1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 1999 Eric Youngdale 4 * Copyright (C) 2014 Christoph Hellwig 5 * 6 * SCSI queueing library. 7 * Initial versions: Eric Youngdale (eric@andante.org). 8 * Based upon conversations with large numbers 9 * of people at Linux Expo. 10 */ 11 12 #include <linux/bio.h> 13 #include <linux/bitops.h> 14 #include <linux/blkdev.h> 15 #include <linux/completion.h> 16 #include <linux/kernel.h> 17 #include <linux/export.h> 18 #include <linux/init.h> 19 #include <linux/pci.h> 20 #include <linux/delay.h> 21 #include <linux/hardirq.h> 22 #include <linux/scatterlist.h> 23 #include <linux/blk-mq.h> 24 #include <linux/ratelimit.h> 25 #include <asm/unaligned.h> 26 27 #include <scsi/scsi.h> 28 #include <scsi/scsi_cmnd.h> 29 #include <scsi/scsi_dbg.h> 30 #include <scsi/scsi_device.h> 31 #include <scsi/scsi_driver.h> 32 #include <scsi/scsi_eh.h> 33 #include <scsi/scsi_host.h> 34 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */ 35 #include <scsi/scsi_dh.h> 36 37 #include <trace/events/scsi.h> 38 39 #include "scsi_debugfs.h" 40 #include "scsi_priv.h" 41 #include "scsi_logging.h" 42 43 /* 44 * Size of integrity metadata is usually small, 1 inline sg should 45 * cover normal cases. 46 */ 47 #ifdef CONFIG_ARCH_NO_SG_CHAIN 48 #define SCSI_INLINE_PROT_SG_CNT 0 49 #define SCSI_INLINE_SG_CNT 0 50 #else 51 #define SCSI_INLINE_PROT_SG_CNT 1 52 #define SCSI_INLINE_SG_CNT 2 53 #endif 54 55 static struct kmem_cache *scsi_sdb_cache; 56 static struct kmem_cache *scsi_sense_cache; 57 static struct kmem_cache *scsi_sense_isadma_cache; 58 static DEFINE_MUTEX(scsi_sense_cache_mutex); 59 60 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd); 61 62 static inline struct kmem_cache * 63 scsi_select_sense_cache(bool unchecked_isa_dma) 64 { 65 return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache; 66 } 67 68 static void scsi_free_sense_buffer(bool unchecked_isa_dma, 69 unsigned char *sense_buffer) 70 { 71 kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma), 72 sense_buffer); 73 } 74 75 static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma, 76 gfp_t gfp_mask, int numa_node) 77 { 78 return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma), 79 gfp_mask, numa_node); 80 } 81 82 int scsi_init_sense_cache(struct Scsi_Host *shost) 83 { 84 struct kmem_cache *cache; 85 int ret = 0; 86 87 mutex_lock(&scsi_sense_cache_mutex); 88 cache = scsi_select_sense_cache(shost->unchecked_isa_dma); 89 if (cache) 90 goto exit; 91 92 if (shost->unchecked_isa_dma) { 93 scsi_sense_isadma_cache = 94 kmem_cache_create("scsi_sense_cache(DMA)", 95 SCSI_SENSE_BUFFERSIZE, 0, 96 SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL); 97 if (!scsi_sense_isadma_cache) 98 ret = -ENOMEM; 99 } else { 100 scsi_sense_cache = 101 kmem_cache_create_usercopy("scsi_sense_cache", 102 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN, 103 0, SCSI_SENSE_BUFFERSIZE, NULL); 104 if (!scsi_sense_cache) 105 ret = -ENOMEM; 106 } 107 exit: 108 mutex_unlock(&scsi_sense_cache_mutex); 109 return ret; 110 } 111 112 /* 113 * When to reinvoke queueing after a resource shortage. It's 3 msecs to 114 * not change behaviour from the previous unplug mechanism, experimentation 115 * may prove this needs changing. 116 */ 117 #define SCSI_QUEUE_DELAY 3 118 119 static void 120 scsi_set_blocked(struct scsi_cmnd *cmd, int reason) 121 { 122 struct Scsi_Host *host = cmd->device->host; 123 struct scsi_device *device = cmd->device; 124 struct scsi_target *starget = scsi_target(device); 125 126 /* 127 * Set the appropriate busy bit for the device/host. 128 * 129 * If the host/device isn't busy, assume that something actually 130 * completed, and that we should be able to queue a command now. 131 * 132 * Note that the prior mid-layer assumption that any host could 133 * always queue at least one command is now broken. The mid-layer 134 * will implement a user specifiable stall (see 135 * scsi_host.max_host_blocked and scsi_device.max_device_blocked) 136 * if a command is requeued with no other commands outstanding 137 * either for the device or for the host. 138 */ 139 switch (reason) { 140 case SCSI_MLQUEUE_HOST_BUSY: 141 atomic_set(&host->host_blocked, host->max_host_blocked); 142 break; 143 case SCSI_MLQUEUE_DEVICE_BUSY: 144 case SCSI_MLQUEUE_EH_RETRY: 145 atomic_set(&device->device_blocked, 146 device->max_device_blocked); 147 break; 148 case SCSI_MLQUEUE_TARGET_BUSY: 149 atomic_set(&starget->target_blocked, 150 starget->max_target_blocked); 151 break; 152 } 153 } 154 155 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd) 156 { 157 if (cmd->request->rq_flags & RQF_DONTPREP) { 158 cmd->request->rq_flags &= ~RQF_DONTPREP; 159 scsi_mq_uninit_cmd(cmd); 160 } else { 161 WARN_ON_ONCE(true); 162 } 163 blk_mq_requeue_request(cmd->request, true); 164 } 165 166 /** 167 * __scsi_queue_insert - private queue insertion 168 * @cmd: The SCSI command being requeued 169 * @reason: The reason for the requeue 170 * @unbusy: Whether the queue should be unbusied 171 * 172 * This is a private queue insertion. The public interface 173 * scsi_queue_insert() always assumes the queue should be unbusied 174 * because it's always called before the completion. This function is 175 * for a requeue after completion, which should only occur in this 176 * file. 177 */ 178 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy) 179 { 180 struct scsi_device *device = cmd->device; 181 182 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd, 183 "Inserting command %p into mlqueue\n", cmd)); 184 185 scsi_set_blocked(cmd, reason); 186 187 /* 188 * Decrement the counters, since these commands are no longer 189 * active on the host/device. 190 */ 191 if (unbusy) 192 scsi_device_unbusy(device); 193 194 /* 195 * Requeue this command. It will go before all other commands 196 * that are already in the queue. Schedule requeue work under 197 * lock such that the kblockd_schedule_work() call happens 198 * before blk_cleanup_queue() finishes. 199 */ 200 cmd->result = 0; 201 202 blk_mq_requeue_request(cmd->request, true); 203 } 204 205 /* 206 * Function: scsi_queue_insert() 207 * 208 * Purpose: Insert a command in the midlevel queue. 209 * 210 * Arguments: cmd - command that we are adding to queue. 211 * reason - why we are inserting command to queue. 212 * 213 * Lock status: Assumed that lock is not held upon entry. 214 * 215 * Returns: Nothing. 216 * 217 * Notes: We do this for one of two cases. Either the host is busy 218 * and it cannot accept any more commands for the time being, 219 * or the device returned QUEUE_FULL and can accept no more 220 * commands. 221 * Notes: This could be called either from an interrupt context or a 222 * normal process context. 223 */ 224 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason) 225 { 226 __scsi_queue_insert(cmd, reason, true); 227 } 228 229 230 /** 231 * __scsi_execute - insert request and wait for the result 232 * @sdev: scsi device 233 * @cmd: scsi command 234 * @data_direction: data direction 235 * @buffer: data buffer 236 * @bufflen: len of buffer 237 * @sense: optional sense buffer 238 * @sshdr: optional decoded sense header 239 * @timeout: request timeout in seconds 240 * @retries: number of times to retry request 241 * @flags: flags for ->cmd_flags 242 * @rq_flags: flags for ->rq_flags 243 * @resid: optional residual length 244 * 245 * Returns the scsi_cmnd result field if a command was executed, or a negative 246 * Linux error code if we didn't get that far. 247 */ 248 int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd, 249 int data_direction, void *buffer, unsigned bufflen, 250 unsigned char *sense, struct scsi_sense_hdr *sshdr, 251 int timeout, int retries, u64 flags, req_flags_t rq_flags, 252 int *resid) 253 { 254 struct request *req; 255 struct scsi_request *rq; 256 int ret = DRIVER_ERROR << 24; 257 258 req = blk_get_request(sdev->request_queue, 259 data_direction == DMA_TO_DEVICE ? 260 REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, BLK_MQ_REQ_PREEMPT); 261 if (IS_ERR(req)) 262 return ret; 263 rq = scsi_req(req); 264 265 if (bufflen && blk_rq_map_kern(sdev->request_queue, req, 266 buffer, bufflen, GFP_NOIO)) 267 goto out; 268 269 rq->cmd_len = COMMAND_SIZE(cmd[0]); 270 memcpy(rq->cmd, cmd, rq->cmd_len); 271 rq->retries = retries; 272 req->timeout = timeout; 273 req->cmd_flags |= flags; 274 req->rq_flags |= rq_flags | RQF_QUIET; 275 276 /* 277 * head injection *required* here otherwise quiesce won't work 278 */ 279 blk_execute_rq(req->q, NULL, req, 1); 280 281 /* 282 * Some devices (USB mass-storage in particular) may transfer 283 * garbage data together with a residue indicating that the data 284 * is invalid. Prevent the garbage from being misinterpreted 285 * and prevent security leaks by zeroing out the excess data. 286 */ 287 if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen)) 288 memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len); 289 290 if (resid) 291 *resid = rq->resid_len; 292 if (sense && rq->sense_len) 293 memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE); 294 if (sshdr) 295 scsi_normalize_sense(rq->sense, rq->sense_len, sshdr); 296 ret = rq->result; 297 out: 298 blk_put_request(req); 299 300 return ret; 301 } 302 EXPORT_SYMBOL(__scsi_execute); 303 304 /* 305 * Function: scsi_init_cmd_errh() 306 * 307 * Purpose: Initialize cmd fields related to error handling. 308 * 309 * Arguments: cmd - command that is ready to be queued. 310 * 311 * Notes: This function has the job of initializing a number of 312 * fields related to error handling. Typically this will 313 * be called once for each command, as required. 314 */ 315 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd) 316 { 317 scsi_set_resid(cmd, 0); 318 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 319 if (cmd->cmd_len == 0) 320 cmd->cmd_len = scsi_command_size(cmd->cmnd); 321 } 322 323 /* 324 * Decrement the host_busy counter and wake up the error handler if necessary. 325 * Avoid as follows that the error handler is not woken up if shost->host_busy 326 * == shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination 327 * with an RCU read lock in this function to ensure that this function in its 328 * entirety either finishes before scsi_eh_scmd_add() increases the 329 * host_failed counter or that it notices the shost state change made by 330 * scsi_eh_scmd_add(). 331 */ 332 static void scsi_dec_host_busy(struct Scsi_Host *shost) 333 { 334 unsigned long flags; 335 336 rcu_read_lock(); 337 atomic_dec(&shost->host_busy); 338 if (unlikely(scsi_host_in_recovery(shost))) { 339 spin_lock_irqsave(shost->host_lock, flags); 340 if (shost->host_failed || shost->host_eh_scheduled) 341 scsi_eh_wakeup(shost); 342 spin_unlock_irqrestore(shost->host_lock, flags); 343 } 344 rcu_read_unlock(); 345 } 346 347 void scsi_device_unbusy(struct scsi_device *sdev) 348 { 349 struct Scsi_Host *shost = sdev->host; 350 struct scsi_target *starget = scsi_target(sdev); 351 352 scsi_dec_host_busy(shost); 353 354 if (starget->can_queue > 0) 355 atomic_dec(&starget->target_busy); 356 357 atomic_dec(&sdev->device_busy); 358 } 359 360 static void scsi_kick_queue(struct request_queue *q) 361 { 362 blk_mq_run_hw_queues(q, false); 363 } 364 365 /* 366 * Called for single_lun devices on IO completion. Clear starget_sdev_user, 367 * and call blk_run_queue for all the scsi_devices on the target - 368 * including current_sdev first. 