the time being, 182 * or the device returned QUEUE_FULL and can accept no more 183 * commands. 184 * Notes: This could be called either from an interrupt context or a 185 * normal process context. 186 */ 187 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason) 188 { 189 __scsi_queue_insert(cmd, reason, 1); 190 } 191 /** 192 * scsi_execute - insert request and wait for the result 193 * @sdev: scsi device 194 * @cmd: scsi command 195 * @data_direction: data direction 196 * @buffer: data buffer 197 * @bufflen: len of buffer 198 * @sense: optional sense buffer 199 * @timeout: request timeout in seconds 200 * @retries: number of times to retry request 201 * @flags: or into request flags; 202 * @resid: optional residual length 203 * 204 * returns the req->errors value which is the scsi_cmnd result 205 * field. 206 */ 207 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd, 208 int data_direction, void *buffer, unsigned bufflen, 209 unsigned char *sense, int timeout, int retries, int flags, 210 int *resid) 211 { 212 struct request *req; 213 int write = (data_direction == DMA_TO_DEVICE); 214 int ret = DRIVER_ERROR << 24; 215 216 req = blk_get_request(sdev->request_queue, write, __GFP_WAIT); 217 if (!req) 218 return ret; 219 220 if (bufflen && blk_rq_map_kern(sdev->request_queue, req, 221 buffer, bufflen, __GFP_WAIT)) 222 goto out; 223 224 req->cmd_len = COMMAND_SIZE(cmd[0]); 225 memcpy(req->cmd, cmd, req->cmd_len); 226 req->sense = sense; 227 req->sense_len = 0; 228 req->retries = retries; 229 req->timeout = timeout; 230 req->cmd_type = REQ_TYPE_BLOCK_PC; 231 req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT; 232 233 /* 234 * head injection *required* here otherwise quiesce won't work 235 */ 236 blk_execute_rq(req->q, NULL, req, 1); 237 238 /* 239 * Some devices (USB mass-storage in particular) may transfer 240 * garbage data together with a residue indicating that the data 241 * is invalid. Prevent the garbage from being misinterpreted 242 * and prevent security leaks by zeroing out the excess data. 243 */ 244 if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen)) 245 memset(buffer + (bufflen - req->resid_len), 0, req->resid_len); 246 247 if (resid) 248 *resid = req->resid_len; 249 ret = req->errors; 250 out: 251 blk_put_request(req); 252 253 return ret; 254 } 255 EXPORT_SYMBOL(scsi_execute); 256 257 258 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd, 259 int data_direction, void *buffer, unsigned bufflen, 260 struct scsi_sense_hdr *sshdr, int timeout, int retries, 261 int *resid) 262 { 263 char *sense = NULL; 264 int result; 265 266 if (sshdr) { 267 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO); 268 if (!sense) 269 return DRIVER_ERROR << 24; 270 } 271 result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen, 272 sense, timeout, retries, 0, resid); 273 if (sshdr) 274 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr); 275 276 kfree(sense); 277 return result; 278 } 279 EXPORT_SYMBOL(scsi_execute_req); 280 281 /* 282 * Function: scsi_init_cmd_errh() 283 * 284 * Purpose: Initialize cmd fields related to error handling. 285 * 286 * Arguments: cmd - command that is ready to be queued. 287 * 288 * Notes: This function has the job of initializing a number of 289 * fields related to error handling. Typically this will 290 * be called once for each command, as required. 291 */ 292 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd) 293 { 294 cmd->serial_number = 0; 295 scsi_set_resid(cmd, 0); 296 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 297 if (cmd->cmd_len == 0) 298 cmd->cmd_len = scsi_command_size(cmd->cmnd); 299 } 300 301 void scsi_device_unbusy(struct scsi_device *sdev) 302 { 303 struct Scsi_Host *shost = sdev->host; 304 struct scsi_target *starget = scsi_target(sdev); 305 unsigned long flags; 306 307 spin_lock_irqsave(shost->host_lock, flags); 308 shost->host_busy--; 309 starget->target_busy--; 310 if (unlikely(scsi_host_in_recovery(shost) && 311 (shost->host_failed || shost->host_eh_scheduled))) 312 scsi_eh_wakeup(shost); 313 spin_unlock(shost->host_lock); 314 spin_lock(sdev->request_queue->queue_lock); 315 sdev->device_busy--; 316 spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags); 317 } 318 319 /* 320 * Called for single_lun devices on IO completion. Clear starget_sdev_user, 321 * and call blk_run_queue for all the scsi_devices on the target - 322 * including current_sdev first. 323 * 324 * Called with *no* scsi locks held. 325 */ 326 static void scsi_single_lun_run(struct scsi_device *current_sdev) 327 { 328 struct Scsi_Host *shost = current_sdev->host; 329 struct scsi_device *sdev, *tmp; 330 struct scsi_target *starget = scsi_target(current_sdev); 331 unsigned long flags; 332 333 spin_lock_irqsave(shost->host_lock, flags); 334 starget->starget_sdev_user = NULL; 335 spin_unlock_irqrestore(shost->host_lock, flags); 336 337 /* 338 * Call blk_run_queue for all LUNs on the target, starting with 339 * current_sdev. We race with others (to set starget_sdev_user), 340 * but in most cases, we will be first. Ideally, each LU on the 341 * target would get some limited time or requests on the target. 342 */ 343 blk_run_queue(current_sdev->request_queue); 344 345 spin_lock_irqsave(shost->host_lock, flags); 346 if (starget->starget_sdev_user) 347 goto out; 348 list_for_each_entry_safe(sdev, tmp, &starget->devices, 349 same_target_siblings) { 350 if (sdev == current_sdev) 351 continue; 352 if (scsi_device_get(sdev)) 353 continue; 354 355 spin_unlock_irqrestore(shost->host_lock, flags); 356 blk_run_queue(sdev->request_queue); 357 spin_lock_irqsave(shost->host_lock, flags); 358 359 scsi_device_put(sdev); 360 } 361 out: 362 spin_unlock_irqrestore(shost->host_lock, flags); 363 } 364 365 static inline int scsi_device_is_busy(struct scsi_device *sdev) 366 { 367 if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked) 368 return 1; 369 370 return 0; 371 } 372 373 static inline int scsi_target_is_busy(struct scsi_target *starget) 374 { 375 return ((starget->can_queue > 0 && 376 starget->target_busy >= starget->can_queue) || 377 starget->target_blocked); 378 } 379 380 static inline int scsi_host_is_busy(struct Scsi_Host *shost) 381 { 382 if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) || 383 shost->host_blocked || shost->host_self_blocked) 384 return 1; 385 386 return 0; 387 } 388 389 /* 390 * Function: scsi_run_queue() 391 * 392 * Purpose: Select a proper request queue to serve next 393 * 394 * Arguments: q - last request's queue 395 * 396 * Returns: Nothing 397 * 398 * Notes: The previous command was completely finished, start 399 * a new one if possible. 400 */ 401 static void scsi_run_queue(struct request_queue *q) 402 { 403 struct scsi_device *sdev = q->queuedata; 404 struct Scsi_Host *shost; 405 LIST_HEAD(starved_list); 406 unsigned long flags; 407 408 shost = sdev->host; 409 if (scsi_target(sdev)->single_lun) 410 scsi_single_lun_run(sdev); 411 412 spin_lock_irqsave(shost->host_lock, flags); 413 list_splice_init(&shost->starved_list, &starved_list); 414 415 while (!list_empty(&starved_list)) { 416 /* 417 * As long as shost is accepting commands and we have 418 * starved queues, call blk_run_queue. scsi_request_fn 419 * drops the queue_lock and can add us back to the 420 * starved_list. 421 * 422 * host_lock protects the starved_list and starved_entry. 423 * scsi_request_fn must get the host_lock before checking 424 * or modifying starved_list or starved_entry. 425 */ 426 if (scsi_host_is_busy(shost)) 427 break; 428 429 sdev = list_entry(starved_list.next, 430 struct scsi_device, starved_entry); 431 list_del_init(&sdev->starved_entry); 432 if (scsi_target_is_busy(scsi_target(sdev))) { 433 list_move_tail(&sdev->starved_entry, 434 &shost->starved_list); 435 continue; 436 } 437 438 spin_unlock(shost->host_lock); 439 spin_lock(sdev->request_queue->queue_lock); 440 __blk_run_queue(sdev->request_queue); 441 spin_unlock(sdev->request_queue->queue_lock); 442 spin_lock(shost->host_lock); 443 } 444 /* put any unprocessed entries back */ 445 list_splice(&starved_list, &shost->starved_list); 446 spin_unlock_irqrestore(shost->host_lock, flags); 447 448 blk_run_queue(q); 449 } 450 451 void scsi_requeue_run_queue(struct work_struct *work) 452 { 453 struct scsi_device *sdev; 454 struct request_queue *q; 455 456 sdev = container_of(work, struct scsi_device, requeue_work); 457 q = sdev->request_queue; 458 scsi_run_queue(q); 459 } 460 461 /* 462 * Function: scsi_requeue_command() 463 * 464 * Purpose: Handle post-processing of completed commands. 