369 * 370 * Called with *no* scsi locks held. 371 */ 372 static void scsi_single_lun_run(struct scsi_device *current_sdev) 373 { 374 struct Scsi_Host *shost = current_sdev->host; 375 struct scsi_device *sdev, *tmp; 376 struct scsi_target *starget = scsi_target(current_sdev); 377 unsigned long flags; 378 379 spin_lock_irqsave(shost->host_lock, flags); 380 starget->starget_sdev_user = NULL; 381 spin_unlock_irqrestore(shost->host_lock, flags); 382 383 /* 384 * Call blk_run_queue for all LUNs on the target, starting with 385 * current_sdev. We race with others (to set starget_sdev_user), 386 * but in most cases, we will be first. Ideally, each LU on the 387 * target would get some limited time or requests on the target. 388 */ 389 scsi_kick_queue(current_sdev->request_queue); 390 391 spin_lock_irqsave(shost->host_lock, flags); 392 if (starget->starget_sdev_user) 393 goto out; 394 list_for_each_entry_safe(sdev, tmp, &starget->devices, 395 same_target_siblings) { 396 if (sdev == current_sdev) 397 continue; 398 if (scsi_device_get(sdev)) 399 continue; 400 401 spin_unlock_irqrestore(shost->host_lock, flags); 402 scsi_kick_queue(sdev->request_queue); 403 spin_lock_irqsave(shost->host_lock, flags); 404 405 scsi_device_put(sdev); 406 } 407 out: 408 spin_unlock_irqrestore(shost->host_lock, flags); 409 } 410 411 static inline bool scsi_device_is_busy(struct scsi_device *sdev) 412 { 413 if (atomic_read(&sdev->device_busy) >= sdev->queue_depth) 414 return true; 415 if (atomic_read(&sdev->device_blocked) > 0) 416 return true; 417 return false; 418 } 419 420 static inline bool scsi_target_is_busy(struct scsi_target *starget) 421 { 422 if (starget->can_queue > 0) { 423 if (atomic_read(&starget->target_busy) >= starget->can_queue) 424 return true; 425 if (atomic_read(&starget->target_blocked) > 0) 426 return true; 427 } 428 return false; 429 } 430 431 static inline bool scsi_host_is_busy(struct Scsi_Host *shost) 432 { 433 if (shost->can_queue > 0 && 434 atomic_read(&shost->host_busy) >= shost->can_queue) 435 return true; 436 if (atomic_read(&shost->host_blocked) > 0) 437 return true; 438 if (shost->host_self_blocked) 439 return true; 440 return false; 441 } 442 443 static void scsi_starved_list_run(struct Scsi_Host *shost) 444 { 445 LIST_HEAD(starved_list); 446 struct scsi_device *sdev; 447 unsigned long flags; 448 449 spin_lock_irqsave(shost->host_lock, flags); 450 list_splice_init(&shost->starved_list, &starved_list); 451 452 while (!list_empty(&starved_list)) { 453 struct request_queue *slq; 454 455 /* 456 * As long as shost is accepting commands and we have 457 * starved queues, call blk_run_queue. scsi_request_fn 458 * drops the queue_lock and can add us back to the 459 * starved_list. 460 * 461 * host_lock protects the starved_list and starved_entry. 462 * scsi_request_fn must get the host_lock before checking 463 * or modifying starved_list or starved_entry. 464 */ 465 if (scsi_host_is_busy(shost)) 466 break; 467 468 sdev = list_entry(starved_list.next, 469 struct scsi_device, starved_entry); 470 list_del_init(&sdev->starved_entry); 471 if (scsi_target_is_busy(scsi_target(sdev))) { 472 list_move_tail(&sdev->starved_entry, 473 &shost->starved_list); 474 continue; 475 } 476 477 /* 478 * Once we drop the host lock, a racing scsi_remove_device() 479 * call may remove the sdev from the starved list and destroy 480 * it and the queue. Mitigate by taking a reference to the 481 * queue and never touching the sdev again after we drop the 482 * host lock. Note: if __scsi_remove_device() invokes 483 * blk_cleanup_queue() before the queue is run from this 484 * function then blk_run_queue() will return immediately since 485 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING. 486 */ 487 slq = sdev->request_queue; 488 if (!blk_get_queue(slq)) 489 continue; 490 spin_unlock_irqrestore(shost->host_lock, flags); 491 492 scsi_kick_queue(slq); 493 blk_put_queue(slq); 494 495 spin_lock_irqsave(shost->host_lock, flags); 496 } 497 /* put any unprocessed entries back */ 498 list_splice(&starved_list, &shost->starved_list); 499 spin_unlock_irqrestore(shost->host_lock, flags); 500 } 501 502 /* 503 * Function: scsi_run_queue() 504 * 505 * Purpose: Select a proper request queue to serve next 506 * 507 * Arguments: q - last request's queue 508 * 509 * Returns: Nothing 510 * 511 * Notes: The previous command was completely finished, start 512 * a new one if possible. 513 */ 514 static void scsi_run_queue(struct request_queue *q) 515 { 516 struct scsi_device *sdev = q->queuedata; 517 518 if (scsi_target(sdev)->single_lun) 519 scsi_single_lun_run(sdev); 520 if (!list_empty(&sdev->host->starved_list)) 521 scsi_starved_list_run(sdev->host); 522 523 blk_mq_run_hw_queues(q, false); 524 } 525 526 void scsi_requeue_run_queue(struct work_struct *work) 527 { 528 struct scsi_device *sdev; 529 struct request_queue *q; 530 531 sdev = container_of(work, struct scsi_device, requeue_work); 532 q = sdev->request_queue; 533 scsi_run_queue(q); 534 } 535 536 void scsi_run_host_queues(struct Scsi_Host *shost) 537 { 538 struct scsi_device *sdev; 539 540 shost_for_each_device(sdev, shost) 541 scsi_run_queue(sdev->request_queue); 542 } 543 544 static void scsi_uninit_cmd(struct scsi_cmnd *cmd) 545 { 546 if (!blk_rq_is_passthrough(cmd->request)) { 547 struct scsi_driver *drv = scsi_cmd_to_driver(cmd); 548 549 if (drv->uninit_command) 550 drv->uninit_command(cmd); 551 } 552 } 553 554 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd) 555 { 556 if (cmd->sdb.table.nents) 557 sg_free_table_chained(&cmd->sdb.table, 558 SCSI_INLINE_SG_CNT); 559 if (scsi_prot_sg_count(cmd)) 560 sg_free_table_chained(&cmd->prot_sdb->table, 561 SCSI_INLINE_PROT_SG_CNT); 562 } 563 564 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd) 565 { 566 scsi_mq_free_sgtables(cmd); 567 scsi_uninit_cmd(cmd); 568 scsi_del_cmd_from_list(cmd); 569 } 570 571 /* Returns false when no more bytes to process, true if there are more */ 572 static bool scsi_end_request(struct request *req, blk_status_t error, 573 unsigned int bytes) 574 { 575 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 576 struct scsi_device *sdev = cmd->device; 577 struct request_queue *q = sdev->request_queue; 578 579 if (blk_update_request(req, error, bytes)) 580 return true; 581 582 if (blk_queue_add_random(q)) 583 add_disk_randomness(req->rq_disk); 584 585 if (!blk_rq_is_scsi(req)) { 586 WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED)); 587 cmd->flags &= ~SCMD_INITIALIZED; 588 } 589 590 /* 591 * Calling rcu_barrier() is not necessary here because the 592 * SCSI error handler guarantees that the function called by 593 * call_rcu() has been called before scsi_end_request() is 594 * called. 595 */ 596 destroy_rcu_head(&cmd->rcu); 597 598 /* 599 * In the MQ case the command gets freed by __blk_mq_end_request, 600 * so we have to do all cleanup that depends on it earlier. 601 * 602 * We also can't kick the queues from irq context, so we 603 * will have to defer it to a workqueue. 604 */ 605 scsi_mq_uninit_cmd(cmd); 606 607 /* 608 * queue is still alive, so grab the ref for preventing it 609 * from being cleaned up during running queue. 610 */ 611 percpu_ref_get(&q->q_usage_counter); 612 613 __blk_mq_end_request(req, error); 614 615 if (scsi_target(sdev)->single_lun || 616 !list_empty(&sdev->host->starved_list)) 617 kblockd_schedule_work(&sdev->requeue_work); 618 else 619 blk_mq_run_hw_queues(q, true); 620 621 percpu_ref_put(&q->q_usage_counter); 622 return false; 623 } 624 625 /** 626 * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t 627 * @cmd: SCSI command 628 * @result: scsi error code 629 * 630 * Translate a SCSI result code into a blk_status_t value. May reset the host 631 * byte of @cmd->result. 632 */ 633 static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result) 634 { 635 switch (host_byte(result)) { 636 case DID_OK: 637 /* 638 * Also check the other bytes than the status byte in result 639 * to handle the case when a SCSI LLD sets result to 640 * DRIVER_SENSE << 24 without setting SAM_STAT_CHECK_CONDITION. 641 */ 642 if (scsi_status_is_good(result) && (result & ~0xff) == 0) 643 return BLK_STS_OK; 644 return BLK_STS_IOERR; 645 case DID_TRANSPORT_FAILFAST: 646 return BLK_STS_TRANSPORT; 647 case DID_TARGET_FAILURE: 648 set_host_byte(cmd, DID_OK); 649 return BLK_STS_TARGET; 650 case DID_NEXUS_FAILURE: 651 set_host_byte(cmd, DID_OK); 652 return BLK_STS_NEXUS; 653 case DID_ALLOC_FAILURE: 654 set_host_byte(cmd, DID_OK); 655 return BLK_STS_NOSPC; 656 case DID_MEDIUM_ERROR: 657 set_host_byte(cmd, DID_OK); 658 return BLK_STS_MEDIUM; 659 default: 660 return BLK_STS_IOERR; 661 } 662 } 663 664 /* Helper for scsi_io_completion() when "reprep" action required. */ 665 static void scsi_io_completion_reprep(struct scsi_cmnd *cmd, 666 struct request_queue *q) 667 { 668 /* A new command will be prepared and issued. */ 669 scsi_mq_requeue_cmd(cmd); 670 } 671 672 /* Helper for scsi_io_completion() when special action required. */ 673 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result) 674 { 675 struct request_queue *q = cmd->device->request_queue; 676 struct request *req = cmd->request; 677 int level = 0; 678 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY, 679 ACTION_DELAYED_RETRY} action; 680 unsigned long wait_for = (cmd->allowed + 1) * req->timeout; 681 struct scsi_sense_hdr sshdr; 682 bool sense_valid; 683 bool sense_current = true; /* false implies "deferred sense" */ 684 blk_status_t blk_stat; 685 686 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 687 if (sense_valid) 688 sense_current = !scsi_sense_is_deferred(&sshdr); 689 690 blk_stat = scsi_result_to_blk_status(cmd, result); 691 692 if (host_byte(result) == DID_RESET) { 693 /* Third party bus reset or reset for error recovery 694 * reasons. Just retry the command and see what 695 * happens. 696 */ 697 action = ACTION_RETRY; 698 } else if (sense_valid && sense_current) { 699 switch (sshdr.sense_key) { 700 case UNIT_ATTENTION: 701 if (cmd->device->removable) { 702 /* Detected disc change. Set a bit 703 * and quietly refuse further access. 704 */ 705 cmd->device->changed = 1; 706 action = ACTION_FAIL; 707 } else { 708 /* Must have been a power glitch, or a 709 * bus reset. Could not have been a 710 * media change, so we just retry the 711 * command and see what happens. 712 */ 713 action = ACTION_RETRY; 714 } 715 break; 716 case ILLEGAL_REQUEST: 717 /* If we had an ILLEGAL REQUEST returned, then 718 * we may have performed an unsupported 719 * command. The only thing this should be 720 * would be a ten byte read where only a six 721 * byte read was supported. Also, on a system 722 * where READ CAPACITY failed, we may have 723 * read past the end of the disk. 724 */ 725 if ((cmd->device->use_10_for_rw && 726 sshdr.asc == 0x20 && sshdr.ascq == 0x00) && 727 (cmd->cmnd[0] == READ_10 || 728 cmd->cmnd[0] == WRITE_10)) { 729 /* This will issue a new 6-byte command. */ 730 cmd->device->use_10_for_rw = 0; 731 action = ACTION_REPREP; 732 } else if (sshdr.asc == 0x10) /* DIX */ { 733 action = ACTION_FAIL; 734 blk_stat = BLK_STS_PROTECTION; 735 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */ 736 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) { 737 action = ACTION_FAIL; 738 blk_stat = BLK_STS_TARGET; 739 } else 740 action = ACTION_FAIL; 741 break; 742 case ABORTED_COMMAND: 743 action = ACTION_FAIL; 744 if (sshdr.asc == 0x10) /* DIF */ 745 blk_stat = BLK_STS_PROTECTION; 746 break; 747 case NOT_READY: 748 /* If the device is in the process of becoming 749 * ready, or has a temporary blockage, retry. 750 */ 751 if (sshdr.asc == 0x04) { 752 switch (sshdr.ascq) { 753 case 0x01: /* becoming ready */ 754 case 0x04: /* format in progress */ 755 case 0x05: /* rebuild in progress */ 756 case 0x06: /* recalculation in progress */ 757 case 0x07: /* operation in progress */ 758 case 0x08: /* Long write in progress */ 759 case 0x09: /* self test in progress */ 760 case 0x14: /* space allocation in progress */ 761 case 0x1a: /* start stop unit in progress */ 762 case 0x1b: /* sanitize in progress */ 763 case 0x1d: /* configuration in progress */ 764 case 0x24: /* depopulation in progress */ 765 action = ACTION_DELAYED_RETRY; 766 break; 767 default: 768 action = ACTION_FAIL; 769 break; 770 } 771 } else 772 action = ACTION_FAIL; 773 break; 774 case VOLUME_OVERFLOW: 775 /* See SSC3rXX or current. */ 776 action = ACTION_FAIL; 777 break; 778 default: 779 action = ACTION_FAIL; 780 break; 781 } 782 } else 783 action = ACTION_FAIL; 784 785 if (action != ACTION_FAIL && 786 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) 787 action = ACTION_FAIL; 788 789 switch (action) { 790 case ACTION_FAIL: 791 /* Give up and fail the remainder of the request */ 792 if (!(req->rq_flags & RQF_QUIET)) { 793 static DEFINE_RATELIMIT_STATE(_rs, 794 DEFAULT_RATELIMIT_INTERVAL, 795 DEFAULT_RATELIMIT_BURST); 796 797 if (unlikely(scsi_logging_level)) 798 level = 799 SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT, 800 SCSI_LOG_MLCOMPLETE_BITS); 801 802 /* 803 * if logging is enabled the failure will be printed 804 * in scsi_log_completion(), so avoid duplicate messages 805 */ 806 if (!level && __ratelimit(&_rs)) { 807 scsi_print_result(cmd, NULL, FAILED); 808 if (driver_byte(result) == DRIVER_SENSE) 809 scsi_print_sense(cmd); 810 scsi_print_command(cmd); 811 } 812 } 813 if (!scsi_end_request(req, blk_stat, blk_rq_err_bytes(req))) 814 return; 815 /*FALLTHRU*/ 816 case ACTION_REPREP: 817 scsi_io_completion_reprep(cmd, q); 818 break; 819 case ACTION_RETRY: 820 /* Retry the same command immediately */ 821 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false); 822 break; 823 case ACTION_DELAYED_RETRY: 824 /* Retry the same command after a delay */ 825 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false); 826 break; 827 } 828 } 829 830 /* 831 * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a 832 * new result that may suppress further error checking. Also modifies 833 * *blk_statp in some cases. 834 */ 835 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result, 836 blk_status_t *blk_statp) 837 { 838 bool sense_valid; 839 bool sense_current = true; /* false implies "deferred sense" */ 840 struct request *req = cmd->request; 841 struct scsi_sense_hdr sshdr; 842 843 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 844 if (sense_valid) 845 sense_current = !scsi_sense_is_deferred(&sshdr); 846 847 if (blk_rq_is_passthrough(req)) { 848 if (sense_valid) { 849 /* 850 * SG_IO wants current and deferred errors 851 */ 852 scsi_req(req)->sense_len = 853 min(8 + cmd->sense_buffer[7], 854 SCSI_SENSE_BUFFERSIZE); 855 } 856 if (sense_current) 857 *blk_statp = scsi_result_to_blk_status(cmd, result); 858 } else if (blk_rq_bytes(req) == 0 && sense_current) { 859 /* 860 * Flush commands do not transfers any data, and thus cannot use 861 * good_bytes != blk_rq_bytes(req) as the signal for an error. 862 * This sets *blk_statp explicitly for the problem case. 863 */ 864 *blk_statp = scsi_result_to_blk_status(cmd, result); 865 } 866 /* 867 * Recovered errors need reporting, but they're always treated as 868 * success, so fiddle the result code here. For passthrough requests 869 * we already took a copy of the original into sreq->result which 870 * is what gets returned to the user 871 */ 872 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) { 873 bool do_print = true; 874 /* 875 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d] 876 * skip print since caller wants ATA registers. Only occurs 877 * on SCSI ATA PASS_THROUGH commands when CK_COND=1 878 */ 879 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d)) 880 do_print = false; 881 else if (req->rq_flags & RQF_QUIET) 882 do_print = false; 883 if (do_print) 884 scsi_print_sense(cmd); 885 result = 0; 886 /* for passthrough, *blk_statp may be set */ 887 *blk_statp = BLK_STS_OK; 888 } 889 /* 890 * Another corner case: the SCSI status byte is non-zero but 'good'. 891 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when 892 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD 893 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related 894 * intermediate statuses (both obsolete in SAM-4) as good. 895 */ 896 if (status_byte(result) && scsi_status_is_good(result)) { 897 result = 0; 898 *blk_statp = BLK_STS_OK; 899 } 900 return result; 901 } 902 903 /* 904 * Function: scsi_io_completion() 905 * 906 * Purpose: Completion processing for block device I/O requests. 907 * 908 * Arguments: cmd - command that is finished. 909 * 910 * Lock status: Assumed that no lock is held upon entry. 911 * 912 * Returns: Nothing 913 * 914 * Notes: We will finish off the specified number of sectors. If we 915 * are done, the command block will be released and the queue 916 * function will be goosed. If we are not done then we have to 917 * figure out what to do next: 918 * 919 * a) We can call scsi_requeue_command(). The request 920 * will be unprepared and put back on the queue. Then 921 * a new command will be created for it. This should 922 * be used if we made forward progress, or if we want 923 * to switch from READ(10) to READ(6) for example. 924 * 925 * b) We can call __scsi_queue_insert(). The request will 926 * be put back on the queue and retried using the same 927 * command as before, possibly after a delay. 928 * 929 * c) We can call scsi_end_request() with blk_stat other than 930 * BLK_STS_OK, to fail the remainder of the request. 931 */ 932 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes) 933 { 934 int result = cmd->result; 935 struct request_queue *q = cmd->device->request_queue; 936 struct request *req = cmd->request; 937 blk_status_t blk_stat = BLK_STS_OK; 938 939 if (unlikely(result)) /* a nz result may or may not be an error */ 940 result = scsi_io_completion_nz_result(cmd, result, &blk_stat); 941 942 if (unlikely(blk_rq_is_passthrough(req))) { 943 /* 944 * scsi_result_to_blk_status may have reset the host_byte 945 */ 946 scsi_req(req)->result = cmd->result; 947 } 948 949 /* 950 * Next deal with any sectors which we were able to correctly 951 * handle. 952 */ 953 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd, 954 "%u sectors total, %d bytes done.\n", 955 blk_rq_sectors(req), good_bytes)); 956 957 /* 958 * Next deal with any sectors which we were able to correctly 959 * handle. Failed, zero length commands always need to drop down 960 * to retry code. Fast path should return in this block. 961 */ 962 if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) { 963 if (likely(!scsi_end_request(req, blk_stat, good_bytes))) 964 return; /* no bytes remaining */ 965 } 966 967 /* Kill remainder if no retries. */ 968 if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) { 969 if (scsi_end_request(req, blk_stat, blk_rq_bytes(req))) 970 WARN_ONCE(true, 971 "Bytes remaining after failed, no-retry command"); 972 return; 973 } 974 975 /* 976 * If there had been no error, but we have leftover bytes in the 977 * requeues just queue the command up again. 978 */ 979 if (likely(result == 0)) 980 scsi_io_completion_reprep(cmd, q); 981 else 982 scsi_io_completion_action(cmd, result); 983 } 984 985 static blk_status_t scsi_init_sgtable(struct request *req, 986 struct scsi_data_buffer *sdb) 987 { 988 int count; 989 990 /* 991 * If sg table allocation fails, requeue request later. 992 */ 993 if (unlikely(sg_alloc_table_chained(&sdb->table, 994 blk_rq_nr_phys_segments(req), sdb->table.sgl, 995 SCSI_INLINE_SG_CNT))) 996 return BLK_STS_RESOURCE; 997 998 /* 999 * Next, walk the list, and fill in the addresses and sizes of 1000 * each segment. 1001 */ 1002 count = blk_rq_map_sg(req->q, req, sdb->table.sgl); 1003 BUG_ON(count > sdb->table.nents); 1004 sdb->table.nents = count; 1005 sdb->length = blk_rq_payload_bytes(req); 1006 return BLK_STS_OK; 1007 } 1008 1009 /* 1010 * Function: scsi_init_io() 1011 * 1012 * Purpose: SCSI I/O initialize function. 1013 * 1014 * Arguments: cmd - Command descriptor we wish to initialize 1015 * 1016 * Returns: BLK_STS_OK on success 1017 * BLK_STS_RESOURCE if the failure is retryable 1018 * BLK_STS_IOERR if the failure is fatal 1019 */ 1020 blk_status_t scsi_init_io(struct scsi_cmnd *cmd) 1021 { 1022 struct request *rq = cmd->request; 1023 blk_status_t ret; 1024 1025 if (WARN_ON_ONCE(!blk_rq_nr_phys_segments(rq))) 1026 return BLK_STS_IOERR; 1027 1028 ret = scsi_init_sgtable(rq, &cmd->sdb); 1029 if (ret) 1030 return ret; 1031 1032 if (blk_integrity_rq(rq)) { 1033 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb; 1034 int ivecs, count; 1035 1036 if (WARN_ON_ONCE(!prot_sdb)) { 1037 /* 1038 * This can happen if someone (e.g. multipath) 1039 * queues a command to a device on an adapter 1040 * that does not support DIX. 1041 */ 1042 ret = BLK_STS_IOERR; 1043 goto out_free_sgtables; 1044 } 1045 1046 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio); 1047 1048 if (sg_alloc_table_chained(&prot_sdb->table, ivecs, 1049 prot_sdb->table.sgl, 1050 SCSI_INLINE_PROT_SG_CNT)) { 1051 ret = BLK_STS_RESOURCE; 1052 goto out_free_sgtables; 1053 } 1054 1055 count = blk_rq_map_integrity_sg(rq->q, rq->bio, 1056 prot_sdb->table.sgl); 1057 BUG_ON(count > ivecs); 1058 BUG_ON(count > queue_max_integrity_segments(rq->q)); 1059 1060 cmd->prot_sdb = prot_sdb; 1061 cmd->prot_sdb->table.nents = count; 1062 } 1063 1064 return BLK_STS_OK; 1065 out_free_sgtables: 1066 scsi_mq_free_sgtables(cmd); 1067 return ret; 1068 } 1069 EXPORT_SYMBOL(scsi_init_io); 1070 1071 /** 1072 * scsi_initialize_rq - initialize struct scsi_cmnd partially 1073 * @rq: Request associated with the SCSI command to be initialized. 1074 * 1075 * This function initializes the members of struct scsi_cmnd that must be 1076 * initialized before request processing starts and that won't be 1077 * reinitialized if a SCSI command is requeued. 1078 * 1079 * Called from inside blk_get_request() for pass-through requests and from 1080 * inside scsi_init_command() for filesystem requests. 