465 * 466 * Arguments: q - queue to operate on 467 * cmd - command that may need to be requeued. 468 * 469 * Returns: Nothing 470 * 471 * Notes: After command completion, there may be blocks left 472 * over which weren't finished by the previous command 473 * this can be for a number of reasons - the main one is 474 * I/O errors in the middle of the request, in which case 475 * we need to request the blocks that come after the bad 476 * sector. 477 * Notes: Upon return, cmd is a stale pointer. 478 */ 479 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd) 480 { 481 struct scsi_device *sdev = cmd->device; 482 struct request *req = cmd->request; 483 unsigned long flags; 484 485 /* 486 * We need to hold a reference on the device to avoid the queue being 487 * killed after the unlock and before scsi_run_queue is invoked which 488 * may happen because scsi_unprep_request() puts the command which 489 * releases its reference on the device. 490 */ 491 get_device(&sdev->sdev_gendev); 492 493 spin_lock_irqsave(q->queue_lock, flags); 494 scsi_unprep_request(req); 495 blk_requeue_request(q, req); 496 spin_unlock_irqrestore(q->queue_lock, flags); 497 498 scsi_run_queue(q); 499 500 put_device(&sdev->sdev_gendev); 501 } 502 503 void scsi_next_command(struct scsi_cmnd *cmd) 504 { 505 struct scsi_device *sdev = cmd->device; 506 struct request_queue *q = sdev->request_queue; 507 508 /* need to hold a reference on the device before we let go of the cmd */ 509 get_device(&sdev->sdev_gendev); 510 511 scsi_put_command(cmd); 512 scsi_run_queue(q); 513 514 /* ok to remove device now */ 515 put_device(&sdev->sdev_gendev); 516 } 517 518 void scsi_run_host_queues(struct Scsi_Host *shost) 519 { 520 struct scsi_device *sdev; 521 522 shost_for_each_device(sdev, shost) 523 scsi_run_queue(sdev->request_queue); 524 } 525 526 static void __scsi_release_buffers(struct scsi_cmnd *, int); 527 528 /* 529 * Function: scsi_end_request() 530 * 531 * Purpose: Post-processing of completed commands (usually invoked at end 532 * of upper level post-processing and scsi_io_completion). 533 * 534 * Arguments: cmd - command that is complete. 535 * error - 0 if I/O indicates success, < 0 for I/O error. 536 * bytes - number of bytes of completed I/O 537 * requeue - indicates whether we should requeue leftovers. 538 * 539 * Lock status: Assumed that lock is not held upon entry. 540 * 541 * Returns: cmd if requeue required, NULL otherwise. 542 * 543 * Notes: This is called for block device requests in order to 544 * mark some number of sectors as complete. 545 * 546 * We are guaranteeing that the request queue will be goosed 547 * at some point during this call. 548 * Notes: If cmd was requeued, upon return it will be a stale pointer. 549 */ 550 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error, 551 int bytes, int requeue) 552 { 553 struct request_queue *q = cmd->device->request_queue; 554 struct request *req = cmd->request; 555 556 /* 557 * If there are blocks left over at the end, set up the command 558 * to queue the remainder of them. 559 */ 560 if (blk_end_request(req, error, bytes)) { 561 /* kill remainder if no retrys */ 562 if (error && scsi_noretry_cmd(cmd)) 563 blk_end_request_all(req, error); 564 else { 565 if (requeue) { 566 /* 567 * Bleah. Leftovers again. Stick the 568 * leftovers in the front of the 569 * queue, and goose the queue again. 570 */ 571 scsi_release_buffers(cmd); 572 scsi_requeue_command(q, cmd); 573 cmd = NULL; 574 } 575 return cmd; 576 } 577 } 578 579 /* 580 * This will goose the queue request function at the end, so we don't 581 * need to worry about launching another command. 582 */ 583 __scsi_release_buffers(cmd, 0); 584 scsi_next_command(cmd); 585 return NULL; 586 } 587 588 static inline unsigned int scsi_sgtable_index(unsigned short nents) 589 { 590 unsigned int index; 591 592 BUG_ON(nents > SCSI_MAX_SG_SEGMENTS); 593 594 if (nents <= 8) 595 index = 0; 596 else 597 index = get_count_order(nents) - 3; 598 599 return index; 600 } 601 602 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents) 603 { 604 struct scsi_host_sg_pool *sgp; 605 606 sgp = scsi_sg_pools + scsi_sgtable_index(nents); 607 mempool_free(sgl, sgp->pool); 608 } 609 610 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask) 611 { 612 struct scsi_host_sg_pool *sgp; 613 614 sgp = scsi_sg_pools + scsi_sgtable_index(nents); 615 return mempool_alloc(sgp->pool, gfp_mask); 616 } 617 618 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents, 619 gfp_t gfp_mask) 620 { 621 int ret; 622 623 BUG_ON(!nents); 624 625 ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS, 626 gfp_mask, scsi_sg_alloc); 627 if (unlikely(ret)) 628 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, 629 scsi_sg_free); 630 631 return ret; 632 } 633 634 static void scsi_free_sgtable(struct scsi_data_buffer *sdb) 635 { 636 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free); 637 } 638 639 static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check) 640 { 641 642 if (cmd->sdb.table.nents) 643 scsi_free_sgtable(&cmd->sdb); 644 645 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 646 647 if (do_bidi_check && scsi_bidi_cmnd(cmd)) { 648 struct scsi_data_buffer *bidi_sdb = 649 cmd->request->next_rq->special; 650 scsi_free_sgtable(bidi_sdb); 651 kmem_cache_free(scsi_sdb_cache, bidi_sdb); 652 cmd->request->next_rq->special = NULL; 653 } 654 655 if (scsi_prot_sg_count(cmd)) 656 scsi_free_sgtable(cmd->prot_sdb); 657 } 658 659 /* 660 * Function: scsi_release_buffers() 661 * 662 * Purpose: Completion processing for block device I/O requests. 663 * 664 * Arguments: cmd - command that we are bailing. 665 * 666 * Lock status: Assumed that no lock is held upon entry. 667 * 668 * Returns: Nothing 669 * 670 * Notes: In the event that an upper level driver rejects a 671 * command, we must release resources allocated during 672 * the __init_io() function. Primarily this would involve 673 * the scatter-gather table, and potentially any bounce 674 * buffers. 675 */ 676 void scsi_release_buffers(struct scsi_cmnd *cmd) 677 { 678 __scsi_release_buffers(cmd, 1); 679 } 680 EXPORT_SYMBOL(scsi_release_buffers); 681 682 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result) 683 { 684 int error = 0; 685 686 switch(host_byte(result)) { 687 case DID_TRANSPORT_FAILFAST: 688 error = -ENOLINK; 689 break; 690 case DID_TARGET_FAILURE: 691 set_host_byte(cmd, DID_OK); 692 error = -EREMOTEIO; 693 break; 694 case DID_NEXUS_FAILURE: 695 set_host_byte(cmd, DID_OK); 696 error = -EBADE; 697 break; 698 default: 699 error = -EIO; 700 break; 701 } 702 703 return error; 704 } 705 706 /* 707 * Function: scsi_io_completion() 708 * 709 * Purpose: Completion processing for block device I/O requests. 710 * 711 * Arguments: cmd - command that is finished. 712 * 713 * Lock status: Assumed that no lock is held upon entry. 714 * 715 * Returns: Nothing 716 * 717 * Notes: This function is matched in terms of capabilities to 718 * the function that created the scatter-gather list. 719 * In other words, if there are no bounce buffers 720 * (the normal case for most drivers), we don't need 721 * the logic to deal with cleaning up afterwards. 722 * 723 * We must call scsi_end_request(). This will finish off 724 * the specified number of sectors. If we are done, the 725 * command block will be released and the queue function 726 * will be goosed. If we are not done then we have to 727 * figure out what to do next: 728 * 729 * a) We can call scsi_requeue_command(). The request 730 * will be unprepared and put back on the queue. Then 731 * a new command will be created for it. This should 732 * be used if we made forward progress, or if we want 733 * to switch from READ(10) to READ(6) for example. 734 * 735 * b) We can call scsi_queue_insert(). The request will 736 * be put back on the queue and retried using the same 737 * command as before, possibly after a delay. 738 * 739 * c) We can call blk_end_request() with -EIO to fail 740 * the remainder of the request. 