1081 */ 1082 static void scsi_initialize_rq(struct request *rq) 1083 { 1084 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1085 1086 scsi_req_init(&cmd->req); 1087 init_rcu_head(&cmd->rcu); 1088 cmd->jiffies_at_alloc = jiffies; 1089 cmd->retries = 0; 1090 } 1091 1092 /* Add a command to the list used by the aacraid and dpt_i2o drivers */ 1093 void scsi_add_cmd_to_list(struct scsi_cmnd *cmd) 1094 { 1095 struct scsi_device *sdev = cmd->device; 1096 struct Scsi_Host *shost = sdev->host; 1097 unsigned long flags; 1098 1099 if (shost->use_cmd_list) { 1100 spin_lock_irqsave(&sdev->list_lock, flags); 1101 list_add_tail(&cmd->list, &sdev->cmd_list); 1102 spin_unlock_irqrestore(&sdev->list_lock, flags); 1103 } 1104 } 1105 1106 /* Remove a command from the list used by the aacraid and dpt_i2o drivers */ 1107 void scsi_del_cmd_from_list(struct scsi_cmnd *cmd) 1108 { 1109 struct scsi_device *sdev = cmd->device; 1110 struct Scsi_Host *shost = sdev->host; 1111 unsigned long flags; 1112 1113 if (shost->use_cmd_list) { 1114 spin_lock_irqsave(&sdev->list_lock, flags); 1115 BUG_ON(list_empty(&cmd->list)); 1116 list_del_init(&cmd->list); 1117 spin_unlock_irqrestore(&sdev->list_lock, flags); 1118 } 1119 } 1120 1121 /* Called after a request has been started. */ 1122 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd) 1123 { 1124 void *buf = cmd->sense_buffer; 1125 void *prot = cmd->prot_sdb; 1126 struct request *rq = blk_mq_rq_from_pdu(cmd); 1127 unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS; 1128 unsigned long jiffies_at_alloc; 1129 int retries; 1130 1131 if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) { 1132 flags |= SCMD_INITIALIZED; 1133 scsi_initialize_rq(rq); 1134 } 1135 1136 jiffies_at_alloc = cmd->jiffies_at_alloc; 1137 retries = cmd->retries; 1138 /* zero out the cmd, except for the embedded scsi_request */ 1139 memset((char *)cmd + sizeof(cmd->req), 0, 1140 sizeof(*cmd) - sizeof(cmd->req) + dev->host->hostt->cmd_size); 1141 1142 cmd->device = dev; 1143 cmd->sense_buffer = buf; 1144 cmd->prot_sdb = prot; 1145 cmd->flags = flags; 1146 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler); 1147 cmd->jiffies_at_alloc = jiffies_at_alloc; 1148 cmd->retries = retries; 1149 1150 scsi_add_cmd_to_list(cmd); 1151 } 1152 1153 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev, 1154 struct request *req) 1155 { 1156 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1157 1158 /* 1159 * Passthrough requests may transfer data, in which case they must 1160 * a bio attached to them. Or they might contain a SCSI command 1161 * that does not transfer data, in which case they may optionally 1162 * submit a request without an attached bio. 1163 */ 1164 if (req->bio) { 1165 blk_status_t ret = scsi_init_io(cmd); 1166 if (unlikely(ret != BLK_STS_OK)) 1167 return ret; 1168 } else { 1169 BUG_ON(blk_rq_bytes(req)); 1170 1171 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1172 } 1173 1174 cmd->cmd_len = scsi_req(req)->cmd_len; 1175 cmd->cmnd = scsi_req(req)->cmd; 1176 cmd->transfersize = blk_rq_bytes(req); 1177 cmd->allowed = scsi_req(req)->retries; 1178 return BLK_STS_OK; 1179 } 1180 1181 /* 1182 * Setup a normal block command. These are simple request from filesystems 1183 * that still need to be translated to SCSI CDBs from the ULD. 1184 */ 1185 static blk_status_t scsi_setup_fs_cmnd(struct scsi_device *sdev, 1186 struct request *req) 1187 { 1188 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1189 1190 if (unlikely(sdev->handler && sdev->handler->prep_fn)) { 1191 blk_status_t ret = sdev->handler->prep_fn(sdev, req); 1192 if (ret != BLK_STS_OK) 1193 return ret; 1194 } 1195 1196 cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd; 1197 memset(cmd->cmnd, 0, BLK_MAX_CDB); 1198 return scsi_cmd_to_driver(cmd)->init_command(cmd); 1199 } 1200 1201 static blk_status_t scsi_setup_cmnd(struct scsi_device *sdev, 1202 struct request *req) 1203 { 1204 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1205 1206 if (!blk_rq_bytes(req)) 1207 cmd->sc_data_direction = DMA_NONE; 1208 else if (rq_data_dir(req) == WRITE) 1209 cmd->sc_data_direction = DMA_TO_DEVICE; 1210 else 1211 cmd->sc_data_direction = DMA_FROM_DEVICE; 1212 1213 if (blk_rq_is_scsi(req)) 1214 return scsi_setup_scsi_cmnd(sdev, req); 1215 else 1216 return scsi_setup_fs_cmnd(sdev, req); 1217 } 1218 1219 static blk_status_t 1220 scsi_prep_state_check(struct scsi_device *sdev, struct request *req) 1221 { 1222 switch (sdev->sdev_state) { 1223 case SDEV_OFFLINE: 1224 case SDEV_TRANSPORT_OFFLINE: 1225 /* 1226 * If the device is offline we refuse to process any 1227 * commands. The device must be brought online 1228 * before trying any recovery commands. 1229 */ 1230 sdev_printk(KERN_ERR, sdev, 1231 "rejecting I/O to offline device\n"); 1232 return BLK_STS_IOERR; 1233 case SDEV_DEL: 1234 /* 1235 * If the device is fully deleted, we refuse to 1236 * process any commands as well. 1237 */ 1238 sdev_printk(KERN_ERR, sdev, 1239 "rejecting I/O to dead device\n"); 1240 return BLK_STS_IOERR; 1241 case SDEV_BLOCK: 1242 case SDEV_CREATED_BLOCK: 1243 return BLK_STS_RESOURCE; 1244 case SDEV_QUIESCE: 1245 /* 1246 * If the devices is blocked we defer normal commands. 1247 */ 1248 if (req && !(req->rq_flags & RQF_PREEMPT)) 1249 return BLK_STS_RESOURCE; 1250 return BLK_STS_OK; 1251 default: 1252 /* 1253 * For any other not fully online state we only allow 1254 * special commands. In particular any user initiated 1255 * command is not allowed. 1256 */ 1257 if (req && !(req->rq_flags & RQF_PREEMPT)) 1258 return BLK_STS_IOERR; 1259 return BLK_STS_OK; 1260 } 1261 } 1262 1263 /* 1264 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else 1265 * return 0. 1266 * 1267 * Called with the queue_lock held. 1268 */ 1269 static inline int scsi_dev_queue_ready(struct request_queue *q, 1270 struct scsi_device *sdev) 1271 { 1272 unsigned int busy; 1273 1274 busy = atomic_inc_return(&sdev->device_busy) - 1; 1275 if (atomic_read(&sdev->device_blocked)) { 1276 if (busy) 1277 goto out_dec; 1278 1279 /* 1280 * unblock after device_blocked iterates to zero 1281 */ 1282 if (atomic_dec_return(&sdev->device_blocked) > 0) 1283 goto out_dec; 1284 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev, 1285 "unblocking device at zero depth\n")); 1286 } 1287 1288 if (busy >= sdev->queue_depth) 1289 goto out_dec; 1290 1291 return 1; 1292 out_dec: 1293 atomic_dec(&sdev->device_busy); 1294 return 0; 1295 } 1296 1297 /* 1298 * scsi_target_queue_ready: checks if there we can send commands to target 1299 * @sdev: scsi device on starget to check. 1300 */ 1301 static inline int scsi_target_queue_ready(struct Scsi_Host *shost, 1302 struct scsi_device *sdev) 1303 { 1304 struct scsi_target *starget = scsi_target(sdev); 1305 unsigned int busy; 1306 1307 if (starget->single_lun) { 1308 spin_lock_irq(shost->host_lock); 1309 if (starget->starget_sdev_user && 1310 starget->starget_sdev_user != sdev) { 1311 spin_unlock_irq(shost->host_lock); 1312 return 0; 1313 } 1314 starget->starget_sdev_user = sdev; 1315 spin_unlock_irq(shost->host_lock); 1316 } 1317 1318 if (starget->can_queue <= 0) 1319 return 1; 1320 1321 busy = atomic_inc_return(&starget->target_busy) - 1; 1322 if (atomic_read(&starget->target_blocked) > 0) { 1323 if (busy) 1324 goto starved; 1325 1326 /* 1327 * unblock after target_blocked iterates to zero 1328 */ 1329 if (atomic_dec_return(&starget->target_blocked) > 0) 1330 goto out_dec; 1331 1332 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget, 1333 "unblocking target at zero depth\n")); 1334 } 1335 1336 if (busy >= starget->can_queue) 1337 goto starved; 1338 1339 return 1; 1340 1341 starved: 1342 spin_lock_irq(shost->host_lock); 1343 list_move_tail(&sdev->starved_entry, &shost->starved_list); 1344 spin_unlock_irq(shost->host_lock); 1345 out_dec: 1346 if (starget->can_queue > 0) 1347 atomic_dec(&starget->target_busy); 1348 return 0; 1349 } 1350 1351 /* 1352 * scsi_host_queue_ready: if we can send requests to shost, return 1 else 1353 * return 0. We must end up running the queue again whenever 0 is 1354 * returned, else IO can hang. 1355 */ 1356 static inline int scsi_host_queue_ready(struct request_queue *q, 1357 struct Scsi_Host *shost, 1358 struct scsi_device *sdev) 1359 { 1360 unsigned int busy; 1361 1362 if (scsi_host_in_recovery(shost)) 1363 return 0; 1364 1365 busy = atomic_inc_return(&shost->host_busy) - 1; 1366 if (atomic_read(&shost->host_blocked) > 0) { 1367 if (busy) 1368 goto starved; 1369 1370 /* 1371 * unblock after host_blocked iterates to zero 1372 */ 1373 if (atomic_dec_return(&shost->host_blocked) > 0) 1374 goto out_dec; 1375 1376 SCSI_LOG_MLQUEUE(3, 1377 shost_printk(KERN_INFO, shost, 1378 "unblocking host at zero depth\n")); 1379 } 1380 1381 if (shost->can_queue > 0 && busy >= shost->can_queue) 1382 goto starved; 1383 if (shost->host_self_blocked) 1384 goto starved; 1385 1386 /* We're OK to process the command, so we can't be starved */ 1387 if (!list_empty(&sdev->starved_entry)) { 1388 spin_lock_irq(shost->host_lock); 1389 if (!list_empty(&sdev->starved_entry)) 1390 list_del_init(&sdev->starved_entry); 1391 spin_unlock_irq(shost->host_lock); 1392 } 1393 1394 return 1; 1395 1396 starved: 1397 spin_lock_irq(shost->host_lock); 1398 if (list_empty(&sdev->starved_entry)) 1399 list_add_tail(&sdev->starved_entry, &shost->starved_list); 1400 spin_unlock_irq(shost->host_lock); 1401 out_dec: 1402 scsi_dec_host_busy(shost); 1403 return 0; 1404 } 1405 1406 /* 1407 * Busy state exporting function for request stacking drivers. 1408 * 1409 * For efficiency, no lock is taken to check the busy state of 1410 * shost/starget/sdev, since the returned value is not guaranteed and 1411 * may be changed after request stacking drivers call the function, 1412 * regardless of taking lock or not. 1413 * 1414 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi 1415 * needs to return 'not busy'. Otherwise, request stacking drivers 1416 * may hold requests forever. 1417 */ 1418 static bool scsi_mq_lld_busy(struct request_queue *q) 1419 { 1420 struct scsi_device *sdev = q->queuedata; 1421 struct Scsi_Host *shost; 1422 1423 if (blk_queue_dying(q)) 1424 return false; 1425 1426 shost = sdev->host; 1427 1428 /* 1429 * Ignore host/starget busy state. 1430 * Since block layer does not have a concept of fairness across 1431 * multiple queues, congestion of host/starget needs to be handled 1432 * in SCSI layer. 1433 */ 1434 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev)) 1435 return true; 1436 1437 return false; 1438 } 1439 1440 static void scsi_softirq_done(struct request *rq) 1441 { 1442 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1443 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout; 1444 int disposition; 1445 1446 INIT_LIST_HEAD(&cmd->eh_entry); 1447 1448 atomic_inc(&cmd->device->iodone_cnt); 1449 if (cmd->result) 1450 atomic_inc(&cmd->device->ioerr_cnt); 1451 1452 disposition = scsi_decide_disposition(cmd); 1453 if (disposition != SUCCESS && 1454 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) { 1455 scmd_printk(KERN_ERR, cmd, 1456 "timing out command, waited %lus\n", 1457 wait_for/HZ); 1458 disposition = SUCCESS; 1459 } 1460 1461 scsi_log_completion(cmd, disposition); 1462 1463 switch (disposition) { 1464 case SUCCESS: 1465 scsi_finish_command(cmd); 1466 break; 1467 case NEEDS_RETRY: 1468 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY); 1469 break; 1470 case ADD_TO_MLQUEUE: 1471 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY); 1472 break; 1473 default: 1474 scsi_eh_scmd_add(cmd); 1475 break; 1476 } 1477 } 1478 1479 /** 1480 * scsi_dispatch_command - Dispatch a command to the low-level driver. 1481 * @cmd: command block we are dispatching. 1482 * 1483 * Return: nonzero return request was rejected and device's queue needs to be 1484 * plugged. 1485 */ 1486 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd) 1487 { 1488 struct Scsi_Host *host = cmd->device->host; 1489 int rtn = 0; 1490 1491 atomic_inc(&cmd->device->iorequest_cnt); 1492 1493 /* check if the device is still usable */ 1494 if (unlikely(cmd->device->sdev_state == SDEV_DEL)) { 1495 /* in SDEV_DEL we error all commands. DID_NO_CONNECT 1496 * returns an immediate error upwards, and signals 1497 * that the device is no longer present */ 1498 cmd->result = DID_NO_CONNECT << 16; 1499 goto done; 1500 } 1501 1502 /* Check to see if the scsi lld made this device blocked. */ 1503 if (unlikely(scsi_device_blocked(cmd->device))) { 1504 /* 1505 * in blocked state, the command is just put back on 1506 * the device queue. The suspend state has already 1507 * blocked the queue so future requests should not 1508 * occur until the device transitions out of the 1509 * suspend state. 1510 */ 1511 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1512 "queuecommand : device blocked\n")); 1513 return SCSI_MLQUEUE_DEVICE_BUSY; 1514 } 1515 1516 /* Store the LUN value in cmnd, if needed. */ 1517 if (cmd->device->lun_in_cdb) 1518 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) | 1519 (cmd->device->lun << 5 & 0xe0); 1520 1521 scsi_log_send(cmd); 1522 1523 /* 1524 * Before we queue this command, check if the command 1525 * length exceeds what the host adapter can handle. 1526 */ 1527 if (cmd->cmd_len > cmd->device->host->max_cmd_len) { 1528 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1529 "queuecommand : command too long. " 1530 "cdb_size=%d host->max_cmd_len=%d\n", 1531 cmd->cmd_len, cmd->device->host->max_cmd_len)); 1532 cmd->result = (DID_ABORT << 16); 1533 goto done; 1534 } 1535 1536 if (unlikely(host->shost_state == SHOST_DEL)) { 1537 cmd->result = (DID_NO_CONNECT << 16); 1538 goto done; 1539 1540 } 1541 1542 trace_scsi_dispatch_cmd_start(cmd); 1543 rtn = host->hostt->queuecommand(host, cmd); 1544 if (rtn) { 1545 trace_scsi_dispatch_cmd_error(cmd, rtn); 1546 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY && 1547 rtn != SCSI_MLQUEUE_TARGET_BUSY) 1548 rtn = SCSI_MLQUEUE_HOST_BUSY; 1549 1550 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1551 "queuecommand : request rejected\n")); 1552 } 1553 1554 return rtn; 1555 done: 1556 cmd->scsi_done(cmd); 1557 return 0; 1558 } 1559 1560 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */ 1561 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost) 1562 { 1563 return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) * 1564 sizeof(struct scatterlist); 1565 } 1566 1567 static blk_status_t scsi_mq_prep_fn(struct request *req) 1568 { 1569 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1570 struct scsi_device *sdev = req->q->queuedata; 1571 struct Scsi_Host *shost = sdev->host; 1572 struct scatterlist *sg; 1573 1574 scsi_init_command(sdev, cmd); 1575 1576 cmd->request = req; 1577 cmd->tag = req->tag; 1578 cmd->prot_op = SCSI_PROT_NORMAL; 1579 1580 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size; 1581 cmd->sdb.table.sgl = sg; 1582 1583 if (scsi_host_get_prot(shost)) { 1584 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer)); 1585 1586 cmd->prot_sdb->table.sgl = 1587 (struct scatterlist *)(cmd->prot_sdb + 1); 1588 } 1589 1590 blk_mq_start_request(req); 1591 1592 return scsi_setup_cmnd(sdev, req); 1593 } 1594 1595 static void scsi_mq_done(struct scsi_cmnd *cmd) 1596 { 1597 if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state))) 1598 return; 1599 trace_scsi_dispatch_cmd_done(cmd); 1600 1601 /* 1602 * If the block layer didn't complete the request due to a timeout 1603 * injection, scsi must clear its internal completed state so that the 1604 * timeout handler will see it needs to escalate its own error 1605 * recovery. 1606 */ 1607 if (unlikely(!blk_mq_complete_request(cmd->request))) 1608 clear_bit(SCMD_STATE_COMPLETE, &cmd->state); 1609 } 1610 1611 static void scsi_mq_put_budget(struct blk_mq_hw_ctx *hctx) 1612 { 1613 struct request_queue *q = hctx->queue; 1614 struct scsi_device *sdev = q->queuedata; 1615 1616 atomic_dec(&sdev->device_busy); 1617 } 1618 1619 static bool scsi_mq_get_budget(struct blk_mq_hw_ctx *hctx) 1620 { 1621 struct request_queue *q = hctx->queue; 1622 struct scsi_device *sdev = q->queuedata; 1623 1624 if (scsi_dev_queue_ready(q, sdev)) 1625 return true; 1626 1627 if (atomic_read(&sdev->device_busy) == 0 && !scsi_device_blocked(sdev)) 1628 blk_mq_delay_run_hw_queue(hctx, SCSI_QUEUE_DELAY); 1629 return false; 1630 } 1631 1632 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx, 1633 const struct blk_mq_queue_data *bd) 1634 { 1635 struct request *req = bd->rq; 1636 struct request_queue *q = req->q; 1637 struct scsi_device *sdev = q->queuedata; 1638 struct Scsi_Host *shost = sdev->host; 1639 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1640 blk_status_t ret; 1641 int reason; 1642 1643 /* 1644 * If the device is not in running state we will reject some or all 1645 * commands. 1646 */ 1647 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) { 1648 ret = scsi_prep_state_check(sdev, req); 1649 if (ret != BLK_STS_OK) 1650 goto out_put_budget; 1651 } 1652 1653 ret = BLK_STS_RESOURCE; 1654 if (!scsi_target_queue_ready(shost, sdev)) 1655 goto out_put_budget; 1656 if (!scsi_host_queue_ready(q, shost, sdev)) 1657 goto out_dec_target_busy; 1658 1659 if (!(req->rq_flags & RQF_DONTPREP)) { 1660 ret = scsi_mq_prep_fn(req); 1661 if (ret != BLK_STS_OK) 1662 goto out_dec_host_busy; 1663 req->rq_flags |= RQF_DONTPREP; 1664 } else { 1665 clear_bit(SCMD_STATE_COMPLETE, &cmd->state); 1666 blk_mq_start_request(req); 1667 } 1668 1669 if (sdev->simple_tags) 1670 cmd->flags |= SCMD_TAGGED; 1671 else 1672 cmd->flags &= ~SCMD_TAGGED; 1673 1674 scsi_init_cmd_errh(cmd); 1675 cmd->scsi_done = scsi_mq_done; 1676 1677 reason = scsi_dispatch_cmd(cmd); 1678 if (reason) { 1679 scsi_set_blocked(cmd, reason); 1680 ret = BLK_STS_RESOURCE; 1681 goto out_dec_host_busy; 1682 } 1683 1684 return BLK_STS_OK; 1685 1686 out_dec_host_busy: 1687 scsi_dec_host_busy(shost); 1688 out_dec_target_busy: 1689 if (scsi_target(sdev)->can_queue > 0) 1690 atomic_dec(&scsi_target(sdev)->target_busy); 1691 out_put_budget: 1692 scsi_mq_put_budget(hctx); 1693 switch (ret) { 1694 case BLK_STS_OK: 1695 break; 1696 case BLK_STS_RESOURCE: 1697 if (atomic_read(&sdev->device_busy) || 1698 scsi_device_blocked(sdev)) 1699 ret = BLK_STS_DEV_RESOURCE; 1700 break; 1701 default: 1702 if (unlikely(!scsi_device_online(sdev))) 1703 scsi_req(req)->result = DID_NO_CONNECT << 16; 1704 else 1705 scsi_req(req)->result = DID_ERROR << 16; 1706 /* 1707 * Make sure to release all allocated resources when 1708 * we hit an error, as we will never see this command 1709 * again. 1710 */ 1711 if (req->rq_flags & RQF_DONTPREP) 1712 scsi_mq_uninit_cmd(cmd); 1713 break; 1714 } 1715 return ret; 1716 } 1717 1718 static enum blk_eh_timer_return scsi_timeout(struct request *req, 1719 bool reserved) 1720 { 1721 if (reserved) 1722 return BLK_EH_RESET_TIMER; 1723 return scsi_times_out(req); 1724 } 1725 1726 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 1727 unsigned int hctx_idx, unsigned int numa_node) 1728 { 1729 struct Scsi_Host *shost = set->driver_data; 1730 const bool unchecked_isa_dma = shost->unchecked_isa_dma; 1731 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1732 struct scatterlist *sg; 1733 1734 if (unchecked_isa_dma) 1735 cmd->flags |= SCMD_UNCHECKED_ISA_DMA; 1736 cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma, 1737 GFP_KERNEL, numa_node); 1738 if (!cmd->sense_buffer) 1739 return -ENOMEM; 1740 cmd->req.sense = cmd->sense_buffer; 1741 1742 if (scsi_host_get_prot(shost)) { 1743 sg = (void *)cmd + sizeof(struct scsi_cmnd) + 1744 shost->hostt->cmd_size; 1745 cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost); 1746 } 1747 1748 return 0; 1749 } 1750 1751 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq, 1752 unsigned int hctx_idx) 1753 { 1754 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1755 1756 scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA, 1757 cmd->sense_buffer); 1758 } 1759 1760 static int scsi_map_queues(struct blk_mq_tag_set *set) 1761 { 1762 struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set); 1763 1764 if (shost->hostt->map_queues) 1765 return shost->hostt->map_queues(shost); 1766 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 1767 } 1768 1769 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q) 1770 { 1771 struct device *dev = shost->dma_dev; 1772 1773 /* 1774 * this limit is imposed by hardware restrictions 1775 */ 1776 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize, 1777 SG_MAX_SEGMENTS)); 1778 1779 if (scsi_host_prot_dma(shost)) { 1780 shost->sg_prot_tablesize = 1781 min_not_zero(shost->sg_prot_tablesize, 1782 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS); 1783 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize); 1784 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize); 1785 } 1786 1787 if (dev->dma_mask) { 1788 shost->max_sectors = min_t(unsigned int, shost->max_sectors, 1789 dma_max_mapping_size(dev) >> SECTOR_SHIFT); 1790 } 1791 blk_queue_max_hw_sectors(q, shost->max_sectors); 1792 if (shost->unchecked_isa_dma) 1793 blk_queue_bounce_limit(q, BLK_BOUNCE_ISA); 1794 blk_queue_segment_boundary(q, shost->dma_boundary); 1795 dma_set_seg_boundary(dev, shost->dma_boundary); 1796 1797 blk_queue_max_segment_size(q, shost->max_segment_size); 1798 blk_queue_virt_boundary(q, shost->virt_boundary_mask); 1799 dma_set_max_seg_size(dev, queue_max_segment_size(q)); 1800 1801 /* 1802 * Set a reasonable default alignment: The larger of 32-byte (dword), 1803 * which is a common minimum for HBAs, and the minimum DMA alignment, 1804 * which is set by the platform. 1805 * 1806 * Devices that require a bigger alignment can increase it later. 1807 */ 1808 blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1); 1809 } 1810 EXPORT_SYMBOL_GPL(__scsi_init_queue); 1811 1812 static const struct blk_mq_ops scsi_mq_ops = { 1813 .get_budget = scsi_mq_get_budget, 1814 .put_budget = scsi_mq_put_budget, 1815 .queue_rq = scsi_queue_rq, 1816 .complete = scsi_softirq_done, 1817 .timeout = scsi_timeout, 1818 #ifdef CONFIG_BLK_DEBUG_FS 1819 .show_rq = scsi_show_rq, 1820 #endif 1821 .init_request = scsi_mq_init_request, 1822 .exit_request = scsi_mq_exit_request, 1823 .initialize_rq_fn = scsi_initialize_rq, 1824 .busy = scsi_mq_lld_busy, 1825 .map_queues = scsi_map_queues, 1826 }; 1827 1828 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev) 1829 { 1830 sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set); 1831 if (IS_ERR(sdev->request_queue)) 1832 return NULL; 1833 1834 sdev->request_queue->queuedata = sdev; 1835 __scsi_init_queue(sdev->host, sdev->request_queue); 1836 blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, sdev->request_queue); 1837 return sdev->request_queue; 1838 } 1839 1840 int scsi_mq_setup_tags(struct Scsi_Host *shost) 1841 { 1842 unsigned int cmd_size, sgl_size; 1843 1844 sgl_size = scsi_mq_inline_sgl_size(shost); 1845 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size; 1846 if (scsi_host_get_prot(shost)) 1847 cmd_size += sizeof(struct scsi_data_buffer) + 1848 sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT; 1849 1850 memset(&shost->tag_set, 0, sizeof(shost->tag_set)); 1851 shost->tag_set.ops = &scsi_mq_ops; 1852 shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1; 1853 shost->tag_set.queue_depth = shost->can_queue; 1854 shost->tag_set.cmd_size = cmd_size; 1855 shost->tag_set.numa_node = NUMA_NO_NODE; 1856 shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE; 1857 shost->tag_set.flags |= 1858 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy); 1859 shost->tag_set.driver_data = shost; 1860 1861 return blk_mq_alloc_tag_set(&shost->tag_set); 1862 } 1863 1864 void scsi_mq_destroy_tags(struct Scsi_Host *shost) 1865 { 1866 blk_mq_free_tag_set(&shost->tag_set); 1867 } 1868 1869 /** 1870 * scsi_device_from_queue - return sdev associated with a request_queue 1871 * @q: The request queue to return the sdev from 1872 * 1873 * Return the sdev associated with a request queue or NULL if the 1874 * request_queue does not reference a SCSI device. 