741 */ 742 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes) 743 { 744 int result = cmd->result; 745 struct request_queue *q = cmd->device->request_queue; 746 struct request *req = cmd->request; 747 int error = 0; 748 struct scsi_sense_hdr sshdr; 749 int sense_valid = 0; 750 int sense_deferred = 0; 751 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY, 752 ACTION_DELAYED_RETRY} action; 753 char *description = NULL; 754 755 if (result) { 756 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 757 if (sense_valid) 758 sense_deferred = scsi_sense_is_deferred(&sshdr); 759 } 760 761 if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */ 762 req->errors = result; 763 if (result) { 764 if (sense_valid && req->sense) { 765 /* 766 * SG_IO wants current and deferred errors 767 */ 768 int len = 8 + cmd->sense_buffer[7]; 769 770 if (len > SCSI_SENSE_BUFFERSIZE) 771 len = SCSI_SENSE_BUFFERSIZE; 772 memcpy(req->sense, cmd->sense_buffer, len); 773 req->sense_len = len; 774 } 775 if (!sense_deferred) 776 error = __scsi_error_from_host_byte(cmd, result); 777 } 778 779 req->resid_len = scsi_get_resid(cmd); 780 781 if (scsi_bidi_cmnd(cmd)) { 782 /* 783 * Bidi commands Must be complete as a whole, 784 * both sides at once. 785 */ 786 req->next_rq->resid_len = scsi_in(cmd)->resid; 787 788 scsi_release_buffers(cmd); 789 blk_end_request_all(req, 0); 790 791 scsi_next_command(cmd); 792 return; 793 } 794 } 795 796 /* no bidi support for !REQ_TYPE_BLOCK_PC yet */ 797 BUG_ON(blk_bidi_rq(req)); 798 799 /* 800 * Next deal with any sectors which we were able to correctly 801 * handle. 802 */ 803 SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, " 804 "%d bytes done.\n", 805 blk_rq_sectors(req), good_bytes)); 806 807 /* 808 * Recovered errors need reporting, but they're always treated 809 * as success, so fiddle the result code here. For BLOCK_PC 810 * we already took a copy of the original into rq->errors which 811 * is what gets returned to the user 812 */ 813 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) { 814 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip 815 * print since caller wants ATA registers. Only occurs on 816 * SCSI ATA PASS_THROUGH commands when CK_COND=1 817 */ 818 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d)) 819 ; 820 else if (!(req->cmd_flags & REQ_QUIET)) 821 scsi_print_sense("", cmd); 822 result = 0; 823 /* BLOCK_PC may have set error */ 824 error = 0; 825 } 826 827 /* 828 * A number of bytes were successfully read. If there 829 * are leftovers and there is some kind of error 830 * (result != 0), retry the rest. 831 */ 832 if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL) 833 return; 834 835 error = __scsi_error_from_host_byte(cmd, result); 836 837 if (host_byte(result) == DID_RESET) { 838 /* Third party bus reset or reset for error recovery 839 * reasons. Just retry the command and see what 840 * happens. 841 */ 842 action = ACTION_RETRY; 843 } else if (sense_valid && !sense_deferred) { 844 switch (sshdr.sense_key) { 845 case UNIT_ATTENTION: 846 if (cmd->device->removable) { 847 /* Detected disc change. Set a bit 848 * and quietly refuse further access. 849 */ 850 cmd->device->changed = 1; 851 description = "Media Changed"; 852 action = ACTION_FAIL; 853 } else { 854 /* Must have been a power glitch, or a 855 * bus reset. Could not have been a 856 * media change, so we just retry the 857 * command and see what happens. 858 */ 859 action = ACTION_RETRY; 860 } 861 break; 862 case ILLEGAL_REQUEST: 863 /* If we had an ILLEGAL REQUEST returned, then 864 * we may have performed an unsupported 865 * command. The only thing this should be 866 * would be a ten byte read where only a six 867 * byte read was supported. Also, on a system 868 * where READ CAPACITY failed, we may have 869 * read past the end of the disk. 870 */ 871 if ((cmd->device->use_10_for_rw && 872 sshdr.asc == 0x20 && sshdr.ascq == 0x00) && 873 (cmd->cmnd[0] == READ_10 || 874 cmd->cmnd[0] == WRITE_10)) { 875 /* This will issue a new 6-byte command. */ 876 cmd->device->use_10_for_rw = 0; 877 action = ACTION_REPREP; 878 } else if (sshdr.asc == 0x10) /* DIX */ { 879 description = "Host Data Integrity Failure"; 880 action = ACTION_FAIL; 881 error = -EILSEQ; 882 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */ 883 } else if ((sshdr.asc == 0x20 || sshdr.asc == 0x24) && 884 (cmd->cmnd[0] == UNMAP || 885 cmd->cmnd[0] == WRITE_SAME_16 || 886 cmd->cmnd[0] == WRITE_SAME)) { 887 description = "Discard failure"; 888 action = ACTION_FAIL; 889 error = -EREMOTEIO; 890 } else 891 action = ACTION_FAIL; 892 break; 893 case ABORTED_COMMAND: 894 action = ACTION_FAIL; 895 if (sshdr.asc == 0x10) { /* DIF */ 896 description = "Target Data Integrity Failure"; 897 error = -EILSEQ; 898 } 899 break; 900 case NOT_READY: 901 /* If the device is in the process of becoming 902 * ready, or has a temporary blockage, retry. 903 */ 904 if (sshdr.asc == 0x04) { 905 switch (sshdr.ascq) { 906 case 0x01: /* becoming ready */ 907 case 0x04: /* format in progress */ 908 case 0x05: /* rebuild in progress */ 909 case 0x06: /* recalculation in progress */ 910 case 0x07: /* operation in progress */ 911 case 0x08: /* Long write in progress */ 912 case 0x09: /* self test in progress */ 913 case 0x14: /* space allocation in progress */ 914 action = ACTION_DELAYED_RETRY; 915 break; 916 default: 917 description = "Device not ready"; 918 action = ACTION_FAIL; 919 break; 920 } 921 } else { 922 description = "Device not ready"; 923 action = ACTION_FAIL; 924 } 925 break; 926 case VOLUME_OVERFLOW: 927 /* See SSC3rXX or current. */ 928 action = ACTION_FAIL; 929 break; 930 default: 931 description = "Unhandled sense code"; 932 action = ACTION_FAIL; 933 break; 934 } 935 } else { 936 description = "Unhandled error code"; 937 action = ACTION_FAIL; 938 } 939 940 switch (action) { 941 case ACTION_FAIL: 942 /* Give up and fail the remainder of the request */ 943 scsi_release_buffers(cmd); 944 if (!(req->cmd_flags & REQ_QUIET)) { 945 if (description) 946 scmd_printk(KERN_INFO, cmd, "%s\n", 947 description); 948 scsi_print_result(cmd); 949 if (driver_byte(result) & DRIVER_SENSE) 950 scsi_print_sense("", cmd); 951 scsi_print_command(cmd); 952 } 953 if (blk_end_request_err(req, error)) 954 scsi_requeue_command(q, cmd); 955 else 956 scsi_next_command(cmd); 957 break; 958 case ACTION_REPREP: 959 /* Unprep the request and put it back at the head of the queue. 960 * A new command will be prepared and issued. 961 */ 962 scsi_release_buffers(cmd); 963 scsi_requeue_command(q, cmd); 964 break; 965 case ACTION_RETRY: 966 /* Retry the same command immediately */ 967 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0); 968 break; 969 case ACTION_DELAYED_RETRY: 970 /* Retry the same command after a delay */ 971 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0); 972 break; 973 } 974 } 975 976 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb, 977 gfp_t gfp_mask) 978 { 979 int count; 980 981 /* 982 * If sg table allocation fails, requeue request later. 983 */ 984 if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments, 985 gfp_mask))) { 986 return BLKPREP_DEFER; 987 } 988 989 req->buffer = NULL; 990 991 /* 992 * Next, walk the list, and fill in the addresses and sizes of 993 * each segment. 994 */ 995 count = blk_rq_map_sg(req->q, req, sdb->table.sgl); 996 BUG_ON(count > sdb->table.nents); 997 sdb->table.nents = count; 998 sdb->length = blk_rq_bytes(req); 999 return BLKPREP_OK; 1000 } 1001 1002 /* 1003 * Function: scsi_init_io() 1004 * 1005 * Purpose: SCSI I/O initialize function. 1006 * 1007 * Arguments: cmd - Command descriptor we wish to initialize 1008 * 1009 * Returns: 0 on success 1010 * BLKPREP_DEFER if the failure is retryable 1011 * BLKPREP_KILL if the failure is fatal 1012 */ 1013 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask) 1014 { 1015 struct request *rq = cmd->request; 1016 1017 int error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask); 1018 if (error) 1019 goto err_exit; 1020 1021 if (blk_bidi_rq(rq)) { 1022 struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc( 1023 scsi_sdb_cache, GFP_ATOMIC); 1024 if (!bidi_sdb) { 1025 error = BLKPREP_DEFER; 1026 goto err_exit; 1027 } 1028 1029 rq->next_rq->special = bidi_sdb; 1030 error = scsi_init_sgtable(rq->next_rq, bidi_sdb, GFP_ATOMIC); 1031 if (error) 1032 goto err_exit; 1033 } 1034 1035 if (blk_integrity_rq(rq)) { 1036 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb; 1037 int ivecs, count; 1038 1039 BUG_ON(prot_sdb == NULL); 1040 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio); 1041 1042 if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) { 1043 error = BLKPREP_DEFER; 1044 goto err_exit; 1045 } 1046 1047 count = blk_rq_map_integrity_sg(rq->q, rq->bio, 1048 prot_sdb->table.sgl); 1049 BUG_ON(unlikely(count > ivecs)); 1050 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q))); 1051 1052 cmd->prot_sdb = prot_sdb; 1053 cmd->prot_sdb->table.nents = count; 1054 } 1055 1056 return BLKPREP_OK ; 1057 1058 err_exit: 1059 scsi_release_buffers(cmd); 1060 cmd->request->special = NULL; 1061 