1875 */ 1876 struct scsi_device *scsi_device_from_queue(struct request_queue *q) 1877 { 1878 struct scsi_device *sdev = NULL; 1879 1880 if (q->mq_ops == &scsi_mq_ops) 1881 sdev = q->queuedata; 1882 if (!sdev || !get_device(&sdev->sdev_gendev)) 1883 sdev = NULL; 1884 1885 return sdev; 1886 } 1887 EXPORT_SYMBOL_GPL(scsi_device_from_queue); 1888 1889 /* 1890 * Function: scsi_block_requests() 1891 * 1892 * Purpose: Utility function used by low-level drivers to prevent further 1893 * commands from being queued to the device. 1894 * 1895 * Arguments: shost - Host in question 1896 * 1897 * Returns: Nothing 1898 * 1899 * Lock status: No locks are assumed held. 1900 * 1901 * Notes: There is no timer nor any other means by which the requests 1902 * get unblocked other than the low-level driver calling 1903 * scsi_unblock_requests(). 1904 */ 1905 void scsi_block_requests(struct Scsi_Host *shost) 1906 { 1907 shost->host_self_blocked = 1; 1908 } 1909 EXPORT_SYMBOL(scsi_block_requests); 1910 1911 /* 1912 * Function: scsi_unblock_requests() 1913 * 1914 * Purpose: Utility function used by low-level drivers to allow further 1915 * commands from being queued to the device. 1916 * 1917 * Arguments: shost - Host in question 1918 * 1919 * Returns: Nothing 1920 * 1921 * Lock status: No locks are assumed held. 1922 * 1923 * Notes: There is no timer nor any other means by which the requests 1924 * get unblocked other than the low-level driver calling 1925 * scsi_unblock_requests(). 1926 * 1927 * This is done as an API function so that changes to the 1928 * internals of the scsi mid-layer won't require wholesale 1929 * changes to drivers that use this feature. 1930 */ 1931 void scsi_unblock_requests(struct Scsi_Host *shost) 1932 { 1933 shost->host_self_blocked = 0; 1934 scsi_run_host_queues(shost); 1935 } 1936 EXPORT_SYMBOL(scsi_unblock_requests); 1937 1938 int __init scsi_init_queue(void) 1939 { 1940 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer", 1941 sizeof(struct scsi_data_buffer), 1942 0, 0, NULL); 1943 if (!scsi_sdb_cache) { 1944 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n"); 1945 return -ENOMEM; 1946 } 1947 1948 return 0; 1949 } 1950 1951 void scsi_exit_queue(void) 1952 { 1953 kmem_cache_destroy(scsi_sense_cache); 1954 kmem_cache_destroy(scsi_sense_isadma_cache); 1955 kmem_cache_destroy(scsi_sdb_cache); 1956 } 1957 1958 /** 1959 * scsi_mode_select - issue a mode select 1960 * @sdev: SCSI device to be queried 1961 * @pf: Page format bit (1 == standard, 0 == vendor specific) 1962 * @sp: Save page bit (0 == don't save, 1 == save) 1963 * @modepage: mode page being requested 1964 * @buffer: request buffer (may not be smaller than eight bytes) 1965 * @len: length of request buffer. 1966 * @timeout: command timeout 1967 * @retries: number of retries before failing 1968 * @data: returns a structure abstracting the mode header data 1969 * @sshdr: place to put sense data (or NULL if no sense to be collected). 1970 * must be SCSI_SENSE_BUFFERSIZE big. 1971 * 1972 * Returns zero if successful; negative error number or scsi 1973 * status on error 1974 * 1975 */ 1976 int 1977 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage, 1978 unsigned char *buffer, int len, int timeout, int retries, 1979 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 1980 { 1981 unsigned char cmd[10]; 1982 unsigned char *real_buffer; 1983 int ret; 1984 1985 memset(cmd, 0, sizeof(cmd)); 1986 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0); 1987 1988 if (sdev->use_10_for_ms) { 1989 if (len > 65535) 1990 return -EINVAL; 1991 real_buffer = kmalloc(8 + len, GFP_KERNEL); 1992 if (!real_buffer) 1993 return -ENOMEM; 1994 memcpy(real_buffer + 8, buffer, len); 1995 len += 8; 1996 real_buffer[0] = 0; 1997 real_buffer[1] = 0; 1998 real_buffer[2] = data->medium_type; 1999 real_buffer[3] = data->device_specific; 2000 real_buffer[4] = data->longlba ? 0x01 : 0; 2001 real_buffer[5] = 0; 2002 real_buffer[6] = data->block_descriptor_length >> 8; 2003 real_buffer[7] = data->block_descriptor_length; 2004 2005 cmd[0] = MODE_SELECT_10; 2006 cmd[7] = len >> 8; 2007 cmd[8] = len; 2008 } else { 2009 if (len > 255 || data->block_descriptor_length > 255 || 2010 data->longlba) 2011 return -EINVAL; 2012 2013 real_buffer = kmalloc(4 + len, GFP_KERNEL); 2014 if (!real_buffer) 2015 return -ENOMEM; 2016 memcpy(real_buffer + 4, buffer, len); 2017 len += 4; 2018 real_buffer[0] = 0; 2019 real_buffer[1] = data->medium_type; 2020 real_buffer[2] = data->device_specific; 2021 real_buffer[3] = data->block_descriptor_length; 2022 2023 2024 cmd[0] = MODE_SELECT; 2025 cmd[4] = len; 2026 } 2027 2028 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len, 2029 sshdr, timeout, retries, NULL); 2030 kfree(real_buffer); 2031 return ret; 2032 } 2033 EXPORT_SYMBOL_GPL(scsi_mode_select); 2034 2035 /** 2036 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary. 2037 * @sdev: SCSI device to be queried 2038 * @dbd: set if mode sense will allow block descriptors to be returned 2039 * @modepage: mode page being requested 2040 * @buffer: request buffer (may not be smaller than eight bytes) 2041 * @len: length of request buffer. 2042 * @timeout: command timeout 2043 * @retries: number of retries before failing 2044 * @data: returns a structure abstracting the mode header data 2045 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2046 * must be SCSI_SENSE_BUFFERSIZE big. 2047 * 2048 * Returns zero if unsuccessful, or the header offset (either 4 2049 * or 8 depending on whether a six or ten byte command was 2050 * issued) if successful. 2051 */ 2052 int 2053 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, 2054 unsigned char *buffer, int len, int timeout, int retries, 2055 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2056 { 2057 unsigned char cmd[12]; 2058 int use_10_for_ms; 2059 int header_length; 2060 int result, retry_count = retries; 2061 struct scsi_sense_hdr my_sshdr; 2062 2063 memset(data, 0, sizeof(*data)); 2064 memset(&cmd[0], 0, 12); 2065 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */ 2066 cmd[2] = modepage; 2067 2068 /* caller might not be interested in sense, but we need it */ 2069 if (!sshdr) 2070 sshdr = &my_sshdr; 2071 2072 retry: 2073 use_10_for_ms = sdev->use_10_for_ms; 2074 2075 if (use_10_for_ms) { 2076 if (len < 8) 2077 len = 8; 2078 2079 cmd[0] = MODE_SENSE_10; 2080 cmd[8] = len; 2081 header_length = 8; 2082 } else { 2083 if (len < 4) 2084 len = 4; 2085 2086 cmd[0] = MODE_SENSE; 2087 cmd[4] = len; 2088 header_length = 4; 2089 } 2090 2091 memset(buffer, 0, len); 2092 2093 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len, 2094 sshdr, timeout, retries, NULL); 2095 2096 /* This code looks awful: what it's doing is making sure an 2097 * ILLEGAL REQUEST sense return identifies the actual command 2098 * byte as the problem. MODE_SENSE commands can return 2099 * ILLEGAL REQUEST if the code page isn't supported */ 2100 2101 if (use_10_for_ms && !scsi_status_is_good(result) && 2102 driver_byte(result) == DRIVER_SENSE) { 2103 if (scsi_sense_valid(sshdr)) { 2104 if ((sshdr->sense_key == ILLEGAL_REQUEST) && 2105 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) { 2106 /* 2107 * Invalid command operation code 2108 */ 2109 sdev->use_10_for_ms = 0; 2110 goto retry; 2111 } 2112 } 2113 } 2114 2115 if(scsi_status_is_good(result)) { 2116 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b && 2117 (modepage == 6 || modepage == 8))) { 2118 /* Initio breakage? */ 2119 header_length = 0; 2120 data->length = 13; 2121 data->medium_type = 0; 2122 data->device_specific = 0; 2123 data->longlba = 0; 2124 data->block_descriptor_length = 0; 2125 } else if(use_10_for_ms) { 2126 data->length = buffer[0]*256 + buffer[1] + 2; 2127 data->medium_type = buffer[2]; 2128 data->device_specific = buffer[3]; 2129 data->longlba = buffer[4] & 0x01; 2130 data->block_descriptor_length = buffer[6]*256 2131 + buffer[7]; 2132 } else { 2133 data->length = buffer[0] + 1; 2134 data->medium_type = buffer[1]; 2135 data->device_specific = buffer[2]; 2136 data->block_descriptor_length = buffer[3]; 2137 } 2138 data->header_length = header_length; 2139 } else if ((status_byte(result) == CHECK_CONDITION) && 2140 scsi_sense_valid(sshdr) && 2141 sshdr->sense_key == UNIT_ATTENTION && retry_count) { 2142 retry_count--; 2143 goto retry; 2144 } 2145 2146 return result; 2147 } 2148 EXPORT_SYMBOL(scsi_mode_sense); 2149 2150 /** 2151 * scsi_test_unit_ready - test if unit is ready 2152 * @sdev: scsi device to change the state of. 2153 * @timeout: command timeout 2154 * @retries: number of retries before failing 2155 * @sshdr: outpout pointer for decoded sense information. 2156 * 2157 * Returns zero if unsuccessful or an error if TUR failed. For 2158 * removable media, UNIT_ATTENTION sets ->changed flag. 2159 **/ 2160 int 2161 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries, 2162 struct scsi_sense_hdr *sshdr) 2163 { 2164 char cmd[] = { 2165 TEST_UNIT_READY, 0, 0, 0, 0, 0, 2166 }; 2167 int result; 2168 2169 /* try to eat the UNIT_ATTENTION if there are enough retries */ 2170 do { 2171 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr, 2172 timeout, 1, NULL); 2173 if (sdev->removable && scsi_sense_valid(sshdr) && 2174 sshdr->sense_key == UNIT_ATTENTION) 2175 sdev->changed = 1; 2176 } while (scsi_sense_valid(sshdr) && 2177 sshdr->sense_key == UNIT_ATTENTION && --retries); 2178 2179 return result; 2180 } 2181 EXPORT_SYMBOL(scsi_test_unit_ready); 2182 2183 /** 2184 * scsi_device_set_state - Take the given device through the device state model. 2185 * @sdev: scsi device to change the state of. 2186 * @state: state to change to. 2187 * 2188 * Returns zero if successful or an error if the requested 2189 * transition is illegal. 2190 */ 2191 int 2192 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state) 2193 { 2194 enum scsi_device_state oldstate = sdev->sdev_state; 2195 2196 if (state == oldstate) 2197 return 0; 2198 2199 switch (state) { 2200 case SDEV_CREATED: 2201 switch (oldstate) { 2202 case SDEV_CREATED_BLOCK: 2203 break; 2204 default: 2205 goto illegal; 2206 } 2207 break; 2208 2209 case SDEV_RUNNING: 2210 switch (oldstate) { 2211 case SDEV_CREATED: 2212 case SDEV_OFFLINE: 2213 case SDEV_TRANSPORT_OFFLINE: 2214 case SDEV_QUIESCE: 2215 case SDEV_BLOCK: 2216 break; 2217 default: 2218 goto illegal; 2219 } 2220 break; 2221 2222 case SDEV_QUIESCE: 2223 switch (oldstate) { 2224 case SDEV_RUNNING: 2225 case SDEV_OFFLINE: 2226 case SDEV_TRANSPORT_OFFLINE: 2227 break; 2228 default: 2229 goto illegal; 2230 } 2231 break; 2232 2233 case SDEV_OFFLINE: 2234 case SDEV_TRANSPORT_OFFLINE: 2235 switch (oldstate) { 2236 case SDEV_CREATED: 2237 case SDEV_RUNNING: 2238 case SDEV_QUIESCE: 2239 case SDEV_BLOCK: 2240 break; 2241 default: 2242 goto illegal; 2243 } 2244 break; 2245 2246 case SDEV_BLOCK: 2247 switch (oldstate) { 2248 case SDEV_RUNNING: 2249 case SDEV_CREATED_BLOCK: 2250 case SDEV_OFFLINE: 2251 break; 2252 default: 2253 goto illegal; 2254 } 2255 break; 2256 2257 case SDEV_CREATED_BLOCK: 2258 switch (oldstate) { 2259 case SDEV_CREATED: 2260 break; 2261 default: 2262 goto illegal; 2263 } 2264 break; 2265 2266 case SDEV_CANCEL: 2267 switch (oldstate) { 2268 case SDEV_CREATED: 2269 case SDEV_RUNNING: 2270 case SDEV_QUIESCE: 2271 case SDEV_OFFLINE: 2272 case SDEV_TRANSPORT_OFFLINE: 2273 break; 2274 default: 2275 goto illegal; 2276 } 2277 break; 2278 2279 case SDEV_DEL: 2280 switch (oldstate) { 2281 case SDEV_CREATED: 2282 case SDEV_RUNNING: 2283 case SDEV_OFFLINE: 2284 case SDEV_TRANSPORT_OFFLINE: 2285 case SDEV_CANCEL: 2286 case SDEV_BLOCK: 2287 case SDEV_CREATED_BLOCK: 2288 break; 2289 default: 2290 goto illegal; 2291 } 2292 break; 2293 2294 } 2295 sdev->sdev_state = state; 2296 return 0; 2297 2298 illegal: 2299 SCSI_LOG_ERROR_RECOVERY(1, 2300 sdev_printk(KERN_ERR, sdev, 2301 "Illegal state transition %s->%s", 2302 scsi_device_state_name(oldstate), 2303 scsi_device_state_name(state)) 2304 ); 2305 return -EINVAL; 2306 } 2307 EXPORT_SYMBOL(scsi_device_set_state); 2308 2309 /** 2310 * sdev_evt_emit - emit a single SCSI device uevent 2311 * @sdev: associated SCSI device 2312 * @evt: event to emit 2313 * 2314 * Send a single uevent (scsi_event) to the associated scsi_device. 