scsi_put_command(cmd); 1062 return error; 1063 } 1064 EXPORT_SYMBOL(scsi_init_io); 1065 1066 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev, 1067 struct request *req) 1068 { 1069 struct scsi_cmnd *cmd; 1070 1071 if (!req->special) { 1072 cmd = scsi_get_command(sdev, GFP_ATOMIC); 1073 if (unlikely(!cmd)) 1074 return NULL; 1075 req->special = cmd; 1076 } else { 1077 cmd = req->special; 1078 } 1079 1080 /* pull a tag out of the request if we have one */ 1081 cmd->tag = req->tag; 1082 cmd->request = req; 1083 1084 cmd->cmnd = req->cmd; 1085 cmd->prot_op = SCSI_PROT_NORMAL; 1086 1087 return cmd; 1088 } 1089 1090 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req) 1091 { 1092 struct scsi_cmnd *cmd; 1093 int ret = scsi_prep_state_check(sdev, req); 1094 1095 if (ret != BLKPREP_OK) 1096 return ret; 1097 1098 cmd = scsi_get_cmd_from_req(sdev, req); 1099 if (unlikely(!cmd)) 1100 return BLKPREP_DEFER; 1101 1102 /* 1103 * BLOCK_PC requests may transfer data, in which case they must 1104 * a bio attached to them. Or they might contain a SCSI command 1105 * that does not transfer data, in which case they may optionally 1106 * submit a request without an attached bio. 1107 */ 1108 if (req->bio) { 1109 int ret; 1110 1111 BUG_ON(!req->nr_phys_segments); 1112 1113 ret = scsi_init_io(cmd, GFP_ATOMIC); 1114 if (unlikely(ret)) 1115 return ret; 1116 } else { 1117 BUG_ON(blk_rq_bytes(req)); 1118 1119 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1120 req->buffer = NULL; 1121 } 1122 1123 cmd->cmd_len = req->cmd_len; 1124 if (!blk_rq_bytes(req)) 1125 cmd->sc_data_direction = DMA_NONE; 1126 else if (rq_data_dir(req) == WRITE) 1127 cmd->sc_data_direction = DMA_TO_DEVICE; 1128 else 1129 cmd->sc_data_direction = DMA_FROM_DEVICE; 1130 1131 cmd->transfersize = blk_rq_bytes(req); 1132 cmd->allowed = req->retries; 1133 return BLKPREP_OK; 1134 } 1135 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd); 1136 1137 /* 1138 * Setup a REQ_TYPE_FS command. These are simple read/write request 1139 * from filesystems that still need to be translated to SCSI CDBs from 1140 * the ULD. 1141 */ 1142 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req) 1143 { 1144 struct scsi_cmnd *cmd; 1145 int ret = scsi_prep_state_check(sdev, req); 1146 1147 if (ret != BLKPREP_OK) 1148 return ret; 1149 1150 if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh 1151 && sdev->scsi_dh_data->scsi_dh->prep_fn)) { 1152 ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req); 1153 if (ret != BLKPREP_OK) 1154 return ret; 1155 } 1156 1157 /* 1158 * Filesystem requests must transfer data. 1159 */ 1160 BUG_ON(!req->nr_phys_segments); 1161 1162 cmd = scsi_get_cmd_from_req(sdev, req); 1163 if (unlikely(!cmd)) 1164 return BLKPREP_DEFER; 1165 1166 memset(cmd->cmnd, 0, BLK_MAX_CDB); 1167 return scsi_init_io(cmd, GFP_ATOMIC); 1168 } 1169 EXPORT_SYMBOL(scsi_setup_fs_cmnd); 1170 1171 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req) 1172 { 1173 int ret = BLKPREP_OK; 1174 1175 /* 1176 * If the device is not in running state we will reject some 1177 * or all commands. 1178 */ 1179 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) { 1180 switch (sdev->sdev_state) { 1181 case SDEV_OFFLINE: 1182 case SDEV_TRANSPORT_OFFLINE: 1183 /* 1184 * If the device is offline we refuse to process any 1185 * commands. The device must be brought online 1186 * before trying any recovery commands. 1187 */ 1188 sdev_printk(KERN_ERR, sdev, 1189 "rejecting I/O to offline device\n"); 1190 ret = BLKPREP_KILL; 1191 break; 1192 case SDEV_DEL: 1193 /* 1194 * If the device is fully deleted, we refuse to 1195 * process any commands as well. 1196 */ 1197 sdev_printk(KERN_ERR, sdev, 1198 "rejecting I/O to dead device\n"); 1199 ret = BLKPREP_KILL; 1200 break; 1201 case SDEV_QUIESCE: 1202 case SDEV_BLOCK: 1203 case SDEV_CREATED_BLOCK: 1204 /* 1205 * If the devices is blocked we defer normal commands. 1206 */ 1207 if (!(req->cmd_flags & REQ_PREEMPT)) 1208 ret = BLKPREP_DEFER; 1209 break; 1210 default: 1211 /* 1212 * For any other not fully online state we only allow 1213 * special commands. In particular any user initiated 1214 * command is not allowed. 1215 */ 1216 if (!(req->cmd_flags & REQ_PREEMPT)) 1217 ret = BLKPREP_KILL; 1218 break; 1219 } 1220 } 1221 return ret; 1222 } 1223 EXPORT_SYMBOL(scsi_prep_state_check); 1224 1225 int scsi_prep_return(struct request_queue *q, struct request *req, int ret) 1226 { 1227 struct scsi_device *sdev = q->queuedata; 1228 1229 switch (ret) { 1230 case BLKPREP_KILL: 1231 req->errors = DID_NO_CONNECT << 16; 1232 /* release the command and kill it */ 1233 if (req->special) { 1234 struct scsi_cmnd *cmd = req->special; 1235 scsi_release_buffers(cmd); 1236 scsi_put_command(cmd); 1237 req->special = NULL; 1238 } 1239 break; 1240 case BLKPREP_DEFER: 1241 /* 1242 * If we defer, the blk_peek_request() returns NULL, but the 1243 * queue must be restarted, so we schedule a callback to happen 1244 * shortly. 1245 */ 1246 if (sdev->device_busy == 0) 1247 blk_delay_queue(q, SCSI_QUEUE_DELAY); 1248 break; 1249 default: 1250 req->cmd_flags |= REQ_DONTPREP; 1251 } 1252 1253 return ret; 1254 } 1255 EXPORT_SYMBOL(scsi_prep_return); 1256 1257 int scsi_prep_fn(struct request_queue *q, struct request *req) 1258 { 1259 struct scsi_device *sdev = q->queuedata; 1260 int ret = BLKPREP_KILL; 1261 1262 if (req->cmd_type == REQ_TYPE_BLOCK_PC) 1263 ret = scsi_setup_blk_pc_cmnd(sdev, req); 1264 return scsi_prep_return(q, req, ret); 1265 } 1266 EXPORT_SYMBOL(scsi_prep_fn); 1267 1268 /* 1269 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else 1270 * return 0. 1271 * 1272 * Called with the queue_lock held. 1273 */ 1274 static inline int scsi_dev_queue_ready(struct request_queue *q, 1275 struct scsi_device *sdev) 1276 { 1277 if (sdev->device_busy == 0 && sdev->device_blocked) { 1278 /* 1279 * unblock after device_blocked iterates to zero 1280 */ 1281 if (--sdev->device_blocked == 0) { 1282 SCSI_LOG_MLQUEUE(3, 1283 sdev_printk(KERN_INFO, sdev, 1284 "unblocking device at zero depth\n")); 1285 } else { 1286 blk_delay_queue(q, SCSI_QUEUE_DELAY); 1287 return 0; 1288 } 1289 } 1290 if (scsi_device_is_busy(sdev)) 1291 return 0; 1292 1293 return 1; 1294 } 1295 1296 1297 /* 1298 * scsi_target_queue_ready: checks if there we can send commands to target 1299 * @sdev: scsi device on starget to check. 1300 * 1301 * Called with the host lock held. 1302 */ 1303 static inline int scsi_target_queue_ready(struct Scsi_Host *shost, 1304 struct scsi_device *sdev) 1305 { 1306 struct scsi_target *starget = scsi_target(sdev); 1307 1308 if (starget->single_lun) { 1309 if (starget->starget_sdev_user && 1310 starget->starget_sdev_user != sdev) 1311 return 0; 1312 starget->starget_sdev_user = sdev; 1313 } 1314 1315 if (starget->target_busy == 0 && starget->target_blocked) { 1316 /* 1317 * unblock after target_blocked iterates to zero 1318 */ 1319 if (--starget->target_blocked == 0) { 1320 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget, 1321 "unblocking target at zero depth\n")); 1322 } else 1323 return 0; 1324 } 1325 1326 if (scsi_target_is_busy(starget)) { 1327 list_move_tail(&sdev->starved_entry, &shost->starved_list); 1328 return 0; 1329 } 1330 1331 return 1; 1332 } 1333 1334 /* 1335 * scsi_host_queue_ready: if we can send requests to shost, return 1 else 1336 * return 0. We must end up running the queue again whenever 0 is 1337 * returned, else IO can hang. 1338 * 1339 * Called with host_lock held. 1340 */ 1341 static inline int scsi_host_queue_ready(struct request_queue *q, 1342 struct Scsi_Host *shost, 1343 struct scsi_device *sdev) 1344 { 1345 if (scsi_host_in_recovery(shost)) 1346 return 0; 1347 if (shost->host_busy == 0 && shost->host_blocked) { 1348 /* 1349 * unblock after host_blocked iterates to zero 1350 */ 1351 if (--shost->host_blocked == 0) { 1352 SCSI_LOG_MLQUEUE(3, 1353 printk("scsi%d unblocking host at zero depth\n", 1354 shost->host_no)); 1355 } else { 1356 return 0; 1357 } 1358 } 1359 if (scsi_host_is_busy(shost)) { 1360 if (list_empty(&sdev->starved_entry)) 1361 list_add_tail(&sdev->starved_entry, &shost->starved_list); 1362 return 0; 1363 } 1364 1365 /* We're OK to process the command, so we can't be starved */ 1366 if (!list_empty(&sdev->starved_entry)) 1367 list_del_init(&sdev->starved_entry); 1368 1369 return 1; 1370 } 1371 1372 /* 1373 * Busy state exporting function for request stacking drivers. 