2315 */ 2316 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt) 2317 { 2318 int idx = 0; 2319 char *envp[3]; 2320 2321 switch (evt->evt_type) { 2322 case SDEV_EVT_MEDIA_CHANGE: 2323 envp[idx++] = "SDEV_MEDIA_CHANGE=1"; 2324 break; 2325 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2326 scsi_rescan_device(&sdev->sdev_gendev); 2327 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED"; 2328 break; 2329 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2330 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED"; 2331 break; 2332 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2333 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED"; 2334 break; 2335 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2336 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED"; 2337 break; 2338 case SDEV_EVT_LUN_CHANGE_REPORTED: 2339 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED"; 2340 break; 2341 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2342 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED"; 2343 break; 2344 case SDEV_EVT_POWER_ON_RESET_OCCURRED: 2345 envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED"; 2346 break; 2347 default: 2348 /* do nothing */ 2349 break; 2350 } 2351 2352 envp[idx++] = NULL; 2353 2354 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp); 2355 } 2356 2357 /** 2358 * sdev_evt_thread - send a uevent for each scsi event 2359 * @work: work struct for scsi_device 2360 * 2361 * Dispatch queued events to their associated scsi_device kobjects 2362 * as uevents. 2363 */ 2364 void scsi_evt_thread(struct work_struct *work) 2365 { 2366 struct scsi_device *sdev; 2367 enum scsi_device_event evt_type; 2368 LIST_HEAD(event_list); 2369 2370 sdev = container_of(work, struct scsi_device, event_work); 2371 2372 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++) 2373 if (test_and_clear_bit(evt_type, sdev->pending_events)) 2374 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL); 2375 2376 while (1) { 2377 struct scsi_event *evt; 2378 struct list_head *this, *tmp; 2379 unsigned long flags; 2380 2381 spin_lock_irqsave(&sdev->list_lock, flags); 2382 list_splice_init(&sdev->event_list, &event_list); 2383 spin_unlock_irqrestore(&sdev->list_lock, flags); 2384 2385 if (list_empty(&event_list)) 2386 break; 2387 2388 list_for_each_safe(this, tmp, &event_list) { 2389 evt = list_entry(this, struct scsi_event, node); 2390 list_del(&evt->node); 2391 scsi_evt_emit(sdev, evt); 2392 kfree(evt); 2393 } 2394 } 2395 } 2396 2397 /** 2398 * sdev_evt_send - send asserted event to uevent thread 2399 * @sdev: scsi_device event occurred on 2400 * @evt: event to send 2401 * 2402 * Assert scsi device event asynchronously. 2403 */ 2404 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt) 2405 { 2406 unsigned long flags; 2407 2408 #if 0 2409 /* FIXME: currently this check eliminates all media change events 2410 * for polled devices. Need to update to discriminate between AN 2411 * and polled events */ 2412 if (!test_bit(evt->evt_type, sdev->supported_events)) { 2413 kfree(evt); 2414 return; 2415 } 2416 #endif 2417 2418 spin_lock_irqsave(&sdev->list_lock, flags); 2419 list_add_tail(&evt->node, &sdev->event_list); 2420 schedule_work(&sdev->event_work); 2421 spin_unlock_irqrestore(&sdev->list_lock, flags); 2422 } 2423 EXPORT_SYMBOL_GPL(sdev_evt_send); 2424 2425 /** 2426 * sdev_evt_alloc - allocate a new scsi event 2427 * @evt_type: type of event to allocate 2428 * @gfpflags: GFP flags for allocation 2429 * 2430 * Allocates and returns a new scsi_event. 2431 */ 2432 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type, 2433 gfp_t gfpflags) 2434 { 2435 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags); 2436 if (!evt) 2437 return NULL; 2438 2439 evt->evt_type = evt_type; 2440 INIT_LIST_HEAD(&evt->node); 2441 2442 /* evt_type-specific initialization, if any */ 2443 switch (evt_type) { 2444 case SDEV_EVT_MEDIA_CHANGE: 2445 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2446 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2447 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2448 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2449 case SDEV_EVT_LUN_CHANGE_REPORTED: 2450 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2451 case SDEV_EVT_POWER_ON_RESET_OCCURRED: 2452 default: 2453 /* do nothing */ 2454 break; 2455 } 2456 2457 return evt; 2458 } 2459 EXPORT_SYMBOL_GPL(sdev_evt_alloc); 2460 2461 /** 2462 * sdev_evt_send_simple - send asserted event to uevent thread 2463 * @sdev: scsi_device event occurred on 2464 * @evt_type: type of event to send 2465 * @gfpflags: GFP flags for allocation 2466 * 2467 * Assert scsi device event asynchronously, given an event type. 2468 */ 2469 void sdev_evt_send_simple(struct scsi_device *sdev, 2470 enum scsi_device_event evt_type, gfp_t gfpflags) 2471 { 2472 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags); 2473 if (!evt) { 2474 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n", 2475 evt_type); 2476 return; 2477 } 2478 2479 sdev_evt_send(sdev, evt); 2480 } 2481 EXPORT_SYMBOL_GPL(sdev_evt_send_simple); 2482 2483 /** 2484 * scsi_device_quiesce - Block user issued commands. 2485 * @sdev: scsi device to quiesce. 2486 * 2487 * This works by trying to transition to the SDEV_QUIESCE state 2488 * (which must be a legal transition). When the device is in this 2489 * state, only special requests will be accepted, all others will 2490 * be deferred. Since special requests may also be requeued requests, 2491 * a successful return doesn't guarantee the device will be 2492 * totally quiescent. 2493 * 2494 * Must be called with user context, may sleep. 2495 * 2496 * Returns zero if unsuccessful or an error if not. 2497 */ 2498 int 2499 scsi_device_quiesce(struct scsi_device *sdev) 2500 { 2501 struct request_queue *q = sdev->request_queue; 2502 int err; 2503 2504 /* 2505 * It is allowed to call scsi_device_quiesce() multiple times from 2506 * the same context but concurrent scsi_device_quiesce() calls are 2507 * not allowed. 2508 */ 2509 WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current); 2510 2511 if (sdev->quiesced_by == current) 2512 return 0; 2513 2514 blk_set_pm_only(q); 2515 2516 blk_mq_freeze_queue(q); 2517 /* 2518 * Ensure that the effect of blk_set_pm_only() will be visible 2519 * for percpu_ref_tryget() callers that occur after the queue 2520 * unfreeze even if the queue was already frozen before this function 2521 * was called. See also https://lwn.net/Articles/573497/. 2522 */ 2523 synchronize_rcu(); 2524 blk_mq_unfreeze_queue(q); 2525 2526 mutex_lock(&sdev->state_mutex); 2527 err = scsi_device_set_state(sdev, SDEV_QUIESCE); 2528 if (err == 0) 2529 sdev->quiesced_by = current; 2530 else 2531 blk_clear_pm_only(q); 2532 mutex_unlock(&sdev->state_mutex); 2533 2534 return err; 2535 } 2536 EXPORT_SYMBOL(scsi_device_quiesce); 2537 2538 /** 2539 * scsi_device_resume - Restart user issued commands to a quiesced device. 2540 * @sdev: scsi device to resume. 2541 * 2542 * Moves the device from quiesced back to running and restarts the 2543 * queues. 2544 * 2545 * Must be called with user context, may sleep. 2546 */ 2547 void scsi_device_resume(struct scsi_device *sdev) 2548 { 2549 /* check if the device state was mutated prior to resume, and if 2550 * so assume the state is being managed elsewhere (for example 2551 * device deleted during suspend) 2552 */ 2553 mutex_lock(&sdev->state_mutex); 2554 if (sdev->quiesced_by) { 2555 sdev->quiesced_by = NULL; 2556 blk_clear_pm_only(sdev->request_queue); 2557 } 2558 if (sdev->sdev_state == SDEV_QUIESCE) 2559 scsi_device_set_state(sdev, SDEV_RUNNING); 2560 mutex_unlock(&sdev->state_mutex); 2561 } 2562 EXPORT_SYMBOL(scsi_device_resume); 2563 2564 static void 2565 device_quiesce_fn(struct scsi_device *sdev, void *data) 2566 { 2567 scsi_device_quiesce(sdev); 2568 } 2569 2570 void 2571 scsi_target_quiesce(struct scsi_target *starget) 2572 { 2573 starget_for_each_device(starget, NULL, device_quiesce_fn); 2574 } 2575 EXPORT_SYMBOL(scsi_target_quiesce); 2576 2577 static void 2578 device_resume_fn(struct scsi_device *sdev, void *data) 2579 { 2580 scsi_device_resume(sdev); 2581 } 2582 2583 void 2584 scsi_target_resume(struct scsi_target *starget) 2585 { 2586 starget_for_each_device(starget, NULL, device_resume_fn); 2587 } 2588 EXPORT_SYMBOL(scsi_target_resume); 2589 2590 /** 2591 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state 2592 * @sdev: device to block 2593 * 2594 * Pause SCSI command processing on the specified device. Does not sleep. 2595 * 2596 * Returns zero if successful or a negative error code upon failure. 2597 * 2598 * Notes: 2599 * This routine transitions the device to the SDEV_BLOCK state (which must be 2600 * a legal transition). When the device is in this state, command processing 2601 * is paused until the device leaves the SDEV_BLOCK state. See also 2602 * scsi_internal_device_unblock_nowait(). 2603 */ 2604 int scsi_internal_device_block_nowait(struct scsi_device *sdev) 2605 { 2606 struct request_queue *q = sdev->request_queue; 2607 int err = 0; 2608 2609 err = scsi_device_set_state(sdev, SDEV_BLOCK); 2610 if (err) { 2611 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK); 2612 2613 if (err) 2614 return err; 2615 } 2616 2617 /* 2618 * The device has transitioned to SDEV_BLOCK. Stop the 2619 * block layer from calling the midlayer with this device's 2620 * request queue. 2621 */ 2622 blk_mq_quiesce_queue_nowait(q); 2623 return 0; 2624 } 2625 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait); 2626 2627 /** 2628 * scsi_internal_device_block - try to transition to the SDEV_BLOCK state 2629 * @sdev: device to block 2630 * 2631 * Pause SCSI command processing on the specified device and wait until all 2632 * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep. 2633 * 2634 * Returns zero if successful or a negative error code upon failure. 2635 * 2636 * Note: 2637 * This routine transitions the device to the SDEV_BLOCK state (which must be 2638 * a legal transition). When the device is in this state, command processing 2639 * is paused until the device leaves the SDEV_BLOCK state. See also 2640 * scsi_internal_device_unblock(). 2641 */ 2642 static int scsi_internal_device_block(struct scsi_device *sdev) 2643 { 2644 struct request_queue *q = sdev->request_queue; 2645 int err; 2646 2647 mutex_lock(&sdev->state_mutex); 2648 err = scsi_internal_device_block_nowait(sdev); 2649 if (err == 0) 2650 blk_mq_quiesce_queue(q); 2651 mutex_unlock(&sdev->state_mutex); 2652 2653 return err; 2654 } 2655 2656 void scsi_start_queue(struct scsi_device *sdev) 2657 { 2658 struct request_queue *q = sdev->request_queue; 2659 2660 blk_mq_unquiesce_queue(q); 2661 } 2662 2663 /** 2664 * scsi_internal_device_unblock_nowait - resume a device after a block request 2665 * @sdev: device to resume 2666 * @new_state: state to set the device to after unblocking 2667 * 2668 * Restart the device queue for a previously suspended SCSI device. Does not 2669 * sleep. 2670 * 2671 * Returns zero if successful or a negative error code upon failure. 2672 * 2673 * Notes: 2674 * This routine transitions the device to the SDEV_RUNNING state or to one of 2675 * the offline states (which must be a legal transition) allowing the midlayer 2676 * to goose the queue for this device. 2677 */ 2678 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev, 2679 enum scsi_device_state new_state) 2680 { 2681 /* 2682 * Try to transition the scsi device to SDEV_RUNNING or one of the 2683 * offlined states and goose the device queue if successful. 2684 */ 2685 switch (sdev->sdev_state) { 2686 case SDEV_BLOCK: 2687 case SDEV_TRANSPORT_OFFLINE: 2688 sdev->sdev_state = new_state; 2689 break; 2690 case SDEV_CREATED_BLOCK: 2691 if (new_state == SDEV_TRANSPORT_OFFLINE || 2692 new_state == SDEV_OFFLINE) 2693 sdev->sdev_state = new_state; 2694 else 2695 sdev->sdev_state = SDEV_CREATED; 2696 break; 2697 case SDEV_CANCEL: 2698 case SDEV_OFFLINE: 2699 break; 2700 default: 2701 return -EINVAL; 2702 } 2703 scsi_start_queue(sdev); 2704 2705 return 0; 2706 } 2707 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait); 2708 2709 /** 2710 * scsi_internal_device_unblock - resume a device after a block request 2711 * @sdev: device to resume 2712 * @new_state: state to set the device to after unblocking 2713 * 2714 * Restart the device queue for a previously suspended SCSI device. May sleep. 2715 * 2716 * Returns zero if successful or a negative error code upon failure. 2717 * 2718 * Notes: 2719 * This routine transitions the device to the SDEV_RUNNING state or to one of 2720 * the offline states (which must be a legal transition) allowing the midlayer 2721 * to goose the queue for this device. 2722 */ 2723 static int scsi_internal_device_unblock(struct scsi_device *sdev, 2724 enum scsi_device_state new_state) 2725 { 2726 int ret; 2727 2728 mutex_lock(&sdev->state_mutex); 2729 ret = scsi_internal_device_unblock_nowait(sdev, new_state); 2730 mutex_unlock(&sdev->state_mutex); 2731 2732 return ret; 2733 } 2734 2735 static void 2736 device_block(struct scsi_device *sdev, void *data) 2737 { 2738 scsi_internal_device_block(sdev); 2739 } 2740 2741 static int 2742 target_block(struct device *dev, void *data) 2743 { 2744 if (scsi_is_target_device(dev)) 2745 starget_for_each_device(to_scsi_target(dev), NULL, 2746 device_block); 2747 return 0; 2748 } 2749 2750 void 2751 scsi_target_block(struct device *dev) 2752 { 2753 if (scsi_is_target_device(dev)) 2754 starget_for_each_device(to_scsi_target(dev), NULL, 2755 device_block); 2756 else 2757 device_for_each_child(dev, NULL, target_block); 2758 } 2759 EXPORT_SYMBOL_GPL(scsi_target_block); 2760 2761 static void 2762 device_unblock(struct scsi_device *sdev, void *data) 2763 { 2764 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data); 2765 } 2766 2767 static int 2768 target_unblock(struct device *dev, void *data) 2769 { 2770 if (scsi_is_target_device(dev)) 2771 starget_for_each_device(to_scsi_target(dev), data, 2772 device_unblock); 2773 return 0; 2774 } 2775 2776 void 2777 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state) 2778 { 2779 if (scsi_is_target_device(dev)) 2780 starget_for_each_device(to_scsi_target(dev), &new_state, 2781 device_unblock); 2782 else 2783 device_for_each_child(dev, &new_state, target_unblock); 2784 } 2785 EXPORT_SYMBOL_GPL(scsi_target_unblock); 2786 2787 /** 2788 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt 2789 * @sgl: scatter-gather list 2790 * @sg_count: number of segments in sg 2791 * @offset: offset in bytes into sg, on return offset into the mapped area 2792 * @len: bytes to map, on return number of bytes mapped 2793 * 2794 * Returns virtual address of the start of the mapped page 2795 */ 2796 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count, 2797 size_t *offset, size_t *len) 2798 { 2799 int i; 2800 size_t sg_len = 0, len_complete = 0; 2801 struct scatterlist *sg; 2802 struct page *page; 2803 2804 WARN_ON(!irqs_disabled()); 2805 2806 for_each_sg(sgl, sg, sg_count, i) { 2807 len_complete = sg_len; /* Complete sg-entries */ 2808 sg_len += sg->length; 2809 if (sg_len > *offset) 2810 break; 2811 } 2812 2813 if (unlikely(i == sg_count)) { 2814 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, " 2815 "elements %d\n", 2816 __func__, sg_len, *offset, sg_count); 2817 WARN_ON(1); 2818 return NULL; 2819 } 2820 2821 /* Offset starting from the beginning of first page in this sg-entry */ 2822 *offset = *offset - len_complete + sg->offset; 2823 2824 /* Assumption: contiguous pages can be accessed as "page + i" */ 2825 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT)); 2826 *offset &= ~PAGE_MASK; 2827 2828 /* Bytes in this sg-entry from *offset to the end of the page */ 2829 sg_len = PAGE_SIZE - *offset; 2830 if (*len > sg_len) 2831 *len = sg_len; 2832 2833 return kmap_atomic(page); 2834 } 2835 EXPORT_SYMBOL(scsi_kmap_atomic_sg); 2836 2837 /** 2838 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg 2839 * @virt: virtual address to be unmapped 2840 */ 2841 void scsi_kunmap_atomic_sg(void *virt) 2842 { 2843 kunmap_atomic(virt); 2844 } 2845 EXPORT_SYMBOL(scsi_kunmap_atomic_sg); 2846 2847 void sdev_disable_disk_events(struct scsi_device *sdev) 2848 { 2849 atomic_inc(&sdev->disk_events_disable_depth); 2850 } 2851 EXPORT_SYMBOL(sdev_disable_disk_events); 2852 2853 void sdev_enable_disk_events(struct scsi_device *sdev) 2854 { 2855 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0)) 2856 return; 2857 atomic_dec(&sdev->disk_events_disable_depth); 2858 } 2859 EXPORT_SYMBOL(sdev_enable_disk_events); 2860 2861 /** 2862 * scsi_vpd_lun_id - return a unique device identification 2863 * @sdev: SCSI device 2864 * @id: buffer for the identification 2865 * @id_len: length of the buffer 2866 * 2867 * Copies a unique device identification into @id based 2868 * on the information in the VPD page 0x83 of the device. 2869 * The string will be formatted as a SCSI name string. 2870 * 2871 * Returns the length of the identification or error on failure. 2872 * If the identifier is longer than the supplied buffer the actual 2873 * identifier length is returned and the buffer is not zero-padded. 2874 */ 2875 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len) 2876 { 2877 u8 cur_id_type = 0xff; 2878 u8 cur_id_size = 0; 2879 const unsigned char *d, *cur_id_str; 2880 const struct scsi_vpd *vpd_pg83; 2881 int id_size = -EINVAL; 2882 2883 rcu_read_lock(); 2884 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 2885 if (!vpd_pg83) { 2886 rcu_read_unlock(); 2887 return -ENXIO; 2888 } 2889 2890 /* 2891 * Look for the correct descriptor. 2892 * Order of preference for lun descriptor: 2893 * - SCSI name string 2894 * - NAA IEEE Registered Extended 2895 * - EUI-64 based 16-byte 2896 * - EUI-64 based 12-byte 2897 * - NAA IEEE Registered 2898 * - NAA IEEE Extended 2899 * - T10 Vendor ID 2900 * as longer descriptors reduce the likelyhood 2901 * of identification clashes. 2902 */ 2903 2904 /* The id string must be at least 20 bytes + terminating NULL byte */ 2905 if (id_len < 21) { 2906 rcu_read_unlock(); 2907 return -EINVAL; 2908 } 2909 2910 memset(id, 0, id_len); 2911 d = vpd_pg83->data + 4; 2912 while (d < vpd_pg83->data + vpd_pg83->len) { 2913 /* Skip designators not referring to the LUN */ 2914 if ((d[1] & 0x30) != 0x00) 2915 goto next_desig; 2916 2917 switch (d[1] & 0xf) { 2918 case 0x1: 2919 /* T10 Vendor ID */ 2920 if (cur_id_size > d[3]) 2921 break; 2922 /* Prefer anything */ 2923 if (cur_id_type > 0x01 && cur_id_type != 0xff) 2924 break; 2925 cur_id_size = d[3]; 2926 if (cur_id_size + 4 > id_len) 2927 cur_id_size = id_len - 4; 2928 cur_id_str = d + 4; 2929 cur_id_type = d[1] & 0xf; 2930 id_size = snprintf(id, id_len, "t10.%*pE", 2931 cur_id_size, cur_id_str); 2932 break; 2933 case 0x2: 2934 /* EUI-64 */ 2935 if (cur_id_size > d[3]) 2936 break; 2937 /* Prefer NAA IEEE Registered Extended */ 2938 if (cur_id_type == 0x3 && 2939 cur_id_size == d[3]) 2940 break; 2941 cur_id_size = d[3]; 2942 cur_id_str = d + 4; 2943 cur_id_type = d[1] & 0xf; 2944 switch (cur_id_size) { 2945 case 8: 2946 id_size = snprintf(id, id_len, 2947 "eui.%8phN", 2948 cur_id_str); 2949 break; 2950 case 12: 2951 id_size = snprintf(id, id_len, 2952 "eui.%12phN", 2953 cur_id_str); 2954 break; 2955 case 16: 2956 id_size = snprintf(id, id_len, 2957 "eui.%16phN", 2958 cur_id_str); 2959 break; 2960 default: 2961 cur_id_size = 0; 2962 break; 2963 } 2964 break; 2965 case 0x3: 2966 /* NAA */ 2967 if (cur_id_size > d[3]) 2968 break; 2969 cur_id_size = d[3]; 2970 cur_id_str = d + 4; 2971 cur_id_type = d[1] & 0xf; 2972 switch (cur_id_size) { 2973 case 8: 2974 id_size = snprintf(id, id_len, 2975 "naa.%8phN", 2976 cur_id_str); 2977 break; 2978 case 16: 2979 id_size = snprintf(id, id_len, 2980 "naa.%16phN", 2981 cur_id_str); 2982 break; 2983 default: 2984 cur_id_size = 0; 2985 break; 2986 } 2987 break; 2988 case 0x8: 2989 /* SCSI name string */ 2990 if (cur_id_size + 4 > d[3]) 2991 break; 2992 /* Prefer others for truncated descriptor */ 2993 if (cur_id_size && d[3] > id_len) 2994 break; 2995 cur_id_size = id_size = d[3]; 2996 cur_id_str = d + 4; 2997 cur_id_type = d[1] & 0xf; 2998 if (cur_id_size >= id_len) 2999 cur_id_size = id_len - 1; 3000 memcpy(id, cur_id_str, cur_id_size); 3001 /* Decrease priority for truncated descriptor */ 3002 if (cur_id_size != id_size) 3003 cur_id_size = 6; 3004 break; 3005 default: 3006 break; 3007 } 3008 next_desig: 3009 d += d[3] + 4; 3010 } 3011 rcu_read_unlock(); 3012 3013 return id_size; 3014 } 3015 EXPORT_SYMBOL(scsi_vpd_lun_id); 3016 3017 /* 3018 * scsi_vpd_tpg_id - return a target port group identifier 3019 * @sdev: SCSI device 3020 * 3021 * Returns the Target Port Group identifier from the information 3022 * froom VPD page 0x83 of the device. 3023 * 3024 * Returns the identifier or error on failure. 3025 */ 3026 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id) 3027 { 3028 const unsigned char *d; 3029 const struct scsi_vpd *vpd_pg83; 3030 int group_id = -EAGAIN, rel_port = -1; 3031 3032 rcu_read_lock(); 3033 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 3034 if (!vpd_pg83) { 3035 rcu_read_unlock(); 3036 return -ENXIO; 3037 } 3038 3039 d = vpd_pg83->data + 4; 3040 while (d < vpd_pg83->data + vpd_pg83->len) { 3041 switch (d[1] & 0xf) { 3042 case 0x4: 3043 /* Relative target port */ 3044 rel_port = get_unaligned_be16(&d[6]); 3045 break; 3046 case 0x5: 3047 /* Target port group */ 3048 group_id = get_unaligned_be16(&d[6]); 3049 break; 3050 default: 3051 break; 3052 } 3053 d += d[3] + 4; 3054 } 3055 rcu_read_unlock(); 3056 3057 if (group_id >= 0 && rel_id && rel_port != -1) 3058 *rel_id = rel_port; 3059 3060 return group_id; 3061 } 3062 EXPORT_SYMBOL(scsi_vpd_tpg_id); 3063