1374 * 1375 * For efficiency, no lock is taken to check the busy state of 1376 * shost/starget/sdev, since the returned value is not guaranteed and 1377 * may be changed after request stacking drivers call the function, 1378 * regardless of taking lock or not. 1379 * 1380 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi 1381 * needs to return 'not busy'. Otherwise, request stacking drivers 1382 * may hold requests forever. 1383 */ 1384 static int scsi_lld_busy(struct request_queue *q) 1385 { 1386 struct scsi_device *sdev = q->queuedata; 1387 struct Scsi_Host *shost; 1388 1389 if (blk_queue_dead(q)) 1390 return 0; 1391 1392 shost = sdev->host; 1393 1394 /* 1395 * Ignore host/starget busy state. 1396 * Since block layer does not have a concept of fairness across 1397 * multiple queues, congestion of host/starget needs to be handled 1398 * in SCSI layer. 1399 */ 1400 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev)) 1401 return 1; 1402 1403 return 0; 1404 } 1405 1406 /* 1407 * Kill a request for a dead device 1408 */ 1409 static void scsi_kill_request(struct request *req, struct request_queue *q) 1410 { 1411 struct scsi_cmnd *cmd = req->special; 1412 struct scsi_device *sdev; 1413 struct scsi_target *starget; 1414 struct Scsi_Host *shost; 1415 1416 blk_start_request(req); 1417 1418 scmd_printk(KERN_INFO, cmd, "killing request\n"); 1419 1420 sdev = cmd->device; 1421 starget = scsi_target(sdev); 1422 shost = sdev->host; 1423 scsi_init_cmd_errh(cmd); 1424 cmd->result = DID_NO_CONNECT << 16; 1425 atomic_inc(&cmd->device->iorequest_cnt); 1426 1427 /* 1428 * SCSI request completion path will do scsi_device_unbusy(), 1429 * bump busy counts. To bump the counters, we need to dance 1430 * with the locks as normal issue path does. 1431 */ 1432 sdev->device_busy++; 1433 spin_unlock(sdev->request_queue->queue_lock); 1434 spin_lock(shost->host_lock); 1435 shost->host_busy++; 1436 starget->target_busy++; 1437 spin_unlock(shost->host_lock); 1438 spin_lock(sdev->request_queue->queue_lock); 1439 1440 blk_complete_request(req); 1441 } 1442 1443 static void scsi_softirq_done(struct request *rq) 1444 { 1445 struct scsi_cmnd *cmd = rq->special; 1446 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout; 1447 int disposition; 1448 1449 INIT_LIST_HEAD(&cmd->eh_entry); 1450 1451 atomic_inc(&cmd->device->iodone_cnt); 1452 if (cmd->result) 1453 atomic_inc(&cmd->device->ioerr_cnt); 1454 1455 disposition = scsi_decide_disposition(cmd); 1456 if (disposition != SUCCESS && 1457 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) { 1458 sdev_printk(KERN_ERR, cmd->device, 1459 "timing out command, waited %lus\n", 1460 wait_for/HZ); 1461 disposition = SUCCESS; 1462 } 1463 1464 scsi_log_completion(cmd, disposition); 1465 1466 switch (disposition) { 1467 case SUCCESS: 1468 scsi_finish_command(cmd); 1469 break; 1470 case NEEDS_RETRY: 1471 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY); 1472 break; 1473 case ADD_TO_MLQUEUE: 1474 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY); 1475 break; 1476 default: 1477 if (!scsi_eh_scmd_add(cmd, 0)) 1478 scsi_finish_command(cmd); 1479 } 1480 } 1481 1482 /* 1483 * Function: scsi_request_fn() 1484 * 1485 * Purpose: Main strategy routine for SCSI. 1486 * 1487 * Arguments: q - Pointer to actual queue. 1488 * 1489 * Returns: Nothing 1490 * 1491 * Lock status: IO request lock assumed to be held when called. 1492 */ 1493 static void scsi_request_fn(struct request_queue *q) 1494 { 1495 struct scsi_device *sdev = q->queuedata; 1496 struct Scsi_Host *shost; 1497 struct scsi_cmnd *cmd; 1498 struct request *req; 1499 1500 if(!get_device(&sdev->sdev_gendev)) 1501 /* We must be tearing the block queue down already */ 1502 return; 1503 1504 /* 1505 * To start with, we keep looping until the queue is empty, or until 1506 * the host is no longer able to accept any more requests. 1507 */ 1508 shost = sdev->host; 1509 for (;;) { 1510 int rtn; 1511 /* 1512 * get next queueable request. We do this early to make sure 1513 * that the request is fully prepared even if we cannot 1514 * accept it. 1515 */ 1516 req = blk_peek_request(q); 1517 if (!req || !scsi_dev_queue_ready(q, sdev)) 1518 break; 1519 1520 if (unlikely(!scsi_device_online(sdev))) { 1521 sdev_printk(KERN_ERR, sdev, 1522 "rejecting I/O to offline device\n"); 1523 scsi_kill_request(req, q); 1524 continue; 1525 } 1526 1527 1528 /* 1529 * Remove the request from the request list. 1530 */ 1531 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req))) 1532 blk_start_request(req); 1533 sdev->device_busy++; 1534 1535 spin_unlock(q->queue_lock); 1536 cmd = req->special; 1537 if (unlikely(cmd == NULL)) { 1538 printk(KERN_CRIT "impossible request in %s.\n" 1539 "please mail a stack trace to " 1540 "linux-scsi@vger.kernel.org\n", 1541 __func__); 1542 blk_dump_rq_flags(req, "foo"); 1543 BUG(); 1544 } 1545 spin_lock(shost->host_lock); 1546 1547 /* 1548 * We hit this when the driver is using a host wide 1549 * tag map. For device level tag maps the queue_depth check 1550 * in the device ready fn would prevent us from trying 1551 * to allocate a tag. Since the map is a shared host resource 1552 * we add the dev to the starved list so it eventually gets 1553 * a run when a tag is freed. 1554 */ 1555 if (blk_queue_tagged(q) && !blk_rq_tagged(req)) { 1556 if (list_empty(&sdev->starved_entry)) 1557 list_add_tail(&sdev->starved_entry, 1558 &shost->starved_list); 1559 goto not_ready; 1560 } 1561 1562 if (!scsi_target_queue_ready(shost, sdev)) 1563 goto not_ready; 1564 1565 if (!scsi_host_queue_ready(q, shost, sdev)) 1566 goto not_ready; 1567 1568 scsi_target(sdev)->target_busy++; 1569 shost->host_busy++; 1570 1571 /* 1572 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will 1573 * take the lock again. 1574 */ 1575 spin_unlock_irq(shost->host_lock); 1576 1577 /* 1578 * Finally, initialize any error handling parameters, and set up 1579 * the timers for timeouts. 1580 */ 1581 scsi_init_cmd_errh(cmd); 1582 1583 /* 1584 * Dispatch the command to the low-level driver. 1585 */ 1586 rtn = scsi_dispatch_cmd(cmd); 1587 spin_lock_irq(q->queue_lock); 1588 if (rtn) 1589 goto out_delay; 1590 } 1591 1592 goto out; 1593 1594 not_ready: 1595 spin_unlock_irq(shost->host_lock); 1596 1597 /* 1598 * lock q, handle tag, requeue req, and decrement device_busy. We 1599 * must return with queue_lock held. 1600 * 1601 * Decrementing device_busy without checking it is OK, as all such 1602 * cases (host limits or settings) should run the queue at some 1603 * later time. 1604 */ 1605 spin_lock_irq(q->queue_lock); 1606 blk_requeue_request(q, req); 1607 sdev->device_busy--; 1608 out_delay: 1609 if (sdev->device_busy == 0) 1610 blk_delay_queue(q, SCSI_QUEUE_DELAY); 1611 out: 1612 /* must be careful here...if we trigger the ->remove() function 1613 * we cannot be holding the q lock */ 1614 spin_unlock_irq(q->queue_lock); 1615 put_device(&sdev->sdev_gendev); 1616 spin_lock_irq(q->queue_lock); 1617 } 1618 1619 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost) 1620 { 1621 struct device *host_dev; 1622 u64 bounce_limit = 0xffffffff; 1623 1624 if (shost->unchecked_isa_dma) 1625 return BLK_BOUNCE_ISA; 1626 /* 1627 * Platforms with virtual-DMA translation 1628 * hardware have no practical limit. 1629 */ 1630 if (!PCI_DMA_BUS_IS_PHYS) 1631 return BLK_BOUNCE_ANY; 1632 1633 host_dev = scsi_get_device(shost); 1634 if (host_dev && host_dev->dma_mask) 1635 bounce_limit = *host_dev->dma_mask; 1636 1637 return bounce_limit; 1638 } 1639 EXPORT_SYMBOL(scsi_calculate_bounce_limit); 1640 1641 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost, 1642 request_fn_proc *request_fn) 1643 { 1644 struct request_queue *q; 1645 struct device *dev = shost->dma_dev; 1646 1647 q = blk_init_queue(request_fn, NULL); 1648 if (!q) 1649 return NULL; 1650 1651 /* 1652 * this limit is imposed by hardware restrictions 1653 */ 1654 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize, 1655 SCSI_MAX_SG_CHAIN_SEGMENTS)); 1656 1657 if (scsi_host_prot_dma(shost)) { 1658 shost->sg_prot_tablesize = 1659 min_not_zero(shost->sg_prot_tablesize, 1660 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS); 1661 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize); 1662 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize); 1663 } 1664 1665 blk_queue_max_hw_sectors(q, shost->max_sectors); 1666 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost)); 1667 blk_queue_segment_boundary(q, shost->dma_boundary); 1668 dma_set_seg_boundary(dev, shost->dma_boundary); 1669 1670 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev)); 1671 1672 if (!shost->use_clustering) 1673 q->limits.cluster = 0; 1674 1675 /* 1676 * set a reasonable default alignment on word boundaries: the 1677 * host and device may alter it using 1678 * blk_queue_update_dma_alignment() later. 1679 */ 1680 blk_queue_dma_alignment(q, 0x03); 1681 1682 return q; 1683 } 1684 EXPORT_SYMBOL(__scsi_alloc_queue); 1685 1686 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev) 1687 { 1688 struct request_queue *q; 1689 1690 q = __scsi_alloc_queue(sdev->host, scsi_request_fn); 1691 if (!q) 1692 return NULL; 1693 1694 blk_queue_prep_rq(q, scsi_prep_fn); 1695 blk_queue_softirq_done(q, scsi_softirq_done); 1696 blk_queue_rq_timed_out(q, scsi_times_out); 1697 blk_queue_lld_busy(q, scsi_lld_busy); 1698 return q; 1699 } 1700 1701 /* 1702 * Function: scsi_block_requests() 1703 * 1704 * Purpose: Utility function used by low-level drivers to prevent further 1705 * commands from being queued to the device. 1706 * 1707 * Arguments: shost - Host in question 1708 * 1709 * Returns: Nothing 1710 * 1711 * Lock status: No locks are assumed held. 1712 * 1713 * Notes: There is no timer nor any other means by which the requests 1714 * get unblocked other than the low-level driver calling 1715 * scsi_unblock_requests(). 1716 */ 1717 void scsi_block_requests(struct Scsi_Host *shost) 1718 { 1719 shost->host_self_blocked = 1; 1720 } 1721 EXPORT_SYMBOL(scsi_block_requests); 1722 1723 /* 1724 * Function: scsi_unblock_requests() 1725 * 1726 * Purpose: Utility function used by low-level drivers to allow further 1727 * commands from being queued to the device. 1728 * 1729 * Arguments: shost - Host in question 1730 * 1731 * Returns: Nothing 1732 * 1733 * Lock status: No locks are assumed held. 1734 * 1735 * Notes: There is no timer nor any other means by which the requests 1736 * get unblocked other than the low-level driver calling 1737 * scsi_unblock_requests(). 1738 * 1739 * This is done as an API function so that changes to the 1740 * internals of the scsi mid-layer won't require wholesale 1741 * changes to drivers that use this feature. 1742 */ 1743 void scsi_unblock_requests(struct Scsi_Host *shost) 1744 { 1745 shost->host_self_blocked = 0; 1746 scsi_run_host_queues(shost); 1747 } 1748 EXPORT_SYMBOL(scsi_unblock_requests); 1749 1750 int __init scsi_init_queue(void) 1751 { 1752 int i; 1753 1754 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer", 1755 sizeof(struct scsi_data_buffer), 1756 0, 0, NULL); 1757 if (!scsi_sdb_cache) { 1758 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n"); 1759 return -ENOMEM; 1760 } 1761 1762 for (i = 0; i < SG_MEMPOOL_NR; i++) { 1763 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i; 1764 int size = sgp->size * sizeof(struct scatterlist); 1765 1766 sgp->slab = kmem_cache_create(sgp->name, size, 0, 1767 SLAB_HWCACHE_ALIGN, NULL); 1768 if (!sgp->slab) { 1769 printk(KERN_ERR "SCSI: can't init sg slab %s\n", 1770 sgp->name); 1771 goto cleanup_sdb; 1772 } 1773 1774 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE, 1775 sgp->slab); 1776 if (!sgp->pool) { 1777 printk(KERN_ERR "SCSI: can't init sg mempool %s\n", 1778 sgp->name); 1779 goto cleanup_sdb; 1780 } 1781 } 1782 1783 return 0; 1784 1785 cleanup_sdb: 1786 for (i = 0; i < SG_MEMPOOL_NR; i++) { 1787 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i; 1788 if (sgp->pool) 1789 mempool_destroy(sgp->pool); 1790 if (sgp->slab) 1791 kmem_cache_destroy(sgp->slab); 1792 } 1793 kmem_cache_destroy(scsi_sdb_cache); 1794 1795 return -ENOMEM; 1796 } 1797 1798 void scsi_exit_queue(void) 1799 { 1800 int i; 1801 1802 kmem_cache_destroy(scsi_sdb_cache); 1803 1804 for (i = 0; i < SG_MEMPOOL_NR; i++) { 1805 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i; 1806 mempool_destroy(sgp->pool); 1807 kmem_cache_destroy(sgp->slab); 1808 } 1809 } 1810 1811 /** 1812 * scsi_mode_select - issue a mode select 1813 * @sdev: SCSI device to be queried 1814 * @pf: Page format bit (1 == standard, 0 == vendor specific) 1815 * @sp: Save page bit (0 == don't save, 1 == save) 1816 * @modepage: mode page being requested 1817 * @buffer: request buffer (may not be smaller than eight bytes) 1818 * @len: length of request buffer. 1819 * @timeout: command timeout 1820 * @retries: number of retries before failing 1821 * @data: returns a structure abstracting the mode header data 1822 * @sshdr: place to put sense data (or NULL if no sense to be collected). 1823 * must be SCSI_SENSE_BUFFERSIZE big. 1824 * 1825 * Returns zero if successful; negative error number or scsi 1826 * status on error 1827 * 1828 */ 1829 int 1830 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage, 1831 unsigned char *buffer, int len, int timeout, int retries, 1832 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 1833 { 1834 unsigned char cmd[10]; 1835 unsigned char *real_buffer; 1836 int ret; 1837 1838 memset(cmd, 0, sizeof(cmd)); 1839 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0); 1840 1841 if (sdev->use_10_for_ms) { 1842 if (len > 65535) 1843 return -EINVAL; 1844 real_buffer = kmalloc(8 + len, GFP_KERNEL); 1845 if (!real_buffer) 1846 return -ENOMEM; 1847 memcpy(real_buffer + 8, buffer, len); 1848 len += 8; 1849 real_buffer[0] = 0; 1850 real_buffer[1] = 0; 1851 real_buffer[2] = data->medium_type; 1852 real_buffer[3] = data->device_specific; 1853 real_buffer[4] = data->longlba ? 0x01 : 0; 1854 real_buffer[5] = 0; 1855 real_buffer[6] = data->block_descriptor_length >> 8; 1856 real_buffer[7] = data->block_descriptor_length; 1857 1858 cmd[0] = MODE_SELECT_10; 1859 cmd[7] = len >> 8; 1860 cmd[8] = len; 1861 } else { 1862 if (len > 255 || data->block_descriptor_length > 255 || 1863 data->longlba) 1864 return -EINVAL; 1865 1866 real_buffer = kmalloc(4 + len, GFP_KERNEL); 1867 if (!real_buffer) 1868 return -ENOMEM; 1869 memcpy(real_buffer + 4, buffer, len); 1870 len += 4; 1871 real_buffer[0] = 0; 1872 real_buffer[1] = data->medium_type; 1873 real_buffer[2] = data->device_specific; 1874 real_buffer[3] = data->block_descriptor_length; 1875 1876 1877 cmd[0] = MODE_SELECT; 1878 cmd[4] = len; 1879 } 1880 1881 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len, 1882 sshdr, timeout, retries, NULL); 1883 kfree(real_buffer); 1884 return ret; 1885 } 1886 EXPORT_SYMBOL_GPL(scsi_mode_select); 1887 1888 /** 1889 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary. 1890 * @sdev: SCSI device to be queried 1891 * @dbd: set if mode sense will allow block descriptors to be returned 1892 * @modepage: mode page being requested 1893 * @buffer: request buffer (may not be smaller than eight bytes) 1894 * @len: length of request buffer. 1895 * @timeout: command timeout 1896 * @retries: number of retries before failing 1897 * @data: returns a structure abstracting the mode header data 1898 * @sshdr: place to put sense data (or NULL if no sense to be collected). 1899 * must be SCSI_SENSE_BUFFERSIZE big. 1900 * 1901 * Returns zero if unsuccessful, or the header offset (either 4 1902 * or 8 depending on whether a six or ten byte command was 1903 * issued) if successful. 1904 */ 1905 int 1906 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, 1907 unsigned char *buffer, int len, int timeout, int retries, 1908 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 1909 { 1910 unsigned char cmd[12]; 1911 int use_10_for_ms; 1912 int header_length; 1913 int result; 1914 struct scsi_sense_hdr my_sshdr; 1915 1916 memset(data, 0, sizeof(*data)); 1917 memset(&cmd[0], 0, 12); 1918 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */ 1919 cmd[2] = modepage; 1920 1921 /* caller might not be interested in sense, but we need it */ 1922 if (!sshdr) 1923 sshdr = &my_sshdr; 1924 1925 retry: 1926 use_10_for_ms = sdev->use_10_for_ms; 1927 1928 if (use_10_for_ms) { 1929 if (len < 8) 1930 len = 8; 1931 1932 cmd[0] = MODE_SENSE_10; 1933 cmd[8] = len; 1934 header_length = 8; 1935 } else { 1936 if (len < 4) 1937 len = 4; 1938 1939 cmd[0] = MODE_SENSE; 1940 cmd[4] = len; 1941 header_length = 4; 1942 } 1943 1944 memset(buffer, 0, len); 1945 1946 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len, 1947 sshdr, timeout, retries, NULL); 1948 1949 /* This code looks awful: what it's doing is making sure an 1950 * ILLEGAL REQUEST sense return identifies the actual command 1951 * byte as the problem. MODE_SENSE commands can return 1952 * ILLEGAL REQUEST if the code page isn't supported */ 1953 1954 if (use_10_for_ms && !scsi_status_is_good(result) && 1955 (driver_byte(result) & DRIVER_SENSE)) { 1956 if (scsi_sense_valid(sshdr)) { 1957 if ((sshdr->sense_key == ILLEGAL_REQUEST) && 1958 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) { 1959 /* 1960 * Invalid command operation code 1961 */ 1962 sdev->use_10_for_ms = 0; 1963 goto retry; 1964 } 1965 } 1966 } 1967 1968 if(scsi_status_is_good(result)) { 1969 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b && 1970 (modepage == 6 || modepage == 8))) { 1971 /* Initio breakage? */ 1972 header_length = 0; 1973 data->length = 13; 1974 data->medium_type = 0; 1975 data->device_specific = 0; 1976 data->longlba = 0; 1977 data->block_descriptor_length = 0; 1978 } else if(use_10_for_ms) { 1979 data->length = buffer[0]*256 + buffer[1] + 2; 1980 data->medium_type = buffer[2]; 1981 data->device_specific = buffer[3]; 1982 data->longlba = buffer[4] & 0x01; 1983 data->block_descriptor_length = buffer[6]*256 1984 + buffer[7]; 1985 } else { 1986 data->length = buffer[0] + 1; 1987 data->medium_type = buffer[1]; 1988 data->device_specific = buffer[2]; 1989 data->block_descriptor_length = buffer[3]; 1990 } 1991 data->header_length = header_length; 1992 } 1993 1994 return result; 1995 } 1996 EXPORT_SYMBOL(scsi_mode_sense); 1997 1998 /** 1999 * scsi_test_unit_ready - test if unit is ready 2000 * @sdev: scsi device to change the state of. 2001 * @timeout: command timeout 2002 * @retries: number of retries before failing 2003 * @sshdr_external: Optional pointer to struct scsi_sense_hdr for 2004 * returning sense. Make sure that this is cleared before passing 2005 * in. 2006 * 2007 * Returns zero if unsuccessful or an error if TUR failed. For 2008 * removable media, UNIT_ATTENTION sets ->changed flag. 2009 **/ 2010 int 2011 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries, 2012 struct scsi_sense_hdr *sshdr_external) 2013 { 2014 char cmd[] = { 2015 TEST_UNIT_READY, 0, 0, 0, 0, 0, 2016 }; 2017 struct scsi_sense_hdr *sshdr; 2018 int result; 2019 2020 if (!sshdr_external) 2021 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL); 2022 else 2023 sshdr = sshdr_external; 2024 2025 /* try to eat the UNIT_ATTENTION if there are enough retries */ 2026 do { 2027 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr, 2028 timeout, retries, NULL); 2029 if (sdev->removable && scsi_sense_valid(sshdr) && 2030 sshdr->sense_key == UNIT_ATTENTION) 2031 sdev->changed = 1; 2032 } while (scsi_sense_valid(sshdr) && 2033 sshdr->sense_key == UNIT_ATTENTION && --retries); 2034 2035 if (!sshdr_external) 2036 kfree(sshdr); 2037 return result; 2038 } 2039 EXPORT_SYMBOL(scsi_test_unit_ready); 2040 2041 /** 2042 * scsi_device_set_state - Take the given device through the device state model. 2043 * @sdev: scsi device to change the state of. 2044 * @state: state to change to. 2045 * 2046 * Returns zero if unsuccessful or an error if the requested 2047 * transition is illegal. 2048 */ 2049 int 2050 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state) 2051 { 2052 enum scsi_device_state oldstate = sdev->sdev_state; 2053 2054 if (state == oldstate) 2055 return 0; 2056 2057 switch (state) { 2058 case SDEV_CREATED: 2059 switch (oldstate) { 2060 case SDEV_CREATED_BLOCK: 2061 break; 2062 default: 2063 goto illegal; 2064 } 2065 break; 2066 2067 case SDEV_RUNNING: 2068 switch (oldstate) { 2069 case SDEV_CREATED: 2070 case SDEV_OFFLINE: 2071 case SDEV_TRANSPORT_OFFLINE: 2072 case SDEV_QUIESCE: 2073 case SDEV_BLOCK: 2074 break; 2075 default: 2076 goto illegal; 2077 } 2078 break; 2079 2080 case SDEV_QUIESCE: 2081 switch (oldstate) { 2082 case SDEV_RUNNING: 2083 case SDEV_OFFLINE: 2084 case SDEV_TRANSPORT_OFFLINE: 2085 break; 2086 default: 2087 goto illegal; 2088 } 2089 break; 2090 2091 case SDEV_OFFLINE: 2092 case SDEV_TRANSPORT_OFFLINE: 2093 switch (oldstate) { 2094 case SDEV_CREATED: 2095 case SDEV_RUNNING: 2096 case SDEV_QUIESCE: 2097 case SDEV_BLOCK: 2098 break; 2099 default: 2100 goto illegal; 2101 } 2102 break; 2103 2104 case SDEV_BLOCK: 2105 switch (oldstate) { 2106 case SDEV_RUNNING: 2107 case SDEV_CREATED_BLOCK: 2108 break; 2109 default: 2110 goto illegal; 2111 } 2112 break; 2113 2114 case SDEV_CREATED_BLOCK: 2115 switch (oldstate) { 2116 case SDEV_CREATED: 2117 break; 2118 default: 2119 goto illegal; 2120 } 2121 break; 2122 2123 case SDEV_CANCEL: 2124 switch (oldstate) { 2125 case SDEV_CREATED: 2126 case SDEV_RUNNING: 2127 case SDEV_QUIESCE: 2128 case SDEV_OFFLINE: 2129 case SDEV_TRANSPORT_OFFLINE: 2130 case SDEV_BLOCK: 2131 break; 2132 default: 2133 goto illegal; 2134 } 2135 break; 2136 2137 case SDEV_DEL: 2138 switch (oldstate) { 2139 case SDEV_CREATED: 2140 case SDEV_RUNNING: 2141 case SDEV_OFFLINE: 2142 case SDEV_TRANSPORT_OFFLINE: 2143 case SDEV_CANCEL: 2144 break; 2145 default: 2146 goto illegal; 2147 } 2148 break; 2149 2150 } 2151 sdev->sdev_state = state; 2152 return 0; 2153 2154 illegal: 2155 SCSI_LOG_ERROR_RECOVERY(1, 2156 sdev_printk(KERN_ERR, sdev, 2157 "Illegal state transition %s->%s\n", 2158 scsi_device_state_name(oldstate), 2159 scsi_device_state_name(state)) 2160 ); 2161 return -EINVAL; 2162 } 2163 EXPORT_SYMBOL(scsi_device_set_state); 2164 2165 /** 2166 * sdev_evt_emit - emit a single SCSI device uevent 2167 * @sdev: associated SCSI device 2168 * @evt: event to emit 2169 * 2170 * Send a single uevent (scsi_event) to the associated scsi_device. 2171 */ 2172 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt) 2173 { 2174 int idx = 0; 2175 char *envp[3]; 2176 2177 switch (evt->evt_type) { 2178 case SDEV_EVT_MEDIA_CHANGE: 2179 envp[idx++] = "SDEV_MEDIA_CHANGE=1"; 2180 break; 2181 2182 default: 2183 /* do nothing */ 2184 break; 2185 } 2186 2187 envp[idx++] = NULL; 2188 2189 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp); 2190 } 2191 2192 /** 2193 * sdev_evt_thread - send a uevent for each scsi event 2194 * @work: work struct for scsi_device 2195 * 2196 * Dispatch queued events to their associated scsi_device kobjects 2197 * as uevents. 2198 */ 2199 void scsi_evt_thread(struct work_struct *work) 2200 { 2201 struct scsi_device *sdev; 2202 LIST_HEAD(event_list); 2203 2204 sdev = container_of(work, struct scsi_device, event_work); 2205 2206 while (1) { 2207 struct scsi_event *evt; 2208 struct list_head *this, *tmp; 2209 unsigned long flags; 2210 2211 spin_lock_irqsave(&sdev->list_lock, flags); 2212 list_splice_init(&sdev->event_list, &event_list); 2213 spin_unlock_irqrestore(&sdev->list_lock, flags); 2214 2215 if (list_empty(&event_list)) 2216 break; 2217 2218 list_for_each_safe(this, tmp, &event_list) { 2219 evt = list_entry(this, struct scsi_event, node); 2220 list_del(&evt->node); 2221 scsi_evt_emit(sdev, evt); 2222 kfree(evt); 2223 } 2224 } 2225 } 2226 2227 /** 2228 * sdev_evt_send - send asserted event to uevent thread 2229 * @sdev: scsi_device event occurred on 2230 * @evt: event to send 2231 * 2232 * Assert scsi device event asynchronously. 2233 */ 2234 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt) 2235 { 2236 unsigned long flags; 2237 2238 #if 0 2239 /* FIXME: currently this check eliminates all media change events 2240 * for polled devices. Need to update to discriminate between AN 2241 * and polled events */ 2242 if (!test_bit(evt->evt_type, sdev->supported_events)) { 2243 kfree(evt); 2244 return; 2245 } 2246 #endif 2247 2248 spin_lock_irqsave(&sdev->list_lock, flags); 2249 list_add_tail(&evt->node, &sdev->event_list); 2250 schedule_work(&sdev->event_work); 2251 spin_unlock_irqrestore(&sdev->list_lock, flags); 2252 } 2253 EXPORT_SYMBOL_GPL(sdev_evt_send); 2254 2255 /** 2256 * sdev_evt_alloc - allocate a new scsi event 2257 * @evt_type: type of event to allocate 2258 * @gfpflags: GFP flags for allocation 2259 * 2260 * Allocates and returns a new scsi_event. 2261 */ 2262 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type, 2263 gfp_t gfpflags) 2264 { 2265 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags); 2266 if (!evt) 2267 return NULL; 2268 2269 evt->evt_type = evt_type; 2270 INIT_LIST_HEAD(&evt->node); 2271 2272 /* evt_type-specific initialization, if any */ 2273 switch (evt_type) { 2274 case SDEV_EVT_MEDIA_CHANGE: 2275 default: 2276 /* do nothing */ 2277 break; 2278 } 2279 2280 return evt; 2281 } 2282 EXPORT_SYMBOL_GPL(sdev_evt_alloc); 2283 2284 /** 2285 * sdev_evt_send_simple - send asserted event to uevent thread 2286 * @sdev: scsi_device event occurred on 2287 * @evt_type: type of event to send 2288 * @gfpflags: GFP flags for allocation 2289 * 2290 * Assert scsi device event asynchronously, given an event type. 2291 */ 2292 void sdev_evt_send_simple(struct scsi_device *sdev, 2293 enum scsi_device_event evt_type, gfp_t gfpflags) 2294 { 2295 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags); 2296 if (!evt) { 2297 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n", 2298 evt_type); 2299 return; 2300 } 2301 2302 sdev_evt_send(sdev, evt); 2303 } 2304 EXPORT_SYMBOL_GPL(sdev_evt_send_simple); 2305 2306 /** 2307 * scsi_device_quiesce - Block user issued commands. 2308 * @sdev: scsi device to quiesce. 2309 * 2310 * This works by trying to transition to the SDEV_QUIESCE state 2311 * (which must be a legal transition). When the device is in this 2312 * state, only special requests will be accepted, all others will 2313 * be deferred. Since special requests may also be requeued requests, 2314 * a successful return doesn't guarantee the device will be 2315 * totally quiescent. 2316 * 2317 * Must be called with user context, may sleep. 2318 * 2319 * Returns zero if unsuccessful or an error if not. 2320 */ 2321 int 2322 scsi_device_quiesce(struct scsi_device *sdev) 2323 { 2324 int err = scsi_device_set_state(sdev, SDEV_QUIESCE); 2325 if (err) 2326 return err; 2327 2328 scsi_run_queue(sdev->request_queue); 2329 while (sdev->device_busy) { 2330 msleep_interruptible(200); 2331 scsi_run_queue(sdev->request_queue); 2332 } 2333 return 0; 2334 } 2335 EXPORT_SYMBOL(scsi_device_quiesce); 2336 2337 /** 2338 * scsi_device_resume - Restart user issued commands to a quiesced device. 2339 * @sdev: scsi device to resume. 2340 * 2341 * Moves the device from quiesced back to running and restarts the 2342 * queues. 2343 * 2344 * Must be called with user context, may sleep. 2345 */ 2346 void scsi_device_resume(struct scsi_device *sdev) 2347 { 2348 /* check if the device state was mutated prior to resume, and if 2349 * so assume the state is being managed elsewhere (for example 2350 * device deleted during suspend) 2351 */ 2352 if (sdev->sdev_state != SDEV_QUIESCE || 2353 scsi_device_set_state(sdev, SDEV_RUNNING)) 2354 return; 2355 scsi_run_queue(sdev->request_queue); 2356 } 2357 EXPORT_SYMBOL(scsi_device_resume); 2358 2359 static void 2360 device_quiesce_fn(struct scsi_device *sdev, void *data) 2361 { 2362 scsi_device_quiesce(sdev); 2363 } 2364 2365 void 2366 scsi_target_quiesce(struct scsi_target *starget) 2367 { 2368 starget_for_each_device(starget, NULL, device_quiesce_fn); 2369 } 2370 EXPORT_SYMBOL(scsi_target_quiesce); 2371 2372 static void 2373 device_resume_fn(struct scsi_device *sdev, void *data) 2374 { 2375 scsi_device_resume(sdev); 2376 } 2377 2378 void 2379 scsi_target_resume(struct scsi_target *starget) 2380 { 2381 starget_for_each_device(starget, NULL, device_resume_fn); 2382 } 2383 EXPORT_SYMBOL(scsi_target_resume); 2384 2385 /** 2386 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state 2387 * @sdev: device to block 2388 * 2389 * Block request made by scsi lld's to temporarily stop all 2390 * scsi commands on the specified device. Called from interrupt 2391 * or normal process context. 2392 * 2393 * Returns zero if successful or error if not 2394 * 2395 * Notes: 2396 * This routine transitions the device to the SDEV_BLOCK state 2397 * (which must be a legal transition). When the device is in this 2398 * state, all commands are deferred until the scsi lld reenables 2399 * the device with scsi_device_unblock or device_block_tmo fires. 2400 */ 2401 int 2402 scsi_internal_device_block(struct scsi_device *sdev) 2403 { 2404 struct request_queue *q = sdev->request_queue; 2405 unsigned long flags; 2406 int err = 0; 2407 2408 err = scsi_device_set_state(sdev, SDEV_BLOCK); 2409 if (err) { 2410 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK); 2411 2412 if (err) 2413 return err; 2414 } 2415 2416 /* 2417 * The device has transitioned to SDEV_BLOCK. Stop the 2418 * block layer from calling the midlayer with this device's 2419 * request queue. 2420 */ 2421 spin_lock_irqsave(q->queue_lock, flags); 2422 blk_stop_queue(q); 2423 spin_unlock_irqrestore(q->queue_lock, flags); 2424 2425 return 0; 2426 } 2427 EXPORT_SYMBOL_GPL(scsi_internal_device_block); 2428 2429 /** 2430 * scsi_internal_device_unblock - resume a device after a block request 2431 * @sdev: device to resume 2432 * @new_state: state to set devices to after unblocking 2433 * 2434 * Called by scsi lld's or the midlayer to restart the device queue 2435 * for the previously suspended scsi device. Called from interrupt or 2436 * normal process context. 2437 * 2438 * Returns zero if successful or error if not. 2439 * 2440 * Notes: 2441 * This routine transitions the device to the SDEV_RUNNING state 2442 * or to one of the offline states (which must be a legal transition) 2443 * allowing the midlayer to goose the queue for this device. 2444 */ 2445 int 2446 scsi_internal_device_unblock(struct scsi_device *sdev, 2447 enum scsi_device_state new_state) 2448 { 2449 struct request_queue *q = sdev->request_queue; 2450 unsigned long flags; 2451 2452 /* 2453 * Try to transition the scsi device to SDEV_RUNNING or one of the 2454 * offlined states and goose the device queue if successful. 2455 */ 2456 if (sdev->sdev_state == SDEV_BLOCK) 2457 sdev->sdev_state = new_state; 2458 else if (sdev->sdev_state == SDEV_CREATED_BLOCK) { 2459 if (new_state == SDEV_TRANSPORT_OFFLINE || 2460 new_state == SDEV_OFFLINE) 2461 sdev->sdev_state = new_state; 2462 else 2463 sdev->sdev_state = SDEV_CREATED; 2464 } else if (sdev->sdev_state != SDEV_CANCEL && 2465 sdev->sdev_state != SDEV_OFFLINE) 2466 return -EINVAL; 2467 2468 spin_lock_irqsave(q->queue_lock, flags); 2469 blk_start_queue(q); 2470 spin_unlock_irqrestore(q->queue_lock, flags); 2471 2472 return 0; 2473 } 2474 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock); 2475 2476 static void 2477 device_block(struct scsi_device *sdev, void *data) 2478 { 2479 scsi_internal_device_block(sdev); 2480 } 2481 2482 static int 2483 target_block(struct device *dev, void *data) 2484 { 2485 if (scsi_is_target_device(dev)) 2486 starget_for_each_device(to_scsi_target(dev), NULL, 2487 device_block); 2488 return 0; 2489 } 2490 2491 void 2492 scsi_target_block(struct device *dev) 2493 { 2494 if (scsi_is_target_device(dev)) 2495 starget_for_each_device(to_scsi_target(dev), NULL, 2496 device_block); 2497 else 2498 device_for_each_child(dev, NULL, target_block); 2499 } 2500 EXPORT_SYMBOL_GPL(scsi_target_block); 2501 2502 static void 2503 device_unblock(struct scsi_device *sdev, void *data) 2504 { 2505 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data); 2506 } 2507 2508 static int 2509 target_unblock(struct device *dev, void *data) 2510 { 2511 if (scsi_is_target_device(dev)) 2512 starget_for_each_device(to_scsi_target(dev), data, 2513 device_unblock); 2514 return 0; 2515 } 2516 2517 void 2518 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state) 2519 { 2520 if (scsi_is_target_device(dev)) 2521 starget_for_each_device(to_scsi_target(dev), &new_state, 2522 device_unblock); 2523 else 2524 device_for_each_child(dev, &new_state, target_unblock); 2525 } 2526 EXPORT_SYMBOL_GPL(scsi_target_unblock); 2527 2528 /** 2529 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt 2530 * @sgl: scatter-gather list 2531 * @sg_count: number of segments in sg 2532 * @offset: offset in bytes into sg, on return offset into the mapped area 2533 * @len: bytes to map, on return number of bytes mapped 2534 * 2535 * Returns virtual address of the start of the mapped page 2536 */ 2537 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count, 2538 size_t *offset, size_t *len) 2539 { 2540 int i; 2541 size_t sg_len = 0, len_complete = 0; 2542 struct scatterlist *sg; 2543 struct page *page; 2544 2545 WARN_ON(!irqs_disabled()); 2546 2547 for_each_sg(sgl, sg, sg_count, i) { 2548 len_complete = sg_len; /* Complete sg-entries */ 2549 sg_len += sg->length; 2550 if (sg_len > *offset) 2551 break; 2552 } 2553 2554 if (unlikely(i == sg_count)) { 2555 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, " 2556 "elements %d\n", 2557 __func__, sg_len, *offset, sg_count); 2558 WARN_ON(1); 2559 return NULL; 2560 } 2561 2562 /* Offset starting from the beginning of first page in this sg-entry */ 2563 *offset = *offset - len_complete + sg->offset; 2564 2565 /* Assumption: contiguous pages can be accessed as "page + i" */ 2566 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT)); 2567 *offset &= ~PAGE_MASK; 2568 2569 /* Bytes in this sg-entry from *offset to the end of the page */ 2570 sg_len = PAGE_SIZE - *offset; 2571 if (*len > sg_len) 2572 *len = sg_len; 2573 2574 return kmap_atomic(page); 2575 } 2576 EXPORT_SYMBOL(scsi_kmap_atomic_sg); 2577 2578 /** 2579 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg 2580 * @virt: virtual address to be unmapped 2581 */ 2582 void scsi_kunmap_atomic_sg(void *virt) 2583 { 2584 kunmap_atomic(virt); 2585 } 2586 EXPORT_SYMBOL(scsi_kunmap_atomic_sg); 2587